

$$
\begin{aligned}
& {[-1]^{2}=1} \\
& 27^{2}=4
\end{aligned}
$$

Chapter 01: Preliminaries

- Real Numbers: QU CD

$$
\begin{aligned}
& N=\{\cdots, 1,2,3, \ldots\} \\
& N=\{1,2,3, \ldots\} \\
& Z=\{--1,0,1, \ldots\}
\end{aligned}
$$

$$
z=\{01 \pm 1, \pm 9,-\}
$$

$$
\alpha= \begin{cases}p / p & p \in Z \\ & w \neq b\end{cases}
$$

- Interval:

A subset of the real lines is called interval

$$
\sqrt{\frac{2}{3}, \frac{1}{1} 3} \begin{aligned}
& 2^{2} \neq \sqrt{2} \\
& \sqrt{[5]^{2}}=5
\end{aligned} \pi
$$

Solve the following inequalities and show their solution set on the real lines:

$$
a x \leq 4
$$

$$
\begin{aligned}
& x \leqslant 4 \\
& I=(-\infty, 4] \text { half } \text { open/cloled }
\end{aligned}
$$

$$
\text { b) }-\frac{x}{3}<2 x+1
$$

$$
-x<(2 x+1) 3
$$

$$
-x<6 x+3
$$

$$
-3<6 x+x
$$

$\frac{-3<7 x}{-3 / 7<x} 02 \sqrt{x>-3 / 7}$

$$
I=(-3 / 7, \infty)
$$

$$
\begin{aligned}
& \text { a) } 2 x-1<x+3 \\
& 2 x-x<3+1 \\
& x<4 \\
& I=(-\infty, 4) \rightarrow \text { ape }
\end{aligned}
$$

$$
\begin{aligned}
& {[1,5]} \\
& -f(x)=x^{2} \\
& {[a, b]} \\
& \text { Types } \\
& (a, b)
\end{aligned}
$$

$x-1=0$
c) $\frac{6}{x-1} \geq 5$
$x=1$
of $x=1$
$6 \geqslant 5(x-1)$
$6 \geqslant 5 x-5$

$$
\frac{b}{0 x} \rightarrow \infty
$$

$$
6+5 \geqslant 5 x
$$

$$
1115 \geqslant x
$$

bot $\left.I=(1)^{\prime \prime \prime} / 5\right]$

- Absolute values:

The absolute value of a number denoted by $|x|$ is defined by

$$
\sqrt{|x|}=\left\{\begin{array}{cc}
x & ; x \geqslant 0 \\
-x & ; x<0
\end{array}\right.
$$

Exp: 3

$$
\begin{aligned}
& L 3 \mid=\sqrt{(3)^{2}}=\sqrt{9}=3 \\
& -5 \\
& |-5|=\sqrt{(-5)^{2}}=\sqrt{25}=5
\end{aligned}
$$

Eyp:- solving Eqs with absolute valued.
(d) $|2 x-3|=7$

《OT:

$$
2 x-3= \pm 7
$$

$$
\begin{gathered}
2 x-3=7 \\
2 x=7+3 \\
x=10 / 2 \\
x=5
\end{gathered}
$$

$$
2 x-3=-7
$$

$$
s . s=\left\{x_{1}, x_{2}\right\}=\{5,-2\}
$$

(b) $\left|5-\frac{2}{x}\right|<1$

$$
\begin{aligned}
& -1<5-\frac{2}{x}<1 \\
& -6<-2 / x<-4 \\
& 3<\frac{1}{x}<2 \\
& \frac{1}{3}<x<\frac{1}{2} \\
& x \in(1 / 3>1 / 2)
\end{aligned}
$$

Table 1 Types of intervals

Exercises 1

Decimal Representations

1. Express $1 / 9$ as a repeating decimal, using a bar to indicate the repeating digits. What are the decimal representations of $2 / 9$? $3 / 9$? 8/9?
2. Express $1 / 11$ as a repeating decimal, using a bar to indicate the repeating digits. What are the decimal representations of $2 / 11$? $3 / 11$? 9/11?

Inequalities

3. If $2<x<6$, which of the following statements about x are necessarily true, and which are not necessarily true?
a) $0<x<4$
b) $0<x-2<4$
c) $1<\frac{x}{2}<3$
d) $\frac{1}{6}<\frac{1}{x}<\frac{1}{2}$
e) $1<\frac{6}{x}<3$
f) $|x-4|<2$
g) $-6<-x<2$
h) $-6<-x<-2$
4. If $-1<y-5<1$, which of the following statements about y are necessarily true, and which are not necessarily true?
a) $4<y<6$
b) $-6<y<-4$
c) $y>4$
d) $y<6$
e) $0<y-4<2$
f) $2<\frac{y}{2}<3$
g) $\frac{1}{6}<\frac{1}{y}<\frac{1}{4}$
h) $|y-5|<1$

Absolute Value

Solve the equations in Exercises 13-18.
13. $|y|=3$
14. $|y-3|=7$
15. $|2 t+5|=4$
16. $|1-t|=1$
17. $|8-3 s|=\frac{9}{2}$
18. $\left|\frac{s}{2}-1\right|=1$

Solve the inequalities in Exercises 19-34, expressing the solution sets as intervals or unions of intervals. Also, graph each solution set on the real line.
19. $|x|<2$
20. $|x| \leq 2$
21. $|t-1| \leq 3$
22. $|t+2|<1$
23. $|3 y-7|<4$
24. $|2 y+5|<1$
25. $\left|\frac{z}{5}-1\right| \leq 1$
26. $\left|\frac{3}{2} z-1\right| \leq 2$
27. $\left|3-\frac{1}{x}\right|<\frac{1}{2}$
28. $\left|\frac{2}{x}-4\right|<3$
29. $|2 s| \geq 4$
30. $|s+3| \geq \frac{1}{2}$
31. $|1-x|>1$
32. $|2-3 x|>5$
33. $\left|\frac{r+1}{2}\right| \geq 1$
34. $\left|\frac{3 r}{5}-1\right|>\frac{2}{5}$

Quadratic Inequalities

Solve the inequalities in Exercises 35-42. Express the solution sets as intervals or unions of intervals and graph them. Use the result $\sqrt{a^{2}}=|a|$ as appropriate.
35. $x^{2}<2$
36. $4 \leq x^{2}$
37. $4<x^{2}<9$

