
1

Introduction to Data Structures & Algorithms

2

Session Objectives

 To understand the concepts of

– Data structures

– Types of Data Structures

– Applications

– Algorithms

– ADTs

3

Session Topics

 Algorithms

 ADTs

 Properties of an Algorithm

 Data structures

 Types of Data structures

 Problem Solving Phase

 Stacks and Queues

4

Good Computer Program

 A computer program is a series of instructions to carry out

a particular task written in a language that a computer can

understand.

 The process of preparing and feeding the instructions into

the computer for execution is referred as programming.

 There are a number of features for a good program

Run efficiently and correctly

Have a user friendly interface

Be easy to read and understand

Be easy to debug

Be easy to modify

Be easy to maintain

5

Good Computer Program

 Programs consists of two things: Algorithms and data

structures

 A Good Program is a combination of both algorithm and a

data structure

 An algorithm is a step by step recipe for solving an

instance of a problem

 A data structure represents the logical relationship that

exists between individual elements of data to carry out

certain tasks

 A data structure defines a way of organizing all data items

that consider not only the elements stored but also stores

the relationship between the elements

6

Algorithms

 An algorithm is a step by step recipe for solving an
instance of a problem.

 Every single procedure that a computer performs is an
algorithm.

 An algorithm is a precise procedure for solving a problem
in finite number of steps.

 An algorithm states the actions to be executed and the
order in which these actions are to be executed.

 An algorithm is a well ordered collection of clear and
simple instructions of definite and effectively computable
operations that when executed produces a result and stops
executing at some point in a finite amount of time rather
than just going on and on infinitely.

7

Algorithm Properties

An algorithm possesses the following properties:

– It must be correct.

– It must be composed of a series of concrete steps.

– There can be no ambiguity as to which step will be
performed next.

– It must be composed of a finite number of steps.

– It must terminate.

– It takes zero or more inputs

– It should be efficient and flexible

– It should use less memory space as much as possible

– It results in one or more outputs

8

Various steps in developing Algorithms

 Devising the Algorithm:

It’s a method for solving a problem. Each step of an

algorithm must be precisely defined and no vague

statements should be used. Pseudo code is used to describe

the algorithm , in less formal language than a programming

language.

 Validating the Algorithm:

The proof of correctness of the algorithm. A human

must be able to perform each step using paper and pencil

by giving the required input , use the algorithm and get the

required output in a finite amount of time.

9

Various steps in developing Algorithms

 Expressing the algorithm:

To implement the algorithm in a programming language.

The algorithm used should terminate after a finite number

of steps.

10

Efficiency of an algorithm

 Writing efficient programs is what every programmer

hopes to be able to do. But what kinds of programs are

efficient? The question leads to the concept of

generalization of programs.

 Algorithms are programs in a general form. An algorithm

is an idea upon which a program is built. An algorithm

should meet three things:

It should be independent of the programming language in which

the idea is realized

Every programmer having enough knowledge and experience

should understand it

It should be applicable to inputs of all sizes

11

Efficiency of an algorithm

 Efficiency of an algorithm denotes the rate at which an
algorithm solves a problem of size n.

 It is measured by the amount of resources it uses, the time
and the space.

 The time refers to the number of steps the algorithm
executes while the space refers to the number of unit
memory storage it requires.

 An algorithm’s complexity is measured by calculating the
time taken and space required for performing the
algorithm.

 The input size, denoted by n, is one parameter , used to
characterize the instance of the problem.

 The input size n is the number of registers needed to hold
the input (data segment size).

12

Time Complexity of an Algorithm

 Time Complexity of an algorithm is the amount of time(or

the number of steps) needed by a program to complete its

task (to execute a particular algorithm)

 The way in which the number of steps required by an

algorithm varies with the size of the problem it is solving.

The time taken for an algorithm is comprised of two times

Compilation Time

Run Time

 Compilation time is the time taken to compile an

algorithm. While compiling it checks for the syntax and

semantic errors in the program and links it with the

standard libraries , your program has asked to.

