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Preface
You have unexpectedly been thrust into the role of lead strategist for the kingdom. After 
you install your predecessor's mysterious data analysis tool, you will begin to explore its 
fundamental elements. Next, you will use R to import and organize your data. Then, you will 
use functions and statistical analyses to arrive at potential courses of action. Subsequently, 
you will design your own functions to assess the practical impacts of your predictions. Lastly, 
you will focus on communicating your results through the use of charts, plots, graphs, and 
custom built visualizations. The fate of the kingdom is in your hands. Your rapid development 
as a master R strategist is the key to future success.

What this book covers
Chapter 1, Uncovering the Strategist's Data Analysis Tool, serves as an introduction to the  
R Project. We will explore the benefits of using R and the topics covered in this book.

Chapter 2, Preparing R for Battle, includes a step-by-step guide to downloading and  
installing R. We will also launch R and execute our first commands.

Chapter 3, Exploring the Mysterious Data Analysis Tool, is an introduction to the R interface 
and programming language. In this chapter, we will use R to solve a complex puzzle.

Chapter 4, Collecting and Organizing Information, covers how to import data into R and 
manipulate it using variables. We will also learn how manage the R workspace.

Chapter 5, Assessing the Situation, focuses on evaluating our data and using it to generate 
predictive models. We will also consider the statistical and practical significance of  
our analyses.

Chapter 6, Planning the Attack, involves using our data models to predict potential  
outcomes and assess their logistical viability. Along the way, we will learn to build our  
own custom functions.
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Chapter 7, Organizing the Battle Plans, revisits the task of planning and organizing  
a complete data analysis, such that it can be effectively communicated to others.  
Throughout this process, we will apply the common steps to all R analyses.

Chapter 8, Briefing the Emperor, is a first look at R's graphical capabilities. We will make 
customizable charts, graphs, and plots that can be exported for use outside of R.

Chapter 9, Briefing the Generals, examines the in-depth customization options available  
to several types of charts, graphs, and plots. We will also build our own custom graphics 
from scratch.

Chapter 10, Becoming a Master Strategist, describes the resources that are available to you 
beyond the contents of this book for further expanding your knowledge of R.

What you need for this book
This code used in this book should be applicable to any version of R on any platform, 
although it was generated and tested using R 2.11.1 for Mac OS X.

Who this book is for
You want to take control of your data and learn how to conduct effective analyses with R. 
Whether you are a data analyst, business or information technology professional, student, 
educator, researcher, or anyone else who wants to learn about R, this book is for you.

No prior experience with R is necessary. Knowledge of other programming languages, 
software packages, or statistics may be helpful, but is not required. With a willingness to 
learn and an interest in conducting superior data analyses, you will quickly become an 
experienced and knowledgeable R user.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3
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Instructions often need some extra explanation so that they make sense, so they are 
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz—heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero—heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We also expanded upon the legend(...) 
function to gain more control over its appearance."

A block of code is set as follows: 

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationRainbowColors)

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelY, 
ylab = barAllMethodsDurationLabelX, 
xlim = barAllMethodsDurationLimY, 
ylim = barAllMethodsDurationLimX, 
col = barAllMethodsDurationRainbowColors)
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New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "The R Help window will 
open to display documentation on the provided function".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to  
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the 
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this 
book elsewhere, you can visit http://www.PacktPub.com/support and 
register to have the files e-mailed directly to you.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata 
will be uploaded on our website, or added to any list of existing errata, under the Errata 
section of that title. Any existing errata can be viewed by selecting your title from  
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.





1
Uncovering the Strategist's Data 

Analysis Tool

Near the end of the second century A.D., China's Han dynasty crumbled and 
left numerous warlords fighting for the throne. By the start of the third century, 
three kingdoms—Shu, Wei, and Wu—emerged as contenders for China's rule. 
These factions would vie for power for the better part of 80 years during what is 
known as the Three Kingdoms period of Chinese history.

The most famous military strategist of the era, Zhuge Liang, joined the Shu army 
in 207 A.D. He is well known for baffling opposing forces with ingenious techniques 
and cunning tactics. As a result, Zhuge Liang remains a Chinese cultural symbol 
of intellect and wisdom to this day. In 228 A.D., Zhuge Liang would launch the 
first of five campaigns against the rival kingdom of Wei. During his fifth, and final, 
campaign at the Wuzhang Plains, Zhuge Liang fell terminally ill. Following his 
death in August of 234 A.D., the Shu army was forced to withdraw from its conflict 
with the kingdom of Wei.

— Taken from Three Kingdoms. Beijing, China: Foreign Language Press; Luo 
Guanzhong. Translator Moss Roberts.

Prior to his passing, the legendary strategist chose you to succeed him as commander of the 
Shu forces. Zhuge Liang also left you with secret documents that reveal the knowledge of a 
powerful data analysis tool.

With your forces currently recuperating in Hanzhong, China, it is your duty to plan the next 
move. Armed with the late strategist's tool and your talents for data analysis, the fate of the 
Shu kingdom is in your hands.
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By the end of this chapter, you will be able to:

Describe the R Project for Statistical Computing

Detail how you will benefit from using R

Explain why R is an essential tool for your work 

Decide why this book is right for you

List the major topics covered in this book

What is R?
As the newly appointed strategist for the Shu army, your decisions will impact the lives of 
many. Great decisions tend not to occur by random chance. Rather, they are a product of 
knowledge, planning, and sound rationale. A major factor in generating fruitful outcomes is 
considering the available information and using it to assess your potential courses of action. 
Fortunately, an essential software tool exists that will help you rise to the occasion and make 
the most of any situation.

The R Project for Statistical Computing (or just R for short) is a powerful data analysis tool. It 
is both a programming language and a computational and graphical environment.

R is free, open source software made available under the GNU General Public License. It runs 
on Mac, Windows, and Unix operating systems.

The official R website is available at the following site:

http://www.r-project.org

What are the benefits of using R?
There are several ways in which R will benefit you, be it as an information technology 
professional, business analyst, leader of the Shu army, or otherwise. These benefits are 
discussed in the following points:

Free: R is available to you at no cost. The saying, "give a person a data analysis tool 
and he or she will learn to analyze data" has never been more true.

Cross-platform: R runs on Mac, Windows, and numerous Unix systems. Whether 
you are visiting the Emperor in Chengdu or laying siege to the enemy capital at 
Luoyang, you can be confident that your software will run, regardless of the local 
operating system.

Open source: R is open source. It allows you to exercise your genius in ways that a 
closed software does not.
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Programmable: R includes a powerful yet straightforward programming language 
that is designed to compliment the formation of complex strategies.

Extendable: R can be expanded through thousands of available packages. If you are 
looking for a function to calculate the odds of a successful fire attack, the chances 
are someone has already made it. If not, you can create it and offer it to the world.

Graphical: R contains robust graphical capabilities. Whether you are looking to 
create an unassuming plot of provision use over time or an elaborate array of battle 
maps, R is at your service.

Community-supported: R has a vast user community that is continually updating 
and contributing to its capabilities. Even the great Zhuge Liang had to rely on his 
allies from time to time.

Why should I use R?
You should use R because you are interested in taking control of and making the most out 
of your data. R provides you with opportunities to design and execute complex, customized 
analyses that other software packages do not. At the same time, R remains accessible and 
relevant to a large audience of potential users.

With the fate of a kingdom resting upon your shoulders, you can ill afford a miscalculation  
or misinterpretation. R will assist you in making the best possible decisions and allow you  
to rise to greatness as a premier strategist.

Why should I read this book?
You should read this book because you are interested in learning how to improve your work 
through the use of R. You do not need to be an expert at using a programming language, 
other software packages, or statistics. No prior experience with R is necessary. With a 
willingness to learn and an interest in conducting superior data analyses, you will quickly 
become an experienced and knowledgeable user of R.

What topics are covered in this book?
This book covers an extensive range of topics in R. It will comfortably and rapidly familiarize 
you with the basics, before you proceed into in-depth analyses and custom graphics. A brief 
description of each chapter's content is provided.
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Chapter 2—Preparing R for Battle
In this chapter, we will step through the R installation process. Afterwards, you will launch R 
and execute your first commands in the R console.

By the end of the chapter, you will be able to:

Download R

Install R

Run R on your computer

Issue an R command

Set your R working directory
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Chapter 3—Exploring the Mysterious Data Analysis Tool
In this chapter, we will explore the anatomy of the R console in greater depth by solving a 
challenging puzzle that was presented to us by the late Zhuge Liang.

By the end of the chapter, you will be able to:

Use proper syntax within the R console

Comment your R code

Make calculations using formulas

Distinguish between different types of input and output in the R console

Chapter 4—Collecting and Organizing Information
In this chapter, we will focus on getting our data into R and then manipulating it via variables. 
We will also learn how to manage the R workspace.

By the end of the chapter, you will be able to:

Import external data into R

Use variables to organize and manipulate your data

Manage the R workspace
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Chapter 5—Assessing the Situation
In this chapter, we will extensively examine and evaluate our data. This will entail the use 
of diverse functions to create predictive data models. Throughout this process, we will also 
consider the practical and statistical meaning behind our analyses.

By the end of the chapter, you will be able to:

Use multi-argument and variable-argument functions to make calculations

Create predictive data models using regression analysis

Consider the statistical and practical significance of your analyses

Chapter 6—Planning the Attack
In this chapter, we will turn towards using our data models to predict outcomes. We will also 
assess the viability of these outcomes. Along the way, we will create and employ our own 
custom functions that expand the capabilities of R.
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By the end of the chapter, you will be able to:

Use regression models to predict outcomes

Create your own custom functions to address specific needs

Assess the viability of achieving the outcomes predicted by regression models.

Chapter 7—Organizing the Battle Plans
In this chapter, our task will be to review and organize a complete data analysis. We will 
emphasize the need to clarify and communicate our data analyses effectively, which can be 
achieved through a series of common steps.
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By the end of the chapter, you will be able to:

Organize and clarify your raw R data analyses

Communicate your raw R data analyses in the most effective manner

Apply the steps common to all well-conducted R analyses

Chapter 8—Briefing the Emperor
In this chapter, we will take our first look at R's graphical capabilities by generating several 
charts, graphs, and plots. Throughout, we will use common graphical parameters to 
customize these visuals. We will also save and export our graphics for external use.

By the end of the chapter, you will be able to:

Create six different charts, graphs, and plots in R

Customize your R visuals using text, colors, axes, and legends
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Save and export your graphics for use outside of R

Chapter 9—Briefing the Generals
In this chapter, we will take a deeper look at R's graphical capabilities. We will practice 
customizing different types of charts, graphs, and plots by modifying their unique 
parameters. We will also learn how to build our own custom graphics from scratch  
using R's graphics functions.
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By the end of the chapter, you will be able to:

Customize several charts, graphs, and plots using arguments specific to each

Use graphics functions to add information to any visual

Create custom graphics by building them from the ground up
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Chapter 10—Becoming a Master Strategist
In the final chapter, we will look to the future. We will focus on the ways in which you can 
learn beyond the contents of this book to further expand your knowledge of R.

By the end of the chapter, you will be able to:

Use R's built-in help system

Install packages that expand R's functionality

Take advantage of electronic learning resources, such as websites, blogs, and  
online communities

Summary
In this chapter, we were introduced to R. We learned that its benefits include being free, 
cross-platform, open source, programmable, extendable, graphical, and community-
supported. We also considered why you should use R to conduct your data analyses  
and how this book can help you quickly become an experienced R user.

You should now be able to:

Describe the R Project for Statistical Computing

Detail how you will benefit from using R

Explain why R is an essential tool for your work

Decide why this book is right for you

List the major topics covered in this book

In the next chapter, we will work through the installation process to prepare R for battle.





















2
Preparing R for Battle

Before you can begin to formulate a strategy for the Shu forces, you must 
ensure that your data analysis tool is in working order. Fortunately, R can be 
prepared for battle in a few straightforward steps.

By the end of this chapter, you will be able to:

Download R

Install R

Run R on your computer

Issue an R command

Set your R working directory
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Time for action – downloading and installing R
Let us see now how to download and install R:

1.	 Browse to the official R website at http://www.r-project.org; the home page 
looks like the following:
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2.	 Under the Download, Packages heading on the left-hand side of the screen, click on 
the CRAN link.

3.	 A page with several CRAN (Comprehensive R Archive Network) servers located 
across the world will be displayed. Click on the link for the CRAN server located 
nearest to you.
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4.	 A page with frequently used CRAN links will be displayed. In the Download and 
Install R section, click on the link that corresponds to your operating system  
(Linux, Mac OS X, or Windows).
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5.	 Use the provided link to download the latest version of R for your operating system 
and version.

For demonstration purposes, the Mac OS X page is shown here. 
As of this writing, a user on Mac OS X 10.5 or higher would click 
on the R-2.11.1.pkg link to download the installation package. 
Similarly, you should download the appropriate installation file 
for your operating system and version.
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6.	 Double-click on the file that you downloaded in step 5. Then follow the prompts to 
install R on your computer.

For assistance with your specific operating system, see section 2.5 How 
can R be installed? of the official R FAQ at http://cran.r-project.
org/doc/FAQ/R-FAQ.html. This section provides documentation for 
installing R on the most frequently used operating systems:

Macintosh: http://cran.r-project.org/doc/FAQ/R-FAQ.
html#How-can-R-be-installed-_0028Macintosh_0029

Unix-based: http://cran.r-project.org/doc/FAQ/R-FAQ.
html#How-can-R-be-installed-_0028Unix_002dlike_
0029

Windows: http://cran.r-project.org/doc/FAQ/R-FAQ.
html#How-can-R-be-installed-_0028Windows_0029

Example: R 2.11.1 Mac OS X 10.5+ installation wizard demonstration
For demonstration purposes only, the installation process for R-2.11.1.pkg on Mac OS X 
10.5 and higher is shown here. The exact installation process will differ between operating 
systems and versions. Therefore, it is likely that your installation process will differ from the 
one shown here, although it may also bear some similarities. The process goes as follows:

1.	 Locate and double-click the R-2.11.1 package file that you downloaded earlier.
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2.	 The Install R 2.11.1 wizard will open in a new window. From this Introduction page, 
click on the Continue button.

3.	 The wizard will advance to the Read Me page. Click on the Continue button.
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4.	 The wizard will advance to the License page. Click on the Continue button.

5.	 A window will pop up asking you to agree to the license terms. Click on the  
Agree button.
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6.	 The wizard will advance to the Destination Select page. Change the installation 
location, only if you have an explicit reason to do so. Otherwise, click on the  
Install button.

7.	 The wizard will advance to the Installation page. It will automatically install the 
necessary files on your computer. This process will take approximately five minutes.
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8.	 Once the installation is complete, the wizard will advance to the Summary page. 
Here, you will receive a message indicating that R was installed successfully. Click  
on the Close button to exit the wizard.

9.	 You can launch R at any time by browsing to its location on your hard drive and 
double-clicking on its icon.
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10.	After completing the installation process, double-click the R icon to launch the  
R console.

What just happened?
You just finished installing R and launched it for the first time. Next, we will learn how to use 
R by issuing our first command.

Time for action – issuing your first R command
Time may have escaped you amidst your sudden change in position and hustle in preparing 
R. Conveniently, R provides us with a simple command to retrieve the current date and time:

1.	 In the R console, next to the greater than sign (>), type the following comments and 
then press the Return (or Enter) key:

> #use the date() command to get the current date and time

2.	  Similarly, issue the date() command and press the Return key:

> date()

3.	 After issuing the date() command, a message similar to  
[1] "Sun Aug 31 08:00:00 234" will appear in the R console. In this case, the 
message indicates that it is 8:00 AM on Sunday, August 31 in the year 234.

Congratulations, you have successfully issued your first R command (and reminded yourself 
of the current date and time in the process).
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What just happened?
As you may have noticed, R commands, or functions, take on a similar form as in other 
programming languages. In the date() command, for example, the word date specifies 
the name of the function, while the parentheses () contain the function's arguments. In this 
case, it was not necessary to use any arguments in the date() command. However, other 
functions, such as setwd(dir) receive one or more arguments.

Time for action – setting your R working directory
To demonstrate how to use the setwd(dir) and getwd() functions, we will set our 
working directory to the desktop:

1.	 Determine the file path to your desktop. Note that this path will vary depending on 
your operating system and the structure of your hard drive. An example, which you 
should replace with your computer's path, is shown here:

> #set the R working directory
> #this should be the first thing you do every time you open R
> #I am going to set the R working directory to my desktop 
at "/Users/johnmquick/Desktop"
> #you should replace the sample location with the path to 
your desktop

2.	 Use the setwd(dir) command to set your working directory to the path identified 
in step 1:

> #use setwd(dir) to set the R working directory
> setwd(dir = "/Users/johnmquick/Desktop")

3.	 Verify that your working directory was set appropriately using the getwd() 
command:

> #use getwd() to display the current R working directory
> getwd()
[1] "/Users/johnmquick/Desktop"

What just happened?
The working directory is the default location on your computer where R assumes all of your 
work is being conducted at a given time. For example, if you were to import data from an 
external file, R would automatically look for it in your working directory. Furthermore, all file 
path arguments in functions are evaluated relative to the working directory. Therefore, it is 
important to set your working directory each time you use R.
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We set our R working directory using the setwd(dir) function and then verified its location 
using the getwd() command.

In setwd(dir), the dir argument accepts a path to the folder that is to become the 
working directory. For example, the path "/Users/johnmquick/Desktop" tells the 
setwd(dir) function to locate the Desktop folder within the johnmquick folder  
of the Users folder. It then sets this destination as the working directory.

After submitting the setwd(dir) command, R will drop down to the next line without 
providing any output:

> setwd(dir = "/Users/johnmquick/Desktop")
>

In one sense, this is good, because you would have received an error if the command failed. 
However, R can also be confusing at times, because it does not always provide you with 
feedback indicating the result of your commands. 

Note that in our setwd(dir) function, the dir = portion can be 
optionally omitted. In R, so long as a function's arguments occur in the 
default order, they do not have to be explicitly stated in the code. However, 
if only certain arguments are used, or if they are used in a different order, 
they must be stated explicitly. We will encountered several examples of 
both cases throughout this book.

Thankfully, we can use the getwd() command to verify the current working directory:

> getwd()
[1] "/Users/johnmquick/Desktop"

By using getwd() after setwd(dir), you can verify that your working directory has been 
defined appropriately. Remember that setting your working directory is the first thing you 
should do every time you launch R.

Pop quiz
1. Which of the following is not true of the R working directory?

a. It is set using the setwd(dir) command.

b. It is displayed using the getwd() command.

c. It is the default location where R assumes your work is being conducted.

d. It only needs to be set once.
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2. Which of the following is true of the R console?

a. It returns output for no functions entered by the user.

b. It returns output for some functions entered by the user.

c. It returns output for all functions entered by the user.

d. It returns output for all functions, but not comments, entered by the user.

3. In setwd(dir), dir is which of the following?

a. A variable.

b. A function.

c. An argument.

d. An element.

Have a go hero 
Set your R working directory to a location of your choice using the setwd(dir) function. 
Then verify the location of your working directory using the getwd() command. It may be 
useful to designate a specific folder for all of your R work or for each individual project that 
you engage in. For example, you may want to create a specific folder on your computer for 
all of the activities that we will complete in this book. You could then set that location as 
your R working directory. Remember that your working directory should be set each time 
you open R.

Summary
In this chapter, we downloaded, installed, and ran R for the first time. Then, you issued  
your first R command (of very many to come) and learned how to set and verify the  
R working directory.

We will begin to explore the mysterious data tool in the following chapter by using it to  
solve a challenging puzzle. Meanwhile, we will learn about the anatomy of the R console  
in greater detail.



3
Exploring the Mysterious Data 

Analysis Tool

With R prepared for use, you are primed to begin your initial status assessment 
of the Shu army. However, you have realized that the documents that you 
received make no mention of your own or your enemies' resources. Without  
this critical data, you will not be able to conduct your analyses.

You decide to pay a visit to Zhuge Liang's assistant to see if the great strategist had 
mistakenly misplaced the much needed information. Upon your arrival, the assistant  
silently hands you a written letter. It reads:

My true successor will be a person of sharp intellect and patient wisdom. Yet, it is 
not sufficient to merely choose a replacement. Rather, this person's character must 
be tested under the harshest of circumstances. I have hidden my records of the Shu 
and Wei armies. I predicted that you would come for them shortly after my death. 
My assistant has been instructed to share this letter with you. Further, if you are 
able to solve the puzzle that I have presented here within one hour, then you will 
receive what you seek. However, if you cannot complete this task within the given 
time, the documents will be destroyed and my assistant will promptly travel to the 
capital. There, my assistant will give the emperor my recommendation that the Shu 
forces surrender to the Wei kingdom.

Zhuge Liang
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The mother is 260. Her four children and four grandchildren are 130. The family is in perfect harmony.

You have been challenged by the legendary strategist, in his letter, to prove yourself as a 
capable leader of the Shu forces. In order to accomplish this feat, you must be able to:

Use proper syntax within the R console

Comment your R code

Make calculations using formulas

Distinguish between different types of input and output in the R console

Time is running out. If you aim to prove yourself a worthy leader of the Shu army, then you 
will need to begin solving Zhuge Liang's puzzle!

Deciphering Zhuge Liang's magic square
Zhuge Liang's puzzle is an 8x8 magic square. In a magic square, all rows, columns, and 
diagonals add up to the same number. For an 8x8 puzzle like this one, that number is 260. 
Hence, the mother refers to the entire puzzle. Knowing this, take a moment to think about 
what the children and grandchildren might refer to.

Continuing, each of the cells in the puzzle hold a number between 1 and 64. Each number 
appears in one and only one cell. A useful technique for solving a large puzzle is to break it 
down into smaller components. For example, an 8x8 magic square can be broken down into 
four 4x4 puzzles (children). Furthermore, each 4x4 puzzle can be broken down into four 2x2 
squares (grandchildren). In this case of perfect harmony, each 2x2 and 4x4 puzzle is also a 
magic square whose number is 130.

Now that we have deciphered Zhuge Liang's puzzle, we can begin solving it with the help  
of R.
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Time for action – solving the first 4x4 magic square
While this puzzle could be solved by hand, it would take a considerable amount of  
time to do so. Since our deadline is approaching, we will use R to quickly make the  
necessary calculations.

To simplify our problem, let us first focus on the 4x4 square located in the top-left corner  
of the puzzle:

 
 

The top-left corner of Zhuge Liang's puzzle

Then follow these simple steps:

1.	 Open R.

2.	 On the first line in the R console, next to the greater than sign (>), type the  
following comment:

> #first we will solve the top-left corner of the puzzle

3.	 On the next line in the R console, type the following comment:

> #by breaking it down into 2x2 squares and making sure that the 
sum of all rows, columns, and diagonals equals 130

4.	 In the upper left-hand corner of the 4x4 square are three numbers. Since we know 
from Zhuge Liang's note that all 2x2 squares sum to 130, we can calculate the 
missing value at B1 as follows:

> #the value for B1 is:
> 130 - 1 - 62 - 35

5.	 R will display the text [1] 32, which indicates that the value of your calculation is 
32. Having solved for B1, you can now solve for the missing value in row B, B4. The 
calculation is as follows:

> #the value for B4 is:
> 130 - 32 - 35 - 34
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6.	 By working your way through each row, column, and diagonal of the 4x4 puzzle, you 
can solve the remaining cells in this section, as follows:

> #the value for C2 is:
> 130 - 62 - 35 - 2
[1] 31
> #the value for C1 is:
> 130 - 31 - 61 - 2
[1] 36
> #the value for C3 is:
> 130 - 36 - 31 - 33
[1] 30
> #the value for D4 is:
> 130 - 1 - 35 - 30
[1] 64
> #the value for D3 is:
> 130 - 61 - 2 - 64 
[1] 3
> #the value for A3 is:
> 130 - 34 - 30 - 3
[1] 63
> #the value for A4 is:
> 130 - 1 - 62 - 63
[1] 4

The completed puzzle section is pictured in the following diagram. All calculated cells have 
been highlighted:

 
 

Solution to the top-left corner of Zhuge Liang's puzzle

What just happened?
While solving the first quadrant of Zhuge Liang's puzzle, you encountered a number of R's 
fundamental elements.
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Lines
Activity that takes place in the R console is divided into one line statements. Long statements 
will automatically wrap to fit the size of the R window, although they still occur on a single 
line in the console. For instance, the formulas:

> 1 + 1

and

> 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 
+ 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25

both occupy a single console line, in spite of the fact that the latter formula is wrapped to 
display on more than one line.

Lines that accept user input begin with a greater than sign (>), whereas static console-
generated output lines do not. For example:

> date()
[1] "Sun Aug 31 08:00:00 234"

The first line accepted user input, whereas the second returned output from the R console.

You can press the Return (or Enter) key to move from one line to the next, or to commit your 
code, in the R console. R will always drop down a single line when the Return key is pressed. 
Previous lines will remain displayed in the console, however they will not be editable.

Comments
Each line that begins with a pound sign (#) in the R console is designated as a comment. We 
have used several comments thus far. For example, in the following code:

> #the value for A4 is:
> 130 - 1 - 62 - 63
[1] 4

The first line is a comment. As is customary in most programming languages, a comment  
can display any variety of text, code, or other allowable input. Since they are ignored by  
the console, comments are a useful and necessary tool for documenting and organizing  
your work. 

We inserted several comments into our code in the previous activity. Without them, our 
console would have been filled with seemingly arbitrary calculations. Instead, our comments 
provided the context necessary for both others and ourselves to understand what we 
were calculating and why. It is recommended that you use comments at every relevant 
opportunity to make your code readable and easy to remember.
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Note that no mechanism for multiline comments currently exists in R. However, 
long comments will automatically wrap to the size of the R console window.

> #this is an exceptionally long comment that takes 
up the entire width of the R console, so it is 
automatically wrapped to display on a second line

Alternatively, lengthy explanations can be separated manually by splitting the 
text into several one line comments, like so:

> #this is an exceptionally long comment 
> #that has been manually split 
> #into several one line comments

Note that everything following the pound sign (#) on a given line is ignored by 
the R console. Therefore, it is possible to combine a comment and other code on 
the same line, so long as the comment comes last.

Calculations
At its core, R is a sophisticated calculator. We found the value of each missing cell in the 4x4 
square using simple mathematical formulas. For instance, we used the following formula to 
find out the value of cell B1:

> 130 - 1 - 62 - 35

R can, of course, handle an endless variety of calculations. The most commonly used 
calculations, along with their symbols, are addition (+), subtraction (-), multiplication (*), 
and division (/). Using R to derive values in this fashion was just our first small step towards 
becoming familiar and comfortable with the R console.

Output
You may have noticed that some console lines do not begin with the greater than (>) sign. In 
our preceding activity, these lines contained the results generated by R. The output that R 
returned to our formula for cell B1 is just one example:

[1] 32

Any time that R displays information to us, it will not be editable and it will not begin with a 
special prefix. In contrast, all lines that we can edit will begin with the greater than sign (>).
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Note also that a [1] that appeared before each of our calculated values in the R 
console output. This is merely R's way of telling us that the result of our formula 
was contained in a single cell. R likes to think of data in terms of matrices with 
rows, columns, and cells, and will often prefix its output with such information. 
You can typically ignore this and only pay attention to the value(s) that you 
specifically requested.

Visualizing the R console
The following diagram contains a segment of the source code that we created while solving 
the initial 4x4 puzzle segment. Each comment, calculation, and output has been labeled to 
demonstrate the visual differences between these types of lines:

Remember that all editable lines begin with a greater than sign (>). Of these, comments 
begin with a pound sign (#) and are used to document our code. Calculations consist of 
mathematical operations that we are conducting on our data. Output lines are generated  
by the R console, are not editable, and lack a leading greater than sign.

Pop quiz
1. Which of the following characters appears at the beginning of each user editable 

line in the R console?

a. =

b. >

c. -

d. #
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2. Which of the following characters is used to begin a comment line in the R console?

a. =

b. >

c. -

d. #

3. Which of the following actions submits a line of user input to the R console?

a. Pressing the Tab key

b. Pressing the Shift key

c. Pressing the Return key

d. Pressing the Escape key

Have a go hero
Using the techniques that we employed to solve the top-left quadrant of the puzzle, solve 
for the remaining cells of Zhuge Liang's 8x8 magic square. You should be able to accomplish 
this task in a short while as you get accustomed to the R console. Along the way, be sure to 
identify which console lines are comments, calculations, and outputs. Once finished, check 
that your row, column, and diagonal values add up to 260. Then, verify your solution with 
the completed puzzle in the following figure:

 
 

Solution to Zhuge Liang's 8x8 magic square
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Summary
You have now been introduced to the basic operations of R. The R console is composed of 
lines, which can take the form of comments, calculations, or outputs. You encountered all of 
these features while solving Zhuge Liang's magic square. In the process, you also gained the 
skills to:

Use proper syntax within the R console

Comment your R code

Make calculations using formulas

Distinguish between different types of input and output in the R console

Congratulations, you have earned the late strategist's respect and proven yourself a worthy 
successor. Zhuge Liang's assistant has provided you with documents containing detailed data 
about the resources of the Shu and Wei kingdoms. Now it is time for you to organize this 
information and prepare it for analysis, which will be the focus of Chapter 4.













4
Collecting and Organizing 

Information

After demonstrating your talents by solving Zhuge Liang's puzzle, his assistant 
provided you with documents summarizing the resources of the Shu army. 
These documents contain data on gold, equipment, and soldiers. Prior to 
analyzing these data in R, it is critical that you prepare and organize them.  
This process will make your subsequent work more clear and efficient.

In this chapter, we will focus on collecting and organizing the information that is available to 
us. You will encounter several new techniques in R along the way. By the end of this chapter, 
you will be able to:

Import external data into R

Use variables to organize and manipulate your data

Manage the R workspace

Time for action – importing external data
Our first task is to pull external resource data into R, so we can begin to examine it. To 
accomplish this, open the R console and proceed through the following steps:

1.	 Set your R working directory using the setwd(dir) function. The path used in 
the following code acts as an example. Your working directory should be set to a 
relevant location on your own computer:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")
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2.	 Copy the hanzhongResources.csv file into your R working directory. This file 
contains resource information for the Shu forces that are currently recuperating  
in Hanzhong.

3.	 Read the resource file into R using the read.csv(file) command:

> #use read.csv(file) to read an external data file into R #use read.csv(file) to read an external data file into R
> #Shu resources located in Hanzhong, China
> read.csv("hanzhongResources.csv")

4.	 R will read and display the contents of the file, and the result is shown in the  
following screenshot:

These data indicate that your forces in Hanzhong currently have 1,000,000 each of gold and 
provisions, 100,000 soldiers, and equipment that is in mint condition.

What just happened?
After setting your working directory, you encountered a new function. Its syntax differs from 
the commands that we have previously used.

read.csv(file)
In read.csv(file), a period is placed between the function name read and the  
csv attribute. The term csv told the read function that the data in our file contained 
comma-separated values. It is important to distinguish which read function we want to use, 
because it can take on a number of alternative forms, such as read.S and read.SPSS.

The file portion of the read.csv(file) function is similar to dir in setwd(dir). Since 
we placed our data file in our working directory, the file argument needed only to contain 
a file name and extension. Had the data been placed elsewhere, a complete file path would 
have been necessary.

comma-separated values (csv) files
Throughout this book, we will use comma-separated values, or CSV, data files. This is the 
recommended file type for importing data into R. However, you should be aware that R 
can accept data from a wide variety of sources. Therefore, you can typically import from 
whichever sources you may use.
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Pop quiz 
1. What is the key difference between the function arguments dir and file?

a. The dir argument contains a path, whereas the file argument contains a 
filename.

b. The dir argument contains a path to a directory folder, whereas the file 
argument contains a path to a file.

c. Functions beginning with read receive the file argument, whereas functions 
beginning with set receive the dir argument.

d. There is no difference between the dir and file arguments.

Time for action – creating and calling variables
Although reading your data into R allows you to visualize it in the console and use it to make 
hand-typed calculations (as we did in Chapter 3), you generally need a more organized and 
flexible method for manipulating your data. R variables are well suited to accomplish this 
aim. Instead of only reading our resource data into R, let us this time read and store our  
data in a variable:

1.	 Use the following code to store the data from our resource file in a variable  
named hanzhongResources:

> #read the data from hanzhongResources.csv into a variable 
named hanzhongResources
> hanzhongResources <- read.csv("hanzhongResources.csv")

2.	 Note that R did not display any output after step 1 and simply dropped down to the 
next line in the console. To verify the contents of our new variable, we must call it  
by typing its name in the R console.

> #display the contents of the hanzhongResources variable
> #Shu resources located in Hanzhong, China
> hanzhongResources

3.	 R will display the contents of the variable.

You may have noticed that calling your hanzhongResources variable yields the exact same 
output as reading the original CSV file into R. However, the variable is much more efficient, 
because we do not have to type the entire read.csv(dir) code each time we want to 
display its data. Instead, we may simply refer to it by name.
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What just happened?
You have created and called your first variable in R. Variables are essential for storing and 
manipulating data. Each time you create a variable in R, you will follow a similar process to 
the one we just exercised. The four steps in the variable creation process are as follows:

1. Start with the variable name

In our preceding example, hanzhongResources was the name of our 
variable. A name should be the first thing that appears on a new console 
line when creating an R variable.

2. Add less than minus (<-)

After the variable name, the less than minus symbol, or <-, should 
be added. The <- symbol can be thought of as meaning "is set equal 
to the contents of." These characters have the effect of assigning the 
information on their right to the variable name on their left. For example, 
the line > A <- B can be read as "the variable named A is set equal 
to the contents of B." Therefore, in our previous example, we set the 
variable named hanzhongResources equal to the contents of the file 
hanzhongResources.csv.

3. Add the data source

The data source hanzhongResources.csv was used in our example. A 
data source should be the last thing that appears on the console line when 
creating an R variable. Data sources typically take on the form of datasets 
that are read into R, numeric values, or previously created variables.

4. Verify the variable's contents

When executing a line of R code does not yield visible output, as is the  
case when creating a new variable, it is wise to verify the results of our 
actions. To display the contents of a variable, type its name in the R console 
and press the Return key. In our case, entering hanzhongResources  
will yield a console output containing the Shu army's resources located  
in Hanzhong, China.

Pop quiz
1. Which of the following is not an advantage of storing the output of the  

read.csv(file) function as a variable?

a. The variable name is more efficient to type.

b. The variable name is easier to remember.

c. The variable's data is preserved even if the original CSV file is moved or deleted.

d. The variable explicitly states its data source.
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2. Interpret the following R console line in words: 

> myVariable <- myData

a. The variable myVariable is set equal to the contents of myData.

b. The variable myData is set equal to the contents of myVariable.

c. The variable myVariable is less than negative myData.

d. The variable myVariable is greater than zero and less than negative myData.

Have a go hero
You are now familiar with the process behind creating a new data variable in R. The 
soldiersByCity.csv file contains the total number of soldiers located in each major city 
within Shu and Wei territory. Copy this file into your R working directory. Then use the four 
step process to create and verify the contents of a new variable called soldiersByCity. 
This variable should contain all of the data in the soldiersByCity.csv file.

Time for action – accessing data within variables
Both our hanzhongResources and soldiersByCity variables contain a complete set of 
values (as opposed to a single value). We already know that typing a variable's name into R 
will output all of its contents in the console. However, we often need to access the columns, 
rows, and cells within a dataset to perform calculations.

We will start by exploring two methods for accessing the columns in our  
soldiersByCity variable:

1.	 First, we will access the Soldiers column from our soldiersByCity variable 
through R's variable$column notation:

> #isolate a single column within a dataset using the 
variable$column notation.
> #display the contents of the Soldiers column from the 
soldiersByCity variable
> soldiersByCity$Soldiers

2.	 R will display the contents of the Soldiers column, and the result is shown in the 
following screenshot:
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3.	 This time, let us use the attach(variable) function to simplify our operation.

> #isolate a single column within a dataset using the 
attach(variable) function and simplified notation
> #attach the soldiersByCity variable
> attach(soldiersByCity)
> #display the contents of the Soldiers column from the 
soldiersByCity variable
> Soldiers

4.	  R will display the contents of the Soldiers column:

Next, we will access a single row within the soldiersByCity variable:

5.	 Use the variable[row, column] matrix notation to display the contents of the 
tenth row in our soldiersByCity variable:

> #isolate a single row within a dataset using the 
variable[row, column] matrix notation.
> #display the contents of the tenth row in the soldiersByCity 
variable
> soldiersByCity[10,]ty[10,]

6.	 R will display the contents of the tenth row in our soldiersByCity dataset:

7.	 Similarly, we can use matrix notation to access a single cell within our dataset.

Use matrix notation to display the contents of cell [5,3] in our  
soldiersByCity variable:

> #isolate a single cell within a dataset using the 
variable[row, column] matrix notation.
> #display the contents of cell [5,3] in the soldiersByCity 
variable
> soldiersByCity[5,3]
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8.	 R will display the contents of cell [5,3], as shown::

What just happened?
You have just practiced accessing data within a variable from each possible angle, that is,  
by columns, rows, and individual cells. Let us take a closer look at how variable data is 
accessed in R.

variable$column notation
Individual columns within a dataset can be accessed via the variable$column notation. Think 
of the dollar sign ($) as the letter S, as in the word "select." In this way, the notation can be 
read in words. For example, the line > A$B can be read as "from variable A, select column B." 
During our activity, we selected the Soldiers column from the soldiersByCity variable 
by typing the following code in the R console:

> soldiersByCity$Soldiers

attach(variable) function
The attach(variable) function is a convenient way to relieve ourselves of lengthy 
notation in some, but not all, cases. When a variable is attached in the R console, its columns 
can be referred to by name, without the need to identify the variable. For example, after 
we attached soldiersByCity, we could display the contents of the Soldiers column by 
simply typing > Soldiers in the console.

A caveat with the attach(variable) function is that often only a single variable can 
be attached to the R console at a given time. For instance, if we were to attach both our 
hanzhongResources and soldiersByCity variables at the same time, we would run 
into a problem regarding the Soldiers column. Since both of these variables contain 
such a column, R can only refer to the most recently attached version. Accessing the other 
would require the use of variable$column notation. In fact, R will warn you if you attach 
two variables that share a common column name. The following error occurs when the 
soldiersByCity variable is attached, followed by hanzhongResources:
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On the other hand, attaching a variable can be useful and efficient when you are working 
with a single, large dataset. If you are only manipulating data from one variable, then you 
will not run into the demonstrated error. Furthermore, you can always have one variable 
attached, even if you are working with datasets that have identical column names. Of course, 
if your variables do not have columns in common, then attaching them all is an option. In any 
case, you can always refer to columns using variable$column notation, which we will do 
throughout the remainder of this book.

Note that should you ever need to detach a variable, you can use the detach(variable) 
function. This will return the variable to its prior status in the console, as if it had never been 
attached in the first place.

variable[row, column] notation
When referring to row data or individual cells, the variable[row, column] notation should 
be used. For rows, such as when we accessed the tenth row in soldiersByCity via > 
soldiersByCity[10,] the column portion of the notation is omitted. This tells R to 
retrieve all of the columns in the row.

