

Capital Budgeting Techniques

The Statement of Financial Position Illustration

The Statement of Financial Position

Total Assets

Liabilities and Owners Equity

Section 1

Estimating Cash Flows

What is Capital Budgeting?

- The process of identifying, analyzing, and selecting investment projects whose returns (cash flows) are expected to extend beyond one year;
- The examples are;
a. New products or expansion of existing products;
b. Replacement of existing equipment or buildings;
c. Research and development;

委. Exploration;

The Capital Budgeting Process

- Generate investment proposals consistent with the firm's strategic objectives;
- Evaluate projected cash flows;
- Select projects based on a value-maximizing acceptance criterion;
- Reevaluate implemented investment projects continually and

Relevant Cost Assumption

- Cash flows of a project must be calculated based on relevant costing assumptions;
- Relevant cost is a decision specific cost which arises as a direct consequence of decision made;

A company produces tires.It can manufacture 1,000 units in a month for a fixed cost of $\$ 300,000$ and variable cost of $\$ 500$ per unit. Its current demand is 600 units which it sells at $\$ 1,000$ per unit. Company B considers to order
$==-200$ u堊its of tire at $\$ 700$ per unit. Should the company accept the order?
Solution

b)Relevant costing assumption

Relevant Cash Flows

- Basic characteristics of relevant project flows;
a. future cash flows;
b. incremental flows;
c. after-tax flows;
d. operating(not financing)flows;

"WHAT WE NEED AROUND HERE IS A POSTIVE CASH FLOW."

Estimating Cash Flows

- Principles that must be adhered to in the estimation;
a. ignore sunk costs;
b. ignore committed costs;
c. include opportunity costs;
d. include project-driven
changes in working capital;
最. Zhelude effects of inflation;

Calculating Project Cash Flows

- Initial cash outflow is the initial net cash investment;
- Interim incremental net cash flows are those net cash flows occurring after the initial cash investment but not including the final period's cash flow;
:=-
Werminal-year incremental net cash
flowsare the final period's net cash flow;

Initial Cash Outflow

a) Cost of "new" assets
b) +Capitalized expenditures
c) + (-)Change in NWC
d) -Net proceeds from sale of "old" asset(s) if replacement;
e) $+(-)$ Taxes (savings) due to the sale of "old" asset(s) if replacement
)

Incremental Cash Flows

a)Cash inflow
b)-Cash outflow
c)Net Change in Operating Income

d)-Tax Charge****

= noremental net cash flow for

Tax Charge=(Cash Inflow-Cash Outflow-

Terminal-Year

Incremental Gash Flows

a) Calculate the incremental net cash
flow for the terminal period
b) $+(-)$ Salvage value (disposal/reclamation costs) of any sold or disposed assets
c) - (+)Taxes (tax savings) due to asset sale or disposal of "new" assets
d) $+(-)$ Change in NWC
e) $=-\quad$ Terminall year incremental net

暍chish flow

Example of an Asset

Expansion Project

Basket Wonders (BW) is considering the purchase of a new basket weaving machine. The machine will cost $\$ 50,000$ plus $\$ 20,000$ for shipping and installation and falls under the 3 -year MACRS class. NWC will rise by $\$ 5,000$. Lisa Miller forecasts that revenues will increase by $\$ 110,000$ for each of the next 4 years and will then be sold (scrapped) for $=-\$ 10000$ at the end of the fourth year, when the project ends. Operating costs will rise by $\$ 70,000$ for each of the next four years. BW is in the 40% tax bracket.(MACRS 33.3,44.45,14.81,7.41)

Initial Gash Outflow

```
a) $50,000
b) + 20,000
c) +
d) -
e) + (-)
f) ₹ $75,000
```


Incremental Cash Flows

Year 1 Year 2 Year 3 Year 4

$\$ 40,000 \quad \$ 40,000 \quad \$ 40,000 \quad \$ 40,000$
b) -

23,331 31,115
10,367
5,187
c) $=$
d) -
e =

\$16,669 \$ 8,885 \$29,633 \$34,813
6,668 3,554 11,853 13,925
$\$ 33,332 \quad \$ 36,446 \quad \$ 28,147 \quad \$ 26,075$

a) $\$ 26,075$ The incremental cash flow from the previous slide in
Year 4.
b) $+10,000$ Salvage Value.
c) $-4,000.40^{*}(\$ 10,000-0)$ Note, the asset is fully depreciated at the end of Year 4.
5,000 NWC - Project ends.
$\$ 37,075$ Terminal-year incremental cash flow.

