CS354: Compiler Construction

Structure and Applications

Madnia Ashraf

Why Compilation is Difficult?

*The Semantic Gap

- Thesourcelprogram isstructuredinto(dependingon
language)classes, functions, statements,expressions,...

*The target program is structured into instruction
sequences, manipulating memory locations, stack and/or
registers and with (conditional) jumps

Assembly:
Source Code: movl -12(%rbp), %eax
z = 8*%(x+5) -y addl $5, %eax

sall $3, %eax
subl -8 (%rbp), %eax
movl %eax, -4 (3rbp)

Two Pass Compiler

source machine
code code
— —
errors

= Use an Intermediate Representation (IR)
= Front End maps legal source codeinto IR
= Back End maps IR into target machine code

= Admits multiple front ends & multiple passes

Two Pass Compiler

source
code

=Recognizes legal (& illegal) programs
"Reporterrors in a useful way

"Produce IR & preliminary storage map

machine

code

errors

The Front End

source
code Tokens IR
— R e > R —

errors

Modules

=Scanner: Maps characterstreaminto words—basic
unit of syntax

=Parser: Recognizes contextfree syntax and reports
errors

Scanner

= Mapscharacter streaminto words —basic unit of syntax

" Produces pairs— :
<ld,x>
1. awordand d’

2. itspartofspeech \

=Example word
X=X+Y
becomes token type
<id,x>
:?ZSEE’” We call thepair:
<0p’ ‘s “<token type, word>" a “token”
<id ’y> Typical tokens: number, identifier,

+, -, new, while, if

Parser

source
code Tokens IR
e g SCanner —
errors

" Recognizes context-free syntax and reports errors
" Guides context-sensitive (“semantic”) analysis

" Builds IR for source program

Context Free Grammar (CFG)

Context-free syntaxisspecified usinga CFG=(S,N,T,P)
=S is the start symbol

=N is a set of non-terminal symbols

=T is set of terminal symbols or words

=P isaset of productions or rewrite rules

Grammar for expressions

1. goal —>expr .

2. expr —>expr op term For this CFG

3. | term S =goal

4. term ->number N ={goal, expr, term, op}

g, O %+g T ={number, id, +, -}
%P | P= {42345, 6, 7)

7. -

Derivation

= GivenaCFG, wecanderive sentencesbyrepeated

substitution

" Consider the sentence(expression):

X+2-y

Context Free Grammar

1. goal >expr

2. expr >expr op term
3. $ term

A term ->number

c | g

6. op >+ -

/.

Production Result

goal

expr
expropterm
expropy
expr—y

expr op term—y
exprop2-y
expr+2 -y

term+2 -y
X+2-y

Ul W OO P~ DNNNJUIDN -

Parsing

"Torecognizeavalidsentenceinsome CFG, wereverse this

process and build up a parse

" Aparsecanberepresented byatree: parse tree or

syntax tree

Context FreeGrammar

AU g 2 (N2

goal ->expr

expr ->expr op term

term
term Lnumber
| id—

op 2>t
-

Production Result

AN

Ol W OB~ NN -

goal

expr

expr opterm
expr opy
expr—y

expr op term—y
exprop2-y
expr+2 -y
term+2 -y
X+2-y

Syntax Tree (aka Parse Tree)

2
o‘eﬁ

<id, y>

Expression: x+2-y

/

<|d*, x>

<number 2>

Abstract Syntax Tree (AST)

"Theparsetreecontainsalotofunneededinformation

*Compilersoftenuseanabstract syntaxtree (AST)

O

@
<ICr x> <%ber, 2>

12

Abstract Syntax Tree (AST)

" An AST isamuch more concise representation

O

<iq,)(’{°\ <id, y>
<number, 2>

|t summarizes the grammatical structure without any
details of derivation

= ASTsare one kind of intermediate representation (IR)

13

The Back End

machine
Instruction Qi Register K Instruction e
Selection Allocation Scheduling

errors

=TranslatelRintotargetmachinecode

= Choose machine (assembly) instructions to implement
each IR operation

= Ensure conformance with systeminterfaces

=Decide which values to keep in registers

Instruction Selection

L Instruction Rl Register W instruction
Selection Allocation Scheduling

*Producefastandcompact code!

machine
code

errors

15

Register Allocation

machine
Instruction Qi Register Kl Instruction e
Selection Allocation Scheduling

errors

=Have eachvalueinaregisterwhenitis used
=Manage a limited set of resources—register file

Instruction Scheduling

: _ machine
Instruction Gl Register Nl instruction AR

Selection Allocation Scheduling

errors

=Use all functional units productively

17

Three Pass Compiler

source machine
code Middle code

End

errors

= Intermediate stage for code improvement or
optimization

= Analyzes IR and rewrites (or transforms) IR

= Priénarygoal istoreducerunning time of compiled
code

Three Pass Compiler

source machine
code Middle code

End

errors

"Mustpreserve “meaning” ofthecode

" Measuredbyvaluesofnamedvariables

