
Lab Manual Digital Logic Design

1

 CET, UOS

DIGITAL LOGIC DESIGN (EE-211)

Update History: Version-4 Fall 2020 (M. Junaid Khalid)

Name of Student: ………………………………………………………………………………

Roll No: ………………………………………………………………………………………..

Teacher Name: …………………………………………………………………………………

Marks Obtained: ………………………………..

Remarks: ………………………………………..

Instructor’s Signature: ……………………………

Electrical Engineering Department
College of Engineering and Technology,

University of Sargodha.

Lab Manual Digital Logic Design

2

 CET, UOS

LIST OF EXPERIMENTS

Lab

No.
Title

1
TO STUDY BASIC LOGIC GATE INTEGRATED CIRCUITS AND VERIFICATION

OF THEIR TRUTH TABLES

2 IMPLEMENTATION OF THE UNIVERSALITY OF NAND AND NOR GATES

3 IMPLEMENTATION OF THE HALF ADDER AND FULL ADDER

4 IMPLEMENTATION OF THE 4-BIT PARALLEL ADDER USING IC 74283

5 IMPLEMENT OF THE HALF AND FULL SUBTRACTOR

6 IMPLEMENTATION OF THE CODE CONVERTERS USING GATES

7 TO IMPLEMENT THE ENCODER AND DECODER USING IC 74138 & 74148

8
IMPLEMENTATION OF MULTIPLEXER AND DEMULTIPLEXER USING IC74151&

IC74138

9
VERIFICATION OF LATCH AND FLIP FLOP OPERATION USING GATES AND

FLIP FLOP’S IC

10 COUNTERS

11 IMPLEMENTATION OF SERIES AND PARALLEL REGISTERS

12 STUDY OF THE COMMANDS OF SHIFT AND ROTATE INSTRUCTIONS

13 ALU DESIGN IN VERILOG.

14 SEMESTER PROJECT EVALUATION

Lab Manual Digital Logic Design

3

 CET, UOS

LIST OF CLOs
CLO Domain

Level

CLOs PLO

CLO:1

P1 Describe and illustrate fundamentals of Digital Logic Design 1

CLO:2

P3 Demonstrate the acquired knowledge to apply techniques related to the

design and analysis of digital logic circuits
2

CLO:3

P4 Design and Implement small-scale logic circuit (basic, combinational &

sequential digital circuit) for desired output.
3

CLO:4 A2 Function individually as well as a team. 9

MAPPING OF CLOS WITH PLOs

PLOs CLO 1 CLO 2 CLO 3 CLO4 CLO5 CLO6 CLO7 CLO8 CLO9

PLO:1 (Engineering

Knowledge) √

PLO:2 (Problem Analysis)
 √

PLO:3 (Design Development of

Solutions) √

PLO:4 (Investigation)

PLO:5 (Modern Tool Usage)

PLO:6 (Engineer & Society)

PLO:7 (Environment and

Sustainability)

PLO:8 (Ethics)

PLO:9 (Individual & Team

Work)

√

PLO:10 (Communication)

PLO:11 (Project Management)

PLO:12 (Life Long Learning)

Lab Manual Digital Logic Design

4

 CET, UOS

EXPERIMENT NO 1

TO STUDY BASIC LOGIC GATE INTEGRATED CIRCUITS AND

VERIFICATION OF THEIR TRUTH TABLES

OBJECTIVES

To understand the different options, facilities and provisions provided on the Digital Logic Trainer

To recognize the different logic gates ICs

To verify the truth tables of basic logic gates

INTRODUCTION

A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs

and one output. At any given moment, every terminal is in one of the two logic states, i.e.

LOW/FALSE/ (0) or HIGH/TRUE/ (1), represented by different voltage levels. The logic state of

a terminal changes as the circuit processes data. In most logic gates, the LOW state corresponds

to zero volts (0 V), while the HIHG state corresponds to positive five volts (+5 V). There are three

basic logic gates, i.e. NOT-gate, AND-gate and OR-gate. A combination on these basic gates has

given birth to some advanced gates which are widely used, e.g. NAND-gate, NOR-gate, EX-OR

(Exclusive OR) gate and EX-NOR (Exclusive NOR) gate.

LOGIC GATE SYMBOLS AND TRUTH-TABLES

NOT GATE

NOT gate has only one input and one output. The output Q is true when the input A is NOT true,

i.e. the output is the inverse of the input, mathematically we write it as Q = NOT (A). A NOT gate

is also called an inverter.

* IEC =

INTERNATIONAL ELECTRO TECHNICAL COMMISSION

A Q

A Q

Input

A

Output

Q

0 1

1 0

Traditional symbol IEC symbol* Truth Table

Lab Manual Digital Logic Design

5

 CET, UOS

AND GATE

A basic AND gate has two inputs and one output. The output Q is true if both the inputs A AND

B are simultaneously true, mathematically this is stated as Q = A AND B. Some AND gates can

have more than two inputs, in that case the output is true when ALL the inputs are true.

OR GATE

A basic OR gate also has two inputs and one output. The output Q is true if either of the two inputs

A OR B is true (or when both of them are true), i.e. Q = A OR B. Some OR gates can have more

than two inputs, in that case, the output is true if at least one input is true.

A Q

B

A Q

B

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 1

Traditional symbol IEC symbol Truth Table

A Q

B

A Q

B

Input

A

Input

B

Output

Q

0 0 0

0 1 0

1 0 0

1 1 1

Traditional

symbol
IEC symbol Truth Table

Lab Manual Digital Logic Design

6

 CET, UOS

NAND GATE

NAND gate is basically an AND gate but with the output inverted, as shown by the 'o' on the output

of the AND gate symbol. Thus the output is true if both the inputs A AND B are NOT true

simultaneously, in equation form we can write it as Q = NOT (A AND B). Like AND gates, some

NAND gates can have more than two inputs, in that case, the output is true if NOT ALL the inputs

are true.

A Q

B

A Q

B

Input A Input B Output Q

0 0 1

0 1 1

1 0 1

1 1 0

Traditional symbol IEC symbol Truth Table

NOR GATE

NOR gate is basically an OR gate but with the output inverted, as shown by the 'o' on the output

of the OR gate symbol. Thus the output is true if neither of the inputs A OR B is true, in equation

form we can write it as Q = NOT (A OR B). Like OR gates, some NOR gates can have more than

two inputs, in that case, the output is true if NONE of the inputs is true.

A Q

B

A Q

B

Input A Input B Output Q

0 0 1

0 1 0

1 0 0

1 1 0

Traditional symbol IEC symbol Truth Table

Lab Manual Digital Logic Design

7

 CET, UOS

X-OR (EXCLUSIVE-OR) GATE

A basic X-OR gate also has two inputs and one output. The output Q is true if either of the two

inputs A OR B (but not both) is true, mathematically it is written as

Q = (A AND NOT(B)) OR (B AND NOT(A)). Hence it is like an OR gate but excluding the case

when both the inputs are true simultaneously, in other words the output is true if the inputs are

DIFFERENT. Advanced X-OR gates can have more than two inputs, in that case, the output is

true only when an ODD number of inputs are true.

A Q

B

A Q

B

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 0

Traditional symbol IEC symbol Truth Table

X-NOR (EXCLUSIVE-NOR) GATE

This is equivalent to an X-OR gate with the output inverted, as shown by the 'o' on the output of

the X-OR gate symbol. Thus the output Q is true if both the inputs A and B are the same, i.e. either

both are true or both are false, in equation form this is described as

Q = (A AND B) OR (NOT(A) AND NOT(B)). Like X-OR, X-NOR gates have more than two

inputs, in that case, the output is true when an EVEN number of inputs are true.

Lab Manual Digital Logic Design

8

 CET, UOS

 Q

B

A Q

B

Input

A

Input

B

Output

Q

0 0 1

0 1 0

1 0 0

1 1 1

Traditional symbol IEC symbol Truth Table

 UNIVERSAL GATES

The NAND and NOR gates can be said to be universal gates, since combinations of them can be

used to accomplish any of the basic operations and can, thus produce an inverter, an OR gate or

an AND gate. The non-inverting gates do not have this versatility since they can't produce an

inversion.