To isolate an individual cell, both a row and column value must be specified. When 
we accessed cell [5,2] from soldiersByCity via > soldiersByCity[5,2] the 5 
represented the cell's row, whereas the 2 defined the cell's column. This is similar to 
selecting a single point from a graph using its x-y coordinates, except the graph in our  
case is a matrix of data values.

On a side note, you may have noticed that variable[row,column] notation can also 
be used to refer to columns. This can be accomplished by leaving the row portion of the 
notation blank. For example, to access the City column in soldiersByCity, we could  
use the code soldiersByCity[,1], this tells R to retrieve every row within the  
City column.

Pop quiz
1. Interpret the following R console line in words: 

> myVariable$myColumn

a. Multiply the data within myVariable by the data within myColumn.

b. Divide the data within myVariable by the data within myColumn.

c. In variable myColumn, select column myVariable.

d. In variable myVariable, select column myColumn.
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2. Under which of the following circumstances is it best not to attach dataset variables 
in the R console?

a. You are working with a single dataset.

b. You are working with multiple datasets that contain identical column names.

c. You are working with multiple datasets that contain identical column names,  
but want to attach only one of them.

d. You are working with multiple datasets that do not contain identical  
column names.

3. The variable[row,column] notation can be used to access data from which of 
the following locations?

a. Rows.

b. Columns.

c. Cells.

d. All of the above.

Time for action – manipulating variable data
Being able to access the information stored in a variable is the initial step towards 
manipulating its data. Variables and their data can be used in the same way that we used 
numbers to perform calculations in Chapter 2. They can be used in mathematical formulas as 
well as in function arguments.

1.	 Use your hanzhongResources variable to calculate the amount of resources that 
the Shu army would have remaining if a flood were to destroy 75% of each resource:

> #if a flood destroyed 75% of the Shu resources at Hanzhong, 
how much of each resource would remain?
> #multiply the hanzhongResources variable by 0.25 to represent 
the remaining 25% of the original resources
> hanzhongResources * 0.25

2.	 R will display the result of the calculation:
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3.	 Now assume that the hypothetical flood only affected the provisions at Hanzhong, 
while all of the other resources remained unharmed. Here, you must perform a 
calculation only on the Provisions column of the hanzhongResources variable:

> #if a flood destroyed 75% of the Provisions at Hanzhong, 
how much would remain?
> #multiply the Provisions column by 0.25 to represent the 
remaining 25% of the original resources
> hanzhongResources$Provisions * 0.25

4.	 R will display the results of the calculation. Note that calculations can be applied in 
the same fashion to rows, columns, and cells.

5.	 Variable data can also be used in function arguments. On a less disastrous note, use 
your soldiersByCity variable to calculate the mean (average) number of soldiers 
stationed in a Shu city:

> #use the mean(data) function to calculate the average number 
of soldiers stationed in a Shu city
> #on average, a Shu city has this many soldiers:
> mean(soldiersByCity$Soldiers)

6.	 R will display the results of the calculation. Note that functions can be applied in the 
same fashion to row, column, or cell data, or entire datasets.

7.	 Moreover, calculation results can be saved into new variables for use at a later 
time. This time, save the calculation from step 5 into a new variable named 
meanSoldiersByCity:

> #save the mean number of soldiers per city into a new 
variable named meanSoldiersByCity
> meanSoldiersByCity <- mean(soldiersByCity$Soldiers)

8.	 R will not return any output. Verify the contents of meanSoldiersByCity by 
entering it into the R console:

> #display the contents of meanSoldiersByCity
> meanSoldiersByCity

9.	  R will display the contents of the meanSoldiersByCity variable:



Chapter 4

[ 53 ]

What just happened?
In just a few lines of code, you have experienced the range of variable manipulations that 
you will use on a regular basis in R. Let us explore each one individually.

Performing a calculation on an entire dataset
When you used your hanzhongResources variable to calculate the consequences of 
a flood across each resource, you discovered that when a variable is manipulated in this 
manner, so is all of its underlying data.

For demonstration, consider the following table with the cell values of 1, 2, 3, and 4 in 
columns a, b, c, and d respectively:

a b c d

1 2 3 4

Suppose that this table is saved in a R variable named lettersAndNumbers. If we were  
to add one to the lettersAndNumbers variable in R, by the following command:

> lettersAndNumbers + 1

Our resulting table would contain the addition of each cell's value and one, as follows:

a b c d

2 3 4 5

As you can see, R will attempt to perform any calculation made on a dataset to each of 
its values. However, it is worth noting that R will not always be able to make a successful 
calculation on every cell in a dataset.

For instance, if we tried to make a numeric calculation on the Kingdom and City columns of 
our soldiersByCity variable, R would return a warning along with an NA or not applicable 
values. This is due to the fact that our Kingdom and City columns contain text and therefore 
it does not make sense to manipulate them numerically. To see this warning in action, enter 
the following lines into the R console:

> #what happens if we try to make a numeric calculation on 
nonnumeric data?
> #we receive a warning, because it does not make sense to 
manipulate text mathematically
> soldiersByCity * 5
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This would result in the following screen:

Here, the Soldiers columns contain numeric values and therefore each value within it is 
successfully multiplied by five. However, the text in the Kingdom and City columns cannot 
be multiplied. Hence, a warning message is returned. To avoid deriving meaningless values 
and upsetting the R console, it is important to be aware of your data and apply appropriate 
calculations to them.

Performing a calculation on a row, column, or cell
Manipulating row, column, or cell data is identical to manipulating an entire dataset 
contained within a variable. The difference is not in the calculation, but rather in what you 
choose to perform the calculation on. Depending on whether you aim to manipulate row, 
column, or cell data, you will need to access the values in the appropriate manner. See the 
Accessing data within variables section of this chapter for a review of these methods.

Using variable data in function arguments
A variable's data, be it from the entire set or a specific subset (row, column, or cell), 
can be used in function arguments. Our preceding activity used the mean(data) 
function to calculate the average number of soldiers among the Shu cities listed in 
our soldiersByCity variable. We could have easily done the same with the entire 
soldiersByCity dataset, a single row, or an individual cell. The best method for using 
variable data in arguments will depend on the goal of the manipulation and the specific 
function being employed.
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Saving a variable calculation into a new variable
Do not forget that a variable's purpose is to store and organize your information. Quite 
often, we will need to store the results of a calculation or function into a new variable 
for subsequent manipulation. The body of variables and other objects that we amass 
throughout our work are stored in the R workspace, which is the topic of our next section.

Pop quiz
The table myTable contains two rows, three columns, and six cells with the numbers one 
through six. Use this table to answer questions 1 and 2.

myTable

1 2 3

4 5 6

1. Consider the following line of code: 

> myTable * 10

If this code were applied to myTable, what would be the result? Write the 
appropriate values in the blank cells of myTableAfterManipulation1:

myTableAfterManipulation1

2. Consider the following line of code:

> myTable[1,2] + 10

If this code were applied to myTable, what would be the result? Write the 
appropriate values in the blank cells of myTableAfterManipulation2:

myTableAfterManipulation2
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3. Interpret the following R console line in words: 

> myVariable <- mean(myData$myColumn)

a. Calculate the mean of myColumn and then set myVariable equal to the result.

b. Calculate the mean of myData and then set myVariable equal to the result.

c. In myData, select myColumn, calculate its mean, and then set myVariable 
equal to the result.

d. Set myVariable equal to the contents of myData and then calculate its mean.

Have a go hero
To practice the variety of methods that we have covered for manipulating variables, use your 
resource data and knowledge of R to complete the following tasks:

1. Suppose you are concerned with the potential of flooding to damage your 
resources. Calculate the amount of resources that would remain if a flood destroyed 
half of each resource stored in your hanzhongResources variable. Save the results 
into a single variable named hanzhongResourcesAfterFlood.

2. To account for a recent relocation of 5000 soldiers from Guanghan to Baxi, subtract 
5000 from the cell representing the number of Guanghan soldiers and add 5000 to 
the cell representing the number of Baxi soldiers in the soldiersByCity variable. 
Save each of these calculations into a new variable. The variables should be named 
guanghanSoldiersAfterRelocation and baxiSoldiersAfterRelocation 
respectively.

3. Use the min(data) and max(data) functions and your soldiersByCity  
variable to calculate minimum and maximum number of soldiers in either 
army by city. Save the results as variables named minSoldiersByCity and 
maxSoldiersByCity respectively.

4.  Use the sum(data) function and your soldiersByCity variable to calculate  
the total number of soldiers in the Shu and Wei armies. Then, save the result as  
a variable named totalSoldiers.

If you encounter a warning or error during any of these tasks, think about how you can 
be more specific about which data you want to apply your calculation or function to. 
For detailed information on handling these occurrences, refer back to the Performing a 
calculation on an entire dataset section of this chapter.
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Time for action – managing the R workspace
The R workspace stores all user-generated objects (variables in our case) that are created 
during a session. Its contents can be saved and loaded for future use.s can be saved and loaded for future use.

1.	 Use the ls() function to display a list of your R workspace contents:

> #list the current contents of the R workspace
> ls()

2.	 R will display a list of the objects in your workspace:

3.	 Use the save.image(file) function to save your R workspace to your working 
directory. The file argument should contain a meaningful filename and the 
.RData extension:

> #save the R workspace to the working directory using 
save.image(file)
> save.image("rBeginnersGuide_Ch_04.RData")rBeginnersGuide_Ch_04.RData")

4.	 R will save your workspace file. Browse to the working directory on your hard drive 
to verify that this file has been created.

5.	 Use the q() command to quit R. Ignore or decline any messages that you receive.

> #quit an R session
> q()

6.	 R will close.
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7.	 Relaunch R by double-clicking on its icon. Then use the ls() command to verify 
that the current workspace is empty:

> #list the current contents of the R workspace
> ls()ls()

You will be presented with the following result:

8.	 Use the load(file) function to load your saved workspace file. The file 
argument should be identical to what you used in step 3:

> #load a previously saved R workspace using load(file)
> load("rBeginnersGuide_Ch_04.RData")

9.	 Use the ls() command to verify that the saved contents are now contained in  
the R workspace:

> #list the current contents of the R workspace
> ls()

What just happened?
You just exercised the primary workspace management functions that you will need to  
carry your work through multiple R sessions. These included listing, saving, and loading  
the contents of your R workspace.

Listing the contents of the R workspace
The R workspace contains every object that you have created during an R session. Up to 
this point, our objects have taken the form of variables that either read data from CSV files 
or store the results of calculations. The ls() function can be called at any time to list the 
contents of your R workspace.
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Saving the contents of the R workspace
To save the R workspace, use the save.image(file) function. Since we were operating 
within our R working directory, the file argument needed only to contain our desired 
filename and the .Rdata extension. Alternatively, if you were to save your workspace to 
a different location on your hard drive, then you would need to enter a complete path in 
the file argument. Be sure to always include the .Rdata extension when saving your 
workspace, as it is necessary for R to be able to recognize the file when loaded.

Loading the contents of the R workspace
To load an R workspace file, use the load(file) function. Here, the file argument is 
identical to the one received by the save.image(file) function. Hence, if the file you 
want to load is contained within your working directory, you need only to use the file name 
and .RData extension. If it is housed elsewhere, then you will need to use a complete  
file path.

Note that, depending on your version of R, saving and loading of the R workspace can be 
automated on launch or quit, or accomplished by clicking through the menu options. You 
may want to explore the available menu choices and preference settings available to you. 
This will let you configure R to best suit your workflow. Nevertheless, it is recommended that 
you continue to use the R console to manage your workspace, because it gives you complete 
control over your work.

Quitting R
As you have witnessed, the q() command can be used to exit R. You can, of course, use 
menu options, keyboard commands, or other methods available on your computer to quit R.

Unless you have specifically told R to save your workspace on exit, all of its contents will be 
lost. Remember to save your workspace before quitting R.

Distinguishing between the R console and workspace
When you relaunched R and loaded your saved workspace file in the preceding activity, 
you may have noticed that the contents of your R console were not retrieved. This reveals 
an important distinction between the R console and the R workspace. Essentially, the 
workspace stores all of your objects, whereas the console contains a log of everything  
that has been done to and with those objects.
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Consider the act of watching a movie in a theater as an analogy to demonstrate the 
relationship between the workspace and console. The audience members, movie screen, and 
chairs are all located within the same room (the workspace). Everything that these entities 
do—sneeze, laugh, chomp, display the movie, get chewing gum stuck to them—is recorded 
in the history of the movie experience (the console).

Thus, the workspace contains objects (such as the people in a movie theater) and the 
console logs the interactions between them (such as one patron spilling popcorn on the 
head of another).

Saving the R console
Since the console is not saved along with the workspace, you may be wondering how you 
can preserve the information logged in the R console during a session. While there is no 
function available in R that allows us to save its contents, we do have other options.

One is to copy and paste the R console into a text editor. Another, depending on your version 
of R, may be to use the menu to save a copy of your console as a text file. These are the 
preferred techniques for capturing the R console, although you may be able to think of 
alternative methods.

In any event, it is highly recommended that you save the R console at the end of every 
session. Having the log of your previous work can be invaluable to the prevention of rework 
and to informing your future work. It can also help you organize and remember everything 
about your current project, especially when you have a large amount of data and many 
objects to manage.

Pop quiz
1. When saving the R workspace, which of the following extensions should  

you include?

a. .txt

b. .R

c. .RData

d. No extension is necessary
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2. Which of the following best describes the relationship between the R console and 
the R workspace?

a. The R workspace and R console can both be saved using the  
save.image(file) function.

b. The contents of the R workspace and R console can both be displayed using the 
ls() function.

c. The R console stores objects, whereas the R workspace logs the actions related 
to those objects.

d. The R workspace stores objects, whereas the R console logs the actions related 
to those objects.

3. Which of the following is not an option for saving the R console?

a. Using a built-in R function.

b. Copying the console contents into a text editor.

c. Using the R menu options to save the console as a text file.

d. Taking a screenshot of the R console.

Have a go hero
Your final challenge for this chapter will be to collect and organize the remaining portions of 
Zhuge Liang's resource data. This will entail reading CSV data into R, creating new variables, 
accessing and manipulating variable data, and saving your R workspace and console. 
Demonstrate your mastery of these concepts by preparing historic battle data for analysis 
through the following actions:

1. The battleHistory.csv file contains data from 120 previous battles between the 
Shu and Wei forces. Read these data into an R variable named battleHistory.

2. Use the data imported in step 1 to answer the following question. What is the 
average number of soldiers to engage in combat for both the Shu and Wei 
forces? Save your results into separate variables, named meanSoldiersShu and 
meanSoldiersWei respectively.

3. Save the contents of your R workspace into a new file named  
rBeginnersGuide_ch_04_hero.RData.

4. Save the contents of your R console into a new text file named  
rBeginnersGuide_ch_04_hero.txt.

Feel free to refer back to the previous sections in this chapter for assistance with collecting 
and organizing this information.
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Summary
Throughout this chapter, you deeply explored methods for collecting and organizing your 
data in R. These techniques are critical to your success as a strategist and an analyst. Being 
able to manage your data efficiently and effectively is key to simplifying your workflow and 
making your results intelligible to others. While collecting and organizing your data, you 
acquired the skills necessary to:

Import external data into R

Use variables to organize and manipulate your data

Manage your R workspace

Now that your data are prepared, you can begin to assess the military challenges that await 
the Shu forces. In Chapter 5, we will weigh the potential combat options available to the Shu 
army. It is up to you to set forth a prudent course of action.









5
Assessing the Situation

With our data prepared for analysis, we can now consider the potential combat 
options available to the Shu army. Ultimately, you have the responsibility to use 
these data to make practical and meaningful decisions about future courses of 
action. To achieve success, you will need to fully consider the situation and form 
a sound basis for reasoned decision-making. This requires you to build upon the 
techniques that we practiced in Chapter 4 and to explore new ones in R.

In this chapter, we will focus on assessing the information that is available to us and using it 
to weigh potential decisions. By the end of this chapter, you will be able to:

Use multi-argument and variable-argument functions to perform calculations

Create predictive models using regression analysis

Consider the statistical and practical significance of your analyses

Time for action – making an initial inference from our data
In Chapter 4, we saved our R workspace for the first time. As you saw in the previous chapter, 
we can use the load(file) function to continue where we left off.

You also created variables to hold the mean number of soldiers engaged for the Shu and 
Wei forces, based on historical data from 120 battles between the kingdoms. Let us make an 
initial inference about these values:

1.	 Open R and set your working directory, as follows:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")
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2.	 Load the Chapter 5 workspace. It contains the information that we generated in 
Chapter 4 and will continue to work on in this chapter:

> #load the chapter 5 workspace

> load("rBeginnersGuide_Ch_05_ReadersCopy.RData")
> #verify the contents of the workspace
>ls()

3.	 Display the mean number of Shu and Wei soldiers engaged in past battles. We saved 
these values into variables in the previous chapter.

> #mean number of Shu soldiers engaged in battle
> meanSoldiersShu
[1] 21035.83
> #mean number of Wei soldiers engaged in battle
> meanSoldiersWei
[1] 21937.5

4.	 Calculate the ratio of mean Wei soldiers to Shu soldiers and save it to a new variable 
named meanSoldierRatioWeiShu. Then display the result:

> #ratio of mean Wei soldiers to Shu soldiers
> meanSoldierRatioWeiShu <- meanSoldiersWei / meanSoldiersShu
> #display the contents of meanSoldierRatioWeiShu
> meanSoldierRatioWeiShu
[1] 1.042863

5.	 Predict the number of Wei soldiers that would engage in combat if the Shu prepared 
100,000 soldiers for battle:

> #how many Wei soldiers would we expect to engage in battle if 
our Shu forces numbered 100,000?
> 100000 * meanSoldierRatioWeiShu
[1] 104286.3

What just happened?
After preparing R, we used our historic battle data to calculate the ratio of the mean Wei 
soldiers engaged in past conflicts to the mean number of Shu soldiers. The ratio value of 1.04 
suggests that the Wei army brings roughly 4% more soldiers into battle than Shu does on 
average. We can use this ratio in our predictions and plans for future battles. In general, we 
expect the Shu army to be outnumbered regardless of the conflict. Inferences like this one 
may have implications for the combat strategies that we choose to employ.
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Examining our data
Before we move into deeper analyses, let us take a moment to examine our battle history 
data. This will help us better understand the information that we are working with. Display 
the contents of your battleHistory variable by entering its name into the R console:

> #display all of our battle history data
> battleHistory

 
 

Note that only the first 10 of the total 120 rows are shown here

As you can see, our dataset is composed of seven columns, each containing valuable 
information about past battles between the Shu and Wei forces:

Method: contains the type of battle technique employed. These are headToHead, 
surround, ambush, and fire.

Rating: contains a measure of the Shu army's performance on a scale from 0 
to 100. After each battle, Zhuge Liang rated the Shu army to keep a record of its 
performance under diverse combat conditions.

SuccessfullyExecuted: contains a yes (Y) or no (N) value indicating whether the 
battle method was executed successfully.

Result: tells us whether the battle ended in Victory or Defeat.

ShuSoldiersEngaged: presents the number of soldiers who engaged in combat 
for the Shu army during each battle.

WeiSoldiersEngaged: is identical to ShuSoldiersEngaged, but for the  
Wei forces.

DurationInDays: indicates how long each battle lasted, in days.

Overall, data from 120 battles are included, with each combat method represented 30 times. 
Now that we are more aware of our data, let us begin analyzing it in more detail.
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Time for action – creating a subset from a large dataset
We will start by assessing the feasibility of head to head combat with the Wei army. Since 
we have past data related directly to head to head battles, we should specifically target this 
information in order to best address the method's prospects. Currently, those data are part 
of a large set that also contains information on other methods. However, we can use the 
multi-argument function subset(data, ...) to isolate our head to head combat data and 
simplify our analysis of this strategy:

1.	 Create a subset of data using the subset(data, ...) function and save it to a 
new variable named subsetHeadToHead:

> #use the subset(data, ...) function to create a subset from a 
larger dataset
> #create a subset that isolates our head to head combat data
> subsetHeadToHead <- subset(battleHistory, battleHistory$Method 
== "headToHead")

2.	 Verify the contents of the new subset. Note that the console should return thirty 
rows, all of which contain headTohead in the Method column:

> #display the contents of the head to head subset
> subsetHeadToHead
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What just happened?
In the one console line that it took to create a subset of our data, you encountered your first 
multi-argument (and variable-argument) function in the R language.

Multi-argument functions
You were first introduced to functions in Chapter 2. There, the date() function received no 
arguments and output the current date and time in the R console. Shortly after, you used 
setwd(dir) and getwd(dir) to set and retrieve your R working directory. Both of these 
functions received a single argument. With subset(data, ...) you have used your first 
multi-argument function. Further, subset(data, ...) represents a variable-argument 
function, meaning that the exact number of arguments it receives can be different depending 
the circumstance. In our example, we used two arguments. However, we could have used 
more arguments to further specify our subset. For instance, we could have added an 
additional argument to our subset(data, ...) function that told R to include only  
certain columns in its output. 

Variable-argument functions
Any time that you see ellipsis (...) in an R function, you know that it accepts a variable 
number of arguments. In contrast, some multi-argument functions, such as cor(x, y, use, 
method) for correlations, accept no more and no less than a specific number of arguments. 
However many others, such as plot(x, y, ...) for scatterplots, can accept relatively few 
or many arguments, depending on the situation.

Equivalency operators
In the second argument of our subset(data, ...) function, we employed the 
equivalency operator. It is formed by two consecutive equals signs (==). This operator 
evaluates the equivalency of two statements, the one to its left and the one to its right. If the 
statements are equal, then the argument is deemed True. If not, it is considered False.

Conversely, the non-equivalency operator, which is formed by an exclamation point joined 
with a single equals sign (!=), tests to see if two statements are not equal. If they indeed are 
not, then the argument is deemed True, otherwise False.

subset(data, ...)
Our implementation of the subset(data, ...) function made use of two arguments. The 
first referred to our data source, the battleHistory variable. The second specified the 
exact data that we wanted to pull from that source.

> subsetHeadToHead <- subset(battleHistory, battleHistory$Method
 == "headToHead")
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In our case, we wanted to include battles only if they employed the head to head combat 
method. To clarify this operation, let us dissect the second argument.

battleHistory$Method == "headToHead"

You should already be familiar with the left-hand segment, which selects the Method 
column from the battleHistory dataset. By using the equivalency operator (==) and 
"headToHead", we are telling our function to select only the rows in the Method column 
that contain a value of headToHead. In words, this argument can be read as "in the 
battleHistory dataset, select rows from the Method column only if they have a value 
of headTohead." Hence, our resulting subset yielded only the 30 rows from our original 
dataset that contained the head to head combat method.

Pop quiz
1. What does an ellipsis (...) mean when encountered inside an R function definition?

a. The function accepts a single argument.

b. The function accepts multiple arguments.

c. The function accepts a specific number of arguments.

d. The function accepts a variable number of arguments.

2. Interpret the following argument of the subset(data, ...) function in words: 
battleHistory$Result != "Victory"

a. In the battleHistory dataset, select rows from column Result only if they 
do not have a value of Victory.

b. In the battleHistory dataset, select rows from column Result only if they 
have a value of Victory.

c. In the battleHistory dataset, select cells from column Result only if they 
do not have a value of Victory.

d. In the battleHistory dataset, select cells from column Result only if they 
have a value of Victory.

Have a go hero
Now that you are familiar with extracting information from large datasets, use the 
subset(data, ...) function to create subsets for each of the remaining battle  
methods—surround, ambush, and fire. Save each of these subsets into new variables,  
named subsetSurround, subsetAmbush, and subsetFire respectively.
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Time for action – deriving summary statistics
A sound way to initiate a deep data analysis is by deriving summary, or descriptive, 
statistics. These include simple, although highly informative, calculations such as means, 
standard deviations, and ranges, amongst others. Summary statistics are excellent for 
revealing overarching trends and patterns in a dataset. They provide us with a global 
understanding of our data.

For all calculations, we will store our summary statistics in new variables. For the time being, 
we will continue to focus on our head to head combat data.

1.	 Calculate the means, as shown in the following example:

> #use mean(data) to calculate the mean of a given dataset
> #what was the mean number of Shu soldiers engaged in past
head to head conflicts?
> meanShuSoldiersHeadToHead <-
mean(subsetHeadToHead$ShuSoldiersEngaged)
> #what was the mean number of Wei soldiers engaged in past 
head to head conflicts?
> meanWeiSoldiersHeadToHead <- 
mean(subsetHeadToHead$WeiSoldiersEngaged)
> #what was the mean duration (in days) of past head to head 
conflicts?
> meanDurationHeadToHead <- mean(subsetHeadToHead$DurationInDays)

2.	 Display each of your mean variables in the R console:

> #display the calculated means
> meanShuSoldiersHeadToHead
[1] 31341.67
> meanWeiSoldiersHeadToHead
[1] 33833.33
> meanDurationHeadToHead
[1] 77.9333333

3.	 Calculate the standard deviations, and consider the following:

> #use sd(data) to calculate the standard deviation of a
given dataset
> #what was the standard deviation of Shu soldiers engaged in past
head to head conflicts?
> sdShuSoldiersHeadToHead <-
sd(subsetHeadToHead$ShuSoldiersEngaged)
> #what was the standard deviation of Wei soldiers engaged in
past head to head conflicts?
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> sdWeiSoldiersHeadToHead <-
sd(subsetHeadToHead$WeiSoldiersEngaged)
> #what was the standard deviation of duration (in days)
in past head to head conflicts?
> sdDurationHeadToHead <- mean(subsetHeadToHead$DurationInDays)

4.	  Display each of your standard deviation variables in the R console:

> #display the calculated standard deviations
> sdShuSoldiersHeadToHead
[1] 31320.13
> sdWeiSoldiersHeadToHead
[1] 41192.22
> sdDurationHeadToHead
[1] 77.93333

5.	 Calculate the ranges, as shown in the following:

> #use range(data, ...) to calculate the range of a given dataset
> #what was the range of Shu soldiers engaged in past head to
head conflicts?
> rangeShuSoldiersHeadToHead <-
range(subsetHeadToHead$ShuSoldiersEngaged)
> #what was the range of Wei soldiers engaged in past head to
head conflicts?
> rangeWeiSoldiersHeadToHead <- 
range(subsetHeadToHead$WeiSoldiersEngaged)
> #what was the range of duration (in days) of past head to
head conflicts?
> rangeDurationHeadToHead <-
range(subsetHeadToHead$DurationInDays)

6.	 Display each of your range variables in the R console:

> #display the calculated ranges
> rangeShuSoldiersHeadToHead
[1] 250 100000
> rangeWeiSoldiersHeadToHead
[1] 500 200000
> rangeDurationHeadToHead
[1] 30 120
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7.	 Display a general summary of the data:

> #use the summary(object) function to generate a summary
of a given object
> #general summary of our head to head combat data
> summaryHeadToHead <- summary(subsetHeadToHead)

8.	 Display your summary variable in the R console. Your values should match the ones 
pictured in the following screenshot:

> #display the head to head subset summary
> summaryHeadToHead

What just happened?
Through summary statistics, we have gained insights on the overall patterns in our data. Let 
us take a moment to discuss each one individually.

Means
You are already familiar with calculating means from our previous chapter. Here, we looked 
specifically at the mean soldier engagement and battle durations for past head to head 
conflicts. Again we see that the Wei forces tend to outnumber the Shu in battle. The average 
head to head battle has lasted 78 days.

Standard deviations
A standard deviation helps to depict the amount of variability present in a collection of data. 
The sd(data) function can be used to calculate the standard deviation of a given dataset. 
In our soldier engagement data, the Wei army had a higher standard deviation than the Shu 
army. This indicates that the Wei forces tended to enter battle with a more variable number 
of soldiers than the Shu forces. Since the Wei army usually outnumbered the Shu in past 
battles, it is expected that its standard deviation would be larger.
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Ranges
The range of a dataset is composed of its minimum and maximum values. By using the 
range(data) function in R, we can list the minimum and maximum values of our data in a 
single command. Similar to the standard deviations, the Wei have a wider range of soldiers 
engaged than the Shu. This is a predictable outcome considering the Wei forces' larger 
numbers. The duration of past head to head conflicts ranged from 30 to a 120 days.

Note that individual minimums and maximums can also be calculated 
using the min(data) and max(data) functions.

summary(object)
You also employed one of the most useful and versatile functions available to the R language. 
The summary(object) function generates descriptive statistics and other relevant 
calculations for an object automatically. In our case, the object was a dataset and our 
descriptive statistics included means, sums, medians, quartiles, minimums, and maximums. 
The wonderful thing about R's summary function is that it can be used on nearly any object. 
Depending on the type of object, the summary function will yield output that is relevant to 
that object. Therefore, it is not only a fast way to get an overall picture of your data, but it 
can be used in numerous situations. You should use summary(object) often, especially 
when you are beginning to analyze a dataset or want to inspect a newly created object.

Why use summary statistics?
You probably noticed that some of our summary statistic calculations yielded unsurprising 
and predictable results. This is not, however, reason to discount their value or an argument 
for abandoning them. In fact, using summary statistics to confirm that our data are normal  
is an essential early step in the data analysis process. In contrast, any value that stands out  
as peculiar in our summary statistics warrants further inspection. When this occurs, we  
may have discovered erroneous or outlying data points, or possibly counterintuitive  
or unforeseen trends and patterns.

For instance, the median duration of head to head battles (91 days) is noticeably higher than 
the mean duration (78 days). This may indicate that most battles tend to last on the longer 
side of our 30 to 120 day duration range and that our mean is being skewed downward by a 
small number of brief battles. By looking back at our head to head subset, we can confirm or 
deny this observation.
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Pop quiz
1. What is the major purpose of the summary(object) function in R?

a. To provide summary statistics relevant to a given variable.

b. To provide summary statistics relevant to a given dataset.

c. To provide summary statistics relevant to a given object.

d. To provide summary statistics relevant to a given subset.

2. Which of the following is not a benefit of summary statistics?

a. Summary statistics help provide overview information on a dataset.

b. Summary statistics help answer very detailed questions about a dataset.

c. Summary statistics help to validate a dataset.

d. Summary statistics help to expose potential areas of concern and interest within 
a dataset.

Have a go hero
Now that you are familiar with deriving summary statistics, calculate the means, standard 
deviations, and ranges for each of the remaining battle methods—surround, ambush, and 
fire. Also generate a summary of each subset. Follow a similar console structure and naming 
convention that we used with our head to head combat data. For example, you should create 
the following variables using your ambush data:

meanShuSoldiersAmbush, meanWeiSoldiersAmbush, meanDurationAmbush

sdShuSoldiersAmbush, sdWeiSoldiersAmbush, sdDurationAmbush

rangeShuSoldiersAmbush, rangeWeiSoldiersAmbush, 
rangeDurationAmbush

summaryAmbush

Time for action – quantifying categorical variables
Categorical or nominal data is information that is classified into nonnumeric levels. Two 
pertinent columns in our battle history dataset, and subsequently our head to head combat 
subset, are represented by categorical data. These are the SuccessfullyExecuted 
(categorized as Y or N) and Result (categorized as Victory or Defeat) columns. A 
major benefit of categorical data is that it represents information in a very practical and 
understandable manner. However, categorical data is not well-suited for quantitative data 
analysis. Fortunately, R is able to recode categorical data in numeric form, thus allowing us  
to analyze it quantitatively.
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Let us proceed through the steps required to recode our SuccessfullyExecuted and 
Result columns and save them as numeric variables:

1.	 Recode the SuccessfullyExecuted column using as.numeric(data), as can 
be seen in the following:

> #represent categorical data numerically using as.numeric(data)
> #recode the SuccessfullyExecuted column into N = 1 and Y = 2
> numericExecutionHeadToHead <-
as.numeric(subsetHeadToHead$SuccessfullyExecuted)

2.	 Display the contents of your numeric variable in the R console.

> #display the contents of numericSuccessfullyExecutedHeadToHead
> numericExecutionHeadToHead
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Note that if you prefer your categorical variables to begin with 
a value of zero, as in N = 0 and Y = 1, then you should subtract 
one from our statement in step 1.

3.	 Recode the SuccessfullyExecuted column so it begins with a value of zero.

> #recode the SuccessfullyExecuted column into N = 0 and Y = 1
> #by default, R recodes variables alphabetically from 1 to n,
so subtract one to offset the coding from 0 to n
> numericExecutionHeadToHead <-
as.numeric(subsetHeadToHead$SuccessfullyExecuted) - 1

4.	 Display the contents of your revised variable in the R console:

> #display the contents of numericExecutionHeadToHead
> numericExecutionHeadToHead
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5.	 Recode the Result column using as.numeric(data):

> #recode the Result column into Defeat = 0 and Victory = 1
> numericResultHeadToHead <- as.numeric(subsetHeadToHead$Result)
- 1

6.	 Display the contents of your numeric variable in the R console:

> #display the contents of numericResultHeadToHead
> numericResultHeadToHead
[1] 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1
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What just happened?
You have represented your categorical columns (SuccessfullyExecuted and Result) 
from the head to head combat dataset as numeric variables, thereby preparing them for 
quantitative analysis. During this process, you encountered the as.numeric(data) 
function and exercised your ability to overwrite variables.

as.numeric(data)
The as.numeric(data) function is used to represent nonnumeric data in numeric  
terms. For example, we used as.numeric(data) to convert our N and Y text values  
from the SuccessfullyExecuted column into the numbers 0 and 1 respectively,  
using the following:

> numericExecutionHeadToHead <-
as.numeric(subsetHeadToHead$SuccessfullyExecuted) - 1

Similarly, we used as.numeric(data) to code our Result column text of Defeat and 
Victory into the numbers 0 and 1:

> numericResultHeadToHead <- as.numeric(subsetHeadToHead$Result) - 1

Although our data contained only two categories, note that the 
as.numeric(data) function is capable of handling any number 
of levels. For instance, it would be able to code a variable containing 
levels for low, medium, and high as 0, 1, and 2.

Overwriting variables
In step 1 of our activity, we originally recoded our SuccessfullyExecuted 
column using values of N as 1 and Y as 2 and saved the results into a variable called 
numericExecutionHeadToHead, this was done by the following command:

> numericExecutionHeadToHead <- 
as.numeric(subsetHeadToHead$SuccessfullyExecuted)

Then, in step 3, we recoded the column using values of N as 0 and Y as 1 and then saved the 
results into a variable with the same name of numericExecutionHeadToHead:

> numericExecutionHeadToHead <- 
as.numeric(subsetHeadToHead$SuccessfullyExecuted) - 1
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While this was a seamless process that occurred without interruption, it demonstrates an 
important property of R variables. That is, R variables can be reassigned to new values. 
When a variable is overwritten in this manner, it assumes a new value and abandons its 
previous one. So, after step 3, our numericSuccessfullyExecutedHeadToHead variable 
represented N and Y as 0 and 1 and ceased to depict the values as we had defined them  
in step 1.

To demonstrate this point, consider variable A, which has yet to be assigned a value. Once 
we execute the line:

> A <- 1

Variable A will take on a value of 1 in the preceding line. If we were then to enter the line:

> A <- 2

Variable A would take on a value of 2 in the preceding line. Its previous contents would be 
overwritten and therefore forgotten.

Pop quiz
1. What values would represent N and Y in the SuccessfullyExecuted column if it 

were recoded using the following line?

> as.numeric(as.numeric(subsetHeadToHead$SuccessfullyExecuted) + 5

a. N = 0 and Y = 1

b. N = 1 and Y = 2

c. N = 5 and Y = 6 

d. N = 6 and Y = 7

2. What would be the value of variable A after the following lines were executed in the 
R console?

> A <- 0
> A <- 1
> A <- 2
> A <- 3

a. 3

b. 2

c. 1

d. 0
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Have a go hero
Now that you have quantified your first categorical variables, proceed to recode the 
SuccessfullyExecuted and Result columns for each of the remaining battle  
methods—surround, ambush, and fire. Follow a similar console structure and naming 
convention that we used with our head to head combat data. For example, you should  
create the following variables with your ambush data:

numericExecutionAmbush

numericResultAmbush

Time for action – correlating variables
Correlations tell us how well two variables relate to each other. As with summary statistics, 
calculating the correlations between variables in our dataset is a fast and easy way to acquire 
an initial understanding of our data. 

Let us use correlations to investigate a few of the relationships in our head to head  
battle data:

1.	 Calculate the correlation between Rating and Result. Be sure to use the numeric 
version of the Result column in your calculation:

> #use cor(x,y) to calculate the correlation between two variables
> #remember only to use numeric values when calculating
correlations
> #How is the performance rating of the Shu army related to the 
outcome of a head to head battle?
> corRatingResultHeadToHead <- cor(subsetHeadToHead$Rating, 
numericResultHeadToHead)

2.	 Display the value of your correlation in the R console:

> #display the value of the correlation
> corRatingResultHeadToHead
[1] 0.94952329495232

3.	 Calculate the correlation between ShuSoldiersEngaged and 
WeiSoldiersEngaged:

> #How is the number of Shu soldiers engaged in a head to head 
battle correlated with the number of Wei soldiers engaged?
> corShuWeiSoldiersHeadToHead <- 
cor(subsetHeadToHead$ShuSoldiersEngaged, 
subsetHeadToHead$WeiSoldiersEngaged)
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4.	 Display the value of your correlation in the R console:

> #display the value of the correlation
> corShuWeiSoldiersHeadToHead
[1] 0.7653596

5.	 Calculate the correlations between (almost) all of the variables in the dataset:

> use cor(data) to calculate the correlation between all 
numeric variables in a dataset
> #How are all of our numeric battle data correlated with 
one another?
> corHeadToHead <- cor(subsetHeadToHead)

6.	  Display the values of your correlations in the R console, by using the following:

> #display the correlations
> corHeadToHead

What just happened?
We calculated just a few correlations to get an idea of how they can be derived in R. This 
entailed using the cor() function in two different ways.

Interpreting correlations
Correlations range in value from negative one (-1) to positive one (1). A value of negative 
one means that two variables are perfectly negatively correlated. That is, a high value in one 
is associated with a low value in the other, and vice versa. On the other hand, a correlation 
of positive one indicates that two variables are perfectly positively correlated. As such, 
high values in one are associated with high values in the other, and vice versa. Further, a 
correlation of zero indicates that two variables are perfectly uncorrelated. This means that 
their values do not associate with one another. Of course, these extreme correlational values 
are rare. Most correlations will fall somewhere between negative one and zero or zero and 
positive one.
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Here are a few examples that demonstrate how to interpret correlations:

A correlation of 0.12 between A and B suggests a relatively weak positive 
relationship exists between the variables. If A were to decrease by a certain  
amount, we would only expect a small decrease in B.

A correlation of -0.87 between A and B suggests a relatively strong negative 
relationship exists between the variables. If A were to increase, we would  
expect a B to decrease by proportionally similar amount.

A correlation of 0.00001 between A and B suggests that the variables are 
uncorrelated. Therefore, movements in A would not be expected to associate  
with movements in B.