13

Time Complexity of an Algorithm

 Run Time: It is the time to execute the compiled program.

The run time of an algorithm depend upon the number of

instructions present in the algorithm. Usually we consider,

one unit for executing one instruction.

 The run time is in the control of the programmer , as the

compiler is going to compile only the same number of

statements , irrespective of the types of the compiler used.

 Note that run time is calculated only for executable

statements and not for declaration statements

 Time complexity is normally expressed as an order of

magnitude, eg O(n2) means that if the size of the problem n

doubles then the algorithm will take four times as many

steps to complete.

14

Time Complexity of an Algorithm

 Time complexity of a given algorithm can be defined for

computation of function f() as a total number of statements

that are executed for computing the value of f(n).

 Time complexity is a function dependent from the value of

n. In practice it is often more convenient to consider it as a

function from |n|

 Time complexity of an algorithm is generally classified as

three types.

(i) Worst case

(ii) Average Case

(iii) Best Case

15

Time Complexity

 Worst Case: It is the longest time that an algorithm will

use over all instances of size n for a given problem to

produce a desired result.

 Average Case: It is the average time(or average space)

that the algorithm will use over all instances of size n for a

given problem to produce a desired result. It depends on

the probability distribution of instances of the problem.

 Best Case: It is the shortest time (or least space) that the

algorithm will use over all instances of size n for a given

problem to produce a desired result.

16

Space Complexity

 Space Complexity of a program is the amount of memory

consumed by the algorithm (apart from input and output,

if required by specification) until it completes its

execution.

 The way in which the amount of storage space required by

an algorithm varies with the size of the problem to be

solved.

 The space occupied by the program is generally by the

following:

A fixed amount of memory occupied by the space for the program

code and space occupied by the variables used in the program.

A variable amount of memory occupied by the component variable

whose size is dependent on the problem being solved. This space

increases or decreases depending upon whether the program uses

iterative or recursive procedures.

17

Space Complexity

 The memory taken by the instructions is not in the control

of the programmer as its totally dependent upon the

compiler to assign this memory.

 But the memory space taken by the variables is in the

control of a programmer. More the number of variables

used, more will be the space taken by them in the memory.

 Space complexity is normally expressed as an order of

magnitude, eg O(n2)means that if the size of the problem n

doubles then four times as much working storage will be

needed.

 There are three different spaces considered for determining

the amount of memory used by the algorithm.

18

Space Complexity

 Instruction Space is the space in memory occupied by the
compiled version of the program. We consider this space
as a constant space for any value of n. We normally ignore
this value , but remember that is there. The instruction
space is independent of the size of the problem

 Data Space is the space in memory , which used to hold
the variables , data structures, allocated memory and other
data elements. The data space is related to the size of the
problem.

 Environment Space is the space in memory used on the run
time stack for each function call. This is related to the run
time stack and holds the returning address of the previous
function. The memory each function utilises on the stack is
a constant as each item on the stack has a return value and
pointer on it.

19

Iterative Factorial Example

fact (long n)

{

for (i=1; i<=n; i++)

x=i*x;

return x;

}

 Space occupied is

 Data Space: i, n and x

 Environment Space: Almost nothing because the
function is called only once.

 The algorithm has a complexity of O(1) because it does
not depend on n. No matter how big the problem
becomes ,the space complexity remains the same since
the same variables are used , and the function is called
only once.

20

Recursive Factorial Example

long fact (long x)

{

if (x<=1)

return(1);

else

return (x * fact(x-1));

}

 Space occupied is

 Data space : x

 Environment Space: fact() is called recursively , and so the

amount of space this program used is based on the size of

the problem

21

Recursive Factorial Example

 The space complexity is

O(n)= (x + function call) * n

= x + function call + memory needed for fact(x-1)

x+function call + x+ function call + ……+

x+ function call n(n-1)+…….+1

 Note that in measuring space complexity, memory space is

always allocated for variables whether they are used in the

program or not.

 Space Complexity is not as big of an issue as time

complexity because space can be reused, whereas time

cannot.

22

Problem Solving Phase

 A problem/Project needs programs to create ,append,

update the database, print data, permit online enquiry and

so on.

 A Programmer should identify all requirements to solve

the problem. Each problem should have the following

specifications

Type of Programming language

Narration of the program describing the tasks to be performed

Frequency of Processing (hourly, daily, weekly etc)

Output and input of the program

Limitations and restrictions for the program

Detailed Specifications

23

Method 1: Algorithm Analysis

Code each algorithm and run them to see how long they take.

Problem: How will you know if there is a better program or

whether there is no better program?

What will happen when the number of inputs is twice as

many? Three? A hundred?

24

Method 2: Algorithm Analysis

Develop a model of the way computers work and compare

how the algorithms behave in the model.

Goal: To be able to predict performance at a coarse level.

That is, to be able to distinguish between good and bad

algorithms.

Another benefit: when assumptions change, we can predict

the effects of those changes.

25

Why algorithm analysis?

As computers get faster and problem sizes get bigger,

analysis will become more important.

Why? The difference between good and bad algorithms will

get bigger.

26

How to Measure Algorithm Performance

 What metric should be used to judge algorithms?

– Length of the program (lines of code)

– Ease of programming (bugs, maintenance)

– Memory required

Running time

 Running time is the dominant standard.

– Quantifiable and easy to compare

– Often the critical bottleneck

27

The Need for Data Structures

Data structures organize data

 more efficient programs.

More powerful computers more complex applications.

More complex applications demand more calculations.

Complex computing tasks are unlike our everyday experience.

 More typically, a data structure is meant to be an organization for a

collection of data items.

 Any organization for a collection of records can be searched, processed

in any order, or modified.

 The choice of data structure and algorithm can make the difference

between a program running in a few seconds or many days. A data

structure requires a certain amount of:

 space for each data item it stores

 time to perform a single basic operation

 programming effort.

28

Selecting a Data Structure

Select a data structure as follows:

1. Analyze the problem to determine the resource constraints a

solution must meet.

2. Determine the basic operations that must be supported.

Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

29

Data Structures

DS includes

• Logical or mathematical description of the structure

and Implementation of the structure on a computer

• Quantitative analysis of the structure, which includes

determining the amount of memory needed to store

the structure and the time required to process the

structure.

30

Classification of Data Structures

“Data Structures ”deals with the study of how the data is

organized in the memory, how efficiently the data can be

retrieved and manipulated, and the possible ways in which

different data items are logically related.

Types:

Primitive Data Structure: Ex. int,float,char

Non-primitive Data Structures:

Ex.Arrays,Structures,stacks

Linear Data Structures: Ex.Stacks,queues,linked list

Non-Linear Data Structures: Ex.Trees,Graphs.

31

Classification of Data Structures

1. Primary Data structures are the basic data structures that

directly operate upon the machine instructions. They

have different representations on different computers.

2. All the basic constants (integers, floating point numbers,

character constants, string constants)and pointers are

considered as primary data structures

3. Secondary Data Structures are more complicated data

structures derived from primary data structures

4. They emphasize on grouping same or different data items

with relationship between each data item

5. Secondary data structures can be broadly classified as

static data structures and dynamic data structures

32

Classification of Data Structures

 If a data structure is created using static memory allocation

(ie. a data structure formed when the number of data items

are known in advance), it is known as static data structure

or fixed size data structure

 If a data structure is created , using dynamic memory

allocation(ie. a data structure formed when the number of

data items are not known in advance) it is known as

dynamic data structure or variable size data structure

 Dynamic data structures can be broadly classified as linear

data structures and non linear data structures

 Linear data structures have a linear relationship between its

adjacent elements. Linked lists are examples of linear data

structures.

33

Classification of Data Structures

 A linked list is a linear dynamic data structure that can

grow and shrink during its execution time

 A circular linked list is similar to a linked list except that

the first and last nodes are interconnected

 Non linear data structures don’t have a linear relationship

between its adjacent elements

 In a linear data structure , each node has a link which

points to another node, whereas in a non linear data

structure, each node may point to several other nodes

 A tree is a nonlinear dynamic data structure that may point

to one or more nodes at a time

 A graph is similar to tree except that it has no hierarchical

relationship between its adjacent elements

34

Abstract data type (ADTs)

 A data type that is defined entirely by a set of operations is

referred to as Abstract data type or simply ADT

 Abstract data types are a way of separating the

specification and representation of data types

 An ADT is a black box, where users can only see the

syntax and semantics of its operations

 An ADT is a combination of interface and implementation

The interface defines the logical properties of the ADT and

especially the signatures of its operations

 The implementation defines the representation of data

structure and the algorithms that implement the operations

 An abstract data type encapsulates data and functions into

a named data type

35

Abstract data type (ADTs)

 It is similar to a structure in C, but can include functions in

it

 The basic difference between ADTs and primitive data

types is that the latter allow us to look at the

representation, whereas former hide the representation

from us

 An ADT consists of a collection of values and operations

with the values derive their meaning solely through the

operations that can be performed upon them

 Benefits of using ADTs:

Code is easier to understand

Implementations of ADTs can be changed without requiring changes

to the program that uses the ADTs

36

Data Structures: Data Collections

 Linear structures

– Array: Fixed-size

– Linked-list: Variable-size

– Stack: Add to top and remove from top

– Queue: Add to back and remove from front

– Priority queue: Add anywhere, remove the highest
priority

 Tree: A branching structure with no loops

 Hash tables: Unordered lists which use a ‘hash
function’ to insert and search

 Graph: A more general branching structure, with
less stringent connection conditions than for a tree

37

ADTs Collection

 ADT is a data structure and a set of operations which can

be performed on it.

– A class in object-oriented design is an ADT

 The pre-conditions define a state of the program which the

client guarantees will be true before calling any method,

 post-conditions define the state of the program that the

object's method will guarantee to create for you when it

returns.

 create Create a new collection

 add Add an item to a collection

 delete Delete an item from a collection find Find an item

matching some criterion in the collection

 destroy Destroy the collection

38

Data Structures and ADTs

 A container in which data is being stored

– Example: structure, file, or array

 An ADT is a data structure which does not exist within the

host language, but rather must be created out of existing

tools

 It is both a collection of data and a set of rules that govern

how the data will be manipulated

 Examples: list, stack, queue, tree, table, and graph

 An ADT sits on top of the data structure, and the rules that

govern the use of the data define the interface between the

data structure and the ADT

39

Lists

 Lists are ordered data sets

– The type of ordering is entirely dependent upon the application

 Lists come in two basic forms: sequential and linked

 The primary difference is how the items are laid out in memory

– Can be described as the difference between physical order and

logical order:

• Sequential implementation – the physical arrangement of the

data elements defines the logical order of entries on the list.

Typically an array-based structure, possibly of fixed maximum

size

• Linked implementation – The physical order of data elements

is unrelated to the logical order of the entries on the list.

Typically a linked set of nodes, each allocated dynamically as

needed

40

Lists

 This key difference is reflected in the types of applications

for which 2- list types are suited:

– Sequential–best when the order of the data does not

matter, when ordering can be done after it has all been

loaded into the array, or when direct indexing of

elements is useful

– Linked– the lack of relationship between physical and

logical order means that a new value can be placed

anywhere in memory, lending this list type to

applications where flexibility is desired

41

Sequential List Implementation

 Inefficiency: If the list is to be maintained in alphabetical order,

inserting a new value may mean having to shift existing ones out of the

way

 Likewise, if an element were to be deleted, we might have to shift

remaining values ‘forward’ toward the front of the array

Features of Sequential Lists

 directly indexable

 easy to traverse – can move backwards and forwards easily

 fast access

 easy to implement

 contiguous locations

 physical and logical order the same

 not particularly flexible

42

Data Structures

 Dynamic data structures - grow and shrink during

execution

 Linked lists - insertions and removals made anywhere

 Stacks - insertions and removals made only at top of stack

 Queues - insertions made at the back and removals made

from the front

 Binary trees - high-speed searching and sorting of data and

efficient elimination of duplicate data items

43

Stacks

A Stack is defined as a special type of data structure where

items are inserted from one end called top of stack and

items are deleted from the same end.

Stack is organized as a Last In First Out(LIFO) data

structure.

Operations performed on Stacks are:

 Insert an item into the stack (Store)

 Delete an item from the stack (Retrieve)

 Display the contents of the stack

44

Stacks

 A stack is an ordered collection of items, generally
implemented with only two principle operations, called
Push and Pop.

 stack – new nodes can be added and removed only at the
top

 Push adds an item to a stack

 Pop extracts the most recently

pushed item from the stack

– similar to a pile of dishes

– last-in, first-out (LIFO)

– Bottom of stack indicated by a link member to null

– stores the popped value

– constrained version of a linked list

45

40

30

20

10

30

20

10

20

10 10

top

Stack full

top

40

deleted

top

30

deleted
20

deleted

top

Empty

Stack

Since, items are inserted from one end, in stack deletions should be done

from the same end..

When stack is empty it is not possible to delete any item and this situation is

called Stack Underflow.

top

Deletion Operations

46

00Implementation

0

1

2

:

Top

int top

47

Insert/ Push Operation

Inserting an element into the stack is called push operation.

Function to insert an item: (Push)

void push(int item, int *top, int s[])

{

if(*top == STACKSIZE - 1) /*Is stack empty?*/

{

printf(“Stack Overflow\n”);

return;

}

/* Increment top and then insert an item*/

s[++(*top)] = item;

}

48

Delete/Pop Operation

Deleting an element from the stack is called pop operation.

Function to delete an item: (Pop)

int pop(int *top, int s[])

{

int item_deleted /*Holds the top most item */

if(*top == -1)

{

return 0; /*Indicates empty stack*/

}

/*Obtain the top most element and change the position
of top item */

item_deleted=s[(*top)--];

/*Send to the calling function*/

return item_deleted;

}

49

Display Procedure

If the stack already has some elements, all those items are displayed one
after the other.

void display(int top, int s[]){

int i;

if(top == -1) /* Is stack empty?*/

{

printf(“Stack is empty\n”);
return;

}

/*Display contents of a stack*/

printf(“Contents of the stack\n”);

for(i = 0;i <= top; i++)

{

printf(“%d\n”,s[i]);

}

}

50

Applications of Stack

 Conversion of expressions.

Infix to postfix, postfix to prefix, prefix to infix, vice-
versa.

 Evaluation of expressions.

Arithmetic expression in the form of either postfix or
prefix.

can be easily evaluated.

 Recursion.

Ex. Tower of Hanoi etc.

 Other applications.

Ex:Checking if a string is a palindrome or not.

Topological Sort.

 System Software and Compiler Design

51

Towers of Hanoi

 Three pegs labeled A, B,C

 In A, there are finite number of disks with decreasing size

 Objective- move the disks from A to C using B as an

auxiliary.

 The rules of the game are as follows

• Only one disk may be moved at a time.