Summary of Project Net

 Gash Flows
Asset Expansion

Year 0	$\underline{\text { Year 1 }}$	$\underline{\text { Year 2 }}$	$\underline{\text { Year 3 }}$	$\underline{\text { Year 4 }}$
$-\$ 75,000^{*}$	$\$ 33,332$	$\$ 36,446$	$\$ 28,147$	$\$ 37,075$

* Notice that this value is a negative cash flow as we calculated it as the initial cash outflow

SECTION 2

Capital Budgeting

Project Evaluation: Alternative Methods

- Payback Period (PBP)
- Internal Rate of Return (IRR)
- Net Present Value (NPV)
- Profitability Index (PI)

Proposed Project Data

Julie Miller is evaluating a new project for her firm, Basket Wonders (BW). She has determined that the after-tax cash flows for the project will be $\$ 10,000 ; \$ 12,000$; \$15,000; \$10,000; and \$7,000, respectively, for each of the Years 1
却rough 5. The initial cash outlay will be
$\$ 40000$.

Independent Project

- For this project we will assume that it is independent of any other potential projects that Basket Wonders may undertake;
- Independent project is a project
- whose acceptance (or rejection) does
nothrevent the acceptance of other
projects under consideration;

Payback Period

- The payback method of investment appraisal is popular appraisal technique despite of it's limitations;
- It is the time it takes the cash inflows from a capital investment project to equal the cash outflows, usually expressed in years;
\#- In other words payback is the amount of time it takes 10 e eash inflows = cash outflows;

Payback Solution of Example

Note: If the required payback time by company is 4 years then the project will be accepted

Payback Period

(cont.)

Advantages

Disadvantages

- Simple to calculate and understand;
- It can be used as a screening device as a first stage in eliminating obviously inappropriate projects;
- It usses cash flows rather than accounting profits;
- It ignores the cash flows after the end of payback period;
- It ignores the time value of money;
- Unable to distinguish between projects with the same payback period;
- It may lead to excessive investment in short-term projects;

Internal Rate of Return (LRi)

IRR is the discount rate that equates the present value of the future net cash flows from an investment project with the project's initial cash outflow.

IRR Solution

$$
\begin{aligned}
& \$ 40,000=\frac{\$ 10,000}{(1+I R R)^{1}}+\frac{\$ 12,000}{(1+I R R)^{2}}+ \\
& \frac{\$ 15,000}{(1+I R R)^{3}}+\frac{\$ 10,000}{(1+I R R)^{4}}+\frac{\$ 7,000}{(1+I R R)^{5}}
\end{aligned}
$$

> Find the interest rate (IRR) that causes the discounted cash flows to equal \$40,000.

IRR Acceptance Griterion

The management of Basket Wonders has determined that the hurdle rate is $\mathbf{1 3 \%}$ for projects of this type.
Should the project be accepted?
No! The firm will receive 11.57% for
> - Each dollar invested in this project at a cost of 13%. [IRR < Hurdle Rate]

Internal Rate of Return

Advantages

Disadvantages

- Accounts for time value of money;
- Considers all cash flows;
- It uses cash flows rather thana accounting profits;

Managers feel more comfortable with a return measure;

Net Present Value (NPV)

$N P V$ is the present value of an investment project's net cash flows minus the project's initial cash outflow.

$$
\mathrm{NPV}=\frac{\mathrm{CF}_{1}}{(1+\mathrm{k})^{1}}+\frac{\mathrm{CF}_{2}}{(1+\mathrm{k})^{2}}+\ldots+\frac{C F_{n}}{(1+\mathrm{k})^{n}}-\mathrm{ICO}
$$

