5.1 Introduction

Organisms grow, reproduce and die (Chapter 4). They are
affected by the conditions in which they live (Chapter 2), and by
the resources that they obtain (Chapter 3). But no organism lives
in isolation. Each, for at least part of its life, is a member of a
population composed of individuals of its own species.
Individuals of the same species have
a definition of very similar requirements for survival,
competition growth and reproduction; but their
combined demand for a resource may
exceed the immediate supply. The individuals then compete for
the resource and, not surprisingly, at least some of them become
deprived. This chapter is concerned with the nature of such
intraspecific competition, its effects on the competing individuals
and on populations of competing individuals. We begin with a
working definition: ‘competition is an interaction between indi-
viduals, brought about by a shared requirement for a resource,
and leading to a reduction in the survivorship, growth and/or
reproduction of at least some of the competing individuals
concerned’. We can now look more closely at competition.
Consider, initially, a simple hypothetical community: a thriv-
ing population of grasshoppers (all of one species) feeding on a
field of grass (also of one species). To provide themselves with
energy and material for growth and reproduction, grasshoppers
eat grass; but in order to find and consume that grass they must
use energy. Any grasshopper might find itself at a spot where
there is no grass because some other grasshopper has eaten it.
The grasshopper must then move on and expend more energy
before it takes in food. The more grasshoppers there are, the more
often this will happen. An increased energy expenditure and a
decreased rate of food intake may all decrease a grasshopper’s
chances of survival, and also leave less energy available for devel-
opment and reproduction. Survival and reproduction determine
a grasshopper’s contribution to the next generation. Hence, the

more intraspecific competitors for food a grasshopper has, the less
its likely contribution will be.

As far as the grass itself is concerned, an isolated seedling in
fertile soil may have a very high chance of surviving to repro-
ductive maturity. It will probably exhibit an extensive amount of
modular growth, and will probably therefore eventually produce
a large number of seeds. However, a seedling that is closely sur-
rounded by neighbors (shading it with their leaves and depleting
the water and nutrients of its soil with their roots) will be very
unlikely to survive, and if it does, will almost certainly form few
modules and set few seeds.

We can see immediately that the ultimate effect of com-
petition on an individual is a decreased contribution to the next
generation compared with what would have happened had there
been no competitors. Intraspecific competition typically leads to
decreased rates of resource intake per individual, and thus to
decreased rates of individual growth or development, or perhaps
to decreases in the amounts of stored reserves or to increased risks
of predation. These may lead, in turn, to decreases in survivor-
ship and/or decreases in fecundity, which together determine an
individual’s reproductive output.

5.1.1 Exploitation and interference

In many cases, competing individuals do o
exploitation

not interact with one another directly.

Instead, individuals respond to the level of a resource, which has
been depressed by the presence and activity of other individuals.
The grasshoppers were one example. Similarly, a competing grass
plant is adversely affected by the presence of close neighbors,
because the zone from which it extracts resources (light, water,
nutrients) has been overlapped by the ‘resource depletion zones’
of these neighbors, making it more difficult to extract those

resources. In such cases, competition may be described as
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Intraspecific competition amongst cave beetles (Neapheanops tellkampfi). (a) Exploitation. Beetle fecundity is significantly

correlated (r = 0.86) with cricket fecundity (itself a good measure of the availability of cricket eggs — the beetles” food). The beetles

themselves reduce the density of cricket eggs. (b) Interference. As beetle density in experimental arenas with 10 cricket eggs increased

from 1 to 2 to 4, individual beetles dug fewer and shallower holes in search of their food, and ultimately ate much less (P < 0.001 in

each case), in spite of the fact that 10 cricket eggs was sufficient to satiate them all. Means and standard deviations are given in each case.

(After Griffith & Poulson, 1993.)

exploitation, in that each individual is affected by the amount of
resource that remains after that resource has been exploited by
others. Exploitation can only occur, therefore, if the resource in
question is in limited supply.
In many other cases, competition
interference takes the form of interference. Here
individuals interact directly with each
other, and one individual will actually prevent another from
exploiting the resources within a portion of the habitat. For
instance, this is seen amongst animals that defend territories (see
Section 5.11) and amongst the sessile animals and plants that live
on rocky shores. The presence of a barnacle on a rock prevents
any other barnacle from occupying that same position, even
though the supply of food at that position may exceed the
requirements of several barnacles. In such cases, space can be seen
as a resource in limited supply. Another type of interference
competition occurs when, for instance, two red deer stags fight
for access to a harem of hinds. Either stag, alone, could readily
mate with all the hinds, but they cannot both do so since
matings are limited to the ‘owner’ of the harem.