• At no time can a larger disk be placed on a smaller

disk

A
B C

52

Procedure

 For n disks

1. Move the top n-1 disks from peg A to peg B

2. Move the top disk from peg A to C

3. Move the top n-1 disks from peg B to peg C

 Tower(N-1, BEG, END, AUX)

 Tower(1,BEG, AUX, END)

 Tower(N-1,AUX,BEG,END)

53

Procedure

Tower(4,A,B,C) A C

Tower(3, A,C,B)

Tower(3, B,A,C)

A B

Tower (2, A,B,C)

Tower(2, C,A,B)

B C

Tower(2, A,B,C)

Tower(2, B,C,A)

C B

Tower(1,C,B,A)

Tower(1,A,C,B)

54

Algorithm

 Tower(N,BEG,AUX,END)

 If N=1, then BEG END

 return

 Tower(N-1, BEG,END,AUX) // Move N-1 disks from

BEG to AUX

 BEG END

 Tower(N-1, AUX, BEG,END)

 return

55

Queues

A queue is defined as a special type of data structure
where the elements are inserted from one end and
elements are deleted from the other end.

The end from where the elements are inserted is called
REAR end.

The end from where the elements are deleted is called
FRONT end.

Queue is organized as First In First Out (FIFO)Data
Structure.

56

Queues

In a queue, the elements are always inserted at the rear end and deleted from

the front end.

10 20 30
Insert

delete

Front end
Rear end

0 1 2 3 4

Pictorial representation of a Queue

57

Operations Performed on Queues

 Insert an item into a queue

 Delete an item from queue

 Display the contents of queue

Different types of Queues

 Queue(Ordinary queue)

 Circular Queue

 Double ended Queue

 Priority Queue

58

Insertion of Elements

 The ordinary queue operates on first come first serve basis.

Items will be inserted from one end and deleted at the

other end in the same order in which they are inserted.

40302010

0 1 2 3 4

f r

5040302010

43210

rf

To insert an item 50

Whenever queue is full, it is not possible to insert any element

into queue and this condition is called OVERFLOW.

Insert at the rear end

59

Function to insert an item at the rear end of the queue

void insert_rear(int item,int q[],int *r)

{

if(q_full(*r)) /* Is queue full */

{

printf(“Queue overflow\n”);

return;

}

/* Queue is not full */

q[++(*r)] = item;

}

int q_full(int r)

{

return (r == QUEUE_SIZE -1)? 1 : 0;

}

60

Delete from the front end

 Whenever the value of f is greater than r ,then the queue is

said to be empty and is not possible to delete an element

from queue. This condition is called Underflow.

40302010

0 1 2 3 4

f r

403020
0 1 2 3 4

f r

50

0 1 2 3 4

f , r

40

0 1 2 3 4

f , r

61

Function to delete an item from the front end

void delete_front(int q[], int *f, int *r) {

if(q_empty(f , r)) /* Is queue empty*/

{

printf(“Queue underflow\n”);

return;

}

printf(“The element deleted is %d\n”,q[(*f)++]);

if(f > r)

{

f = 0;

r = -1;

}

}

int q_empty(int f,int r)

{

return (f>r) ? 1 : 0;

}

62

Function to display the contents of queue

The contents of queue can be displayed only if queue is not empty. If

queue is empty an appropriate message is displayed.

void display(int q[], int f, int r)

{

int i;

if(q_empty (f , r)) /* Is queue empty*/

{

printf(“Queue is empty\n”);

return;

}

printf(“Contents of queue is \n”);

for(i = f;i <=r;i++)

printf(“%d\n”,q[i]);

}

63

Double Ended Queue

A Deque is a special type of data structure in which insertions
and deletions will be done either at the front end or at the
rear end of the queue. Here, insertion and deletion are done
from both the ends.

