Lab Session 08
 Analyze and implement Norton's Theorem

Norton's Theorem:

Objective:

> Verify the Norton's theorem theoretically and practically for a given circuit

Statement:

Norton's theorem states that any linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_{N} in parallel with a resistor R_{N}.

Circuit Diagram

Circuit (i)

Fig 5.2
Circuit (ii)

Procedure:

Find I_{1}

1) Connections are given as per the circuit (i)
2) The Load current I_{L} is noted for various values of supply voltage and tabulated.

Find $V_{o c}$

1. Connections are modified as shown in the circuit (ii)
2. The Open circuit voltage $\left(\mathrm{V}_{\mathrm{OC}}\right)$ is noted for various values of the supply voltage and tabulated. Find I_{sc}
3. Connections are modified as shown in the circuit (iii)
4. The short circuit current $\left(I_{S C}\right)$ is noted for various values of the supply voltage and tabulated.
3) Norton's resistance is practically calculated by using the Open circuit voltage and short circuit current.

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Supply voltage (volts)	Practical Values			Theoretical Values		
		$\mathrm{I}_{\mathrm{L}}(\mathrm{mA})$	$\mathrm{I}_{\text {SC }}(\mathrm{mA})$	$\begin{gathered} \mathrm{V}_{\text {oc }} \\ \text { (Volts) } \end{gathered}$	$\mathrm{I}_{\mathrm{N}}(\mathrm{mA})$	$\mathrm{R}_{\mathrm{N}}(\Omega)$	$\mathrm{I}_{\mathrm{L}}(\mathrm{mA})$

Table 8.1

Conclusions \& Comments:

\qquad

