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Figure 14.2.  Normal distribution 

 
Table 14.1. Hypothetical data on age and self-esteem 

The two variables in this dataset are age (x) and self-esteem (y).  Age is a ratio-scale 

variable, while self-esteem is an average score computed from a multi-item self-esteem scale 

measured using a 7-point Likert scale, ranging from “strongly disagree” to “strongly agree.”  The 

histogram of each variable is shown on the left side of Figure 14.3.  The formula for calculating 

bivariate correlation is: 

 

where rxy is the correlation, x and y are the sample means of x and y, and sx and sy are 

the  standard deviations of x and y.  The manually computed value of correlation between age 

and self-esteem, using the above formula as shown in Table 14.1, is 0.79.  This figure indicates 
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that age has a strong positive correlation with self-esteem, i.e., self-esteem tends to increase 

with increasing age, and decrease with decreasing age.  Such pattern can also be seen from 

visually comparing the age and self-esteem histograms shown in Figure 14.3, where it appears 

that the top of the two histograms generally follow each other.  Note here that the vertical axes 

in Figure 14.3 represent actual observation values, and not the frequency of observations (as 

was in Figure 14.1), and hence, these are not frequency distributions but rather histograms.  

The bivariate scatter plot in the right panel of Figure 14.3 is essentially a plot of self-esteem on 

the vertical axis against age on the horizontal axis.  This plot roughly resembles an upward 

sloping line (i.e., positive slope), which is also indicative of a positive correlation.  If the two 

variables were negatively correlated, the scatter plot would slope down (negative slope), 

implying that an increase in age would be related to a decrease in self-esteem and vice versa.  If 

the two variables were uncorrelated, the scatter plot would approximate a horizontal line (zero 

slope), implying than an increase in age would have no systematic bearing on self-esteem. 

 
Figure 14.3.  Histogram and correlation plot of age and self-esteem 

 After computing bivariate correlation, researchers are often interested in knowing 
whether the correlation is significant (i.e., a real one) or caused by mere chance.  Answering 
such a question would require testing the following hypothesis: 

H0: r = 0 
H1: r ≠ 0 

 H0 is called the null hypotheses, and H1 is called the alternative hypothesis (sometimes, 
also represented as Ha).  Although they may seem like two hypotheses, H0 and H1 actually 
represent a single hypothesis since they are direct opposites of each other.  We are interested in 
testing H1 rather than H0.  Also note that H1 is a non-directional hypotheses since it does not 
specify whether r is greater than or less than zero.  Directional hypotheses will be specified as 
H0: r ≤ 0; H1: r > 0 (if we are testing for a positive correlation).  Significance testing of directional 
hypothesis is done using a one-tailed t-test, while that for non-directional hypothesis is done 
using a two-tailed t-test. 
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In statistical testing, the alternative hypothesis cannot be tested directly.  Rather, it is 
tested indirectly by rejecting the null hypotheses with a certain level of probability.  Statistical 
testing is always probabilistic, because we are never sure if our inferences, based on sample 
data, apply to the population, since our sample never equals the population.  The probability 
that a statistical inference is caused pure chance is called the p-value.  The p-value is compared 
with the significance level (α), which represents the maximum level of risk that we are willing 
to take that our inference is incorrect.  For most statistical analysis, α is set to 0.05.   A p-value 
less than α=0.05 indicates that we have enough statistical evidence to reject the null hypothesis, 
and thereby, indirectly accept the alternative hypothesis.  If p>0.05, then we do not have 
adequate statistical evidence to reject the null hypothesis or accept the alternative hypothesis.  

The easiest way to test for the above hypothesis is to look up critical values of r from 
statistical tables available in any standard text book on statistics or on the Internet (most 
software programs also perform significance testing).  The critical value of r depends on our 
desired significance level (α = 0.05), the degrees of freedom (df), and whether the desired test is 
a one-tailed or two-tailed test.  The degree of freedom is the number of values that can vary 
freely in any calculation of a statistic.  In case of correlation, the df simply equals n – 2, or for the 
data in Table 14.1, df is 20 – 2 = 18.  There are two different statistical tables for one-tailed and 
two-tailed test.  In the two-tailed table, the critical value of r for α = 0.05 and df = 18 is 0.44.  For 
our computed correlation of 0.79 to be significant, it must be larger than the critical value of 
0.44 or less than -0.44.  Since our computed value of 0.79 is greater than 0.44, we conclude that 
there is a significant correlation between age and self-esteem in our data set, or in other words,  
the odds are less than 5% that this correlation is a chance occurrence.  Therefore, we can reject 
the null hypotheses that r ≤ 0, which is an indirect way of saying that the alternative hypothesis 
r > 0 is probably correct. 

