

College of Engineering & Technology University of Sargodha

Department of Electrical Engineering Technology

Telecommunication Technology (ET-314)

1. Introduction. Communication Systems

Engr. Erum Rehman

Lecture#1
Dated: 16-10-2020/Friday

Table of Contents

1.	Information, Messages, Signals	.3
	Elements of a Communication System	
3.	Fundamental Limitations in Communications	.7
	3.1. Limitations Due to Technological Problems	.7
	3.2. Fundamental Physical Limitations	.8
4.	Modulation	•

1. Information, Messages, Signals

Information: general intuitive term.

Message: a physical manifestation of the information as produced by the source.

Various **sources of messages** (people, machines, measuring instruments, etc.).

Analog message: a physical time-variable quantity usually in smooth and continuous form.

Digital message: ordered sequence of symbols selected from finite set of elements.

Signal: physical embodiment of the information.

Signal ≈ Message

Electrical signal: voltage or current representing the message

2. Elements of a Communication System

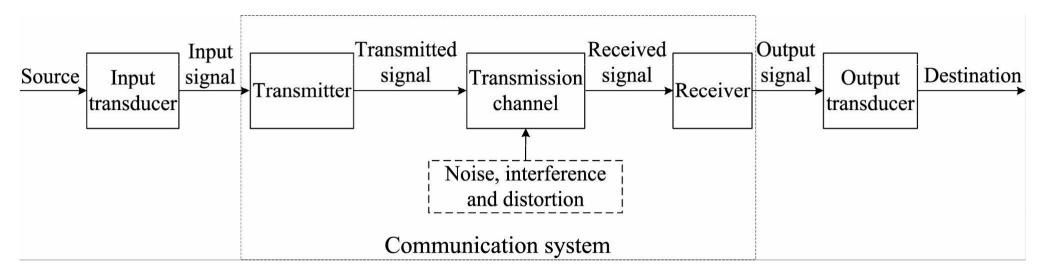


Figure 1. Block-diagram of a communication system with input and output transducers.

Input transducer converts the message to an electrical signal.

The **transmitter** converts the input signal to transmitted signal suited for the transmission channel.

Transmission cannel is the electric medium that bridges the distance from source to destination.

The **receiver** converts the received signal in a form appropriate for the output transducer.

Output transducer converts the output electrical signal the desired message form.

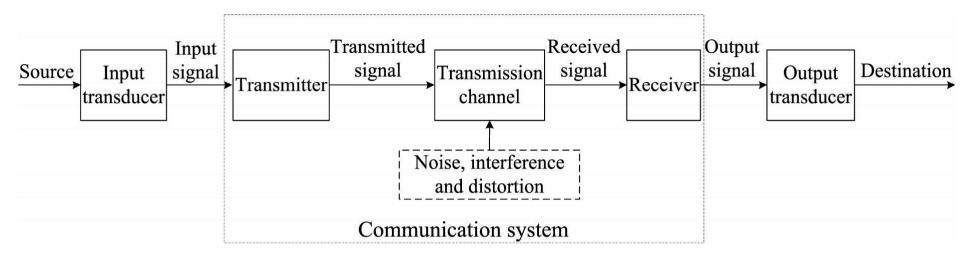


Figure 1 (repeated). Block-diagram of a communication system with input and output transducers.

Basic operations in the transmitter

- Modulation
- Coding

Basic operations in the receiver

- Amplification
- Filtering
- Demodulation
- Decoding

Effects of the channel on the transmitted signal

- Attenuation: decreasing the signal strength;
- Distortion of the signal waveform: caused by channel characteristics (linearity, frequency response, etc.)
- *Noise:* contamination of random natural signals added to the transmitted signal
- *Interference:* contaminations of extraneous signal of human sources machinery, power lines, digital switching circuits, etc.

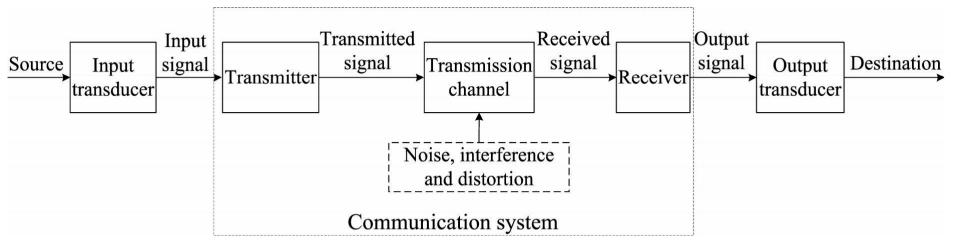


Figure 1 (repeated). Block-diagram of a communication system with input and output transducers.

One-way or simplex (SX) transmission. Transmission in one direction only. Example - Figure 1.

Full-duplex (**FDX**) system – a system, which channel allows transmission in both directions.

Full-duplex (**HDX**) system - a system, which channel allows transmission in both directions but not simultaneously.

3. Fundamental Limitations in Communications

3.1. Limitations Due to Technological Problems

- Hardware availability
- Economic factors
- International and national regulating norms

3.2. Fundamental Physical Limitations

3.2.1. Transmission Bandwidth B.

- Limits the spectrum of the transmitted signal, i.e. the maximum speed of variation of the transmitted signal.
- The time required for transmission of a given amount of information is inversely proportional to the transmission bandwidth *B*.

3.2.2. *Noise*

- Noise is generated in all conductors and in electronic devices as well.
- Thermal noise due to random motion of the charged particles like electrons.
- Noises generated in electronic devices: shot, flicker, popcorn, avalanche.

- The noise degrades the fidelity in analog communication systems and produces errors in digital communications.
- Noise generation limits the weakest transmitted signal. Significant in long-distance communications when the signal attenuation is large.
- Signal-to-noise ratio S/N

$$S/N =$$
power of the signal power of the noise

3.2.3. Hartley-Shannon low

The rate of information transmission cannot exceed the **channel capacity C**

$$C = B \log(1 + S/N)$$

4. Modulation

4.1. Modulation Methods

- **Modulating signal** represents the message.
- Carrier wave suits the application.
- Usually the modulation signal is much slower than the carrier wave.
- **Modulation** altering one or more of the parameters (amplitude, frequency, phase, pulse width) of the carrier in correspondence with the modulating signal.
- **Demodulation** extraction of modulating signal from modulated signal; reverse operation to modulation.
- Continuous wave modulation when the carrier is sinusoidal.
- **Pulse modulation** the carrier is pulse train.

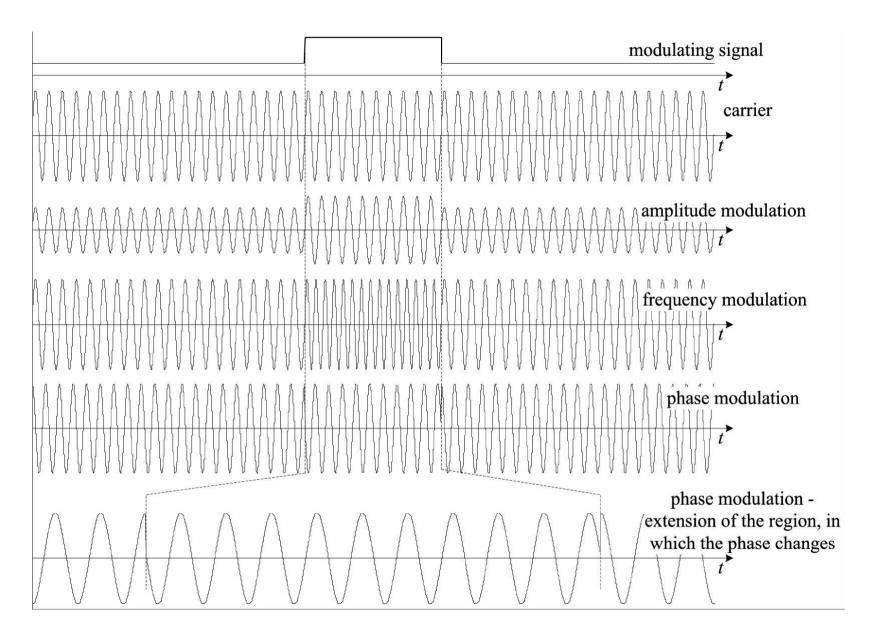


Figure 2. Examples of the basic continuous modulations.

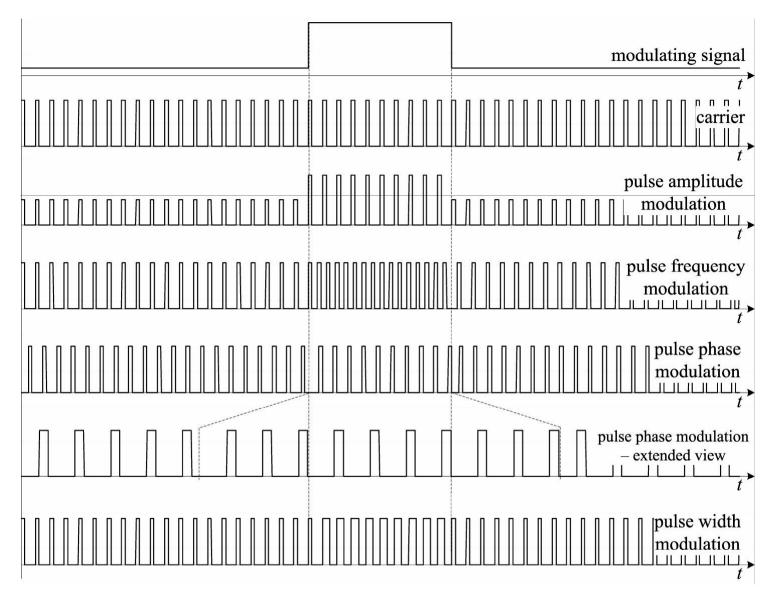


Figure 3. Examples of the basic pulse modulations.

4.2. Modulation Benefits and Applications

- Modulation for efficient transmission;
- Modulation to overcome hardware limitation;
- Modulation to overcome noise and interference;
- Modulation for frequency assignment
- Modulation for multiplexing: frequency division; time division, multiple access
- Coding methods and benefits

4.3. Analog and Digital Communications

- Analog communication systems: the informative signal is transmitted in continuous form.
- **Digital communication system:** the informative signal is represented as a sequence of limited set of symbols (digits) and these symbols are transmitted via the channel by applying of and appropriate modulation. The input signal must be **sampled** if it enters in analog form.
- Basic advantages of the digital communication systems:
 3/4 better resistivity against the noise;
 3/4 allows the use of effective coding methods;
 3/4 more flexible signal handling suggested by digital signal processing methods
- However the front end of radiofrequency (RF) communication systems are always analog since signals are existing only in analog form.

References:

1. [1] A. Bruce Carlson, P. B. Crilly, J. C. Rutledge, Communication Systems, 4th ed., McGraw-Hill, 2002, ISBN 0-07-011127-8.