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Correlation and regression of
spatial data

The issues that can arise when applying correlation and regression analysis techniques to data
relating to observations that are located at specific places in space or occur on fixed occasions in
time are examined in this chapter. Indices for quantifying global spatial autocorrelation and local
spatial association are explored together with an introduction to the relatively advanced tech-
niques of trend surface analysis and geographically weighted regression. Students often develop
a level of confidence with the correlation and regression techniques covered in previous chapters,
but the issues associated with applying these to spatially autocorrelated data are sometimes
neglected. This chapter shows how relatively simple measures can be calculated and in some cases
tested statistically to avoid the pitfalls of unwittingly ignoring the lack of independence in spatial
data by students and researchers in Geography, Earth and Environmental Science and related
disciplines.

Learning outcomes

This chapter will enable readers to:
e describe the characteristics and implications of spatial autocorrelation;

e calculate and apply suitable indices to measure the global and local effects of spatial
autocorrelation;

e consider how to incorporate these measures when analysing geographical datasets in an
independent research investigation in Geography, Earth Science and related disciplines.

Practical Statistics for Geographers and Earth Scientists Nigel Walford
© 2011 John Wiley & Sons, Ltd
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10.1 Issues with correlation and regression of
spatial data

Correlation and regression analysis are often used to investigate research questions
in the geographical sciences, although there are some important issues that need
to be considered when the variables and attributes relate to spatial entities. Some
applications of correlation and regression may be carried out in a particular geo-
graphical context, such as with respect to businesses operating in a certain city
region in Human Geography or to the concentration of pollutants in a particular
river system in Environmental Science. Provided that the spatial distribution of the
population and sample of observations are only of incidental interest and they are
independent of each other, both types of statistical analysis can be carried out with
relative ease. However, once the spatial location of the entities starts to be regarded
as relevant to the investigation, for example the distribution of businesses in rela-
tion to each other or to some other place, such as the centre of the city or the
sites along the river channels where water samples are selected in relation to land
use, then some issues overshadow the application of correlation and regression as
described in the previous chapters.

The origin of these problems arises from the fact the individual entities that make
up a given collection of spatial units (points, lines and areas) are rarely, if ever, entirely
independent of each other. Yet a fundamental assumption of correlation and regres-
sion is that the values possessed by each observation in respect of the variables and
attributes being analysed should be independent. If any dependence between the enti-
ties is ignored then its effect on the results of the correlation and regression will be
undetected. For example, it might have artificially increased or decreased the value of
the correlation coefficient, thus indicating a stronger or weaker relationship than is
really present. Similarly, it might have affected the form of the regression equation
and could lead to unreliable predicted values for the dependent variable. The possible
problems that might arise from a lack of independence between spatial features is
illustrated in Box 10.1 with respect to a section of the moraine where the material has
emerged from Les Bossons Glacier near Chamonix in France and been transported
and been deposited on the sandur plain. There is a mixture of sizes of material in the
area of moraine shown and it clear from a superficial examination that the different-
sized material is not randomly distributed. There are clumps of individual boulders,
stones and pebbles together with finer material not visible in the image. The upward
facing surface of a random sample of these boulders, stones and pebbles has been
digitized and shown on a ‘map’ superimposed on the image. The sampled items have
been measured in respect of their surface area and the length of their long axis.

Regression and correlation analyses have been carried out on a subsample of
these items (in the interests of limiting the calculations shown) with surface area
as the independent and axis length as the dependent variables. The results (Pearson’s
correlation coefficient and linear regression equation) are shown on the scatter plot
in Box 10.1. These suggest a very strong positive relationship between the variables
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Box 10.1: Spatial autocorrelation.

Subsample of debris shown with dark shading.

A lack of independence in the data values for a collection of # observations is likely to mean
that there is some systematic pattern in the size of the residuals along the regression line. It
could be that the lower and upper ends of the range of values for the variable x produce
larger residuals and so a poorer prediction of the dependent variable in regression, or perhaps
there is a repeating pattern of large and small residuals along the range x values: either way,
these patterns indicate the presence of autocorrelation in the data.

The image of part of the moraine of Les Bossons Glacier suggests that the size and long
axis length of debris material is not distributed randomly. For example, there seems to be a
group of large boulders towards the upper left and a relatively larger number of small items
in the upper and central right areas. The 20 debris items shaded black have been randomly
selected as a subsample of the full 100 boulders, stones and pebbles in the full sample. Their
surface area has been measured and simple linear regression analysis has been applied to
examine the supposed relationship that hypothesizes area as an explanatory variable in
respect of axis length. The calculations for the regression analysis have not been included
since the standard procedures discussed in Chapter 9 have been followed. The regression
equation is ¥ =7.873+0.0001x and with 7 = 0.905 there is a strong indication that surface
area has significant explanatory power in respect of the long axis length. The residuals from
this regression analysis seem to display some systematic pattern along the regression line with
smaller residuals at the lower end of the range of x values. The residuals seem to become
progressively larger towards the upper end.
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(+0.951) and with 7* equal to 0.905, there is some indication that surface area
explains 90.5 per cent of the variability in axis length. The scatter plot also shows
the residuals of the sampled data points as vertical lines connected to the regression
line, which represents the predicted value of the dependent variable for the known
values of surface area (dependent). These reveal an interesting feature: generally
speaking the residuals are smaller for sampled stones that were towards the lower
end of the surface area scale. The confidence limits support this notion since they
are curving away from the regression lines towards the upper end of the independ-
ent variable axis. In other words, there appears to be a relationship between suc-
cessive values of the residuals along the regression line and they vary in a systematic
way. This might not be a problem if the different sizes of moraine material were
randomly distributed across the area, but the image clearly shows this is not the
case. Separate subsamples of material from the different parts of the moraine could
potentially produce contrasting and even contradictory results from their respective
correlation and regression analyses.
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10.2 Spatial and temporal autocorrelation

The example in Box 10.1 illustrates a problem known as spatial autocorrelation.
Correlation analysis as outlined previously concentrates on the strength and direction
of the relationship between two variables for either a population or a sample of obser-
vations, but it does not take into account the relationship between the individual
entities. So far, we have ignored the possibility that one observation possessing a
certain value for the X variable might have some bearing on the value of X (or Y) of
other observations. Rather than the observations being independent they might be
interdependent. Autocorrelation occurs when some or all of the observations are
related to each other. Spatial autocorrelation arises when it is locational proximity
that results in observations being related and temporal autocorrelation when close-
ness together in time is the cause. Spatial and temporal autocorrelation are most
commonly positive in nature in the sense that the observations possess similar values
for attributes and variables, where as negative autocorrelation, when spatially or tem-
porally close observations have dissimilar values, is rarer but by no means unknown.
Many geographical phenomena display positive spatial autocorrelation, for example
people living in housing on the same street and soil samples taken from the same
field, are likely to be more similar to each other than they are to the same types of
observation from locations that are further apart.

The underlying reason why this might be a problem is illustrated in Figure 10.1,
which shows scatter plots for the complete sample of boulders, stones and pebbles on
the Bossons Glacier moraine. Rather than plotting the dependent variable (length of
long axis) against the independent one (area), the upper and lower pairs of plots,
respectively show these plotted against the X and Y coordinates of the locations of the
sampled debris. There are a number of important features to note from these scatter
plots. First, the * values are relatively low, which indicates that the X and Y coordi-
nates do not provide a strong explanation for variability in area or length. Secondly,
the relationships are all negative, although the slope of the regression line is much
higher in the case of the X coordinates. However, perhaps the most striking feature
is that there are some clumps of data points where there are groups of observations
that have very similar coordinates and area or length values. One clear example of
this is to be found just above the centre of the horizontal axis of the upper-left plot
where there is a group of 11 observations with low area values and X coordinates
around 200. Spatial autocorrelation extends the general concept of autocorrelation in
two ways: first that adjacent values are strongly related and second that randomly
arranged values indicate the absence of autocorrelation.

