Toxicology

Shamril

Pravin

Hanis

Table of Content

- Introduction
 - History
 - Definition of terms
- Route of exposure
- Classification
- Toxicokinetic & Toxicodynamic
- Risk Assessment
- Management
- Examples

Introduction

History

 Phillip von Hohenheim (1493 -1541), (Paracelcius) was an alchemist, physician, astrologer and known as the "father of toxicology" → "All things are poison and nothing is without poison, only the dose permits something not to be poisonous."

Definition Of Terms

- Toxin
 - Toxic substances that are produced naturally (nature origin)
- Toxic
 - This term relates to poisonous or deadly effects on the body
- Toxicants
 - Any chemical that can injure or kill humans, animals, or plants; a poison
- Toxicity
 - Describes the degree to which a substance is poisonous or can cause injury. The toxicity depends on a variety of factors: dose, duration and route of exposure, shape and structure of the chemical itself, and individual human factors.

What is Toxicology

- Science of poison → The study of how natural or man-made poisons cause undesirable effects in living organisms.
- Poison → any substance that can cause severe <u>injury</u> or death, with <u>excessive exposure</u>
- Sub-disciplines of Toxicology
 - Environmental Toxicology, Occupational (Industrial) Toxicology, Regulatory Toxicology, Food Toxicology, Clinical Toxicology, Forensic Toxicology and others.

Occupational Toxicology

- Involved with health effects from <u>exposure</u> to chemicals in the workplace
- This field grew out of a need to save workers from toxic substances and to make their work environment safe.

Exposure

- Exposure → Concentration of <u>chemical</u> involved and frequency of its interaction with people
- Degree of exposure \rightarrow determined during risk assessment
- Excessive Exposure → The amount of exposure that lead to <u>injury or</u> <u>adverse effects</u> e.g. Median Lethal Dose (LD50) of Ethanol is &7000 mg/kg, it means that by ingesting 7000 mg/kg Ethanol, half of the rat population in the experiment died

Injury

- Adverse effects → abnormal, undesirable <u>harmful change</u> following exposure
 - Irreversible Change & causes damage 1. Toxic, 2. Harmful
 - Reversible change 3. Harmless
- <u>Injury</u> depends on = property of chemical + nature of exposure + health & developmental state of the person

- Skin & mucous membrane
- Lung (Inhalation)
- Ingestion
- Eye

• Skin

- Chemicals that can penetrate healthy intact skin – aniline, hydrogen cyanide, organophosphate, etc.
- Absorption through skin from the chemical that absorbed through clothing is far more worse

- Lung (Inhalation)
 - Depends on
 - Size & Shape of particles
 - Rate of physical work (Tidal Volume increase by exertion)

Routes of Exposure (Lung)

- Size & Shape of particles
 - Size effective aerodynamic diameter
 - Shape dust, microorganism
 - Larger diameter (>10 micro meter)→ lodge in bronchi/bronchioles→ mucocilliary clearance→ oesophagus→ Gut
 - Smaller Diameter(<2 micro meter)→ persist in alveoli→ cause harm
 - e.g. Insoluble particle (Asbestos)→ macrophage tried to engulf but damaged → hydrolytic enzyme leak→ local tissue damage→ fibrosis

Routes of Exposure (Lung)

- Rate of physical work
 - Advice to avoid physical activity during haze

- Ingestion
 - Mostly we can control (unlike airborne)
 - Airborne particle also can be ingested
 - Depends on
 - Concentration
 - Time
 - Continuous
 - Intermittent
 - Sometimes can accumulate and cause harm in later life e.g. Lead which accumulates in bones cause little harm but once broken, can cause harm to the body

Adverse effect

- Characteristics
 - Local
 - Systemic
 - Both Local & Systemic e.g. Allergic reaction
 - Accumulation
 - Chemical e.g. Adipose tissue accumulate organochloride pesticide and does not cause harm
 - Damage e.g. death of nerve cell following repetitive exposure
- Factors
 - Balance between Absorption and excretion
 - Balance between injury and repair
 - Immediate or delayed effect
 - Reversible or irreversible

Adverse effect

- Local
 - Irritants
 - Corrosive
- Systemic e.g. Organophosphate poisoning

Chemical Interaction

- Additive effects (1 + 1 = 2)
- Synergistic Effects (1 + 1 = 4)
- Antagonist (1 + 5 = 2)

Tolerance and resistance

- Decrease in sensitivity to a chemical following exposure
- Resistance \rightarrow complete insensitivity towards chemical

Classification

Classification of toxic agents

- Toxic substances are classified into the following
 - 1. Heavy Metals
 - 2. Solvents and Vapours
 - 3. Radiation and Radioactive Materials
 - 4. Dioxin/Furans
 - 5. Pesticides
 - 6. Plant Toxins
 - 7. Animal Toxins

Effect of toxic agents (Heavy metal)

• Arsenic

• Inorganic arsenic is a known carcinogen and can cause cancer of the skin, lungs, liver and bladder

• Barium

- Barium is not known to cause cancer
- Short term exposure can cause vomiting, abdominal cramps, diarrhoea, difficulties in breathing, increased or decreased blood pressure, numbress around the face, and muscle weakness
- Large amounts of barium intake can cause, high blood pressure, changes in heart rhythm or paralysis and possibly death.