COMPONENTS

1. Power supply

2. Components (ICs):

 74LS00 (NAND Gate) --------- 1

 74LS02 (AND Gate) --------- 1

 74LS04 (NOT Gate) --------- 1

 74LS08 (AND Gate) --------- 1

 74LS32 (OR Gate) --------- 1

 74LS86 (EX-OR Gate) --------- 1

3. Connecting wires

4. Bread board

5. LED

PROCEDURE

1. Connect the DC power supply to 220V Ac power supply.

2. Turn on the DC power supply and verify the DC voltage by using voltmeter, it should be almost

5.0 volts (specifically between 4.75V – 5.25V). If not consult the Lab Supervisor.

Lab Manual Digital Logic Design

9

 CET, UOS

3. Install the IC chip under experiment, on breadboard.

4. Connect the +Vcc (pin # 14) and Ground (pin # 7) pins of the IC to +5V and Ground supply of the

trainer board. (Consult Fig 1.2 for the pin diagrams of the IC under test)

5. Make the appropriate circuit connections as shown in Fig 1.1(a, b, c,e,f) for the particular IC under

test. Use logic switches to provide “0” and “1” at the inputs and use the trainer’s LEDs to display

the output. Note that there is more than one gate in each IC chip, so you can use any one of these

gates to make your connections (Consult Fig 1.2 for the pin numbers corresponding to each gate

in that particular chip).

6. Record your observations according to Table 2.1 and verify whether the output conform to the

truth tables of each gate.

7. Repeat steps 3-6 for each of the IC chips.

8. Write down your observations & comments at the end, as per your concept developed during this

experimental work.

CIRCUIT DIAGRAMS

Fig 1.1 (a) NOT Gate (7404)

 Fig 1.1 (b) AND Gate (74LS08) Fig 1.1 (c) NAND Gate (74LS00)

Lab Manual Digital Logic Design

10

 CET, UOS

 Fig 1.1 (d) OR neither Gate (74LS32) Fig 1.1 (e) NOR Gate (74LS02)

+Vcc

1

2

3

4

5

6

Ground

8

9

10

11

12

13

14

7

1

2

3

4

+Vcc

7
4
0
8

1

2

3

4

5

6

Ground

8

9

10

11

12

13

14

7

1

2

3

4

7
4
3
2

 AND GATE OR GATE

Lab Manual Digital Logic Design

11

 CET, UOS

1

2

3

+Vcc

4

1

2

3

4

5

6

Ground

8

9

10

11

12

13

14

7

7
4
0
0

7
4
0
2

+Vcc

1

2

3

4

5

6

Ground

8

9

10

11

12

13

14

7

3

1

4

2

 NAND GATE NOR GATE

+Vcc

1

2

3

4

5

6

Ground

8

9

10

11

12

13

14

7

1

2

3

4

5

6

7
4
0
4

 EX-OR GATE NOT GATE

 Fig 1.2: Pin Diagrams of IC’s

Lab Manual Digital Logic Design

12

 CET, UOS

EXPERIMENTAL RESULTS

Table 1.3 Truth Tables of Different Logic Gates

 NOT GATE

 OR GATE

 Input A Input B
Output

Q

 0

0 1

1 0

1 1

 AND GATE NOR GATE

 NAND GATE EX-

OR GATE

PRECAUTIONS

 Check the power supply for correct voltage.

Input

A

Input

B

Output

Q

0 0

0 1

1 0

1 1

Input A
Output

Q

0

1

Input A Input B Output Q

0 0

0 1

1 0

1 1

Input A Input B
Output

Q

0 0

0 1

1 0

1 1

Input

A

Input

B

Output

Q

0 0

0 1

1 0

1 1

Lab Manual Digital Logic Design

13

 CET, UOS

 Check the Vcc (pin # 14) and Ground (pin # 7) connections of the IC under test.

 Check all the wire connections and remove any possible breaks.

 Check the IC under test using truth table.

QUESTIONS

The input/output signals are shown by means of the following diagram. Corresponding to the

Input X and Y given below; Draw waveform for given gates.

 X Q

 Y

 X

 Y INPUT

 AND

 OR

 NOT

Conclusion & Comments

Lab Manual Digital Logic Design

14

 CET, UOS

Lab Manual Digital Logic Design

15

 CET, UOS

EXPERIMENT NO 2

IMPLEMENTATION OF UNIVERSALITY OF NAND AND NOR GATES

OBJECTIVE

To study and implement any logic expression by using only NAND or NOR gates.

THEORY

Digital circuits are more frequently constructed with NAND or NOR gates than with AND and

OR gates. NAND and NOR gates are easier to fabricate with electronic components and are the

basic gates used in all IC digital logic families. Because of the prominence of NAND and NOR

gates in the design of digital circuits, rules and procedures have been developed for conversion

from Boolean function given in terms of AND, OR, and NOT into equivalent NAND and NOR

logic diagram.

TASK 1: NAND GATE IMPLEMENTATION OF BOOLEAN FUNCTIONS

If we can show that the logical operations AND, OR, and NOT can be implemented with NAND

gates, then it can be safely assumed that any Boolean function can be implemented with NAND

gates. Figure-2 below shows such implementation:

Figure 2a: AND gate operation

Figure 2b: OR gate operation

Figure 2c: NOT gate operation

PROCEDURE

Lab Manual Digital Logic Design

16

 CET, UOS

1. Insert the IC on the trainer’s breadboard.

2. Use any one or more of the NAND gates of the IC for this experiment.

3. Any one or more Logic Switches of the trainer (S2 to S9) can be used for input to the NAND

gate.

4. For output indication, connect the output pin of the circuit to any one of the LEDs of the trainer

(L0 to L15).

5. Connect the circuit as per Fig. 1(a) above.

6. Connect +5V to pin 14 (Vcc) and Ground to pin 7 (GND) of the IC.

7. By setting the switches to 1 and0, verify that the output of the circuit conforms to that of an

AND gate. Record your observation in the table below:

Inputs

Output Desired

A

B

x=A.B Observed

 0

0

0

0

1

0

1

0

0

1

1

1

Verify OR gate operation using NAND gates. Show your results to the lab instructor.

Inputs

Desired Output

A

B

x=A+B

Observed

0

0

0

0

1

1

1

0

1

1

1

1

Verify NOT gate operation using NAND gates

Lab Manual Digital Logic Design

17

 CET, UOS

Show your results to the lab instructor.

Inputs

Output

 A

Desired X=A'

Observed

0

1

1

0

1

2

3

+Vcc

4

1

2

3

4

5

6

Ground

8

9

10

11

12

13

14

7

7
4
0
0

LAB ASSIGNMENT

P1. Implement AND, OR and NOT operation using NOR gate. Show truth table and logic diagram.

Lab Manual Digital Logic Design

18

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

19

 CET, UOS

EXPERIMENT NO 3

 IMPLEMENTATION OF HALF ADDER AND FULL ADDER

OBJECTIVE

 To study Half and Full adder operations.

THEORY

Digital computers perform a variety of information-processing tasks. Among the basic

functions encountered are various arithmetic operations. The most basic arithmetic operations

are, no doubt, the addition and subtraction of binary digits (bit).

HALF ADDER

The possible operations, when we want to add only two bits, would be the

followings:

0 + 0 = 0 0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 & Carry 1

Above mentioned operation could be performed by a Half Adder circuit.