Where else are there clumps of data points in Figure 10.1? What are the combinations of variable
and coordinate values at these locations?

Understanding of spatial autocorrelation owes much to earlier work concerned with
time-series analysis and the fact that geographical investigations are often focused not
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Figure 10.1 Scatter plots of full sample of moraine material by area and length of long axis
against X and Y spatial coordinates.

only on spatial occurrences of phenomena but also the measurement of variables
as they change over time. For example, human geographers might be interested in
how deprivation is distributed spatially and temporally between different census areas.
The concept of covariance, the way in which two independent pairs of data values for
variables X and Y vary jointly, was introduced in Chapter 8 as the starting point for
understanding correlation. Dividing the covariance by the product of the squares roots
of the variances of X and Y produces the Pearson’s correlation coefficient (r). This
effectively standardizes the value of the coefficient to lie within the range —1.0 to +1.0.
In Box 10.1 we focused on the relationship between the area and long axis length of
boulders, stones and pebbles on part of the Les Bossons Glacier moraine, but suppose
we were interested in a set of n values for one of the variables, say surface area, meas-
ured in respect of the spatially contiguous debris over the surface of the moraine. Box
10.2 illustrates the effects of spatial autocorrelation by examining the spatial contigu-
ity with respect to the subset of all 19 items (boulders, pebbles and stones) lying partly
or wholly within a transect across the surface. The series of four scatter plots in Box
10.2b are known as h-scatter plots, where } refers to the spatial lag between data values.
When such lags are used in time-series analysis the length of time periods or intervals
is often constant throughout the sequence, for example daily amounts of precipitation,
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Box 10.2a: Spatial lags
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Transect through sample of debris on Les Bossons Glacier moraine.

The data values for variables measured in respect of observations that are located in space
may be related to each other and display positive or negative autocorrelation. A transect has
been superimposed on the top of the image representing the part of Les Bossons Glacier’s
moraine and the boulders, pebbles and stones intersecting with this area have been identified
and numbered 1 to 19 in sequence from left to right. This example deals with objects located
irregularly in space, but the procedure could as easily be applied to regularly spaced features,
for example items that are a fixed distance apart.

Autocorrelation can be examined by means of the serial correlation coefficient where there
are k lags and each lag is identified as & units (e.g. h = 1,2,3 up to k) or ¢ time periods in the
case of time-series analysis. The 19 values for the variable measuring the surface area of these




348 CH 10 CORRELATION AND REGRESSION OF SPATIAL DATA

objects, denoted as x, have been tabulated in Box 10.2b and labelled as x; to x;,. In the second
column of data values they have been shifted up by one row, thus pairing the data value for
one object with the next in the sequence. Lag 2 works in a similar way, but pairs one data
value with the next but one in the sequence, and so on for however many lags are required.
Once the data values have been paired in this way the Pearson’s Correlation coefficients are
calculated and these have been shown in h-scatter plots for spatial lags 1 to 4.

The r coefficients show an increase through lags 1, 2 and 3 (0.3341, 0.3471 and 0.4246)
and them decline to 0.1039 for lag 4. This indicates that spatial autocorrelation in respect of
area for these observations starts to reduce after spatial lag 3.

Box 10.2b: Linking data values by spatial lags.

X n + h Xi..n + h Xi.n + h Xi..n + h

Lagl (h=1) Lag2 (h=1) Lag3 (h=1) Lag4 (h=1)

X 41928.88 15889.19 43323.43 26015.02 5536.74
X% 15889.19 43323.43 26015.02 5536.74 17 865.73
X3 43323.43 26015.02 5536.74 17 865.73 29164.62
Xy 26015.02 5536.74 17 865.73 29164.62 5620.59
X5 5536.74 17865.73 29164.62 5620.59 10889.42
X6 17865.73 29164.62 5620.59 10889.42 8805.97
X7 29164.62 5620.59 10889.42 8805.97 15814.79
X 5620.59 10889.42 8805.97 15814.79 5703.54
Xy 10889.42 8805.97 15814.79 5703.54 895.05
Xio 8805.97 15814.79 5703.54 8795.05 13891.54
X1q 15814.79 5703.54 8795.05 13891.54 3669.44
X1 5703.54 895.05 13891.54 3669.44 2116.38
X3 8795.05 13891.54 3669.44 2116.38 2824.25
X1q 13891.54 3669.44 2116.38 2824.25 4148.04
X5 3669.44 2116.38 2824.25 4148.04 4276.09
Xi6 2116.38 2824.25 4148.04 4276.09

X7 2824.25 4148.04 4276.09

X13 4148.04 4276.09

X19 4276.09

whereas spatial lags can be regular or irregular. In Box 10.2 the separate items of
moraine debris in the transect are not located at a regular distance apart, but are lagged
according to their sequential spatial contiguity or neighbourliness.

The series of correlation coefficients for the lagged variable should be approxi-
mately zero if they were calculated for a random set of data values and plotting a
correlogram is a useful way of examining whether this is the case when the spacing
of the observations is equal. Although the observations in our example are not spaced
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at a regular distance apart across the transect, they are in a unitary sequence relating
to the first, second, third and so on up to 7 — 1 nearest neighbours. It is therefore not
entirely inappropriate to plot the series of correlation coefficients for the lags as a
correlogram. Figure 10.2 shows the correlograms for the area and axis length variables
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Figure 10.2 Correlograms for area and length of the long axis of moraine material intersecting
with transect.

with moderately strong positive correlation coefficients for both variables for spatial
lags 1 to 3 followed mainly by a decline until lag 7. Thereafter, the area line continues
to record low positive correlation coefficient values, whereas for axis length they are
very low negative ones.

This section has introduced some of the ways of examining spatial autocorrelation
as though they could simply be migrated across from time-series analysis in an
unproblematic fashion. The addition of a transect to the image of the moraine is to
some extent an artefact simply being used to illustrate the principles of spatial auto-
correlation. There may be some underlying trend in the data values not only in respect
of the portion of the moraine shown in the image but also across the area as a whole,
which may be connected with distance from the glacier snout, slope angle and other
factors. We will return to this issue later when examining the application of trend
surface analysis. A further important issue is that a given sequence of measurements
may include some rogue values or outliers, which distort the overall pattern. The
following sections will examine a range of procedures available for examining patterns
in spatial data starting with those dealing with global spatial autocorrelation and then
moving onto those capable of indicating local spatial association.

10.2.1 Global spatial autocorrelation

Indices of global spatial autocorrelation summarize the extent of this characteristic
across the whole of the area under study. There are a number of measures available
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that are suited for use with different types of data. The starting point for many of
the techniques is that the area or region of interest can be covered by a regular grid
of squares or by a set of irregular-shaped polygons. A further factor influencing the
choice of technique concerns whether the values are numerical measurements or
counts of nominal attributes. The data type presented by the Bossons Glacier moraine
example where there are data values for 100 randomly distributed points is also
covered. The essential purpose of all the techniques outlined in the following sec-
tions is to explore the correlation between the units (areas or points) at different
degrees of spatial separation and to produce a measure that is comparable to the
serial correlation coefficient used in time-series analysis.

10.2.1.1 Join counts statistics

Join count statistics (JCS) focus on the patterns produced by sets of spatial units that
have nominal data values by counting the number of joins or shared boundaries
between areal units in different nominal categories. Most applications relate to binary
data values, for example the absence or presence of a particular characteristic, although
data with more than two classes can be regrouped into a binary form. Perhaps the
simplest place to start with exploring JCS is the case where a regular grid of squares
has been superimposed over the study area and these squares have been coded with
avalue of 0 and 1 to denote the binary categories. Chapter 6 discussed three ‘standard’
ways in which spatial features could be arranged, clustered, equidistant and random.
Figure 10.3 illustrates the three situations with respect to a regular grid of 100 squares
that belong to binary classes, here shown as either black or white. In Figure 10.3a the
100 squares are split equally in half with all the white ones at the top and the black
ones in the bottom. The middle grid has a systematic pattern of white and black
squares, rather similar to a chess board, with none of the same coloured squares
sharing a boundary and only meeting at the corners. Figure 10.3¢, again with half of
the squares shaded black and the other half white, shows a random distribution with
some same coloured squares sharing edges and others meeting at corners.

These comments have already given a clue as to how we might analyse the different
patterns and to decide whether a given pattern is likely to have occurred by chance
or randomly. First, consider the situation in time-series analysis, where time periods
are usually assumed to form a linear sequence so that one period of 24 hours (a day)
is followed by another and so on and each period has one join with its predecessor
and one with its successor, apart from those at the arbitrary start and end of the series.
If these time periods were classified in a binary fashion (e.g. absence or presence of
President Obama’s name on the front page of the New York Times over a period of
10 days) they could be represented as a series of black and white squares in one dimen-
sion, such as those down the right-hand side of Figure 10.3. The three linear sequences
correspond to their grid square counterparts on the left-hand side. The joins between
the spatial units (squares in this case) work in two dimensions rather than the one
dimension of the time series. Joins between squares in the grid occur in two ways edge
to edge and corner to corner, and in an analogy with chess the former are referred to
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Spatial units Time periods

a Clustered

b Systematic or equidistant spacing

¢ Random

Figure 10.3 Binary join count patterns for reqular grid squares and linear time series.
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as rook’s and the latter as queen’s moves. This produces up to eight possible joins for
each square with those around the edge and at the corners of the overall grid covering
the study area having less. The edge effects can be disproportionately important if the
size of the study area or the number of grid squares is relatively small, although this
obviously raises the question of how small is small. Given that each square has the
binary codes 0 or 1, where they join there are four possible combinations: 1-1, 0-0,
1-0 and 0-1. Counting the number of joins of these different types indicates the origin
of join count statistics.

How many rook’s and queen’s joins does each corner square have in the grids down the left-hand
side of Figure 10.3? How many of both types of join does each of the four squares at the centre of
these grids have?

Each corner square has two adjacent squares, all of the other squares along the
boundaries or sides of the grid have three rook adjacencies and all of the remaining
squares have four. A 10 X 10 grid of 100 squares will therefore have 4 corner squares
(8 joins), 32 side squares (96 joins) and 64 inner squares (256 joins) summing to 360,
but because this has double counted joins between adjacent squares the sum is halved
to give a total of 180. The 100 squares in the grids in Figure 10.3 are equally divided
between black and white, therefore each join combination (1-1, 0-0, 1-0 and 0-1)
has an equal probability of occurrence and we would expect there to be 45 joins of
each type (180/4). However, we are interested in the deviation from the two extreme
situations of perfect separation (Figure 10.3a) and regularity (Figure 10.3b), which
respectively have 10 and 180 0—1 and 1-0 joins. The random pattern shown in Figure
10.3c has 92 0-1 and 1-0 joins, which is slightly more than the expected total of 90,
but is the difference more or less than might have occurred through chance or sam-
pling error. These comments indicate that the empirical count of each adjacency
combination, with 0-1 and 1-0 being taken together since they are equally indicative
of a mixed pattern, should be tested for their significance. This can be achieved by
converting the difference between the observed and expected frequency into a Z score
having calculated the standard deviation of the expected number of counts corre-
sponding to each combination.

One complicating factor should be noted before examining the application of JCS,
which relates to whether the data has been obtained by means of free sampling with
replacement or nonfree sampling without replacement. Mention of sampling might
seem a little odd, since the regular grids shown in Figure 10.3 have squares that cover
all of the study area. So in what way have these data been sampled? In Chapter 2 we
saw that the main difference between sampling with and without replacement when
using nonspatial statistics is that the probability of an item being selected changes as
each additional entity enters the sample from the population. Here, the issue concerns
whether the probability that any particular square in the grid will be black or white.
If this probability can be determined a priori, for example from published figures for
another location, in other words without reference to the empirical data for the study
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Box 10.3b: Application of join counts statistics.

Join Count Statistics work by examining the amount of separation between individual
spatial units in respect of the nominal categories to which they have been assigned as the
result of the distribution of some phenomenon. The procedure involves counting the number
of joins between spatial units (grid squares in this example) that fall into the different possible
combinations (0-0, 1-1 and 1-0/0-1). 0 denotes the absence of the phenomenon and 1 its
presence, which are here represented as White and Black squares. The total number of cells
in the grid (n) divides between ny and ny, where the subscripts denote the type of square.
The total number of joins is identified as ] and K is defined as K = z J:(J; =1)/2 where the
subscript i refers to individual squares from 1 to . The probabilities of presence and absence
of the phenomenon in any individual cells are referred to as p and g, respectively. These
probabilities, which are used to calculate the expected numbers of joins in the different
combinations, are determined in one of two ways depending upon whether free (with
replacement) or nonfree (without replacement) sampling is used. The difference between
these relates to whether the probabilities are defined by a priori reasoning or by a posteriori
empirical evidence. The present application is typical in so far as nonfree sampling is assumed.

This application of JCS concerns the distribution of dianthus gratianopoltanus on part of
the slope of Mont Cantal in the Auvergne. A 10 X 10 square grid has been superimposed
over the area and the presence or absence of the species is shown by black and white shading.
There were 59 black and 41 white squares. The calculations in Box 10.3d show that the
expected number of BB joins was 29.82, of BW or WB was 87.96 and 62.22 for WW. The
observed numbers were, respectively, 82, 39 and 59 (see above). The Null Hypothesis when
testing JCS is that the spatial pattern of the phenomena in the grid squares is random, while
the Alternative Hypothesis states it is either clustered or dispersed. Given the differences
between these figures it is not surprising that the Z tests indicate that they are significant at
the 0.05 level and the spatial pattern is not likely to have occurred by chance. It is reasonable
to conclude that there is significant spatial autocorrelation in the distribution of dianthus
gratianopoltanus in this area.

The key stages in applying Join Count Statistics are:

Tabulate the individual squares in the grid and count the different types of join for each: this
can be a laborious process, since it involves inspecting each square and determining the
code (0/1 or B/W) of all of its neighbours;

Calculate the values ] and K, and count the numbers of observed BB, BW/WB and WW joins:
these calculations are illustrated below;

Calculate the counts and standard deviations of the expected number of BB, BW/WB and WW
joins: these are obtained by applying the equations appropriate to free or nonfree
sampling

Calculate the Z test statistics for each type of join: the Z test statistics are calculated in a similar
way to other tests and in this application are 2.54 (BB), 4.49 (BW/WB) and 6.22 (WW);

State Null Hypotheses and significance level: each Null Hypothesis for the three types of join
states that the difference between the observed and expected counts is not significantly
greater than would occur by chance at the 0.05 level of significance.

Determine the probabilities of the Z test statistics: the probabilities are equal to or less than
0.01;

Accept or reject the Null Hypothesis: each of the Null Hypotheses should be rejected at the
0.05 level of significance and the Alternative Hypotheses are therefore accepted leading
to the conclusion that the spatial pattern tends toward being clustered.