An important final note on correlation is that it should never be 
interpreted as causation. Correlation merely tells us that our variables 
tend to move with each other in a certain way. Yet, we cannot 
determine which, if either, of the correlated variables causes the 
change in the other. Therefore, correlations inform us about what is 
occurring between our variables, but cannot tell us why it is happening.

cor(x, y)
The cor(x,y) function is used to calculate the correlation between two variables, x and y. 
For instance, to calculate the correlation between variable A and variable B, we would use 
the following code:

> cor(A, B)

We looked directly at two correlations. First, we found the correlation between the 
performance rating of the Shu army and the outcome of head to head battles to be 0.95. This 
correlation suggests that victory or defeat in a given head to head battle had a large impact 
on Zhuge Liang's rating of the army's performance in that conflict.

Next, we calculated the correlation between the number of Shu and Wei soldiers engaged 
in head to head battles. Here, we found a relatively strong positive correlation of 0.77. This 
suggests that the number of soldiers that one army engages in combat is highly related to 
the size of the opposing army. This is logical, because we would expect an army's size in a 
given battle to be closely related to (but not necessarily determined by or equal to) the size 
of the opposing army.
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cor(data)
The same correlation function can be used in a different way. Instead of providing x and y 
variables to calculate a single correlation via cor(x, y), we can calculate all of the possible 
correlations in a dataset using cor(data). For example, to find the correlations for all of the 
numeric variables in dataset A, we would use the following code:

> cor(A)

This use of the cor() function yields a correlation table, similar to the one that we 
generated for our head to head dataset.

To read a value from this table, match a row name on the left-hand side with a column 
name across the top. At the intersection, you will find the correlation between the 
two variables. For instance, if you traced from ShuSoldiersEngaged on the left to 
WeiSoldiersEngaged on the top, you would encounter the correlation of 0.77 that  
we had previously calculated using cor(x,y).

NA values
A critical limitation of the cor(data) technique is that only numeric variables in a 
dataset can be correlated. You probably noticed that several NA values were reported 
in the correlation table of our head to head dataset. These occur because our 
SuccessfullyExecuted and Result columns consisted of nonnumeric data. Therefore 
they could not be correlated and R returned NA values. To correlate nonnumeric values, as 
we did with Result in step 1, they must first be recoded as numeric.

See the Quantifying categorical variables section of this chapter for a 
demonstration of how to recode nonnumeric data in numeric form.

You may run into NA values in other aspects of your R work. When these occurs, it is a good 
idea to check your data to make sure that they are in the proper format for the function or 
calculation that you wish to employ.
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Pop quiz
1. What is the key difference between cor(x,y) and cor(data)?

a. The cor(x, y) variation calculates all of the correlations in a dataset, whereas 
cor(data) calculates a single correlation between two variables.

b. The cor(x, y) variation calculates a single correlation between two variables, 
whereas cor(data) calculates all of the correlations in a dataset.

c. The cor(x, y) variation calculates all of the correlations between two 
datasets, whereas cor(data) calculates all of the correlations in a  
given dataset. 

d. The cor(x, y) variation calculates all correlations between two variables, 
whereas cor(data) calculates all correlations for a given variable.

2. Interpret a correlation of -0.25 between the variables A and B.

a. A and B are negatively correlated. For every one unit increase in A, B will 
decrease by 0.25 units.

b. A and B are negatively correlated. For every one unit decrease in A, B will 
decrease by 0.25 units

c. A and B are negatively correlated. We would expect an increase in A to be 
accompanied by a proportionally small increase in B.

d. A and B are negatively correlated. We would expect an increase in A to be 
accompanied by a proportionally small decrease in B.

Have a go hero
You may have noticed that all of the points in our head to head combat dataset have a 
value of Y for SuccessfullyExecuted, which prevents us from correlating it with other 
variables. This is because the Shu forces can engage in head to head combat at will and 
without some variation in the values for execution, a correlation is incalculable.

In contrast, our surround, ambush, and fire attack methods greatly depend on successful 
execution. Try correlating the Rating column with the SuccessfullyExecuted column  
in each of these battle methods. Then, interpret your findings.

Afterwards, use cor(data) to visualize all of the correlations in your datasets. Interpret 
these correlations and take note of any that stand out as expected or unexpected. By 
investigating correlations, you are becoming ever more aware of you data.



Assessing the Situation

[ �2 ]

Regression
We can use regression analysis to inform our predictions. Regression analysis is a data 
modeling technique that helps us understand how different variables change with one 
another. A regression model must incorporate at least one dependent (or outcome) and 
independent (or predictor) variable, although several of both can be included. We can use 
regression models to predict outcomes based on the data that is available to us. As the Shu 
strategist, you will be predicting your army's performance in battle across different courses 
of action, based on what you know about past conflicts.

Note that the regression models we create will predict the Shu army's future 
performance rating based on several conditions of battle. Recall that the past 
battle ratings were recorded by Zhuge Liang, who was an expert in assessing the 
army's combat performance. Therefore, Zhuge Liang's ratings can be considered 
a valid measure for predicting future performance, since they are equivalent to 
the actual performance of the Shu forces.

While it is technically possible to directly predict the result of battle (victory or 
defeat) from our dataset, this would require the use of advanced regression 
techniques that are beyond the scope of this book. Thus, we will focus on 
predicting outcomes based on performance ratings via the most common 
regression methods.

Time for action – modelling with simple linear regression
Simple linear regression is the most basic form of regression analysis. It uses a single 
independent variable to predict the outcome of a single dependent variable.

To begin experimenting with regression analysis in R, let us create a simple linear model from 
our head to head combat data:

1.	 Use the lm(formula, data) function to create a linear regression model where 
Rating is the dependent variable and ShuSoldiersEngaged is the independent 
variable. This is done as follows:

> #create a linear regression model using the lm(formula, data)
> #predict the rating of a head to head battle using the number 
of Shu soldiers engaged
> lmHeadToHeadRating_ShuSoldiers <- lm(subsetHeadToHead$Rating ~ 
subsetHeadToHead$ShuSoldiersEngaged, subsetHeadToHead)
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2.	 Display the contents of your linear model variable in the R console:

> #display the contents of the model
> lmHeadToHeadRating_ShuSoldiers

3.	 Create a summary of the model, as follows:

> #create the model summary
> lmHeadToHeadRating_ShuSoldiers_Summary <- 
summary(lmHeadToHeadRating_ShuSoldiers)

4.	  Display the contents of your linear model summary in the R console:

> #display the model summary
> lmHeadToHeadRating_ShuSoldiers_Summary

What just happened?
Your first linear regression model yielded quite a bit of information. Let us look at how to 
use the lm(formula, data) function as well as how to interpret the information that it 
provides to us.
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lm(formula, data)
The lm(formula, data) function is used to create a linear regression model. The 
formula argument takes on the following structure:

dVar ~ iVar1 + iVar2 + ... + iVarn

Here, dVar is the dependent variable and iVar1 through iVarn are independent variables. 
While our initial model used a single independent variable, the linear model function is 
capable of accepting as many as we need. The data argument contains the dataset from 
which our variables are taken. Hence, the basic composition of the lm(formula, data) 
function resembles the following:

lm(dVar ~ iVar1 + iVar2 + ... + iVarn, data)

In our simple linear regression model, Rating acted as the dependent variable and 
ShuSoldiersEngaged took on the role of the independent variable, as shown:

> lmHeadToHeadRating_ShuSoldiers <- lm(subsetHeadToHead$Rating ~ 
subsetHeadToHead$ShuSoldiersEngaged, subsetHeadToHead)

Linear model output
Together, we formed a linear model that regressed the Shu army's head to head combat 
performance rating (the dependent or predicted variable) on the number of Shu soldiers 
engaged in battle (the independent or predictor variable). When we called our linear model 
variable, we received the following output from the R console:

This output consists of two sections. In Call:, we see a reiteration of the console line that R 
used to create the model. In Coefficients:, we see both an intercept and a coefficient for 
the number of Shu soldiers engaged. The latter two items help us to create a regression 
equation. Typically, a regression equation takes on the following form:

Y = b0 + b1X1 + b2X2 + ... + bnXn

In this equation, Y is the dependent variable, b0 is the intercept, and b1X1 through bnXn are 
independent variables. Thus, the equation for our model is as follows:

Rating = 31 + 0.00044 * number of Shu soldiers
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Linear model summary
After displaying the model output, you also created a more detailed summary using the 
summary(object) function

> lmHeadToHeadRating_ShuSoldiers_Summary <- 
summary(lmHeadToHeadRating_ShuSoldiers)

For a discussion of the summary(object) function, revisit the 
Deriving summary statistics section of this chapter.

Again, you have witnessed the value and versatility of the summary(object) function, as 
it adapted itself to generate output relevant to our regression model. In the output, you 
can see the same intercept and independent variable coefficients (Estimate column) that 
we derived from the default model output. However, you are also exposed to a wealth of 
additional information about the model. In fact, nearly everything you would need to know 
for a data analysis is included. For our interpretations, we will focus on the Coefficients:, 
Multiple R-squared, and p-value/Pr(>|t|) portions of the output.
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In case you need to be refreshed on the meaning of R-squared and p-values, we will briefly 
review them here:

R-squared (Multiple R-squared in the summary output) tells us how well our 
linear model fits our data, and thus, how much predictive power our model has. 
Technically, it is the percentage of variance in the dependent variable that is 
accounted for by a regression model. For example, the R-squared of our linear 
model tells us how much of the variance in the performance rating of a head  
to head conflict can be accounted for by the number of Shu soldiers engaged  
in that battle.

A p-value (Pr(>|t|) and p-value in the summary output) is an indicator of statistical 
significance. In common practice, a cutoff 0.05 is used to determine statistical 
significance. Both individual coefficients and the overall linear model have p-values. 
In general, it is better to have significant coefficients and models, because statistical 
significance indicates that our results are more likely to be genuine and unlikely to 
have occurred by random chance. Yet, statistical significance is not the be all and 
end all of data analysis. Since data do not think nor act, one must always remember 
to consider the practical implications of statistical findings. We will also remain 
diligent in assessing the practical significance of our work throughout this book.

Interpreting a linear regression model
Sound interpretation is essential to understanding the practical ramifications of our data 
analyses. Recall that our linear regression analysis yielded the following equation:

Y = 31 + 0.00044 * X1

Or in words:

Rating = 31 + 0.00044 * number of Shu soldiers

Look back at the Rating column of our original battle history dataset. Rating can take on a 
value between 0 and 100. Since we are interested in predicting the Shu army's performance, 
the closer our equation comes to 100, the more confident we will be that our battle plans 
will lead to victory. Conversely, the lower our predicted performance, the less confident we 
can be that our strategy is going to lead to beneficial outcomes.

In fact, it is clear from our data that Zhuge Liang rated the army's performance at or above 
80 in victorious battles, whereas he rated the army lower in conflicts that resulted in defeat. 
Therefore, 80 is a good rating threshold to keep in mind when predicting future battle 
performance. In general, we want to devise strategies that will predict a performance of  
80 or higher.
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A model's intercept is interpreted as the value of the dependent variable when all independent 
variables are equal to zero. The intercept of a linear regression model often does not have an 
intuitive meaning. In our case, the intercept of 31 suggests that our performance will somehow 
be greater than zero even if we do not send soldiers into battle. Nevertheless, the intercept 
impacts our overall model and is important for making predictions.

Our coefficient for the number of Shu soldiers engaged is 0.00044. As you can imagine, it 
would take quite a large force to predict a sufficient performance rating for victory using 
our model. This notion is demonstrated by the following calculation, which solves for the 
number of soldiers necessary to predict a rating of 80:

80 = 31 + 0.00044 * X1
49 = 0.00044 * X1
X1 = 111,364 soldiers needed to predict victory!

This suggests that over half of the entire Shu army of 200,000 would need to participate in a 
single battle just to reach our minimum rating threshold. Yet, recall that our current model 
only deals with head to head combat performance and only uses the number of Shu soldiers 
engaged to predict it.

While both our coefficient and overall model are statistically significant with p-values of 
0.02, there is much that is left unexplained. This is evident when considering our R-squared 
value of 0.18. This value means that only 18% of the variance in performance rating can be 
explained by our model. In a practical sense, this can be interpreted as saying that only  
18% of the rating of a head to head battle can be accounted for by the number of  
Shu soldiers engaged.

All in all, our interpretations indicate that the current model is not effective enough at 
predicting the Shu army's performance. Clearly, there are many other factors that account 
for performance besides the number of soldiers that we send into battle. Thankfully, we have 
a dataset that contains rich battle history information and the ability to form more complex 
multiple linear regression models. Thus, the analysis of our battle data has just begun.

Pop quiz
1. Which of the following represents proper syntax for use in the formula argument of 

the lm(formula, data) function?

a. Y ~ X1 - X2

b. Y ~ X1 + X2

c. X ~ Y1 + Y2

d. X ~ Y1 - Y2
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2. In the following linear regression equation, identify the dependent variable, 
independent variable, intercept, and coefficient: Y = 0.5 + 3 * X

a. Y is the dependent variable, X is the independent variable, 0.5 is the intercept, 
and 3 is the coefficient.

b. X is the dependent variable, Y is the independent variable, 0.5 is the intercept, 
and 3 is the coefficient.

c. Y is the dependent variable, X is the independent variable, 3 is the intercept, 
and 0.5 is the coefficient. 

d. Y is the dependent variable, 3 is the independent variable, 0.5 is the intercept, 
and X is the coefficient.

3. Interpret the following linear regression equation: Y = 5 - 10 * X

a. The predicted value of Y is equal to 5 plus 10 times X.

b. The value of Y is equal to 5 plus 10 times X.

c. The predicted value of Y is equal to 5 minus 10 times X.

d. The value of Y is equal to 5 minus 10 times X.

Time for action – modelling with multiple linear regression
Multiple linear regression is one step removed from simple linear regression. It adheres 
to the sample principles, but makes use of additional independent variables to predict the 
outcome of a dependent variable.

Let us build upon our previous head to head combat model using multiple regression.  
This time, we will include both the number of Shu and Wei soldiers engaged as predictors  
of battle performance:

1.	 Create a multiple regression model that predicts Rating using both the number of 
Shu and Wei soldiers engaged:

> #create a multiple linear regression model using the 
lm(formula, data) function
> #predict the rating of a head to head battle using the number 
of Shu and Wei soldiers engaged
> lmHeadToHeadRating_ShuWeiSoldiers <- lm(subsetHeadToHead$Rating 
~ subsetHeadToHead$ShuSoldiersEngaged + 
subsetHeadToHead$WeiSoldiersEngaged, subsetHeadToHead)
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2.	  Create a summary of the model:

> #model summaryummary
> lmHeadToHeadRating_ShuWeiSoldiers_Summary <- 
summary(lmHeadToHeadRating_ShuWeiSoldiers)adRating_ShuWeiSoldiers)

3.	  Display your linear model summary in the R console:

> #display the summarydisplay the summary
> lmHeadToHeadRating_ShuWeiSoldiers_SummaryadToHeadRating_ShuWeiSoldiers_Summary

What just happened?
We used multiple linear regression to create a second model for predicting the performance 
rating of the Shu army in a head to head conflict. This model incorporated both the number 
of Shu and number of Wei soldiers engaged in combat as predictors. We can interpret a 
multiple linear regression model in a similar manner to a simple linear regression model.  
We can also compare our new model to the one that we previously created.
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Interpreting the summary output
Review the summary output for our multiple regression model. The summary should be 
similar to the following screenshot:

From the Estimate column, we can derive our regression equation:

Rating = 33 + 0.0011 * ShuSoldiersEngaged - 0.00007 * 
WeiSoldiersEngaged

Again, both our overall model (p < .001) and our independent variable coefficients (p < .001) 
are statistically significant. Moreover, the R-squared increased compared to our previous 
model to explain 51% of the variance in the Shu army's performance rating.

Let us use our multiple regression model to predict the performance of a 25,000 soldier Shu 
army against a 25,000 soldier Wei army, as follows:

Rating = 33 + 0.0011 * 25000 - 0.00007 * 25000
Rating = 33 + 27.5 - 1.75
Rating = 58.75

Recall that our Rating variable ranges from 0 to 100 and that our past victories have 
achieved ratings of 80 or higher. Our predicted rating of 59 suggests that the Shu army 
would likely not be victorious in this hypothetical conflict. However, also recall that our 
model only contains 51% of the ingredients that account for changes in head to head battle 
performance. Furthermore, our initial inference at the beginning of this chapter revealed 
that the Wei forces tend to enter a given battle with many more soldiers than the Shu. For 
these reasons, our model, as well as our hypothetical example, may not have sufficient 
practical relevance.
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Explaining model differences
The increase in R-squared from our simple regression model to our multiple regression 
model can be attributed to the fact that our new model included more information that 
is relevant to predicting head to head battle performance. Our multiple regression model 
factors in the size of both armies when determining the Shu army's rating. Since the ability of 
the Shu army to perform well is dependent to some extent on the opposing forces, including 
both armies yields a much stronger basis for prediction than the single army approach that 
our original model took.

The key to developing useful predictive regression models is to include only the most 
relevant data. While 51% is a large improvement in predictive power over our preceding 
model, it still may not be enough to make us confident in making critical strategy decisions 
for the Shu army. Certainly, we are encouraged to explore the full range of our data before 
settling on a particular model.

Pop quiz
1. Which of the following is most likely to increase the statistical significance of a 

multiple regression model?

a. Including more independent variables.

b. Including fewer independent variables.

c. Including more relevant and fewer irrelevant independent variables.

d. Including more irrelevant and fewer relevant independent variables.

2. Which of the following is most likely to increase the practical significance of a 
multiple regression model?

a. Including more independent variables.

b. Including fewer independent variables.

c. Including more relevant and fewer irrelevant independent variables.

d. Including more irrelevant and fewer relevant independent variables.
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Have a go hero
Create a new simple linear regression model that uses DurationInDays alone to 
predict the Shu army's performance in a head to head conflict. Then create two new 
multiple linear regression models that expand upon the previous model by incorporating 
ShuSoldiersEngaged and WeiSoldiersEngaged respectively. Generate and interpret 
the model summaries. Once complete, you should have three new regression models:

lmHeadToHeadRating_Duration

lmHeadToHeadRating_DurationShuSoldiers

lmHeadToHeadRating_DurationSoldiers

Also there should be three accompanying summaries saved in your R workspace. What 
do these models tell you about the importance of the duration of battle in predicting the 
outcome of head to head conflicts?

Time for action – modelling interactions
One other way that we can explore the relationships in our data is by looking at interaction 
effects. An interaction spawns from an interplay between variables whereby the interaction 
effect is different from either of the variables alone. Interaction variables can be created in 
R, although a specific procedure must be followed to use them properly.

Let us look at how an interaction variable can be created and incorporated into a regression 
model in R. We will accomplish this by including the interaction between Shu and Wei 
soldiers engaged as a variable in our multiple regression model:

1.	 Center the two variables that you plan to interact:

> #before creating an interaction variable, the component 
variables must first be centered
> #center a variable by subtracting its mean from each of its 
values
> #center the number of Shu soldiers engaged
> centeredShuSoldiersHeadToHead <- 
subsetHeadToHead$ShuSoldiersEngaged – 
mean(subsetHeadToHead$ShuSoldiersEngaged)
> #center the number of Wei soldiers engaged
> centeredWeiSoldiersHeadToHead <- 
subsetHeadToHead$WeiSoldiersEngaged – 
mean(subsetHeadToHead$WeiSoldiersEngaged)
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2.	 Multiply the two centered variables to create the interaction variable:

> #create an interaction variable by multiplying two or more 
centered variables
> interactionSoldiersHeadToHead <- 
centeredShuSoldiersHeadToHead * centeredWeiSoldiersHeadToHead

3.	 Create an interaction model that predicts Rating using the duration, Shu soldiers 
engaged, Wei soldiers engaged, and the interaction between the number of Shu and 
Wei soldiers engaged:

> #predict the rating of a battle using the duration, number of 
Shu and Wei soldiers engaged, and the interaction between the 
number of Shu and Wei soldiers engaged
> lmHeadToHeadRating_DurationSoldiersShuWeiInteraction <- 
lm(subsetHeadToHead$Rating ~  subsetHeadToHead$DurationInDays + 
subsetHeadToHead$ShuSoldiersEngaged + 
subsetHeadToHead$WeiSoldiersEngaged + 
interactionSoldiersHeadToHead, subsetHeadToHead)

4.	 Create a summary of the model:

> #model summary
> lmHeadToHeadRating_DurationSoldiersShuWeiInteraction_Summary 
<- 
summary(lmHeadToHeadRating_DurationSoldiersShuWeiInteraction)

5.	 Display your interaction model summary in the R console:

> #display the summary
> lmHeadToHeadRating_DurationSoldiersShuWeiInteraction_Summary
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What just happened?
You have completed the process of creating and implementing an interaction variable. The 
resulting interaction model expanded upon our multiple regression model by factoring in the 
the interplay between the number of Shu and Wei soldiers on the performance rating of the 
Shu army. Let us review the two-step interaction variable creation process and discuss how 
such variables can be interpreted:

1. Center the input variables:

The initial step in creating an interaction variable is to center the input variables 
that you wish to interact. This is accomplished by subtracting the mean of all of the 
values from each data point. For example, in:

centeredA <- A - mean(A)

The centered version of variable A is created by subtracting the mean of A from each 
value of A.

Centering is necessary because it mitigates the threat of multicollinearity, which 
occurs when two or more independent variables are highly correlated with one 
another. For instance, our interaction variable was composed of the number of Shu 
and Wei soldiers engaged in head to head combat. At the same time, our regression 
model used these variables as separate predictors. Naturally, multicollinearity 
is a threat in this situation, because our interaction variable is composed of the 
same data as our other predictors. Thankfully, the centering process is effective in 
mitigating most of the ill-effects that can be attributed to multicollinearity.

2. Multiply the input variables:

The second step in creating an interaction variable is to multiply the centered 
versions of the input variables, like so:

interactionAB <- centeredA * centeredB

Afterwards, your interaction variable can be used in the same manner as any other 
variable within a regression model.

Interpreting interaction variables
The statistical significance of the interaction coefficient is an indication of whether or not an 
interaction is present in the data. When present, an interaction suggests that the relationship 
between the dependent variable and a predictor varies as the value of the interacting predictor 
(Wei soldiers) changes. This phenomenon is sometimes referred to as a moderation effect, 
because it describes how one predictor moderates, or affects the strength or direction of, the 
relationship between another predictor and the dependent variable. When an interaction is 
absent, the relationship between the dependent variable and a given predictor is not believed 
to alter as the value of the interacting predictor changes.
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The interaction term in our latest model was not statistically significant and did not 
increase the predictive power of the model. This is logical in our situation. If there were an 
interaction, then we would expect the number of soldiers that one side engaged to differ 
across the range of soldiers that the other side deployed. For example, if the Shu engaged 
1000 soldiers in battle, then the Wei might deploy 10000 (ten times), but if the Shu engaged 
10000, the Wei might deploy 500000 (fifty times). In contrast, without the interaction, we 
would not expect the number of soldiers engaged by one side to vary across the range of 
soldiers that the other side deployed. Furthermore, the number of soldiers deployed may 
be better explained by situational attributes, such as the number of soldiers that happen to 
be available at a given place or time when a battle occurs. The latter explanations have more 
practical meaning than the interaction interpretation and help to verify the absence of an 
interaction effect.

Pop quiz
1. How is a variable centered in R?

a. By adding its mean to each of its values.

b. By subtracting its mean from each of its values.

c. By multiplying its mean by each of its values.

d. By dividing its mean by each of its values.

2. How is an interaction variable created in R?

a. By adding the two variables that are believed to interact.

b. By multiplying the two variables that are believed to interact.

c. By adding the centered versions of the two variables that are believed  
to interact.

d. By multiplying the centered versions of the two variables that are believed  
to interact.

3. Which of the following would be a viable interpretation of a statistically significant 
interaction between the variables A and B?

a. The relationship between B and the dependent variable fluctuates based on the 
value of A.

b. The relationship between A and B fluctuates based on the value of the  
dependent variable.

c. The value of the dependent variable fluctuates based on the relationship 
between A and B.

d. The value of the dependent variable fluctuates based on the values of A and B.
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Have a go hero
Consider the data in one of your remaining battle method subsets (surround, ambush, 
or fire). Use the techniques that we have employed in this chapter to create a multiple 
regression model that incorporates an interaction variable. Then interpret the model. Be 
sure to address the meaning and significance of the interaction that you explored.

Time for action – comparing and choosing models
At the moment, we have several models that attempt to predict the performance rating of 
the Shu army in head to head battles based on the duration and number of soldiers engaged 
in that battle. Yet, we do not have answers regarding which model is best and the relative 
contribution that each model makes above and beyond the preceding models.

We can use the process of hierarchical linear regression (HLR) to compare our models. Let 
us look at how HLR can be used to compare the three models that we have made thus far:

1.	 Display a summary of each model:

> #use HLR to compare different models
> #first consider the models individually
> #simple regression model using duration to predict battle 
rating
> lmHeadToHeadRating_Duration_Summary

This should produce a result as shown in the following screenshot:

> #multiple regression model using duration, Shu soldiers, and Wei 
soldiers to predict battle rating
> lmHeadToHeadRating_DurationSoldiers_Summary
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This should give a summary similar to the following:

> #interaction model using duration, Shu soldiers, Wei 
soldiers, and the interaction between Shu and Wei soldiers to 
predict battle rating
> lmHeadToHeadRating_DurationSoldiersShuWeiInteraction_Summary

Produces the following summary:
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2.	 Use anova(object, ...) to compare the relative contribution of each model:

> #use anova(object, ...) to compare the relative contribution 
of multiple models
> #compare the three head to head combat models using ANOVA
> anovaHeadToHeadRatingModelComparison <- 
anova(lmHeadToHeadRating_Duration, 
lmHeadToHeadRating_DurationSoldiers, 
lmHeadToHeadRating_DurationSoldiersShuWeiInteraction)

3.	 Display the anova results in the R console:

> display the anova results
> anovaHeadToHeadRatingModelComparison

What just happened?
You have the data that you need to complete a hierarchical linear regression (HLR) analysis. 
To be thorough, you should consider both the individual models (summaries) and the 
relative contribution of each model (ANOVA).

Interpreting the model summaries
You are already familiar with interpreting model summaries. These are the best places to 
start when conducting an HLR analysis. You can check the summaries to see if each overall 
model and its coefficients are statistically significant. You should also take note of each 
model's R-squared value.
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Our simple regression model is statistically significant on all accounts and has an amiable R-
squared value of 77%.  Likewise, all of the variables in our multiple regression model, as well 
as the model itself, are statistically significant. The model has an R-squared value of 86%. 
Furthermore, while our interaction model is also statistically significant, with an R-squared of 
87%, two of its predictor variables are not statistically significant. Although these summaries 
provide us with a wealth of knowledge on the individual merits of each model, it is best to 
make a decision after considering the results of an anova test.

Interpreting the ANOVA results
Generally, analysis of variance (ANOVA) is a statistical procedure that compares the means 
of multiple groups and determines if they are significantly different from one another. In 
our case, ANOVA can be used in HLR to compare multiple regression models. Here, ANOVA 
determines if the coefficient(s) that each successive model brings to the overall regression 
equation makes a statistically significant contribution above and beyond the coefficients that 
preceded it.

Consider the following three models:

A: Y = X1
B: Y = X1 + X2
C: Y = X1 + X2 + X3

The difference between each model is that a new predictor is contributed to the regression 
equation. Model B contributes X2 in addition to model A, whereas model C contributes 
X3 in addition to model B. ANOVA succeeds in determining whether these successive 
contributions are statistically significant. For instance, if model B was found to be statistically 
significant through ANOVA, then including X2 in the regression model is likely to add value. 
Continuing, if model C were not found to be statistically significant, then including X3 in 
the regression model probably does not add much value and therefore should be removed. 
By comparing successive models in this manner, we are able to determine, in a statistical 
sense, whether our coefficients are or are not adding value to the overall model. Thus, our 
decisions to include valuable coefficients and eliminate excess ones are informed.

Of course, we have to be mindful of practical significance at all times. When selecting 
independent variables for our model, we should use our understanding of the data and 
the situation to select only the best predictors. Although we could, it is inappropriate to 
haphazardly test numerous arbitrary combinations of variables in an attempt to find the 
supposed best statistical model. In fact, partaking in such practice is likely to lead to a model 
that is both meaningless in a practical sense and incapable of predicting valid answers to the 
questions that motivated the use of regression modeling in the first place. Therefore, always 
keep in mind the practical implications of every statistical analysis.
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anova(object, ...)
R's anova(object, ...) is a variable-argument function that can be used to conduct 
ANOVA on several objects. Each object of comparison can be entered into the function  
as its own argument. For example, in:

anova(A, B, C)

Here we are telling R to compare three objects (A, B, and C) using ANOVA.

The anova(object, ...) function yields an ANOVA table, which details the results of 
the analysis. For the purposes of comparing successive models using HLR, we are only 
concerned with the p-values (the Pr(>}|t|) column). The p-value beside each model indicates 
whether or not it is statistically significant above and beyond its preceding model. It does not 
however, indicate the individual statistical significance of the model, which is why we also 
considered the individual model summaries.

The ANOVA table from our activity indicates that our multiple regression model is statistically 
significant above and beyond our simple regression model. However, our interaction 
model does not make a statistically significant contribution above and beyond our multiple 
regression model. This suggests, from a statistical standpoint, that our interaction coefficient 
should be removed. Recall that we did not formulate a logical basis for the interaction 
between the number of Shu and Wei soldiers engaged in head to head combat. Without  
a statistical or practical reason to include the interaction coefficient, it is best removed  
from the model. In other words, our HLR analysis suggests that, out of the models that  
we analyzed, the multiple regression model is best. 
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Pop quiz
1. Which of the following best explains the meaning of a statistically significant result 

in an ANOVA table generated during an HLR analysis?

a. The regression models' coefficients are statistically significant.

b. The overall regression model is statistically significant.

c. The contribution that the model makes is statistically significant.

d. The contribution that the model makes above and beyond the preceding model 
is statistically significant.

Have a go hero
Using the techniques that we explored in this chapter, analyze the remaining battle 
methods— surround, ambush, and fire— and create regression models for each that predict 
the performance rating of the Shu army. Be sure to use your practical knowledge of the 
combat strategies to choose appropriate coefficients for your regression models. Once 
you have found a few reasonably predictive models for each method, use HLR to compare 
them. Ultimately, come to a statistically and practically justifiable conclusion about the best 
regression model to use for each battle method. Remember to save your R workspace and 
console text to preserve the content that you created during this chapter.

Summary
Throughout this chapter, you explored your data for the purpose of weighing potential 
options. En route, you have considered both the practical and statistical significance of your 
decisions. You have derived four predictive regression models, one for each battle method, 
that you can use to develop and assess potential battle strategies for the Shu forces. At this 
point, you should be able to:

Use multi-argument and variable-argument functions to make calculations 

Create predictive models using regression analysis

Consider the statistical and practical significance of your analyses

Our next chapter will focus on using the models that we have developed, as well as our 
logistical constraints, to decide on an ultimate course of action for the Shu army.











6
Planning the Attack

In the preceding chapter, you developed four regression models to predict 
the outcomes of battles in which the Shu army uses head to head, surround, 
ambush, and fire attack methods. A sample regression model for each of 
the battle methods is provided to you in this chapter. For demonstration and 
consistency, these models will be used throughout the chapter. However, 
you are encouraged to substitute your own models from Chapter 5 into the 
calculations and activities in this chapter.

For the duration of this chapter, we will focus on employing our regression models to predict 
outcomes and to determine the feasibility of different attack strategies. Ultimately, you will 
need to decide on the best course of action for the Shu army. By the end of this chapter, you 
will be able to:

Use regression models to predict outcomes

Create your own custom functions to address specific needs

Assess the viability of achieving the outcomes predicted by regression models

Review of models
In this section, we will review each of the four regression models created in Chapter 5. This 
will refresh our memory and prepare us to use our models in developing and assessing 
potential strategies. Again, while these sample models will appear throughout this chapter, 
feel free to substitute your own models into any or all activities.
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Head to head
The following is a summary of the head to head model:

Our head to head regression model predicts the Shu army's performance rating based on the 
duration of battle and the number of Shu and Wei soldiers engaged. All of these coefficients, 
as well as the overall model, are statistically significant. The model explains 86% of the 
variance in performance rating. Therefore, 14% of the rating remains unaccounted for  
and unpredicted. Our head to head regression equation is:

Rating = 97 -  0.77 * duration + 0.00054 * Shu soldiers - 0.00028 
* Wei soldiers

Recall that our dependent variable of Rating is represented numerically on a scale from 
0 to 100. Consequently, the higher the value predicted by our regression model, the more 
confident we can be that our strategy will lead to victory. Conversely, a lower value would 
make us more certain that our strategy would lead to defeat. For instance, a value of 90 
would indicate a higher likelihood of victory, while a value of 10 would indicate a higher 
likelihood of defeat. Keeping this in mind, let us analyze the coefficients in our head to  
head combat model.

In our equation, the duration coefficient of -0.77 indicates that the Shu army's chances 
of victory decrease rapidly as the length of a head to head conflict increases. The positive 
coefficient for Shu soldiers engaged implies that deploying more Shu soldiers leads to a higher 
prospect of victory. In contrast, the negative coefficient for Wei soldiers engaged suggests 
that the more Wei soldiers deployed, the lower the chances of victory for the Shu army. The 
intercept of 97 does not have a logical practical interpretation, but it is essential to making 
predictions with the model. This is true of the intercept in each of our sample models.
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Surround
The following is a summary of the surround model:

Our surround method regression model predicts the Shu army's performance rating based 
on execution (successful or unsuccessful), the duration of battle, and the number of Shu and 
Wei soldiers engaged. All of these coefficients, as well as the overall model, are statistically 
significant. This model contains a remarkable 98% of the elements that predict the variance 
in performance rating when the surround strategy is employed. Our surround regression 
equation is:

Rating = 35 + 58 * execution - 0.15 * duration + 0.18 * 
Shu soldiers - 0.19 * Wei soldiers

Here, the 58 coefficient suggests that successful execution is not only critical, but likely 
necessary to predict victory. Recall that our SuccessfullyExecuted variable was 
categorical. It has been represented as 0 for no and 1 for yes. Accordingly, successful 
execution of the surround method will add 58 to our final rating prediction, whereas 
unsuccessful execution will contribute 0. Therefore, our predicted outcome weighs 
tremendously on whether or not we expect our forces to successfully execute the surround 
technique. Again, a shorter duration of battle is better. The coefficients for Shu and Wei 
soldiers engaged can be interpreted in similar fashion to our head to head model.
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Ambush
The following is a summary of the ambush model:

Our ambush method regression model predicts the Shu army's performance rating based 
on execution, duration, and the number of Shu and Wei soldiers engaged. All of these 
coefficients, as well as the overall model, are statistically significant. This model explains 
a formidable 92% of the variance in performance rating when the ambush strategy is 
employed. Our ambush regression equation is:

Rating = 56 + 44 * execution - 1.97 * duration + 0.0018 * 
Shu soldiers - 0.00082 * Wei soldiers

In this case, the rating prediction is also tied strongly to successful execution. Once again, 
the duration and number of Shu and Wei soldiers engaged can be interpreted in the same 
manner as our preceding models.
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Fire
The following is a summary of the fire model:

Our fire attack regression model predicts the Shu army's performance rating based on 
execution, duration, and the interaction between the number of Shu and Wei soldiers 
engaged in battle. Here, it is not the raw number of soldiers for each side that impacts our 
prediction, but rather the relationship between them. All of the coefficients, as well as the 
overall model, are statistically significant. This model explains a solid 93% of the variance 
in performance rating when the fire attack strategy is employed. Our fire attack regression 
equation is:

Rating = 37 + 56 * execution - 1.24 * duration - 0.00000013 * 
soldiers interaction

In this equation, successful execution plays a critical role in explaining the battle rating, as 
does duration. Our interaction term suggests that the more soldiers involved in the battle, 
regardless of affiliation, the less likely our fire attack is to lead to victory. This makes sense 
considering that the fire attack, unlike our other methods, is a risky surprise tactic. Having 
too many Shu soldiers increases the visibility of our attack and the likelihood that our plans 
would be discovered. A similar condition arises from launching a fire attack on too many 
Wei soldiers. There would be more eyes to discover and arms to quash the surprise attack. 
Therefore, the interaction between the number of Shu and Wei soldiers involved in a fire 
attack must be balanced to optimize our impact and chances of success.
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Predicting outcomes using regression models
Having reviewed each of our models, let us now look at how to use them to predict 
outcomes in R. Before we do so, we must address a few assumptions about our models.

Rating
In order to decide whether a strategy is sufficient or not, we must determine an acceptable 
Rating value. Assume for the remainder of this book that we consider a Rating value 
of 80 to be sufficient for predicting victory. After all, Zhuge Liang's rating of the Shu army's 
performance in each victorious campaign was 80 or higher. As such, a Rating of 80 or above 
makes us reasonably confident that our strategy will lead to victory. A Rating below 80 will 
be considered too risky and should be avoided.

Feel free to experiment with your own Rating values. The higher the 
threshold, the more certain you can be of victory, but the less likely you 
are to have the resources to achieve it. The lower the required value, the 
more resource allocation options you will have, but the higher risk your 
strategy has of failure.

Successfully executed
The outcomes of our surround, ambush, and fire attack regression models depend to a large 
extent on the successful execution of these battle methods. Yet, successful execution is not 
something that we can predict with certainty before a battle takes place. One way to handle 
this conundrum is to use our past battle data to calculate the probability that our battle 
methods will be successfully executed. Once obtained, we can enter our probability value 
into our regression equations to make more accurate predictions than we would by merely 
assuming that our methods were successfully or unsuccessfully executed. 

To calculate our probability values, we need to look at the number of times that our methods 
were successfully executed in the past and divide them by the total number of battles that 
we have on record. For instance, we know that the Shu army successfully executed a fire 
attack in 10 out of 30 battles. Therefore, our probability value for successful execution of  
the fire attack method would be 0.33 (10 divided by 30). Identical steps can be taken to 
derive probability values for each of the battle methods. These values are displayed in the 
following table:
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Method Variable Name Probability

Head to head probabilitySuccessHeadToHead 1.00

Surround probabilitySuccessSurround 0.53

Ambush probabilitySuccessAmbush 0.50

Fire probabilitySuccessFire 0.33

We will use these probability values for the SuccessfullyExecuted variable when 
making predictions with our regression models. However, do not hesitate to experiment with 
hypothetical scenarios. For instance, suppose you feel that your soldiers are better trained 
today than they have ever been in the past. Perhaps then they are more likely to successfully 
execute battle plans and deserve a higher probability value.

Number of Wei soldiers
Similarly, we cannot always determine how many soldiers the opposing army will bring into 
a given battle. However, we do have the history of 120 prior battles that can give us an idea 
of how many soldiers the Wei army tends to engage in relation to our own. From our past 
data, we can predict the ratio of Wei soldiers to Shu soldiers for each method by summing 
the total soldiers engaged for both sides and then dividing them. For example, in previous 
battles where the surround method was employed, the Wei army engaged a total of 820,000 
soldiers, while the Shu army engaged 1,287,000. Accordingly, the ratio of Wei to Shu soldiers 
engaged was 0.64 (820,000 divided by 1,287,000). When the number of Wei soldiers is 
unknown, we will assume the following ratios of Wei to Shu soldiers for each type of battle:

Method Variable name Ratio

Head to head ratioWeiShuSoldiersHeadToHead 1.08

Surround ratioWeiShuSoldiersSurround 0.64

Ambush ratioWeiShuSoldiersAmbush 1.82

Fire ratioWeiShuSoldiersFire 6.01

Yet at times, we can indeed predict the number of soldiers that the Wei army will engage in 
battle. Imagine an ambush attack where we specifically target an enemy city with a known 
number of soldiers. In this case, it would be better to use the known value than the ratio 
estimate. When devising your final strategy, the appropriate assumptions will be determined 
by the particular situation at hand.



Planning the Attack

[ 110 ]

Duration of battle
Yet again, the duration of battle is something that is predictable in some cases and 
unpredictable in others. Our past data show that, on average, surround attacks last for a 
relatively long time, whereas fire attacks tend to be brief. We can derive the average duration 
of battle for each of our combat methods for use in instances where a battle's length cannot 
be predicted beforehand.

Method Variable name Average

Head to head meanDurationHeadToHead 77.9

Surround meanDurationSurround 105.5

Ambush meanDurationAmbush 13.6

Fire meanDurationFire 6.9

Whenever possible, it is best to determine the duration of battle. For example, when issuing 
a fire attack, you may explicitly set a small window of time in which the army is expected to 
execute its plans. Should the mission not be completed in time, it may be aborted, thereby 
remaining within the determined time frame.

A word about assumptions
As noted, these assumptions are not set in stone. In fact, they are our best effort to 
make the most reasoned and valid predictions in a situation where we cannot control or 
determine every possible variable. As you progress through this chapter and begin making 
your own battle predictions and plans, you may want to alter these assumptions to better 
fit your interpretation of a situation. Along the way, always remain conscious that the 
assumptions that you choose have important implications for the validity and riskiness of 
your predictions.

Time for action – calculating outcomes from regression models
With our necessary assumptions decided upon, the simplest way to predict the outcome of 
a particular scenario is to plug relevant numbers into a regression model and calculate the 
result. Suppose we want to estimate the rating of an ambush attack when we know only the 
number of Shu soldiers that we will engage.

1.	 Open R and set your working directory, as follows:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")
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2.	 Load the Chapter 6 workspace. It contains the sample models, as well as our 
assumed variables:

> #load the chapter six workspace
> load("rBeginnersGuide_Ch_06_ReadersCopy.RData")

3.	 Calculate the rating of an ambush attack in which the Shu forces engage 5,000 
soldiers:

> #what is the predicted rating of an ambush attack in which 
the Shu forces engage 5000 soldiers?
>#ambush model: Rating = 56 + 44 * execution - 1.97 * duration 
+ 0.0018 * Shu soldiers - 0.00082 * Wei soldiers 
>  56 + 44 * probabilitySuccessAmbush - 1.97 * 
meanDurationAmbush + 0.0018 * 5000 - 0.00082 * (5000 * 
ratioWeiShuSoldiersAmbush)
[1] 52.746

Our calculated rating of 53 falls well below our threshold of 80 and suggests that the Shu 
army would have roughly an equal chance of winning or losing in this battle scenario.

What just happened?
We just employed the simplest, but most time consuming, method for predicting outcomes 
from our regression models. Let us make this process more efficient by creating a custom 
function in R that automatically calculates a solution when we provide the known values.

Time for action – creating custom functions
In R, function() can be used to define a custom function, along with its arguments. This 
allows us to extend the capabilities of R by creating functions that meet our specific needs.f R by creating functions that meet our specific needs.

1.	 Use function() to define a custom function with arguments:

> #use function() to define custom function
> #define our ambush regression model as a custom function in R
> functionAmbushRating <- function(execution, duration, 
ShuSoldiers, WeiSoldiers) {
+                          56 + 44 * execution -
+                          1.97 * duration +
+                          0.0018 * ShuSoldiers - 0.00082 * 
+                          WeiSoldiers
+                          }
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2.	 Test and verify the function:

> #what is the predicted rating of an ambush attack in which 
the Shu forces engage 5000 soldiers?
> functionAmbushRating(probabilitySuccessAmbush, 
meanDurationAmbush, 5000, 5000 * ratioWeiShuSoldiersAmbush)
[1] 52.746

As you can see, our custom function resulted in the same value as our previous 
calculation. Conveniently, deriving this rating only required us to input the variable 
values, rather than solving each piece of the equation mathematically.

3.	 To further demonstrate our function, suppose instead that our 5,000 Shu soldiers 
are going to ambush a vulnerable unit of 1,000 Wei soldiers. Calculate the rating of 
an ambush attack by 5,000 Shu soldiers against 1,000 Wei soldiers:

> #what is the predicted rating of an ambush attack by 5000 Shu 
soldiers against 1000 Wei soldiers?
> functionAmbushRating(probabilitySuccessAmbush, 
meanDurationAmbush, 5000, 1000)
[1] 59.388

Under a more predictable and favorable circumstance, our Rating value increased 
a small amount to 59. Here, we are a little more confident in victory than in our 
previous scenario, but still far from comfortable.

4.	 For a final test, let us examine the performance rating if we are completely  
certain that our forces will successfully execute the proposed ambush attack. 
Calculate the rating of a successful ambush attack by 5,000 Shu soldiers against 
1,000 Wei soldiers:

> #what is the predicted rating of a successful ambush attack 
by 5000 Shu soldiers against 1000 Wei soldiers?
> functionAmbushRating(1, meanDurationAmbush, 5000, 1000)
[1] 81.388

At 81, we are feeling pretty good about our chances for victory. But we must ask ourselves 
just how likely the proposed circumstances are to occur in an authentic battle situation. 
Naturally, our prediction is only valid to the extent that we believe that our estimates will 
reflect actual battle conditions.

What just happened?
We just explored the creation and use of custom functions in R. The ability to create custom 
functions is a powerful feature that allows you to expand the capabilities of the software  
to meet your personal needs. Let us discuss the details of custom functions.
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function()
In R, the function() command can be used to create custom functions. These can take can be used to create custom functions. These can take 
many shapes and forms. They can also have anywhere from zero to several arguments.  
The basic format of the function() command is as follows:

function(argument1, argument2,... argumenti) { contents }

Here are some examples of custom functions:

No arguments:

function() { setwd("/Users/johnmquick/Desktop") }

This function sets the working directory to the desktop.

One argument:

function(path) { setwd(path) }

This function sets the working directory to a specified path.

Multiple arguments:

function(path, verify) {
                        setwd(path)
                        if (verify == TRUE) {
                                             getwd()
                                             }
                        }

This function sets the working directory to a specified path and then optionally 
reports that path in the R console.

As we demonstrated in the preceding activity, it is often useful to save a custom function 
into an R variable. This saves you the effort of retyping the entire command each time you 
want to execute the function. Furthermore, it allows you to call the function, complete 
with arguments, using the variable name. These benefits are demonstrated in the following 
sample code:

> #save a custom function into an R variable
> customFunction <- function(x,y) { 5 * x + 2 * y }
> #call the function by its variable name and solve for x = 1 and 
y = 2
> customFunction(1,2)
[1] 9
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Note that the parenthesis () are required when you want to execute a function that has 
been saved into a variable. Without them, the contents of the variable will be displayed in 
the R console. These differences are demonstrated in the following:

> #without parenthesis, the contents of the function are displayed
> customFunction
function(x,y) { 5 * x + 2 * y }

> #with parenthesis, the function is executed
> customFunction(1,2)
[1] 9

Extended lines
When we created our custom function in step 1 of the previous activity, you may have 
noticed a new type of console line. These extended lines begin with a plus (+) sign. Unlike 
input lines that begin with a greater than sign (>) and output lines that have no leading 
character, extended lines are purely cosmetic. Extended lines are used to format long 
segments of code so that they are more readable and aesthetically pleasing. The plus sign 
lets you know that your previous line is being continued. In effect, an extended line is similar 
to using a hard return in a word processor. The previous line is cut off immediately, while the 
text continues at the start of the next line. The formatting value of extended lines is clarified 
by the following sample code:

> #using a single line to define a long function
> functionAmbushRating <- function(execution, duration, 
ShuSoldiers, WeiSoldiers) { 56 + 44 * success - 1.97 * duration + 
0.0018 * ShuSoldiers - 0.00082 * WeiSoldiers }

> #using multiple lines to define a long function
> functionAmbushRating <- function(execution, duration, 
ShuSoldiers, WeiSoldiers) {
+                          56 + 44 * execution -
+                          1.97 * duration +
+                          0.0018 * ShuSoldiers - 0.00082 * 
+                          WeiSoldiers
+                          }
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Pop quiz
1. Which of the following elements is not required when creating a custom function?

function(argument1, argument2,... argumenti) { contents }

a. function

b. ()

c. argument1, argument2,... argumenti

d. contents

2. Which of the following is not true of a variable that contains a custom function?

a. It can be redefined to store a new custom function or other data.

b. Its function can be called by typing the variable name in the R console.

c. Its contents can be displayed by typing the variable name in the R console.

d. Its function can be called by typing the variable name, along with the function's 
arguments in parenthesis, in the R console.

3. What does a plus sign (+) at the beginning of an R console line indicate?

a. The mathematical addition operator.

b. A line of code that is contained within a custom function.

c. A single line of code that is being extended across multiple console lines.

d. Multiple lines of code that are being extended across multiple console lines.

Have a go hero
Now that you are familiar with generating custom functions, use the function() command 
to recreate the regression equations for each of the remaining battle methods—head 
to head, surround, and fire—as R functions. Save each of these custom functions into 
new variables, named functionHeadToHeadRating, functionSurroundRating, 
and function0FireRating respectively. Then test each of your functions using the 
hypothetical battle data.

Time for action – creating resource-focused custom functions
Rather than plugging in values to calculate the outcome of a specific scenario, suppose that 
we instead choose to determine the resources necessary to realize a desired result. In other 
words, a different way to approach the challenge of developing a successful battle plan is to 
set our required outcome, say a Rating of 80, and then solve for the number of soldiers or 
other resources needed to achieve that outcome. We can make this process possible through 
the use of custom functions.
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The following procedure describes how to determine the amount of resources needed  
to achieve a Rating of 80 in our ambush regression model:

1.	 Solve the regression equation for the variable of interest:

> #rearrange the ambush model to solve for the number of Shu 
soldiers engaged
> #original ambush model: Rating = 56 + 44 * execution - 1.97 * 
duration + 0.0018 * Shu soldiers - 0.00082 * Wei soldiers
> #ambush model solved for Shu soldiers: (Rating - 56 - 44 * 
execution + 1.97 * duration + .0.00082 * Wei soldiers) / 0.0018* duration + .0.00082 * Wei soldiers) / 0.0018

2.	 Create a custom function for the rearranged model and save it into an R variable:

> #convert the rearranged ambush model equation into a custom 
function
> functionAmbushShuSoldiers <- function(rating, execution, 
duration, WeiSoldiers) {
+                       (rating - 56 - 44 * execution +
+                       1.97 * duration +
+                       0.00082 * WeiSoldiers) /
+                       0.0018
+                       }

3.	 Test the function:

>  #how many Shu soldiers must be engaged in an ambush attack 
against 10,000 Wei soldiers to bring our rating to 80?
>  functionAmbushShuSoldiers(80, probabilitySuccessAmbush, 
meanDurationAmbush, 10000)
[1] 20551.11
>  #how many Shu soldiers must be engaged in an ambush attack 
against 10,000 Wei soldiers to bring our rating to 80 if we are 
certain of successful execution?
>  functionAmbushShuSoldiers(80, 1, meanDurationAmbush, 10000)Soldiers(80, 1, meanDurationAmbush, 10000)
[1] 8328.889

Each of our regression equations can be rearranged in the same manner as our ambush 
model. By solving for the number of Shu soldiers in our combat models, we can calculate  
the amount of resources that our army must expend in specific situations. This approach 
allows us to focus on determining the amount of resources required to achieve our  
desired outcomes.

What just happened?
We again employed the function() command to create a custom function based on one of 
our regression models. This activity represented a resource-focused approach to predicting 
the outcomes of potential battle situations.
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Have a go hero
Use the function() command to create resource-focused custom functions for each of the 
remaining battle methods—head to head, surround, and fire. Save these custom functions 
into new R variables, named appropriately for the data variable that you focused on. For 
example, our ambush function in the previous activity solved for the number of Shu soldiers 
engaged and thus was named functionAmbushShuSoldiers. Afterwards, test each of 
your functions using hypothetical battle data.

Logistical considerations
Up to this point, we have paid little attention to resource constraints. Instead, we explored 
the range of possibilities to obtain the most optimal prediction models and outcomes. 
Yet, as the time to make a decision rapidly approaches, we must pay heed to the practical 
limitations of the Shu army. When considered within the context of our predictive models, 
logistical constraints will reveal our realistic set of available opportunities. From these, we 
can determine the risks and rewards of our potential actions with increased confidence. 
Taking our resources into account will lead us towards a sound and relevant decision.

The following sections outline the specific resource allotments available to the Shu army 
and the costs associated with the current campaign. Since we will use this information 
throughout the chapter, you may want to bookmark this segment for future reference. 
We will use four resources to determine the viability of our battle plans. These are gold, 
provisions, equipment, and soldiers.

Gold
Gold is our form of currency. Most actions have some kind of monetary cost associated with 
them. The emperor has allotted the army 1,000,000 gold. This can be used however you 
wish in devising a strategy for the Shu forces.

Provisions
Provisions are needed to sustain the human component of the Shu army. You have 1,000,000 
in provisions available. The amount required per month (30 days) depends on the numbermount required per month (30 days) depends on the number 
of soldiers that you take into battle. Therefore, more soldiers equates to a faster rate of 
consumption. Since each soldier needs one unit of provisions per 30 days to survive, the 
daily consumption rate for the Shu army is equal to the number of soldiers engaged in battle 
divided by 30 and the cost of purchasing new provisions is one gold per unit. Thus, an army 
of 100,000 soldiers would require 100,000 provisions to sustain itself for 30 days (100,000 
soldiers * (30 / 30) = 100,000 provisions). 
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Equipment
Equipment refers to the manufactured component of the Shu army. This includes items  
such as weapons, armor, chariots, tents, and so on. The army's equipment depreciates at  
a rate of 0.1 (10%) per month (30 days). You need to pay one gold per soldier engaged in 
battle to keep your equipment in prime condition. For instance, the equipment upkeep  
for an army of 100,000 would cost 100,000 gold per 30 days. Without maintained 
equipment, the Shu forces stand no chance against the Wei, who have greater human  
and manufactured resources.

Soldiers
Soldiers are the human resource of the Shu army. The number of soldiers that you take into 
battle has a tremendous impact on the expenses incurred, as well as the outcome of the 
conflict. Therefore, it is a matter of delicate balance. Hanzhong, the site from which you will 
launch your upcoming attack, currently has 100,000 soldiers. You have the option to relocate 
soldiers to different cities within your kingdom. All things considered, the cost to move 
soldiers between cities is one gold per soldier per 100 miles. Keep in mind that strengthening 
one location is equivalent to weakening another. It is best to make sure that all critical cities 
within your kingdom are sufficiently staffed to protect against invasion. The resource map 
(see the Resource map section of this chapter) depicts the current distribution of soldiers 
in various cities within the Shu and Wei kingdoms. From this, we can see that moving 1,000 
soldiers from Baxi to Hanzhong, a distance of 100 miles, would cost 1,000 gold.

Resource and cost summary
The following table summarizes the logistical considerations that you will need to attend to 
while devising a strategy for the Shu forces:

Resource Quantity Cost

Gold 1,000,000

Provisions 1,000,000 1 gold per soldier per 30 days to sustain

Equipment 1.0 1 gold per soldier per 30 days to maintain

Soldiers 100,000 1 gold per soldier per 100 miles to relocate

With these resources and costs in mind, you can predict the outcomes and assess the 
feasibility of potential battle plans.

Resource map
The following map details the locations of cities and the distribution of soldiers within the 
Shu and Wei kingdoms. You should use this information to predict outcomes and determine 
the feasibility of your proposed strategies.
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Time for action – incorporating resource constraints 
into predictions

Since we have added resource constraints as an additional factor in our decision process, let 
us create a custom function to calculate the gold cost for a given battle plan:

1.	 Define a custom function that calculates the gold cost of a battle when its distance, 
duration, and number of Shu soldiers engaged are known:

> #custom function that calculates the gold cost of a battle
> #cost formula: travel cost + (provision cost + 
equipment cost) * battle duration
> functionGoldCost <- function(ShuSoldiers, distance, duration) 
+       {
+        ShuSoldiers * ((distance / 100) + 2 * (duration / 30))
+        }
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2.	 Test the function:

> #what is the predicted cost of an attack by 25,000 Shu 
soldiers that takes place 100 miles away and lasts for 90 days?
> functionGoldCost(25000, 100, 90)
[1] 1750000

We now have a way to calculate the gold cost of our potential strategies. Alternatively, you 
could also choose to create functions solving for other combat constraints, such as soldiers, 
distance, or duration.

What just happened?
We created a custom function that tells us how much gold we would need to execute our 
plans when the number of Shu soldiers, the distance to the attack site, and the proposed 
duration of the battle are known.

Gold cost function explanation
The formula that we used in our gold cost function may seem unfamiliar. This is because it 
was coded in its simplest, and therefore easiest to read, form. The expanded formula for 
calculating our gold cost is detailed as follows:

ShuSoldiers * distance / 100 + ShuSoldiers * provision cost * 
duration + ShuSoldiers * equipment cost * duration

Once simplified, we are left with the formula used in our gold cost function:

ShuSoldiers * ((distance / 100) + 2 * (duration / 30))

The ShuSoldiers term has been extracted and placed at the front of the equation.  
The distance is divided by 100, because the cost of moving one soldier is one gold per  
100 miles. The duration is multiplied by two and divided by 30, because the cost of 
provisions and equipment are both one gold per soldier per 30 days of battle. In the end,  
we have the same output as with our expanded formula, but using much less space.

Pop quiz
1. Which of the following is not a reason to carefully consider the logistics of  

predicted outcomes?

a. Considering logistics helps us to account for resource constraints.

b. Considering logistics helps us to identify a realistic set of opportunities.

c. Predicted outcomes are not always logistically viable.

d. Predicted outcomes present the most logistically sound course of action.
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Have a go hero
Create a custom function that tells us how many miles our army can travel given the 
proposed amount of gold, number of soldiers, and duration of the attack. Save it into a 
variable named functionMaxDistance. This function will prove useful in assessing the 
viability of the strategies predicted by our regression models.

Assessing viability
Our last major step in choosing a battle strategy is to assess its viability in light of the 
resource constraints imposed upon our forces. We can accomplish this by taking our best 
plans, calculating the costs associated with executing them, and then comparing those costs 
to the resources that we have available.

For the time being, suppose we have decided to explore the possibilities of a 7-day fire attack 
on the 10,000 strong Wei army 255 miles away at Anding. Also assume that we have already 
predicted the conditions necessary for a rating of 80, as demonstrated:

> #custom function that calculates the number of Shu soldiers 
needed to execute a given fire attack
> functionFireShuSoldiers <- function(rating, execution, duration, 
WeiSoldiers) {
+            (rating - 37 - 56 * execution +
+            1.24 * duration) /
+            (0.00000013 * - WeiSoldiers)
+            }
> #assuming successful execution, how many Shu soldiers would be 
needed to lead a fire attack against the 10,000 Wei soldiers 
stationed 225 miles away at Anding?
> functionFireShuSoldiers(80, 1, 7, 15000)
[1] 2215.385

Through this process, we determined that 2,215 Shu soldiers must successfully launch the 
7-day fire attack to meet our Rating threshold of 80.

Our next step is to take this information and examine its viability in terms of the resources 
that have been allotted to us.
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Time for action – assessing the viability of potential strategies
Thus far, we have looked at two ways to factor resources into our predictions. One focuses 
on calculating the gold cost of a mission, whereas the other searches for the maximum 
distance over which our proposed campaign could take place. We will demonstrate both 
approaches here:

1.	 Calculate the gold cost of the planned mission:

> #how much would it cost to launch a 7 day fire attack with 
2,215 soldiers, 225 miles away in Anding?
> functionGoldCost(2215, 225, 7)
[1] 6017.4177.417

2.	 Calculate the distance over which the proposed attack could take place:

> #custom function that calculates the the maximum distance the 
Shu army can travel given our resources
> functionMaxDistance <- function(gold, ShuSoldiers, duration) 
+           {
+           100 * ((gold / ShuSoldiers) + (duration / 15))
+           }
> #how many miles can a Shu force of 2215 travel to execute a 7 
day fire attack, given our allotment of 1,000,000 gold?
> functionMaxDistance(1000000, 2215, 7)
[1] 45193.39

In our first calculation, we derived a cost of 6,017 gold for the attack. This is well under our 
budget of 1,000,000 and therefore is completely practical. Our second calculation found the 
maximum possible distance that our army could travel, given our resources. The distance 
of 45,193 miles is well beyond the distance to the target city. Therefore, we have also 
determined the distance of our attack to be feasible.

What just happened?
We looked at assessing the viability of a potential fire attack in terms of gold cost and travel 
distance. These are just a pair of the numerous possible ways that the practicality of our 
plans could be tested and confirmed. Be sure to explore every angle necessary to make 
yourself confident that your plans are the best ones available. After all, the welfare ofAfter all, the welfare of  
many people depends upon your decisions.

Remember your assumptions 
One final reminder is that we must be wary of the assumptions that we make in formulating 
plans. If you look back at our calculation that lead to a requirement of 2,215 soldiers, you will 
notice that we assumed our fire attack would be successful. We must ask ourselves if this, as 
well as any, assumption is a sound one.
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According to our past battle data, fire attacks have only been executed successfully 33% of 
the time. Let us look at how our viability would change if we were to use this probability 
value, rather than assuming total success:

> #based on past battle data, how many Shu soldiers would be 
needed to lead a victorious 7 day fire attack against the 10,000 
Wei soldiers at Anding?
> functionFireShuSoldiers(80, probabilitySuccessFire, 7, 10000)
[1] -25538.46

Our recommended number of soldiers has suddenly turned negative! Considering that 
engaging a negative number of soldiers is an obvious impossibility, this indicates that our fire 
attack plans are completely impractical. This example has demonstrated how changing one 
simple assumption can have a dramatic impact on our predictions and subsequent decisions.

You may be wondering which assumption, 1.0 or 0.33, is the better one in our case. As with 
all assumptions, the truth is that there is no absolute answer. Since our work deals with 
predicting the future, there will always be uncertainties about the assumptions that we 
make. The best that we can do is to thoughtfully consider all of the information available to 
us. In doing so, we can derive predictions that most accurately reflect the conditions present 
in the world.

Pop quiz
1. Which of the following is not a reason to carefully consider assumptions when 

making logistical considerations?

a. Assumptions rarely have an absolute best answer.

b. Assumptions often have an impact on calculated results.

c. Assumptions may affect the validity of predicted outcomes.

d. Assumptions can be altered to achieve desirable real-world results.

Have a go hero—choosing a battle plan
You have worked long and hard to learn the techniques of master strategist Zhuge Liang. 
Furthermore, you have become deeply aware of and involved in the circumstances 
surrounding the Shu army. The time has come for you to determine which course of action 
the Shu forces will take. Use the knowledge and skills that you have acquired throughout 
this journey to predict and assess the optimal strategy for your army's upcoming attack. 
It is recommended that you explore all four methods available—head to head, surround, 
ambush, and fire—before making a final decision. 
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The following table has been provided to aid you in this process. One scenario has been 
calculated in the head to head column as an example. By the end of this activity, you should 
decide on the strategy that your forces will execute in the upcoming battle:

Potential battle strategies

Method Head to head Surround Ambush Fire

Shu Soldiers 87,376

Wei Soldiers 15,000

Predicted Execution 1.0

Predicted Rating 80

Location of Attack Guangling

Distance 700

Duration 78

Provisions 227,178

Gold Cost 1,065,987

Viable No

Summary
During this chapter, you used several custom functions to predict outcomes and then 
evaluated your predictions from a practical perspective. Ultimately, you determined the  
best strategy available for the Shu army's next attack. While coming to this conclusion,  
you acquired the knowledge and skills necessary to:

Use regression models to predict outcomes 

Create your own custom functions to address specific needs

Assess the viability of achieving the outcomes predicted by regression models

While you may have decided on a course of action for the Shu forces, your job is far from 
over. The major challenge at this point is to convey your ideas to others in such a way that 
they can be easily understood.

The next section of our book deals with the challenge of communicating the results of our 
data analyses. In Chapter 7, we will focus on conducting a complete, organized analysis 
in R. In Chapter 8, we will seek support from the emperor by presenting our battle plans 
graphically. In Chapter 9, we will use detailed custom visuals to educate our generals on  
the strategy that they will execute.









7
Organizing the Battle Plans

In the previous chapter, you completed your data analysis and selected the 
optimal course of action for the Shu army. With this decision in place, the time 
has come for you to share your strategy with the Shu forces. The initial step 
towards communicating your vision to the masses is to revisit the work that  
you have done up to this point.

In this chapter, we will focus on reorganizing and clarifying our prior analyses 
such that they can be easily followed by and communicated to others. This 
will render our work intelligible to a large audience, even if it is composed of 
members who do not have the exceptional level of expertise in data analysis, 
military strategy, statistics, and R that you do. Along the way, you will learn  
the common steps that you can apply to all of your future analyses in R. 

By the end of this chapter, you will be able to:

Organize and clarify your raw R data analyses

Communicate your raw R data analyses effectively

Apply the steps common to all well-conducted R analyses

Retracing and refining a complete analysis
For demonstration purposes, it will be assumed that a fire attack was chosen as the  
optimal battle strategy. Throughout this segment, we will retrace the steps that lead us  
to this decision. Meanwhile, we will make sure to organize and clarify our analyses so  
they can be easily communicated to others.
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Note that at the end of this chapter, you will be challenged to repeat 
these steps with the strategy that you devised in Chapter 6. However, 
if you feel comfortable using your own battle plans from the start, you 
are encouraged to do so.

Suppose we determined our fire attack will take place 225 miles away in Anding, which 
houses 10,000 Wei soldiers. We will deploy 2,500 soldiers for a period of 7 days and assume 
that they are able to successfully execute the plans. Let us return to the beginning to develop 
this strategy with R in a clear and concise manner.

Time for action – first steps
To begin our analysis, we must first launch R and set our working directory:

1.	 Launch R.

2.	 The R console will be displayed.

3.	 Set your R working directory using the setwd(dir) function. The following code 
is a hypothetical example. Your working directory should be a relevant location on 
your own computer.

> #set the R working directory using setwd(dir)
> setwd("/Users/johnmquick/rBeginnersGuide/") 

4.	 Verify that your working directory has been set to the proper location using the 
getwd() command:

> #verify the location of your working directory
> getwd()
[1] "/Users/johnmquick/rBeginnersGuide/"

What just happened?
We prepared R to begin our analysis by launching the software and setting our working 
directory. At this point, you should be very comfortable completing these steps.

Time for action – data setup
Next, we need to import our battle data into R and isolate the portion pertaining to past  
fire attacks:

1.	 Copy the battleHistory.csv file into your R working directory. This file contains 
data from 120 previous battles between the Shu and Wei forces.
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2.	 Read the contents of battleHistory.csv into an R variable named 
battleHistory using the read.table(...) command:

> #read the contents of battleHistory.csv into an R variable
> #battleHistory contains data from 120 previous battles 
between the Shu and Wei forces
> battleHistory <- read.table("battleHistory.csv", TRUE, ",")

3.	 Create a subset using the subset(data, ...) function and save it to a new 
variable named subsetFire:

> #use the subset(data, ...) function to create a subset of 
the battleHistory dataset that contains data only from battles 
in which the fire attack strategy was employed
> subsetFire <- subset(battleHistory, battleHistory$Method == 
"fire")

4.	 Verify the contents of the new subset. Note that the console should return 30 rows, 
all of which contain fire in the Method column:

> #display the fire attack data subset
> subsetFire 
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What just happened?
As we have in previous chapters, we imported our dataset and then created a subset 
containing our fire attack data. However, this time we used a slightly different function, 
called read.table(...), to import our external data into R.

read.table(...)
Up to this point, we have always used the read.csv() function to import data into 
R. However, you should know that there are often many ways to accomplish the same 
objectives in R. For instance, read.table(...) is a generic data import function that can 
handle a variety of file types. While it accepts several arguments, the following three are 
required to properly import a CSV file, like the one containing our battle history data:

file: the name of the file to be imported, along with its extension, in quotes

header: whether or not the file contains column headings; TRUE for yes, FALSE 
(default) for no

sep: the character used to separate values in the file, in quotes

Using these arguments, we were able to import the data in our battleHistory.csv into 
R. Since our file contained headings, we used a value of TRUE for the header argument and 
because it is a comma-separated values file, we used "," for our sep argument:

> battleHistory <- read.table("battleHistory.csv", TRUE, ",")

This is just one example of how a different technique can be used to achieve a similar 
outcome in R. We will continue to explore new methods in our upcoming activities.

Pop quiz
1. Suppose you wanted to import the following dataset, named newData into R. Which 

of the following read.table(...) functions would be best to use?

4,5
5,9
6,12

a. read.table("newData", FALSE, ",")

b. read.table("newData", TRUE, ",")

c. read.table("newData.csv", FALSE, ",")

d. read.table("newData.csv", TRUE, ",")
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Time for action – data exploration
To begin our analysis, we will examine the summary statistics and correlations of our data. 
These will give us an overview of the data and inform our subsequent analyses:

1.	 Generate a summary of the fire attack subset using summary(object):

> #generate a summary of the fire subset
> summaryFire <- summary(subsetFire)
> #display the summary
> summaryFire

Before calculating correlations, we will have to convert our nonnumeric data from 
the Method, SuccessfullyExecuted, and Result columns into numeric form.

For a discussion on converting nonnumeric data, refer to the 
Quantifying Categorical Variables section of Chapter 4.

2.	 Recode the Method column using as.numeric(data):

> #represent categorical data numerically using 
as.numeric(data)
> #recode the Method column into Fire = 1
> numericMethodFire <- as.numeric(subsetFire$Method) - 1

3.	 Recode the SuccessfullyExecuted column using as.numeric(data):

> #recode the SuccessfullyExecuted column into N = 0 and Y = 1
> numericExecutionFire <- 
as.numeric(subsetFire$SuccessfullyExecuted) - 1

4.	 Recode the Result column using as.numeric(data):

> #recode the Result column into Defeat = 0 and Victory = 1
> numericResultFire <- as.numeric(subsetFire$Result) - 1

With the Method, SuccessfullyExecuted, and Result columns coded into 
numeric form, let us now add them back into our fire dataset.
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5.	 Save the data in our recoded variables back into the original dataset:

> #save the data in the numeric Method, SuccessfullyExecuted, 
and Result columns back into the fire attack dataset
> subsetFire$Method <- numericMethodFire
> subsetFire$SuccessfullyExecuted <- numericExecutionFire
> subsetFire$Result <- numericResultFire

6.	 Display the numeric version of the fire attack subset. Notice that all of the columns 
now contain numeric data; it will look like the following:

7.	 Having replaced our original text values in the SuccessfullyExecuted and 
Result columns with numeric data, we can now calculate all of the correlations in 
the dataset using the cor(data) function:

> #use cor(data) to calculate all of the correlations in the 
fire attack dataset
> cor(subsetFire)
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Note that the error message and NA values in our correlation output 
result from the fact that our Method column contains only a single 
value. This is irrelevant to our analysis and can be ignored.

What just happened?
Initially, we calculated summary statistics for our fire attack dataset using the 
summary(object) function. From this information, we can derive the following  
useful insights about our past battles:

The rating of the Shu army's performance in fire attacks has ranged from 10 to 100, 
with a mean of 45

Fire attack plans have been successfully executed 10 out of 30 times (33%)

Fire attacks have resulted in victory 8 out of 30 times (27%)

Successfully executed fire attacks have resulted in victory 8 out of 10 times (80%), 
while unsuccessful attacks have never resulted in victory

The number of Shu soldiers engaged in fire attacks has ranged from 100 to 10,000 
with a mean of 2,052

The number of Wei soldiers engaged in fire attacks has ranged from 1,500 to 50,000 
with a mean of 12,333

The duration of fire attacks has ranged from 1 to 14 days with a mean of 7

Next, we recoded the text values in our dataset's Method, SuccessfullyExecuted, and 
Result columns into numeric form. After adding the data from these variables back into our 
our original dataset, we were able to calculate all of its correlations. This allowed us to learn 
even more about our past battle data:

The performance rating of a fire attack has been highly correlated with successful 
execution of the battle plans (0.92) and the battle's result (0.90), but not strongly 
correlated with the other variables.
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The execution of a fire attack has been moderately negatively correlated with  
the duration of the attack, such that a longer attack leads to a lesser chance  
of success (-0.46).

The numbers of Shu and Wei soldiers engaged are highly correlated with each other 
(0.74), but not strongly correlated with the other variables.

The insights gleaned from our summary statistics and correlations put us in a prime position 
to begin developing our regression model.

Pop quiz
1. Which of the following is a benefit of adding a text variable back into its original 

dataset after it has been recoded into numeric form?

a. Calculation functions can be executed on the recoded variable.

b. Calculation functions can be executed on the other variables in the dataset.

c. Calculation functions can be executed on the entire dataset.

d. There is no benefit.

Time for action – model development
Let us continue to the most extensive phase of our data analysis, which consists of 
developing the optimal regression model for our situation. Ultimately, we want to predict 
the performance rating of the Shu army under potential fire attack strategies. From our 
previous exploration of the data, we have reason to believe that successful execution greatly 
influences the outcome of battle. We can also infer that the duration of a battle has some 
impact on its outcome. At the same time, it appears that the number of soldiers engaged in 
battle does not have a large impact on the result. However, since the numbers of Shu and 
Wei soldiers themselves are highly correlated, there is a potential interaction effect between 
the two that is worth investigating. We will start by using our insights to create a set of 
potentially useful models:

1.	 Use the glm(formula, data) function to create a series of potential linear models 
that predict the Rating of battle (dependent variable) using one or more of the 
independent variables in our dataset. Then, use the summary(object) command 
to assess the statistical significance of each model:

> #create a linear regression model using the 
glm(formula, data) function
> #predict the rating of battle using execution
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> lmFireRating_Execution <- glm(Rating ~ SuccessfullyExecuted, 
data = subsetFire)
> #generate a summary of the model
> lmFireRating_Execution_Summary <- 
summary(lmFireRating_Execution)
> #display the model summary
> lmFireRating_Execution_Summary
> #keep execution in the model as an independent variablep execution in the model as an independent variable

Our first model used only the successful (or unsuccessful) execution of battle plans 
to predict the performance of the Shu army in a fire attack. Our summary tells us 
that execution is an important factor to include in the model. 

For a review of regression model interpretation, refer to the 
Regression section of Chapter 5.

2.	 Now, let us examine the impact that the duration of battle has on our model:

> #predict the rating of battle using execution and duration
> lmFireRating_ExecutionDuration <- 
glm(Rating ~ SuccessfullyExecuted + DurationInDays, 
data = subsetFire)
> #generate a summary of the model
> lmFireRating_ExecutionDuration_Summary <- 
summary(lmFireRating_ExecutionDuration)
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> #display the model summary
> lmFireRating_ExecutionDuration_Summary
>#keep duration in the model as independent variable

This model added the duration of battle to execution as a predictor of the Shu 
army's rating. Here, we found that duration is also an important predictor that 
should be included in the model. 

3.	 Next, we will inspect the prospects of including the number of Shu and Wei soldiers 
as predictors in our model:

> #predict the rating of battle using execution, duration, 
and the number of Shu and Wei soldiers engaged
> lmFireRating_ExecutionDurationSoldiers <- 
glm(Rating ~ SuccessfullyExecuted + DurationInDays + 
ShuSoldiersEngaged + WeiSoldiersEngaged, data = subsetFire)
> #generate a summary of the model
> lmFireRating_ExecutionDurationSoldiers_Summary <- 
summary(lmFireRating_ExecutionDurationSoldiers)
> #display the model summary
> lmFireRating_ExecutionDurationSoldiers_Summary
> #drop the number of Shu and Wei soldiers from model 
as independent variables
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This time, we added the number of Shu and Wei soldiers into our model, but 
determined that they were not significant enough predictors of the Shu army's 
performance. Therefore, we elected to exclude them from our model. 

4.	 Lastly, let us investigate the potential interaction effect between the number of  
Shu and Wei soldiers:

> #investigate a potential interaction effect between the 
number of Shu and Wei soldiers
> #center each variable by subtracting its mean from each 
of its values
> centeredShuSoldiersFire <- subsetFire$ShuSoldiersEngaged 
- mean(subsetFire$ShuSoldiersEngaged)
> centeredWeiSoldiersFire <- subsetFire$WeiSoldiersEngaged 
- mean(subsetFire$WeiSoldiersEngaged)
> #multiply the two centered variables to create the 
interaction variable
> interactionSoldiersFire <- centeredShuSoldiersFire 
* centeredWeiSoldiersFire
> #predict the rating of battle using execution, duration, 
and the interaction between the number of Shu and Wei 
soldiers engaged
> lmFireRating_ExecutionDurationShuWeiInteraction <- 
glm(Rating ~ SuccessfullyExecuted + DurationInDays + 
interactionSoldiersFire, data = subsetFire)
> #generate a summary of the model
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lmFireRating_ExecutionDurationShuWeiInteraction_Summary 
<- summary(lmFireRating_ExecutionDurationShuWeiInteraction)
> #display the model summary
> lmFireRating_ExecutionDurationShuWeiInteraction_Summary
> #keep the interaction between the number of Shu and Wei 
soldiers engaged in the model as an independent variable

We can see that the interaction effect between the number of Shu and Wei  
soldiers does have a meaningful impact on our model and should be included  
as an independent variable.

Note that some statisticians may argue that it is inappropriate to include 
an interaction variable between the Shu and Wei soldiers in this model, 
without also including the number of Shu and Wei soldiers alone as 
variables in the model. In this fictitious example, there is no practically 
significant difference between these two options, and therefore, the 
interaction term has been included alone for the sake of simplicity and 
clarity. However, were you to incorporate interaction effects into your 
own regression models, you are advised to thoroughly investigate the 
implications of including or excluding certain variables.
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We have identified four potential models. To determine which of these is most appropriate 
for predicting the outcome of our fire attack, we will use an approach known as Akaike 
Information Criterion, or AIC:

> #use the AIC(object, ...) function to compare the models 
and choose the most appropriate one
> #when comparing via AIC, the lowest value indicates the 
best statistical model
> AIC(lmFireRating_Execution, lmFireRating_ExecutionDuration, 
lmFireRating_ExecutionDurationSoldiers, 
lmFireRating_ExecutionDurationShuWeiInteraction)
> #according to AIC, our model that includes execution, duration, and 
the interaction effect is best

The AIC procedure revealed that our model containing execution, duration, and the 
interaction between the number of Shu and Wei soldiers is the best choice for predicting  
the performance of the Shu army.

What just happened?
We just completed the process of developing potential regression models and comparing 
them in order to choose the best one for our analysis. Through this process, we determined 
that the successful execution, duration, and the interaction between the number of Shu 
and Wei soldiers engaged were statistically significant independent variables, whereas 
the number of Shu and Wei soldiers alone were not. By using an AIC test, we were able to 
determine that the model containing all three statistically significant variables was best 
for predicting the Shu army's performance in fire attacks. Therefore, our final regression 
equation is as follows:

Rating = 37 + 56 * execution - 1.24 * duration - 0.00000013 * 

soldiers interaction

For a more detailed discussion of model development, refer 
to the Regression section of Chapter 5.
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glm(...)
Each of our models in this chapter were created using the glm(formula, data) function. 
For our purposes, this function is identical in structure and very similar in effect to the 
lm(formula, data) function that we are already familiar with from Chapter 5. We used 
glm(formula, data) here to demonstrate an alternative R function for creating regression 
models. In your own work, the appropriate function will be determined by the requirements 
of your analysis. 

You may also have noticed that our lm(formula, data) functions listed only the variable 
names in the formula argument. This is a short-hand method for referring to our dataset's 
column names, as demonstrated by the following code:

lmFireRating_ExecutionDuration <- glm(Rating ~ 
SuccessfullyExecuted + DurationInDays, data = subsetFire)

Notice that the subsetFire$ prefix is absent from each variable name and that the data 
argument has been defined as subsetFire. When the data argument is used, and the 
independent variables in the formula argument are unique, the dataset$ prefix may be 
omitted. This technique has the effect of keeping our code more readable, without changing 
the results of our calculations.

AIC(object, ...)
AIC can be used to compare regression models. It yields a series of AIC values, which indicate 
how well our models fit our data. AIC is used to compare multiple models relative to each 
other, whereby the model with the lowest AIC value best represents our data.

Similar in structure to the anova(object, ...) function, the AIC(object, ...)  
function accepts a series of objects (regression models in our case) as input. For example, in 
AIC(A, B, C) we are telling R to compare three objects (A, B, and C) using AIC. Thus, our 
AIC function compared the four regression models that we created:

> AIC(lmFireRating_Execution, lmFireRating_ExecutionDuration, 
lmFireRating_ExecutionDurationSoldiers, 
lmFireRating_ExecutionDurationShuWeiInteraction)

As output, AIC(object, ...) returned a series of AIC values used to compare our models.

Recall that we compared our regression models in Chapter 5 using anova(object, 
...). To demonstrate an alternative R function that can be used to compare models, we 
used AIC(object, ...) in this activity. The glm(...) function coordinates well with 
AIC(object, ...), hence our decision to use them together in this example. Again, the 
appropriate techniques to use in your future analyses should be determined by the specific 
conditions surrounding your work.
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Pop quiz
1. When can the dataset$ prefix be omitted from the variables in the formula 

argument of lm(formula, data) and glm(formula, data)?

a. When the data argument is defined.

b. When the data argument is defined and all of the variables come from  
different datasets.

c. When the data argument is defined and all of the variables have unique names.

d. When the data argument is defined, all of the variables come from different 
datasets, and all of the variables have unique names.

2. Which of the following is not true of the anova(object, ...) and  
AIC(object, ...) functions?

a. Both can be used to compare regression models.

b. Both receive the same arguments.

c. Both represent different statistical methods.

d. Both yield identical mathematical results.

Time for action – model deployment
Having selected the optimal model for predicting the outcome of our fire attack strategy, it 
is time to put that model to practical use. We can use it to predict the outcomes of various 
fire attack strategies and to identify one or more strategies that are likely to lead to victory. 
Subsequently, we need to ensure that our winning strategies are logistically sound and 
viable. Once we strike a balance between our designed strategy and our practical constraints, 
we will arrive at the best course of action for the Shu forces.

Recall from Chapter 6 that we set a rating value of 80 as our minimum threshold. As such,  
we will only consider a strategy adequate if it yields a rating of 80 or higher when all 
variables have been entered into our model.

In the case of our fire attack regression model, we know that to achieve our desired rating 
value, we must assume successful execution. We also know the number of Wei soldiers 
housed at the target city. Consequently, our major constraints are the number of Shu  
soldiers that we choose to engage in battle and the duration of the attack. We will assume  
a moderate attack duration. 
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Subsequently, we can rearrange our regression equation to solve for the number of Shu 
soldiers engaged and then represent it as a custom function in R:ldiers engaged and then represent it as a custom function in R:

1.	 Use the coef(object) function to isolate the independent variables in our 
regression model:

> #use the coef(object) function to extract the coefficients 
from a regression model
> #this will make it easier to rearrange our equation by 
allowing us to focus only on these values
> coef(lmFireRating_ExecutionDurationShuWeiInteraction)

2.	 Rewrite the fire attack regression equation to solve for the number of Shu soldiers 
engaged in battle:

> #rewrite the regression equation to solve for the number of 
Shu soldiers engaged in battle
> #original equation: rating = 37 + 56 * execution - 1.24 * 
duration - 0.00000013 * soldiers interaction
> #rearranged equation: Shu soldiers = (rating - 37 + 56 * 
execution + 1.24 * duration) / (0.00000013 * - 
Wei soldiers engaged)

3.	 Use the function() command to create a custom R function to solve for the 
number of Shu soldiers engaged in battle, given the desired rating, execution, 
duration, and number of WeiSoldiers:

> #use function() to create a custom function in R
> #the function() command follows this basic format: 
+   function(argument1, argument2,... argumenti) { equation } 
> #custom function that solves for the maximum number of Shu 
soldiers that can be deployed, given the desired rating, 
execution, duration, and number of Wei soldiers
> functionFireShuSoldiers <- function(rating, execution, 
duration, WeiSoldiers) {
+     (rating - 37 - 56 * execution +
+     1.24 * duration) /
+     (0.00000013 * - WeiSoldiers)
+ }
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4.	 Use the custom function to solve for the number of Shu soldiers that can be deployed, 
given a rating of 80, duration of 7, success of 1.0, and 10,000 WeiSoldiers:

> #solve for the number of Shu soldiers that can be deployed 
given a result of 80, duration of 7, success of 1.0, and 
15,000 WeiSoldiers
> functionFireShuSoldiers(80, 1.0, 7, 10000)
[1] 3323.077

Our regression model suggests that to achieve a rating of 80, our minimum threshold, 
we should deploy 3,323 Shu soldiers. However, from looking at the data in our fire attack 
subset, a force between 2,500 and 5,000 soldiers has not been previously used to launch 
a fire attack. Further, four past successful fire attacks on 7,500 to 12,000 Wei soldiers have 
deployed only 1,000 to 2,500 Shu soldiers. What would happen to our predicted rating value 
if we were to deploy 2,500 Shu soldiers instead of 3,323?

1.	 Create a custom function to solve for the rating of battle whenrating of battle when of battle when execution, 
duration, and number of ShuSoldiers and WeiSoldiers are known:

> #custom function that solves for rating of battle, given the 
execution, duration, number of Shu soldiers, and number of Wei 
soldiers
> functionFireRating <- function(execution, duration, 
ShuSoldiers, WeiSoldiers) {
+    37 + 56 * execution -
+    1.24 * duration -
+    0.00000013 * (ShuSoldiers * WeiSoldiers)
+ }

2.	 Use the custom function to solve for the rating of battle, given successful execution,rating of battle, given successful execution, of battle, given successful execution, 
a 7-day duration, 2,500 Shu soldiers, and 10,000 Wei soldiers:

> What would happen to our rating value if we were to deploy 
2,500 Shu soldiers instead of 3,323?
> functionFireRating(1.0, 7, 2500, 10000)
[1] 81.07
> #Is the 1.07 increase in our predicted chances for victory 
worth the practical benefits derived from deploying 2,500 
soldiers?
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By using 2,500 soldiers, our rating value increased to 81, which is slightly above our thresholdrating value increased to 81, which is slightly above our threshold value increased to 81, which is slightly above our threshold 
of confidence for victory. Here, we have encountered a classic dilemma for the data analyst. 
On one hand, our data model tells us that it is safe to use 3,323 soldiers. On the other, our 
knowledge of war strategy and past outcomes tells us that a number between 1,000 and 2,500 
would be sufficient. Essentially, we have to identify the practical benefits or detriments from 
deploying a certain number of soldiers. In this case, we are inclined to think that it is beneficial 
to deploy fewer than 3,323, but more than 1,000. The exact number is a matter of debate and 
uncertainty that deserves serious consideration. It is always the strategist's challenge to weigh 
both the practical and statistical benefits of potential decisions. On that note, let us consider 
the logistics of our proposed fire attack. Our plan is to deploy 2,500 Shu soldiers over a period 
of 7 days to attack 10,000 Wei soldiers who are stationed 225 miles away.

1.	 Create a custom function that calculates the gold cost of our fire attack strategy:

> #custom function that calculates the gold cost of our 
strategy, given the number of Shu soldiers deployed, the 
distance of the target city, and the proposed duration of 
battle.
> functionGoldCost <- function(ShuSoldiers, distance, duration) 
+ {
+    ShuSoldiers * (distance / 100 + 2 * (duration / 30))
+ }

2.	 Use the custom function to calculate the gold cost of our fire attack strategy:

> #gold cost of fire attack that deploys 2,500 Shu soldiers 
a distance of 225 miles for a period of 7 days
> functionGoldCost(2500, 225, 7)
[1] 6791.667

3.	 Calculate the number of provisions needed for our fire attack strategy:

> #provisions required by our fire attack strategy
> #consumption per 30 days is equal to the number of soldiers 
deployed
> 2500 * (7/30)
[1] 583.3333

4.	 Determine whether the fire attack strategy is viable given our resource limitations:

> #our gold cost of 6,792 is well below our allotment of 1,000,000
> #our required provisions of 583 are well below our allotment of 
1,000,000
> #our 2,500 soldiers account for only 1.25% of our total army 
personnel
> #yes, the fire attack strategy is viable given our resource 
constraintsaints
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What just happened?
We successfully used our optimal regression model to refine our battle strategy and test 
its viability in light of our practical resource constraints. Custom functions were used to 
calculate the number of soldiers necessary to yield our desired outcome, the performance 
rating given the parameters of our plan, and the overall gold cost of our strategy. In 
determining the number of soldiers to engage in our fire attack, we encountered a 
common occurrence whereby our data models conflicted with our practical understanding 
of the world. Subsequently, we had to use our expertise as data analysts to balance the 
consequences between the two and arrive at a sound conclusion. We then assessed the 
overall viability of our strategy and determined it to be sufficient in consideration of our 
resource allotments.

For a more detailed discussion of the techniques used in this segment, 
refer to the Logistical Considerations section of Chapter 6.

coef(object)
Prior to rewriting our regression equation and converting it into a custom function, we 
executed the coef(object) command on our model. The coef(object) function, when 
executed on a regression model, has the effect of extracting and displaying its independent 
variables (or coefficients). By isolating these components, we were able to easily visualize 
our model's equation:

> coef(lmFireRating_ExecutionDurationShuWeiInteraction)
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In contrast, the summary(object) function contains much more information than we need 
for this purpose, thus making it potentially confusing and difficult to locate our variables. 
This can be seen in the following:

> lmFireRating_ExecutionDurationShuWeiInteraction_Summary

Hence, in circumstances where we only care to see the independent variables in our model, 
the coef(object) function can be more effective than summary(object).

Pop quiz
1. Under which of the following circumstances might you use the coef(object) 

function instead of summary(object)?

a. You want to know the practical significance of the model's variables.

b. You want to know the statistical significance of the model's variables.

c. You want to know the model's regression equation.

d. You want to know the formula used to generate the model.
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Time for action – last steps
Lastly, we need to save the workspace and console text associated with our fire  
attack analysis:

1.	 Use the save.image(file) function to save your R workspace to your working 
directory. The file argument should contain a meaningful filename and the 
.RData extension:

> #save the R workspace to your working directory
> save.image("rBeginnersGuide_Ch_07_fireAttackAnalysis.RData")

2.	 R will save your workspace file. Browse to the working directory on your hard drive 
to verify that this file has been created.

3.	 Manually save your R console log by copying and pasting it into a text file. You may 
then format the console text to improve its readability.

We have now completed an entire data analysis of the fire attack strategy from beginning  
to end using R.

The common steps to all R analyses
While retracing the development process behind our fire attack strategy, we encountered a 
key series of steps that are common to every analysis that you will conduct in R. Regardless 
of the exact situation or the statistical techniques used, there are certain things that must be 
done to yield an organized and thorough R analysis. Each of these steps is detailed.

Perhaps it goes without saying that the thing to do before beginning any R analysis is to 
launch R itself. Nevertheless, it is mentioned here for completeness and transparency.

Step 1: Set your working directory
Once R is launched, the first common step is to set your working directory. This can be done 
using the setwd(dir) function and subsequently verified using the getwd() command:

> #Step 1: set your working directory

> #set your working directory using setwd(dir)
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")

> #once set, you can verify your new working directory using getwd()
> getwd()
[1] "/Users/johnmquick/rBeginnersGuide/"
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Comment your work
Note that commented lines, which are prefixed with the pound sign (#), appeared before 
each of our functions in step one. It is vital that you comment all of the actions that you take 
within the R console. This allows you to refer back to your work later and also makes your 
code accessible to others.

This is an opportune time to point out that you can draft your code in other 
places besides the R console. For example, R has a built in editor that can be 
opened by going to the File | New Document/Script menu or simultaneously 
pressing the Command + N or Ctrl + N keys. Other free editors can also be 
found online. The advantages of using an editor are that you can easily modify 
your code and see different types of code in different colors, which helps you to 
verify that it is properly constructed. Note however, that to execute your code, it 
must be placed in the R console.

Step 2: Import your data (or load an existing workspace)
After you set the working directory, it is time to pull your data into R. This can be achieved  
by creating a new variable in tandem with the read.csv(file) command:

> #Step 2: Import data (or load an existing workspace)

> #read a dataset from a csv file into R using read.csv(file) and save 
it into a new variable
> dataset <- read.csv("datafile.csv")

Alternatively, if you were continuing a prior data analysis, rather than starting a new one, you 
would instead load a previously saved workspace using load.image(file). You can then 
verify the contents of your loaded workspace using the ls() command.

> #load an existing workspace using load.image(file)
> load.image("existingWorkspace.RData")

> #verify the contents of your workspace using ls()
> ls()
[1] "myVariable 1"
[2] "myVariable 2"
[3] "myVariable 3"
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Step 3: Explore your data
Regardless of the type or amount of data that you have, summary statistics should be 
generated to explore your data. Summary statistics provide you with a general overview 
of your data and can reveal overarching patterns, trends, and tendencies across a dataset. 
Summary statistics include calculations such as means, standard deviations, and ranges, 
amongst others:

> #Step 3: Explore your data

> #calculate a mean using mean(data)
> mean(myData)
[1] 1000

> #calculate a standard deviation using sd(data)
> sd(myData)
[1] 100

> #calculate a range (minimum and maximum) using range(data)
> range(myData)
> [1] 500 2000

Also recall R's summary(object) function, which provides summary statistics along 
with additional vital information. It can be used with almost any object in R and will offer 
information specifically catered to that object:

> #generate a detailed summary for a given object using 
summary(object)
> summary(object)

Note that there are often other ways to make an initial examination of your 
data in addition to using summary statistics. When appropriate, graphing 
your data is an excellent way to gain a visual perspective on what it has to 
say (data visualization is the primary topic of Chapter 8 and Chapter 9 of 
this book). Furthermore, before conducting an analysis, you will want to 
ensure that your data are consistent with the assumptions necessitated by 
your statistical methods. This will prevent you from expending energy on 
inappropriate techniques and from making invalid conclusions.
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Step 4: Conduct your analysis
Here is where your work will differ from project to project. Depending on the type of analysis 
that you are conducting, you will use a variety of different techniques. For example, in this 
book we have primarily used regression analysis. Regression is but one of an endless number 
of potential methods. The correct techniques to use will be determined by the circumstances 
surrounding your work.

> #Step 4: Conduct your analysis
> #The appropriate methods for this step will vary between analyses.

Step 5: Save your workspace and console files
At the conclusion of your analysis, you will always want to save your work. To have the 
option to revisit and manipulate your R objects from session to session, you will need  
to save your R workspace using the save.image(file) command, as follows:

> #Step 5: Save your workspace and console files

> #save your R workspace using save.image(file)
> #remember to include the .RData file extension
> save.image("myWorkspace.RData")

To save your R console text, which contains the log of every action that you took during a 
given session, you will need to copy and paste it into a text file. Once copied, the console 
text can be formatted to improve its readability. For instance, a text file containing the five 
common steps of every R analysis could take the following form:

> #There are five steps that are common to every data analysis 
conducted in R

> #Step 1: set your working directory

> #set your working directory using setwd(dir)
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")

> #once set, you can verify your new working directory using getwd()
> getwd()
[1] "/Users/johnmquick/rBeginnersGuide/"

> #Step 2: Import data (or load an existing workspace)

> #read a dataset from a csv file into R using read.csv(file) and save 
it into a new variable
> dataset <- read.csv("datafile.csv")
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> #OR

> #load an existing workspace using load.image(file)
> load.image("existingWorkspace.RData")

> #verify the contents of your workspace using ls()
> ls()
[1] "myVariable 1"
[2] "myVariable 2"
[3] "myVariable 3"

> #Step 3: Explore your data

> #calculate a mean using mean(data)
> mean(myData)
[1] 1000

> #calculate a standard deviation using sd(data)
> sd(myData)
[1] 100

> #calculate a range (minimum and maximum) using range(data)
> range(myData)
> [1] 500 2000

> #generate a detailed summary for a given object using 
summary(object)
> summary(object)

> #Step 4: Conduct your analysis
> #The appropriate methods for this step will vary between analyses.

> #Step 5: Save your workspace and console files

> #save your R workspace using save.image(file)
> #remember to include the .RData file extension
> save.image("myWorkspace.RData")

> #save your R console text by copying it and pasting it into a text 
file.

See the rBeginnersGuide_CommonSteps.txt file 
that is provided with this book.
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Pop quiz
1. Which of the following is not a benefit of commenting your code?

a. It makes your code readable and organized.

b. It makes your code accessible to others.

c. It makes it easier for you to return to and recall your past work.

d. It makes the analysis process faster.

Have a go hero
Conduct a complete end to end analysis using the strategy that you decided upon at the 
conclusion of Chapter 6. Be sure to employ each of the five common steps to all R analyses. 
Along the way, refer to the Retracing and Refining a Complete Analysis section of this 
chapter, as well as the previous chapters of this book. Once your analysis is complete,  
you should have the following items:

A workspace file containing all of the objects used in your analysis

A commented console text file detailing all of the actions that occurred during  
your analysis

A sound, viable battle strategy for the Shu army

Summary
In this chapter, we conducted an entire data analysis in R from beginning to end. While doing 
so, we ensured that our work was as organized and transparent as possible, thereby making 
it more accessible to others. Afterwards, we identified the five steps that are common to all 
well-executed data analyses in R. You then used these steps to conduct, organize, and refine 
a battle strategy for the Shu army. Having completed this chapter, you should now be able to:

Organize and clarify your raw R data analyses

Communicate your raw R data analyses effectively

Apply the steps common to all well-conducted R analyses

Now that we have a complete, organized, and clear plan for the Shu army, our challenge is 
to communicate it to others. Next, we will visit the Emperor, who has the power to accept 
or reject our battle plans. In order to communicate our ideas simply and effectively, we will 
focus on using graphical techniques in Chapter 8.















�
Briefing the Emperor

You revisited and reorganized a complete data analysis in Chapter 7 to prepare 
your strategy for presentation. The next step towards executing your plans for 
the Shu forces is to visit the emperor and propose your strategy. The emperor 
is unconcerned with the minute details of the attack, but rather needs to be 
convinced that your proposed attack is a sound one that will be beneficial for 
the Shu kingdom. It is important to convey your plans with clarity, because the 
emperor has the power accept or reject your strategy.

To provide the emperor with the clear and concise information that he needs, we will focus 
on R's graphical features. We will convey our strategy through the use of several charts, 
graphs, and plots. We will also explore our options for customizing these visuals. Through 
the use of R's rich graphical features, we make the benefits of our combat strategy readily 
apparent and win the support of the emperor. By the end of this chapter, you will be able to:

Create six different charts, graphs, and plots in R

Customize your R visuals using text, colors, axes, and legends

Save and export your graphics for use outside of R

Charts, graphs, and plots in R
R features several options for creating charts, graphs, and plots. In this chapter, we will 
explore the generation and customization of these visuals, as well as methods for saving and 
exporting them for use outside of R. The following visuals will be covered in this chapter:

Bar graphs

Scatterplots
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Line charts

Box plots

Histograms

Pie charts

For demonstration purposes, all of our visuals will communicate information about the 
fire attack strategy that was used in Chapter 7. This strategy entailed deploying 2,500 Shu 
soldiers for 7 days to execute a fire attack 225 miles away on 10,000 Wei soldiers in And. If 
desired, you are encouraged to substitute your own battle plans into any or all activities for 
this chapter.

Time for action – creating a bar chart
A bar chart or bar graph is a common visual that uses rectangles to depict the values  
of different items. Bar graphs are especially useful when comparing data over time or 
between diverse groups. Let us create a bar chart in R:

1.	 Open R and set your working directory:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")

2.	 Load the Chapter 8 workspace. It contains the necessary information for this 
chapter.

> #load the chapter 8 workspace
> load("rBeginnersGuide_Ch_08_ReadersCopy.RData")

3.	 Use the barplot(...) function to create a bar chart:

> #create a bar chart that compares the mean durations of 
the battle methods
> #calculate the mean duration of each battle method
> meanDurationFire <- mean(subsetFire$DurationInDays)
> meanDurationAmbush <- mean(subsetAmbush$DurationInDays)
> meanDurationHeadToHead <- 
mean(subsetHeadToHead$DurationInDays)
> meanDurationSurround <- mean(subsetSurround$DurationInDays)
> #use a vector to define the chart's bar values
> barAllMethodsDurationBars <- c(meanDurationFire, 
meanDurationAmbush, meanDurationHeadToHead, 
meanDurationSurround)
> #use barplot(...) to create and display the bar chart
> barplot(height = barAllMethodsDurationBars)
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4.	 Your chart will be displayed in the graphic window, similar to the following:

What just happened?
You created your first graphic in R. Let us examine the barplot(...) function that we used 
to generate our bar chart, along with the new R components that we encountered.

barplot(...)
We created a bar chart that compared the mean durations of battles between the different 
combat methods. As it turns out, there is only one required argument in the barplot(...) 
function. This height argument receives a series of values that specify the length of each 
bar. Therefore, the barplot(...) function, at its simplest, takes on the following form:

barplot(height = heightValues)

Accordingly, our bar chart function reflected this same format:

> barplot(height = barAllMethodsDurationBars)
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Vectors
We stored the heights of our chart's bars in a vector variable. In R, a vector is a series of 
data. R's c(...) function can be used to create a vector from one or more data points.  
For example, the numbers 1, 2, 3, 4, and 5 can be arranged into a vector like so:

> #arrange the numbers 1, 2, 3, 4, and 5 into a vector
> numberVector <- c(1, 2, 3, 4, 5)

Similarly, text data can also be placed into vector form, so long as the values are contained 
within quotation marks:

> #arrange the letters a, b, c, d, and e into a vector
> textVector <- c("a", "b", "c", "d", "e")

Our vector defined the values for our bars:

> #use a vector to define the chart's bar values
> barAllMethodsDurationBars <- c(meanDurationFire, 
meanDurationAmbush, meanDurationHeadToHead, meanDurationSurround)

Many function arguments in R require vector input. Hence, it is very common to use and 
encounter the c(...) function when working in R.

Graphic window
When you executed your barplot(...) function in the R console, the graphic window 
opened to display it. The graphic window will have different names across different operating 
systems, but its purpose and function remain the same. For example, in Mac OS X, the 
graphic window is named Quartz.
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For the remainder of this book, all R graphics will be displayed without the graphics window 
frame, which will allow us to focus on the visuals themselves.
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Pop quiz
1. When entering text into a vector using the c(...) function, what characters must 

surround each text value?

a. quotation marks

b. parenthesis

c. asterisks

d. percent signs

2. What is the purpose of the R graphic window?

a. to debug graphics functions

b. to execute graphics functions

c. to edit graphics

d. to display graphics

Time for action – customizing graphics
Although the barplot(...) function only requires the height of each bar to be specified, 
creating a chart in this manner leaves us with a bland and difficult to decipher visual. In most 
cases, you will want to customize your R graphics by incorporating additional arguments into 
your functions. Let us explore how to use graphic customization arguments by expanding our 
bar chart:

1.	 Expand your bar chart using graphic customization arguments:

> #use additional arguments to customize a graphic
> #define a title for the bar chart
> barAllMethodsDurationLabelMain <- 
"Average Duration by Battle Method"
> #define x and y axis labels for the bar chart
> barAllMethodsDurationLabelX <- "Battle Method"
> barAllMethodsDurationLabelY <- "Duration in Days"
> #set the x and y axis scales
> barAllMethodsDurationLimX <- c(0, 5)
> barAllMethodsDurationLimY <- c(0, 120)
> #define rainbow colors for the bars
> barAllMethodsDurationRainbowColors <-  
rainbow(length(barAllMethodsDurationBars))
> #incorporate customizations into the graphic function using 
the main, xlab, ylab, xlim, ylim, names, and col arguments
> #use barplot(...) to create and display the bar chart
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> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationRainbowColors)

2.	 Your chart will be displayed in the graphic window, as shown in the  
following screenshot:

3.	 Add a legend to the chart, using the following snippet:

> #add a legend to the bar chart
> #the x and y arguments position the legend
> #x and y can be defined using words or numerical coordinates
> #the legend argument receives a vector containing the labels 
for the legend
> barAllMethodsDurationLegendLabels <- c("Fire", "Ambush", 
"Head to Head", "Surround")
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> #the fill argument contains the colors for the legend
> legend(x = 0, y = 120, 
legend = barAllMethodsDurationLegendLabels, 
fill = barAllMethodsDurationRainbowColors)

4.	 Your legend will be added to the existing chart.

What just happened?
The barplot(...) function, as well as the other graphic functions that we will use in 
this book, accept a variable number of arguments. In fact, R graphics functions have many 
customizable options and therefore tend to accept several arguments. We expanded our bar 
chart using a collection of the most common customization arguments, which apply to nearly 
all R graphics functions.



Chapter 8

[ 15� ]

Graphic customization argumentscustomization arguments arguments
We used six arguments to customize our bar chart:

main: a text title for the graphic

xlab: a text label for the x axis

ylab: a text label for the y axis

xlim: a vector containing the lower and upper limits for the x axis

ylim: a vector containing the lower and upper limits for the y axis

col: a vector containing the colors to be used in the graphic

The general format for these arguments is as follows:

argument = value

When incorporated into a graphics function, these arguments take on the following form:

graphicsFunction(..., argument = value)

Recognize that these six arguments can be applied to nearly every R graphics function. 
Each one can be used alone or they can be used in tandem. We will use these arguments 
throughout the chapter to refine and improve our visuals.

main, xlab, and ylab
The main, xlab, and ylab arguments are all used to add clarifying text to graphics. A 
primary title for a graphic is defined by main, while labels for the x and y axes are specified 
using xlab and ylab, respectively.

Our barplot(...) function made use of the main, xlab, and ylab arguments. We saved 
our argument values into variables prior to incorporating them into the barplot(...) 
function. First, we defined our text values as variables.

> #define a title for the bar chart
> barAllMethodsDurationLabelMain <- 
"Average Duration by Battle Method"
> #define x and y axis labels for the bar chart
> barAllMethodsDurationLabelX <- "Battle Method"
> barAllMethodsDurationLabelY <- "Duration in Days"
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Then, we used our variables in the final barplot(...) function:

> barplot(height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain, 

xlab = barAllMethodsDurationLabelX, 

ylab = barAllMethodsDurationLabelY, 

xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationRainbowColors)

This variable technique has the advantages of rendering our code more decipherable and 
making it easier for us to return to and reuse our data in future graphics. We will continue  
to use this method throughout the chapter.

xlim and ylim
The xlim and ylim arguments receive a vector containing the minimum and maximum 
values for the x and y axes respectively. Thus, in:

xlim = c(50, 250)

A graphic's x axis is told to present the data that fall between 50 and 250. The ylim 
argument operates in identical fashion to xlim, with the exception that it acts upon 
the y axis. These arguments are useful for rescaling a graphic's axes to improve its visual 
presentation. They can also have the effect of emphasizing or deemphasizing certain  
data ranges.

In our chart, we used xlim to set a minimum of 0 and a maximum of 5 for the x axis. This 
evenly and comfortably spaced our bars within the graphic window. We used ylim to set 
a minimum of 0 and maximum of 120 for the y axis. This ensured that all of our data were 
represented and that our bars were displayed at a reasonable height. 

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
xlim = barAllMethodsDurationLimX, 

ylim = barAllMethodsDurationLimY, 

col = barAllMethodsDurationRainbowColors)
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Col
R can generate colors in two different forms using Col; they can be rainbow colors which are 
automatic, or you can specify colors of your choice.

Rainbow colors
R can generate an automatic sequence of colors for a chart with the rainbow(...) 
function. For our purposes, we simply identified the number of colors that we wished 
to generate for our chart. To obtain the appropriate number of colors, we used the 
length(object) command. This function tells us the number of items contained in a given 
object. In our case, using length(object) on the barAllMethodsDurationBars yielded 
a result of 4, which represents each of our chart's bars:

> barAllMethodsDurationSpecificColors <- 
rainbow(length(barAllMethodsDurationBars))

Consequently, the rainbow(...) function generated four colors. These colors were applied 
to the chart's bars when we included the barAllMethodsDurationRainbowColors 
variable in the col argument of our barplot(...) function.

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationRainbowColors)

Specific colors
Alternatively, specific colors can be defined using the col argument in tandem with a vector 
list of color names. Common color names such as red, green, blue, and yellow are valid 
inputs. In this situation, the col argument takes on the following form:

col = colorVector

Where colorVector is a variable storing a vector of color values like the following:

c("red", "green", "blue", "yellow")

You can see a complete list of the colors available in R by executing 
the colors() function.



Briefing the Emperor

[ 162 ]

Had we wanted to use specific colors in our bar chart, we could have employed the  
following code:

> #define specific colors for the bars
> barAllMethodsDurationSpecificColors <- c("red", "green", "blue", 
"yellow")
> #use barplot(...) to create and display the bar chart
> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationSpecificColors)

legend(...)
The finishing touch to our bar chart was a legend, or key, that indicated what our bars 
represented. In R, the legend(...) function employs the following arguments:

x: the x position of the chart in numeric terms; alternatively you can set the overall 
position of the legend using one of the text values topleft, top, topright, left, 
center, right, bottomleft, bottomcenter, or bottomright

y: the y position of the chart in numeric terms; if text is used for x, omit  
this argument

legend: a vector containing the labels to be used in the legend

fill: a vector containing the colors to be used in the legend

The basic format for the legend function is as follows:

legend(x = xPosition, y = yPosition, legend = labelVector, 
fill = colorVector)

For instance, the following code:

> legend(x = "topleft", legend = c("a", "b"), fill = rainbow(2))

This would yield a legend placed at the top-left position with labels for a and b whose colors 
were generated by the rainbow(...) function. Note that the x argument used a text value 
and y was omitted as an alternative to defining the exact numerical position  
of the legend.
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Our function used the x and y coordinates from our chart to position the legend in the upper 
left-hand corner. When using numbers to define the x and y arguments, the values will 
always depend on the limits of the x and y axes. For instance, a position of (0, 120) specified 
the upper left-hand corner in our chart, but a graphic with a maximum y value of 50 would 
have an upper left-hand corner position of (0, 50). Our legend and fill arguments 
incorporated the same labels and colors that were used to generate our bar chart. Thus,  
our legend was matched to the information depicted in our chart:

 > legend(x = 0, y = 120, 
legend = barAllMethodsDurationLegendLabels, 
fill = barAllMethodsDurationRainbowColors)

Notice the peculiar implementation of the legend(...) function, which we have not 
previously encountered. As we will see with other graphics functions, legend(...)  
does not stand alone. To be properly employed, a compatible graphic must already exist  
for legend(...) to act upon. In this situation, legend(...) adds a new legend on top 
of the visual that is displayed in the graphic window. However, if no graphic is currently 
displayed when the legend(...) function is executed, an error message is returned.  
This is demonstrated in the following code:

> #using the legend(...) function when no graphic already exists 
results in the following error
> legend(x = "topleft", legend = c("a", "b"), fill = rainbow(2))
Error in strwidth(legend, units = "user", cex = cex) : 
  plot.new has not been called yet

Therefore, to add a legend to your graphics in R, be sure to always create the graphic first, 
then apply the legend(...) function.

Pop quiz
1. An xlim value of c(100, 300) means which of the following?

a. Present the data that are not equal to 100 or 300 on the x axis.

b. Present the data that are equal to 100 or 300 on the x axis.

c. Present the data that are less than 100 or greater than 300 on the x axis.

c. Present the data that are between 100 and 300 on the x axis.

2. When should the legend(...) function be called?

a. Before a graphic function is called.

b. During a graphic function, included as an argument.

c. After a graphic function.

d. When a compatible graphic is displayed in the graphic window.
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Time for action – creating a scatterplot
A scatterplot is a fundamental statistics graphic that can be used to better understand the 
relationships underlying a dataset. Like descriptive statistics and correlations, scatterplots are 
especially useful as a precursor to more extensive data analyses, such as linear regression 
modeling. We can use R to generate scatterplots that depict a single relationship between 
two variables or the relationships between all of the variables in a dataset. We will practice 
both of these methods:

1.	 Use the plot(...) function to create a scatterplot depicting a single relationship 
between two variables:

> #create a scatterplot that depicts the relationship between 
the number of Shu and Wei soldiers engaged in past fire attacks
> #get the data to be used in the plot
> scatterplotFireWeiSoldiersData <- subsetFire$WeiSoldiers
> scatterplotFireShuSoldiersData <- subsetFire$ShuSoldiers
> #customize the plot
> scatterplotFireSoldiersLabelMain <- 
"Soldiers Engaged in Past Fire Attacks"
> scatterplotFireSoldiersLabelX <- "Wei"
> scatterplotFireSoldiersLabelY <- "Shu"
> #use plot(...) to create and display the scatterplot
> plot(x = scatterplotFireWeiSoldiersData, 
y = scatterplotFireShuSoldiersData, 
main = scatterplotFireSoldiersLabelMain, 
xlab = scatterplotFireSoldiersLabelX, 
ylab = scatterplotFireSoldiersLabelY)
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2.	 Your plot will be displayed in the graphic window, as shown in the following:

3.	 Use the plot(...) function to simultaneously depict the relationships between all 
of the variables in the dataset:

> #create a scatterplot that depicts the relationships between 
all of the variables in our fire attack dataset
> plot(x = subsetFire)
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4.	 A grouping of several plots will be displayed in the graphic window:

What just happened?
We created two scatterplots using R's plot(...) function, one portraying a single 
relationship and one displaying all of the relationships in our dataset.
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Single scatterplot
To plot a single relationship between two variables, use R's plot(...) function. The 
primary arguments for plot(...) are:

x: the variable to be plotted on the x axis

y: the variable to be plotted on the y axis

Thus, the simplest form of plot(...) contains arguments only for the x and y variables, 
and is as shown:

plot(x = xVariable, y = yVariable)

We used the plot(...) function to visualize the relationship between the number of Shu 
and Wei soldiers involved in past fire attacks. To add relevant text to our graphic, we included 
the main, xlab, and ylab arguments:

> plot(scatterplotFireWeiSoldiersData, 
scatterplotFireShuSoldiersData, 
main = scatterplotFireSoldiersLabelMain, 
xlab = scatterplotFireSoldiersLabelX, 
ylab = scatterplotFireSoldiersLabelY)

Multiple scatterplots
We also used the plot(...) function to simultaneously explore all of the relationships 
within our dataset. This yielded a graphic that contained a scatterplot for every variable  
pair. The format for creating this type of scatterplot is:

plot(x = dataset)

Where dataset is a set of data containing multiple variables. For us, the dataset argument 
contained our fire attack data.

> plot(x = subsetFire)

The resulting plot allowed us to visualize all of the relationships between our variables in a 
single graphic.
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Pop quiz
1. Assume that a and b are data variables. Which of the following best describes the 

graphic that would result from the following line of code?

> plot(x = a, y = b)

a. A scatterplot with a on the x axis and b on the y axis.

b. A scatterplot with b on the x axis and a on the y axis.

c. A scatterplot containing all of the relationships in the dataset.

d. A scatterplot containing none of the relationships in the dataset.

2. Assume that a is a dataset. Which of the following best describes the graphic that 
would result from the following line of code?

> plot(x = a)

a. A scatterplot with a on the x axis.

b. A scatterplot with a on the y axis.

c. A scatterplot containing all of the relationships in the dataset.

d. A scatterplot containing none of the relationships in the dataset.

Time for action – creating a line chart
The ever popular line chart, or line graph, depicts relationships as continuous series of 
connected data points. Line charts are particularly useful for visualizing specific values and 
trends over time. Just as a line chart is an extension of a scatterplot in the non-digital realm, 
a line chart is created using an extended form of the plot(...) function in R. Let us explore 
how to extend the plot(...) function to create line charts in R:

1.	 Use the type argument within the plot(...) function to create a line chart that 
depicts a single relationship between two variables:

> #create a line chart that depicts the durations of past fire 
attacks
> #get the data to be used in the chart
> lineFireDurationDataX <- c(1:30)
> lineFireDurationDataY <- subsetFire$DurationInDays
> #customize the chart
> lineFireDurationMain <- "Duration of Past Fire Attacks"
> lineFireDurationLabX <- "Battle Number"
> lineFireDurationLabY <- "Duration in Days"
> #use the type argument to connect the data points with a line
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> lineFireDurationType <- "o"
> #use plot(...) to create and display the line chart
> plot(x = lineFireDurationDataX, y = lineFireDurationDataY, 
main = lineFireDurationMain, xlab = lineFireDurationLabX, 
ylab = lineFireDurationLabY, type = lineFireDurationType)

2.	 Your chart will be displayed in the graphic window, as follows:

What just happened?
We expanded our use of the plot(...) function to generate a line chart and encountered 
a new data notation in the process. Let us review these features.
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type
In the plot(...) function, the type argument determines what kind of line, if any,  
should be used to connect a chart's data points. The type argument receives one of  
several character values, all of which are listed as follows:

p: only points are plotted; this is the default value when type is undefined

l: only lines are drawn, without any points

o: both lines and points are drawn, with the lines overlapping the points

b: both lines and points are drawn, with the lines broken where they intersect  
with points

c: only lines are drawn, but they are broken where points would occur

s: only the lines are drawn in step formation; the initial step begins at zero

S: (uppercase) only the lines are drawn in step formation; the final step tails off at 
the last point

h: vertical lines are drawn to represent each point

n: no points nor lines are drawn

Our chart, which represented the duration of past fire attacks, featured a line that 
overlapped the plotted points. First, we defined our desired line type in an R variable:

> lineFireDurationType <- "o"

Then the type argument was placed within our plot(...) function to generate the  
line chart:

> plot(lineFireDurationDataX, lineFireDurationDataY,
main = lineFireDurationMain, xlab = lineFireDurationLabX, 
ylab = lineFireDurationLabY, 
type = lineFireDurationType)

Number-colon-number notation
You may have noticed that we specified a vector for the x-axis data in our plot(...) function.