Effect of toxic agents (Heavy metal)

Cadmium

- Cadmium and cadmium compounds are known human carcinogens
- Smokers get exposed to significantly higher cadmium levels than non-smokers
- Severe damage to the lungs may occur through breathing high levels of cadmium
- Lead
 - Exposure to high lead levels can severely damage the brain and kidneys and ultimately cause death
 - In pregnant women, high levels of exposure to lead may cause miscarriage
 - High level exposure in men can damage the organs responsible for sperm production.

Effect of toxic agents (Heavy metal)

• Mercury

- Exposure to high levels can permanently damage the brain, kidneys, and developing foetuses
- Effects on brain functioning may result in irritability, shyness, tremors, changes in vision or hearing, and memory problems

• Selenium

- Chronic oral exposure to high concentrations can produce selenosis
- Major signs of selenosis are hair loss, nail brittleness, and neurological abnormalities
- Brief exposures to high levels in air can result in respiratory tract irritation, bronchitis, difficulty breathing, and stomach pains
- Longer-term exposure can cause respiratory irritation, bronchial spasms, and coughing.

Effect of toxic agents (Solvent and vapours)

• Benzene

- Benzene enters the body through inhalation and it may pass through the skin
- Exposure to low concentrations may cause dizziness, lightheadedness, headache, loss of appetite and stomach upset
- High exposures to benzene may cause irregularities in the heart beat which can lead to death
- It has carcinogenic effect as well.

Effect of toxic agents (Solvent and vapours)

- carcinogens (e.g., benzene, carbon tetrachloride, trichloroethylene)
- reproductive hazards (e.g., 2-ethoxyethanol, 2-methoxyethanol, methyl chloride)
- **neurotoxins** (e.g., n-hexane, tetrachloroethylene, toluene)

Effect of toxic agents (Radiation and radioactive material)

• Short-Term Health Effects of Radiation Exposure and Contamination

- Acute Radiation Syndrome (ARS)→ a serious illness that can happen when a person is exposed to very high levels of radiation, usually over a short period of time.
- Symptoms of ARS may include nausea, vomiting, headache, and diarrhea

Long-Term Health Effects of Radiation Exposure and Contamination

- Cancer
- Prenatal radiation exposure
- Mental health

Effect of toxic agents (Dioxin/ furans)

- Short-term exposure of humans to high levels of dioxins may result in skin lesions, such as chloracne and patchy darkening of the skin, and altered liver function
- Long-term exposure is linked to impairment of the immune system, the developing nervous system, the endocrine system and reproductive functions.

Effect of toxic agents (Pesticides)

- Organochlorines → cause a loss of sensation around the mouth, hypersensitivity to light, sound, and touch, dizziness, tremors, nausea, vomiting, nervousness, and confusion
- Organophosphates and Carbamates → causes signs and symptoms of excess acetylcholine, such as increased salivation and perspiration, narrowing of the pupils, nausea, diarrhea, decrease in blood pressure, muscle weakness, and fatigue
- Pyrethroids → Pyrethroids can cause an allergic skin response, and some pyrethroids may cause cancer, reproductive or developmental effects, or endocrine system effects

Effect of toxic agents (Plant toxins)

Plants produce a range of chemicals designed to fend off predators or discourage consumption by insects or animals.

- Philodendron, poison ivy, cashew \rightarrow allergic dermatitis
- Grasses→ allergic rhinitis
- Lily family, glory lily, crocus, horse chestnut → affects the GIT tract

Effect of toxic agents (Plant toxins)

- Red alga (red tide), green alga, mushrooms, Coffee bean, tea, cola nut mint family → affects the nervous system
- Fungus that grows on peanuts, walnuts → liver cancer
- Legumes (Astrogalus); bitter melon seeds (Momordica) → affects the reproductive system

Effect of toxic agents (Animal toxins)

These toxins can result from venomous or poisonous animal releases

- For examples
 - scorpions, spiders , ticks → produces neurotoxin
 - Rattlesnakes, cobras, coral snakes → produces very complex enzyme-based venoms and neurotoxin

Toxicokinetic & Toxicodynamic

Toxicodynamic

- Toxic (The Chemical) + Dynamic (Changes, *Perubahan*)
- Toxic action on living system
- E.g. excessive ethanol injure liver by blocking metabolism of fat & carbohydrate, and scar tissue replace healthy tissue causing Liver cirrhosis→ this process is toxicodynamic

Spectrum of Alcoholic Liver Disease

Toxicodynamic

- Dose-Toxicity relationship
 - Dose-effect relationship
 - Biological effect monitoring
 - Dose Response relationship
 - Acute & Chronic effects
- Toxicity testing & health risk

Toxicity Testing

- Dose-Response and Concentration response relationship
- Fixed dose testing
 - Toxic
 - Very Toxic
 - Harmful

Dose-Response relationship

- Incidence of defined biological effect in an exposed population, expressed by percentage
- LD_n = Dose of toxicants lethal to n % of population
- LD₅₀ = Single dose of chemical that can cause death in 50% of population in an experimental condition e.g. death of mice
- LD₅₀ does no tell sub lethal toxicity & does not explain shape of dose-response curve that it derive (Figure 1.2)
- Threshold dose → minimal dose required for detectable response, expressed as NOEL/LOEL (No/Lowest Observed Effect Level)

Figure 1.2 Two substances with the same LD₅₀ but different lower lethal thresholds

Ta Toxicokinetics

Figure 3.1 The relationship between delivery of the administered dose to the target site and the generation of the adverse or toxic response 0513631a9091e3527e9adc4

- Toxico + Kinetics (*Pergerakan*)= movement of chemicals around the body
- E.g. Ethanol from Beer→ Acetaldehyde→ Acetic Acid → nasty odour, used in breathalyser = This is Toxicokinetic (The way body handle potentially toxic substance)

- The study of
 - Absorption
 - Distribution
 - Metabolism
 - Excretion

- Absorption
 - Transfer of chemical from absorption site to general circulation
 - Rate of absorption
 - Determine peak plasma concentration
 - Depends on
 - Vehicle e.g. absorption slow with oily vehicle
 - Lipid Solubility e.g. lipid soluble cross cell membrane easily and absorbed more rapidly than water soluble
 - Place e.g. gut & lung provide larger permeable surface thus enhance absorption
 - Extent of absorption
 - The extent of chemical being transformed prior to reach general circulation e.g. in Gut Lumen

Figure 3.5 The influence of the rate of absorption of a chemical on the plasma concentration-time curve. A relatively flat low profile is obtained when the rate of absorption is less than the rate of elimination, and this pattern is normally seen with transdermal absorption 1a630513631a9091e3527e9ado4

- Distribution
 - Reversible transfer of chemical between <u>general circulation</u> and <u>body tissue</u>
 - Depends on
 - Rate of distribution
 - Ability to cross cell membrane e.g. ability to cross blood brain barrier
 - Tissue blood flow
 - Extent of distribution
 - Affinity of blood/plasma e.g. ability of some chemical to bind with albumin

- Metabolism
 - Biotransformation (Usually Liver)

• Elimination

- Elimination rate Half life
- What determine the rate
 - Capacity & ability of the organ (Liver, Kidney, Lung)
 - Extent of distribution
- Clearance = rate of elimination/plasma concentration

Risk Asessment

Toxicologic risk assessment

Management

- At presentation
 - History from all reliable source (patients, family, co-workers)
 - Physical examination
 - Lab investigation for suspected toxin

History Taking

- History is the most valuable tool.
- In some patient (comatose, drowsy, atered conciousness), family, friends, relative,1st medical personel on scene should be questioned.
- All suspected possible toxins should not be missed
- When possible, patient's house and workplace should be examined (not only for toxins but also other things like recrational drugs, empty medicine container or suicide note)

- If in doubt, extra information can be obtained from
 - Poison Control Centres (Pusat Racun Negara)
 - Material safety Data Sheet (available in almost industrial plant)

1

C)·P·I	MATERI	AL SA	FETY	DATA	SHE	ET	Page 1 of 7 MSDS-137
Pres	ored to OSHA, ACC, A	NSI NOHSC. WHATS & 2001	/58 EC Stando	anda MSD	S Revision: 1.0	0 N	tSDS Revision Dat	te: 02/01/200
		1, P	RODUCT	IDENTIFI	CATION			
1.1	AXXIUM CLEAR SCULPTING GEL							
1.2	Chemical Isane: METHACRYLATE MIXTURE							
1.3	Decempera. NA							
М	Tode Harres NA							
1.8	Production PROFESSIONAL USE ONLY							
1.8	Manufacturers have OPI PRODUCTS, INC.							
2	Manufaculeri Adamie 13034 SATICOY STREET, NO, HOLLYWOOD, CA 11405 USA							
1.8	Imagency Proce. CHEMTREC: +1 (703) 527-3887 / +1 (800) 424-9300							
1.0	5.00mm Prome +1 (818) 757-2400 / +1 (800)-341-7777							
		2.	HAZARDI	DENTIFIC	ATION			
11	Name interfactor: This product is classified as a hazardous substance but not as dangerous goods according to the classification criteria of NOHSC and ADC Code (Australia).							
	Reader of Later	20 References	Fact VEC		Abstanktor	VES	Innetion	VEC