€l 14 ! € €
9 € (@ ! Ie
9 ¢ I € 0¢
@l 4 € (4 67
€l i4 ! € 8¢C
€l 4 ¥ Le
4 ¥ ¥ 9t
4 ¥ ¥ S¢
4! ¥ ¥ ¥
4! i4 ¥ €C
4! i4 I € €
9 € 4 ! 1
9 € ! [4 0¢
4! ¥ I € 61
4! i 14 81
4! ¥ I 3 L1
4! ¥ 14 91
4 ¥ 14 ST
el ¥ ¥ 4!
el ¥ I ¢ €l
Zll 14 @ € 4!
9 € 1 € I
@ € I ! (U
9 € ! € 6

9 € ! € 8

9 € € £

9 ¢ I (4 9

9 € € S

9 € I 4 4

9 € (@ ! €

9 € ! (@ @

€ € € I

=D i MA/dM a4 MM u-r=1

*burysay aduesytubls pue sa13S1ILIS JUNO) ULOL JO UOLIEINI|R)

€707 Xog







JUi—1)

WB/BW

BB

i=1...n

AN OO0V A A AN AN O AN ANANANDOANO OO OO OO OAN
— — o o = o = = — o e o =

FTOon FFIFAFITHITAOOO AT IS T FIONOOO®NONO N NN

— — o N — e e [Sol aN I aN} — = = = N N~ AN AN AN — AN - -

o o0 AN O NN N AN 0 on 0 0 — — —

69
70
74
75
76
77
79
80
82
83
84
86
87
88
89
90
94
95

71
72
73
78
81
85
91
92
93
96
97
98
99
100




00070 > d

9 = 1¥¢/(TTT9 — 1F) MMo (MM — MMG) = 7

(€—w)(T—u)(1—uu

NNN@|E:§$N|a€%: ()= (€= Mu) (7 — Mu) (T— Mu) My
e 6€)(6€)(07)1¥ 3
re= (86)(66)001 [re--D1]] =""o
* GO Ony T8I O el 7+ Mg
(= ") (1= "u)Mu
— (66)001 (1—u)u -
9= %of g\ =0
0000 > d
6% = 7'9/(96°L8 — 66) Mg (N — MO)) = 77
(66)00T (T—w)u
(3S) (68)081 ) sy )V

C C

(£6)(86)(66)001 (e—u)(z—u)(1—uu

G9— [(#87)T—(6L1)081 % - [Me—-(-D(y | =™0

(0%)1¥(85)6S (T— M) Mu(T — %) T
. (66)001 N (T—u)u
(I7)65(¥8% +081)T Mutu( Y + [)T
06 /8= (1—-001)00T (-wp
(1) (65)081) g (2=
11100 =d

76T =19'¢/(T86T — 6£) Mo /(7 — 90) =7

. (£6)(86)(66)001 (79g)— [E=llE =)=

650 Lo 82068 D =) (= ) (1= o)
19°¢= [(#8%)z—(6L1)081] [Xe-(-DNI]| =0

. (86)(66)001 S I k0 U N
(19)(85u)es T /CTER 6L == w4

... (66)001 (1-wu [

Nwmml|ﬁo$:u 08I (1= Muymu '~ q
v8r=0/(1-'N' (=Y

081

081=2/"[

Aiqeqoig
surof
M—M JO d1ISTeIS 159) 7

surol \\—M pa3oadxa
JO UONRIADP PIepuUElg

surof
M—M JO IdquInu pa3oddxyg
Anmqeqoiq
surof AM\—q JO JTISEIS 159) 7

suro( p—q pajdadxa
JO UONIBIADP PIepuelg

sutof M—€/d-M
Jo I_quInu pajdadxyg
Aymqeqoiq
surof g—g Jo dTISnels 189 7

surof g—¢ pa3oadxa
JO UOTIRIASD PIEPUEIS

surof
d—g Jo Ioquinu pajoadxy
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area, then free sampling applies. Sampling without replacement is much more
common and its effect is to alter the expected number of joins in each combination
(0-0, 1-1 and 1-0/0-1) from an equal distribution or some other hypothesized values.

The application in Box 10.3 examines the application of JCS in respect of the pres-
ence or absence of dianthus gratianopoltanus on the side of the Mont Cantal in the
southern Auvergne region of France. The expected counts are calculated under the
assumption of nonfree sampling, since there is no a priori reason to assign specific
values to p and g, respectively the probabilities of presence and absence of the species
in a square. The data values in this example are nominal codes (1 and 0) relating to
the presence and absence of dianthus gratianopoltanus and there is no indication of
the number of individual plants, whereas examination of the image of the slope in
Box 10.3a hints at some variation in the density of occurrence. The observed numbers
of B-B, B-W/W-B and W-W joins are all significantly different from what would be
expected by chance, therefore it is reasonable to conclude that the spatial pattern is
not random, but indicates an underlying process in relation to the distribution of
dianthus gratianopoltanus in this area.

It should be noted that the spatial lag in this example is 1 (i.e. adjacent grid
squares), whereas further analyses could be carried out where the comparison was
made between 2™-order neighbours, this would mean that the counts of B-B, B-W/
W=B and W-W combinations were made by ‘jumping over’ adjacent squares to the
next but one. Similarly, queen’s move adjacencies could also be included. Finally, it
should be noted that grids such as the one used in this example are often placed over
a study in a relatively arbitrary fashion and the size and number of grid squares may
be chosen for convenience rather than in a more rigorous way. There is no reason
why a study area should be constrained so that it is covered by a square or rectangular
grid. Suppose our study area is bounded on one or more sides by coastline or river,
it is highly unlikely that such natural features of the environment will be delimited
by straight lines and some of the cells in the grid or lattice are likely to overlap the
coast or river. These units would have a reduced chance of including or excluding the
phenomenon under investigation. Examination of the image and superimposed grid
in Box 10.3a shows that the size of each flower is relatively small in relation to the
size of a grid square. Thus, some squares contain just one occurrence, whereas others
have many, yet both are counted as presences of the phenomenon. Smaller grid
squares closer to the size of each flower head would perhaps give a more realistic
impression of the species’ distribution, since isolated occurrences may have distorted
the situation.

10.2.1.2 Moran’s 1 Index

Some of the issues mentioned at the end of the previous section arise from the rather
artificial superimposition of a regular grid or lattice over a study area and that JCS
applies to nominal data values. Moran’s I is a widely available technique that can be
used when the study is covered by an incomplete regular grid or a set of planar poly-
gons and the data values are real numbers rather than counts of units in nominal
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dichotomous categories. The difference between the presentation of the raw data for
Moran’s I compared with JCS is that rather than tabulating count statistics the data
are organized in a three-column format where the first two columns contain X and
Y coordinates relating to row and column numbers, the grid references of points
features or the centroids of polygons. Figure 10.4 illustrates the procedure with respect
to an incomplete lattice, irregular polygons and points. The data tables shows the X
and Y coordinates or row and column numbers and the third column contains the
Z data values corresponding to these locations, which may be decimal values or
integer counts, as in Figure 10.4. Although this process retains references to the spatial
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Figure 10.4 Tabular representation of irreqular lattice, polygon and point feature data and
weights matrices.
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location of the features it discards information about their topological connections,
in other words whether one unit is adjacent to another. Since such information is a
vital component in the analysis of spatial patterns, it is necessary to create a weights
matrix (W) that records which units share a common boundary in the case of area
data or are nearest neighbours to each other in the case of point feature data. Figure
10.4 includes the first-order weights matrices for the three types of spatial data.
Normally these weights matrices are obtained for 1"-order neighbours, but 2™-, 3"-
or higher-order neighbours can also be used. The weights matrix can incorporate
rook’s and queen’s adjacencies, which can be weighted to denote their relative impor-
tance if required.