> lineFireDurationDataX <- c(1:30)

This vector used number-colon-number notation. Essentially, this notation has the effect of 
enumerating a range of values that lie between the number that precedes the colon and the 
number that follows it. To do so, it adds one to the beginning value until it reaches a final value 
that is equal to or less than the number that comes after the colon. For example, the code > 
14:21 would yield eight whole numbers, beginning with 14 and ending with 21, as follows:

[1] 14 15 16 17 18 19 20 21
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Furthermore, the code > 14.2:21 would yield seven values, beginning with 14.2 and 
ending with 20.2, as follows:

[1] 14.2 15.2 16.2 17.2 18.2 19.2 20.2

Number-colon-number notation is a useful way to enumerate a series of values without 
having to type each one individually. It can be used in any circumstance where a series of 
values is acceptable input into an R function.

Number-colon-number notation can also enumerate values from high to 
low. For instance, 21:14 would yield a list of values beginning with 21 
and ending with 14.

Since we do not have exact dates or other identifying information for our 30 past battles, we 
simply enumerated the numbers 1 through 30 on the x-axis. This had the effect of assigning 
a generic identification number to each of our past battles, which in turn allowed us to plot 
the duration of each battle on the y axis.

Pop quiz 
1. Which of the following is the type argument capable of?

a. Drawing a line to connect or replace the points on a scatterplot.

b. Drawing vertical or step lines.

c. Drawing no points or lines.

d. All of the above.

2. What would the following line of code yield in the R console?

> 1:50

a. A sequence of 50 whole numbers, in order from 1 to 50.

b. A sequence of 50 whole numbers, in order from 50 to 1.

c. A sequence of 50 random numbers, in order from 1 to 50.

d. A sequence of 50 random numbers, in order from 50 to 1.
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Time for action – creating a box plot
A useful way to convey a collection of summary statistics in a dataset is through the use of a 
box plot. This type of graph depicts a dataset's minimum and maximum, as well as its lower, 
median, and upper quartiles in a single diagram. Let us look at how box plots are created in R:

1.	 Use the boxplot(...) function to create a box plot.

> #create a box plot that depicts the number of soldiers 
required to launch a fire attack
> #get the data to be used in the plot
> boxplotFireShuSoldiersData <- subsetFire$ShuSoldiers
> #customize the plot
> boxPlotFireShuSoldiersLabelMain <- "Number of Soldiers 
Required to Launch a Fire Attack"
> boxPlotFireShuSoldiersLabelX <- "Fire Attack Method"
> boxPlotFireShuSoldiersLabelY <- "Number of Soldiers"
> #use boxplot(...) to create and display the box plot
> boxplot(x = boxplotFireShuSoldiersData, 
main = boxPlotFireShuSoldiersLabelMain, 
xlab = boxPlotFireShuSoldiersLabelX, 
ylab = boxPlotFireShuSoldiersLabelY)

2.	 Your plot will be displayed in the graphic window, as shown in the following:
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3.	 Use the boxplot(...) function to create a box plot that compares  
multiple datasets.

> #create a box plot that compares the number of soldiers 
required across the battle methods
> #get the data formula to be used in the plot
> boxplotAllMethodsShuSoldiersData <- battleHistory$ShuSoldiers 
~ battleHistory$Method
> #customize the plot
> boxPlotAllMethodsShuSoldiersLabelMain <- "Number of Soldiers 
Required by Battle Method"
> boxPlotAllMethodsShuSoldiersLabelX <- "Battle Method"
> boxPlotAllMethodsShuSoldiersLabelY <- "Number of Soldiers"
> #use boxplot(...) to create and display the box plot
> boxplot(formula = boxplotAllMethodsShuSoldiersData, 
main = boxPlotAllMethodsShuSoldiersLabelMain, 
xlab = boxPlotAllMethodsShuSoldiersLabelX, 
ylab = boxPlotAllMethodsShuSoldiersLabelY)

4.	 Your plot will be displayed in the graphic window, as shown in the following:
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What just happened?
We just created two box plots using R's boxplot(...) function, one with a single box and 
one with multiple boxes.

boxplot(...)
We started by generating a single box plot that was composed of a dataset, main title, and x 
and y labels. The basic format for a single box plot is as follows:

boxplot(x = dataset)

The x argument contains the data to be plotted. Technically, only x is required to create a 
box plot, although you will often include additional arguments. Our boxplot(...) function 
used the main, xlab, and ylab arguments to display text on the plot, as shown:

> boxplot(x = boxplotFireShuSoldiersData, 
main = boxPlotFireShuSoldiersLabelMain, 
xlab = boxPlotFireShuSoldiersLabelX, 
ylab = boxPlotFireShuSoldiersLabelY)

Next, we created a multiple box plot that compared the number of Shu soldiers deployed by 
each battle method. The main, xlab, and ylab arguments remained from our single box 
plot, however our multiple box plot used the formula argument instead of x. Here, a formula 
allows us to break a dataset down into separate groups, thus yielding multiple boxes.

The basic format for a multiple box plot is as follows:

boxplot(formula = dataset ~ group)

In our case, we took our entire Shu soldier dataset (battleHistory$ShuSoldiers) and 
separated it by battle method (battleHistory$Method):

> boxplotAllMethodsShuSoldiersData <- battleHistory$ShuSoldiers ~ 
battleHistory$Method

Once incorporated into the boxplot(...) function, this formula resulted in a plot that 
contained four distinct boxes—ambush, fire, head to head, and surround:

> boxplot(formula = boxplotAllMethodsShuSoldiersData, 
main = boxPlotAllMethodsShuSoldiersLabelMain, 
xlab = boxPlotAllMethodsShuSoldiersLabelX, 
ylab = boxPlotAllMethodsShuSoldiersLabelY)
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Pop quiz 
1. Which of the following best describes the result of the following code?

> boxplot(x = a)

a. A single box plot of the a dataset.

b. A single box plot of the x dataset.

c. A multiple box plot of the a dataset that is grouped by x.

d. A multiple box plot of the x dataset that is grouped by a.

2. Which of the following best describes the result of the following code?.

> boxplot(formula = a ~ b)

a. A single box plot of the a dataset.

b. A single box plot of the b dataset.

c. A multiple box plot of the a dataset that is grouped by b.

d. A multiple box plot of the b dataset that is grouped by a.

Time for action – creating a histogram
A histogram displays the frequency with which certain values occur in a dataset. Visually, a 
histogram looks similar to a bar chart, but it conveys different information. Histograms help 
us to get an idea of how varied and distributed our data are. Let us begin the histogram 
making process in R:

1.	 Use the hist(...) function to create a histogram:

> #create a histogram that depicts the frequency distribution 
of past fire attack durations
> #get the histogram data
> histFireDurationData <- subsetFire$DurationInDays
> #customize the histogram
> histFireDurationDataMain <- "Duration of Past Fire Attacks"
> histFireDurationLabX <- "Duration in Days"
> histFireDurationLimY <- c(0, 10)
> histFireDurationRainbowColor <- 
rainbow(max(histFireDurationData))
> #use hist(...) to create and display the histogram
> hist(x = histFireDurationData, 
main = histFireDurationDataMain, xlab = histFireDurationLabX, 
ylim = histFireDurationLimY, 
col = histFireDurationRainbowColor)
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2.	 Your histogram will be displayed in the graphic window, as shown in the following:

What just happened?
We used the hist(...) function to generate a histogram that depicted the frequency 
distribution of our fire attack duration data.

hist(...)
In its simplest form, the hist(...) function is very similar to boxplot(...). At a 
minimum, it requires only that the data for the chart's columns be defined. A simple  
function looks like the following:

hist(x = dataset)
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As is true with our other graphics, the hist(...) function also receives graphic 
customization arguments. We rescaled our y-axis with ylim, colored our bars with col, and 
added text to our histogram with main and xlab. Also note that we used the max(data) 
function within the rainbow(...) component of our col argument to ensure that our 
histogram would have enough colors to represent each unique value in our dataset:

hist(x = histFireDurationData, main = histFireDurationDataMain, 
xlab = histFireDurationLabX, ylim = histFireDurationLimY, 
col = histFireDurationRainbowColor)

Pop quiz
1. Which of the following information are we not capable of deriving from  

a histogram?

a. The most and least frequently occurring values in the dataset.

b. The total number of data points in the dataset.

c. The minimum and maximum values in the dataset.

d. The exact value of each data point in the dataset.

Time for action – creating a pie chart
Pie charts are a fast and easy way to visualize a single relationship within a dataset. Let us 
look at how to create a pie chart in R:

1.	 Use the pie(...) function to create a pie chart:

> #create a pie chart that depicts the gold cost of the fire 
attack in relation to the total funds allotted to the Shu army
> #get the data to be used in the chart
> #what is the cost of the proposed fire attack?
> functionGoldCost(2500, 225, 7)
[1] 6791.667
> #we already know that 1,000,000 gold has been allotted to 
the Shu army
> #therefore our remaining funds after the fire attack would 
be 993,208
> #create a vector to hold the values for the chart's slices
> pieFireGoldCostSlices <- c(6792, 993208)
> #use the labels argument to specify the text associated with 
each of the chart's slices
> pieFireGoldCostLabels <- c("mission cost", "remaining funds")
> #customize the chart
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> pieFireGoldCostMain <- "Gold Cost of Fire Attack"
> pieFireGoldCostSpecificColors <- c("green", "blue")
> #use pie(...) to create and display the pie chart
> pie(x = pieFireGoldCostSlices, 
labels = pieFireGoldCostLabels, main = pieFireGoldCostMain, 
col = pieFireGoldCostSpecificColors)

2.	 Your chart will be displayed in the graphic window, similar to the following:

3.	 Add a legend to the chart, using the following code:

> #use the legend(...) function to add a legend to the chart
> legend(x = "bottom", legend = pieFireGoldCostLabels, 
fill = pieFireGoldCostSpecificColors)
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4.	 Your legend will be added to the existing chart, which will look like the following:

What just happened
We created a pie chart using R's pie(...) function and then appended it with a legend. Let 
us review how pie charts are generated in R.

pie(...)
The primary arguments used in the pie(...) function are x and labels:

x: the numerical values for the pie's slices. These must be nonnegative and input in 
vector form.

labels: the text labels for the pie's slices. These must be input in vector form.

Consequently, the pie chart function takes on the following basic form:

pie(x = sliceData, labels = sliceText)
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Where sliceData and sliceText are in vector form.

To create our pie chart, we first calculated the cost information that we wished to display 
and stored it in a vector variable, like so:

> pieFireGoldCostSlices <- c(6792, 993208)

Next, we created a vector to hold the text labels for our pie's slices:

> pieFireGoldCostLabels <- c("mission cost", "remaining funds")

Then we customized our chart with a main title and specific colors, before executing our 
complete pie(...) function:

> pie(x = pieFireGoldCostSlices, labels = pieFireGoldCostLabels, 
main = pieFireGoldCostMain, col = pieFireGoldCostSpecificColors)

Lastly, we added a legend to our chart to further clarify its components:

> legend(x = "bottom", legend = pieFireGoldCostLabels, 
fill = pieFireGoldCostSpecificColors)

Pop quiz
1. In the pie(...) function, what do the x and labels arguments represent?

a. labels represents the slice's numerical values, whereas x represents the slice's 
text labels.

b. x represents the slice's numerical values, whereas labels represents the slice's 
text labels.

c. labels represents the slice's text values, whereas x represents the slice's 
numerical labels.

d. x represents the slice's text values, whereas labels represents the slice's 
numerical labels.

Have a go hero
At this point, you have practiced generating six fundamental R graphics that are critical to 
data analysis, visualization, and presentation. Use your new R skills to create at least three 
graphics that will convince the emperor that your battle plan is logistically viable, of benefit 
the Shu kingdom, and the best choice amongst the competing options. Be sure to employ 
the customization arguments that we explored in this chapter. Refer back to the individual 
sections of this chapter for assistance with creating graphics of particular types.
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Time for action – exporting graphics
Now that we have created all of these informative graphics, it would be nice to be able to 
use them for presentations, reports, desktop wallpapers, or a variety of other purposes. 
Fortunately, R is capable of turning its graphics into digital images that can be used in other 
applications. Let us look at how to export our graphics for use outside of R:

1.	 Use one of R's several export functions to convert a graphic into a digital image, it 
can be done as follows:

> #use an export function to save a graphic as a digital image
> #prepare R to export your graphic in one of the following 
formats: pdf, png, jpg, tiff, or bmp
> #note that your image will be saved into your R working 
directory by default if only a filename is provided
> #otherwise, your image will be saved to the full provided 
path
> #optionally, the width and height, in pixels, of the 
resulting image can be specified
> #export as pdf
> pdf("myGraphic.pdf", width = 500, height = 500)
> #OR
> #export as png
> png("myGraphic.png", width = 500, height = 500)
> #OR
> #export as jpg
> jpeg("myGraphic.jpg", width = 500, height = 500)
> #OR
> #export as tiff
> tiff("myGraphic.tiff", width = 500, height = 500)
> #OR

> #export as bmp
> bmp("myGraphic.bmp", width = 500, height = 500)

2.	 Create the graphic, as follows:

> #create the graphic in R
> #note that your graphic may NOT be displayed in the graphic 
window during this process
> #we will use our original fire cost pie chart as an example
> #use pie(...) to create the pie chart
> pie(x = pieFireGoldCostSlices, 
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labels = pieFireGoldCostLabels, main = pieFireGoldCostMain, 
col = pieFireGoldCostSpecificColors)
> #use the legend(...) function to add a legend to the chart
> legend(x = "bottom", legend = pieFireGoldCostLabels, 

fill = pieFireGoldCostSpecificColors)

4.	 Use dev.off() to close the current device and export your graphic as a  
digital image:

> #use dev.off() to close the current device and export the 
graphic as a digital image
> dev.off()

5.	 Your graphic will be exported. Verify that your digital image has been created.

What just happened?
We just completed the process of exporting an R graphic as a digital image file. Let us detail 
the three major steps involved in this procedure.

1. Prepare the graphic device

The first step in exporting an R graphic is to prepare the graphic device, which is the 
entity that handles graphics in R. This step requires that a file type for our exported 
graphic be defined. Optionally, a width and height for the resulting image can also 
be specified. These can be accomplished through the use of one of several similar 
functions. These are:

pdf(filename, width, height)

png(filename, width, height)

jpeg(filename, width, height)

tiff(filename, width, height)

bmp(filename, width, height)

Each of these functions prepares the graphic device to export an image associated 
with its name. For example, the pdf(filename, width, height) function will 
export an image to PDF format. The filename argument can contain either a 
complete path specifying where the image is to be saved or just a filename and 
extension. If only a name and extension are included, the image will be saved to the 
R working directory. The width and height parameters are measured in pixels and 
receive a single numeric value. For instance, see the following:

> pdf("/Users/johnmquick/Desktop/myGraphic.pdf", width = 500, 
height = 500)
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This would export a 500 by 500 pixel PDF image named myGraphic.pdf to the 
given user's desktop. Whereas, look at the following:

> pdf("myGraphic.pdf", width = 300, height = 200)

This would export a 300 by 200 pixel PDF image named myGraphic.pdf to the 
current working directory.

2. Create the graphic

The second step is to create the graphic in R. This can be done using any of the 
techniques that we have explored in this chapter. The only difference between this 
scenario and our previous activities is that we prepared our graphic device prior to 
creating our graphic. Note that the graphic must be created after executing one of 
the functions provided in the previous step in order to be exported. Also, unlike our 
other experiences with R visuals, your graphic may not be displayed in the graphic 
window when its function is executed.

3. Close the graphic device

The third and final step is to close the graphics device via the dev.off() command. 
Once dev.off() is executed, the graphic will be exported and saved on your 
computer as a digital image. Afterwards, be sure to check the location that you 
specified in the first step to verify that your digital image is present and that it was 
exported properly.

Remembering these three simple steps will allow you to export your R graphics as digital 
images, thereby allowing them to be used in other applications.

Pop quiz
1. In what order must the three steps of the graphic exportation process proceed?

a. Create the graphic, prepare the graphic device, close the graphic device.

b. Close the graphic device, prepare the graphic device, create the graphic.

c. Prepare the graphic device, close the graphic device, create the graphic.

d. Prepare the graphic device, create the graphic, close the graphic device.
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Have a go hero
Create a custom function named exportGraphic that will allow you to save an R graphic 
as a digital image. Your function should receive five inputs—a filename, a filetype, a width, a 
height, and a graphics function. For instance, exportGraphic should be able to receive the 
arguments of test.png, png, 500, 500, and barplot(c(1:10)), and yield a PNG image 
of the specified R graphic. Your function should also be able to export an image of any other 
valid type. Make sure that your custom function follows the process that we used to export 
our graphics as digital images. Once created, test your exportGraphic function to ensure 
that it works as intended.

Summary
In this chapter, you created several charts, graphs, and plots to communicate your vision  
and win the approval of the Shu emperor. This process entailed using R's graphical prowess 
to generate, customize, and export visual representations of your data. At this point, you 
should be able to:

Use R to create various charts, graphs, and plots

Customize your R visuals using colors, lines, and symbols

Save and export your R visuals

The final stage in preparing for battle is to communicate your strategy to the members of the 
Shu forces who will execute it. This step requires the simple and clear presentation of precise 
details. In Chapter 9, we will explore the use of detailed custom data visualizations to brief 
the generals of the Shu army.
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Briefing the Generals

In Chapter 8, we explored several graphics that can be generated in R. Using 
these visualizations, you were able to win the favor of the Shu Emperor and 
receive his approval to carry out your battle plans. Now your focus has turned 
to the Shu generals, who must be convinced that your plan is worthy of their 
services. The generals will need to know the details of the attack and how it 
compares with alternative combat strategies. Recruiting the top generals in the 
Shu army is critical to the success of your strategy. This challenge calls for clean, 
detailed, and informative graphics.

We will revisit the charts, graphs, and plots that were created in Chapter 8. 
To improve their informativeness, clarity, and aesthetics, we will employ new 
graphics arguments and functions. Specific customization arguments for the 
different graphics types will be deployed. New graphics functions that add 
information to visuals will also be explored. We will even work to create our 
own custom graphics from scratch. 

By the end of this chapter, you will be able to do the following:

Customize several charts, graphs, and plots using arguments specific to each

Use graphics functions to add information to any visual

Create custom graphics by building them from the ground up
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More charts, graphs, and plots in R
In Chapter 8, we customized our graphics using universal arguments that applied to all 
visuals. However, R graphics often have arguments that apply only to themselves as well. 
These can be used to make type-specific customizations. We will build upon the graphics 
that were covered in Chapter 8 by examining the arguments that are specific to each visual. 
R also provides graphics functions that can be used to add information to any visual. We will 
use these to expand our graphics and to experiment with building our own graphics from 
scratch. The following visuals will be covered in this chapter:

Bar graphs

Scatterplots

Line charts

Box plots

Histograms

Pie charts

Custom graphics

For demonstration purposes, all of our visuals will communicate information about the 
fire attack strategy that was used in Chapter 7. This strategy entailed deploying 2,500 Shu 
soldiers for 7 days to execute a fire attack 225 miles away on 10,000 Wei soldiers in Anding.  
If desired, you are encouraged to substitute your own battle plans into any or all activities  
for this chapter.

Throughout this chapter, we will modify and build upon the graphics that we created in 
the previous chapter. All of the necessary variables from that chapter are provided in the 
rBeginnersGuide_Ch_09_ReadersCopy.RData workspace file.

Time for action – customizing a bar chart
To begin, we will expand our Chapter 8 bar chart using arguments specifically designed  
for the barplot(...) function. We will also become familiar with two different types  
of bar charts.

1.	 Open R and set your working directory:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd("/Users/johnmquick/rBeginnersGuide/")
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2.	 Load the Chapter 9 workspace. It contains the necessary information for  
this chapter:

> #load the chapter 9 workspace
> load("rBeginnersGuide_Ch_09_ReadersCopy.RData")

3.	 Use the names, width, and space arguments to customize a chart's bars:

> #modify the chapter 8 bar chart that compared the mean durations 
of the battle methods
> #use the names argument to assign a text label to each bar
> #the names argument receives a vector containing text labels for 
each of the chart's bars
> barAllMethodsDurationNames <- c("Fire", "Ambush", 
"Head to Head", "Surround")
> #use the width argument to change the width of each bar
> #note that width can be set using a single value for all bars or 
by creating a vector to hold a unique value for each bar
> #note that the xlim argument must be defined in order to use the 
single value approach
> barAllMethodsDurationLimX <- c(0, 4)
> barAllMethodsDurationWidth <- 0.25
> #use the space argument to change the distance between each bar
> #the space value is a ratio of the average bar width; it 
defaults to 0.2
> #note that space can be set using a single value for all bars or 
by creating a vector to hold a unique value for each bar
> barAllMethodsDurationSpace <- 2
> #use barplot(...) to create and display the bar chart
> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationRainbowColors, 
names = barAllMethodsDurationNames, 
width = barAllMethodsDurationWidth, 
space = barAllMethodsDurationSpace)
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Your chart will be displayed in the graphic window, as shown in the following:

4.	 Use the horiz argument to change the chart's orientation:

> #set a bar chart's orientation using the horiz argument
> #if TRUE, the bars will display horizontally
> #if FALSE (default), the bars will display vertically
> barAllMethodsDurationHoriz <- TRUE
> #note that you must reorient the chart for it to display 
properly
> #this can be accomplished by switching the values of all 
arguments related to the x and y axes
> #use barplot(...) to create and display the bar chart
> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelY, 
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ylab = barAllMethodsDurationLabelX, 
xlim = barAllMethodsDurationLimY, 
ylim = barAllMethodsDurationLimX, 
col = barAllMethodsDurationRainbowColors, 
names = barAllMethodsDurationNames, 
width = barAllMethodsDurationWidth, 
space = barAllMethodsDurationSpace, 
horiz = barAllMethodsDurationHoriz)

Your chart will be displayed in the graphic window, as shown in the following:

Note that if your bar labels do not all appear along the y-axis, you may want 
to resize the graphic window. Making your window larger will provide it with 
enough space to display all of the chart's labels.
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5.	 Use the beside argument to create a stacked bar chart:

> #create a new bar chart to demonstrate the stacking feature
> #create a bar chart that depicts the average number of soldiers 
involved in each battle method with stacked bars for the Shu and 
Wei forces
> #set the stacking of a chart's bars using the beside argument
> #if TRUE (default), the bars will display next to one another
> #if FALSE, the bars will display atop one another
> barAllMethodsSoldiersBeside <- FALSE
> #note that the bar values must be in matrix form for the beside 
argument to take effect
> #calculate the bar values for each method

> #fire
> meanShuSoldiersFire <- mean(subsetFire$ShuSoldiers)
> meanWeiSoldiersFire <- mean(subsetFire$WeiSoldiers)

> #ambush
> meanShuSoldiersAmbush <- mean(subsetAmbush$ShuSoldiers)
> meanWeiSoldiersAmbush <- mean(subsetAmbush$WeiSoldiers)

> #head to head
> meanShuSoldiersHeadToHead <- 
mean(subsetHeadToHead$ShuSoldiers)
> meanWeiSoldiersHeadToHead <- 
mean(subsetHeadToHead$WeiSoldiers)

> #surround
> meanShuSoldiersSurround <- mean(subsetSurround$ShuSoldiers)
> meanWeiSoldiersSurround <- mean(subsetSurround$WeiSoldiers)

> #put the bar values into matrix form using the matrix(...) 
function
> #the matrix should have four columns (one for each method) and 
two rows (one for each kingdom)
> #when the chart is created, the rows will be stacked within each 
column
> barAllMethodsSoldiersBars <- matrix(c(meanShuSoldiersFire, 
meanWeiSoldiersFire, meanShuSoldiersAmbush, 
meanWeiSoldiersAmbush, meanShuSoldiersHeadToHead, 
meanWeiSoldiersHeadToHead, meanShuSoldiersSurround, 
meanWeiSoldiersSurround), 2, 4)
> #customize the chart
> barAllMethodsSoldiersMain <- "Average Number of Soldiers Engaged 
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in Battle by Kingdom"
> barAllMethodsSoldiersLabX <- "Battle Method"
> barAllMethodsSoldiersLabY <- "Number of Soldiers"
> barAllMethodsSoldiersNames <- c("Fire", "Ambush", 
"Head to Head", "Surround")
> #use barplot(...) to create and display the bar chart
> barplot(height = barAllMethodsSoldiersBars, 
main = barAllMethodsSoldiersMain, 
xlab = barAllMethodsSoldiersLabX, 
ylab = barAllMethodsSoldiersLabY, 
names = barAllMethodsSoldiersNames, 
beside = barAllMethodsSoldiersBeside)

Your chart will be displayed in the graphic window, as follows:
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6.	 Use the density and angle arguments to change the shading of the chart's bars:

> #use the density argument to define the thickness of the shaded 
lines
> #density receives either a single nonnegative value for all 
matrix rows or a vector containing a value for each row
> #density is measured in lines per inch with a default value of 
NULL
> barAllMethodsSoldiersDensity <- c(10, 25)
> #angle modifies the angle of the shaded lines
> #angle receives either a single value for all matrix rows or a 
vector containing a value for each row
> #angle is measured in degrees
> barAllMethodsSoldiersAngle <- c(45, -45)
> #use barplot(...) to create and display the bar chart
> barplot(height = barAllMethodsSoldiersBars, 
main = barAllMethodsSoldiersMain, 
xlab = barAllMethodsSoldiersLabX, 
ylab = barAllMethodsSoldiersLabY, 
names = barAllMethodsSoldiersNames, 
beside = barAllMethodsSoldiersBeside, 
density = barAllMethodsSoldiersDensity, 
angle = barAllMethodsSoldiersAngle)

Your chart will be displayed in the graphic window, as shown in the following:
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7.	 Add a legend to the chart:

> #add a legend to the stacked bar chart
> #use the x and y arguments to specify the exact location of the 
legend
> #note that the possible x and y values are determined by the 
limits of your axes
> #add labels for the Shu and Wei armies
> #incorporate the density and angle arguments from our 
barplot(...) function
> #use cex to increase the size of the legend
> legend(x = 0.2, y = 70000, legend = c("Shu", "Wei"), 
density = barAllMethodsSoldiersDensity, 
angle = barAllMethodsSoldiersAngle, cex = 2)

Your legend will be added to the existing chart. The final chart looks like  
the following:
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What just happened?
We created vertical, horizontal, and stacked bar charts using the barplot(...) function 
and its custom arguments. We also expanded upon the legend(...) function to gain more 
control over its appearance. Let us reflect upon each of these steps.

names
We started by adding text labels to our bars via the names argument. This argument  
receives a vector containing the text label to be appended to each bar. In our case,  
the labels consisted of the four battle methods that follow:

barAllMethodsSoldiersNames <- c("Fire", "Ambush", "Head to Head", 
"Surround")

width and space
Then, we looked at two arguments that are unique to the barplot(...) function. The 
width argument specifies the thickness of a chart's bars. It can be defined as a single value 
for all bars or a vector that contains unique values for each bar. Note that if a single value 
is used, the xlim argument must be defined for the width argument to take effect. In 
coordination with width, we also employed the space argument, which determines the 
distance between a chart's bars. Like width, space can be defined as a single value or a 
vector containing values for each bar. It is measured as a ratio of the average bar width and 
defaults to a value of 0.2. For example, if the average width of the bars was 5 and the space 
was set to 0.5, then the distance between each bar would be 2.5. For our chart, we chose a 
width of 0.25 and a space of 2, which had the visual effect of making our bars skinnier and 
spread farther apart:

> barAllMethodsDurationWidth <- 0.25
> barAllMethodsDurationSpace <- 2

We chose uniform width and space values for our bars. Had we wanted to set unique values 
for each bar, such as when weighting the bars according to the number of data points they 
include, we could have used the following code:

> barAllMethodsDurationWidth <- c(0.1, 0.25, 0.5, 0.75)
> barAllMethodsDurationSpace <- c(0.5, 1, 1.5, 2)

Lastly, the names, width, and space arguments were incorporated into our overall 
barplot(...) function:

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelX, 
ylab = barAllMethodsDurationLabelY, 
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xlim = barAllMethodsDurationLimX, 
ylim = barAllMethodsDurationLimY, 
col = barAllMethodsDurationRainbowColors, 
names = barAllMethodsDurationNames, 
width = barAllMethodsDurationWidth, 
space = barAllMethodsDurationSpace)

horiz
To further expand our bar chart, we incorporated the horiz argument. This argument allows 
us to reorient our bars such that they extend horizontally, rather than vertically, across the 
chart. The horiz argument receives either a TRUE or FALSE value indicating whether the 
bars should be oriented horizontally. By default, horiz is set to FALSE and the bars are 
drawn vertically. We chose to reorient our bars by setting our horiz variable to TRUE:

barAllMethodsDurationHoriz <- TRUE

We then included it into our barplot(...) function:

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelY, 
ylab = barAllMethodsDurationLabelX, 
xlim = barAllMethodsDurationLimY, 
ylim = barAllMethodsDurationLimX, 
col = barAllMethodsDurationRainbowColors, 
names = barAllMethodsDurationNames, 
width = barAllMethodsDurationWidth, 
space = barAllMethodsDurationSpace, 
horiz = barAllMethodsDurationHoriz)

Note that reorienting the bars of a chart is similar in effect to rotating it by 90 degrees. 
Therefore, to prevent a misshapen and unreadable graphic, we must also swap all arguments 
related to the x and y-axes. In our case, that meant exchanging our x-axis and y-axis limits 
and labels:

> barplot(height = barAllMethodsDurationBars, 
main = barAllMethodsDurationLabelMain, 
xlab = barAllMethodsDurationLabelY, 
ylab = barAllMethodsDurationLabelX, 
xlim = barAllMethodsDurationLimY, 
ylim = barAllMethodsDurationLimX, 
col = barAllMethodsDurationRainbowColors, 
names = barAllMethodsDurationNames, 
width = barAllMethodsDurationWidth, 
space = barAllMethodsDurationSpace, 
horiz = barAllMethodsDurationHoriz)
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After swapping these values, the chart displays appropriately. Had we forgotten to make this 
exchange, we would have ended up with the following graphic:

Remember to swap your x-axis and y-axis arguments when making 
horizontal bar charts.

beside
We then turned to developing a new chart that would make use of the beside argument. 
This argument tells a chart's bars to stack atop one another, rather than stand side by side. 
Like horiz, beside accepts a TRUE or FALSE value. If TRUE, the default setting, the bars 
will display side by side. If FALSE, the bars will be stacked. We chose to stack our bars by 
setting beside to FALSE.

barAllMethodsSoldiersBeside <- FALSE
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Note that for the beside argument to take effect, the height argument must be in matrix 
form. To organize our data into a matrix, we used the matrix(...) function, whose basic 
format is as follows:

matrix(values, rows, columns)

Here, values is a vector containing the relevant data points, rows is the number of rows, 
and columns is the number of columns. Our matrix consisted of eight data points that were 
organized into two rows (Shu and Wei) and four columns (Fire, Ambush, Head to Head, and 
Surround). In the final chart, the four bars are formed by stacking the two rows within each 
column; the following is the code:

> barAllMethodsSoldiersBars <- matrix(c(meanShuSoldiersFire, 
meanWeiSoldiersFire, meanShuSoldiersAmbush, meanWeiSoldiersAmbush, 
meanShuSoldiersHeadToHead, meanWeiSoldiersHeadToHead, 
meanShuSoldiersSurround, meanWeiSoldiersSurround), 2, 4)

Our stacked bar chart depicted the average number of soldiers that are engaged in each type 
of battle. By stacking our bars, we were able to specify what proportion of the soldiers came 
from the Shu and Wei armies. Thus, our chart was able to include more information in the 
same amount of space:

> barplot(height = barAllMethodsSoldiersBars, 

main = barAllMethodsSoldiersMain, 
xlab = barAllMethodsSoldiersLabX, 
ylab = barAllMethodsSoldiersLabY, 
names = barAllMethodsSoldiersNames, 
beside = barAllMethodsSoldiersBeside)

density and angle
After beside, we used the density and angle arguments to define the shading of our 
bars. The density argument defines the closeness of the shaded lines. It receives either a 
single non-negative value for all matrix rows or a vector that contains values for each row. 
The angle argument specifies the angle at which the shaded lines are to be drawn. It also 
accepts a single value for all matrix rows or a vector containing values for each row.

Our stacked bar chart used a density of 10 for the Shu row and 25 for the Wei row:

> barAllMethodsSoldiersDensity <- c(10, 25)

It also featured an angle of 45 for the Shu and -45 for the Wei:

> barAllMethodsSoldiersAngle <- c(45, -45)
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Hence, you will notice that the shading in the Shu portions of our bars is spread thinner and 
rises to the upper-right of the chart, whereas the shading in the Wei portions of the chart is 
thicker and declines towards the lower-right of the chart:

> barplot(height = barAllMethodsSoldiersBars, 
main = barAllMethodsSoldiersMain, 
xlab = barAllMethodsSoldiersLabX, 
ylab = barAllMethodsSoldiersLabY, 
names = barAllMethodsSoldiersNames, 
beside = barAllMethodsSoldiersBeside, 
density = barAllMethodsSoldiersDensity, 

angle = barAllMethodsSoldiersAngle)

legend(...) with density, angle, and cex
In the final step, we added a legend to our chart. A legend is critical to a stacked bar chart, 
because it indicates the difference between its grouped regions. Our legend(...) function 
expanded upon the legends that we created in the previous chapter. We positioned the 
legend towards the upper-left side of the chart using the x and y arguments. We also 
specified the labels that we wanted to show in the legend (Shu and Wei). By default, the 
legend would have displayed the bar names (Fire, Ambush, Head to Head, and Surround). 
Since we needed to display the stacked segments of each bar instead, we had to specifically 
define them as a vector in the legend argument. Next, we incorporated the exact density 
and angle arguments from our barplot(...) function. This matched the legend's shading 
to that of our chart. To complete our legend, we used the cex argument to multiply its size 
by 2 times. The cex argument accepts a numeric value that indicates how much a legend 
should be scaled by. Increasing the size of our legend made it easier to read, thus enabling 
viewers to quickly distinguish between our chart's stacked regions:

> legend(x = 0.2, y = 70000, legend = c("Shu", "Wei"), 
density = barAllMethodsSoldiersDensity, 
angle = barAllMethodsSoldiersAngle, cex = 2)

Pop quiz
1. In the barplot(...) function, what is the relationship between the width and 

space arguments?

a. width sets the distance between the bars, while space sets the thickness of 
the bars.

b. width sets the thickness of the bars, while space sets the distance between 
the bars.
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c. space sets the range of the bars on the x-axis, while width sets the length of 
the bars.

d. space sets the length of the bars, while width sets the range of the bars on  
the x-axis.

2. In the barplot(...) function, which of the following is not critical to note when 
using the horiz argument?

a. It accepts either a TRUE (for horizontal bars) or FALSE (for vertical bars) value.

b. It defaults to FALSE.

c. When TRUE, all arguments related to the x and y axes must be swapped for the 
chart to display properly.

d. When undefined, the barplot(...) function will draw horizontal bars.

3. In the barplot(...) function, which of the following is not critical to note when 
using the beside argument?

a. It accepts either a TRUE (for adjacent bars) or FALSE (for stacked bars) value.

b. It defaults to FALSE.

c. To take effect, the chart's height data must be in matrix form.

d. When FALSE, it is advisable to include a legend with the chart.

Have a go hero
Use your soldiersByCity dataset to create a chart that depicts the total number of 
soldiers in the Shu and Wei armies as two separate bars. Then create a stacked bar chart 
with the same data, but separate the Shu and Wei bars into distinct sections for each city. 
Compare these two charts and reflect upon the pros and cons of using each.

