
Topic 16: Composite Hypotheses

November, 2008

For a composite hypothesis, the parameter space Θ is divided into two disjoint regions, Θ0 and Θ1. The test is
written

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

with H0 is called the null hypothesis and H1 the alternative hypothesis.
Rejection and failure to reject the null hypothesis, critical regions, C, and type I and type II errors have the same

meaning for a composite hypotheses as it does with a simple hypothesis.

1 Power
Power is now a function

π(θ) = Pθ{X ∈ C}.

that gives the probability of rejecting the null hypothesis for a given value of the parameter. Consequently, the ideal
test function has

π(θ) ≈ 0 for all θ ∈ Θ0 and π(θ) ≈ 1 for all θ ∈ Θ1

and the test function yields the correct decision with probability nealry 1.
In reality, incorrect decisions are made. For θ ∈ Θ0,

π(θ) is the probability of making a type I error

and for θ ∈ Θ1,
1− π(θ) is the probability of making a type II error.

The goal is to make the chance for error small. The traditional method is the same as that employed in the Neyman-
Pearson lemma. Fix a level α, defined to be the largest value of π(θ) in the region Θ0 defined by the null hypothesis
and look for a critical region that makes the power function large for θ ∈ Θ1

Example 1. Let X1, X2, . . . , Xn be independent N(µ, σ2) random variables with σ2 known and µ unknown. For the
composite hypothesis for the one-sided test

H0 : µ ≤ µ0 versus H1 : µ > µ0.

We use the test statistic from the likelihood ratio test and reject H0 if X̄ is too large. The power function

π(µ) = Pµ{X̄ ≥ k(µ0)}.

To obtain level α, note that π(µ) increases with µ and so we want α = π(µ0). Then

Z =
X̄ − µ0

σ/
√
n

= zα.

where Φ(zα) = 1− α and Φ is the distribution function for the standard normal, thus k(µ0) = µ0 + (σ/
√
n)zα.
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Figure 1: Power function for the one-sided test above. Note that π(0) = 0.05 as shown by the red lines is the level of the test.

The power function for this test

π(µ) = Pµ{X̄ ≥
σ√
n
zα + µ0} = Pµ{X̄ − µ ≥

σ√
n
zα − (µ− µ0)}

= Pµ

{
X̄ − µ
σ/
√
n
≥ zα −

µ− µ0

σ/
√
n

}
= 1− Φ

(
zα −

µ− µ0

σ/
√
n

)
We plot the power function with µ0 = 0, σ = 1, and n = 25,

> zalpha=qnorm(.95)
> mu<-(-50:150)/100
> z=zalpha-5*mu
> pi=1-pnorm(z)
> plot(mu,pi,type="l")

For a two-sided test
H0 : µ = µ0 versus H1 : µ 6= µ0.

We reject H0 if |X̄ − µ0| is too large. Again, to obtain level α,

|Z| =
∣∣∣X̄ − µ0

σ/
√
n

∣∣∣ = zα/2.

The power function for the test

π(µ) = 1− Pµ
{
−zα/2 ≤

X̄ − µ0

σ/
√
n
≤ zα/2

}
= 1− Pµ

{
−zα/2 −

µ− µ0

σ/
√
n
≤ X̄ − µ
σ/
√
n
≤ zα/2 −

µ− µ0

σ/
√
n

}
= 1− Φ

(
zα/2 −

µ− µ0

σ/
√
n

)
+ Φ

(
−zα/2 −

µ− µ0

σ/
√
n

)
> zalpha = qnorm(.975)
> mu=(-200:200)/100
> pi = 1 - pnorm(zalpha-5*mu)+pnorm(-zalpha-5*mu)
> plot(mu,pi,type="l")
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Figure 2: Power function for the two-sided test above

2 The p-value
The report of reject the null hypothesis does not describe the strength of the evidence because it fails to give us the sense
of whether or not a small change in the values in the data could have resulted in a different decision. Consequently,
the common method is not to choose, in advance, a significance level α of the test and then report “reject” or “fail to
reject”, but rather to report the value of the test statistic and to give all the values for α that would lead to the rejection
of H0. The p-value is the probability of obtaining a result at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true.

If the p-value is below a given significance level α, then we say that the result is statistically significant at the
level α.

For example, if the test is based on having a test statistic S(X) exceed a level k, i.e., we have decision

reject if and only if S(X) ≥ k.

and if the value S(X) = k0 is observed, then the p-value equals

max{π(θ); θ ∈ Θ0} = max{Pθ{S(X) ≥ k0}; θ ∈ Θ0}.

In the one-sided test above, if X̄ = 1, then

Z =
X̄ − µ0

σ/
√
n

=
1− 0

1/
√

25
= 5.

> pvalue = 1 - pnorm(5)
> pvalue
[1] 2.866516e-07

In this case, the p-value is 2.87× 10−7.
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Example 2. For X1, X2, . . . , Xn independent U(0, θ) random variables, θ ∈ Θ ∈ [0,∞). Take

H0 : θL ≤ θ ≤ θR versus H1 : θ < θL or θ > θR.