Most research studies involve more than two variables.  If there are n variables, then we 
will have a total of n*(n-1)/2 possible correlations between these n variables.  Such correlations 
are easily computed using a software program like SPSS, rather than manually using the 
formula for correlation (as we did in Table 14.1), and represented using a correlation matrix, as 
shown in Table 14.2.  A correlation matrix is a matrix that lists the variable names along the 
first row and the first column, and depicts bivariate correlations between pairs of variables in 
the appropriate cell in the matrix.  The values along the principal diagonal (from the top left to 
the bottom right corner) of this matrix are always 1, because any variable is always perfectly 
correlated with itself.  Further, since correlations are non-directional, the correlation between 
variables V1 and V2 is the same as that between V2 and V1.  Hence, the lower triangular matrix 
(values below the principal diagonal) is a mirror reflection of the upper triangular matrix 
(values above the principal diagonal), and therefore, we often list only the lower triangular 
matrix for simplicity.  If the correlations involve variables measured using interval scales, then 
this specific type of correlations are called Pearson product moment correlations.   

Another useful way of presenting bivariate data is cross-tabulation (often abbreviated 
to cross-tab, and sometimes called more formally as a contingency table).  A cross-tab is a table 
that describes the frequency (or percentage) of all combinations of two or more nominal or 
categorical variables.  As an example, let us assume that we have the following observations of 
gender and grade for a sample of 20 students, as shown in Figure 14.3.  Gender is a nominal 
variable (male/female or M/F), and grade is a categorical variable with three levels (A, B, and 
C).  A simple cross-tabulation of the data may display the joint distribution of gender and grades 
(i.e., how many students of each gender are in each grade category, as a raw frequency count or 
as a percentage) in a 2 x 3 matrix.  This matrix will help us see if A, B, and C grades are equally 
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distributed across male and female students.  The cross-tab data in Table 14.3 shows that the 
distribution of A grades is biased heavily toward female students: in a sample of 10 male and 10 
female students, five female students received the A grade compared to only one male students.  
In contrast, the distribution of C grades is biased toward male students: three male students 
received a C grade, compared to only one female student.  However, the distribution of B grades 
was somewhat uniform, with six male students and five female students.  The last row and the 
last column of this table are called marginal totals because they indicate the totals across each 
category and displayed along the margins of the table. 

 
Table 14.2.  A hypothetical correlation matrix for eight variables 

 
Table 14.3.  Example of cross-tab analysis 

 Although we can see a distinct pattern of grade distribution between male and female 
students in Table 14.3, is this pattern real or “statistically significant”?  In other words, do the 
above frequency counts differ from that that may be expected from pure chance?  To answer 
this question, we should compute the expected count of observation in each cell of the 2 x 3 
cross-tab matrix.  This is done by multiplying the marginal column total and the marginal row 
total for each cell and dividing it by the total number of observations.  For example, for the 
male/A grade cell, expected count = 5 * 10 / 20 = 2.5.  In other words, we were expecting 2.5 
male students to receive an A grade, but in reality, only one student received the A grade.  
Whether this difference between expected and actual count is significant can be tested using a 
chi-square test.  The chi-square statistic can be computed as the average difference between 
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observed and expected counts across all cells.  We can then compare this number to the critical 
value associated with a desired probability level (p < 0.05) and the degrees of freedom, which  
is simply (m-1)*(n-1), where m and n are the number of rows and columns respectively.  In this 
example, df = (2 – 1) * (3 – 1) = 2.  From standard chi-square tables in any statistics book, the 
critical chi-square value for p=0.05 and df=2 is 5.99.  The computed chi-square value, based on 
our observed data, is 1.00, which is less than the critical value.  Hence, we must conclude that 
the observed grade pattern is not statistically different from the pattern that can be expected by 
pure chance.   
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