change across items. Semantic differential is believed to be an excellent technique for measuring people's attitude or feelings toward objects, events, or behaviors.

Guttman scale. Designed by Louis Guttman, this composite scale uses a series of items arranged in increasing order of intensity of the construct of interest, from least intense to most intense. As an example, the construct "attitude toward immigrants" can be measured using five items shown in Table 6.5. Each item in the above Guttman scale has a weight (not indicated above) which varies with the intensity of that item, and the weighted combination of each response is used as aggregate measure of an observation.

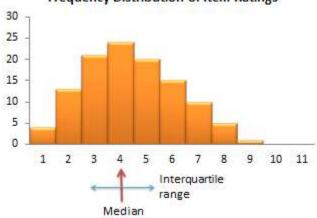
How will you rate your opinions on the following statements about immigrants?						
Do you mind immigrants being citizens of your country	Yes	No				
Do you mind immigrants living in your own neighborhood	Yes	No				
Would you mind living next door to an immigrant	Yes	No				
Would you mind having an immigrant as your close friend	Yes	No				
Would you mind if someone in your family married an immigrant	Yes	No				

Table 6.5. A five-item Guttman scale for measuring attitude toward immigrants

Scaling

The previous section discussed how to measure respondents' responses to predesigned items or indicators belonging to an underlying construct. But how do we create the indicators themselves? The process of creating the indicators is called scaling. More formally, **scaling** is a branch of measurement that involves the construction of measures by associating qualitative judgments about unobservable constructs with quantitative, measurable metric units. Stevens (1946) said, "Scaling is the assignment of objects to numbers according to a rule." This process of measuring abstract concepts in concrete terms remains one of the most difficult tasks in empirical social science research.

The outcome of a scaling process is a **scale**, which is an empirical structure for measuring items or indicators of a given construct. Understand that "scales", as discussed in this section, are a little different from "rating scales" discussed in the previous section. A rating scale is used to capture the respondents' reactions to a given item, for instance, such as a nominal scaled item captures a yes/no reaction and an interval scaled item captures a value between "strongly disagree" to "strongly agree." Attaching a rating scale to a statement or instrument is not scaling. Rather, scaling is the formal process of developing scale items, before rating scales can be attached to those items.


Scales can be unidimensional or multidimensional, based on whether the underlying construct is unidimensional (e.g., weight, wind speed, firm size) or multidimensional (e.g., academic aptitude, intelligence). Unidimensional scale measures constructs along a single scale, ranging from high to low. Note that some of these scales may include multiple items, but all of these items attempt to measure the same underlying dimension. This is particularly the case with many social science constructs such as self-esteem, which are assumed to have a single

dimension going from low to high. Multi-dimensional scales, on the other hand, employ different items or tests to measure each dimension of the construct separately, and then combine the scores on each dimension to create an overall measure of the multidimensional construct. For instance, academic aptitude can be measured using two separate tests of students' mathematical and verbal ability, and then combining these scores to create an overall measure for academic aptitude. Since most scales employed in social science research are unidimensional, we will next three examine approaches for creating unidimensional scales.

Unidimensional scaling methods were developed during the first half of the twentieth century and were named after their creators. The three most popular unidimensional scaling methods are: (1) Thurstone's equal-appearing scaling, (2) Likert's summative scaling, and (3) Guttman's cumulative scaling. The three approaches are similar in many respects, with the key differences being the rating of the scale items by judges and the statistical methods used to select the final items. Each of these methods are discussed next.