Thus, interference competition may occur for a resource of
real value (e.g. space on a rocky shore for a barnacle), in which
case the interference is accompanied by a degree of exploitation,
or for a surrogate resource (a territory, or ownership of a harem),
which is only valuable because of the access it provides to a real
resource (food, or females). With exploitation, the intensity of com-
petition is closely linked to the level of resource present and the
level required, but with interference, intensity may be high even
when the level of the real resource is not limiting.

In practice, many examples of competition probably include
elements of both exploitation and interference. For instance,
adult cave beetles, Neapheanops tellkampfi, in Great Onyx Cave,
Kentucky, compete amongst themselves but with no other
species and have only one type of food — cricket eggs, which they
obtain by digging holes in the sandy floor of the cave. On the
one hand, they suffer indirectly from exploitation: beetles reduce
the density of their resource (cricket eggs) and then have markedly
lower fecundity when food availability is low (Figure 5.1a).
But they also suffer directly from interference: at higher beetle
densities they fight more, forage less, dig fewer and shallower
holes and eat far fewer eggs than could be accounted for by
food depletion alone (Figure 5.1b).

5.1.2 One-sided competition

Whether they compete through exploitation or interference,
individuals within a species have many fundamental features in
common, using similar resources and reacting in much the same
way to conditions. None the less, intraspecific competition may
be very one sided: a strong, early seedling will shade a stunted,
late one; an older and larger bryozoan on the shore will grow
over a smaller and younger one. One example is shown in
Figure 5.2. The overwinter survival of red deer calves in the
resource-limited population on the island of Rhum, Scotland (see
Chapter 4) declined sharply as the population became more
crowded, but those that were smallest at birth were by far the
most likely to die. Hence, the ultimate effect of competition is
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far from being the same for every individual. Weak competitors
may make only a small contribution to the next generation, or
no contribution at all. Strong competitors may have their con-
tribution only negligibly affected.

Finally, note that the likely effect of intraspecific competition
on any individual is greater the more competitors there are.
The effects of intraspecific competition are thus said to be
density dependent. We turn next to a more detailed look at the
density-dependent effects of intraspecific competition on death,
birth and growth.

5.2 Intraspecific competition, and density-
dependent mortality and fecundity

Figure 5.3 shows the pattern of mortality in the flour beetle
Tribolium confusum when cohorts were reared at a range of
densities. Known numbers of eggs were placed in glass tubes
with 0.5 g of a flour-yeast mixture, and the number of indi-
viduals that survived to become adults in each tube was noted.
The same data have been expressed in three ways, and in each
case the resultant curve has been divided into three regions.
Figure 5.3a describes the relationship between density and the per
capita mortality rate — literally, the mortality rate ‘per head’, i.e.
the probability of an individual dying or the proportion that died
between the egg and adult stages. Figure 5.3b describes how the
number that died prior to the adult stage changed with density;
and Figure 5.3c describes the relationship between density and
the numbers that survived.
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Figure 5.2 Those red deer that are
smallest when born are the least likely
to survive over winter when, at higher
densities, survival declines. (After
Clutton-Brock et al., 1987.)

Throughout region 1 (low density) the mortality rate
remained constant as density was increased (Figure 5.3a). The num-
bers dying and the numbers surviving both rose (Figure 5.3b, c)
(not surprising, given that the numbers “available’ to die and sur-
vive increased), but the proportion dying remained the same, which
accounts for the straight lines in region 1 of these figures.
Mortality in this region is said to be density independent.
Individuals died, but the chance of an individual surviving to
become an adult was not changed by the initial density. Judged
by this, there was no intraspecific competition between the bee-
tles at these densities. Such density-independent deaths affect the
population at all densities. They represent a baseline, which any
density-dependent mortality will exceed.