Time for action – customizing a scatterplot
Our second look at scatterplots will revolve around customizing data point markers, adding 
new information to a plot, and creating best fit lines:

1.	 Customize a scatterplot's point markers using the pch and cex arguments:

> #modify the chapter 8 single scatterplot that depicted the 
relationship between the number of Shu and Wei soldiers engaged in 
past fire attacks 
> #use the pch argument to change the style of the data point 
markers
> #pch accepts a whole number value between 0 and 25
> scatterplotFireSoldiersPch <- 2
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> #use the cex argument to change the size of the data point 
markers
> #cex accepts a numeric value indicating by how much to scale the 
markers
> #cex defaults to value of 1
> scatterplotFireSoldiersCex <- 3
> plot(x = scatterplotFireWeiSoldiersData, 
y = scatterplotFireShuSoldiersData, 
main = scatterplotFireSoldiersLabelMain, 
xlab = scatterplotFireSoldiersLabelX, 
ylab = scatterplotFireSoldiersLabelY, 
pch = scatterplotFireSoldiersPch, 
cex = scatterplotFireSoldiersCex)

Your plot will be displayed in the graphic window, as shown in the following:

2.	 Prepare the scatterplot to incorporate additional data:

> #prepare the line chart to incorporate data from the other 
battle methods
> #modify the chart title
> scatterplotAllMethodsSoldiersMain <- 
"Soldiers Engaged by Battle Method"
> #rescale the axes to handle the new data
> scatterplotAllMethodsSoldiersLimX <- c(0, 200000)
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> scatterplotAllMethodsSoldiersLimY <- c(0, 150000)
> #incorporate the col argument to distinguish between the 
different battle methods
> scatterplotAllMethodsSoldiersFireCol <- "red"
> #use plot(...) to create and display the revised line chart
> plot(x = scatterplotFireWeiSoldiersData, 
y = scatterplotFireShuSoldiersData, 
main = scatterplotAllMethodsSoldiersMain, 
xlab = scatterplotFireSoldiersLabelX, 
ylab = scatterplotFireSoldiersLabelY, 
xlim = scatterplotAllMethodsSoldiersLimX, 
ylim = scatterplotAllMethodsSoldiersLimY, 
col = scatterplotAllMethodsSoldiersFireCol, 
pch = scatterplotFireSoldiersPch, 
cex = scatterplotFireSoldiersCex)

Your scatterplot will be displayed in the graphic window; it will look like  
the following:
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3.	 Use the points(...) function to add new relationships to the scatterplot:

> #use points(...) to add new relationships to a scatterplot
> #add points representing the three remaining battle methods
> #note that after entering each subsequent function into the 
R console, it will be immediately drawn atop your existing 
scatterplot

> #ambush
> pointsAmbushDataX <- subsetAmbush$WeiSoldiersEngaged
> pointsAmbushDataY <- subsetAmbush$ShuSoldiersEngaged
> pointsAmbushType <- "p"
> pointsAmbushPch <- 1
> pointsAmbushCex <- 1
> pointsAmbushCol <- "blue"
> points(x = pointsAmbushDataX, y = pointsAmbushDataY, 
type = pointsAmbushType, col = pointsAmbushCol, 
pch = pointsAmbushPch, cex = pointsAmbushCex)

> #head to head
> pointsHeadToHeadDataX <- subsetHeadToHead$WeiSoldiersEngaged
> pointsHeadToHeadDataY <- subsetHeadToHead$ShuSoldiersEngaged
> pointsHeadToHeadType <- "p"
> pointsHeadToHeadPch <- 3
> pointsHeadToHeadCex <- 1
> pointsHeadToHeadCol <- "darkorange2"
> points(x = pointsHeadToHeadDataX, y = pointsHeadToHeadDataY, 
type = pointsHeadToHeadType, col = pointsHeadToHeadCol, 
pch = pointsHeadToHeadPch, cex = pointsHeadToHeadCex)

> #surround
> pointsSurroundDataX <- subsetSurround$WeiSoldiersEngaged
> pointsSurroundDataY <- subsetSurround$ShuSoldiersEngaged
> pointsSurroundType <- "p"
> pointsSurroundPch <- 4
> pointsSurroundCex <- 1
> pointsSurroundCol <- "forestgreen"
> points(x = pointsSurroundDataX, y = pointsSurroundDataY, 
type = pointsSurroundType, col = pointsSurroundCol, 
pch = pointsSurroundPch, cex = pointsSurroundCex)
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Your points will be added to the existing scatterplot. The scatterplot will look like  
the following:

4.	 Add a legend to the scatterplot.

> #add a legend
> #use the x and y arguments to specify the exact location of the 
legend
> #add labels for the battle methods
> #add fill colors to match the scatterplot's points
> legend(x = 145000, y = 65000, legend = c("Fire", "Ambush", 
"Head to Head", "Surround"), fill = c("red", "blue", 
"darkorange2", "forestgreen"))
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Your legend will be added to the existing scatterplot, which should like like  
the following:

5.	 Use the abline(...) function to add a best fit line to each relationship in  
the scatterplot.

> #add a best fit line using abline(...)
> #the reg argument represents a regression equation
> #reg is defined using the lm(...) function
> #the lty argument defines the style of line to be used
> #as with other graphic functions, the col argument defines a 
color for the line
> #note that after entering each subsequent function into the 
R console, it will be immediately drawn atop your existing 
scatterplot
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> #fire
> scatterplotAllMethodsSoldiersFireLineReg <- 
lm(scatterplotFireShuSoldiersData ~ 
scatterplotFireWeiSoldiersData)
> scatterplotAllMethodsSoldiersFireLty <- "solid"
> #abline(...) will draw a best fit line atop a preexisting plot
> abline(reg = scatterplotAllMethodsSoldiersFireLineReg, 
lty = scatterplotAllMethodsSoldiersFireLty, 
col = scatterplotAllMethodsSoldiersFireCol)

> #ambush
> scatterplotAllMethodsSoldiersAmbushLineReg <- 
lm(pointsAmbushDataY ~ pointsAmbushDataX)
> scatterplotAllMethodsSoldiersAmbushLty <- "dotted"
> #abline(...) will draw a best fit line atop a preexisting plot
> abline(reg = scatterplotAllMethodsSoldiersAmbushLineReg, 
lty = scatterplotAllMethodsSoldiersAmbushLty, 
col = pointsAmbushCol)

> #head to head
> scatterplotAllMethodsSoldiersHeadToHeadLineReg <- 
lm(pointsHeadToHeadDataY ~ pointsHeadToHeadDataX)
> scatterplotAllMethodsSoldiersHeadToHeadLty <- "dotdash"
> #abline(...) will draw a best fit line atop a preexisting plot
> abline(reg = scatterplotAllMethodsSoldiersHeadToHeadLineReg, 
lty = scatterplotAllMethodsSoldiersHeadToHeadLty, 
col = pointsHeadToHeadCol)

> #surround
> scatterplotAllMethodsSoldiersSurroundLineReg <- 
lm(pointsSurroundDataY ~ pointsSurroundDataX)
> scatterplotAllMethodsSoldiersSurroundLty <- "dashed"
> #abline(...) will draw a best fit line atop a preexisting plot
> abline(reg = scatterplotAllMethodsSoldiersSurroundLineReg, 
lty = scatterplotAllMethodsSoldiersSurroundLty, 
col = pointsSurroundCol)
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Your best fit lines will be added to the existing scatterplot. The final scatterplot looks 
like the following:

What just happened?
We customized our scatterplot's point markers, then expanded it to include additional data, 
before adding best fit lines to our graphic. Let us examine these items in greater detail.

pch and cex
We customized the data point markers in our fire attack scatterplot using the plot(...) 
function's pch and cex arguments. These are defined as follows:

pch: a whole number between 0 and 25, with each value representing a different 
style of marker, such as a circle, triangle, or square.

cex: a numeric value indicating how much to scale the size of data point markers;  
1 by default.
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In our case, we used pch with the value 2 to apply triangle markers to our data points and 
then scaled them by three times with cex equal to 3:

> scatterplotFireSoldiersPch <- 2
> scatterplotFireSoldiersCex <- 3

Thus, we arrived at a plot with large, triangular point markers:

> plot(x = scatterplotFireWeiSoldiersData, 
y = scatterplotFireShuSoldiersData, 
main = scatterplotFireSoldiersLabelMain, 
xlab = scatterplotFireSoldiersLabelX, 
ylab = scatterplotFireSoldiersLabelY, 
pch = scatterplotFireSoldiersPch, 

cex = scatterplotFireSoldiersCex)

The primary purpose of the pch and cex arguments is to improve the visual aspects of 
scatterplots. In tandem, these arguments can generate a wide array of potential data  
point markers.

You can see a complete list of the markers available for use in the pch 
argument by plotting them with plot(0:25, pch = 0:25).

points(...)
To add new relationships to our scatterplot, we executed the points(...) function. This 
function incorporates additional data points into a plot that is displayed in the graphic 
window. The primary arguments of the points(...) function are:

x: the values to be plotted on the x-axis

y: the values to be plotted on the y-axis

type: the point type; identical to the type argument in the plot(...) function

col: the point color; identical to the col argument in other graphics functions

Thus, the general format for the points(...) function is as follows:

points(x = xPosition, y = yPosition, type = "type", 
col = "colorName")
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In tandem with these, we also used the pch and cex arguments in our points(...) 
functions to customize the style and size of our data markers. The x and y arguments 
featured the Wei and Shu soldier data for each method:

> #ambush
> pointsAmbushDataX <- subsetAmbush$WeiSoldiersEngaged
> pointsAmbushDataY <- subsetAmbush$ShuSoldiersEngaged
> pointsAmbushType <- "p"
> pointsAmbushPch <- 1
> pointsAmbushCex <- 1
> pointsAmbushCol <- "blue"

> #head to head
> pointsHeadToHeadDataX <- subsetHeadToHead$WeiSoldiersEngaged
> pointsHeadToHeadDataY <- subsetHeadToHead$ShuSoldiersEngaged
> pointsHeadToHeadType <- "p"
> pointsHeadToHeadPch <- 3
> pointsHeadToHeadCex <- 1
> pointsHeadToHeadCol <- "darkorange2"

> #surround
> pointsSurroundDataX <- subsetSurround$WeiSoldiersEngaged
> pointsSurroundDataY <- subsetSurround$ShuSoldiersEngaged
> pointsSurroundType <- "p"
> pointsSurroundPch <- 4
> pointsSurroundCex <- 1
> pointsSurroundCol <- "forestgreen"

After beginning our scatterplot with fire attack data, we used points(...) to plot the 
soldier data for our ambush, head to head, and surround methods:

> #ambush
> points(x = pointsAmbushDataX, y = pointsAmbushDataY, 
type = pointsAmbushType, col = pointsAmbushCol, 
pch = pointsAmbushPch, cex = pointsAmbushCex)

> #head to head
> points(x = pointsHeadToHeadDataX, y = pointsHeadToHeadDataY, 
type = pointsHeadToHeadType, col = pointsHeadToHeadCol, 
pch = pointsHeadToHeadPch, cex = pointsHeadToHeadCex)

> #surround
> points(x = pointsSurroundDataX, y = pointsSurroundDataY, 
type = pointsSurroundType, col = pointsSurroundCol, 
pch = pointsSurroundPch, cex = pointsSurroundCex)
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Note that we also redefined the x-axis and y-axis scales with xlim and ylim 
prior to adding our new points. This allowed all of our values to display within 
the bounds of our chart. If we did not rescale the axes, most of our points would 
fall outside the upper limit of our graph, because the fire attack soldier values 
are much smaller than in our other battle methods.

legend(...)
We used our familiar legend(...) function to add a key that identified the points from 
each of our battle method datasets. Its title and colors were matched to those of the points 
in our scatterplot:

> legend(x = 145000, y = 65000, legend = c("Fire", "Ambush", 
"Head to Head", "Surround"), fill = c("red", "blue", "darkorange2", 
"forestgreen"))

abline(...)
After completing our scatterplot setup, we added best fit lines. Also known as a regression 
line, a best fit line expresses the relationship in a scatterplot as a single, straight line. To 
accomplish this, the line attempts to orient itself as close as possible to all of the data points. 
The result is a line that approximates a linear relationship between the variables. In R, we can 
use the abline(...) function to add a best fit line to an existing graphic. In addition to the 
col argument, which we already know about, the primary arguments for abline(...) are:

reg: a linear model formula generated by the lm(...) function

lty: a text value representing the line style; one of blank, solid, dashed, 
dotted, dotdash, longdash, or twodash

The basic structure of the abline(...) function is as follows:

abline(reg = lm(y ~ x), lty = "lineType")

In our abline(...) functions, we used lty to define unique line types for each of our 
battle methods. We also matched our lines' colors to those of our scatterplot's points. Our 
reg arguments used the lm(...) function to specify the number of Shu soldiers as our y 
variable and the number of Wei soldiers as our x variable:

> #fire
> scatterplotAllMethodsSoldiersFireLineReg <- 
lm(scatterplotFireShuSoldiersData ~ 
scatterplotFireWeiSoldiersData)
> scatterplotAllMethodsSoldiersFireLty <- "solid"







Briefing the Generals

[ 210 ]

> #ambush
> scatterplotAllMethodsSoldiersAmbushLineReg <- 
lm(pointsAmbushDataY ~ pointsAmbushDataX)
> scatterplotAllMethodsSoldiersAmbushLty <- "dotted"

> #head to head
> scatterplotAllMethodsSoldiersHeadToHeadLineReg <- 
lm(pointsHeadToHeadDataY ~ pointsHeadToHeadDataX)
> scatterplotAllMethodsSoldiersHeadToHeadLty <- "dotdash"

> #surround
> scatterplotAllMethodsSoldiersSurroundLineReg <- 
lm(pointsSurroundDataY ~ pointsSurroundDataX)
> scatterplotAllMethodsSoldiersSurroundLty <- "dashed"

The complete abline(...) functions incorporated our reg, lty, and col arguments  
to draw best fit lines for our battle method data:

> #fire
> abline(reg = scatterplotAllMethodsSoldiersFireLineReg, 
lty = scatterplotAllMethodsSoldiersFireLty, 
col = scatterplotAllMethodsSoldiersFireCol)

> #ambush
> abline(reg = scatterplotAllMethodsSoldiersAmbushLineReg, 
lty = scatterplotAllMethodsSoldiersAmbushLty, 
col = pointsAmbushCol)

> #head to head
> abline(reg = scatterplotAllMethodsSoldiersHeadToHeadLineReg, 
lty = scatterplotAllMethodsSoldiersHeadToHeadLty, 
col = pointsHeadToHeadCol)

> #surround
> abline(reg = scatterplotAllMethodsSoldiersSurroundLineReg, 
lty = scatterplotAllMethodsSoldiersSurroundLty, 
col = pointsSurroundCol)

A best fit line is useful in gauging whether or not the relationship between two variables is 
indeed linear. Therefore, it is beneficial to apply when exploring a new dataset. We can also 
use best fit lines to compare the relationships between related datasets. 
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In our plot, it is quite clear that the relationship between the numbers of Shu and Wei soldiers 
engaged is different for different battle methods. For instance, the best fit lines help us to see 
that in the surround method, the number of Shu soldiers tends to be relatively high compared 
to the number of Wei soldiers. In contrast, with the fire attack method, the number of Wei 
soldiers tends to be relatively high compared to the number of Shu soldiers. Using a scatterplot 
such as this one, along with one or more best fit lines, is still another way to inform our 
interpretations and understanding of the relationships between our variables. Moreover,  
using a graphic often helps us to discover things that we cannot see in the raw data alone.

Pop quiz
1. In the plot(...) function, what is the relationship between the pch and  

cex arguments?

a. pch sets the type of data point marker, while cex sets the size of the marker.

b. cex sets the type of data point marker, while pch sets the size of the marker.

c. pch sets the number of data point markers, while cex sets the style of  
the markers.

d. cex sets the number of data point markers, while pch sets the style of  
the markers.

2. Which of the following is not a benefit of using a scatterplot and best fit line useful 
to explore the relationship between two variables?

a. They help us to understand the relationship between the variables.

b. They inform our interpretation of the relationship between the variables.

c. They tell us whether the variables will have an interaction effect.

d. They indicate the linearity of the relationship between the variables.

Have a go hero
Create a scatterplot that depicts the relationship between the execution and rating of past 
fire attacks. Be sure to use the numeric version of the successful execution variable. Note 
that since execution is dichotomous (containing only two possible values), the resulting 
plot will look different from the ones we created with our soldier data. Try to interpret the 
meaning of this graphic. Does it make sense to add a best fit line in this situation?

Now use the sunflowerplot(...) function with the same arguments that you just  
used in the plot(...) argument. Try to interpret the meaning of this graphic. Refer 
back to the raw fire data for help recalling the data contained in the Rating and 
SuccessfullyExecuted variables.

Consider the graphics generated by your plot(...) and sunflowerplot(...) functions. 
How do these functions differ in the way they portray data?
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Time for action – customizing a line chart
To further explore line charts, we will experiment with modifying line widths and adding 
multiple custom lines to our graphics:

1.	 Use the lwd argument to set the line width:

> #modify the chapter 8 single line chart that depicted the 
durations of past fire attacks
> #use the lwd argument to set the line width
> #lwd accepts a nonnegative value and defaults to 1
> lineFireDurationWidth <- 3
> #use plot(...) to create and display the line chart
> #recall that a line chart uses the same plot(...) function as a 
scatterplot, but with a different type argument
> plot(x = lineFireDurationDataX, y = lineFireDurationDataY, 
main = lineFireDurationMain, xlab = lineFireDurationLabX, 
ylab = lineFireDurationLabY, type = lineFireDurationType, 
lwd = lineFireDurationWidth)

Your chart will be displayed in the graphic window, as shown in the following:
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2.	 Prepare the line chart to incorporate additional data:

> #prepare the line chart to incorporate data from the other 
battle methods
> #modify the chart title
> lineFireDurationMain = "Duration by Battle Method"
> #rescale the y axis to handle the new data
> lineFireDurationLimY <- c(0, 200)
> #incorporate the col argument to distinguish between the 
different battle methods
> lineFireDurationCol <- "red"
> #use plot(...) to create and display the line chart
> plot(x = lineFireDurationDataX, y = lineFireDurationDataY, 
main = lineFireDurationMain, xlab = lineFireDurationLabX, 
ylab = lineFireDurationLabY, ylim = lineFireDurationLimY, 
type = lineFireDurationType, lwd = lineFireDurationWidth, 
col = lineFireDurationCol)

Your chart will be displayed in the graphic window as shown:
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3.	 Use the lines(...) function to add new relationships to the line chart:

> #use lines(...) to add new relationships to a line chart
> #add lines representing the three remaining battle methods to 
the chart
> #note that after entering each subsequent function into the R 
console, it will be immediately drawn atop your existing line 
chart

> #ambush
> lineAmbushDataY <- subsetAmbush$DurationInDays
> lineAmbushWidth <- 1
> lineAmbushCol <- "blue"
> lines(x = lineFireDurationDataX, y = lineAmbushDataY, 
type = lineFireDurationType, lwd = lineAmbushWidth, 
col = lineAmbushCol)

> #head to head
> lineHeadToHeadDataY <- subsetHeadToHead$DurationInDays
> lineHeadToHeadWidth <- 1
> lineHeadToHeadCol <- "darkorange2"
> lines(x = lineFireDurationDataX, y = lineHeadToHeadDataY, 
type = lineFireDurationType, lwd = lineHeadToHeadWidth, 
col = lineHeadToHeadCol)

> #surround
> lineSurroundDataY <- subsetSurround$DurationInDays
> lineSurroundWidth <- 1
> lineSurroundCol <- "forestgreen"
> lines(x = lineFireDurationDataX, y = lineSurroundDataY, 
type = lineFireDurationType, lwd = lineSurroundWidth, 
col = lineSurroundCol)
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Your lines will be added to the existing chart, as shown in the following:

4.	 Add a legend to the chart in the following way:

> #add a legend to our line chart
> #use the x and y arguments to specify the exact location of the 
legend
> #add labels for the battle methods
> #add fill colors to match the chart's lines
> legend(x = 23, y = 210, legend = c("Fire", "Ambush", 
"Head to Head", "Surround"), fill = c("red", "blue", 
"darkorange2", "forestgreen"))
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5.	 Your legend will be added to the existing chart; the final chart looks like  
the following:

What just happened?
We expanded our use of the plot(...) function to generate a line chart with a specific line 
width. Then, we worked to add additional lines to our chart for the purpose of portraying 
multiple relationships. We also incorporated a legend to make our chart more legible.  
Let us review these techniques.

lwd
We specified the width of our chart's line using the lwd argument. This argument has a 
default value of 1 and can receive any number greater than zero. In most cases, you will want 
to use values between 1 and 3. Both our one-line and multiline charts used a lwd value of 3 
to emphasize the fire attack duration data by thickening its line.

> lineFireDurationWidth <- 3
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The lwd argument was seamlessly integrated into our plot(...) function:

> plot(x = lineFireDurationDataX, y = lineFireDurationDataY, 
main = lineFireDurationMain, xlab = lineFireDurationLabX, 
ylab = lineFireDurationLabY, type = lineFireDurationType, 
lwd = lineFireDurationWidth)

Note that the lwd argument can be used to modify the line thickness of data 
markers. For example, using a lwd of 3 in a scatterplot would yield points with 
thicker markers. The lwd argument can also be used within the abline(...) 
function to alter a best fit line.

lines(...)
To add new relationships to our multiline chart, we employed the lines(...) function. 
This function is used to draw additional lines on the chart that is displayed in the graphic 
window. The primary arguments of the lines(...) function are:

x: the values to be plotted on the x-axis

y: the values to be plotted on the y-axis

type: the line type; identical to the type argument in the plot(...) function

col: the line color; identical to the col argument in other graphics functions

Thus, the general format for the lines(...) function is as follows:

lines(x = xPosition, y = yPosition, type = "type", 
col = "colorName")

After generating our chart with only fire attack data, we used lines(...) to graph the 
duration values for our ambush, head to head, and surround methods. For these lines, we 
used a more subtle lwd value of 1 and custom colors to differentiate them from one another.

> #ambush
> lineAmbushWidth <- 1
> lineAmbushCol <- "blue"

> #head to head
> lineHeadToHeadWidth <- 1
> lineHeadToHeadCol <- "darkorange2"

> #surround
> lineSurroundWidth <- 1
> lineSurroundCol <- "forestgreen"
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A unique line(...) function for battle method was executed to add its data to the  
line chart:

> #ambush
> lines(x = lineFireDurationDataX, y = lineAmbushDataY, 
type = lineFireDurationType, lwd = lineAmbushWidth, 
col = lineAmbushCol)

> #head to head
> lines(x = lineFireDurationDataX, y = lineHeadToHeadDataY, 
type = lineFireDurationType, lwd = lineHeadToHeadWidth, 
col = lineHeadToHeadCol)

> #surround
> lines(x = lineFireDurationDataX, y = lineSurroundDataY, 
type = lineFireDurationType, lwd = lineSurroundWidth, 
col = lineSurroundCol)

Note that we also redefined the y-axis scale with ylim prior to adding our new 
lines. This is necessary, because it allows all of our values to display within the 
bounds of our chart. If we did not rescale the y-axis, most of our points would 
fall outside the upper limit of our graph. This is because the fire attack duration 
values are much smaller than in our other battle methods.
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When adding new relationships to a graphic, remember to adjust your axes accordingly to 
ensure that all data are represented.

legend(...)
Once again, we added a legend to our chart in order to identify each line. We used the 
already familiar legend(...) function to do so, making sure to match the legend's title and 
colors to those of the lines on our chart:

> legend(x = 23, y = 210, legend = c("Fire", "Ambush", 
"Head to Head", "Surround"), fill = c("red", "blue", "darkorange2", 
"forestgreen"))

Pop quiz
1. In the plot(...) function, which of the following is not true of the lwd argument?

a. One or more of a chart's lines can have a unique lwd value.

b. The lwd argument defaults to a value of 1.

c. The lwd argument accepts a nonnegative numeric value.

d. To take effect, the lty argument must be defined.

2. When using the lines(...) function to add new lines to a chart, which of the 
following is not a true statement?

a. One or more lines can be added to a single chart.

b. The widths of a chart's lines can be different.

c. To display a new line, the chart's data must be in matrix form.

d. The x or y axis may need to be rescaled to properly portray a new line.

Have a go hero
Create a multiline chart that portrays the number of Shu soldiers engaged in all instances of 
each battle method. You should have a line for each battle method. Be sure to experiment 
with the type and lwd arguments, as well as the lines(...) function, to witness 
the different line chart styles that can be generated in R. Once your graph is complete, 
remember to add a legend that identifies each line.
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Time for action – customizing a box plot
In learning to customize box plots, we will alter whisker lengths and create custom axes for 
our graphics.

1.	 Use the range argument to alter the whisker length of each box:

> #modify the chapter 8 multiple box plot that that compares the 
number of Shu soldiers required across the battle methods
> #rescale the y axis to best display the new range
> boxPlotAllMethodsShuSoldiersLimY <- c(0, 100000)
> #use the range argument to alter the whisker length of each box
> #use range = 0 to extend the whiskers to the most extreme points
> #use range > 0 to extend the whisker to a value of n times the 
interquartile range
> #here, limit the whisker range to 1 times the interquartile 
range
> boxPlotAllMethodsShuSoldiersRange <- 1
> #use boxplot(...) to create and display the revised line chart
> boxplot(formula = boxplotAllMethodsShuSoldiersData, 
main = boxPlotAllMethodsShuSoldiersLabelMain, 
xlab = boxPlotAllMethodsShuSoldiersLabelX, 
ylab = boxPlotAllMethodsShuSoldiersLabelY, 
ylim = boxPlotAllMethodsShuSoldiersLimY, 
range = boxPlotAllMethodsShuSoldiersRange)

Your plot will be displayed in the graphic window. Note the rescaling of the y-axis 
and the change in whisker length for the boxes:
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2.	 Prepare to create custom axes by hiding your box plot's default axes:

> #hide the box plot's default axes
> #redraw the box plot using the xaxt and yaxt arguments to hide 
the axes
> boxplotAllMethodsShuSoldiersAxtX = "n"
> boxplotAllMethodsShuSoldiersAxtY = "n"
> #use boxplot(...) to create a display the box plot
> #your box plot will have no labels or tick marks on the x and y 
axes
> boxplot(formula = boxplotAllMethodsShuSoldiersData, 
main = boxPlotAllMethodsShuSoldiersLabelMain, 
xlab = boxPlotAllMethodsShuSoldiersLabelX, 
ylab = boxPlotAllMethodsShuSoldiersLabelY, 
ylim = boxPlotAllMethodsShuSoldiersLimY, 
range = boxPlotAllMethodsShuSoldiersRange, 
xaxt = boxplotAllMethodsShuSoldiersAxtX, 
yaxt = boxplotAllMethodsShuSoldiersAxtY)

Your plot will be displayed in the graphic window. Note the lack of x-axis and y-axis 
labels and tick marks:
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3.	 Use axis(...) to create custom axes for the box plot:

> #use axis(...) to add custom x and y axes to the box plot
> #your custom axes will be drawn atop the plot that is displayed 
in the graphic window
> #your axes will be displayed when the axis(...) function is 
executed in the R console
> #custom x axis
> axis(side = 1, at = c(1, 2, 3, 4), labels = c("Ambush", 
"Fire", "Head to Head", "Surround"), las = 0)
> #custom y axis
> axis(side = 2, at = c(1000, 25000, 50000, 75000, 100000), 
las = 0)

Your custom axes will be added to the existing plot:
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What just happened?
We customized our box plot to make it more presentable. Let us review the customization 
options offered by the boxplot(...) function.

range
We used the boxplot(...) function's range argument to alter the length of each box's 
whiskers. In general, range will take on a positive value between 0 and 1.5. At 0, a box's 
whiskers will extend all the way to the most extreme data points. At a value greater than 0, 
the boxes' whiskers will reach data points within one interquartile range times the range 
value. An interquartile range is the distance between the top (third quartile) and bottom 
(first quartile) of a given box. This measure gives us an idea of how spread out the data are. 
By using a range value closer to 0, we are shortening our boxes' whiskers and excluding more 
extreme data points. On the other hand, a higher range value will include more extreme 
points and lengthen each box's whiskers. In our case, we used a range value of 1:

> boxPlotAllMethodsShuSoldiersRange <- 1

This shortened our whiskers by extending them to points no more than one interquartile 
range beyond their boxes. Note that we also revised our ylim argument to better display 
our boxes, given the new range:

> boxplot(formula = boxplotAllMethodsShuSoldiersData, 
main = boxPlotAllMethodsShuSoldiersLabelMain, 
xlab = boxPlotAllMethodsShuSoldiersLabelX, 
ylab = boxPlotAllMethodsShuSoldiersLabelY, 
ylim = boxPlotAllMethodsShuSoldiersLimY, 
range = boxPlotAllMethodsShuSoldiersRange)

axis(...)
To further improve our plot's aesthetics, we revised its x-axis and y-axis labels. Before adding 
our own axes, we had to eliminate the default ones generated by R. This entailed giving the 
xaxt and yaxt arguments an n value:

> boxplotAllMethodsShuSoldiersAxtX = "n"
> boxplotAllMethodsShuSoldiersAxtY = "n"

Subsequently, we redrew our box plot without x-axis and y-axis:

> boxplot(formula = boxplotAllMethodsShuSoldiersData, 
main = boxPlotAllMethodsShuSoldiersLabelMain, 
xlab = boxPlotAllMethodsShuSoldiersLabelX, 
ylab = boxPlotAllMethodsShuSoldiersLabelY, 
ylim = boxPlotAllMethodsShuSoldiersLimY, 



Briefing the Generals

[ 224 ]

range = boxPlotAllMethodsShuSoldiersRange, 
xaxt = boxplotAllMethodsShuSoldiersAxtX, 

yaxt = boxplotAllMethodsShuSoldiersAxtY)

We then used the axis(...) function twice, once for the x-axis and once for y-axis, 
to customize our plot's axis labels. The axis(...) function accepts several optional 
arguments, a number of which were employed in the creation of our plot:

side refers to the placement of the axis, where:

1 = left

2 = bottom

3 = top

4 = right

at contains a vector that holds the tick mark values for the axis

labels contains a vector of text items that will be paired with the at values; if 
undefined, the at values will be displayed on the axis

las positions the labels either parallel (0) or perpendicular (1) to the axis; note 
that las refers to the label style of the axis

When executed, the axis(...) function draws a new axis atop the visual currently 
displayed in the graphic window. For instance:

> axis(side = 2, at = c(10, 20, 30), labels = c("a", "b", "c"), 
las = 1)

The code would draw a new x-axis on the bottom of the chart with tick marks at 10, 20, and 
30 paired with the labels a, b, and c, that have been oriented vertically. Similarly, we used 
the following code to customize our x and y axes:

> #custom x axis
> axis(side = 1, at = c(1, 2, 3, 4), labels = c("Ambush", "Fire", 
"Head to Head", "Surround"), las = 0)
> #custom y axis
> axis(side = 2, at = c(1000, 25000, 50000, 75000, 100000), 
las = 0)

Our custom x-axis was placed at the bottom of the plot and effectively renamed our four 
boxes to Ambush, Fire, Head to head, and Surround. Our custom y-axis was placed on the  
left side of the plot and incorporated more meaningful soldier values than were present in 
the default axis.
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Pop quiz
1. In boxplot(...), a range argument of 0 would have what effect?

a. It would eliminate the whiskers.

b. It would extend the whiskers to the most extreme data points.

c. It would eliminate the boxes.

d. It would extend the boxes to the most extreme data points.

2. Which of the following is not true of the axis(...) function?

a. It accepts several optional arguments.

b. It allows for the creation of axes in four different positions.

c. It will use the labels argument by default when the at argument is undefined.

d. It draws atop the visual that is currently displayed in the graphic window.

Have a go hero
Create a box plot that depicts the relationship between the number of Wei soldiers targeted 
by each of the four battle methods. Be sure to customize your plot to improve its readability 
and emphasize its most important features.

Time for action – customizing a histogram
In this section, we will practice customizing the bars of a histogram and create an alternative 
style of histogram:

1.	 Use the breaks argument to separate the histogram's columns along the x-axis:

> #modify the chapter 8 histogram that depicted the frequency 
distribution of past fire attack durations
> #use the breaks argument to divide the histogram's columns along 
the x axis
> #breaks accepts a vector containing the points at which columns 
should occur
> histFireDurationBreaks <- c(0:14)
> #use hist(...) to create and display the histogram
> hist(x = histFireDurationData, 
main = histFireDurationDataMain, 
xlab = histFireDurationLabX, 
col = histFireDurationRainbowColor, 
breaks = histFireDurationBreaks)
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Your histogram will be displayed in the graphic window, as shown in the following:

2.	 Use the freq argument to plot densities instead of counts:

> #use the freq argument to plot densities or counts
> #if freq is TRUE (default), counts are graphed on the y axis
> #a count tells us the number of times that a data point occurred
> #if freq is FALSE, densities are graphed on the y axis
> #a density tells us what percentage a data point's count 
represents out of all occurrences
> #when summed, the densities always add up to 1
> histFireDurationFreq <- FALSE
> #remember to modify the ylim argument, as our previous one 
applied to counts and not to densities
> histFireDurationDensityLimY <- c(0, 0.2)
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> #use hist(...) to create and display the histogram
> hist(x = histFireDurationData, 
main = histFireDurationDataMain, 
xlab = histFireDurationLabX, 
ylim = histFireDurationDensityLimY, 
col = histFireDurationRainbowColor, 
breaks = histFireDurationBreaks, 
freq = histFireDurationFreq)

Your histogram will be displayed in the graphic window, as shown in the following:

What just happened?
We set the breaks argument to add detail to our histogram, then defined the freq 
argument to change the display of our graphic. Let us discuss each of these actions.
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breaks
The breaks argument is used to define where a histogram's columns are separated along 
the x-axis. This argument receives a vector containing the points at which the column 
divisions should occur. Within the hist(...) function, employing the breaks argument 
may resemble using the xlim argument in other graphics. However, while xlim rescales 
the x-axis of a histogram, it does not modify its columns. Therefore, the breaks argument is 
necessary when we want to define the exact points at which our columns should occur.

By default, R provided us with seven bars that spanned a width of two days each. With 
number-colon-number notation (0:14) and the breaks argument, we created 14 columns 
that spanned 1 day each:

histFireDurationBreaks <- c(0:14)

This had the effect of increasing the interpretability and detail of our histogram:

hist(x = histFireDurationData, main = histFireDurationDataMain, 
xlab = histFireDurationLabX, col = histFireDurationRainbowColor, 
breaks = histFireDurationBreaks)

freq
The freq argument allows us to toggle our histogram between displaying counts  
(or frequencies) and densities (or percentages). A count indicates how many times a value 
occurs within a dataset. A density indicates the percentage that the count of a value makes 
up in the entire dataset.

For instance, in the vector c(1, 1, 1, 3, 5), the number 1 has a count of 3 because it 
occurs 3 times. The number 1 has a a density of 0.6 (or 60%) because its count of 3 makes  
up 3/5 of the overall dataset.

By default, freq is set to TRUE and displays counts. If it is set to FALSE, then densities 
will be graphed instead. The sum of the densities in a histogram will always equal 1, which 
represents 100% of the dataset.

We modified our original histogram to display densities by setting the the freq argument  
to FALSE:

histFireDurationFreq <- FALSE

Note that we also adjusted our ylim argument to appropriately display our density values:

histFireDurationDensityLimY <- c(0, 0.2)
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These alterations allowed us to visualize our battle durations as percentages rather  
than counts:

hist(x = histFireDurationData, 
main = histFireDurationDataMain, 
xlab = histFireDurationLabX, 
ylim = histFireDurationDensityLimY, 

col = histFireDurationRainbowColor, 
breaks = histFireDurationBreaks, 
freq = histFireDurationFreq)

Pop quiz
1. When using hist(...), what is the relationship between the xlim and  

breaks arguments?

a. breaks sets the overall scale of the x-axis, whereas xlim divides the 
histogram's columns along the x-axis.

b. xlim sets the overall scale of the x-axis, whereas breaks divides the 
histogram's columns along the x-axis

c. breaks replaces the xlim argument when creating a histogram.

d. xlim replaces the breaks argument when creating a histogram.

2. What is the relationship between a count and a density value?

a. A count is the number of times that a value occurs in a dataset, whereas a 
density is the total count of all values in a dataset.

b. A density is the number of times that a value occurs in a dataset, whereas a 
count is the total count of all values in a dataset.

c. A count is the number of times that a value occurs in a dataset, whereas a 
density is the percentage of the dataset that a value accounts for.

d. A density is the number of times that a value occurs in a dataset, whereas a 
count is the percentage of the dataset that a value accounts for.

Have a go hero
Create a histogram that conveys the number of Shu soldiers engaged in past fire attacks. 
Improve its readability by incorporating the breaks argument into your hist(...) 
function. Then, create a density version of the histogram using the freq argument.  
Compare your frequency and density histograms. Which do you feel is better for  
displaying this particular data?
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Time for action – customizing a pie chart
Moving on to pie charts, we will learn how to add custom label text to a pie's slices:

1.	 Use the labels argument to add percentages to the pie chart.

> #modify the chapter 8 pie chart that depicted the gold cost of 
the fire attack in relation to the total funds allotted to the Shu 
army
> #use the labels argument to add percentages to a pie chart
> #create a vector containing the labels to be used for the pie's 
slices
> pieFireGoldCostLabelsPercent <- round(pieFireGoldCostSlices / 
sum(pieFireGoldCostSlices) * 100, 1)
> #use the paste(...) function to add a percent sign (%) to the 
end of each label
> pieFireGoldCostLabelsPercent <- 
paste(pieFireGoldCostLabelsPercent, "%", sep="")
> #note that paste(...) can be used to add any kind of text before 
or after a label
> #use the pie(...) function to create and display the pie chart
> pie(x = pieFireGoldCostSlices, 
labels = pieFireGoldCostLabelsPercent, 
main = pieFireGoldCostMain, 
col = pieFireGoldCostSpecificColors)

Your chart will be displayed in the graphic window, as follows:
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2.	 Add a legend to the chart:

> #add a legend to the pie chart
> legend(x = "bottom", legend = pieFireGoldCostLabels, 
fill = pieFireGoldCostSpecificColors)

Your legend will be added to the existing chart, the final pie chart should look like 
the following:

What just happened?
We just customized our pie chart by taking advantage of a new labeling option. Let us discuss 
how this feature is implemented.

Custom labels
We revised our pie chart's labels to display percentage values, rather than raw gold amounts. 
To accomplish this, we calculated the necessary percentages using the round(x, digits) 
function in tandem with some routine mathematics. In the round(x, digits) function  
x is a number, and digits is the number of decimal places that x should be rounded to.
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Therefore, rounding the number 1.2345 using:

> round(1.2345, 2)

The code would yield an output of:

[1] 1.23

For our chart, x contained a formula that yielded the percentage that each slice represents 
out of our total. The digits argument dictated that this percentage be rounded to a single 
decimal point:

> pieFireGoldCostLabelsPercent <- round(pieFireGoldCostSlices / 
sum(pieFireGoldCostSlices) * 100, 1)

To improve the readability of our percentages, we then used the paste(...) function to 
append a percent sign (%) to each of our labels. In our activity, the paste(...) function 
included the following arguments:

originalValues: a vector containing the items that are to be appended

appendText: the text to be added to the original values

sep: an optional separator between the original value and the appended text;  
a single space by default

Hence, the general paste(...) function takes on the following form:

paste(originalValues, appendText, sep = "sep")

Thus, if we were to enter the following code into the R console:

> paste(c("a", "b"), "c", sep = "/")

Our resulting output would be:

[1] "a/c" "b/c"

We used the paste(...) function to append a percentage sign (%) to each of our 
percentage labels (pieFireGoldCostLabelsPercent) and indicated that they should not 
be separated by any blank space or characters (sep = ""):

> pieFireGoldCostLabelsPercent <- paste(pieFireGoldCostLabelsPercent, 
"%", sep="")

Lastly, our pie(...) function incorporated our custom percentage labels:

> pie(x = pieFireGoldCostSlices, 
labels = pieFireGoldCostLabelsPercent, 
main = pieFireGoldCostMain, 
col = pieFireGoldCostSpecificColors)
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Note that the paste(...) function can be used to add any kind of text 
to a label. Its general purpose is to append text to the front and back of 
values. As such, it is applicable in many situations.

legend(...)
Yet again, we found it necessary to include a legend in our chart. Without a legend, our 
graphic would not indicate what our percentage labels referred to. Our legend was placed 
at the bottom of our graphic and reflected our chart's original text labels (rather than 
percentages) and colors; the following is the code:

> legend(x = "bottom", legend = pieFireGoldCostLabels, 
fill = pieFireGoldCostSpecificColors)

Pop quiz
1. What would be the result of the following round(x, digits) function?

> round(9.876543, 3)

a. 9.877

b. 9.876

c. 9.87

d. 9.88

2. In the paste(originalValues, appendText, sep = "sep") function, what 
does the sep argument represent?

a. A vector containing the items that are to be appended.

b. The text to be added to the original values.

c. An optional separator between the original value and the appended text.

d. A vector containing the text to be appended.

