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Background. One of the epidemiologist's most basic tasks Is estimation of disease occurrence. To perform this task,
the epidemiologist frequently models variability in disease occurrence using one of three distributions—the binomial,
the Poisson or the exponential distribution. Although epidemiologists often use them and their properties appsar in
standard texts, we know of no text or review that compares and contrasts epidemiological application of these
distributions.

Methods. In this commentary, we discuss these three basic distributions. We note key assumptions as well as limita-
tions, and compare results from analyses based on each distribution.

Results and Conclusions. We lllustrate that the three distributions, although superficially different, often lead to similar
results. We argue that epidemiologists should often obtain similar results regardless of which distribution they use. We
also point out that application of all three distributions can be inappropriate if assumptions of independence or homo-
geneity of risks fail to hold. Finally, we briefly review how these basic distributions can be used to justify use of other dis-

tributions, such as the Gaussian distribution, for studying disease-exposure associations.

Assessment of disease occurrence is one of the epidemio-
logist’s most basic tasks. To perform this task, the epi-
demiologist typically uses either of two basic measures:
cumulative incidence, which reflects the average risk of
disease in a population over a specified time, or inci-
dence rate, which reflects the average rate of disease
occurrence per unit of person time. Each measure has
well-developed, accepted methods for estimation. '™

Although these basic measures allow the epidemiolo-
gist to describe disease occurrence in a population, dis-
ease occurrence is not fixed, but varies from place to
place, from time to time, and from group to group. This
variability reflects differences in biological phenomena,
genetic differences, environmental and social differ-
ences, differences in medical care, and random and
poorly understood phenomena. Sampling variability,
when one selects subjects from a larger universe, also
contributes.

In many applications, the epidemiologist will need to
account for this inherent variability, perhaps by calcu-
lating confidence intervals or p-values. In surveillance
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activities, for example, the epidemiologist may wish to
assess whether the observed increase in rates is likely
to indicate a real increase in morbidity or is consistent
with random variation. In aetiological studies, the epi-
demiologist may wish to assess if the difference in ob-
served rates between two subgroups is likely to reflect a
real difference or is compatible with chance.

This important step—accounting for variability in
disease occurrence—generally involves use of a statisti-
cal distribution to model the variability. Distributions
commonly used for this purpose include the binomial,
the Poisson and the exponential."3 Although applica-
tion of these distributions is described separately in
standard texts and papers, we are unaware of any text,
review or commentary in which epidemiological appli-
cation of these distributions is compared, contrasted
and integrated.

This review has four purposes. In the first section, we
review the binomial, Poisson and exponential distribu-
tions, highlighting key assumptions and indicating the
relationship of model parameters with basic measures
of epidemiology. In the second section, we discuss
limitations of these three models. In the third section,
we indicate the inter-relationships between these three
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basic statistical approaches. And finally, we discuss the
relationship of these models for disease occurrence to
some of the standard methods of assessing disease-
exposure associations.

Our review supports two general conclusions. First,
application of the three models will tend to yield the
same analytical conclusions, an expected result since
the underlying assumptions are similar. Second, the
epidemiologist may need to use other models when
checking to see whether misspecification of the model
has affected the conclusions, since the assumptions
that underlie these three models are alike. These results
should help epidemiologists understand the relation-
ships between different models, their limitations and
applications.

BASIC STATISTICAL DISTRIBUTIONS

In this section, we discuss the binomial, Poisson and ex-
ponential distributions, note key assumptions, indicate
the relationship of model parameters with basic measures
of epidemiology, and illustrate their application.

Binomial Distribution

Epidemiologists often use the binomial distribution to
model variability of disease frequency in follow-up
studies or cross-sectional studies. Specifically, they use
it to model the variability in the number of people, X,
observed to develop disease in a cohort of size N. In
symbols, the binomial distribution states that

wx:n:(yyﬂmeﬁ

where N is the number of people at risk, X is the num-
ber of ‘cases’, and p is the probability of disease for
each person.