NPV Solution

Basket Wonders has determined that the appropriate discount rate (k) for this project is 13%.
$\mathrm{NPV}=\frac{\$ 10,000}{(1.13)^{1}}+\frac{\$ 12,000}{(1.13)^{2}}+\frac{\$ 15,000}{(1.13)^{3}}+$ $(1.13)^{1} \quad(1.13)^{2} \quad(1.13)^{3}$

$$
\frac{\$ 10,000}{(1.13)^{4}}+\frac{\$ 7,000}{(1.13)^{5}}-\$ 40,000
$$

NPV Solution

NPV $=\$ 10,000\left(\right.$ PVIF $\left._{13 \xi_{1}, 1}\right)+\$ 12,000\left(\right.$ PVIF $\left._{13 \xi_{2}, 2}\right)+$ $\$ 15,000\left(\right.$ PVIF $\left._{133,3}\right)+\$ 10,000\left(\right.$ PVIF $\left._{133^{3}, 4}\right)+$ \$ 7,000(PVIF 13\% $_{3}$) $)$ - \$40,000
NPV $=\$ 10,000(.885)+\$ 12,000(.783)+$ $\$ 15,000(.693)+\$ 10,000(.613)+$ \$ 7,000(.543) - \$40,000
: NPV $=\$ 8,850+\$ 9,396+\$ 10,395+$ $\$ 6,130+\$ 3,801-\$ 40,000$

$$
=-\$ 1,428
$$

$$
\begin{aligned}
& \text { NPV Acceptance } \\
& \text { critorion }
\end{aligned}
$$

The management of Basket Wonders has determined that the required rate is 13% for projects of this type.

Should this project be accepted?

No! The NPV is negative. This means that the project is reducing shareholder wealth. [Reject as NPV < 0]

Pros and Cons

Advantages

Disadvantages

- Accounts for time value of money;
- Considers all cash flows;
- Reveals the dollar amount that the project
$=-$ will produce;
- Project size is not measured;
- Difficulty in calculating discount rate;
- Over sensitivity to change in rates;
- May not include managerial options;

Profitability Index (PI)

Pl is the ratio of the present value of a project's future net cash flows to the project's initial cash outflow.

$$
\mathrm{PI}=\left[\frac{\mathrm{CF}_{1}}{(1+1) 1}+\frac{\mathrm{CF}_{2}}{(1+1)^{2}}+\ldots+\frac{\mathrm{CF}_{\mathrm{n}}}{(1+1) n}\right] \div \mathrm{ICO}
$$

$$
\begin{gathered}
\text { PI Acoeptance } \\
\text { Criterion } \\
\text { PI }=\$ 38,572 / \$ 40,000 \\
= \\
=.9643(\text { Method } \# 1,13-34)
\end{gathered}
$$

Should this project be accepted?

No! The Pl is less than 1.00 . This $=$ means that the project is not profitable. [Reject as Pl < 1.00]

Evaluation Summary

Basket Wonders Independent Project

Method	Project	Comparison Decision	
PBP	3.3	3.5	Accept

IRR	11.47%	13%	Reject
NPV	$-\$ 1,424$	$\$ 0$	Reject
-PI	.96	1.00	Reject

Other Project Relationships

- Dependent -a project whose acceptance depends on the acceptance of one or more other projects;
- Mutūally Exclusive - a
- $\overline{\text { projectwo }}$ 高hose acceptance pectues the acceptance of one or more alternative projects;

Potenta proosems Under Mutual trolmotrifs

- Ranking of project proposals may create contradictory results;
a.scale of investment;
b.cash flow pattern;
c. project life;

Scale Differences

Calculate the PBP, IRR, NPV@10\%, and PI@10\%.

Which project is preferred? Why?
Project IRR NPV PI

100\% \$ $231 \quad 3.31$
25\% \$29,132 1.29

Gash Flow Pattern

Let us compare a decreasing cash-flow (D) project

 and an increasing cash-flow (I) project.END OF YEAR
0

NET CASH FLOWS
Project D Project I
-\$1,200 -\$1,200
1,000
100
500
600 100

1,080

Gash Flow Pattern

Calculate the IRR, NPV@10\%, and PI@10\%.

Which project is preferred?

Project

IRR NPV
PI

Project Life DHferanana

Let us compare a long life (X) project and a short life (Y) project.

END OF YEAR
$0 \quad-\$ 1,000$
0
0
0
3,375

0
-\$1,000
2,000

0

Project Life Differenoes

Calculate the PBP, IRR, NPV@10\%, and PI@10\%.

Which project is preferred? Why?
Project
IRR
NPV
PI

Thank You

