
EE-216

Computer Architecture

Lecture 1

Introduction to Computer

Architecture
Engr. Erum Rehman

Department of Electrical Engineering

College of Engineering &Technology

Computer Design

instruction Set Design °

Machine Language °

Compiler View ° "Computer

Architecture"

° "Instruction Set Processor

"Building Architect"

Computer Hardware Design

° Machine Implementation °

Logic Designer's View °

"Processor Architecture”

° "Computer Organization"

“Construction Engineer”

Few people design computers! Very few design instruction sets!

Many people design computer components.

Very many people are concerned with computer function, in detail.

College of Engineering &Technology Computer Architecture

The Big Picture
• What is inside a computer?

• How does it execute my program?

College of Engineering &Technology Computer Architecture

The Big Picture
The Five Classic

Components of a

Computer

□ d

College of Engineering &Technology Computer Architecture

System Organization

College of Engineering &Technology

Computer Architecture

What is Computer
Architecture?

• Coordination of levels of abstraction

Application

Operating

System

Compiler Firmwar

e

CPU Memory I/O system

Digital Design

Circuit Design

Software

Interface Between
HW and SW

Instruction

Set
Architecture
, Memory,
I/O

Hardware

• Under a set of rapidly changing Forces

College of Engineering &Technology

Computer Architecture

Levels of Representation
temp = v[k]; v[k] = v[k+1]; v[k+1] =

temp;

lw $15, 0($2)

lw $16, 4($2)

sw$16, 0($2)

sw$15, 4($2)
1001 1100 0110 1010 1111 0101

1000

1111 0101 1000 0000 1001 1100

0110

0110 1010 1111 0101 1000 0000

1001

1000 0000 1001 1100 0110 1010

1111
|Rd |Rt

ExtOp

College of Engineering &Technology

Computer Architecture

Compiler-

Assembler

College of Engineering &Technology

00000000101000010000000000011000
00000000000110000001100000100001

100011000]1000100000000000000000

10001100111100100000000000000100
lOlOl lOOl l l lOQlCOOGCOOOOOOODCOOO

10101100011000100000000000000100
0000001111100000000000
0000001000

Computer Architecture

Translation hierarchy for C

Assembler

Linker

C program

Assembly language program

Object; Machine language module Object; Library routine (machine language)

Executable: Machine language program

Memory

College of Engineering &Technology

Computer Architecture

Basic Elements

Functional Levels:

.B Application
Layer .B System
Software B
Hardware Layer

College of Engineering &Technology

Computer Architecture

MIPS Assembly

• move $t0, $t1
• add $t0, $zero, $t1
• sll $t1, $a1, 2 (reg $t1=k*4)
• lw $t0=4($t1) (reg $t0=v[k+1])
• ...

College of Engineering &Technology

Computer Architecture

EPROM as a Programmable Logic
Device

• ROMs are required for applications in which

large amount of information needs to be

stored in a nonvolatile manner.

(Storage for microprocessor programs,

fixed table of data, etc.) Another common

application of the ROM is for the

systematic realization of complex

combinational circuits.

College of Engineering &Technology

Computer Architecture

FPGA Design

A field-programmable gate array is a semiconductor
device containing programmable logic components
called ’’logic blocks”, and programmable
interconnects. Logic blocks can be programmed to
perform the function of basic logic gates such as
AND, and XOR, or more complex combinational
functions such as decoders or simple mathematical
functions. In most FPGAs, the logic blocks also
include memory elements, which may be simple flip-
flops or more complete blocks of memory.

A classic FPGA logic block
consists of a 4-input lookup
table (LUT), and a flip-flop:

3 ¬

2¬

1

0-

I/O Cell —.Wire Segments Logic Block:

s

s

1#

P"

s

k

s

1) \

J-

\ ;

-X ><

X

\

\ X
■-r

■■ \

\
\

i

< X

\ :

\

\

X

— X

L--

1) i

3

-

2

1

-0

2 3

56—St

a) S block detail

0 1 2

3

b) C block det liL

L

College of Engineering &Technology

Computer Architecture

Soft Processors

A soft microprocessor (also called softcore microprocessor or a soft processor) is a
microprocessor core that can be wholly implemented using logic synthesis. It can be
implemented via different semiconductor devices containing programmable logic
(e.g., FPGA, CPLD).