FULL ADDER

We know that in practice, all addition operations must take into account the Carry bit (or digit)

from the previous operation. Adders in digital computers also take into account the Carry bit

from last operation and add it with the Augend and Addend bits of the present operation to

complete the addition operation. The possible operations are:

0 + 0 + 0 (carry) = 0

0 + 0 + 1 (carry) = 1 0 + 1 + 0 (carry) = 1

0 + 1 + 1 (carry) = 0 & carry 1 (to be added to next higher digit)

1 + 1 + 0 (carry) = 0 & carry 1 (to be added to next higher digit)

1 + 1 + 1 (carry) = 1 & carry 1 (to be added to next higher digit)

The adder that performs the addition of three bits (two significant bits and a previous carry)

is called a Full Adder.

TASK 1: HALF ADDER

We arbitrarily assign symbols A and B to the two inputs and S (for sum) and Cout (for Carry)

to the two outputs. Truth table for Half Adder as shown below:-

Lab Manual Digital Logic Design

20

 CET, UOS

Table 1: Truth Table for Half Adder operation

The simplified Boolean

function for the two outputs can be written from this truth table as:-

 S = A'.B +A.B'

Cout = A.B

The circuit diagram for the Half Adder to implement above mentioned Boolean function

could be quite a few. We will however verify only one.

Figure 1: Half Adder using AND and XOR gates.

PROCEDURE

1. Wire the circuit as per figure 2 above.

2. Use any two Logic Switches of the trainer (S2 to S9) for the input and any two of the LEDs

of the trainer (L0 to L15) as output indication.

3. Connect +5V to pin 14 (Vcc) and Ground to pin 7 (GND) of the ICs.

4. By setting various combinations of the two switches verify that the output of the circuit is

in accordance with the Truth Table shown above. Record your observation.

TASK 2: FULL ADDER

As mentioned in the beginning, a full-adder is a combinational circuit that forms the arithmetic

sum of three input bits (two significant bits and a previous carry bit) and two output bits. We

arbitrarily assign symbols A and B to the two significant bit inputs and Cin for the Carry from

the previous lower significant position, and S (for sum) and Cout (for Carry) to the two outputs.

Input Output Desired Observed

A

B

S

Cout

S

Cout

 0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

Lab Manual Digital Logic Design

21

 CET, UOS

Truth table for the Full Adder is shown below:

Input Output

Desired

Output

Observed

 A

B

Cin

S

Cout

S

Cout

 0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

Simplified Boolean function for the two outputs can be written from this truth table as:-

S = A B Bin CC

Cout = (A B) C +A.B

The circuit diagram for the Full Adder is as under:

Figure 2: Full Adder comprising of two Half Adders and an OR gate.

PROCEDURE

1. Wire the circuit as per figure 2 above.

2. Use any three Logic Switches of the trainer (S2 to S9) for the input and any two of the

LEDs of the trainer (L0 to L15) as output indication.

3. Connect +5V to pin 14 (Vcc) and Ground to pin 7 (GND) of the ICs.

4. By setting various combinations of the two switches verify that the output of the circuit is

in accordance with the Truth Table shown above. Record your observation.

Lab Manual Digital Logic Design

22

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

23

 CET, UOS

EXPERIMENT NO 4

IMPLEMENTATION OF 4-BIT PARALLEL ADDER USING IC 74283

OBJECTIVE

 To study 4-bit parallel operation using IC 74283.

THEORY

Adders that are available in integrated circuit form are parallel binary adders. A 4-Bit parallel

adder actually consists of four full adders connected in parallel. The carry output of each adder

is internally connected to the carry input of the next higher order adder. Fig 5 shows the internal

functional structure of 7483 IC in which 4 full adders are shown as separate entity. Figure is

connection diagram for full adder function.

Figure 3: IC 7483 Internal Functional Structure

Lab Manual Digital Logic Design

24

 CET, UOS

Figure 4: Connection Diagram for 4-Bit Parallel Adder.

PROCEDURE

1. Wire the circuit as per figure 6 above.

2. Use first four Logic Switches of the trainer for the inputs A0 to A3, and next four switches

for inputs B0 to B3.

3. Connect Cin (pin 13) to GND (we are assuming initial carry to be zero).

4. Use first four LEDs of the trainer to indicate Sum outputs S0 to S3, and another LED to

indicate status of the most significant carry bit cout.

5. Connect +5V to pin 5 (Vcc) and Ground to pin 12 (GND) of the ICs.

6. By setting various combinations of the two sets of input switches verify that the output of

the circuit is in accordance with the Table shown below (only few of the possible additions have

been shown here). Record your observation.

Lab Manual Digital Logic Design

25

 CET, UOS

Table

Observations/Comments/Explanation of Results

(Please write in your own words the objectives and yours learning during the experiment. Also

explain the results and comment on it.)

Inputs

Desired Output

Observed Output

Binary Augends

Binary Addend

Decimal

Value

for

Ref

Binary Output

Decimal

value

for

Ref

Binary Output

A3

A2

A1

A0

B3

B2

B1

B0

A

B

Co

S3

S2

S1

S0

Sum

Co

S3

S2

S1

S0

0

0

0

1

0

0

0

1

1

1

0

0

0

1

0

2

0

0

1

1

0

0

0

1

3

1

0

0

1

0

0

4

0

1

0

0

0

0

1

0

4

2

0

0

1

1

0

6

0

1

0

0

0

1

0

0

4

4

0

1

0

0

0

8

0

1

0

1

0

1

0

0

5

4

0

1

0

0

1

9

0

1

0

1

0

1

0

1

5

5

0

1

0

1

0

10

1

0

0

0

0

1

0

0

8

4

0

1

1

0

0

12

1

0

0

1

0

1

1

0

9

6

0

1

1

1

1

15

1

0

0

1

1

0

0

0

9

8

1

0

0

0

1

17

1

0

0

1

1

0

0

1

9

9

1

0

0

1

0

18

Lab Manual Digital Logic Design

26

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

27

 CET, UOS

EXPERIMENT NO 05

IMPLEMENTATION OF HALF AND FULL SUBTRACTOR

OBJECTIVE
 To learn Half and Full Subtraction Operations.
THEORY
Digital computers perform a variety of information-processing tasks. Among the basic

functions encountered are various arithmetic operations. The most basic arithmetic

operations are, no doubt, the addition and subtraction of binary digits (bit).

APPARATUS REQUIRED

Sl.No. COMPONENT SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. X-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

4. OR GATE IC 7432 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 23

HALF SUBTRACTOR

The half subtractor is constructed using X-OR and AND Gate. The half subtractor has two input and two

outputs. The outputs are difference and borrow. The difference can be applied using X-OR Gate, borrow

output can be implemented using an AND Gate and an inverter.

FULL SUBTRACTOR

The full subtractor is a combination of X-OR, AND, OR, NOT Gates. In a full subtractor the logic circuit

should have three inputs and two outputs. The two half subtractor put together gives a full subtractor .The

first half subtractor will be C and A B. The output will be difference output of full subtractor. The expression

AB assembles the borrow output of the half subtractor and the second term is the inverted difference output

of first X-OR.

LOGIC DIAGRAM:

HALF SUBTRACTOR

Lab Manual Digital Logic Design

28

 CET, UOS

TRUTH TABLE

A B BORROW DIFFERENCE

0

0

1

1

0

1

0

1

0

1

0

0

0

1

1

0

K-Map for DIFFERENCE: K-Map for BORROW:

DIFFERENCE = A’B + AB’ BORROW = A’B

LOGIC DIAGRAM

FULL SUBTRACTOR

FULL SUBTRACTOR USING TWO HALF SUBTRACTOR

Lab Manual Digital Logic Design

29

 CET, UOS

TRUTH TABLE

A B C BORROW DIFFERENCE

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

0

1

0

1

1

0

1

0

0

1

K-Map for Difference K-Map for Borrow

Difference = A’B’C + A’BC’ + AB’C’ + ABC Borrow = A’B + BC + A’C

PROCEDURE

1. Wire the circuit as per figure 2 above.
2. Use any three Logic Switches of the trainer (S2 to S9) for the input and any

two of the LEDs of the trainer (L0 to L15) as output indication.