We will try to base a test based on the statistic X(n) = max1≤i≤nXi and reject H0 if X(n) > θR and too much
smaller that θL, say θ̃. Then, the power function

π(θ) = Pθ{X(n) ≤ θ̃}+ Pθ{X(n) ≥ θR}

We compute the power function in three cases.
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Figure 3: Power function for the test above with θL = 1, θR = 3, θ̃ = 0.9, and n = 10. The power of the test is π(1) = 0.3487.

Case 1. θ ≤ θ̃.

Pθ{X(n) ≤ θ̃} = 1 and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = 1.

Case 2. θ̃ < θ ≤ θR.

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = (θ̃/θ)n.

Case 3. θ > θR.

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
and Pθ{X(n) ≥ θR} = 1−

(
θR
θ

)n
and therefore π(θ) = (θ̃/θ)n + 1− (θR/θ)n.
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The size of the test

α = max

{(
θ̃

θ

)n
; θL ≤ θ ≤ θR

}
=

(
θ̃

θL

)n
.

To achieve this level, choose θ̃ = θL n
√
α.

3 Confidence Intervals
We have seen three methods for estimation of a population parameter, unbiased estimation, method of moments,
and maximum moment estimation, are called point estimates. Often, we augment this point estimate with an interval
estimate called a confidence interval. This interval comes with a probability γ that the interval contains the population
parameter. This value is called the confidence level, generally stated as a percent. Thus, a “95% confidence interval”.
Consequently, for a given estimation procedure in a given situation, the higher the confidence level, the wider the
confidence interval will be.

The calculation of a confidence interval generally requires assumptions about the nature of the estimation process
it is primarily a parametric method for example, it may depend on an assumption that the distribution of the population
from which the sample came is normal or it may invoke the central limit theorem if the sample size is sufficiently large.

In practice, we choose a number γ between 0 and 1. From data X , we compute two statistics L(X) and R(X) so
that irrespective of the value of the parameter,

Pθ{L(X) < θ < R(X)} ≥ γ.

If ` = L(X) and r = R(X) are the observed values based on the data X , then the interval (`, r) is the confidence
interval for θ with confidence level γ.

For example, if θ̂ is a maximum likelihood estimator for θ based on a random sample X1, X2 · · · , Xn and n is
large, then θ̂ is approximately normally distributed and

Zn =
θ̂ − θ

1/
√
nI(θ)

is approximately a standard normal. We approximate I(θ) the Fisher information for one observation by the observed
information I(θ̂).

Write α = 1− γ and pick zα/2 to be the upper tail probability. Then, we can choose

` = θ̂ −
zα/2√
nI(θ̂)

and r = θ̂ +
zα/2√
nI(θ̂)

.

Often γ-level confidence interval are complementary to α = 1− γ level two-sided hypothesis tests. For example,
for the two sided test above, we reject fail to reject H0 if and only if

|Z| =
∣∣∣X̄ − µ0

σ/
√
n

∣∣∣ < zα/2.

we can rewrite this to have
X̄ − σ√

n
zα/2 < µ0 < X̄ +

σ√
n
zα/2.

Notice that no matter what value µ is the true state of nature, we have

Pµ{X̄ −
σ√
n
zα/2 < µ < X̄ +

σ√
n
zα/2} = 1− α.

Then given the observed value x̄ from the data, then we call the interval

x̄− σ√
n
zα/2 < µ < x̄+

σ√
n
zα/2
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a level γ confidence interval for the parameter µ. This interval is symmetric about µ and the distance

m =
σ√
n
zα/2

from the center is called the margin of error. Note that we fail to reject H0 at the significance level α if and only if
µ0 is in the γ = 1− α confidence interval.

An α level test for the hypothesis

H0 : θ = θ0 versus H1 : θ 6= θ0

generates a γ = 1− α confidence interval.
Given the data X , let ω(X) denote those parameter values for which the test fails to reject this hypothesis. Thus,

θ0 ∈ ω(X) if and only if fail to reject H0.

and
Pθ0{θ0 ∈ ω(X)} = Pθ0{fail to reject H0} = 1− Pθ0{reject H0} = 1− α = γ.

Now let L(X) and R(X) be the end points of the interval ω(X).

Example 3. For Bernoulli trials, several refinements have been made in the margin the nature of confidence intervals.
The latest is due to Agresti and Cluil in 1998.

Let x be the number of successes in n Bernoulli trials. Consider the two statistics

p̂ =
x

n
and p̂ =

x+ 2
n+ 4

.

The first is both the maximum likelihood and the unbiased estimator for p. The second is an adjustment that comes
from adding 4 additional trials that have 2 successes.

In this case, the endpoints of the γ level confidence interval are

p̂± z(1−γ)/2

√
p̃(1− p̃)
n+ 4

.
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