Thurstone's equal-appearing scaling method. Louis Thurstone. one of the earliest and most famous scaling theorists, published a method of equal-appearing intervals in 1925. This method starts with a clear conceptual definition of the construct of interest. Based on this definition, potential scale items are generated to measure this construct. These items are generated by experts who know something about the construct being measured. The initial pool of candidate items (ideally 80 to 100 items) should be worded in a similar manner, for instance, by framing them as statements to which respondents may agree or disagree (and not as questions or other things). Next, a panel of judges is recruited to select specific items from this candidate pool to represent the construct of interest. Judges may include academics trained in the process of instrument construction or a random sample of respondents of interest (i.e., people who are familiar with the phenomenon). The selection process is done by having each judge independently rate each item on a scale from 1 to 11 based on how closely, in their opinion, that item reflects the intended construct (1 represents extremely unfavorable and 11 represents extremely favorable). For each item, compute the median and inter-quartile range (the difference between the 75th and the 25th percentile – a measure of dispersion), which are plotted on a histogram, as shown in Figure 6.1. The final scale items are selected as statements that are at equal intervals across a range of medians. This can be done by grouping items with a common median, and then selecting the item with the smallest inter-quartile range within each median group. However, instead of relying entirely on statistical analysis for item selection, a better strategy may be to examine the candidate items at each level and selecting the statement that is the most clear and makes the most sense. The median value of each scale item represents the weight to be used for aggregating the items into a composite scale score representing the construct of interest. We now have a scale which looks like a ruler, with one item or statement at each of the 11 points on the ruler (and weighted as such). Because items appear equally throughout the entire 11-pointrange of the scale, this technique is called an equal-appearing scale.

Thurstone also created two additional methods of building unidimensional scales – the *method of successive intervals* and the *method of paired comparisons* – which are both very similar to the method of equal-appearing intervals, except for how judges are asked to rate the data. For instance, the method of paired comparison requires each judge to make a judgment between each pair of statements (rather than rate each statement independently on a 1 to 11 scale). Hence, the name paired comparison method. With a lot of statements, this approach can be enormously time consuming and unwieldy compared to the method of equal-appearing intervals.

Frequency Distribution of Item Ratings

Figure 6.1. Histogram for Thurstone scale items

Likert's summative scaling method. The Likert method, a unidimensional scaling method developed by Murphy and Likert (1938), is quite possibly the most popular of the three scaling approaches described in this chapter. As with Thurstone's method, the Likert method also starts with a clear definition of the construct of interest, and using a set of experts to generate about 80 to 100 potential scale items. These items are then rated by judges on a 1 to 5 (or 1 to 7) rating scale as follows: 1 for strongly disagree with the concept, 2 for somewhat disagree with the concept, 3 for undecided, 4 for somewhat agree with the concept, and 5 for strongly agree with the concept. Following this rating, specific items can be selected for the final scale can be selected in one of several ways: (1) by computing bivariate correlations between judges rating of each item and the total item (created by summing all individual items for each respondent), and throwing out items with low (e.g., less than 0.60) item-to-total correlations, or (2) by averaging the rating for each item for the top quartile and the bottom quartile of judges, doing a t-test for the difference in means, and selecting items that have high t-values (i.e., those that discriminates best between the top and bottom quartile responses). In the end, researcher's judgment may be used to obtain a relatively small (say 10 to 15) set of items that have high item-to-total correlations and high discrimination (i.e., high t-values). The Likert method assumes equal weights for all items, and hence, respondent's responses to each item can be summed to create a composite score for that respondent. Hence, this method is called a summated scale. Note that any item with reversed meaning from the original direction of the construct must be reverse coded (i.e., 1 becomes a 5, 2 becomes a 4, and so forth) before summating.

Guttman's cumulative scaling method. Designed by Guttman (1950), the cumulative scaling method is based on Emory Bogardus' social distance technique, which assumes that people's willingness to participate in social relations with other people vary in degrees of intensity, and measures that intensity using a list of items arranged from "least intense" to "most intense". The idea is that people who agree with one item on this list also agree with all previous items. In practice, we seldom find a set of items that matches this cumulative pattern perfectly. A scalogram analysis is used to examine how closely a set of items corresponds to the idea of cumulativeness.