In region 2, the mortality rate
increased with density (Figure 5.3a): undercompensating
there was density-dependent mortality. density dependence
The numbers dying continued to rise
with density, but unlike region 1 they did so more than propor-
tionately (Figure 5.3b). The numbers surviving also continued to
rise, but this time less than proportionately (Figure 5.3c). Thus,
over this range, increases in egg density continued to lead to
increases in the total number of surviving adults. The mortality rate
had increased, but it ‘undercompensated’ for increases in density.

In region 3, intraspecific competition
was even more intense. The increasing overcompensating
mortality rate ‘overcompensated’ for density dependence
any increase in density, i.e. over this
range, the more eggs there were present, the fewer adults sur-
vived: an increase in the initial number of eggs led to an even
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Figure 5.3 Density-dependent mortality in the flour beetle Tribolium confusum: (a) as it affects mortality rate, (b) as it affects the numbers

dying, and (c) as it affects the numbers surviving. In region 1 mortality is density independent; in region 2 there is undercompensating

density-dependent mortality; in region 3 there is overcompensating density-dependent mortality. (After Bellows, 1981.)

greater proportional increase in the mortality rate. Indeed, if the
range of densities had been extended, there would have been tubes
with no survivors: the developing beetles would have eaten all
the available food before any of them reached the adult stage.
A slightly different situation is
exactly compensating shown in Figure 5.4. This illustrates
density dependence the relationship between density and
mortality in young trout. At the lower
densities there was undercompensating density dependence, but
at higher densities mortality never overcompensated. Rather, it
compensated exactly for any increase in density: any rise in the

number of fry was matched by an exactly equivalent rise in the
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Figure 5.4 An exactly compensating density-dependent effect on
mortality: the number of surviving trout fry is independent of
initial density at higher densities. (After Le Cren, 1973.)

mortality rate. The number of survivors therefore approached and
maintained a constant level, irrespective of initial density.

The patterns of density-dependent
fecundity that result from intraspecific intraspecific
competition are, in a sense, a mirror- competition and
image of those for mortality (Figure 5.5). fecundity
Here, though, the per capita birth rate
falls as intraspecific competition intensifies. At low enough den-
sities, the birth rate may be density independent (Figure 5.5a, lower
densities). But as density increases, and the effects of intraspecific
competition become apparent, birth rate initially shows under-
compensating density dependence (Figure 5.5a, higher densities),
and may then show exactly compensating density dependence
(Figure 5.5b, throughout; Figure 5.5¢, lower densities) or over-
compensating density dependence (Figure 5.5¢, higher densities).

Thus, to summarize, irrespective of variations in over- and
undercompensation, the essential point is a simple one: at appro-
priate densities, intraspecific competition can lead to density-
dependent mortality and/or fecundity, which means that the
death rate increases and/or the birth rate decreases as density
increases. Thus, whenever there is intraspecific competition, its
effect, whether on survival, fecundity or a combination of the two,
is density dependent. However, as subsequent chapters will
show, there are processes other than intraspecific competition that

also have density-dependent effects.
5.3 Density or crowding?
Of course, the intensity of intraspecific competition experienced

by an individual is not really determined by the density of the
population as a whole. The effect on an individual is determined,
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Figure 5.5 (a) The fecundity (seeds per
plant) of the annual dune plant Vulpia
fasciculata is constant at the lowest densities
(density independence, left). However, at
higher densities, fecundity declines but in
an undercompensating fashion, such that
the total number of seeds continues to rise
(right). (After Watkinson & Harper, 1978.)
(b) Fecundity (eggs per attack) in the
southern pine beetle, Dendroctonus frontalis,
in East Texas declines with increasing attack
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1|o4 1|05 density in a way that compensates more or
less exactly for the density increases: the
total number of eggs produced was roughly
100 per 100 cm?, irrespective of attack
density over the range observed (e, 1992;
e, 1993). (After Reeve et al., 1998.) (c) When
the planktonic crustacean Daphnia magna
was infected with varying numbers of
spores of the bacterium Pasteuria ramosa, the
total number of spores produced per host
in the next generation was independent of
density (exactly compensating) at the lower
| densities, but declined with increasing
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rather, by the extent to which it is crowded or inhibited by its
immediate neighbors.