We can justify the use of the binomial distribution by
assuming that: 1) disease occurs independently in dif-
ferent people; 2) disease occurs with probability p in
each person. This homogeneity of risks can also hold if
the disease probability for each person can be modelled
as arising randomly by independent selection from an
underlying distribution of risks. In this situation, each
person’s risk 1s:

n
p= ZI psP(p),

where p, denotes the i'h disease probability, and P(p,)
the probability of selecting this disease probability. On
the other hand, use of the binomial may not be justified
if the length of follow-up varies since risks may then be
heterogeneous—Ilonger follow-up should associate with

TaBLE | Data from follow-up swudv of Doll and Hill,’ summarized
using counts

Smokers Non-smokers Total
Deaths 1582° 166 1748
Non-disease 27116 5630 32 746
Total 28 698° 5796 34 494

* We apportioned the smoking status of 34 deaths among men under
age 35 (smoking status not reported) according to the proportion of
smokers among the 1714 deaths among older men (smoking status
reported).

®We calculated the number of smokers in the entire cohort from the
total number in the cohont, and the distribution of person-years
across smoking categories.

greater risk. Given these assumptions, disease occur-
rence in the population is consistent with a series of
independent, identically distributed Bernoulli trials im-
plying that the total number of cases follows a binomial
distribution with parameters N and p.

Interpretation of the binomial parameter as a measure
of disease frequency depends on the type of study. In a
follow-up study, the parameter p typically corresponds
to cumulative incidence over the period of observation.
For a cross-sectional study, the parameter p corresponds
to the disease prevalence in the study population.

The maximum likelihood estimate® of p is A/N with
associated estimate variance A(N-A)/N°, where A is
the number of cases and N is the size of the cohort. For
small cohorts, we can base exact confidence limits for
the cumulative incidence on the binomial distribution.

Example . Consider the follow-up study of smoking
among British physicians reported by Doll and Hill” in
which each subject, initially disease-free, was followed
for 4 years 5 months to detect subsequent occurrence of
disease. In Table 1, we summarize data separately for
the smoking and non-smoking cohorts. As just noted,
we can model variability of the number of deaths (cases)
in each cohort (smoking and non-smoking) by using bi-
nomial distributions, if independence and homogeneity
of risks are reasonable assumptions. Based on the bino-
mial distribution, the maximum likelihood estimate of
the cumulative incidence among the smokers is 0.0551
with associated standard deviation estimate of 0.00097.
Since the sample is large, the maximum likelihood
estimator of cumulative incidence has an approximate
Gaussian distribution, so that an approximate 95%
confidence interval is 0.0532 to 0.0570. Similarly,
the estimated cumulative incidence among the non-
smokers is 0.0286 with confidence interval from 0.0243
to 0.0329.
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Poisson Distribution

Epidemiologists frequently use the Poisson distribution
to analyse data from follow-up studies when the sum-
mary data involve counts of cases. Typical applications
include studies of cancer, cardiovascular disease, other
chronic diseases, and mortality. Data required for analy-
sis consist of the total number of cases and the person-
time of follow-up for each subgroup of interest. Use of
the Poisson distribution to model variability in counts
of cases is probably reasonable if we can assume that
the disease occurs independently in different people
and in the same person at different points in time,
that the likelihood that a new case will occur in a short
period is proportional to the number of people, and
that disease risks are homogeneous across people and
time. These assumptions have a more formal statement,
called Poisson postulates,®® which statisticians use to
justify formal application of the Poisson distribution. In
symbols, the Poisson distribution states that

P(X = x) = exp(—p) p'/x!,

where X is the total number of cases that occur dur-
ing the follow-up period and [ is a parameter to be
estimated.

With this formulation, the Poisson parameter p is
readily interpretable as the incidence rate multiplied by
the person-time. The maximum likelihood estimate
(MLE) of p is A, with associated variance estimate A,
and the MLE for the incidence rate (IR) is A/PT, where
A is the number of cases and PT is the person-time of
observation of the cohort during the follow-up period.
With this approach, we typically treat the person-time
as though it were a constant. For small cohorts, ‘exact’
confidence limits for i and p-values are readily calcula-
ble from tables of the Poisson distribution. For large co-
horts, approximate confidence limits and p-values can
be based on the Gaussian approximation to the Poisson
distribution.® The following example illustrates appli-
cation of the Poisson distribution to analyse count data
from a follow-up study.