Operations performed on Deques are:

 Insert an item from front end

 Insert an item from rear end

 Delete an item from front end

 Delete an item from rear end

 Display the contents of queue

64

Insert at the front end

0 1 2 3 4

r

f

if(f==0 && r == -1)

q[++r] = item;

4030

0 1 2 3 4

f r

40302010

0 1 2 3 4

f r

if(f != 0)

q[--f] = item;

Not possible to insert

an item at the front end

65

Function to insert an item at front end

void insert_front(int item,int q[],int *f,int *r)

{
if(*f == 0 && *r == -1)
{

q[++(*r)] = item;

return;
}

if(*f != 0)
{

q[--(*f)] = item;

return;
}

printf(“Front insertion not possible”);
}

66

Function to delete an item from the rear end

void delete_rear(int q[], int *f,int *r)

{

if(q_empty(f, r))

{

printf(“Queue underflow\n”);

return;

}

printf(“The element deleted is %d”,q[(*r)--]);

if(f > r)

{

f = 0;

r = -1;

}

}

67

Circular Queue

 In circular queue, the elements of a given queue can be

stored efficiently in an array so as to “wrap around” so

that end of the queue is followed by the front of the queue.

10

0 1 2 3 4

f r

302010

0 1 2 3 4

rf

After inserting 20 & 30

Initial queue

68

Circular Queue

5040302010

0 1 2 3 4

f r

After inserting 40 and 50

504030

0 1 2 3 4

f r

After deleting 10 and 20

50403060

0 1 2 3 4

f
r

After inserting 60

69

Operations Performed on Circular Queues

 Insert rear

 Delete front

 Display the contents of Queue

Function to insert an item at the rear end

void insert_rear(int item,int q[],int *r,int *count)

{

if(q_full(*count))

{

printf(“Overflow of Queue\n”);

return;

}

r = (*r + 1) % QUEUE_SIZE; /* Increment rear pointer */

q[*r]=item; /* Insert the item */

count +=1; / Update the counter */

}

int(q_full(int count))

{

/* Return true if Q is full,else false */

return (count == QUEUE_SIZE - 1) ? 1 : 0;

}

70

Function to delete an item from the front end

void delete_front(int q[], int *f, int *count)

{

if(q_empty(*count))

{

printf(“Underflow of queue\n”);

return;

}

/* Access the item */

printf(“The deleted element is %d\n”,q[*f]);

/* Point to next first item */

f = (*f + 1) % QUEUE_SIZE;

/* Update counter */

*count -= 1;

}

int(q_empty(int count))

{

/* Return true if Q is empty ,else false */

return(count == 0) ? 1 : 0;

}

71

Priority Queue

The priority queue is a special type of data structure in which items
can be inserted or deleted based on the priority.

If the elements in the queue are of same priority, then the element,
which is inserted first into the queue, is processed.

Types of Priority queues:

Ascending priority queue –

Elements can be inserted in any order.

While deleting, smallest item is deleted first.

Descending priority queue –

Elements can be inserted in any order.

While deleting, largest item is deleted first.

Operations performed on Priority Queue

 Insert an element.

 Delete an element.

 Display the contents of Queue.

72

Function to insert an item at the correct place in priority queue.

void insert_item(int item,int q[], int *r)

{

int j;

if(q_full(*r))

{

printf(“Queue is full\n”);

return;

}

j = *r; /* Compare from this initial point */

/* Find the appropriate position */

while(j >= 0 && item < q[j])

{

q[j+1] = q[j]; /*Move the item at q[j] to its next position */

j--;

}

/* Insert an item at the appropriate position */

q[j+1]=item;

/* Update the rear item */

*r = *r + 1;

}

73

Summary

 “Data Structures ”deals with the study of how the data is organized in
the memory, how efficiently the data can be retrieved and manipulated,
and the possible ways in which different data items are logically
related.

 A Stack is defined as a special type of data structure where items are
inserted from one end called top of stack and items are deleted from
the same end.

 A queue is defined as a special type of data structure where the
elements are inserted from one end and elements are deleted from the
other end.

 A Deque is a special type of data structure in which insertions and
deletions will be done either at the front end or at the rear end of the
queue.

 In circular queue, the elements of a given queue can be stored
efficiently in an array so as to “wrap around” so that end of the queue
is followed by the front of the queue.

 The priority queue is a special type of data structure in which items
can be inserted or deleted based on the priority.