3. Connect +5V to pin 14 (Vcc) and Ground to pin 7 (GND) of the ICs.

4. By setting various combinations of the two switches verify that the output of the circuit

is in accordance with the Truth Table shown above. Record your observation.

Lab Manual Digital Logic Design

30

 CET, UOS

CONCLUSION & RESULTS

Conclusion & Comments

Lab Manual Digital Logic Design

31

 CET, UOS

EXPERIMENT NO 06

IMPLEMENTATION OF ENCODER AND DECODER USING IC 74138

& 74148

COMPONENTS

1. Digital Logic Trainer

2. IC 74138 IC 74148

RELEVANT THEORY TOPICS

Combinational logic Decoders, Encoders (Refer Article 4.10, 4.11of Digital design, 4𝑡ℎ Edition

by Morris Mano)

OBJECTIVE

To study Encoder and Decoder.

THEORY

An encoder circuit has more input lines and fewer output lines.

A decimal to BCD encoder (10 line to 4 line) will convert (at any one time) one active input out of

ten to a BCD code output.

An octal-to-binary encoder (8 line to 3 line) will convert (at any one time) one-of-eight inputs to

a binary code output

A decoder circuit few input lines and more output lines.

A binary-to-octal decoder converts 3 binary bits into 8 outputs (only one which will be active at

one time)

A BCD decoder converts a 4-bit BCD code on into 10 output outputs (only one which will be active

at one time).

A hexadecimal decoder converts a 4-bit binary code on the input to a 1-of-16 output.

Decoders are often used in microprocessor systems to decode the address information from

the microprocessor in order to select the correct memory chip.

Lab Manual Digital Logic Design

32

 CET, UOS

Lab Manual Digital Logic Design

33

 CET, UOS

TASK 1: ENCODER

IC 74148 is a 8- Line-to- 3-line (octal to binary) Priority Encoder. It has 8 Inputs (0-7), an

Enable Input EI, an Enable Output EO, 3 Output (A0-A2), and a Gs Output. Details as

under:

 A0-A2 outputs reflect a code that is equal to the highest valued active input.

 Gs output goes low any time any of the input goes low (this low signal is Used for

interrupt request to CPU, when connected for the purpose).

 EI and EO are used for cascading more than one 74148 together.

Functional block diagram of IC 74148 is attached. Connection diagram and Truth table is shown

below:

INPUT

OUTPUT

 EI

0

1

2

3

4

5

6

7

A2

A1

A0

Gs

Eo

 0

X

X

x

x

x

X

X

0

 0

1

 0

X

X

x

x

x

X

0

1

 0

1

 0

X

X

x

x

x

0

1

1

 0

1

 0

X

X

x

x

0

1

1

1

 0

1

 0

X

X

x

0

1

1

1

1

 0

1

 0

X

X

0

1

1

1

1

1

 0

1

 0

X

0

1

1

1

1

1

1

 0

1

 0

0

1

1

1

1

1

1

1

 0

1

Lab Manual Digital Logic Design

34

 CET, UOS

Wire the circuit as per figure above and fill in the blanks in the truth table.

TASK 2: DECODERS:

IC 74138 has been used as a decoder.

It has 3-Select Inputs and 8- Data Outputs. Functional block diagram of IC 74138 is

attached. Note that the IC 74138 has Enable Inputs which we will not use during decoder

operation, therefore we will keep G1 as high and G2A and G2B as low so that the output of

Enable gate remains always high and does not interfere with our desired result. Also note that

the output of the IC is active low. Connection diagram and Truth table of the IC 74138 when

used as decoder is shown below:

Note: Output of the IC 74138 is active low, so the output line having a Zero

In the Truth Table will be selected

SELECT INPUT

DATA OUTPUT

 C

B

A

O7

O6

O5

O4

O3

O2

O1

O0

 0

0

0

1

1

1

1

1

1

1

0

 0

0

1

1

1

1

1

1

1

0

1

 0

1

0

1

1

1

1

1

0

1

1

 0

1

1

1

1

1

1

0

1

1

1

 1

0

0

1

1

1

0

1

1

1

1

 1

0

1

1

1

0

1

1

1

1

1

 1

1

0

1

0

1

1

1

1

1

1

 1

1

1

0

1

1

1

1

1

1

1

Lab Manual Digital Logic Design

35

 CET, UOS

Wire the circuit as per figure 1 above and verify the results.

Observations/Comments/Explanation of Results:

ASSIGNMENT

P1. Design priority encoder.

P2. Implement full adder and full subtractor using decoder.

Lab Manual Digital Logic Design

36

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

37

 CET, UOS

EXPERIMENT NO 07

IMPLEMENTATION OF CODE CONVERTERS USING GATES

APPARATUS / COMPONENTS

 Digital Logic Trainer

 IC 7447, IC 7486, AND, OR and NOT gates

 7-Segment Display

 Resistors 180 Ohms

Relevant Theory Topic: Binary Codes, K-Map implementation (Refer to Article 1.7, 3.2, 3.3,

of Digital design, 4牳ℎ Edition by Morris Mano)

OBJECTIVE

To study BCD to Seven Segment Display Code, Gray Code and Excess-3 Code Conversion.

THEORY

The availability of large variety of codes for the same discrete elements of information results in

the use of different codes by different digital systems. Sometimes it becomes necessary to use

output one system as input to another system. A conversion circuit must be inserted between the

two systems, if each uses different code for the same information. When a decimal number is

decoded such that each digit of the number is represented by a 4-bit binary number, it is called a

8421 Binary Coded Decimal Code or more simply a BCD code. Here, ten out of sixteen possible

combinations of the code are selected to represent decimal 0 through 9. Most commonly used

BCD codes are given below:

DECIMAL BCD GRAY CODE EXCESS-3 CODE

 0

0 0 0 0

0 0 0 0

0 0 1 1

 1

0 0 0 1

0 0 0 1

0 1 0 0

 2

0 0 1 0

0 0 1 1

0 1 0 1

 3

0 0 1 1

0 0 1 0

0 1 1 0

 4

0 1 0 0

0 1 1 0

0 1 1 1

 5

0 1 0 1

0 1 1 1

1 0 0 0

 6

0 1 1 0

0 1 0 1

1 0 0 1

 7

0 1 1 1

0 1 0 0

1 0 1 0

 8

1 0 0 0

1 1 0 0

1 0 1 1

 9

1 0 0 1

1 1 01

1 1 0 0

Lab Manual Digital Logic Design

38

 CET, UOS

The important characteristics of the Gray code is that only one digit changes as we count from

top to bottom; that is why it is termed as minimum change code. The Gray code is used for

input and output devices. Primary use is in numeric input encoding applications, where we

expect nonrandom input value change (i.e. value n changes either to n-1 or to n+1). Another

decimal code that has been used in some old computers is Excess-3 code. Its code

assignment is obtained from the corresponding value of BCD after the addition of 3. The

code is used in many arithmetic circuits because it is self-complementing (i.e. the 9’s complement

value of the decimal number can be obtained by complementing each bit of the code).

TASK 1: BCD TO SEVEN SEGMENT DISPLAY CODE CONVERSION

Most Digital equipment has some means for displaying information in a form that can be

understood readily by the user or operator. One of the simplest and most popular methods for

displaying numerical digits uses a 7-segment configuration. To form decimal characters 0

through 9 and sometimes hex characters A through F. A BCD to 7-Segment Driver (IC 7447)

is used to take four bit BCD input and provides the outputs that will pass current through the

appropriate segment of the display to generate desired output/ number. Truth Table for Active

High and Active Low cases are shown below:

Lab Manual Digital Logic Design

39

 CET, UOS

INPUT –BCD

D
ec

im
al

Output- Seven Segment Decoder (Active Low -IC

7447)

Display

Output

 S0

S1

S2

S3

a

b

c

d

e

f

g

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

1

0

0

1

1

1

1

1

0

0

1

0

2

0

0

1

0

0

1

0

2

0

0

1

1

3

0

0

0

0

1

1

0

3

0

1

0

0

4

1

0

0

1

1

0

0

4

0

1

0

1

5

0

1

0

0

1

0

0

5

0

1

1

0

6

1

1

0

0

0

0

0

6

0

1

1

1

7

0

0

0

1

1

1

1

7

1

0

0

0

8

0

0

0

0

0

0

0

8

1

0

0

1

9

0

0

0

1

1

0

0

9

Figure 1: BCD to Seven Segment Converter Circuit.