Pairs of adjacent features in a spatial pattern displaying or possessing spatial auto-
correlation will both have positive or negative values for the variable under investiga-
tion and if these values are relatively large, it will indicate stronger rather than weaker
spatial autocorrelation. In contrast, pairs of neighbouring features where one has a
positive and the other a negative value suggest the absence of spatial autocorrelation.
These statements are effectively another way of describing Tobler’s first law of
Geography. Moran’s I encapsulates the essence of these statements in a single index
value. The sequence of calculations to compute Moran’s [ is somewhat protracted and
involves the manipulation of data in matrix format. The first stage is subtraction of
the overall mean of the variable (Z) from the data values of each spatial feature and
then multiplying the result for each pair of features. The spatial weights are used to
select which pairs of features are included and excluded from the final calculation of
the index: those with a 0 in the weights matrix (denoting nonadjacency) are omitted,
whereas those with a 1 are included. Summing these values and dividing by the sum
of the weights produces a covariance. This forms the numerator in the equation for
Moran’s I, which is divided by the variance of the data to produce the index value
that lies within the range —1.0 to +1.0. Values towards the extremes of this range,
respectively, indicate negative and positive spatial autocorrelation, whereas a value
around zero generally its absence.

Box 10.4 illustrates the application of Moran’s I in relation to the mean scores on
the UK government’s 2007 Index of Multiple Deprivation for the 33 London
Boroughs. The IMD is computed from a series of different variables within domains
covering such areas as income, employment and social conditions. The map of the
IMD for the London local authorities suggests that higher mean scores were
computed for many of the inner London Boroughs, whereas several of those more
suburban ones had lower deprivation overall. Some degree of positive spatial auto-
correlation seems to exist with high values clustered together near the centre and
lower ones in outer areas. The results from the analysis provide moderate support
for this claim, since Moran’s I computes as 0.305. One possible explanation for this
outcome is the presence of one relatively small authority in the centre, the City of
London, with a very low index value (12.54) in comparison with its seven adjacent
neighbours, which apart from one have IMD values over 25.00. The Moran’s I index
has been recomputed leaving out the City of London Borough and the effect is to
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Box 10.4a: Moran’s I Index.

2 2 wij(z,—2)(z;—2)
15 j=lj#i

2 Y (z~2)
where p=zzw,j /n

Morans I 1=

London
18 Borough
ID number

Index of

Multiple
232 Deprivation

average

© Crown copyright 2009 o score

ID [ IMD
7| 128

raise the value to 0.479, which seems to confirm the initial visual impression of strong
positive spatial autocorrelation.

There are two approaches to testing the significance of Moran’s I and similar global
spatial statistics such as Geary’s C and the Getis and Ord’s G statistic. One approach,
following the standard assumption of nonspatial statistics, is to assume that the cal-
culated statistic or index value is from a Normal Distribution of such quantities
computed from a series of independent and identical samples or selections. The
notion of sampling with respect to spatial features was examined in Section 6.2.2. The
second approach is rather more empirical in nature and views the particular set of
data values that has arisen as just one of all the possible random distributions of
observed data values across the set of zones. The number of random distributions
equals the factorial of the number of spatial features, for example if there are four
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Box 10.4b: Application of Moran’s I index.

The Moran’s T index is an adaptable statistic for measuring spatial autocorrelation that is
widely used in a range of disciplines. The variable being analysed (Z) has subscripts i and j
to distinguish between the different observations in a pair. Binary weights are used in this
example denoting whether any given pair of areas share a common boundary and the sub-
scripts in the weight term w;; also refer to a pair of observations i and j in a set with 1 features
overall. The individual values of X are usually adjusted by subtracting the overall mean of
the variable before multiplying pairs of values together. Variance/covariance-like quantities
are computed, the former from the sum of the squared products in the C matrix that fall
along the diagonal and the latter from the nondiagonal elements where there is a join between
the spatial features represented by the row and column.

The Moran’s I index has been applied to the average score variable in the 2007 Index of
Multiple Deprivation with respect to the 33 local authorities (boroughs) in London. Visual
inspection of the pattern of data values for these areas on the map suggests that lower scores
(less deprivation) are found in the more peripheral zones and higher ones in the centre. The
tabulated data in Box 10.4c records the mean index value is 25.68 and the following adjacency
matrix of 0s and 1s shows that the minimum and maximum numbers of joins between areas
are 3 and 7 with a total of 164. The values along the diagonal in the matrix used to compute
the variance-like quantity are unshaded and the values for those pairs of local authorities
that are adjacent (i.e. have a 1 in the weights matrix) are shaded in a darker grey. The Moran’s
I index in this application is 0.305, which indicates a moderate positive spatial autocorrela-
tion. The randomization significance testing procedure has been applied and indicates that
this index value is significant at the 0.05 level with 9999 permutations used to produce the
reference distribution.

areas the number of permutations is 24 (4x3x2x1), whereas there are 8,683,317,618,
811,890,000,000,000,000,000,000,000 (33!) ways in which the 33 values of the 2007
Index of Multiple Deprivation could be arranged across the London Boroughs.
Both methods are implemented in various software packages that carry out spatial
statistics and in the case of the randomization approach, users are normally asked to
specify the number of random permutations to be generated and the spatial index is
then calculated for each of these to produce a pseudo-probability distribution. The
index computed from the observed data values is compared with this distribution.
Both approaches to testing the significance of spatial indices involve converting the
observed index value into a Z score in the standard way using the hypothesized or
empirically derived population mean and standard deviation. For example, in the
randomization approach the mean and standard deviation of the index in the pseudo-
probability distribution are used. Box 10.4 includes the results of testing the signifi-
cance of the observed Moran’s I value, 0.305, using one of these statistical packages.
The probability of the Moran’s I obtained from the data values can be compared with
a significance level that relates to the number of permutations used to generate the



Calculation of Moran’s I.

Box 10.4c
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374 CH 10 CORRELATION AND REGRESSION OF SPATIAL DATA

reference distribution, for example 99 and 999 are associated with the 0.01 and 0.001
significance levels, respectively.

Adjacency and contiguity are clearly important concepts in understanding the
principles underlying Join Counts Statistics, the Global Moran’s I index and other
similar measures of spatial autocorrelation. Another important concept is distance
between features, both points and areas, with the centroid usually marking the loca-
tion in the latter case. Features that are located further apart may be expected to exert
less influence on each other in respect of contributing towards spatial autocorrelation
compared with those that are closer together. This presumption leads to the use of
inverse distance weighting as a way of taking into account the diminishing or decaying
effect of distance on the data values of features that are further apart. Spatial weighting
methods are based on contiguity (e.g. rook’s and queen’s adjacency for polygons) or
distance using polygons’ centroids or user-defined X, Y coordinate pairs. Other
methods of weighting data values focus on each point (centroid) location and then
average over a prespecified number of nearest neighbours. The outcome of spatial
weighting is a spatially lagged variable that is an essential requirement for testing
autocorrelation and carrying out spatial regression. The application of Moran’s I in
Box 10.4 used a contiguity weight (i.e. adjacent boundaries) in respect of irregular
polygons.

A useful way of visualizing the extent of spatial autocorrelation is by means of a
Moran’s I scatter plot (MSP). Figure 10.5 plots the standardized and spatially lagged
values of the 2007 IMD for the 33 London Boroughs. The MSP is divided into
four segments centred on the mean of the two variables that can be summarized as
follows:

*  Low—Low: spatial units where standardized and lagged values are low;

* Low-High: spatial units where standardized value is low and lagged value is
high;

* High-Low: spatial units where standardized value is high and lagged value is
low;

e High—High: spatial units where lagged and standardized values are high.