Have a go hero
Create a pie chart that conveys the relationship between the number of soldiers engaged 
in the planned fire attack and the total number of soldiers housed at Hanzhong. Be sure to 
experiment with the customization options that we have covered in our previous examples.
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Time for action – building a graphic
Having explored an extensive range of graphic types and customizations in R, our next 
challenge is to build a graphic from the ground up. To accomplish this feat, we will start 
with an empty foundation and use our customization arguments and functions to build a 
complete graphic:

1.	 Use the plot(...) function to create a foundation for the graphic:

> #build a custom graphic from scratch
> #step 1: create a foundation
> #create a graphic that depicts the number of Shu and Wei 
soldiers engaged in past fire attacks
> #prepare the graphic's basic parameters
> #note that this will require thinking ahead about the 
information that you want to display
> buildFireSoldiersMain <- "Soldiers Engaged by Kingdom"
> buildFireSoldiersLabX <- "Battle Number"
> buildFireSoldiersLabY <- ""
> buildFireSoldiersLimX <- c(0, 30)
> buildFireSoldiersLimY <- c(0, 50000)
> #hide the points and axes
> buildFireSoldiersType <- "n"
> buildFireSoldiersAxtX <- "n"
> buildFireSoldiersAxtY <- "n"
> #use the plot(...) function to create a foundation for the 
graphic
> plot(x = 0, y = 0, main = buildFireSoldiersMain, 
xlab = buildFireSoldiersLabX, ylab = buildFireSoldiersLabY, 
xlim = buildFireSoldiersLimX, ylim = buildFireSoldiersLimY, 
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX, 
yaxt = buildFireSoldiersAxtY)
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An empty foundation for our graphic will open in the graphic window, as shown:

2.	 Add axes to the graphic.

> #step 2: add axes
> #use axis(...) to add custom x and y axes to the graphic
> #x axis
> axis(side = 1, at = c(0:30), las = 0)
> #y axis
> axis(side = 2, 
at = c(1000, 5000, 10000, 20000, 30000, 40000, 50000), 
las = 1)



Briefing the Generals

[ 236 ]

Your custom axes will be added to the existing graphic, and will look like  
the following:

3.	 Add data to the graphic:

> #step 3: add data
> #use points(...) to add data to the graphic
> #note that lines(...) can also be used to add data to a graphic
> #add points to show the number of Shu soldiers engaged in past 
fire attacks
> pointsFireShuSoldiersDataX <- c(1:30)
> pointsFireShuSoldiersDataY <- subsetAmbush$ShuSoldiersEngaged
> pointsFireShuSoldiersType <- "p"
> pointsFireShuSoldiersColor <- "forestgreen"
> points(x = pointsFireShuSoldiersDataX, 
y = pointsFireShuSoldiersDataY, 
type = pointsFireShuSoldiersType, 
col = pointsFireShuSoldiersColor)

 
 

 
 



Chapter 9

[ 237 ]

> #add points to show the number of Wei soldiers engaged in past 
fire attacks
> pointsFireWeiSoldiersDataX <- c(1:30)
> pointsFireWeiSoldiersDataY <- subsetAmbush$WeiSoldiersEngaged
> pointsFireWeiSoldiersType <- "p"
> pointsFireWeiSoldiersColor <- "blue"
> pointsFireWeiSoldiersPch <- 0
> points(x = pointsFireWeiSoldiersDataX, 
y = pointsFireWeiSoldiersDataY, 
type = pointsFireWeiSoldiersType, 
col = pointsFireWeiSoldiersColor, 
pch = pointsFireWeiSoldiersPch)

Your custom points will be added to the graphic, as shown in the following:
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4.	 Add a legend to the graphic:

> #step 4: add a legend, if necessary
> #use legend(...) to add a legend to the graphic
> legend(x = 0, y = 50000, legend = c("Shu", "Wei"), 
fill = c(pointsFireShuSoldiersColor, 
pointsFireWeiSoldiersColor))

Your legend will be added to the graphic. The final graphic will look like  
the following:
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What just happened?
We used our custom graphics functions to build an entire graphic from scratch. Let us review 
the steps involved in this process:

1. Building the foundation

We began by using our plot(...) function to create a foundation for our new 
graphic. The main difference when creating a foundation graphic compared to a 
normal one is that we do not want to display any data. Hence, we set the x and 
y values to 0, the type to n, and the xaxt and yaxt arguments to n. This yields 
a blank square to which we can add custom information later. However, it is still 
critical to match the xlim and ylim arguments to the bounds of the data that we 
plan to use, in spite of the fact that the axes themselves are hidden. The overall title 
and x and y labels can be optionally defined, if we would like them to appear on  
the graphic:

> buildFireSoldiersMain <- "Soldiers Engaged by Kingdom"
> buildFireSoldiersLabX <- "Battle Number"
> buildFireSoldiersLabY <- ""
> buildFireSoldiersLimX <- c(0, 30)
> buildFireSoldiersLimY <- c(0, 50000)
> buildFireSoldiersType <- "n"
> buildFireSoldiersAxtX <- "n"
> buildFireSoldiersAxtY <- "n"

Note that this step required that we think ahead about the data 
that we wanted to display, especially as it pertains to the x-axis 
and y-axis limits. At times, this preparation step may also call for 
experimentation with default graphics to lend us a better idea of 
how the data will display when customized.

Our plot(...) function incorporated all of these parameters and rendered us with 
a foundation graphic that was prepared to incorporate our data:

> plot(x = 0, y = 0, main = buildFireSoldiersMain, 
xlab = buildFireSoldiersLabX, ylab = buildFireSoldiersLabY, 
xlim = buildFireSoldiersLimX, ylim = buildFireSoldiersLimY, 
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX, 
yaxt = buildFireSoldiersAxtY)
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2. Adding axes

Since we completely hid our axes from the foundation graphic, our next step 
involves creating custom ones. We added custom axes to our graphic using the 
familiar axis(...) function:

> #x axis
> axis(side = 1, at = c(0:30), las = 0)
> #y axis
> axis(side = 2, 
at = c(1000, 5000, 10000, 20000, 30000, 40000, 50000), 
las = 1)

For a review of the axis(...) function, see the Customizing a box plot section  
of this chapter.

3. Adding data

After the axes are defined, it is time to add data to the graphic. While we chose to 
use the points(...) function to add data in this activity, note that lines(...) 
could also be used, depending on the type of visual effect that you prefer. Our data 
consisted of the number of Shu and Wei soldiers engaged in past fire attacks:

> #add points to show the number of Shu soldiers engaged in past 
fire attacks
> pointsFireShuSoldiersDataX <- c(1:30)
> pointsFireShuSoldiersDataY <- subsetAmbush$ShuSoldiersEngaged
> pointsFireShuSoldiersType <- "p"
> pointsFireShuSoldiersColor <- "forestgreen"
> points(x = pointsFireShuSoldiersDataX, y = 
pointsFireShuSoldiersDataY, type = pointsFireShuSoldiersType,  
col = pointsFireShuSoldiersColor)
> #add points to show the number of Wei soldiers engaged in past 
fire attacks
> pointsFireWeiSoldiersDataX <- c(1:30)
> pointsFireWeiSoldiersDataY <- subsetAmbush$WeiSoldiersEngaged
> pointsFireWeiSoldiersType <- "p"
> pointsFireWeiSoldiersColor <- "blue"
> pointsFireWeiSoldiersPch <- 0
> points(x = pointsFireWeiSoldiersDataX, 
y = pointsFireWeiSoldiersDataY, 
type = pointsFireWeiSoldiersType, 
col = pointsFireWeiSoldiersColor, 
pch = pointsFireWeiSoldiersPch)

For a review of points(...) and lines(...) functions, see the Customizing a 
scatterplot and Customizing a line chart sections of this chapter.
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4. Add a legend, if necessary

The final step in building a custom graphic is to add a legend, if the graphic that you 
have created calls for one. This can be done using the same legend(...) function 
that we have exercised throughout our time exploring R's graphic capabilities:

> legend(x = 0, y = 50000, legend = c("Shu", "Wei"), 
fill = c(pointsFireShuSoldiersColor, 
pointsFireWeiSoldiersColor))

For a review of the legend(...) function, see the Customizing graphics section of 
the previous chapter.

In the end, we managed to build a complete, fully customized scatterplot starting from 
scratch. This development process is invaluable when you are creating graphics to present  
to others, use in reports, or publish outside of R.

Pop quiz 
1. Is it important to define the xlim and ylim arguments on a foundation graphic? 

Why or why not?

a. It is important, because these arguments scale our axes in preparation for data 
that will be added later.

b. It is important, because the plot(...) function will not execute if these 
arguments are left undefined.

c. It is not important, because the default axes will automatically scale to our data.

d. It is not important, because the x and y axes are hidden.

2. Could steps 2 (adding axes), 3 (adding data), and 4 (adding legend) of the graphic 
building process occur in a different order than the one that was demonstrated in 
this section?

a. No, they must be executed precisely in the order specified.

b. Yes, axes or data can occur in any order, but a legend must be added last.

c. Yes, the data or legend can occur in any order, but axes must be added first.

d. Yes, these steps merely add visual elements to our graphic and therefore can be 
executed in any order.
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Have a go hero 
You have practiced generating highly customized graphics and even learned to build your 
own graphic from scratch. Use your refined R talents to create at least three graphics that 
will convince the top generals of the Shu army to join you in battle. Recall that the generals 
are most interested in scrutinizing the details of your proposed attack and comparing it with 
alternative combat strategies. Be sure to explore new combinations of graphic arguments 
and functions. Refer back to the individual sections of this chapter for assistance with 
creating graphics of particular types.

Time for action – building a graphic with multiple visuals
Within R, it is possible to generate graphics that are composed from two or more separate 
visuals. Let us build a graphic that displays several pieces of information about our fire attack 
strategy simultaneously:

1.	 Prepare the graphic window to display multiple graphics simultaneously:

> #use par(mfcol) to prepare the graphic window to display 
multiple graphics simultaneously
> #the mfcol argument receives a vector indicating the number of 
rows and columns to reserve for separate graphics in the graphics 
window
> #here, we want 4 total graphics, so use a 2x2 vector
> par(mfcol = c(2,2))
> #note that a blank graphic window will open
> #if this window is closed, your graphic window will default back 
to displaying a single visual
> #if it remains open, your graphic window will continue to add 
visuals to the 2x2 grid as they are created

2.	 Create the first graphic:

> #create the first graphic by duplicating the steps taken in the 
Building a graphic activity
> #this scatterplot depicted the number of Shu and Wei soldiers 
engaged in past fire attacks
> plot(x = 0, y = 0, main = buildFireSoldiersMain, 
xlab = buildFireSoldiersLabX, ylab = buildFireSoldiersLabY, 
xlim = buildFireSoldiersLimX, ylim = buildFireSoldiersLimY, 
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX, 
yaxt = buildFireSoldiersAxtY)
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> axis(side = 1, at = c(0:30), las = 0)
> axis(side = 2, 
at = c(1000, 5000, 10000, 20000, 30000, 40000, 50000), 
las = 1)

> points(x = pointsFireShuSoldiersDataX, 
y = pointsFireShuSoldiersDataY, 
type = pointsFireShuSoldiersType, 
col = pointsFireShuSoldiersColor)
> points(x = pointsFireWeiSoldiersDataX, 
y = pointsFireWeiSoldiersDataY, 
type = pointsFireWeiSoldiersType, 
col = pointsFireWeiSoldiersColor, 
pch = pointsFireWeiSoldiersPch)

> legend(x = 0, y = 50000, legend = c("Shu", "Wei"), 
fill = c(pointsFireShuSoldiersColor, 
pointsFireWeiSoldiersColor))

Your graphic will now have additional space surrounding it, which can be used to 
incorporate new graphics, as shown in the following:
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3.	 Add a second chart to the graphic:

> #add a second chart that depicts the duration of past battles
> #create new variables where necessary
> #otherwise reuse the variables from our initial graphic
> #basic parameters
> buildFireDurationMain <- "Duration in Days"
> buildFireDurationLabY <- "Days"
> buildFireDurationLimY <- c(0, 14)
> #use the plot(...) function to create a foundation for the 
graphic
> plot(x = 0, y = 0, main = buildFireDurationMain, 
xlab = buildFireSoldiersLabX, ylab = buildFireDurationLabY, 
xlim = buildFireSoldiersLimX, ylim = buildFireDurationLimY, 
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX, 
yaxt = buildFireSoldiersAxtY)

> #axes
> #x axis
> axis(side = 1, at = c(0:30), las = 0)
> #y axis
> axis(side = 2, at = c(0:14), las = 1)

> #use lines(...) to add data to the graphic
> #add a line representing the duration in days for each battle
> lineFireDurationDataX <- c(1:30)
> lineFireDurationDataY <- subsetFire$DurationInDays
> lineFireDurationType <- "o"
> lineFireDurationWidth <- 1
> lineFireDurationColor <- "red"
> lines(x = lineFireDurationDataX, y = lineFireDurationDataY, 
type = lineFireDurationType, lwd = lineFireDurationWidth, 
col = lineFireDurationColor)

> #use abline(...) to add a horizontal line to the chart
> #add a line representing the mean duration
> lineFireDurationMeanWidth <- 3
> lineFireDurationMeanColor <- "blue"
> abline(h = mean(lineFireDurationDataY), 
lwd = lineFireDurationMeanWidth, 
col = lineFireDurationMeanColor)
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Your new chart will be added to the existing graphic, as shown in the following:

4.	 Add a third chart to the graphic:

> #add a third chart that depicts the percentage of victorious 
fire attacks when the strategy is executed successfully
> #basic parameters
> buildFireResultMain <- "Result When Successfully Executed"
> buildFireResultSlices <- c(length(subset(numericResultFire, 
numericExecutionFire == 1 & numericResultFire == 1)), 
length(subset(numericExecutionFire, 
numericExecutionFire == 1 & numericResultFire == 0)))
> buildFireResultLabels <- paste(buildFireResultSlices / 
sum(buildFireResultSlices) * 100,  "%", sep = "")
> buildFireResultColors <- c("red", "blue")
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> #use the pie(...) function to create and display the pie chart
> pie(x = buildFireResultSlices, 
labels = buildFireResultLabels, 
main = buildFireResultMain, 
col = buildFireResultColors)

> #legend
> legend(x = "topright", legend = c("Victory", "Defeat"), 
fill = buildFireResultColors, cex = 0.85)

Your new chart will be added to the existing graphic, as shown in the following:
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5.	 Add a fourth chart to the graphic:

> #add a fourth chart that compares the gold cost (in thousands) 
of the fire attack with the other battle methods
> #get the raw cost of the various methods using comparable 
resources
> goldCostFire <- functionGoldCost(2500, 225, 7)
> goldCostAmbush <- functionGoldCost(meanShuSoldiersAmbush, 
225, meanDurationAmbush)
> goldCostHeadToHead <- 
functionGoldCost(meanShuSoldiersHeadToHead, 225, 
meanDurationHeadToHead)
> goldCostSurround <- functionGoldCost(meanShuSoldiersSurround, 
225, meanDurationSurround)

> #basic parameters
> #note that the bar heights are divided by 1000 so they are 
represented in thousands of gold
> #presenting larger numbers in this manner is one way to keep our 
axes cleaner and our graphics more readable
> buildCostHeight <- c(goldCostFire, goldCostAmbush, 
goldCostHeadToHead, goldCostSurround) / 1000
> buildCostMain <- "Cost Comparison by Method"
> buildCostLabX <- "Gold Cost (in thousands)"
> buildCostLimX <- c(0, 400)
> buildCostLimY <- c(0, 5)
> buildCostNames <- c("Fire", "Amb", "Head", "Sur")
> buildCostColors <- rainbow(length(buildCostHeight))
> buildCostHoriz <- TRUE

> #use the barplot(...) function to create and display the bar 
chart
> barplot(height = buildCostHeight, main = buildCostMain, 
xlab = buildCostLabX, xlim = buildCostLimX, 
ylim = buildCostLimY, names = buildCostNames, 
col = buildCostColors, horiz = buildCostHoriz)

> #legend
> legend(x = 275, y = 2, 
legend = round(buildCostHeight * 1000, 0), 
fill = buildCostColors, title = "Exact Cost", cex = 0.75)
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Your new chart will be added to the existing graphic. The final graphic will look like 
the following:

What just happened?
We built a custom visual that was composed from a set of four individual graphics.

Note that this section will only highlight the new or unique features 
that were encountered during this process. You should already be 
familiar with generating individual graphics and customizing their 
parameters from our previous work.
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par(mfcol)
The par(mfcol) command modifies the number of visuals that are displayed in the graphic 
window. By default, the graphic window displays a single visual. The mfcol argument 
accepts a vector indicating the number of rows and columns of visuals to be displayed  
in the graphic window. For example:

> par(mfcol = c(3, 3))

The code would reserve space in the graphic window for nine visuals that would be displayed  
in a 3-row by 3-column grid. Note that the mfcol vector does not have to be symmetrical.  
For instance, a 5 by 1 or 2 by 10 vector would also be acceptable.

Our par(mfcol) command told our graphic window to display our visuals in a 2-row  
by 2-column grid:

> par(mfcol = c(2,2))

When par(mfcol) is executed, a blank graphic window will open. It is 
important to keep this window open. As long as it remains open, all graphics 
generated by R will be added to the grid defined by par(mfcol). Once 
the graphic window is closed, it will default back to generating single visuals. 
At that point, par(mfcol) can be used again to redefine the space of the 
graphic window.

Graphics
Once the space of our graphic window was defined, we simply added new visuals one by 
one. Notice that this process is identical to creating individual graphics. The difference is 
that the graphic window will continue to add new visuals to the same space, rather than 
replacing the previous visual each time a new one is created. Thus, we are able to combine 
multiple visuals into a single graphic.

We started by building two charts from scratch, one depicting the soldiers engaged in fire 
attacks on a scatterplot, and one displaying the duration of fire attacks in a line chart. We 
then generated two highly customized charts, one depicting the result of fire attacks when 
successfully executed as a pie, and one comparing the cost of the battle methods on a  
bar chart. Ultimately, we arrived at a single graphic containing information from four 
separate visuals.

While creating the charts that composed our combined graphic, we encountered two 
notable items that deserve an explanation here.
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Horizontal and vertical lines
The first occurred while making our fire attack duration line chart. You may have noticed that 
we drew a flat, horizontal line across the chart at the mean duration. To accomplish this, we 
used the abline(...) function in a new way. Previously, we used abline(...) to draw 
best fit lines on scatterplots in the Customizing a scatterplot section of this chapter. Here, we 
used the h argument to define a point where a horizontal line should be drawn across our 
chart. By setting h to the mean duration, we were able to visualize the average fire attack 
duration amidst the fluctuations experienced across each individual battle:

> abline(h = mean(lineFireDurationDataY), 
lwd = lineFireDurationMeanWidth, col = lineFireDurationMeanColor)

Note that the abline(...) function also has a v argument, which 
can be used to define a vertical line at any point along the chart. If 
h and v are defined together, an intersecting pair of horizontal and 
vertical lines will be drawn.

Nested functions
A complex code segment that we encountered while making our pie chart involved a series 
of nested functions:

> buildFireResultSlices <- c(length(subset(numericResultFire, 
numericSuccessfullyExecutedFire == 1 & numericResultFire == 1)), 
length(subset(numericSuccessfullyExecutedFire, 
numericSuccessfullyExecutedFire == 1 & numericResultFire == 0)))

Here, we created our pie's slices using a combination of the c(...), length(...), and 
subset(...) functions. Individually, these are all familiar. When combined, they can look 
confusing at first glance. The key to reading nested functions is to work from the innermost 
function to the outermost function. The key to creating nested functions is to remember to 
close your parenthesis in the opposite order that they are opened. For example, while the 
c(...) function was the first opened in our code, it was the last one that was closed. The 
following example illustrates this principle:

> function1(function2(function3()))

In nested functions, the innermost function is always executed first, followed by its 
surrounding function, and so on.
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As with other programming languages, functions in R can be nested at 
virtually unlimited levels. On one hand, nesting makes our code more 
compact and efficient. On the other hand, excessive nesting makes 
our code unreadable and undesirably complex. Take these points into 
consideration when nesting functions.

Pop quiz
1. Which of the following is not true when of the par(mfcol) command?

a. When executed, par(mfcol) will launch a new graphic window.

b. Closing the graphic window will cancel the effects of the most recently executed 
par(mfcol) command.

c. The mfcol argument only accepts symmetrical vectors.

d. The par(mfcol) can be executed again to redefine the space of the  
graphic window.

2. What impact would the following line of code have on a visual displayed in the 
graphic window?

> abline(h = 4, v = 10)

a. A horizontal line would be drawn at 4 on the y-axis.

b. A vertical line would be drawn at 10 on the x-axis.

c. A horizontal line would be drawn at 4 on the y-axis and a vertical line would be 
drawn at 10 on the x-axis.

d. No lines would be drawn.

3. Which of the following code fragments demonstrates how to properly nest the 
c(...) function inside the sum(data) function inside the mean(data) function?

a. c(sum(data), mean(data))

b. mean(sum(c(...)))

c. c(sum(mean(data)))

d. mean(sum(data), c(...))
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Have a go hero
Combine the visuals that you created in the previous activity into a single R graphic. Then, 
hold a recruitment conference with the Shu generals and convince them that your strategy  
is worthy of their services.

Summary
In this chapter, you created several charts, graphs, and plots to convey your battle strategy 
and recruit the top generals in the Shu army. To do so, you customized, added information 
to, and even built graphics. You should now be able to:

Customize several charts, graphs, and plots using arguments specific to each

Use graphics functions to add information to any visual

Create custom graphics by building them from the ground up

Armed with a sound strategy, talented and loyal generals, and the emperor's approval, 
you are ready for battle. You have come a long way since the legendary Zhuge Liang's 
death thrust the fate of the Shu kingdom into your hands. Your mastery of R has grown 
tremendously and will continue to aid you in conducting data analyses. While the future of 
the Shu kingdom may be uncertain, your talents are unquestioned and your knowledge will 
continue to blossom.

In Chapter 10, we will focus on the future. We will look at the ways in which you excel 
beyond the teachings of master Zhuge Liang, and the boundaries of this book, to continually 
refine and expand your understanding of R.









10
Becoming a Master Strategist

Throughout this book, you have continually refined and expanded your 
understanding of R. We began by examining the components of the R console 
and how to use them effectively. We then used variables, functions, and models 
to organize, analyze, and assess our data. We concluded by taking an in-depth 
look at R's graphical capabilities.

In this, our final chapter, we will explore several ways in which we can continue 
to learn about R. Just because we have completed this book and acquired the 
skills of the legendary Zhuge Liang, does not mean that our journey is complete. 
There are virtually an unlimited number of topics to discover in R. This list is 
growing day by day, as users continually expand R's functionality. To find new 
R knowledge, we will focus on the learning resources that are built into R and 
those that can be found online. 

By the end of this chapter, you will be able to do the following:

Use R's built-in help system

Install packages that expand R's functionality

Take advantage of electronic learning resources, such as websites, blogs, and  
online communities

R's built-in resources
R has two primary built-in resources that allow us to expand our use of the software. The 
first is the help() function, which can be used to learn about various R topics. The second is 
R's ability to be extended through the use of user-created packages. We will explore both of 
these resources in detail.
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Time for action – using R's help function
R has a convenient help(...) command that yields overview information about nearly any 
feature. Let us review this function:

1.	 Open R.

2.	 Execute the help(...) function without any arguments:

> #learn more about the help command by using the help(...) 
function without any arguments
> help()

3.	 The R Help window will open to display documentation on the help(...) function.
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4.	 Execute the help(...) function using the topic argument:

> #learn more about a specific subject using the help(...) 
function with a single argument
> #the argument should specify the name of the subject that you 
are seeking help on
> help(library)

5.	 The R Help window will open to display documentation on the specified topic:
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What just happened?
We demonstrated how to use the help(...) function to learn about R components using 
its built-in documentation system.

help(...)
Our first use of help(...) contained no arguments and therefore conveniently returned 
documentation on the help(...) function itself. Most often, you will want to use the 
help(...) function in coordination with a single argument that specifies the subject that 
you are seeking help on. For instance, we used the help(...) function to learn more  
about the library(...) function:

> help(library)

Notice that the argument in the help(...) function is simply the name 
of a topic. As demonstrated, when the topic is a function, no parenthesis, 
ellipsis, or arguments should be included with the function name.

When executed, the help(...) function opens the R Help window to display the 
documentation related to the identified subject. The R Help window will display a brief 
description of the topic along with sections explaining its usage, arguments, details, 
author(s), references, examples, and related subjects. All of R's help documentation  
follows this format, although each individual help page may not contain every section.

The help(...) function is a fast and easy way for experienced users to retrieve information. 
It is best for users who are already familiar with specific R topics and need to be reminded of 
certain arguments or features. It is not always an optimal tool for learning how to do brand 
new things, but the built-in help system is the official resource for R documentation.

Pop quiz
1. What happens when the help() function is executed without any arguments?

a. It fails to execute and returns an error.

b. The R Help window displays documentation on the specified subject.

c. The R Help window displays documentation on the help(...) function.

d. The R Help window displays a menu of selectable help topics.

2. What happens when the help(...) function is executed with a subject  
argument specified?

a. It fails to execute and returns an error.

b. The R Help window displays documentation on the specified subject.
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c. The R Help window displays documentation on the help(...) function.

d. The R Help window displays a menu of selectable help topics.

Have a go hero
Review the help documentation on the chooseCRANmirror(), install.packages(), 
and library(...) functions to prepare for the next section on packages.

Time for action – expanding R with packages
R's functionality can be easily and significantly expanded through the use of packages. A 
package is a collection of functions that has been contributed by members of the R user 
community. Let us look at the steps involved in acquiring, installing, loading, and using  
a new package in R:

1.	 Open the CRAN mirror window using the chooseCRANmirror() command:

> #acquiring, preparing, installing, and using a new R package
> #step 1: choose a CRAN mirror
> #open the CRAN mirror window using chooseCRANmirror()
> #then choose the mirror located nearest to you
> chooseCRANmirror()

A new window will open to display the available CRAN mirrors. Choose the mirror 
that is located nearest to you, then click on the Ok button:
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Note that the appearance of the CRAN mirror window may vary 
depending on the operating system and version that you use.

2.	 Open the packages window using the install.packages() command:

> #step 2: install the package
> #open the packages window using install.packages
> #then choose a package to install it on your computer
> install.packages()

A new window will open to display the available packages. Choose the magic 
package, then click on the Ok button.

Note that the appearance of the packages window may vary 
depending on the operating system and version that you use. 
Also note that R will automatically install any packages that the 
selected package depends upon to operate.
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3.	 Use the library(...) function to load the a package for use in R.

> #step 3: load the package
> #use the library(...) function to load a package once it has 
been installed
> #load the magic package
> library(magic)

Note that R will automatically load any packages that the 
specified package depends upon to operate and notify you in 
the console. If no additional packages are necessary, R will drop 
down to the next line without providing any output.

4.	 R will drop down to the next line. The package is now ready to be used.

5.	 Use the magic(n) function from the magic package to generate a sequence of 
magic squares:

> #step 4: use the package
> #once loaded, a package's functions can be used within the R 
console
> #use the magic(n) function from the magic package to generate an 
8x8 magic square
> #n is a single nonnegative number that indicates how many rows 
and columns the magic square will have
> #this function generates the same type of magic square that we 
encountered when solving Zhuge Liang's puzzle in chapter 3!
> magic(8)

What just happened? 
We expanded the capabilities of R by downloading, installing, and loading a package in the R 
console. Let us review the steps involved in this process.
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Choose a CRAN mirror
The initial step in acquiring a new R package is to choose a CRAN mirror. The acronym CRAN 
stands for Comprehensive R Archive Network and refers to several worldwide servers that 
store and maintain R's code and documentation. A CRAN mirror is a single server in this 
network. When choosing a CRAN mirror, it is best to select the location nearest to you. Since 
the data that you request will travel a shorter distance, you will be able to download more 
content in less time. Using the chooseCRANmirror() function will open the CRAN mirror 
window, which displays a list of all available CRAN mirrors.

Note that chooseCRANmirror() only needs to be executed 
once each time that you launch R. Once a CRAN mirror is selected, 
it will remain active until you quit R.

Install a package
Next, you will need to install the desired package. Executing the install.packages() 
command in the R console will open the Packages window, which displays a list of all 
available packages.

In our example, we selected the magic package. R then automatically installed the abind 
package, which is required for magic to function. Whenever necessary, R will automatically 
install required packages, known as dependencies, in this fashion.

A given package only needs to be installed once. It is then available to be loaded 
any time that you use R.

Also note that if you already know the name of the package, you can install it 
using a single install.packages(name) command, such as install.
packages("magic").

A list of every available R package, along with a description of each, can be found 
on the official R website at:

http://cran.r-project.org/web/packages

Load the package
Then, to prepare the package for use in the R console, it must be loaded via the 
library(...) function. This function receives an argument that indicates the name of 
the function. For instance, since we wanted to load the magic package in our activity, the 
library(...) function took on the following form:

> library(magic)
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As with install.packages(), the library(...) command will automatically load any 
necessary dependencies. In our case, the abind package was loaded after executing our 
library(...) function. When no dependencies are present, R will drop down to the next 
line in the console without providing any output.

A given package only needs to be loaded once each time that you 
launch R. Once loaded, a package will remain active until you quit R.

Also note that you can check for and install updates to your R packages 
using the update.packages() command.

Use the package
Once you have loaded a new package in R, the final step is to take advantage of its offerings. 
Quite simply, once a package has been loaded, you can use any of its functions, just as we 
have been using R's built-in functions throughout this book.

In our activity, we loaded the magic package, which gave us access to several functions 
related to magic squares. We used the magic(n) function to generate an 8x8 magic square.

This is the same variety of magic square that we encountered when solving Zhuge Liang's 
puzzle in Chapter 3. In fact, the puzzle that you solved in that chapter was generated using  
R and the magic package!

All R packages can be installed by following this same procedure. The immense value of 
R packages is that they expand the capabilities of R. Thousands of packages are currently 
available and new ones are continuously being created by the R user community. This means 
that R is perpetually growing in scope and functionality.
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Pop quiz
1. How often must the chooseCRANmirror() function be executed in R?

a. Once.

b. Once each time R is launched.

c. Once each time a given package is installed.

d. Once each time a given package is loaded.

2. How often must the install.packages() function be executed in R?

a. Once.

b. Once each time R is launched.

c. Once each time a given package is installed.

d. Once each time a given package is loaded.

3. How often must the library(...) function be executed in R?

a. Once.

b. Once each time R is launched.

c. Once each time a given package is installed.

d. Once each time a given package is loaded.

Have a go hero
Use the R website's online package listing (http://cran.r-project.org/web/packages), 
or one of the other resources presented in this chapter, to learn about the packages that are 
available in R. Choose one that will be useful to your work. Then install it in R and experiment 
with its functions.

R's online resources
A wealth of online resources are available for R. These include search engines, websites, 
blogs, and online communities. Some of the most useful and informative online resources  
for learning about R will be discussed here.
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Websites
A few valuable R websites are highlighted here.

The R Project for Statistical Computing
The official R website is the definitive source for R updates and documentation. It offers the 
most recent versions of R for each operating system. Also included are valuable documents, 
such as the R FAQ, CRAN mirror listing, and contributed packages glossary. The R Project for 
Statistical Computing can be found at:

http://www.r-project.org

Quick-R
Quick-R is an excellent resource for efficiently retrieving information on R topics, along  
with examples of how related techniques can be executed. It covers a wealth of subjects  
in R, including a wide range of statistical methods and graphics types. Its organized and 
aesthetic format makes it easy to locate and decipher the desired information. Quick-R  
can be found at:

http://www.statmethods.net

R Programming wikibook
The R Programming wikibook shares information on general R topics, as well as references 
to statistical methods. All of its content is presented in wiki format with minimal description, 
making it a resource for quickly locating and indulging in code samples. The R Programming 
wikibook can be found at:

http://en.wikibooks.org/wiki/R_Programming

R Graph Gallery
The R Graph Gallery presents a collection of some of the most advanced and unique 
graphics that have been generated using R. Images of each visualization are accompanied by 
the source code used to create them and references to any required packages. The R Graph 
Gallery can be found at:

http://addictedtor.free.fr/graphiques
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Crantastic!
Crantastic! is a website dedicated to R packages. It features an up-to-date searchable listing 
of all R packages, along with their descriptions, web addresses, version information, and 
author details. Crantastic! can be found at:

http://crantastic.org

Blogs
Blogs are another informative online resource for learning about R.

R bloggers
R bloggers is an extensive collection of over 100 blogs (and counting) that are dedicated to 
sharing knowledge related to R. It is a prime resource for gaining insights on complex and 
cutting edge data analysis techniques. The combined authorship of R bloggers represents 
perhaps the most active and timely sharers of R content on the internet. R bloggers can be 
found at:

http://www.r-bloggers.com

R Tutorial Series
The R Tutorial Series provides user-friendly guides for people who are learning about R. It 
primarily focuses on providing brief statistics tutorials with detailed execution examples. This 
blog was created by the author of this book and follows a similar style. The R Tutorial Series 
is available at:

http://rtutorialseries.blogspot.com

Online communities
Online communities are places to connect with other R users and seek and share information.

R-help mailing list
The R-help mailing list is both an ongoing resource for answers to R questions and an 
archive of past conversations dating back to 1997. The odds are that any difficulty that you 
encounter in R has already been queried to this list at one time or another. If not, you can 
always join the list and contribute to the community by submitting your own questions. 
Therefore, the R-help mailing list is one of the first places you should look when you are 
having trouble with a particular facet of R. You can join the R-help mailing list at:

https://stat.ethz.ch/mailman/listinfo/r-help
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A searchable archive of the R-help mailing list is available at:

http://tolstoy.newcastle.edu.au/R

Other mailing lists
A number of additional mailing lists are available for users seeking information about R. The 
most prominent ones, which cover the major announcements, contributed packages, and 
development of R can be found using the Mailing Lists link on the official website at:

http://www.r-project.org

Search engines
Endless amounts of information about R can also be found by searching the internet.

R Seek
R Seek is a Google-based search engine that helps users find what they are looking for by 
automatically optimizing their queries to yield relevant results. Users can search for a topic 
as they normally would, but are more likely to be presented with output that is related to R 
than if they had entered the same terms into a standard search engine. The R Seek search 
engine is available at:

http://www.rseek.org

Google
Google is another valuable resource for searching R, although it does take some practice to 
acquire meaningful results through this engine. It can be difficult to find relevant webpages 
via Google, because R's one letter name tends to be ignored or inappropriately parsed by 
search engine algorithms. Thus, it is often useful to use quotations along with additional 
terms when searching Google. For example, to find information on conducting multiple 
regression in R, it is better to use include additional quoted keywords, such as R Project  
or R statistics than just the letter R alone. The Google search engine is available at:

http://www.google.com
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Summary
In this chapter, you explored several resources for broadening your understanding of R. 
These consisted of built-in features, such as the help(...) command and packages, and 
internet resources, including websites, blogs, and online communities. You should now be 
able to do the following:

Use R's built-in help system

Install packages that expand R's functionality

Take advantage of electronic learning resources, such as websites, blogs, and  
online communities

Congratulations on completing this book. You have discovered much of what R has to offer 
and should feel comfortable incorporating it into your everyday work. Do not cease to refine 
and expand your knowledge of R. It is hoped that R will be a useful tool in your work for 
many years to come.

On a final note, you have earned your place amongst a global group of analysts, 
businesspeople, academics, scientists, and others with a passion for open source data 
analysis software. Welcome to the R user community.









Pop Quiz Answer Key

Chapter 2
Setting your R working directory

1 d

2 b

3 d

Chapter 3
Solving the first 4x4 Magic Square

1 b

2 d

3 c

Chapter 4
Accessing data within variables

1 d

2 b

3 d
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Manipulating variable data

1 10  20  30

40  50  60

2 1  12   3

4   5    6

3 c

Managing the R workspace

1 c

2 d

3 a

Chapter 5

Creating a subset from a large dataset

1 d

2 a

Deriving summary statistics

1 c

2 b

Quantifying categorical variables

1 d

2 a

Correlating variables

1 b

2 d
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Modeling with simple linear regression

1 b

2 a

3 c

Modeling with multiple linear regression

1 a

2 c

Modeling interactions

1 b

2 d

3 a

Comparing and choosing models

1 d

Chapter 6

Creating custom functions

1 c

2 b

3 c

Incorporating resource constraints into predictions

1 d

Assessing the viability of potential strategies

1 d
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Chapter 7

Data setup

1 c

Data exploration

1 c

Model development

1 d

2 d

Model deployment

1 c

The common steps to all R analyses

1 d

Chapter �

Creating a bar chart

1 a

2 d

Customizing graphics

1 d

2 d
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Creating a scatterplot

1 a

2 c

Creating a line chart

1 d

2 a

Creating a box plot

1 a

2 c

Creating a histogram

1 d

Creating a pie chart

1 b

Exporting graphics

1 a

Chapter �

Customizing a bar chart

1 b

2 d

3 b
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Customizing a scatterplot

1 a

2 c

Customizing a line chart

1 d

2 c

Customizing a box plot

1 b

2 c

Customizing a histogram

1 b

2 c

Customizing a pie chart

1 a

2 c

Building a graphic

1 a

2 d

Building a graphic with multiple visuals

1 c

2 c

3 c
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Chapter 10
Using R's help function

1 c

2 b

Expanding R with packages

1 b

2 a

3 b
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Rating value  108
ratioWeiShuSoldiersAmbush variable  109
ratioWeiShuSoldiersFire variable  109
ratioWeiShuSoldiersHeadToHead variable  109
ratioWeiShuSoldiersSurround variable  109
R bloggers

about  264
URL  264

R command
issuing  29

R console
saving  60
versus R workspace  59, 60
visualizing  39

read.csv(file) command
about  44
resource file, reading into R  44

read.table(...) function
about  128
arguments  128

read.table(...) function, arguments
file  128
header  128
sep  128
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regression equation
format  84

regression line  209
regression models

about  82, 103
ambush  106
comparing  96-98
fire  107
head to head  104
outcomes, calculating from  110, 111
probability values, calculating  108
selecting  96-98
simple linear regression  82, 83
surround  105

resource-focused custom functions
creating  115, 116

resource constraints
incorporating, into predictions  119

resource map  118
R Graph Gallery

about  263
URL  263

R Help window  255
round(x, digits) function  231
row

calculations, performing on  54
R Programming wikibook

about  263
URL  263

R Project for Statistical Computing
about  263
URL  263

R Seek
about  265
URL  265

R Tutorial Series
about  264
URL  264

R workspace
contents, listing  58
contents, loading  59
contents, saving  59
managing  57, 58
saving  148, 149
versus R console  59, 60

S
save.image(file) function  57, 59, 145, 148
scatterplot

about  164, 206
additional data, incorporating  200, 201
creating  164-166
customizing  199
displaying, in graphic window  201
legend, adding  203, 204
multiple scatterplot  167
points, adding  202, 203
single scatterplot  167

sd(data) function
about  71
using  71

search engines
about  265
Google  265
R Seek  265

setwd(dir) function  31, 43, 126
simple linear regression

about  82
modelling with  82, 83

space argument  194
standard deviation  71
subset

creating, from dataset  66
subset(data, ...) function  66, 67
SuccessfullyExecuted variable  105
summary(object) function  72

about  147
using  85, 131, 132, 144

summary output
interpreting  90
p-value  86
R-squared  86

summary statistics
deriving  69-71
examining  129-132
need for  72

sunflowerplot(...) function
using  211

surround model  105
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T
topic argument

help(...), executing  255
type argument  170

U
update.packages() command  261

V
variable$column notation  49
variable-argument function

about  67
anova(object, ...)  100

variable[row, column] notation  50
variable data

manipulating  51, 52
using, in function arguments  54

variables
calling  45, 46
categorical variables, quantifying  73, 74
correlating  77, 78
creating  45, 46
data, accessing within  47-50
interaction variables  92
overwriting  75, 76
variable calculation, saving  55

vector variable  154
viability

assessing  121, 122

W
websites

Crantastic!  264
Quick-R  263
R Graph Gallery  263
R Programming wikibook  263
R Project for Statistical Computing  263

width argument  194
working directory

about  30
setting  30, 145

X
xlab argument  159, 160
xlim argument  159, 160, 194

Y
ylab argument  159, 160
ylim argument  159, 160

Z
Zhuge Liang  7
Zhuge Liang's magic square puzzle

about  34
deciphering  34
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