Physical examination

- Starts with the examination of vital signs (GCs, BP, HR etc).
- Then check for signs suggesting of toxicity
- Ingested/absorbed toxin –look for systemic manifestation
- Corrosive toxin –check for GI tract
- Skin contact- acute cutaneus syndrome (blister, rashes, pain)
- Inhalated toxin
 - Water soluble (eg ammonia ,Chlorine) –upper airways symptoms
 - Less water soluble (phosgene)- look for lower airway symptoms
- In some cases of toxicity (especially chronic esposure to toxin), the altered conciousness can be due to other causes like hepatic enchelopathy, Wernicke encelopathy and hypoglycemia.

Labaratory testing

- Can be qualitative or quantitative
- Currently, lack of standard readily available test to identify all the toxins
- Measurement of toxin blood level can help in maanagement

Management (not sure if all done in Malaysia setting)

- Stabilization
 - Maintain airway, breathing, circulation
 - Pt without pulse, BP requird resuscitation
 - Mechanical ventilation might be needed depending on cases
 - IV fluids

- Topical Decontamination
 - Any body surface (plus eyes) that are exposed to toxin is flushed with large amount of saline or water
 - Contaminated clothing, ewellery, accessories should be removed
- Acticated charcoal (in suspected oral toxicity)
 - Should be given as early as possible
 - Has not been proven to reduce mortality/morbididy
- Chelating agent-in metal toxicicty cases

Chelaating Drug	Metal
Deferoxamine	Iron
Dimercaprol	Antimony Arsenic Bismuth mercury
Edate Ca disodium	Cobalt, lead, zinc
Penicillamine	Arsenic, cooper,Lead
Succimer	Arsenic

- Dialysis
 - common in ethylene glycol, lithium, methanol, and salicylates poisoning
 - Less effective if
 - Toxin is large/charged molecule
 - Bound strongly to protein
 - Has large volume of distribution
- Intentional use of toxin need psychiatric evaluation

Examples

Farmers and Farm Personnel

Potential exposures to toxicants resulting from:

- Fertilizer use
- Equipment use
- The use of pesticides and fumigants
- Animal confinement facilities
- Silo

Exposures	Descriptions
Anhydrous ammonia fertilizer	 Odor warning threshold = 53ppm = provide margin of safety. 400 ppm = irritation of eyes, nose, throat. 700ppm = immediate eye injury 2500 to 4500 ppm for 30 minutes = lethal. 5000 pm = rapidly fatal. Upper airway edema → cyanosis and asphyxiation Chr sequelae = bronchiolitis obliterans and chr cystic bronchiectasis.
Farm equipment	 Oral siphoning of gasoline with a rubber hose → ingestion and aspiration. Aspiration of hydrocarbon incl gasoline → severe lung injury, Welding hazards → inhalation of metal fumes, ozone, NO2, CO2.
Animal confinement	 Oxygen depletion near surface of the manure. Direct exposure to methane and CO2. Respi problems = organic toxic dust syndrome, acute and chr bronchitis, occupational asthma, COPD, hypersensitivity pneumonitis.
Toxicity of pesticides	 Very large exposures from ingestion, dermal contact, and inhalation. Large oral exposures → N&V, diarrhea, pulm edema, cardiac arrhythmias. Dermal exposure → chemical burns (painful parasthesias, m stiffness).

Doctors, nurses and dentists

Potential toxic exposures	Pathophysiology
Mercury	 Mercury combines easily with metals eg gold, silver, and tin to form alloys called amalgams → used in dental fillings. Exposure to mercury vapor occurs from instruments that mix amalgam (mechanical amalgamators), sterilizing instruments contaminated with amalgam, and handling, storing, or cleaning mercury or amalgam. Elemental mercury used in Cantor tubes, thermometers, and sphygmomanometers. Acute elemental mercury inhalation = local pulmonary toxicity. Low-level chr exposure = CNS effects eg weakness, fatigue, anorexia, GI disturbances. Blood or urine mercury levels.
Waste anaesthetic gases	 Leaking gas delivery systems, scavenger system. Route = inhalation. Toxic effects: Nitrous oxide peripheral neuropathy, halothane, hepatitis.

General Principals

- Elimination
- Subsitution
- Isolation
- Engineering control
- Admin Control
- PPE
- Legislation