In the Low-Low quadrant of Figure 10.5 the point (borough) with lowest combina-
tion of values (—1.24 for standardized IMD and —1.08 for lagged IMD) is coinciden-
tally Kingston upon Thames. The map in Box 10.4a shows this borough to have an
IMD value of 13.1 and its four contiguous neighbours (Richmond upon Thames (9.6),
Merton (14.6), Sutton (14.0) and Wandsworth (20.3)) also have comparatively low
values. Although Richmond upon Thames has the lowest IMD value of all the bor-
oughs, two of its neighbours have comparatively high values (Hounslow at 23.2 and
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Figure 10.5 Moran’s I scatter plot.

Hammersmith and Fulham at 28.1 and the influence of these outweighs its contiguity
with Kingston upon Thames and Wandsworth. At the other end of the scale in the
High-High quadrant are Newham and Tower Hamlets, respectively, with standard-
ized and spatially lagged IMD values of 1.92 and 0.59, and 2.10 and 0.37.

What are the ‘raw’ IMD values of Newham’s 6 adjacent boroughs and what are the values for the
6 contiguous boroughs of Tower Hamlets? Note: the ID numbers of Newham and Tower Hamlets
are 25 and 30, respectively.

10.2.2 Local Indicators of Spatial Association (LISA)

Moran’s I index is a global measure of the extent of spatial autocorrelation across
a study area and quantifies the degree to which features that are spatially proximate
have similar values. However, it is entirely possible for local ‘pockets’ of positive
and negative spatial autocorrelation to exist that at least partially cancel each other
out and lead to a deflated index in comparison with what might have been obtained
had the study area been divided into subareas and separate indices computed for
these. Such variability in the distribution of spatial autocorrelation can be quantified
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by Local Indicators of Spatial Association (LISA), these focus on the extent to
which features that are close to a specific point have similar values. The last part of
the covariance/variance computation tabulation in Box 10.4c showed the row sums
(S) obtained by summing the nondiagonal elements that were shaded dark grey
(i.e. the spatial features are joined). If each of these S values is standardized by
dividing by the sum of the squared deviations along the diagonal elements (the
variance-like quantity) and the results are multiplied by the total number of spatial
units (), the figures obtained represent the local contribution of each row (feature)
to the global spatial autocorrelation. These provide another way of computing the
overall Moran’s I index, since the sum of these local components divided by the
total number of joins equals the global I computed from the definitional equation
given in Box 10.4a:

I=50.06/164 =0.305

These local components are the LISA values, which can be mapped and tested for
significant differences between areas. Rather than using these ‘raw’ LISA values they
are often standardized by dividing by the number of joins possessed by each feature
(row): thus the raw LISA values of a feature with four joins is divided by 4. When this
has been done for each row in the matrix the results are in the form of a local average.
Again, the row sums (S) can be divided by the sum of the squared deviations along
the diagonal and then multiplied by # — 1 rather than n to produced standardized
LISA values.

The calculation of these LISA values is shown in Box 10.5 with respect to the 2007
Index of Multiple Deprivation mean score for the 33 London Boroughs. The effect of
these adjustments is to increase global Moran’s I to 0.331 (0.305 previously) and when
the City of London area is excluded (see above for justification) Moran’s I index
becomes 0.663 compared with 0.479. The results of LISA calculation can be visualized
in a number of ways. Box 10.5a shows the significance and cluster maps relating to the
application of Moran’s I LISA for the 33 London Boroughs. Each LISA is tested for
significance using a randomization process to generate a reference distribution and
areas are shaded according to whether their LISA is significantly different from what
would be expected at the 0.05, 0.01 and 0.001 levels. The cluster maps include those
areas that are significant in the four quadrants of the MSP. Taken together these maps
allow the significant combinations of positive and negative local spatial autocorrela-
tion to be discovered. The London Boroughs used in the analyses included in Boxes
10.4 and 10.5 are in some respects rather large and have been used in order to keep the
complexity of the calculations to a manageable scale. The analysis would more appro-
priately be carried out for smaller spatial units such as local authority wards across the
whole of London. Arguably, the scale of these units is better suited to reflecting local
variations that can easily become lost for relatively large areas. Nevertheless, even at
the borough scale there is some evidence of local spatial autocorrelation in certain
parts of the Greater London Authority’s area.
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Box 10.5a:

Local Moran’s I Indicator of Spatial Association: I; = =

Moran’s I local indicator of spatial association.

London
12 Borough
ID number

Spatial
autocorrelation

B High—High
[ Low-High
[ ] Low—Low

© Crown copyright 2009

London
12 Borough
ID number

[C1p=005

B p=0.01
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Box 10.5b: Application of the Moran’s I local indicator of
spatial association.

The Moran’s I Local Indicator of Spatial Association focuses attention on the extent of spatial
autocorrelation around individual points, including centroids as point locations for poly-
gons, rather than providing a global summary measure. The calculations produce Moran’s I
LISA values for each spatial feature that can be tested for significance using a randomization
process to generate a reference distribution. The results of the analysis are shown as two
maps: the cluster map that shows combinations of high and low indices; and the significance
map that shows whether a local index value is significant at certain levels. The results support
the earlier global Moran’s I with a pair of contiguous boroughs in South-West London
(Kingston upon Thames and Sutton) having Low—Low spatial autocorrelation and Greenwich
and Newham east of the centre with the High—High combination. There are two boroughs,
the City of London and Hackney, with the Low—High combination. The probability of the
index values associated with all of these areas is <0.03, which is smaller than the ‘standard’
0.05 significance and therefore it is reasonable to conclude that there is significant local spatial
autocorrelation in these parts of London.

10.3 Trend surface analysis

The most straightforward approach to introducing trend surface analysis is to rec-
ognize that it comprises a special form of regression. What makes it special is the
inclusion of spatial location in terms of X, Y coordinates as independent variables
recording the perpendicular spatial dimensions on a regular square grid. The purpose
of the analysis is to define a surface that best fits these locations in space where the
third dimension or the dependent variable, usually represented by the letter Z, denotes
the height of the surface. The origins of the analysis lie in representing the physical
surface of the Earth in which case the third dimension is elevation above a fixed datum
level. However, surfaces can be in principle produced for any dependent variable
whose values can be theoretically conceived as varying and thus producing a surface
in space. For example, land values might be expected to vary across space with peaks
and troughs occurring at different places. Similarly, physical variables such as meas-
urements of pressure and water vapour in the troposphere, the lowest layer in the
Earth’s atmosphere, differ in a similar way. It is the relative concentration of different
values, such as high or low amounts of water vapour that creates ‘spatial features’ in
the atmosphere (e.g. clouds).

The starting point is a horizontal regular square grid in two dimensions (X and Y)
and the end result is estimated values for the dependent or Z variable for the set of
evenly spaced points on the grid. Connecting these estimated values together produces
a visualization of the surface. There are two main approaches to deriving a trend
surface known as global and local fit and these are connected with the difference
between quantifying global and local spatial autocorrelation examined previously.
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10.3.1 Fitting a global surface

Global fitting produces one mathematical function that describes the entire surface
of the study area on the basis of estimating Z values for the nodes on the grid in a
single operation, whereas local fitting derives multiple equations based on using a
subset of points around successive individual nodes in the grid. The regression analy-
sis techniques examined in Chapter 9 produce equations that define the line providing
the best fit to the known data values, although it is acknowledged that these are
unlikely to provide a 100 per cent accurate prediction of the dependent variable. The
same caveat applies with trend surface analysis and Figure 10.6 illustrates the link
between prediction in linear and polynomial regression and trend surface analysis.
The regression lines may be thought of as transecting the surface along a particular
trajectory. There are known data values above and below the first-, second- and third-
degree polynomial regression lines on the left of Figure 10.6, but the lines show the
overall slope. The three dimensional representations on the right reveal that the
known data values fall above or below (respectively solid and open circles) the surface.