The segments of Seven Segment display are made of LEDs. Depending on the arrangements

of the LEDs, the display could be Common Anode or Common Cathode type. We are using common

anode type of display, which would require that either pin 3 or pin 8 is connected to Vcc and the input

is active low.

PROCEDURE

1. Wire the circuit as per figure 1 above. Connect pin 3 or pin 8 to Vcc.

2. By setting various combinations of the switches verify the result.

Lab Manual Digital Logic Design

40

 CET, UOS

TASK 2: BCD TO GRAY CODE CONVERSION

The bit combination for the BCD and Gray code are listed in the table below. Since

each code uses four bits to represent a decimal digit, there must be four input variables and four output

variables.

With the help of K- Map, the simplified output can be obtained as:

Input

BCD

Output Gray

Code

Observed Output

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

W x y Z

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

W

x

y

z

Lab Manual Digital Logic Design

41

 CET, UOS

w = A x=A’B+AB’=A B

y = BC’+B’C=B C z = CD’+C’D=C D

Figure 2: Logic Diagram for BCD to Gray code converter.

PROCEDURE

1. Wire the circuit as per Fig. 2 above.

2. Use any four Logic Switches of the trainer (S2 to S9) for the input and any four of the LEDs of

the trainer (L0 to L15) as output indication.

3. Connect +5V to pin 14 (Vcc) and Ground to pin 7 (GND) of the ICs.

4. By setting various combinations of the two switches verify that the output of

the circuit is in accordance with the Truth Table shown above. Record your observation.

Lab Manual Digital Logic Design

42

 CET, UOS

TASK 3: BCD TO EXCESS-3 CODE CONVERSION.

The bit combination for the BCD and excess-3 codes is listed in the table below. Since each code uses

four bits to represent a decimal digit, there must be four input and four output variables.

Input BCD

Output Excess-3 Code

Observed Output

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

w x y Z

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

With the help of K- Map, the simplified output can be obtained as:

Lab Manual Digital Logic Design

43

 CET, UOS

(1)

w = A + BC + BD = A + B(C+D)

(2)

x = B'C + B'D + B

=B'(C+D)+BC'D'

(3) y = CD + C'D' = CD + (C+D)' (4) z = D'

PROCEDURE

1. Wire the circuit as per above Fig. 3 and verify the results.

Figure 3: Logic Diagram for BCD to excess-3 code converter.

Lab Manual Digital Logic Design

44

 CET, UOS

LAB ASSIGNMENT

1. Design BCD to 2421 convertor.

2. Design a circuit which calculates 9’s complement of a four bit number.

Lab Manual Digital Logic Design

45

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

46

 CET, UOS

EXPERIMENT NO 08

IMPLEMENTATION OF MULTIPLEXER AND DEMULTIPLEXER

USING IC74151& IC74138

COMPONENTS

1. Digital Logic Trainer 2. IC 74151 & 74138

RELEVANT THEORY TOPICS

Combinational logic Decoders, Encoders Multiplexer, De-Multiplexers (Refer Chapter 4.9-

4.11 Digital design, 4𝑡ℎ Edition by Morris Mano)

OBJECTIVE

To study Multiplexer and Demultiplexer.

THEORY

MULTIPLEXER

1. The multiplexer circuit is used to place two or more digital signals (from two or more sources)

onto a single line, by placing them there at different time interval technically it is known as time-

division- multiplexing).

2. The multiplexer (also known as data selector) will select data from several

transmission lines to be gated to the single output transmission line.

3. The multiplexer will have a number of control inputs that are used to select the

appropriate data channel for input.

4. The number of data inputs is equal to 2n where n is the number of control selecting leads.

5. A multiplexer can be used to convert parallel data to serial data.

Lab Manual Digital Logic Design

47

 CET, UOS

DEMULTIPLEXER

1. A demultiplexer (data distributor) will receive information from a single line

and selectively transmits it to several output lines/channels (one at a time).

2. Demultiplexer has several control select lines which are used to determine (or select)

the output transmission path.

3. The number of data output lines is 2n, where N is the number of control select leads.

4. Demultiplexers are used to convert serial data to parallel data.

TASK 1: MULTIPLEXER

IC 74151 is a 8-to-1-Line Multiplexer. It has following features:-

1. 8 Data Inputs (DO-D7).

2. Three Select Inputs (A,B,C). 3. An Enable (or Strobe) G

4. A one bit output Y (and its complement W)

Lab Manual Digital Logic Design

48

 CET, UOS

PROCEDURE

1. Wire the circuit as per figure above.

2. Connect “Clock Input” (very low frequency) to Input pins of the IC (D0 – D1) and see if the

Output LED is pulsating. Confirm your finding on the truth table.

Functional block diagram of IC 74151 is attached.

Connection diagram and Truth table is shown below:

Select

Strobe

Output

Output

 C

B

A

G (or S)

Y

Observed

0

0

0

0

Output Y is linked with input present at D0

0

0

1

0

Output Y is linked with input present at D1

0

1

0

0

Output Y is linked with input present at D2

0

1

1

0

Output Y is linked with input present at D3

1

0

0

0

Output Y is linked with input present at D4

1

0

1

0

Output Y is linked with input present at D5

1

1

0

0

Output Y is linked with input present at D6

1

1

1

0

Output Y is linked with input present at D7

TASK 2: DEMULTIPLEX

A 1-Line-to-8-Line demultiplexer distributes one input to 8 output lines. IC 74138 which was

used as a decoder in the last experiment will be used here as Demultiplexer. The only difference

between the previous circuit and present circuit will be addition of an INPUT (through Enable

AND gate) to the 4th pin of all the 8 NAND gates. The A, B and C inputs will serve as SELECT

input (to select a particular output line).

Note that the Enable Inputs of IC 74138 was not used during decoder operation. We will now

Lab Manual Digital Logic Design

49

 CET, UOS

use G2B pin of the IC for Data/Signal Input. We therefore need to keep pins G1 as high and

G2A as low, so that the Input Data/Signal remains present at output of Enable gate and

consequently on the 4th input pin of all the 8 NAND gates.

Connection diagram and Truth table of the IC 74138 when used as demultiplexer is

shown below. Clock signal (very low frequency) has been used as Input (so that blinking of the

LEDs can be observed):

Note: Output of the IC 74138 is active low, so the output line having a Zero in the Truth

Table will be selected

Input

Output

 C

B

A

O7

O6

O5

O4

O3

O2

O1

O0

 0

0

0

1

1

1

1

1

1

1

0

 0

0

1

1

1

1

1

1

1

0

1

 0

1

0

1

1

1

1

1

0

1

1

 0

1

1

1

1

1

1

0

1

1

1

 1

0

0

1

1

1

0

1

1

1

1

 1

0

1

1

1

0

1

1

1

1

1

 1

1

0

1

0

1

1

1

1

1

1

 1

1

1

0

1

1

1

1

1

1

1

Lab Manual Digital Logic Design

50

 CET, UOS

TASK 3: DATA COMMUNICATION USING MULTIPLEXER & DEMULTIPLEXER.

Multiplexer IC 74151 and Demultiplexer IC 74138 have been utilized to demonstrate single-

line data communication. The 3-bit select code will determine which data input will be steered to

the Y output of the Demultiplexer.

