

Second Edition

Risk and Rate Measures in Cohort Studies

Second Edition Authors:

Lorraine K. Alexander, DrPH
Brettania Lopes, MPH

Kristen Ricchetti-Masterson, MSPH
Karin B. Yeatts, PhD, MS GLOBAL PUBLIC HEALTH

Cohort studies are longitudinal studies where an exposed and an unexposed group (or less exposed group) are followed forward in time to find the incidence of the outcome of interest (e.g. disease, death, or change in health). Two measures of incidence are risks and rates. Risks and rates can be
further manipulated to provide additional information on the effects of the exposure of interest, such as risk ratios, rate ratios, attributable risks (risk or rate differences) and attributable risk percent.

Risk is defined as the number of new cases divided by the total population-at-risk at the beginning of the follow-

	Disease	No disease	Total
Exposed	a	b	$\mathrm{a}+\mathrm{b}$
Unex- posed	c	d	$\mathrm{c}+\mathrm{d}$
Total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

$$
\text { Risk }=\frac{\# \text { of new cases }}{\text { total \# individuals at risk }}
$$

measured.
A rate is the number of new cases of a health outcome divided by the total person-time-at-risk for the population. Person-time is calculated by the sum total of time all individuals remain in the study without developing the outcome of interest (the total amount of time that the study members are at risk of
developing the outcome of interest). Person-time can be measured in days, months, or years, depending on the unit of time that is relevant to the study. A rate measures the rapidity of health outcome occurrence in the population.

$$
\text { Rate }=\frac{\# \text { of new cases }}{\text { total person-timeat risk }}
$$

Two-by-two tables are generally used to organize the data from a study as shown below.

Risk ratios.

When risks are computed in a study, the risk ratio is the measure that compares the Riskexposed to the Riskunexposed. The risk ratio is defined as the risk in the exposed cohort (the index group) divided by the risk in the unexposed cohort (the reference group). A risk ratio may vary from zero to infinity.
Risk Ratio $=[\mathrm{a} /(\mathrm{a}+\mathrm{b})] /[\mathrm{c} /(\mathrm{c}+\mathrm{d})]$
Risk Ratio $=$ Risk $_{\text {exposed }} /$ Risk $k_{\text {unexposed }}$

For example, suppose researchers conduct a cohort study and gather the following data on the effects of gasoline fume exposure on respiratory illness among automotive workers.

	Disease	No disease	Total
Exposed	60	140	200
Unex- posed	25	175	200
Total	85	315	400

In this study, the risk in the exposed group is $60 / 200$, or 0.30 cases per person (30 cases per 100 people), and the risk in the unexposed group is $25 / 200$, or 0.125 cases per person (13 cases per 100 people). Therefore, the risk ratio is $0.30 / 0.125$, or 2.4 . A risk ratio of 2.4 implies that the exposed group has 2.4 times the risk of developing respiratory illness as the unexposed group.

Rate ratio

When rates are computed in a study, the rate ratio is the measure that compares the Rateexposed to the Rateunexposed. The rate ratio is defined as the rate of health outcome occurrence in the exposed cohort (the index group) divided by the rate of health outcome occurrence in the unexposed or less-exposed cohort (the reference group).

$$
\text { Rate Ratio }=\text { Rate }_{\text {exposed }} / \text { Rate }_{\text {unexposed }}
$$

A rate ratio measure also may show whether the exposure was preventive, harmful, or had no effect on the rate of health outcome in the exposed.

If in the previous example, the person-time-at- risk that each automotive worker contributed to the study had been recorded then the table might have looked like the following:

	Disease	No disease	Person-years at risk
Exposed	60	140	175
Unexposed	25	175	188
Total	85	315	363

person- years, or 0.34 cases/person-year. The rate in the unexposed cohort is $25 / 188$ person-years, or 0.13 cases/ person-year. The rate ratio in this study is $0.34 / 0.13$, or 2.6, which is higher than the rate ratio calculated above. This rate ratio reveals that respiratory illness among workers exposed to gasoline fumes is developing at 2.6 times the rate that respiratory illness is developing among workers not exposed to gasoline fumes.

An exposure may be preventive (e.g., vitamin intake) or harmful (e.g., toxic chemical exposure). Confounding, which you will read about in another ERIC notebook issue, is one type of systematic error that can occur in epidemiologic studies. Confounding can cause an over- or under-estimate of the observed association between exposure and a health outcome. Assuming there are no other factors that may confound the association, a risk ratio less than 1 indicates that the risk in the exposed (index) group is less than the risk in the unexposed or less -exposed (reference) group, and therefore, the exposure is preventive. A risk ratio or rate ratio that equals 1 (the null value) indicates that there is no difference in risk or rates between exposed and unexposed groups. A risk ratio greater than one indicates that the risk in the exposed is greater than the risk in the unexposed, and, therefore, the exposure is harmful.

The following table may be applied to both risk and rate ratios.

Risk ratio or Rate ratio	Exposure
<1	Exposure is protective
$=1$	Exposure is neither preventive nor harmful (null association)
>1	Exposure is harmful

The farther away the risk ratio or rate ratio is from the null value of one, the greater the effect of exposure is on the study group. This is shown in the following diagram.

RR=risk ratio or rate

Rate differences

In order to find the absolute effect of an exposure a health outcome the attributable rate (AR), or rate difference, must be computed. The term attributable rate is same as rate difference (RD). The attributable rate is the excess rate among the exposed population attributed to exposure. It is defined as the rate in the exposed minus the rate in the unexposed. The rate difference can also be reported as a percent (see figure below).

Rate Difference

Adapted from Gordis L. Epidemiology, p. 156

RD\%(exposed) $=\underline{\text { risk in exposed }- \text { risk in unexposed }} \times 100$ risk in exposed

RD\%(total population) $=$ risk in total pop - risk in unexposed $\times 100$ risk in total population

References

Dr. Carl M. Shy, Epidemiology 160/600 Introduction to Epidemiology for Public Health course lectures, 19942001, The University of North Carolina at Chapel Hill, Department of Epidemiology

Rothman KJ, Greenland S. Modern Epidemiology. Second Edition. Philadelphia: Lippincott Williams and Wilkins, 1998.

The University of North Carolina at Chapel Hill, Department of Epidemiology Courses: Epidemiology 710, Fundamentals of Epidemiology course lectures, 20092013, and Epidemiology 718, Epidemiologic Analysis of Binary Data course lectures, 2009-2013.

Acknowledgement

The authors of the Second Edition of the ERIC Notebook would like to acknowledge the authors of the ERIC Notebook, First Edition: Michel Ibrahim, MD, PhD, Lorraine Alexander, DrPH, Carl Shy, MD, DrPH, and Sherry Farr, GRA, Department of Epidemiology at the University of North Carolina at Chapel Hill. The First Edition of the ERIC Notebook was produced by the Educational Arm of the Epidemiologic Research and Information Center at Durham, NC. The funding for the ERIC Notebook First Edition was provided by the Department of Veterans Affairs (DVA), Veterans Health Administration (VHA), Cooperative Studies Program (CSP) to promote the strategic growth of the epidemiologic capacity of the DVA.

Rate Difference $=$ Rateexposed - Rateunexposed