One way of emphasizing this is by noting that there are actu-
ally at least three different meanings of ‘density” (see Lewontin
& Levins, 1989, where details of calculations and terms can be
found). Consider a population of insects, distributed over a popu-
lation of plants on which they feed. This is a typical example of
a very general phenomenon — a population (the insects in this case)
being distributed amongst different patches of a resource (the
plants). The density would usually be calculated as the number
of insects (let us say 1000) divided by the number of plants (say
100), i.e. 10 insects per plant. This, which we would normally call
simply the “density’, is actually the ‘resource-weighted density’.
However, it gives an accurate measure of the intensity of com-
petition suffered by the insects (the extent to which they are
crowded) only if there are exactly 10 insects on every plant and
every plant is the same size.

Suppose, instead, that 10 of the

three meanings plants support 91 insects each, and the
of density remaining 90 support just one insect.
The resource-weighted density would
still be 10 insects per plant. But the average density experienced
by the insects would be 82.9 insects per plant. That is, one adds

Dose (spores ml=1)

!
10,000 100,000 density (overcompensating) at the higher

densities. Standard errors are shown.
(After Ebert et al., 2000.)

up the densities experienced by each of the insects (91 + 91 + 91
...+ 1+1)and divides by the total number of insects. This is the
‘organism-weighted density’, and it clearly gives a much more
satisfactory measure of the intensity of competition the insects
are likely to suffer.

However, there remains the further question of the average
density of insects experienced by the plants. This, which may be
referred to as the ‘exploitation pressure’, comes out at 1.1 insects
per plant, reflecting the fact that most of the plants support only
one insect.

What, then, is the density of the insect? Clearly, it depends
on whether you answer from the perspective of the insect or the
plant — but whichever way you look at it, the normal practice
of calculating the resource-weighted density and calling it the
‘density” looks highly suspect. The difference between resource-
and organism-weighted densities is illustrated for the human
population of a number of US states in Table 5.1 (where the
‘resource’ is simply land area). The organism-weighted densities
are so much larger than the usual, but rather unhelpful, resource-
weighted densities essentially because most people live, crowded,
in cities (Lewontin & Levins, 1989).

The difficulties of relying on density to characterize the
potential intensity of intraspecific competition are particularly



Table 5.1

densities of five states, based on the 1960 USA census, where

A comparison of the resource- and organism-weighted

the ‘resource patches’ are the counties within each state. (After
Lewontin & Levins, 1989.)

Resource-weighted Organism-weighted

State density (km™) density (km™)
Colorado 44 6,252
Missouri 159 6,525
New York 896 48,714
Utah 28 684
Virginia 207 13,824

acute with sessile, modular organisms, because, being sessile, they
compete almost entirely only with their immediate neighbors, and
being modular, competition is directed most at the modules that
are closest to those neighbors. Thus, for instance, when silver birch
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trees (Betula pendula) were grown in small groups, the sides of
individual trees that interfaced with neighbors typically had a lower
‘birth” and higher death rate of buds (see Section 4.2); whereas
on sides of the same trees with no interference, bud birth rate
was higher, death rate lower, branches were longer and the form
approached that of an open-grown individual (Figure 5.6). Dif-
ferent modules experience different intensities of competition, and
quoting the density at which an individual was growing would
be all but pointless.

Thus, whether mobile or sessile, density: a convenient
different individuals meet or suffer expression of
from different numbers of competitors. crowding
Density, especially resource-weighted
density, is an abstraction that applies to the population as a
whole but need not apply to any of the individuals within it.
None the less, density may often be the most convenient way of
expressing the degree to which individuals are crowded — and it

is certainly the way it has usually been expressed.
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5.4 Intraspecific competition and the regulation
of population size

There are, then, typical patterns in the effects of intraspecific
competition on birth and death (see Figures 5.3-5.5). These gen-
eralized patterns are summarized in Figures 5.7 and 5.8.

