Interference and the Wave Nature of Light

Interference:

Constructive Interference: two identical waves arrive at a point in phase and reinforce each other

Destructive Interference: two identical waves arrive at a point out of phase and cancel each other

 \Rightarrow two waves that are initially in phase can arrive at a point out of phase if they travel different distances

constructive interference: $\Delta L = L_2 - L_1 = m\lambda$ m = 0, 1, 2, ...

destructive interference: $\Delta L = L_2 - L_1 = (m + 1/2) \lambda$ m = 0, 1, 2, ...

Young's Double-Slit Experiment:

bright fringes: $\sin \theta = \frac{m\lambda}{d}$ m = 0, 1, 2, ... $dark fringes: \sin \theta = \frac{(m+1/2)\lambda}{d}$ m = 0, 1, 2, ...

 \Rightarrow use **y** = **L** tan θ to find the distance between the fringes

Thin Film Interference:

- ⇒ the wavelength that is important is the wavelength within the film: $\lambda_{film} = \frac{\lambda_{vacuum}}{n_{film}}$
- \Rightarrow there is a $\frac{1}{2}\lambda$ phase change when light reflects from a region with a higher index of refraction
- \Rightarrow if only one of the waves undergoes a $\frac{1}{2}\lambda$ phase change:

constructive interference: $2t = (m + 1/2)\lambda_{film}$ m = 0, 1, 2, ...

destructive interference: $2t = m\lambda_{film}$ m = 0, 1, 2, ...

 \Rightarrow if neither of the waves or if both waves undergo a $\frac{1}{2}\lambda$ phase change:

constructive interference: $2t = m\lambda_{film}$ m = 0, 1, 2, ...

destructive interference: $2t = (m+1/2)\lambda_{film}$ m = 0, 1, 2, ...

Diffraction:

dark fringes for single-slit diffraction: $\sin \theta = \frac{m\lambda}{W}$ m = 1, 2, 3...