Example 2. Consider again the follow-up study of
smoking reported by Doll and Hill.” As summarized in
Table 2, they reported 1582 deaths among smokers,
who they followed for 123 436 person-years (py), and
166 deaths among non-smokers, who they followed
for 25 250 py. Applying Poisson distributions to model
variability in the case counts in each cohort, the MLE
for the expected (mean) number of deaths among
smokers is 1582 with associated standard deviation
estimate of 39.8. Since the sample is large, we can treat
the estimate as Gaussian, so that the approximate 95%

TABLE 2 Data from follow-up studv of Doll and Hill,! summarized
using person-time

Smokers Non-smokers
Disease 1582 166
Person-years 123 436 25250

confidence interval 1s 1504 to 1660. Similarly, the MLE
of the mean number of deaths among non-smokers is
166 with confidence interval, 141 to 191. Dividing by
the appropriate number of person-years gives an esti-
mated incident rate among smokers of 0.0128 cases per
person-year (c/py), with 95% confidence interval from
0.0122 c¢/py to 0.0134 c¢/py, and an incidence rate
among non-smokers of 0.00657 c/py with 95% confi-
dence interval from 0.00557 c/py to 0.00757 c/py.

Exponential Distribution

Epidemiologists also use the exponential distribution
to model disease occurrence in follow-up studies.
Specifically, the exponential distribution models time
until disease occurrence, an approach which is particu-
larly useful for survival analyses when censoring has
occurred. Data required for analysis consist of the dura-
tion of follow-up and disease status for each subject.
Use of the exponential distribution to analyse data from
a follow-up study is probably reasonable if we can as-
sume that disease occurs independently (over different
people), and that disease risks for a given length of time
are homogeneous across people and across different
points 1n time. In symbols, the exponential distribution
states that

P(t < T <t + dt) = heexp(—Aet)dt,

where T is the time until disease occurs and X is a para-
meter to be estimated.

The exponential distribution’s parameter, X, is readi-
ly interpretable, given the homogeneity assumption, as
the incidence rate. The MLE of X is A/PT with associat-
ed variance estimate A/PT? large sample confidence
limits for A can be based on the Gaussian distribution,
as illustrated in the following example.

Example 3. Consider the follow-up study of smoking
and British physicians reported by Doll and Hill.” We
can summarize the duration of follow-up and disease
status which they report, as shown in Table 3. Using the
exponential distribution to model disease occurrence,
the MLE of the incidence rate among the exposed is
0.0128 c/py with associated standard deviation estimate
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TABLE 3 Data from follow-up study of Doll and Hill,” summanzed
using (average) individual follow-up time

Number of Average years Smoking Disease
subjects of follow-up status
each person®
27116 4.42 yes no
1582 232 yes yes
5630 4.42 no no
166 2.32 no yes

* Calculated from data presented by Doll and Hill by assuming that
the average follow-up of subjects who died was the same among
smokers and non-smokers The follow-up of other subjects was
4 years 5 months.

of 0.00032. Since the study is large, we can treat the es-
timate of the incidence rate as approximately Gaussian,
so that the approximate 95% confidence interval is
0.0122 to 0.0134. The corresponding estimate for the
unexposed is 0.00657 with 95% confidence interval
from 0.00557 c/py to 0.00757 c/py.

LIMITATIONS
Application of these distributions to model variability
is limited, in part, because of the need to assume inde-
pendence and homogeneity. For studies of communica-
ble disease, application may be inappropriate because
of lack of independence. For example, if one person in a
group develops the ‘flu’, others in that group have high-
er risk, reflecting dependency of disease occurrence. In
situations like these, the investigator may attempt to
modify the model to account for the dependency.’
Application of stochastic models for disease occur-
rence may also be limited by violations of the homo-
geneity assumption.! The homogeneity assumption
probably does not hold in many situations since, even
after accounting for recognized risk factors, unrecog-
nized risk factors presumably subject different people
to different risk. Under heterogeneity, we can still esti-
mate the cumulative incidence by the number of cases
over the cohort size (A/N) and estimate the incidence
rate by the number of cases over person-time (A/PT),
but must recognize that these estimates represent ‘aver-
age’ risks and incidence rates in the population.
Although the simple estimators may still apply for
estimation of average risks and incidence, usual vari-
ance estimates may be biased when risks are hetero-
geneous” (personal communication, S Greenland). To
exemplify this bias, consider the year-to-year variation
in estimated cumulative incidence of death in a particu-
lar county. We suppose the county population consists