Select

Applied Signal at

Data Input Pin

Observed Signal

Out at Output

Pin

When Clock Signal is

Applied At All of D Pins of

MUX

C

B

A

D

Y

Observed Output at Pin

of DEMUX

0

0

0

D0

Y0

0

0

1

D1

Y1

0

1

0

D2

Y2

0

1

1

D3

Y3

1

0

0

D4

Y4

1

0

1

D5

Y5

1

1

0

D6

Y6

1

1

1

D7

Y7

PROCEDURE

1. Wire the circuit as per figure above and verify result first by giving clock signal to One Input pin

at a time of the IC (D0 – D1) and then to all the pins simultaneously.

Lab Manual Digital Logic Design

51

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

52

 CET, UOS

EXPERIMENT NO 09

VERIFICATION OF LATCH AND FLIP FLOP OPERATION USING

GATES AND FLIP FLOP’S IC

APPARATUS / COMPONENTS

Digital Logic Trainer.

IC 7402, 7400, 7404 , 7410 , 7474 & 7475

Relevant Theory Topics: Synchronous Sequential Logic, Latches/Flip-flops

Refer Chapter 05 Digital design, 4𝑡ℎ Edition by Morris Mano)

OBJECTIVE

To learn about various types of Latches and Flip-Flops

THEORY

a. A Flip Flop is a logic circuit that has two stable states Low or High. Enable input signal

may be used to enable or disable a flip flop. Clock signal is used to synchronize

operations of flip -flops. Most (if not all) of the system output can change state only when

the clock makes a transition.

b. Latches are a form of Flip Flop, which do not require clock pulse to latch or hold data

present at its input.

Lab Manual Digital Logic Design

53

 CET, UOS

TASK 1: SR (or RS or SC) Latch

The SR is the simplest form of Flip Flop or Latch. It can be constructed from NOR gates or

NAND gates. Standard logic symbol of SR flip flop and its truth table is given below:-

NOR Gate SR Latch:

PROCEDURE

Wire the circuit as per figure above and verify the result.

NOTE: NAND Gate SR Latch has active low input, hence its truth table is different from the

standard i.e a low at the set terminal will set the latch.

TASK 2: GATED FLIP

FLOPS Gated SR Flip Flop :

Works only when Enable is High.

Lab Manual Digital Logic Design

54

 CET, UOS

PROCEDURE

Wire the circuit as per figure above and verify the result.

GATED D – FLIP FLOP

PROCEDURE

Wire the circuit as per figure above and verify the result.

GATED J-K FLIP FLOP

PROCEDURE

Wire the circuit as per figure above and verify the result

Lab Manual Digital Logic Design

55

 CET, UOS

TASK 3: D-LATCH AND D-FLIP FLOP OPERATIONS

PROCEDURE

1. Wire the circuit as per figure 1 & 2 above

2. Connect +5V to Vcc and Ground to pin GND of the ICs.

VERIFICATION – D LATCH:

1. Verify that the data at the input terminal is

reflected at the output only when Enable (EN) input

is high.

2. Verify that for the duration that the Enable

input remains high, all changes in the data input

are reflected at the output.

VERIFICATION – D FLIP FLOP:

1. Verify that the data at the input terminal is

reflected at the output only during Positive

going edge of the Clock pulse.

2. Verify that the duration of the Clock pulse has nothing

 to do with data transfer in case of Flip Flop.

Lab Manual Digital Logic Design

56

 CET, UOS

LAB ASSIGNMENT

P1. Construct SR latch using NAND gates

P2.What changes would you make in the NAND gate latch shown above, so it behaves

exactly like a NOR gate S-R latch.

ANS.

Lab Manual Digital Logic Design

57

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

58

 CET, UOS

EXPERIMENT NO 10

IMPLEMETATION OF 4-BIT SYNCHRONOUS BINARY COUNTER

APPARATUS / COMPONENTS

Digital Logic Trainer.

IC 74HC163

Relevant Theory Topics: Asynchronous Counter Operation (8-1), Synchronous

Counter Operation (8-2), Up/Down Synchronous Counters (8-3).

OBJECTIVE
To understand and analyze various types of Counter, difference b/w synchrounous and

asynchronous counters. To learn and understand the operation of counters timing diagram, desining

and implementaion of counters.

THEORY
A counter is a sequential logic circuit that goes through a prescribed sequence of states upon

the application of input pulses. The prescribed sequence can be a binary sequence or any other

sequence. A counter that goes through 2N (N is the number of flip-flops in the series) states

is called a binary counter. The modulus of a counter is the number of different states it is

allowed to have. Counter modulus is normally 2N unless controlled by a feedback circuit

which limits the number of possible states (an example being the decimal counter). Counters

are very widely used in almost all computers and other digital electronic systems. There are

two major categories of counters: asynchronous counters and synchronous counters.

A 2-Bit Asynchronous Binary Counter

Following figure 1 shows a 2-bit counter connected for asynchronous operation. Notice that the

clock (CLK) is applied to the clock input of only the first flop-flop, FFO, whic is always the least

significant bit (LSB). The second flip-flop, FFI, is triggered by the Qo out-put of FFO. FFO

changes state at the positive-going edge of each clock pulse. But FFI changes only when triggered

by a positive-going transition of the Qo output ofFFO. Because of the inherent propagation delay

tie through a flip-flop, a transition of the input clock pulse (CLK) and a transition of the Qo output

of FFO can never occur at exactly the same time. Therefore, the two flip-flops are never

simultaneously triggered, so the counter oper- ation is asynchronous.

Lab Manual Digital Logic Design

59

 CET, UOS

Timing Diagram

The Timing Diagram Let’s examine the basic operation of the asynchronous counter of above

figure by applying four clock pulses to FFO and observing the Q output of each tlip- flop. Figure

below illustrates the changes in the state ofthe flip-flop outputs in response to the clock pulses.

Both flip-flops are connected for toggle operation (j = I. K = I) and are assumed to be initially

RESET (Q LOW).

Binary State Sequence for the Counter

Since it goes through a binary sequence, the counter in Figure 1 is a binary counter. It actualIy

counts the number of clock pulses up to three, and on the fourth pulse it recycles to its original

state (Qo = 0, Q, = 0). The term recycle is commonly applied to counter operation; it refers to the

transition of the counter from its final state back to its original state.

A 3-Bit Asynchronous Binary Counter

The state sequence for a 3-bit binary counter is listed in Table given below, and a 3-bit

asynchronous binary counter is shown in Figure (a). The basic operation is the same as that of the

2-bit counter except that the 3-bit counter has eight states, due to its three flip-flops. A timing

diagram is shown in Figure (b) for eight clock pulses. Notice that the counter progresses through

a binary count of zero through seven and then recycles to the zero state. This counter can be easily

expanded for higher count, by connecting additional toggle flip-flops.

Lab Manual Digital Logic Design

60

 CET, UOS

Propagation Delay

Asynchronous counters are commonly referred to as ripple counters for the following reason: The

effect of the input clock pulse is first ‘”felt” by FFO. This effect cannot get to FFI immediately

because of the propagation delay through FFO. Then there is the propagation delay through FFI

before FF2 can be triggered. Thus, the effect of an input clock pulse “ripples” through the counter

taking some time, due to propagation delays, to reach the last flip-flop.

Propagation delays in a 3-bit asynchronous (ripple-clocked) binary counter is given below:

Lab Manual Digital Logic Design

61

 CET, UOS

To illustrate, notice that all three flip-flops in the counter of above Figure change state on the

leading edge of CLK4. This ripple clocking effect is shown in Figure 8—4 for the first four clock

pulses, with the propagation delays indicated. The LOW-to-HIGH transition of Qo occurs one

delay time (tPLH) after the positive-going transition of the clock pulse. The LOW to HIGH

transition of Q, occurs one delay time (tPLH) after the positive-going transition of Qo. The LOW-

to-HGH transition of Q2 occurs one delay time (tPLH) after the positive-going transition of QJ.

As you can see. FF2 is not triggered until two delay times after the positive-going edge of the

clock pulse, CLK4. Thus, it takes three propagation delay times for the effect of the clock pulse,

CLK4, to ripple through the counter and change Q2 from LOW to HIGH.