(a) (b)

Mortality

5.4.1 (arrying capacities

Figure 5.7a—c reiterates the fact that as density increases, the per
capita birth rate eventually falls and the per capita death rate even-
tually rises. There must, therefore, be a density at which these
curves cross. At densities below this point, the birth rate exceeds

Figure 5.7 Density-dependent birth and
mortality rates lead to the regulation of
population size. When both are density
dependent (a), or when either of them is

(b, ¢), their two curves cross. The density

(c) (d)

at which they do so is called the carrying
capacity (K). Below this the population

) increases, above it the population
Mortality decreases: K is a stable equilibrium.
However, these figures are the grossest of
caricatures. The situation is closer to that
shown in (d), where mortality rate broadly
increases, and birth rate broadly decreases,
with density. It is possible, therefore, for

the two rates to balance not at just one
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Figure 5.8 Some general aspects of intraspecific competition. (a) Density-dependent effects on the numbers dying and the number

of births in a population: net recruitment is ‘births minus deaths’. Hence, as shown in (b), the density-dependent effect of intraspecific

competition on net recruitment is a domed or ‘n’-shaped curve. (c) A population increasing in size under the influence of the relationships

in (a) and (b). Each arrow represents the change in size of the population over one interval of time. Change (i.e. net recruitment) is small

when density is low (i.e. at small population sizes: A to B, B to C) and is small close to the carrying capacity (I to J, J to K), but is large at

intermediate densities (E to F). The result is an “S’-shaped or sigmoidal pattern of population increase, approaching the carrying capacity.



the death rate and the population increases in size. At densities
above the crossover point, the death rate exceeds the birth rate
and the population declines. At the crossover density itself, the
two rates are equal and there is no net change in population
size. This density therefore represents a stable equilibrium, in
that all other densities will tend to approach it. In other words,
intraspecific competition, by acting on birth rates and death
rates, can regulate populations at a stable density at which the
birth rate equals the death rate. This density is known as the
carrying capacity of the population and is usually denoted by K
(Figure 5.7). It is called a carrying capacity because it represents
the population size that the resources of the environment can
just maintain (‘carry’) without a tendency to either increase or
decrease.
However, whilst hypothetical popu-
real populations lack lations caricatured by line drawings like
simple carrying Figures 5.7a—c can be characterized by
capacities a simple carrying capacity, this is not
true of any natural population. There
are unpredictable environmental fluctuations; individuals are

affected by a whole wealth of factors of which intraspecific
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competition is only one; and resources not only affect density but
respond to density as well. Hence, the situation is likely to be closer
to that depicted in Figure 5.7d. Intraspecific competition does not
hold natural populations to a predictable and unchanging level
(the carrying capacity), but it may act upon a very wide range of
starting densities and bring them to a much narrower range of
final densities, and it therefore tends to keep density within cer-
tain limits. It is in this sense that intraspecific competition may
be said typically to be capable of regulating population size. For
instance, Figure 5.9 shows the fluctuations within and between
years in populations of the brown trout (Salmo trutta) and the
grasshopper, Chorthippus brunneus. There are no simple carrying
capacities in these examples, but there are clear tendencies for the
‘final’ density each year (‘late summer numbers’ in the first case,
‘adults’ in the second) to be relatively constant, despite the large
fluctuations in density within each year and the obvious poten-
tial for increase that both populations possess.

In fact, the concept of a population settling at a stable carry-
ing capacity, even in caricatured populations, is relevant only to
situations in which density dependence is not strongly overcom-
pensating. Where there is overcompensation, cycles or even
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Figure 5.9 Population regulation in 1 i é
practice. (a) Brown trout (Salmo trutta) in oL ! ! ! ! ! ! L 1o T2
an English Lake District stream. 2, numbers 1968 1970 1972 1974 1976 1978 1980 1982 1984
in early summer, including those newly (b)
hatched from eggs; o, numbers in late 50~ .
summer. Note the difference in vertical ”
scales. (After Elliott, 1984.) (b) The 3 40k +
grasshopper, Chorthippus brunneus, in §
southern England. e, eggs; +, nymphs; o Pt Tl -}
0, adults. Note the logarithmic scale. S 301 T
(After Richards & Waloff, 1954.) There are
no definitive carrying capacities, but the { { { i
‘final” densities each year (‘late summer’ 1947 1948 1949 1950 1951

and ‘adults’) are relatively constant despite
large fluctuations within years.

Year
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