of two subgroups, one with annual risk p, and size n,,
the other with annual risk p, and size n,. The average
annual cumulative incidence, ignoring subgroups is
p- = (n,p, + n,p,)/(n, + n,), and the associated year-to-
year variance is (n,p,(1-p,) + np,(1-p)Y/(n, + n,)%
assuming the composition of the county changes negli-
gibly from year to year. The simple variance estimate
based on the average risk, however, is p.(1-p.)/(n+n,),
an overestimate of the actual variance.

Biased estimation of the variance can also result
from correlation of outcomes between people (lack of
independence). To exemplify this bias, consider the
year-to-year variation in estimated risk of a communic-
able disease for which prior illness confers no immun-
ity. We suppose that precisely a proportion p, of the
population fall ill in non-epidemic years, and a propor-
tion p, in epidemic years. If an epidemic occurs in a
given year with probability r because one or more
index cases arise, then the average cumulative inci-
dence is p. = (1-r)p, + rp,., and the variance (year-to-
year) is (1—r)(p0)2 + r(pl)2 - (p.)*. Simple estimation of
the variance, based on the binomial distribution and p.,
is p.(1-p.)/n where n is the county size. The latter
estimate substantially underestimates variance for any
reasonable size county. In this example, the disease risk
each year is the same for each person (homogeneous
risks), but lack of independence invalidates the simple
binomial model. Thus, violations of the assumptions
can lead to either conservative or anti-conservative
conclusions.

INTER-RELATIONSHIPS BETWEEN MODELS

We have considered three statistical distributions that
epidemiologists often use to model variability in dis-
ease occurrence. In this section, we show that these dis-
tributions typically lead to the same analytic result, a
similarity which results in part because the underlying
assumptions are similar. In other words, these different
models are often consistent with one another, and the
epidemiologist may have a choice—any of two or three
models might appropriately form the basis of analysis if
the underlying assumptions are met. On the other hand,
if risks are not homogeneous or disease does not occur
independently, then the epidemiologist will probably
not be able to use any of the three distributions consid-
ered here since, without specific modifications, each
depends on independence and homogeneity.

First, consider the Poisson and exponential distribu-
tions. The MLE of the incidence rate and associated
variance estimates which result from application of the
exponential distribution are the same as those which re-
sult from use of the Poisson distribution, illustrating the
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agreement of analytic results for these two distribu-
tions. Moreover, if the number of deaths in a given pop-
ulation has a Poisson distribution, the time until the
first death and the time between deaths is known to fol-
low an exponential distribution, further illustrating the
close relationship between these two distributions.5!2

The binomial distribution is closely related to these
two distributions, a correspondence which is particular-
ly easy to see for rare disease. As noted above, the bi-
nomial distribution leads to p = A/N as the estimated
cumulative incidence. We can convert this to an esti-
mate of the incidence rate, assuming the rate to be con-
stant, by using the usual'® relationship between risk
and rates: IR = —In(1-Risk)/t = Risk*t, where the ap-
proximation holds for rare disease and where t is the
length of follow-up. Substituting the cumulative inci-
dence estimate, A/N, into this expression and combin-
ing results gives: IR = A/N*t = A/PT (Table 4). The
associated variance estimate is A/PT?, again assuming
rare disease. Thus, the estimated incidence rate and the
corresponding variance associated with the binomial
distribution under these conditions are approximately
the same as those derived from the Poisson and expon-
ential distributions. The following example further il-
lustrates that the different distributions often lead to the
same analytic result.

Example 4. Consider again the follow-up study consid-
ered in Example | (Table 1). As noted previously, the
MLE of the cumulative incidence accrued over 4.42
years in smokers is 0.0551 and that in non-smokers is
0.0286. If we assume a constant incidence rate and treat
the deaths as rare (this is borderline), we can use the ap-
proximations in Table 4 to obtain the related incidence
rate estimates. Thus, based on the binomial distribution,
the estimated incidence rate among smokers is —In(1-
0.0551)/4.42 = 0.0128 c/py. We can estimate a lower
95% confidence limit for the incidence rate by us-
ing this same risk-to-incidence rate-transformation on
the lower limit for the cumulative incidence: —In(i—
0.0532)/4.42 = 0.0124 c/py. The associated upper limit
for the incidence rate is —In(1-0.0227)/2 = 0.0133 c/py.
Among non-smokers, the corresponding incidence rate
estimate is 0.00657 c/py, with 95% confidence interval
from 0.00557 c/py to 0.00757 c/py.

Comparing these results with those from Examples 2
and 3 shows that estimates based on the binomial, the
Poisson and the exponential distribution all agree close-
ly. This example illustrates that the epidemiologist
should often obtain similar and consistent results,
regardless of which of these three basic distribution
he or she chooses to model variability in disease
occurrence.

TABLE 4 Summary of incidence rate estimators, basic distributions

Distribution Maximum likelihood Variance estimator
estimator for incidence rate

Exponential A/PT A/PT?

Poisson APT APT?

Binomial -In(1-A/N)/t = A/PT* A/PT?

* Approximately, assuming rare disease

In illustrating the relationships of the binomial to the
exponential and Poisson distributions, we used a rare
disease assumption. However, we do not require this as-
sumption and now show that the close relationships be-
tween these distributions hold even for outcomes that
are not rare.

Specifically, we suppose that the time until disease
occurrence follows an exponential distribution. As
noted previously (Table 4), the exponential and the
Poisson distribution yield A/PT as the maximum likeli-
hood estimator for the incidence rate. For large samples,
maximum likelihood theory implies that these esti-
mators will converge to the true value A. On the other
hand, the binomial distribution leads to IR; = —In
(1-A/N)/t as the (binomial) estimator for IR. With these
assumptions, the expected value for A is Np = N(1—-exp
(=At)) so that for large samples, IR, like estimators
based on the Poisson and exponential distributions,
will converge to A. Thus, we expect close agreement for
large samples between results based on these three dis-
tributions. Importantly, this argument, as pointed out by
a reviewer, does not depend on rare disease.

For small samples, the observed values and A and PT
may differ from their expected values. If so, methods of
analysis based on one of these three distributions may
yield results that differ from those based on either of the
other distributions.

RELATIONSHIP TO OTHER DISTRIBUTIONS

In this section we discuss how the three basic distribu-
tions discussed here relate to other distributions, such
as the Gaussian and hypergeometric, which are often
used to study disease-exposure associations.

We often use two binomial distributions to assess the
association between disease and a dichotomous expo-
sure when data can be summarized in 2 x 2 tables, as il-
lustrated in Table 1. A limitation of this approach,
however, is that two parameters are involved, p, and p,,
whereas interest may centre primarily on one—the odds
ratio—which summarizes the strength of disease-expo-
sure association. For a cohort study, this odds ratio is the
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cumulative incidence odds among the exposed divided
by that among the unexposed (p,/(1-p,)) + (p,/(1-p,)).
To focus on this measure, statisticians sometimes treat
the marginal totals of the summary 2 x 2 table as
fixed."? This statistical device, sometimes called a con-
ditional analysis, eliminates the ‘nuisance parameters’
and leads us to use of the (non-central) hypergeometric
distribution which involves only the parameter of inter-
est, the odds ratio. The conditional argument which
leads to use of the hypergeometric distribution, howev-
er, is based on the underlying assumption that the num-
ber of exposed cases and the number of unexposed
cases each have a binomial distribution. The hypergeo-
metric distribution also arises naturally from certain
structural models.'3

For large studies in which the outcome is not too
rare, the epidemiologist can base hypothesis tests and
confidence intervals on the Gaussian distribution’-?
since the hypergeometric distribution is approximately
Gaussian for large samples. Since the square of a
Gaussian test statistic is a x? statistic, a slight extension
of the argument justifies use of x? tests. Thus the bino-
mial distribution actually underlies, and can be used to
justify, use of the hypergeometric, Gaussian, and x>
distributions for analyses of disease-exposure associa-
tions in follow-up studies that, like Example 1, involve
counts of cases and non-cases.

Similar conditional arguments show that the Poisson
distribution actually underlies some applications of the bi-
nomial distribution as a method for analysing disease-ex-
posure associations in follow-up studies if summary data
involve counts and person-time, like those summarized in
Table 2. In particular, the probability that A cases occur in
the exposed, given that A+B cases have occurred altogeth-
er, is treated under the null hypothesis of no disease-expo-
sure association as binomial, with parameter N = A+B and
p = PT /(PT, + PT,). The binomial distribution can be de-
rived by assuming that the number of cases in the exposed
is Poisson, that the number in the unexposed is Poisson,
and then conditioning on the total number of cases. Under
the null hypothesis, the ratio of exposed to total cases
should occur in proportion to the corresponding ratio of
person-time.

In summary, the basic models for disease variability
considered here, such as the binomial and Poisson distribu-
tions, are consistent with and, in fact, can be used to justify
use of the hypergeometric, Gaussian and other distributions
for studying disease-exposure associations.'2

Example 5. We illustrate use of conditional analyses
to estimate the odds ratio using count data as summa-
rized in Table 1. Assuming that deaths among smokers
as well as those among non-smokers follow binomial

distributions, the conditioning arguments cited above
lead to use of the hypergeometric distribution to
estimate the odds ratio. The estimated odds ratio
comparing smokers to non-smokers is 1.98 with 95%
confidence limits from 1.68 to 2.33. Since the odds
ratio approximates the risk ratio for rare disease, this
odds ratio is nearly the same as the estimated risk
among smokers divided by that among non-smokers:
0.0551 +0.0286 = 1.93.

Alternatively, if we use person-time data (Table 2)
and assume Poisson distributions for the numbers of
deaths of smokers and non-smokers, conditional argu-
ments lead to use of the binomial distribution for esti-
mating the incidence rate ratio.! The estimated rate
ratio is 1.95 with 95% confidence limits from 1.66 to
2.29. These results, based on person-time data and un-
derlying Poisson distributions, show reasonably close
agreement with those based on count data and underly-
ing binomial distributions, i.e. 1.98 versus 1.95 and
(1.68 to 2.33) versus (1.66 to 2.29).

DISCUSSION

We have reviewed three statistical distributions which
epidemiologists commonly use to model variability in
disease frequency. Importantly, the three models often
lead to similar analytic results and have similar limita-
tions, reflecting the similar underlying assumptions. The
similarities become apparent by accounting for the rel-
ationship between parameters of the respective distribu-
tions. Moreover, these basic models underlie many
applications of the Gaussian, hypergeometric and other
distributions used to study disease-exposure associa-
tions. In summary, then, many of the statistical distribu-
tions and approaches used to model disease are closely
related, and can often be expected to yield similar
results.

In actual applications, the different models lead to
different numerical results. As noted previously, differ-
ent results could arise by chance in small samples, but
would tend to be minor for large samples. Differences
may also reflect violation of one or more of the under-
lying assumptions. Moreover, if lack of independence
or homogeneity is of concern, then none of these three
basic distributions may be appropriate. Careful evalua-
tion and consideration of assumptions could indicate
which modifications or alternative models might ad-
dress the problems and yield a valid result.

We have argued that the binomial, Poisson and expo-
nential distributions have common attributes that often
lead to similar results when used to model variability in
disease occurrence in one Or two exposure groups.
Many similarities carry over even when the models are
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expanded to incorporate covariates that reflect potential
confounding or effect modification. In particular, even
though the three distributions are not mathematically
equivalent, they do belong to a family of distributions
called the ‘exponential family’. Statisticians have de-
veloped a generalized theory of regression modelling
which is based on this exponential family in which
these three basic distributions arise as special cases. We
can use this approach, called generalized linear models,
to study disease occurrence by specifying an appro-
priate member of the exponential family, such as the
binomial distribution, to model variability."* Related
methods of analysis based on quasi-likelihood approach-
es or generalized estimating equations,'*'? those based
on models for infectious diseases or dependent events,”!316
and those based on random effects models'’'® may
allow the analyst to proceed if the homogeneity or
independence assumptions fail to hold.
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