A 2-Bit Synchronous Binary Counter

Figure given below shows a 2-bit synchronous binary counter. Notice that an arrangement

different from that for the asynchronous counter must be used for the J) and K. inputs of FFI in

order to achieve a binary sequence.

The operation of this synchronous counter is as follows: First, assume that the counter is initially

in the binary 0 state: that is both flip-flops are RESET. When the positive edge of the first clock

pulse is applied, FFO will toggle and Qo will therefore go HIGH. What happens to FFI at the

positive-going edge of CLK1? To find out, let’s look at the input conditions of FFI. Inputs 1 1

and KJ are both LOW because Qo, to which they are connected, has not yet gone HIGH.

Remember, there is a propagation delay from the triggering edge of the clock pulse until the Q

output actually makes a transition. So, J = 0 and K = 0 when the leading edge of the first clock

pulse is applied. This is a no-change condition, and therefore FFI does not change state. A timing

detail of this portion of the counter operation is shown in following Figure (a).

 (The propagation delays of both flip-flops are assumed to be equal).

Lab Manual Digital Logic Design

62

 CET, UOS

After CLK1, Qo = I and Q, = 0 (which is the binary I state). When the leading edge of CLK2

occurs, FFO will toggle and Qo will go LOW. Since FFI has a HIGH (Qo = 1) on its 1, and KI

inputs at the triggering edge of this clock pulse, the flip-flop toggles and QJ goes HIGH. Thus,

after CLK2, Qo = 0 and Q] = I (which is a binary 2 state). The timing detail for this condition is

shown in Figure (b).

When the leading edge of CLK3 occurs. FFO again toggles to the SET state (Qo = I), and FFI

remains SET (QI = I) because its J 1 and KJ inputs are both LOW (Qo = 0). After this triggering

edge, Qo = I and QI = I (which is a binary 3 state). The timing detail is shown in Figure ©.

Finally, at the leading edge of CLK4, Qo and QI go LOW because they both have a toggle

condition on their 1 and K inputs. The timing detail is shown in Figure (d). The counter has now

recycled to its original state, binary 0.

Timing diagram for the 2-Bit Synchronous Counter

THE 74HC163 4-BIT SYNCHRONOUS BINARY COUNTER

The 74HC163 is an example of an integrated circuit 4-bit synchronous binary counter. A logic

symbol is shown in following figure with pin numbers in parentheses. This counter has several

features in addition to the basic functions previously discussed for the general synchronous binary

counter.

The 74HC163 4-bitsynchronous binary counter. (The qualifying label UR DIV 16 indicates a

counter with sixteen states.)

Lab Manual Digital Logic Design

63

 CET, UOS

First, the counter can be synchronously preset to any 4-bit binary number by applying the proper

levels to the parallel data inputs. When a LOW is applied to the LOAD input, the counter will

assume the state of the data inputs on the next dock pulse. Thus, the counter sequence can be

started with any 4-bit binary numer.

Also, there is an active-LOW clear input (CLR), which synchronously resets all four flip-flops in

the counter. There are two enable inputs. ENP and ENT. These inputs must both be HIGH for the

counter to sequence through its binary states. When at least one input is LOW, the counter is

disabled. The ripple clock output (RCO) goes HIGH when the counter reaches the last state in its

sequence of fifteen, called the terminal count (TC = 15). This output, in conjunction with the enable

inputs, allows these counters to be cascaded for higher count sequences.

Figure below shows a timing diagram of 74HC163, this counter being preset to twelve (1100) and

then counting up to its terminal count, fifteen (1111). Input Do is the least significant input bit and

Qo is the least significant output bit.

Let's examine this timing diagram in detail. This will aid you in interpreting timing diagr ams i n

this chapter or on manufacturers' data sheets. To begin, the LOW level pulse on the CLR input

causes all the outputs (Qo, Q b Q2, and Q3) to go LOW.

Lab Manual Digital Logic Design

64

 CET, UOS

Next, the LOW level pulse on the LOAD input synchronously enters the data on the data inputs

(Do, D1, D2, and D3) into the counte r. These data appear on the Q outputs at the time of the first

positive-going clock edge after LOAD goes LOW. This is the preset operation. In this particular

example, Qo is LOW, QJ is LOW, Qz is HIGH, and Q3 is HIGH. This, of course, is a binary 12

(Qo is the LSB).

The counter now advances through states 13, 14, and 15 on the next three positive-going clock

edges. It then recycles to 0, 1,2 on the following clock pulses. Notice that both ENP and ENTinputs

are HIGH during the state sequence. When ENP goes LOW, the counter is inhibited and remains

in the binary 2 state.

Observations:

Lab Manual Digital Logic Design

65

 CET, UOS

Assignment/Task:

1. Diiferentiate between Synchronous and Asynchronous Counter.

2. State synchoronous counter desinging stages and design 3-bit Gray Code sequence

Synchronous counter.

Conclusion/Comments:

\

Lab Manual Digital Logic Design

66

 CET, UOS

EXPERIMENT NO 11

IMPLEMENTATION OF SERIES AND PARALLEL REGISTERS

COMPONENTS

1. Digital Logic Trainer.

 2. IC 7474 , 74166

OBJECTIVE

To study various types of registers.

THEORY

A Register is simply a group of flip-flops that can be used to store a binary number.

Each flip flop of a register (called cell) stores one bit of word. The bits in a binary number

(let’s call it data) can be moved from one place to another in either of two ways. The

first method involves shifting the data 1 bit at a time, in a serial fashion, beginning with

either MSB (most significant bit) or LSB (least significant bit). This technique is known

as serial shifting. The second method involves shifting all the data bits simultaneously

and is referred to as parallel shifting.

There are two ways of shifting data into a register (serial or parallel) and similarly

two ways to shift data out of the register. It is therefore possible to construct four basic

types of registers as shown below:

TASK 1: SERIAL-IN SERIAL-OUT SHIFT REGISTER

The Serial-in Serial-out register accepts data serially that is one bit at a time on a single

line. It produces the stored information on its output in serial form. The figure below

shows a 4-bit Serial-in Serial-out shift register. It is called 4-bit shift register because

it has 4-places to store data A,B,C& D.

Lab Manual Digital Logic Design

67

 CET, UOS

PROCEDURE

Wire the circuit as per figure above and complete the table below.

Data In Clock Pulse Data Out

 0

0

1(LSB)

1

1

2

1

3

1

4

0

5

0

6

1

7

1(MSB)

8

-

9

-

10

-

11

-

12

Lab Manual Digital Logic Design

68

 CET, UOS

TASK 2:

SERIAL-IN PARALLEL-OUT SHIFT REGISTER

The Serial-in Parallel-out register accepts data serially that is one bit at a time on a single line. It

produces the stored information on its output in parallel form. The figure below shows a 4-bit

Serial-in Parallel-out shift register.

Lab Manual Digital Logic Design

69

 CET, UOS

Clock Pulse

Data In

Data Out

1

1 (LSB)

2

0

3

1

4

1 (MSB)

 -

Inputs

Data Out

 Preset

PR

Clear

CLR

Clock

CLK

D

Q

Q’

L

H

X

X

H

H

L

X

X

L

L

L

X

X

H

H

H

↑

H

H

H

H

↑

L

L

H

H

L

X

QO

Lab Manual Digital Logic Design

70

 CET, UOS

PROCEDURE

Wire the circuit as per figure above and write your observation.

TASK 3: PARALLEL-IN PARALLEL-OUT SHIFT REGISTER

The Parallel-in Parallel-out register accepts data in parallel manner that is all bits at a

time on parallel lines. It also produces the information on its output in parallel form.

The figure below shows a 4-bit Parallel-in Parallel-out shift register.

Data In

Clock

Data Out

PROCEDURE

Wire the circuit as per figure above and write your observations.