The fitting of a global trend surface is achieved through a form of polynomial
regression using the least squares method to minimize the sum of the squared devia-
tions from the surface at the known, sampled locations (control points). The equation
can be used to estimate the values of the dependent variable at any point and this is
commonly carried out for the nodes in the regular grid. The polynomial equation
obtained by means of least squares fitting provides the best approximation of the
surface from the available data for the control points. The process of creating a surface
from the equation is commonly known as interpolation, since it involves determining
or interpolating previously unknown Z values for the nodes and connecting these
together usually by means of a ‘wire frame’ in order to visualize the surface, although
strictly speaking this term should be reserved for dealing with smoothing local vari-
ation. Figure 10.7 illustrates the outcome of this process with respect to an irregular
sample of data points for elevation on the South Downs in South-East England. The
points from which the polynomial equation for the surface was generated are identi-
fied by white markings at the peaks.

Despite the general use of polynomial regression-type equations to fit a global
surface, there are some limitations to this approach. These are in some respects exten-
sions of the same problems that were identified with respect to using regression to
predict nonspatial distributed dependent variables. One of the limitations noted with
respect to simple linear regression (first-order polynomial) is that it may be inap-
propriate to define the relationship as a straight line, especially if visualization of the
empirical data suggested some curvilinear connection. It would be just as nonsensical
to argue that all surfaces are flat sloping planes. However, moving to a surface based
on the second-order polynomial only introduces one maximum or minimum loca-
tion on the surface and the third order only provides for one peak and one trough.
Thus, global fitting does not necessarily produce a very realistic surface. Another
problem identified with regression in statistical analysis was that prediction of the
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Figure 10.6 Comparison of regression lines and surfaces.

dependent variable much beyond the range of the known values of the independent
variable(s) is potentially inaccurate. Similarly, the extension of a trend surface to
beyond the area for which there are known data points could also be misleading. Such
gaps in the observed or measured data can occur around the edges or in parts of a
study area where there is a dearth of control points. More realistic surfaces may be
obtained by increasing the order of the polynomial equation beyond three to four,
five, six or more, although the calculations involved are computationally taxing.
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Figure 10.7 Trend surface for part of South Downs, East Sussex, England.

Box 10.6 illustrates selected aspects of the calculations involved in producing a
first-order polynomial trend surface (i.e. a linear surface) in respect of the 2007 Index
of Multiple Deprivation for the 33 London Boroughs. The measurement of spatial
autocorrelation with Moran’s I has already shown this to be high in some boroughs
just to the east of the City of London and low in others towards the south west. The
equation has been computed using geostatistical software and the predicted Z values
and the residuals are tabulated in Box 10.6c. The percentile maps (Box 10.6a) divide
the predicted figures for the linear surface and the residuals into six groups and
emphasize the importance of very low and very high values. The linear surface tracks
north east to south west and simplifies the spatial pattern. The residuals reveal the
highest positive difference was in Hackney and three of its neighbours (Newham,
Lambeth and Tower Hamlets) in the central area. The largest negative residual was
in Havering on the eastern edge with the next two being the City of London and
Redbridge.

10.3.2 Dealing with local variation in a surface

The global fitted trend surface relates to the concept of regional features. Returning
to the example of creating a surface using atmospheric pressure and water vapour to
identify features in the troposphere, the cyclones or anticyclones and clouds can
be viewed as regional or large-scale features. However, at a smaller scale there will
often be local variation in the variables producing highs and lows in the overall
feature. Fitting the polynomial equation results in a surface, whereas the residuals,
the differences between the fitted surface and known values may be thought of as local



388 CH 10 CORRELATION AND REGRESSION OF SPATIAL DATA

Box 10.6a: Trend surface analysis.
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Box 10.6b: Application of the trend surface analysis.

The terms x and y are coordinates on the plane surface and M is the number of degrees or
orders of the polynomial equation. The series of coefficients (a,, a;, ... a;) are obtained by
minimizing the error of the estimation where L is the number of sample or control points.
A linear trend surface has been produced using spatial analysis software (Geoda) for the
London Boroughs in respect of their average score on the 2007 IMD using rook spatial
contiguity weights. The percentile maps in Box 10.6a show the predicted surface and the
residuals emphasizing the extreme cases. The specific 1¥-order polynomial equation that best
fits the empirical data is shown in Box 10.6¢ and this has been used to calculate the predicted
values of the IMD average score for the 500m grid squares covering the area (Box 10.6d).
This simplifies the spatial pattern and provides a clear visualization of the north east to south
west trending surface.
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Box 10.6c: Calculation of linear trend surface.

i X Y A 4 e
1 547980 186083 345 30.50 -3.99
2 524392 191070 212 27.61 6.45
3 548572 175109 16.2 26.58 10.37
4 520575 185876 29.2 24.93 —4.29
5 542070 166316 14.4 22.04 7.68
6 527756 184528 28.6 25.87 -2.75
7 532573 181257 12.8 25.63 12.79
8 533193 164481 213 19.59 -1.72
9 516188 181612 25.1 22.48 -2.62
10 532197 195153 26.2 30.67 4.48
11 542484 175829 33.9 25.62 -8.32
12 533820 185439 46.1 27.42 ~18.68
13 523067 179688 28.1 23.15 —4.92
14 531141 189534 35.7 28.39 ~7.34
15 515258 189084 15.6 25.05 9.46
16 553902 186883 16.1 31.98 15.91
17 507523 183686 18.6 21.51 2.95
18 514876 176035 232 20.17 -3.03
19 531241 185097 39.0 26.78 -12.18
20 525389 180022 235 23.74 0.23
21 519598 167257 13.1 17.89 4.79
22 530881 173991 34.9 22.62 —12.32
23 537779 174133 31.0 24.06 —6.98
24 526431 169390 14.6 20.04 5.42
25 540804 184171 43.0 28.36 ~14.59
26 543517 189417 20.4 30.83 10.47
27 517275 173187 9.6 19.60 10.05
28 533757 176088 333 23.97 -9.36
29 526245 164539 14.0 18.22 424
30 536246 181938 44.6 26.62 ~18.02
31 538073 189802 33 29.88 -3.31
32 526925 173681 203 21.72 1.38
33 526765 181473 26.3 24.55 -1.75

First-order
polynomial
equation (linear
surface)

