Lab Session 08 Analyze and implement Norton's Theorem

Norton's Theorem:

Objective:

> Verify the Norton's theorem theoretically and practically for a given circuit

Statement:

Norton's theorem states that any linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N .

Circuit Diagram

Procedure:

Find I₁

1) Connections are given as per the circuit (i)

2) The Load current I_L is noted for various values of supply voltage and tabulated.

Find Voc

1. Connections are modified as shown in the circuit (ii)

 $\label{eq:Voc} \begin{array}{ll} \text{The Open circuit voltage }(V_{OC}) \text{ is noted for various values of the supply voltage} \\ \text{and tabulated.} & \text{Find }I_{sc} \end{array}$

- 1. Connections are modified as shown in the circuit (iii)
- 2. The short circuit current (I_{SC}) is noted for various values of the supply voltage and tabulated.
- 3) Norton's resistance is practically calculated by using the Open circuit voltage and short circuit current.

S. No.	Supply voltage (volts)	Practical Values			Theoretical Values		
		$I_L(mA)$	I _{SC} (mA)	V _{OC} (Volts)	I _N (mA)	$R_N(\Omega)$	$I_L(mA)$

Conclusions & Comments: