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   Preface   

 Abiotic and biotic stresses on crops are one of the most important limiting factors to 
crop growth, development and potential yield realization, production loss due to 
these stresses are enormous. Plants have complex system of responses to stress 
stimuli which change constantly with changes in the environmental stresses encoun-
tered by the plants. These changes in the structure and function of the plant systems 
are highly intricate and much more complex than found in animal systems notwith-
standing the noted nonexistence of a well-defi ned immune system in plants. One 
can say that the simple reason for this is that plants do not possess the ability to 
simply move away from the region of stressful stimuli or in other words they are 
sessile. Multiple stresses or a stress and an external potential ameliorant can evoke 
very complex responses in plants systems, these responses may be of stress countering 
nature or simply an effect of the stimuli. The threat to productivity in global agriculture 
due to these stresses cannot be overstated, nor should it be overlooked especially in 
the light of the predicted climate change. Crops experience an assortment of envi-
ronmental stresses which include abiotic viz., drought, water logging, salinity, and 
extremes of temperature, high variability in radiation, subtle but perceptible changes 
in atmospheric gases and biotic viz., insects, birds, rodents, nematodes and patho-
gens (viruses and other microbes). The ability to tolerate or adapt by effectively 
countering these abiotic stresses is a very multifaceted phenomenon; in addition the 
inability to do so rendering the crops susceptible, is again the result of various exog-
enous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses 
occur at various stages of plant development and frequently more than one stress 
concurrently affects the crop. Stresses result in both universal and local effects on 
plant growth and development. One of the imposing tasks for the crop researchers 
globally is to distinguish and to diminish effects of both biotic and abiotic stress 
factors on the performance of crop plants, especially with respect to yield, quality 
of raw materials, and nutrient effi ciency resources. This is of special signifi cance in 
view of the impending climate changes with complex consequences for economically 
profi table and ecologically and environmentally sound global agriculture. The chal-
lenge at the hands of the crop scientist in such a scenario is to promote a competitive 
and multifunctional agriculture, leading to the production of highly nourishing, 
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healthy and secure food and animal feed as well as raw materials for a wide variety 
of industrial applications. In order to successfully meet this challenge, researchers 
have to understand the various aspects of these stresses in view of the current deve-
lopment from molecules to ecosystems. The book will focus on the strategic aspects 
in addition to touching some mechanistic aspects. In addition, whole plant and crop 
community approach to rationally manipulate and optimize tolerance traits for 
improved crop productivity, evolve crop production packages with the aid of geoin-
formatics and precision agriculture to counter stress is highlighted in some of the 
chapters of the book. Of special signifi cance in the book is the comprehensive state 
of the art of abiotic and biotic stress management in plantation crops and the chapter 
on socio economic and policy issues in abiotic stress management. The enormous 
pace at which advances and new discoveries that recently are taking place in the 
cutting edge areas of molecular biology and basic genetics, have strengthened and 
increased the effi ciency of science outputs in dealing with crop stresses. We have 
entered a new phase in science, i.e. ‘post-genomics era’, where outcome in terms of 
translation of information generated on fi eld performance of crops to increase 
productivity would be considered as the ultimate goal. With enormous body of 
knowledge available in the researchers’ domain, attempts are required to transfer 
this knowledge to the farm level for combating various crop stresses. The book also 
addresses the role of the novel information and communication techno logies for 
technology transfer. This multi authored edited compilation will attempt to put forth 
a comprehensive picture in a systems approach wherein most aspects of stress will 
be dealt with. The chief objective of the book hence would be to deliver information 
for developing strategies to combat crop stress. We attempt here to present a judi-
cious mixture of management as well as research outlooks so as to interest workers 
in all areas of crop stress. We trust that the information covered in this book would 
bridge the mechanistic aspects (what do we know) of stresses with the strategic 
aspects (what do we do).    
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  Abstract   Biotic and abiotic stresses in crops are a major hurdle in attaining potential 
yield worldwide. Finding an approach to sustain high yields of crop plants under biotic 
and abiotic stresses is an important goal of agriculture researchers and stakeholders 
alike. Among the abiotic stresses, drought, salinity, temperature and heavy metal 
accumulation are the major environmental stresses, which adversely affect plant 
growth and productivity. In addition, biotic stresses primarily, plant diseaseses are a 
signifi cant constraint to the production of about 25 important food and fi ber crops. 
Changing climate compounds these adverse effects of stresses on crops. To cope 
with biotic and abiotic stress it is of paramount signifi cance to understand plant 
responses to these stresses that disturb the homeostatic equilibrium at cellular and 
molecular level in order to identify a common mechanism for multiple stress tol-
erance at least in the case of abiotic stresses. An integrated systems approach is 
essential in the study of complex quantitative traits governing tolerance to multiple 
biotic and abiotic stresses. A detailed account of specially abiotic stresses and 
combating strategies to effectively counter them are discussed in this chapter.      

    1.1   Introduction 

 Hostile biotic and abiotic environmental conditions, such as diseases and pests, 
drought, fl ood, heat and other stresses affect agricultural productivity greatly. Crop 
losses are caused by these abiotic and biotic environmental factors, leading to the 
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signifi cant decline of crop performance and subsequent lower actual yield than 
attainable yield (Fig.  1.1 ). Absolute losses vary between crops due to dissimilarities 
in their reaction to the effects of biotic and abiotic stresses. Finding an approach to 
sustain high yields of crop plants under stress is an important goal of agriculture 
researchers and stakeholders alike. Among the abiotic stresses, drought, salinity, 
temperature and heavy metal accumulation are among the major environmental 
stresses, which adversely affect plant growth and productivity. Although one third 
of the total land area is considered as potentially suitable for arable agriculture, only 
10% of the world’s 13 billion hectares is cultivated. By 2030, global cereal demand 
for food and animal feed alone is expected to be 2.8 billion tonnes per year, or 50% 
higher than in 2000 (Lobell et al.  2009  ) . Various forms of abiotic stresses limit pro-
duction on most of the world’s 1.4 billion ha of cultivated land. In addition, biotic 
stresses primarily plant diseases are a signifi cant constraint to the production of 
about 25 important food and fi ber crops. Biotic interactions reduce crop productivity 
in various ways; examples being growth reducers (damping-off pathogens), photo-
synthetic rate reducers (fungi, bacteria, viruses), leaf senescence accelerators 
(pathogens), competition for light (weeds, some pathogens), assimilate sappers 
(nematodes, pathogens, sucking arthropods), and tissue consumers (chewing 
animals, necrotrophic pathogens). In general weeds affect crop productivity mainly 
due to the competition for inorganic nutrients (Oerke  2006  ) . World-wide losses 

  Fig. 1.1    An overview of biotic and abiotic factors that cause crop stress       
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from diseases range from 9% to 16% in rice, wheat, barley, maize, potato, soybean, 
cotton (Chakraborty et al.  2000  ) . Changing climate compounds adverse effects of 
stresses on crops. Potential effects of climate change on agriculture include reduced 
yields in warmer regions as a result of heat stress; damage to crops, soil erosion and 
inability to cultivate land caused by heavy precipitation events; and land degradation 
resulting from increasing drought. Crop simulation models, driven by future climate 
scenarios from global circulation models, suggest that the reduction in agricultural 
production would be more severe in tropical regions, where there is still a shortage 
of food production (Ghini et al.  2011  ) . Pests cause extensive damage to crop 
production and contribute greatly to yield losses and this again is exasperated by 
variability in climate. The global loss potential caused by pests is particularly high 
in crops grown under high productivity environments and also in the tropics and 
sub-tropics where climatic conditions favour the damaging function of pests (Oerke 
 2006  ) . In this chapter we present the major abiotic stresses and discuss the mechanism 
by which they affect crop growth and present some possible novel research strategies 
that can tackle this problem.   

    1.2   Signifi cance of Stresses in Crop Plants 

 Abiotic stresses have a general mechanism of action although a degree of specifi city 
can be attributed to the specifi c type of stress unlike biotic stresses with the exception 
of weeds wherein physical damage is one of the major result of infestations. In addi-
tion, in the case of abiotic stresses the degree of specifi city is very high depending 
on the organism attacking the crop viz., insects, birds, viruses, microorganisms 
nematodes where each organism affects the crop in almost a distinctive way and 
furthermore the degree of complexity in the mechanism is higher due to specifi c 
interactions between the host and damage causing organism. Many pests and patho-
gens exhibit considerable capacity for generating, recombining, and selecting fi t 
combinations of variants in key pathogenicity, fi tness, and aggressiveness traits 
(Oerke  2006  ) . A detailed discussion on this would be beyond the scope of this chapter 
and hence we confi ne ourselves to abiotic stresses and their mechanisms. Stress is 
defi ned as “any environmental variable, which can induce a potentially injurious 
strain in plants”. The concept of optimal growth conditions is a fundamental principle 
in biology. Since living organisms cannot control environmental conditions, they 
have evolved two major strategies for surviving adverse environmental conditions 
i.e. stress avoidance or stress tolerance. The avoidance mechanism is most obvious 
in warm blooded animals that simply move away from the region of stressful stimuli. 
Plants lack this response mechanism, which is mobility; hence they have evolved 
intricate mechanisms to avoid stress. For example, they alter life cycle in such a way 
that a stress sensitive growth period is before or after the advent of the stressful 
environmental condition. On the other hand, tolerance mechanisms mainly involve 
biochemical and metabolic means which are in turn regulated by genes. 
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    1.2.1   Cold 

 Most crops of diverse origins – some tropical and subtropical are sensitive to chilling 
temperatures. Principal food crops like maize ( Zea mays ) and rice ( Oryza sativa ) are 
very sensitive to low temperatures. The growth of these crops are severely affected 
by temperatures below 10°C resulting in considerable yield loss or even crop failure. 
Among other crops, maximum economic loss is seen in fruit trees (Meirong and 
Yanli  2008  ) . The temperature below which chilling injury can occur varies, ranging 
from 4°C for temperate fruits, 8°C for subtropical fruits, and 12°C for tropical 
fruits such as banana. Chilling during the seedling stage in cotton can reduce plant 
height, delay fl owering and adversely affect yield and lint quality. Chilling injury is 
the physical and/or physiological changes that are induced by exposure to chilling 
temperatures. The physiological changes may be considered primary or secondary. 
The primary injury is the initial rapid response that causes a dysfunction in the 
plant, but is readily reversible if the temperature is raised to non-chilling conditions 
(Kratsch and Wise  2000  ) . Secondary injuries are dysfunctions that occur as a 
consequence of the primary injury and that may not be reversible. The characteristic 
visual symptoms are the consequence of secondary chilling injuries. Enzymatic 
reactions, substrate diffusion rates, and membrane transport properties are amongst 
the main life processes affected by chilling wherein the entire internal environment 
of each cell and each molecule within the cells are affected. Physiological age, 
seedling development, and pre-harvest climate can also infl uence chilling sensitivity. 
The severity of injury to chill-sensitive tissues tends to increase with decreasing 
temperatures and with length of low-temperature exposure. Cellular autolysis and 
senescence is promoted by severe chilling stress. Leaf yellowing due to loss of 
chlorophyll, may occur in the light as a consequence of photo-oxidation. Loss of 
membrane integrity that allows the leakage of cellular fl uids into the inter cellular 
(apoplastic) spaces gives chilled tissues a water-soaked appearance, failure to main-
tain cellular compartmentation and loss of turgor. Electron microscopy studies showed 
that the mitochondria of sensitive species to be swollen and distorted after chilling. 
The rates of CO 

2 
 and C 

2 
H 

4 
 production usually increase; prior to the appearance of 

visual symptoms although C 
2 
H 

4 
 is not a causal agent of chilling injury symptoms 

(Limin and Fowler  2000  ) . Chilling stress is perceived locally, probably by each 
individual cell. Chilling injury is not translocatable for example, this can be seen 
when a cucumber plant was divided so that one shoot was chilled, while the remainder 
of the plant remained at warm temperatures, the chilling injury was restricted to that 
one shoot. Individual cell injury is the main event which triggers the symptoms of 
chilling injury (Chang et al.  2006  ).   

    1.2.2   High Temperature 

 Heat stress often occurs when temperatures are hot enough for sufficient time 
to cause irreversible damage to plant function or development. In addition, high 
temperatures can increase the rate of reproductive development, which shortens the 
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time for photosynthesis (Hall  2001  ) . High temperature stress is also considered as a 
heat-stress effect even though it may not cause permanent irreversible damage to 
development of the plant because the acceleration does substantially reduce total 
yield. High day temperatures can directly increase tissue temperatures or indirectly 
cause plant-water-defi cits due to high evaporative demands. Evaporative demand 
increases exponentially with increase in day-time temperatures and can result in high 
transpiration rates and low plant water potentials. High soil temperatures generally 
decrease rate of plant emergence or germination. The maximum threshold tempera-
tures for germination and emergence are higher for warm-season than for cool-
season annuals. For example, the threshold maximum seed zone temperature for 
emergence of cowpea is about 37°C compared with 25°C to 33°C for lettuce. During 
vegetative stage, high day temperatures cause damage to the photosynthetic machinery 
and decrease carbon assimilation as compared to optimal temperatures. Extreme 
temperatures can cause premature death of plants. Among the cool-season annuals, 
pea is very sensitive to high day temperatures with death of the plants occurring when 
air temperatures exceed about 35°C for suffi cient duration, whereas barley is very heat 
tolerant. For warm season annuals, cowpea can produce substantial biomass when 
growing in one of the hottest crop production environments on earth (maximum 
day-time    air temperatures in a weather station shelter of about 50°C), although 
its vegetative development may exhibit certain abnormalities. In monocotyledons, 
cool-season and warm-season annuals, high temperatures at daytime can cause leaf 
fi ring. Reproductive development in many crops is affected by heat due to which they 
produce no fl owers or fl owers do not progress to seed set. The heat tolerance limit 
of leaves of higher plants overlaps with the thermal sensitivity of primary photo-
chemical reactions taking place in the thylakoid membrane system. Tolerance limits 
vary between genotypes of the same species and also among species; however, some 
effects are subject to acclimation to high temperature. Long-term acclimations can 
be overlaid upon fast adaptive modifi cations of the thermal stability, occurring in the 
time range of a few hours. Light causes an increase in tolerance to heat, and this 
stabilization is related to the light-induced proton gradient. In addition to irreversible 
effects, high temperature may also cause large reversible effects on the rate of photo-
synthesis. Energy dissipated by photorespiration can exceed that consumed by CO 

2 
 

assimilation, and a reversible, temperature-induced non-photochemical ‘quenching’ 
process, related to ‘spillover’ of excitation energy to photosystem I, decreases the 
effi ciency of photosystem II with increasing temperature (Weis and Berry  1988  ) . 
However, despite the general drop in the quantum effi ciency, CO 

2 
 assimilation may be 

inadequate, at high temperature by an imbalance in the regulation of the carbon meta-
bolism, which is seen as an effect in down-regulation of the ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RUBISCO) activity (Leegood and Edwards  2004  )   

    1.2.3   Salinity 

 The progress of saline stress is generally a three stage process. Firstly, high salt 
concentrations decrease the osmotic potential of soil solution creating water stress 
in plants. Secondly, they form the basis for severe ion toxicity; this is due to the fact 
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that the Sodium ion is not readily sequestered into vacuoles as we see in halophytes. 
Thirdly, the exchange of salts with mineral nutrition results in major and micro 
nutrient imbalances and defi ciencies. The consequence of this three stage process 
leads to plant death as a result of severe growth retardation and molecular damage. 
Salinity arises through natural or anthropogenic processes as a consequence of 
accumulation of dissolved salts in the soil water. Sodicity is a secondary result 
of salinity in clay soils, where leaching through either natural or anthropogenic 
processes has washed soluble salts into the subsoil, and left sodium bound to 
the negative charges of the clay Munns ( 2004 ). Salts in the soil water may inhibit 
plant growth for two reasons. First, the presence of salt in soil solution reduces 
plants ability to take up water, which is referred to as the osmotic or water-defi cit 
effect of salinity (Munns  2009  ) . On the hand if disproportionate amounts of salt 
enter the plant system through the transpiration stream, it causes physical injury to 
cells in the transpiring leaves, which in turn cause decrease in growth. The descrip-
tion of salt tolerance is generally described as the percent biomass production in 
saline soil relative to plants in non-saline soil, when grown for an lengthy period of 
time. Salinity imposes not only ionic stress but also osmotic stress. The ionic stress is 
primarily caused by sodium toxicity to plants. Some plant species are also sensitive 
to chloride toxicity. In certain saline soils, the ion toxicity is further aggravated by 
alkaline pH. The osmotic stress caused by high salt stress is often referred to as 
“physiological drought.” 

 For halophytic plants that are tolerant of sodium toxicity, osmotic stress is the 
main cause of growth inhibition. However, most crop plants are glycophytes, and 
are sensitive to relatively low concentrations of salt (Munns  2002  ) . Therefore, ionic 
toxicity is a signifi cant and often predominant component of salt stress for crop 
plants. High salinity causes hyperosmotic stress and ion disequilibrium that produce 
secondary effects or pathologies. Fundamentally, plants cope by either avoiding or 
tolerating salt stress i.e. plants are either dormant during the salt episode or there 
must be cellular adjustment to tolerate the saline environment. Tolerance mecha-
nisms can be categorized as those that function to minimize osmotic stress or ion 
disequilibrium or alleviate the consequent secondary effects caused by these stresses 
(Yokoi et al.  2002  ) . 

 The chemical potential of the saline solution principally creates a water potential 
difference between the apoplast and symplast that leads to turgor reduction. Growth 
cessation follows when turgor is reduced below the yield threshold of the cell wall. 
Cellular dehydration begins when water potential difference is greater than the 
difference that can be compensated for by turgor loss. The cellular response to turgor 
reduction is osmotic adjustment. Since plant cell growth occurs chiefl y because of 
directional growth mediated by an escalation in vacuolar volume, compartmentaliza-
tion of Na +  and Cl −  enables osmotic adjustment which is vital for cellular development 
(Munns  2002 ). As of now there is no indication of adaptations in enzymes to the 
presence of salt, so mechanisms for salt tolerance at the cellular level involve keeping 
the salt out of the cytoplasm, and sequestering it in the vacuole. This happens in most 
species as evidenced by high concentrations found in leaves that are still func-
tioning normally; concentrations well over 200 mM, which are known to completely 
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repress enzyme activity in vitro. In general Na +  starts to hinder most enzymes at 
a concentration above 100 mM. The concentration at which Cl −  becomes toxic is 
not very well defi ned, but is possible that it is in the same range as that for Na + . 
Since Na +  and Cl −  are sequestered in the vacuole K +  and organic solutes should 
accumulate in the cytoplasm and organelles to balance the osmotic pressure of the 
ions in the vacuole. The organic solutes that accumulate most commonly under 
salinity are proline and glycinebetaine, although other molecules can accumu-
late to lesser degrees. Salt tolerant species have transport systems on the tonoplast 
that can sequester Na +  and Cl −  at high concentrations within the vacuoles, while 
maintaining much lower concentrations in the cytoplasmic compartments (Munns 
and Tester  2008  ) .  

    1.2.4   Water 

    1.2.4.1   Drought 

 Plant water defi cit develops as the demand surpasses the supply of water. This is 
determined by the quantity of water held in the soil to the depth of the root system. 
The demand for water is dependent on plant transpiration rate or crop evapotranspi-
ration, which includes both plant transpiration and soil evaporation. While some of 
this energy is important for photosynthesis, most of it is not utilized and it must be 
dissipated (Blum  2011  ) . It is partly dissipated by radiation emitted from the plant in 
the form of heat, but most of it must be dissipated by transpiration. Transpiration 
causes leaves to cool relative to ambient temperature when the environmental energy 
load on the plant is high (Centritto et al.  2011  ) . The rate of transpiration is also 
affected by vapour pressure defi cit (or relative humidity) and wind. Water defi cit has 
effect on fl owering and may manifest as advanced or delayed fl owering. Osmotic 
adjustment induces roots grow deeper under stress. Root distribution within the soil 
changes as stress develops, in a way that helps the plant to explore soil moisture 
from deeper layers. In cereals, dry top soil inhibits the formation and establishment 
of new roots in topsoil while assimilates partitioned to the root are used in furthering 
the growth of existing roots into deeper soil. In small grains and rice, tillering is 
associated with the development of new roots from tillers. Therefore, extensive 
tillering is generally associated with dense and shallow roots while limited tillering 
is associated with sparser and deeper roots. This is one of the reasons why most 
cereal crop cultivars developed in dry regions tend to have a limited tillering habit 
(Bray  1997  ) . It is not known which are the primary mediators of cellular responses 
to water defi cit and their order of importance, be it cellular water status, turgor, 
bound water, hormones (mainly ABA), cellular membrane functions or other agents. 
It is also not clear how cells perceive cellular water defi cit and how cellular water 
defi cit is transduced and transcribed into the various consequences of this stress 
(Bartels and Sunkar  2005 ).  
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    1.2.4.2   Flooding 

 Crop plants require a free exchange of atmospheric gases for photosynthesis and 
respiration. The most common impediment to gas diffusion is water that saturates 
the root environment in poorly drained soils or that accumulates above soil capacity 
as a result of the overfl ow of rivers, excessive rainfall or excessive irrigation. 
Long-term fl ooding shifts the microbial fl ora in the soil in favour of anaerobic 
micro-organisms that use alternative electron acceptors to oxygen (Sairam et al. 
 2008  ) . As a consequence, soil tends to accumulate more reduced and phytotoxic 
forms of mineral ions such as nitrite and ferrous ions. Few plants are adapted to 
grow in such soils. Short-term anaerobic stress to plants due to periodic fl ooding 
reduces oxygen levels around roots and infl uence root development directly, whereas 
changes in shoot development may follow as a result of metabolic alterations in the 
roots (Bramley et al.  2007  ) . When the soil is waterlogged, gas exchange between 
soil and atmosphere becomes negligible. Initially, the fl ood water contains oxygen, 
but this is depleted within hours, depending on temperature and respiration rates. 
Therefore, in nature, the plant experiences hypoxia prior to anoxia, and this gradual 
depletion has two major effects. The fi rst is a stimulation of ethylene synthesis in 
response to depression of internal oxygen concentration. Ethylene then initiates and 
regulates many adaptive responses that allow the plant to avoid anaerobiosis by 
increasing oxygen availability to the roots in a fl ooded or waterlogged soil. 
Furthermore, ethylene triggers other symptoms like epinasty, chlorosis and leaf 
senescence that enables the plant to cope with low amounts of gas exchange in the 
roots (Parlanti et al.  2011  ) . In fi elds with temporarily water-saturated soils or a high 
water table, roots grow only in a small region near the surface and do not exploit 
large soil volume as they would under aerated conditions. This makes them more 
susceptible to subsequent droughts and increases their fertiliser requirements. Long-
term fl ooding promotes senescence and leaf abscission as the consequence of 
numerous negative and positive signals that accumulate during fl ooding. The adaptive 
signifi cance of this response is to reduce the shoot: root ratio as a fi nal adjustment to 
an impaired root system.   

    1.2.5   Heavy Metals 

 Metal contamination issues are becoming increasingly common in cultivated areas. 
Metals are a natural part of terrestrial systems occurring in soil, rock, air, water and 
organisms. A few metals, including Cu, Mn and Zn, are however essential to plant 
metabolism in trace amounts. Heavy metals have become one of the main abiotic 
stress agents for living organisms mainly due to their increasing use in various 
anthropogenic activities which causes its high bioaccumulation and toxicity. The 
effect of their toxic infl uence on plants is basically inhibition of growth processes 
of the above and underground parts, in addition to decrease in the activity of the 
photosynthetic apparatus, which associated with early senescence. The presence 
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of metals in bioavailable forms at disproportionate levels develop the potential to 
become toxic to plants. Plant responses to metals are by and large dose dependent. 
For essential metals, these responses cover the phases from defi ciency – suffi ciency/
tolerance – toxicity. For non-essential metals, only the tolerance and toxicity phases 
occur. The concept of critical or threshold toxicity is frequently used to understand 
the point at which metals cause substantial growth decreases. Critical concentrations 
that can cause deleterious effects vary considerably across metals and plant species 
(Maksymiec  2007 ; Reichman  2002  ) . 

 Plants have developed a range of mechanisms to obtain metals from the soil solution 
and transport these metals within the plant. Understanding of mechanisms of heavy 
metal toxicity in plants and crops has been at suffi ciency and defi ciency levels of 
most metals. Uptake of metals into plant roots is a complex process involving transfer 
of metals from the soil solution to the root surface and inside the root cells. 
Understanding of uptake processes is hampered by the complex nature of the rhizo-
sphere which is in continual dynamic change interacted upon by plant roots, the soil 
solution composing it and microorganisms living within the rhizosphere. The sensi-
tivity of plants to heavy metals depends on an interrelated network of physiological 
and molecular mechanisms which mainly comprise of uptake and accumulation of 
metals through binding to extracellular exudates and cell wall constituents, effl ux of 
heavy metals from cytoplasm to extranuclear compartments including vacuoles, 
complexation of heavy metal ions inside the cell by various substances, for example, 
organic acids, amino acids, phytochelatins, and metallothioneins, accumulation of 
osmolytes and osmoprotectants and induction of antioxidative enzymes and activation 
or modifi cation of plant metabolism to allow adequate functioning of metabolic 
pathways and rapid repair of damaged cell structures (John et al.  2009 ; Cho et al. 
 2003  ) . Each metal has a different mode of action. However, in general, metal toxicity 
reduces photosynthesis, affect enzyme and protein production and utilisation, alter 
nutrient transport.   

    1.3   Improving Stress Tolerance – Conventional 
and Molecular Approaches 

 Although considerable progress was made during the twentieth century to improve 
crop yield and quality through conventional breeding progress in improving the 
tolerance of crops against abiotic stresses, is very modest. Nonetheless, the genetic 
variation of crops was exploited well at intra-specifi c, inter-specifi c and inter-generic 
levels so as to produce stress-tolerant lines cultivars (Ashraf and Akram  2009  ) . As a 
result some tolerant genotypes of different crops were developed through con-
ventional breeding and tested under natural fi eld conditions. Availability of genetic 
variation in most of the crop species is one of another problem encountered by 
conventional breeders. The conventional approach as a whole is time-consuming 
and labor-intensive; undesirable genes are often transferred in combination with 
desirable ones; and reproductive barriers limit transfer of favorable alleles from 
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inter-specifi c and inter-generic sources. Due to these reasons genetic engineering 
is being employed as a potential option worldwide for improving abiotic stress 
tolerance. For instance plant engineering strategies for abiotic stress tolerance have 
been focused largely on the expression of genes that are involved in osmolyte bio-
synthesis (glycine betaine, mannitol, proline, trehalose etc.); genes encoding enzymes 
for scavenging ROS (SOD, glutathione S- transferase, Glutathione reductase, 
glyoxylases etc.); genes encoding LEA proteins (LEA, HVA1, LE25, Dehydrin etc.); 
genes encoding heterologous enzymes with different temperature optima; genes for 
molecular chaperons (HSPs);genes encoding transcription factors (DREB 1A,CBF 
1, Alfi n 1); engineering of cell membranes; proteins involved in ion homeostasis 
(Trethowan et al.  2010 ; Valliyodan and Nguyen  2006  ) . Development of transgenic 
plants has certainly opened a new possibility to enhance abiotic stress tolerance in 
crop plants. However, to fi ne-tune transgenic technology into a successful and 
practical approach, it is important to address issues like using tissue and stage specifi c 
and stress inducible promoters to avoid unnecessary biological costs; to target 
multiple gene regulation rather than single genes; developing near natural fi eld stress 
evaluation schemes to critically assess the benefi ts of transgenics rather than at 
seedling stage and under controlled environments (Bhatnagar-Mathur et al.  2008  ) . 
Another molecular technology which gained considerable importance in developing 
abiotic stress tolerance is marker assisted selection (MAS) it improves the effi ciency 
of plant breeding through precise transfer of genomic region of interest (foreground 
selection) and accelerate recovery of the recurrent parent genome Considerable 
efforts were made in crops like maize and rice through MAS (Mehboob-ur-Rahman 
et al.  2011  ) . With the advent of molecular biology techniques it was presumed that 
developing stress-tolerant cultivars would be convenient and relatively less time 
consuming. However, the progress so far does not seem to be as rapid as it was 
envisaged. An effective integration of transgenic, QTL, MAS and genomic approaches 
into conventional breeding program seems to be the most essential requirement in 
developing stress tolerant genotypes (Fig.  1.2 ).  

    1.3.1   Systems Biology Strategy 

 Omics is a science and engineering for analyzing the interactions of biological 
information objects. These include genomics, proteomics, metabolomics, expres-
somics and interactomics. The main focus is on (1) mapping information objects 
such as genes and proteins, (2) fi nding interactive relationships among the objects 
and (3) engineering the networks and objects to understand and manipulate the 
regulatory mechanisms (Gu  2008  ) . Bioinformatics refers to the study of biological 
information using concepts and methods in computer science, statistics, and engi-
neering. It can be divided into two categories: biological information management 
and computational biology. The potential of omics and informatics as a tool in 
biotechnology for development of multiple stress tolerant plants and crops is 
enormous as evident from the hypothetical experimental strategy described below 
(Shanker et al.  2009  ) . 
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 A continuing shift to advanced analytical methods and integration of biological 
experimentation and bioinformatics with these methods will throw up immense 
meaningful data towards understanding the complete interactome in various crop 
stresses. An all inclusive omics study of stresses would involve transcript profi ling 
for gene expression, global DNA methylation detection, proteomic characterization 
by online coupling of electrophoretic techniques, chromatographic separation 
technique, targeted metabolite analysis and in the case of metal stress a high power 
sensitive and element-specifi c oxidation state detection system seamlessly integrated 
with algorithmic data analysis. The initial step in wholesome omics would be to 
start with the gene-driven approach – to ask the question as to what is the transcript 
profi le of plants under different biotic and abiotic stresses. The application of 
microarrays for gene expression profi ling has been demonstrated to be one of the 
most powerful and direct ways of using the sequence data for functional studies. 

  Fig. 1.2    Process network in development of stress tolerant cultivars       
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It represents an approach that is both comprehensive in its scope and high-throughput 
in its application and can be effectively applied for deciphering the transcriptome in 
case of stress affected crops and plants and in addition making it online with the 
other -omics and hyphenated analytical methods would be a worthy strategy. 

    1.3.1.1   Transcript Profi ling 

 Transcript profi ling can be done by taking the Whole Genome Array (WGA) as 
against cDNA arrays as it often misses very low abundance and non-polyadenylated 
transcripts and are often devoid of transcripts that are expressed in response to a 
specifi c physiological or environmental condition. WGA tiling arrays can also 
detect alternatively spliced forms which may not have been previously known or 
predicted. These arrays can be used for gene expression studies by hybridizing targets 
made from RNA samples of different tissues viz., fl ower, leaf, root, stem cultured 
cells, all exposed difference stresses singly or multiple simultaneous (Fig.  1.3 ). Total 
RNA is isolated from these samples and double stranded cDNA is synthesized, 
used as a template for transcription of complementary RNA (cRNA) which equally 
represents all expressed gene products in the total RNA, in addition to serving as 
amplifi cation of targets in adequate magnitude for hybridization to WGAs. After 
that hybridization signal detection and data processing is carried. The normalized 
signal intensities devoid of noise of each target from repetitive hybridizations is 
averaged and changes under treatmental condition is calculated as the ratio of the 
average intensity in treated samples to that in the appropriate control sample. 
Simultaneously WGA can also be used to map sites of DNA methylation (also 
known as the methylome) within the specifi c crop or plant genome used for the 
study, this technique has been perfected in  Arabidopsis thaliana  and the simplifi ed 
procedure is to use an antibody that recognizes methylated cytosine bases of 
genomic DNA of fl ower, leaf, root, stem and cultured cells all exposed to stresses, 
these regions are immunoprecipitated then these DNA fragments are super amplifi ed 
to get higher DNA yield and later they are cut down to small DNA fragments 
(to increase hybridization effi ciency) and hybridized with the WGA. A similar 
bioinformatics analysis of this microarray can be done to obtain expression patterns. 
Microarray data of these two processes should be superimposed to obtain a map 
which would include epigenetic aspects of the stress treatment. Alternatively, total 
DNA of the samples can be isolated and digested and a global DNA methylation 
pattern for quantifi cation of 5-methyl-20-deoxycytidine (5-mdC) is arrived at by 
isocratic cation exchange high-performance liquid chromatography and this can be 
compared with the processed WGA data. This would be an important aspect in 
the stress interactome study as stress intensity increases in sequence alterations, 
extensive methylation changes in CCGG-sequences, and genome-wide hyper-
methylation leading to epigenetic silencing or reactivation of gene expression has 
been reported due to biotic and abiotic stresses. The transcriptome analysis is likely to 
show functionally undefi ned hypothetical genes and genes with annotated functions 
as affected by the imposed treatments.   
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    1.3.1.2   Proteome Analysis 

 The next step would be high-throughput proteomic method, based on LA-ICP-MS 
to detect stress-proteins in protein bands of 1D gel electrophoresis (1D-GE) or 
protein spots separated after 2D gel electrophoresis (2D-GE) and matrix-assisted 
laser desorption/ionization with time-of-fl ight mass spectrometry (MALDI-TOFMS) 
analysis of tryptic 2D electrophoresis (2-DE) spot digest and peptide matching with 
crop/plant protein database. The transcriptome and the proteome data are superim-
posed to assess the parallelism between DNA transcription and protein expression 
(Fig.  1.4 ). The proportion of detectable proteins to that of the transcriptionally active 
genes will throw light on the physiological, biochemical and molecular mechanism 
of the stresses in plants in detail. In addition to protein profi ling, protein-DNA inter-
action is of importance especially in the case of heavy metals and some other biotic 
stresses because stress induced metabolites complexes are known bind to DNA, 
causing lesions that can alter interactions with proteins and disrupt normal cellular 
function. An array of various proteins created on a nitrocellulose membrane and 

  Fig. 1.3    Schematic representation of the transcriptome exemplifi ed for analysis of expression of 
the whole genome as infl uenced by biotic and abiotic stress treatments imposed singly or multiple 
simultaneous       
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screened by using a labelled stress-modifi ed DNA probes containing appropriate 
promoter region, this method has been used to discover DNA binding ability in 
proteins with other identifi ed functions. This method offers a high-throughput 
means for recognizing proteins that bind to a particular DNA recognition sequence, 
an achievement that is hard to accomplish using other methods.   

    1.3.1.3   Metabolomic Studies 

 The next step in the strategy is to construct a complete metabolic profi le. The com-
ponents of the metabolome can be seen as the fi nal products of gene expression and 
describe the biochemical phenotype of a cell or tissue in comparison with the 
molecular biological genotype. Quantitative and qualitative measurements of the 
entire cellular metabolites consequently provide a clear insight of the biochemical 
status of an organism, an extension of proteomic expression data in relation to path-
way dynamics that can be used to monitor and assess gene function. The procedure 
would involve LCQ-Duo ion trap mass spectrometer fi tted with an electrospray 
source, this hyphenated mass spectrometry method will offer good sensitivity and 
selectivity, but relatively longer analysis times (Fig.  1.4 ). The analysis of the metab-
olome would provide the most complete functional interaction of the stress in ques-
tion and the crop/plant. On the other hand, transcriptome and proteome profi le can 
effectively point to functionality, and consequently a judicious integrated approach 
can be adopted with available resources. The all-inclusive quantitative and qualita-
tive scrutiny of all the metabolites contained by a cell, tissue or organism is an 
extremely diffi cult goal and is still in its infancy in a given system, even though 
considerable steps forward are being made.  

    1.3.1.4   Bioinformatics 

 Reduction of the dimensionality of the data set and to envisage the data from a 
metallomics perspective by separating noise from signal is imperative to arrive at a 
wholesome picture. This would involve apart from the algorithmic methods at every 
end stage of each component of the –omics study, unsupervised methods such as 
principal component analysis (PCA), hierarchical clustering (HCA) and K-means 
clustering and machine learning methods like Markov models, feature extraction 
and selection and network structure deduction. Although most of the above tech-
niques would be beyond the scope of this chapter a small note on a batch-learning 
self-organizing map (BL-SOM) would be informative. BL-SOM is an alteration of 
the original SOM, which provides coloured attribute self-determining maps of data 
input. In short a matrix is constructed from the transcriptome and metabolome data-
set in which signal intensities are ordered in various columns (experimental series) 
and multiple rows (gene and metabolite IDs). BL-SOM analyzes this integrated 
matrix of both transcriptome and metabolome data after suitable normalization of 
the data and initial calculations, this will give us a visual picture of the correlations 
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between components. Genes and metabolites are classifi ed into clusters in a 
two-dimensional “feature map” based on their expression and accumulation 
patterns. A fairly good picture of the stress interactome can be arrived at by 
using the above strategy.    

    1.4   Future Outlook 

 Crop stresses pose a serious challenge to growth and productivity. The problem may 
get further compounded by the changing climate scenario. Understanding plant 
responses to major stresses will help us devise strategies to evolve multiple stress 
tolerant crop plants. To cope with biotic and abiotic stresses it is of paramount 
signifi cance to understand plant responses to these stresses that disturb the homeo-
static equilibrium at cellular and molecular level in order to identify a common 

  Fig. 1.4    Schematic representation of proteomic and metabolomic data acquisition and integration 
with transcriptomic data leading to stress interactome       
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mechanism for multiple stress tolerance at least in the case of abiotic stresses. 
A very crucial and highly productive role is envisaged here for biotechnology in 
identifying metabolic alterations and stress signaling pathways, metabolites and 
the genes controlling these tolerance responses to stresses and in engineering and 
breeding more effi cient and better adapted new crop cultivars. Future strategies should 
take into account several species combinations and the wealth of genetic diversity 
existing in the land races and wild relatives and should provide a way to harness the 
existing evolutionary adaptive diversity to develop multiple stress-tolerant crops. 
Yield stability should be the top priority in crop breeding programs and it should be 
kept in mind that increased stress tolerance would be benefi cial in terms of only 
yield stability and not mere survival. An integrated systems approach is essential in 
the study of complex quantitative traits governing tolerance to multiple biotic 
and abiotic stresses. Selection for yield and stress tolerance per se necessitates 
a “top-down” approach, starting from the dissection of the complex traits to compo-
nents. Marker-assisted selection (MAS) for stress related traits should preferably 
target ‘major’ QTLs characterized by a sizeable effect, consistent across germplasm 
and with a limited interaction with the environment. Analysis of both biotic and 
abiotic response must: (i) quantify on a fi eld scale the genetic variation for the grain 
yield response of major crops to stress; (ii) consider both inter-and intra specifi c 
variation and classify traits that allow screening of a much wider range of germplasm; 
(iii) use existing genetic variation and new tools from high throughput omics, quan-
titative genetics, molecular breeding and bioinformatics to elucidate the mechanisms 
of crop yield response to stresses Evolving crops traits tolerant to multiple abiotic 
stresses is still in its infancy. An integrated systems approach is essential in the study 
of complex quantitative traits which govern tolerance to multiple abiotic stresses 
from the current work much clearer picture of abiotic stress signal transduction 
pathways is likely to emerge and more examples of genetic improvement for 
multiple tolerances by fi ne-tuning plant sensing and signaling systems. The research 
essentially must use the latest omics resources combining novel technologies in 
quantitative genetics, genomics and bioinformatics to come up with an ecophysio-
logical understanding of the interactions between crop/plant genotypes and the 
changing environment. Most current research programmes lack this interdisciplinary 
approach. Such co-ordination of the various concepts and use of methods is 
particularly appropriate for the projects in Asian countries. The clustering of these 
projects should yield substantial added value (Gregory et al.  2008  ) . Multiple abiotic 
stress signaling has mainly continued to be a mystery until lately. Although the 
molecular characteristics of major signaling elements have been recognized we are 
yet a great distance from having a perfect picture. The primary struggle in solving 
the puzzle is not having all the pieces of it. Consequently, the test in the near future 
remains to recognize and categorize all the signaling elements. Signaling has been 
a major area of research in the quest for stress tolerance mechanisms. Any signaling 
component has to be established by functional obligation and functional suffi ciency. 
That is to say, plant phenotypes, be they molecular, biochemical, or physiological, 
are essential to establish precisely that a specifi c factor functions in stress signaling 
(Zhu  2002  ) . The host of genomics tools has provided a wealth of data for enhanced 
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understanding of the changes in cellular metabolism but fewer results have been useful 
with respect to the functioning of the whole plant. The conversion of many data 
points into understanding is still incomplete. Incorporation and sifting of data and 
validation by independent means in combination with cutting-edge bioinformatics 
tools will lessen this defi cit. An understanding of plants as a system of interacting 
functions will emerge, but a more immediate problem seems to be fi nding applica-
tions for all this knowledge (Bohnert et al.  2006  ) . 

 Probing for and recording quantitative traits has the advantage of a balanced 
method. Systems biology platform provides high value information on the molecular 
means of massive adaptive functional diversity in several characters involved in 
stress tolerance. Such strategies would deliver a way to harness the existing evolu-
tionary adaptive diversity to develop stress-protected crops in which growth and 
yield are less compromised by both biotic and abiotic stresses. The practical value 
of any genes or pathways for stress tolerance in crop plants can only be useful if 
there is evidence of superior performance in the fi eld especially in terms of yield. 
Eventually, the functional determination of all genes that contribute to biotic or 
abiotic stress adaptation is likely to provide an integrated understanding of the bio-
chemical and physiological basis of stress responses in plants. Armed with such 
evidence from conventional and cutting edge models, it will be possible to sensibly 
deploy and augment tolerance traits for improved crop productivity well into the 
future (Cushman and Bohnert  2000  ) . To achieve such a goal, an interdisciplinary 
and inter institutional approach would be needed with well-defi ned targets on crops 
and problems prioritized at the national and international level.      
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