Projection

- Create a folder called **Projection**. On DIA 322 computers, you might want to create this folder in your user Documents folder (e.g. C:\Users\jdoe\Documents\ Projection). On the DIA 222 computers, you might want to create this folder on the D: drive under D:\course number\user name\ (e.g. D:\ES212\jdoe\ Projection).
- 2. <u>Download the data</u> for this exercise then <u>uncompress</u> the **Projection.zip** file to your newly created **Projection** directory.

In this short exercise, you will learn how to read coordinate system information for GIS data, define a coordinate system when one is not present, and re-project your GIS data to a new projection.

Contents

- Step 1: Open the map document
- Step 2: Identify a layer's coordinate system
- Step 3: Identify the data frame's coordinate system
- Step 4: Projecting a layer to a new coordinate system
- Step 5: Defining a coordinate system
- Step 6: Re-project the conserved lands layer

Step 1: Open the map document

Navigate to Projection folder and open projection.mxd.

The map is composed of two layers: a *deer wintering areas* layer and a *Maine counties* layer. Both layers seem to cover the same spatial extent inside of ArcMap yet, as you will shortly learn, they do not necessarily need to share the same projection.

In the **Properties** window, select the source tab

The information displayed under *Data Source* indicates that *Counties'* coordinate system is based on a **UTM** projection (Zone 19 North to be precise) which is dependent on the **North American Datum of 1983** (NAD83).

Data Type: Shapefile: Geometry Type:	Shapefile Feature Class D:\ogin_name\Projection\Coun Polygon	nties.shp
Projected Coordinate System: Projection:	NAD_1983_UTM_Zone_19N Transverse_Mercator	
raise_casung: False_Northing:	0.00000000	
Central_Meridian: Scale_Factor: Latitude_Of_Origin: Linear Unit:	-69.0000000 0.99960000 0.00000000 Meter	
Geographic Coordinate System: Datum:	GCS_North_American_1983 D_North_American_1983	
Angular Unit:	Degree	

Layers do not need to share the same projection in a single map document. ArcGIS converts projections on the fly to a common map projection.

Click **OK** to dismiss the properties window.

Right click on Deer Wintering Areas layer and select Properties.

In the **Properties** window, select the source tab

The information displayed under *Data Source* indicates that the *Deer Wintering Area's* coordinate system has **no** <u>projected</u> <u>coordinate system</u> (PCS), it is solely based on a <u>Geographic Coordinate</u> <u>System</u> (GCS) based off of the **WGS 1984** datum.

	ata Source	
	Data Type: Shapefile: Geometry Type:	Shapefile Feature Class D: \login_name \Projection \dwa.shp Polygon
ſ	Geographic Coordinate System: Datum:	GCS_WGS_1984 D_WGS_1984
	Angular Unit:	Greenwich Degree

So we must assume that ArcGIS is converting one of the two layer's coordinate system to a common data frame coordinate system... but which one?

Click **OK** to dismiss the properties window.

The information indicates that the data frame displays all layers in **UTM Zone 19 North (NAD83)**—the same projection as the one used by the *Counties* layer. Note that a data frame's coordinate system does not need to match that of any one of the data layers. However, it is always good practice to ensure that all layers in a map project share the same coordinate system. In this exercise, we will make UTM zone 19 N (NAD83) this project's default coordinate system.

Click **OK** to dismiss the properties window.

In the next step, you will convert the *Deer Wintering Area's* coordinate system to match that of the data frame's.

In your ArcMap window, click on the **Search** tab (right-hand side of the ArcMap window).

In the Search field type **Project** and click the search icon ${}^{\textcircled{S}}$.

Search		+ × 👼
🗢 🌩 🟠	Search	Sea
ALL Maps	<u>Data Tools</u>	
Project		9

Using the **Search** option to find geoprocessing tools can be a fast alternative to navigating through the Toolbox toolsets.

In the search result, click on the **Project (Data Management)** link.

Select **Deer Wintering Areas** as the input feature class and name the output **dwa_UTM.shp**.

N Project	
Input Dataset or Feature Class	
Deer Wintering Areas] 🔁
Input Coordinate System (optional)	_
GCS_WGS_1984	
Output Dataset or Feature Class	_
D:\ogin_name\Projection\dwa_UTM.shp	2
 Output Coordinate System 	
Geographic Transformation (optional)	
	×

Click on the Click on the Cordinate System field.