Notable soft microprocessors include:

MicroBlaze ■*Nios II

Processor Developer Open Source Bus Support Notes Project Home

MicroBlaze Xilinx no OPB; FSL; LMB Xilinx MicroBlaze ^

Pico Blaze Xilinx no Xilinx PicoBlaze r^1

Nios, Nios II Altera no Altera Nios II

CortBX-M 1 Arm no [1]®

Mi co 32 Lattice yes Lattice Mico 32

AEMB Shawn Tan yes Wishbone MicroBlaze EDK 3.2 compatible Verilog core AEMB

OpenFire Virginia Tech CCM Lab yes OPB; FSL Binary compatible with the MicroBlaze VT OpenFire ^

PacoBlaze Pablo Bleyer yes Compatible with the Pico Blaze processors PacoBlaze i*?

College of Engineering &Technology

Computer Architecture

College of Engineering &Technology

Computer Architecture

23 library ieee;
Implementation in VHDL

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6 6

67

68

69

70

71

72

73

74

75

76

77

78

use ieee . std_ 1 ogic_ 1164 . a 11; use

ieee.std_1ogic_unsigned.a11; use ieee.numeric

std.all;

entity datapath is port(

elk: in std_logic;

reset: in std_logic;

input: in std logic_vector(7 downto 0);

output: o ut s t d_1ogic_vec t or(7 dounto

0)

— stat us s i gna1s

Ae qO : o ut s t d_ 1 o g i c;

IROut: out std_logic_vector(7 downto 5)

— c o ntr o1 si gna1s

ALUSel:

Asel:

writeAcc:

IRload:

PCload:

Oload:

jrepMux:

opfetch:

we: rtae:

end datapath;

in std_logic_vector(1 downto 0) ;

in std_logic_vector(1 downto 0) ;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std logic);

architecture irep of datapath is

signal dp_ROMData, dp_IR, dp_IR2, dp_ALU_Out: std_logic_vector(7 downto 0);

signal dp_PC, dp_PCnext, dp_Adder_Out: std_logic_vector(7 downto 0);

s i gna1 dp_r e gf i1e_A, dp_r e gf i1e_B: s t d_1og i c_vector (7 downto 0); signal

dp_reux4_0ut: std_logic_vector(7 downto 0); s igna1 dp_mux2_0ut: std_1ogic_vector(3

downto 0); signal dp raux2 Out8: std logic vector(7 downto 0);

signal f_unsigned_overflow:

signal sub jrep: std logic;

std logic;

dp_regfile_A(1) or dp_regfile_A(2) or dp_regfile_A(3)

or dp_regfile_A(5) or dp_regfile_A(6) or dp_regfile_A(7) ,

downto 0);

begin

AeqO <= dp_regfile_A(□) or

or dp_regfile_A(4)

dp_IR2 <= "000" £ dp_IR[4

Bus_Select: entity work.reux4 port reap(Asel, dp_regfile_B, Input, dp_IR2, dp_regfile_A, dp_reux4_0ut) ,

Instruction_Register:entity work.IR port reap(elk, reset, IRload, dp_ROMData, dp_IR);

ProgramCounter: entity work.PC port reap(elk, reset, PCload, dp_PCnext, dp_PC);

PC_Mux: entity work.reux2 port reap(jrepMux, "0001", dp_IR(3 downto 0), dp_reux2_Out);

dp_reux2_Out8 <= "0000" £ dp_reux2_0ut; sub jrep <= jrepMux and dp IR(4);

Adder_8_b it:

ProgramHereory:

RegisterFile:

ALUS:

OutputRegister:

IROut <= dp_IR(7

end irep;

entity work.addsub8_pc port reap(dp_PC, dp_reux2_Out8, dp_PCnext, sub_jrep); entity

work.rore_256_8 port reap(opfetch, dp_PC, dp_ROHData); entity work.regfile port reap(elk,

reset, we, writeAcc,

dp_IR(4 downto 0), dp_ALU_0ut, rbe, dp_regfile_A, dp_regfile_B); entity work.ALU port

reap(ALUSel, dp_reux4_0ut, dp_regfile_B, dp_ALU_Out, f_unsigned_overflow);

entity work.OReg port reap(elk, reset, Oload, dp_regfile_B, output); downto 5);

College of Engineering &Technology

Computer Architecture

Running the CPU

College of Engineering &Technology

Computer Architecture

decode execute

decode

decode execute

PM Midnight 11

Time

CD

Pipelining

6 PM 7 11 Midnight

Time

College of Engineering &Technology

Computer Architecture

