

Coordinate pair

The ordered pair (a, b) is assigned to the point P
$P(311) \Rightarrow(3,0)=[013]$

Increment and straight lines

When particles move from one point to another point, the net changes is called increment

$$
A=(4,-3) \quad \begin{array}{ll|l}
x_{1}=4 & y_{1}=-3 & B=(2,5) \\
x_{2}=2 \\
y_{2}=5
\end{array}
$$

Example: 01
In going from the point $A(4,-3)$ to the point $B(2,5)$ the increments in the x and y
coordinate are?

$$
\Delta x=x_{2}-x_{1} \quad x_{1}=2
$$

$$
\Delta u=0-4=-2
$$

$$
\begin{aligned}
& y \text {-coordinate } \\
& \Delta y=y_{2}-41 \\
& \Delta y=5-(-3) \\
& \frac{\Delta y=5+3=8}{\Delta \Delta y=7} \\
& P_{1}=[4,-3] \\
& P_{2}=[2,5] \\
& x y
\end{aligned}
$$

$$
y_{1}=-3
$$

$$
y_{2}=5
$$

Example: 02
The coordinate increments from $C \stackrel{7_{1}}{(5,6)}$) to $D\left(5, y_{2}^{2-2}\right)$?

$$
\begin{gathered}
x_{1}=5 \quad y_{1}=6 \\
x_{2}=5 \quad y_{2}=1 \\
\Delta x=x_{2}-x_{1} \\
5-5 \\
\Delta x=0
\end{gathered}
$$

Distance formula for a point in the plane

The distance between the points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
& d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Example: 03
The distance between $P(-1,2)$ and $Q\left(3^{x_{1}}, y_{1}^{y_{2}}\right.$ is

$$
d=\sqrt{\left[x_{2}-x_{1}\right)^{2}+\left[y_{2}-y_{1}\right]^{2}}
$$

Example: 04
The distance from origin to $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is

$$
O\left(\begin{array}{ll}
0 & 10 \\
x_{1} & y_{1}
\end{array}\right) \text { to } P\left(\begin{array}{ll}
x_{7} & y \\
y_{2} & y_{2}
\end{array}\right]_{2}
$$

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(x-0)^{2}+(y-0)^{2}} \\
d & =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Graph
Involving the variable x and y is the set of the all point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ whose coordinate satisfy the equation and inequality.

Example: 05
a.) $x^{2}+y^{2}=a^{2}$
$x=f(x)$
$x=y$
a)

b) $x^{2}+y^{2} \leq a^{2}$

Example: 06
The equation $\mathrm{y}=\mathrm{x}^{2} \quad$ de $[-2, d]$

$$
y=(-2)^{2}=4
$$

$$
y=(-1)^{2}=1
$$

$$
\begin{aligned}
& y=(-1) \\
& y=(0)^{2}=0 \\
& x^{2}=1
\end{aligned}
$$

$$
P_{4}\left(1,17 P_{5}(2,4)\right.
$$

Properties:
SYMMETRY
There are three type of symmetry

$f(x, y)$

$$
\begin{array}{ll}
(x, y) & x-a x i \\
y-a x i \infty \\
x=-x & y=-y \\
f(-\infty, x, y)=f(x, y)
\end{array}
$$

Even and odd function:

$$
\begin{aligned}
& y=f(x) \\
& f(-x)=f(x)=\operatorname{even} \\
& f[-x]=-f(x)=\text { odd }
\end{aligned}
$$