In the Spatial Reference Properties window select **Projected Coordinate Systems >> UTM >> NAD** 1983 >> NAD 1983 UTM Zone 19N.

Click **OK** to close the Spatial Reference Properties window.

The projection will require a datum transformation (we are going from a WGS 1984 datum to a NAD 1983 datum).

In the Geographic Transformation field, select NAD_1983_To_WGS_1984_1.

Note that this transformation works well for the state of Maine, but may not work well for other parts of the country.

Deer Wintering Areas	
Input Coordinate System (optional)	
GCS_WGS_1984	
Output Dataset or Feature Class	
D:\login_name\Projection\dwa_UTM.shp	
Output Coordinate System	
NAD_1983_UTM_Zone_19N	
Geographic Transformation (optional)	

Click **OK** to start the conversion process.

When done, you should see a new shapefile called dwa_UTM in the TOC. If it does not display in th TOC, add it manually from your project folder.

Remove the original Deer Wintering Areas layer (right-click then Remove).

Table Of Contents
≿ 🏮 📚 📮 🗄
🖃 ᢖ Layers
🖃 🗹 dwa_UTM
🖃 🗹 Counties

Step 5: Defining a coordinate system

Up to now all layers accompanying the map document had their coordinate system properly defined. However, there may be times when coordinate system information is missing.

Add the layer **conserved_lands.shp** to the map (this layer resides in the Projection folder).

Add Data	×
Look in: Projection	- 🚹 🏠 🐻 🏢 - 🖴 🖆 🗊 🚳
図 conserved_lands.shp 図 Counties.shp 図 dwa.shp 図 dwa_UTM.shp	

Note the display of warning message indicating that the new layer lacks spatial reference information.

🚹 Unknown Spatial Reference	? ×
The following data sources you added are missing spatial refere information. This data can be drawn in ArcMap, but cannot be	nce projected:
conserved_lands	*
4	
	OK

If this window pops up, click **OK** to dismiss the warning.

So where is the conserved_lands layer?

Click on the 🧕 full extent icon

9/14/2017

The new layer is clearly way off target. So what happened?

Spatial reference information tells ArcMap what projection and datum is used to define the coordinate system. If that information is missing, all ArcMap has to work with are the shapes' x,y coordinate pair values. So the best ArcMap can do is *assume* that the new layer shares the data frame's spatial reference system. This assumption clearly does not work in our case. So we need to define the new layer's coordinate system.

It turns out that the layers coordinate system is an Albers equal area conic, NAD83.

Open the Search tab once more. The last search results should still be listed.

Click on Define Projection (Data Management).

Select conserved_lands as the input feature class.

Click on the Click on the Cordinate System field.

In the Spatial Reference Properties window select **Projected Coordinate Systems >> Continental >> North America >> USA Contiguous Albers Equal Area Conic.prj.**

W North America Lambert Conforma	al Conic
Panhandle Energy Albers	
US National Atlas Equal Area	
USA Contiguous Albers Equal Area	Conic
USA Contiguous Albers Equal Area	Conic USGS
USA Contiguous Equidistant Conic	c
	_

Click OK.

Be careful not to select the USGS version!

Click **OK** to close the Spatial Reference Properties window.

🔨 Define Projection	- • ×
Input Dataset or Feature Class	A
conserved_lands	- 🖻
Coordinate System	
USA_Contiguous_Albers_Equal_Area_Conic	
	•
OK Cancel Environments	Show Help >>

Click **OK** to launch the geoprocess.

When the process is complete, the conserved_lands layer should be properly positioned on top of the other existing layers.

Step 6: Re-project the conserved lands layer

On your own, re-project conserved_lands to **UTM NAD 83 Zone 19 N** following the steps outlined in **Step 4**. Name the newly projected layer **conserved_lands_UTM.shp** and save it under the *Projection* workspace.

Note that a datum transformation is not necessary here since both the Albers and UTM projections work off of the same NAD 1983 datum.

When finished, save and close the map document.

Manuel Gimond, last modified on 8/25/2016