TASK 4: PARALLEL-IN SERIAL-OUT SHIFT REGISTER

The Parallel-in Serial-out register accepts data in parallel manner that is all bits at a time on

parallel lines. It however produces the information on its output in serial form. IC 74166, shown

below is shift register. It can shift either Serial or Parallel data entry or it outputs Serial data. In

this experiment we will use Parallel input and Serial Output capabilities of the IC Pin 15 is Shift

and Load pin. When It is LOW, the register loads data. It is HIGH, the register outputs data.

Lab Manual Digital Logic Design

71

 CET, UOS

CONNECTION

1. Do not connect Pin 1 (it is for serial input)

2. Connect inputs A,B,C,D,E,F,G,H to switches S0 to S7.

3. Connect Clock Inhibit Pin 6 to Ground.

4. Connect Clock Pulse to pin 7 and also to LED L8 (for counting clock pulse)

5. Connect Output QH to LED L0

6. Connect a long wire to the IC pin 15 and keep other terminal of the wire

hanging (due to limited number of switches in the trainer, we will manually connect

this end of the wire to ground for data loading and keep it free (or High)for data shifting

7. Connect Vcc and GND.

PROCEDURE

Wire the circuit as per figure above. Select various combinations of inputs. Load the input and

then shift it to output. Observe output (the state of the LED when data is loaded shows state of

pin

LAB ASSIGNMENT

P1. Can you make necessary changes so that above register becomes a Circular Shift Register?

Lab Manual Digital Logic Design

72

 CET, UOS

Conclusion & Comments

Lab Manual Digital Logic Design

73

 CET, UOS

EXPERIMENT NO. 12

Tutorials – Introduction to ModelSim and Verilog

TOOL/SIMULATOR

1. ModelSim

OBJECTIVE

Introduction to digital design and simulation.

THEORY

A Register is simply a group of flip-flops that can be used to store a binary number. Each flip flop

of a register (called cell) stores one bit of word. The bits in a binary number (let’s call it data) can

be moved from one place to another in either of two ways. The first method involves shifting the

data 1 bit at a time, in a serial fashion, beginning with either MSB (most significant bit) or LSB

(least significant bit). This technique is known as serial shifting. The second method involves

shifting all the data bits simultaneously and is referred to as parallel shifting.

There are two ways of shifting data into a register (serial or parallel) and similarly two ways to

shift data out of the register. It is therefore possible to construct four basic types of registers as

shown below:

VERILOG

Can I model combinational logic using always statements? How?

Ideally, concurrent statements are used to model combinational logic and always statements are

used to model sequential logic (flip flops and latches). However, always statements are not

restricted to that. You can model combinational logic using them. But it is important to note that

when using an always statement to make combinational logic, the sensitivity list of the always

statement should contain all the signals which are being ‘read’ in that always block. In other words,

to synthesize combinational logic using an always block, all inputs must appear in the sensitivity

list.

Can I model combinational logic using always statements? How?

always @(a, b, sel)

begin

if (sel == 1) z <= a;

else z <= b;

 end

Using a always statement to model combinational logic is handy because statements like if, case,

etc (which are very useful and intuitive) can only be written inside always statements.

Lab Manual Digital Logic Design

74

 CET, UOS

What care should I take when using the always statement to write sequential logic?

When using an always statement to model sequential logic, the only thing in the sensitivity list of

the always statement should be the clock (or a reset signal, if it is an asynchronous reset). And

there should be a’ ‘posedge’ or ‘negedge’ in the sensitivity list before the clk. This is because flip-

flops are edge triggered elements.

Flip-flop without a reset

always @(posedge clk) //positive edge triggered

begin

q <= d;

end

Flip-flop with an async reset

always @(posedge clk, negedge rst) //positive edge triggered with reset

begin

if(rst == 0) //async active low reset

 begin

 q <= 0;

 end

else

 begin

 q <= d;

 end

end

 Flip-flop with a sync reset

always @(posedge clk) //positive edge triggered

begin

if(rst == 0) //sync active low reset

begin

q <= 0;

end

else

begin

q <= d;

end

end

On the other hand, a latch is a level triggered element. A resettable latch can be modeled

as:

always @(en, rst, d)

begin

if(rst == 0)

Lab Manual Digital Logic Design

75

 CET, UOS

begin

q <= 0;

end

else if(en == 1)

begin

q <= d;

end

end

EXAMPLE

This lab is a tutorial lab. You don’t have to design anything in this lab, just go through the tutorials

and perform them on the lab computers individually. In this course, in almost all the labs we will

be doing the following steps:

Step 1: Writing Verilog code of the circuit we want to implement

Step 2: Simulating the Verilog code using a simulator (ModelSim) to check if the intended

functionality has been achieved.

Activity 1: ModelSim tutorial
Mentor Graphic’s Modelsim tool will be used to perform the functional simulation of our Verilog

code for the course. This software is available in all of the ENS labs. Modelsim is also available

as a free download with Xilinx’s Webpack software so you can install it on your own computer.

Problem 1: Subtractor Design

Write Verilog code for a 1-bit full subtractor using logic equations (Difference = A-B-Bin). If you

use delays, make sure to simulate for long enough to see the final result

Write Verilog code for a 4-bit subtractor using the module defined in part (a) as a component. If

you use delays, make sure to simulate for long enough to see the final result. Test it for the

following input combinations:

1. A = 1001, B = 0011, Bin = 1

2. A = 0011, B = 0110, Bin = 1

1-bit full subtractor truth table:

A B Bin Diff Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Lab Manual Digital Logic Design

76

 CET, UOS

Problem 2: ALU Design

Design an Arithmetic and Logic Unit (ALU) that implements 8 functions as described in Table 1.

Table 1 also illustrates the encoding of the control input.

The 4-bit ALU has the following inputs:

 A: 4-bit input

 B: 4-bit input

 Cin: 1-bit input

 Output: 4-bit output

 Cout: 1-bit output

 Control: 3-bit control input

Control Instruction Operation
000 Add Output <= A + B + Cin;

Cout contains the carry

001 Sub Output <= A – B - Cin;

Cout contains the borrow

010 Or Output <= A or B

011 And Output <= A and B

100 Shl Output <= A[2:0] & ‘0’

101 Shr Output <= ‘0’ & A[3:1]

110 Rol Output <= A[2:0] & A[3]

111 Ror Output <= A[0] & A [3:1]

The following points should be taken care of:

 Use a case statement (or a similar ‘combinational’ statement) that checks the input combination

of “Code” and acts on A, B, and Cin as described in Table 1.

 The above circuit is completely combinational. The output should change as soon as the code

combination or any of the input changes.

 You can use arithmetic and logical operators to realize your design.

Simulate this circuit by using the “force” and “run” statements in the transcript window to provide inputs

and observe outputs on the waveform window.

Useful Information

For problem 2, you can use the subtractor block from problem 1 for doing the subtraction (although

just using the arithmetic operators will make your design easier). If you use the subtractor from

problem 1, remember that we are designing hardware. So, doing something like the following is

incorrect:
module xyz(…)

always @(…)

case (control)

0 : four_bit_sub sub_inst(in1,in2,bin,output);

……

Lab Manual Digital Logic Design

77

 CET, UOS

1. First of all, it is important to realize that instantiating a module is not like ‘calling’ a

function in C. Once instantiated, the module is always evaluating its inputs. Therefore, it

cannot be conditional. It is always present. So, you should do something like this:

module xyz(…)

four_bit_sub sub_inst(in1,in2,bin,sub_out)

always @(…)

case (control)

0 : output <= sub_out;

……

2. Make sure that your designs work by testing them sufficiently thoroughly. You should not

just use the test inputs in the lab description. Also, it is always better to submit a do-file

which has sufficient number of input combinations (not just the ones given in the lab

description).

3. Do not use # statements in your design for providing delays.

#15 X <= A or B;

Lab Manual Digital Logic Design

78

 CET, UOS

Report Requirements
You will be expected to describe briefly the codes for problems 1 and 2, simulate and show

waveforms in Modelsim, and answer verbal questions. Also, for the last problem you will have to

demonstrate that your circuit works on the board

Conclusion & Comments