Z(x,y)=a0 +ax+ay

147.72 + 0.00020x + 0.00037y
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Box 10.6d: Calculation of linear trend surface for grid squares.
1 527500 197500 32.76 34 512500 182500 22.77
2 532500 202500 36.09 35 517500 187500 26.10
3 537500 207500 39.42 36 522500 192500 29.43
4 512500 192500 27.20 37 527500 197500 32.76
5 517500 197500 30.53 38 532500 202500 36.09
6 522500 202500 33.86 39 537500 207500 39.42
7 527500 207500 37.19 40 542500 212500 42.75
8 532500 212500 40.52 41 547500 217500 46.08
9 537500 217500 43.85 42 552500 222500 49.41
10 542500 222500 47.18 43 507500 172500 17.23
11 547500 227500 50.51 44 512500 177500 20.56
12 507500 187500 23.87 45 517500 182500 23.89
13 512500 192500 27.20 46 522500 187500 27.22
14 517500 197500 30.53 47 527500 192500 30.55
15 522500 202500 33.86 48 532500 197500 33.88
16 527500 207500 37.19 49 537500 202500 37.21
17 532500 212500 40.52 50 542500 207500 40.54
18 537500 217500 43.85 51 547500 212500 43.87
19 542500 222500 47.18 52 517500 167500 17.24
20 547500 227500 50.51 53 522500 172500 20.57
21 552500 232500 53.84 54 527500 177500 23.90
22 557500 237500 57.17 55 532500 182500 27.23
23 507500 182500 21.66 56 537500 187500 30.56
24 512500 187500 24.99 57 542500 192500 33.89
25 517500 192500 28.32 58 547500 197500 37.22
26 522500 197500 31.65 59 517500 162500 15.02
27 527500 202500 34.98 60 522500 167500 18.35
28 532500 207500 38.31 61 527500 172500 21.68
29 537500 212500 41.64 62 532500 177500 25.01
30 542500 217500 44.97 63 537500 182500 28.34
31 547500 222500 48.30 64 542500 187500 31.67
32 552500 227500 51.63 65 532500 157500 16.15
33 507500 177500 19.44 66 537500 162500 19.48

disturbances. These can be dealt with by a range of techniques that focus on groups
of data points in a ‘window’, frame or kernel. These broadly divide into exact methods
that produce measured values for a series of points or areas by smoothing the original
data and inexact ones that estimate a local trend and include kriging and local trend
surface analysis (splines).

The simplest approach is to smooth data value means of a moving average, which
is similar to the approach often adopted with time-series data. It involves partitioning
the data points into groups falling within a frame that moves along a series of data
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Box 10.6e: Grid-based linear trend surface for London Boroughs.
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points and then interpolating by weighting the values usually according to the mid-
point of the window. This is illustrated in Figure 10.8a, where the distances of the
Burger King restaurants in Pittsburgh have been interpolated using a 5km wide frame
moving outwards from the city centre and the mean of their daily customer footfall
(hypothetical) calculated for each frame (2.5, 3.5, 4.5 ... 19.5km). The averages at
these points are shown by the larger solid circles. The points representing the restau-
rant locations (small solid circles) have been treated as though they all lie along a
single, unidirectional X-axis, but it would have been possible to use a two-dimensional
frame (e.g. a square) and then calculate a weighted average within the areas formed
by successive zones moving outwards (large solid circles). The smoothing of the data
achieved by a moving average is highly dependent on the size of the frame. Smoothing
based on inverse distance weighting adjusts the value of each point in an inverse
relationship to its distance from the point being estimated. The moving average in
Figure 10.8a interpolated values along a one-dimensional axis from the city centre
and assumed all points to be located on the eastern side of a north—south line through
the centre point. In contrast inverse distance smoothing weights the values according
to a predetermined number of nearest neighbours to each point being estimated.
The application of inverse distance weighted interpolation to the same data values
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Figure 10.8 Moving average and inverse distance weighted data smoothing.

produces the interpolated values shown in Figure 10.8b (large solid circles). The
inverse distance used in this example is 1/d°, where d is the distance between the fixed
points out from the city centre (2.5, 3.5, 4.5, ... 22.5km) and their four nearest neigh-
bours. The best-fit polynomial regression equation has been included for both sets of
smoothed data: these are, respectively, 2"- and 3"-degree polynomials.

Another approach to dealing with local variation in a surface is to use splines. This
involves fitting a polynomial regression equation to discrete groups of the data points
along sections of the surface. These splines are then ‘tied’ together to produce a
smooth curve following the overall surface. The points where they connect are known
as knots and the polynomial equation for each section (spline) is constrained to
predict the same values where they meet. Unlike the moving average, the frames in
which the splines are produced do not move across the set of data points but each
has a fixed location, although they can have different widths. One similarity with the
moving average is that a smaller frame will reflect the local structure of the data values,
whereas a wider one will produce a smoother surface.
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Figure 10.9 Example of semiovariogram and fitted variogram used in Kriging.

One of the most common techniques for dealing with local variation is kriging.
Trend surface analysis may be used to identify and then remove the overall trend in
a surface before using kriging to map short-range variations. Kriging is based on
inverse distance weighting and uses the local spatial structure to produce weights from
which to predict the values of points. The first stage involves describing the spatial
structure by means of a semivariogram, which involves calculating the distance
between each pair of points and the square of the difference between their values for
the variable Z. These are visualized in a scatter plot that includes spatial lags and is
known as a semovariogram: Figure 10.9 shows the semivariogram for the Burger King
restaurants in Pittsburgh with 5km lags and daily customer footfall as the variable.
The mean of each group of data values within a given lag is plotted at the midpoint
(large solid circles). The next stage involves summarizing this local spatial variation
by a function that best fits the means at the midpoints, which in this example is a
3"_degree polynomial. The values of neighbouring points are predicted by means of
weights derived from the semivariogram. Kriging works by fitting an empirical semi-
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variogram to a typical or model variogram. The lower part of Figure 10.9 shows such
a model and identifies three main sections of the fitted variogram. The nugget quanti-
fies the uncertainty of the Z values, the range is the section over which there is strong
correlation between distance and the Z values and thus represents the distance over
which reliable prediction can be made and the semivariance is constant beyond the
sill. Kriging is a geostatistical procedure with error estimates being produced that can
provide a useful guide as to where more detailed empirical data might be required.
This contrasts with the geometrical basis of moving average and inverse distance
weighting techniques.

10.4 Concluding remarks

Concern over the presence of significant spatial autocorrelation and contravention of
standard assumptions formerly led to a feeling that regression analysis was inappro-
priate with spatially distributed data. However, over the last few decades three differ-
ent possibilities have found favour: ignore the spatial autocorrelation especially if it
is demonstrably insignificant and carry on with the analysis as normal; acknowledge
that the slope coefficient parameter () in regression may not apply globally and
employ a strategy that allows local best-fit regression lines to be stitched together to
produce an overall surface; and incorporate other components in the model that
measure the spatial distribution of autocorrelation. This chapter has introduced a
selection of spatial analytic and geostatistical techniques that come under the broad
heading of Exploratory Spatial Data Analysis (ESDA). A focus of attention is the
distribution of spatial autocorrelation and recognition that spatial patterns of phe-
nomena and their measured variables often contravene the assumptions of classical
statistics. Although trend surface and residuals analysis utilize some of the computa-
tion procedures of classical statistics, such as fitting a regression equation, the failure
of many standard assumptions to be satisfied, such as independence and conforming
to the Normal probability distribution means that it is not necessary to calculate
confidence limits for the fitted surface or to apply inferential statistics.

The second of these possibilities, producing and stitching together local best-fit
regression equations, has been termed Geographically Weighted Regression (GWR)
(Fotheringham, Charlton and Brunsdon, 1998; Fotheringham, Brunsdon and
Charlton, 2002) and merits further brief discussion, although full details are beyond
the scope of this text. GWR allows the estimated slope coefficients to vary spatially
across the study area. Unlike the global and local techniques for smoothing data or
fitting a surface examined above, GWR seeks to explain a dependent variable in rela-
tion to one or more often several independent variables. It therefore corresponds to
the classical statistical technique of multiple or multivariate regression. The principal
difference is that classical multiple regression produces one equation, with slope coef-
ficients or parameters and an error term that applies across the complete dataset.
GWR has the potential to generate separate equations with all these components for
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each point or area in the analysis. The analysis proceeds by including the neighbours
of each point within a neighbourhood zone usually defined by means of a distance
decay function. A weights matrix is defined for each point and the least squares regres-
sion is computed. GWR presents a way of quantifying and disentangling complex
spatial patterns across a study area and enhances thinking about spatial processes in
comparison with applying simple linear regression.



