

Structure and Applications

Madnia Ashraf

2

▪ The Semantic Gap
▪ The source program is structured into (depending on

language) classes, functions, statements, expressions, . . .
▪ The target program is structured into instruction

sequences, manipulating memory locations, stack and/or
registers and with (conditional) jumps

Assembly:
Source Code:
z = 8*(x+5)-y

movl -12(%rbp), %eax

addl $5, %eax

sall $3, %eax

subl -8(%rbp), %eax

movl %eax, -4(%rbp)

3

Front

End

source
code IR

machine
code

errors

▪ Use an Intermediate Representation (IR)

▪ Front End maps legal source code into IR
▪ Back End maps IR into target machine code

▪ Admits multiple front ends & multiple passes

Back

End

4

Front

End

source
code IR

machine
code

errors

▪ Recognizes legal (& illegal) programs

▪ Report errors in a useful way

▪ Produce IR & preliminary storage map

Back

End

5

source
code Tokens

Parser Scanner

IR

Modules

errors

▪Scanner: Maps character stream into words – basic
unit of syntax
▪Parser: Recognizes context‐free syntax and reports

errors

6

▪ Maps character stream into words – basic unit of syntax
▪ Produces pairs –

1. a word and

2. its part of speech
▪ Example

<id,x>

word
x = x + y

becomes
<id,x>
<assign,=>
<id,x>
<op,+>
<id,y>

token type

We call the pair:

“<token type, word>” a “token”
Typical tokens: number, identifier,

+, ‐, new, while, if

7

source
code Tokens

Parser Scanner

IR

errors

▪ Recognizes context‐free syntax and reports errors

▪ Guides context‐sensitive (“semantic”) analysis

▪ Builds IR for source program

8

5. | id

Context‐free syntax is specified using a CFG=(S,N,T,P)
▪ S is the start symbol
▪ N is a set of non‐terminal symbols
▪ T is set of terminal symbols or words

▪ P is a set of productions or rewrite rules

Grammar for expressions
1. goal → expr
2. expr → expr op term
3. | term

4. term → number

6. op → +

7. | ‐

For this CFG
S = goal
N = {goal, expr, term, op}
T = {number, id, +, ‐}
P = {1, 2, 3, 4, 5, 6, 7}

9

Production Result
 goal

1 expr
2 expr op term
5 expr op y
7 expr – y
2 expr op term – y
4 expr op 2 – y
6 expr + 2 – y

3 term + 2 – y
5 x + 2 – y

Context Free Grammar

1.
2.
3.
4.
5.
6.
7.

goal → expr
expr → expr op term

| term
term → number

| id

op → +
| ‐

▪ Given a CFG, we can derive sentences by repeated
substitution

▪ Consider the sentence (expression):
x + 2 – y

10

Production Result
 goal

1 expr
2 expr op term
5 expr op y
7 expr – y
2 expr op term – y
4 expr op 2 – y
6 expr + 2 – y

3 term + 2 – y
5 x + 2 – y

Context Free Grammar

1.
2.
3.
4.
5.
6.
7.

goal → expr
expr → expr op term

| term
term → number

| id

op → +
| ‐

▪ To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

▪ A parse can be represented by a tree: parse tree or
syntax tree

Expression: x+2‐y

expr

goal

expr

op

term

expr op term – <id, y>

term

<id, x>

+ <number, 2>

11

12

▪ The parse tree contains a lot of unneeded information

▪ Compilers often use an abstract syntax tree (AST)

–

<id, x>

+

<number, 2>

<id, y>

13

▪ An AST is a much more concise representation

<id, x>

–

+

<number, 2>

<id, y>

▪It summarizes the grammatical structure without any
details of derivation

▪ ASTs are one kind of intermediate representation (IR)

14

Instruction

Selection

IR IR IR Instruction

Scheduling

machine
code

▪ Translate IR into target machine code

errors

▪ Choose machine (assembly) instructions to implement
each IR operation

▪ Ensure conformance with system interfaces

▪ Decide which values to keep in registers

Register

Allocation

15

Instruction

Selection

IR IR IR Instruction

Scheduling

machine
code

▪ Produce fast and compact code!

errors

Register

Allocation

16

Instruction

Selection

IR IR IR Instruction

Scheduling

machine
code

▪ Have each value in a register when it is used

errors

▪ Manage a limited set of resources – register file

Register

Allocation

17

Instruction

Selection

IR IR IR Instruction

Scheduling

machine
code

▪ Use all functional units productively

errors

Register

Allocation

18

Front

End

source
code IR IR Back

End

machine
code

▪ Intermediate stage for code improvement or
optimization

▪ Analyzes IR and rewrites (or transforms) IR

errors

▪Primary goal is to reduce running time of compiled
code

Middle

End

19

Front

End

source
code IR IR Back

End

machine
code

▪ Must preserve “meaning” of the code

▪ Measured by values of named variables

errors

Middle

End