Like previous scaling methods, the Guttman method also starts with a clear definition of the construct of interest, and then using experts to develop a large set of candidate items. A group of judges then rate each candidate item as "yes" if they view the item as being favorable to the construct and "no" if they see the item as unfavorable. Next, a matrix or table is created showing the judges' responses to all candidate items. This matrix is sorted in decreasing order from judges with more "yes" at the top to those with fewer "yes" at the bottom. Judges with the same number of "yes", the statements can be sorted from left to right based on most number of agreements to least. The resulting matrix will resemble Table 6.6. Notice that the scale is now almost cumulative when read from left to right (across the items). However, there may be a few exceptions, as shown in Table 6.6, and hence the scale is not entirely cumulative. To determine a set of items that best approximates the cumulativeness property, a data analysis technique called scalogram analysis can be used (or this can be done visually if the number of items is small). The statistical technique also estimates a score for each item that can be used to compute a respondent's overall score on the entire set of items.

Respondent	Item 12	Item 5	Item 3	Item 22	Item 8	Item 7		
29	Y	Y	Y	Y	Y	Y		
7	Y	Y	Y	-	Y	-		
15	Y	Y	Y	Y	-	-		
3	Y	Y	Y	Y	-	-	-	
32	Y	Y	Y	-	-	-		
4	Y	Y	-	Y	-	-	-	
5	Y	Y	-	-	-	-		
23	Y	Y	-	-	-	-		
11	Y	-	-	Y	-	-		
$\underline{\mathbf{Y}}$ indicates exceptions that prevents this matrix from being perfectly cumulative								

Table 6.6. Sorted rating matrix for a Guttman scale

Indexes

An **index** is a composite score derived from aggregating measures of *multiple constructs* (called components) using a set of rules and formulas. It is different from scales in that scales also aggregate measures, but these measures measure different dimensions or the same dimension of a *single construct*. A well-known example of an index is the consumer price index (CPI), which is computed every month by the Bureau of Labor Statistics of the U.S. Department of Labor. The CPI is a measure of how much consumers have to pay for goods and services in general, and is divided into eight major categories (food and beverages, housing, apparel, transportation, healthcare, recreation, education and communication, and "other goods and services"), which are further subdivided into more than 200 smaller items. Each month, government employees call all over the country to get the current prices of more than 80,000 items. Using a complicated weighting scheme that takes into account the location and probability of purchase of each item, these prices are combined by analysts, which are then combined into an overall index score using a series of formulas and rules.

Another example of index is socio-economic status (SES), also called the Duncan socioeconomic index (SEI). This index is a combination of three constructs: income, education, and occupation. Income is measured in dollars, education in years or degrees achieved, and occupation is classified into categories or levels by status. These very different measures are combined to create an overall SES index score, using a weighted combination of "occupational education" (percentage of people in that occupation who had one or more year of college education) and "occupational income" (percentage of people in that occupation who earned more than a specific annual income). However, SES index measurement has generated a lot of controversy and disagreement among researchers.

The process of creating an index is similar to that of a scale. First, conceptualize (define) the index and its constituent components. Though this appears simple, there may be a lot of disagreement among judges on what components (constructs) should be included or excluded from an index. For instance, in the SES index, isn't income correlated with education and occupation, and if so, should we include one component only or all three components? Reviewing the literature, using theories, and/or interviewing experts or key stakeholders may help resolve this issue. Second, operationalize and measure each component. For instance, how will you categorize occupations, particularly since some occupations may have changed with time (e.g., there were no Web developers before the Internet). Third, create a rule or formula for calculating the index score. Again, this process may involve a lot of subjectivity. Lastly, validate the index score using existing or new data.

Though indexes and scales yield a single numerical score or value representing a construct of interest, they are different in many ways. First, indexes often comprise of components that are very different from each other (e.g., income, education, and occupation in the SES index) and are measured in different ways. However, scales typically involve a set of similar items that use the same rating scale (such as a five-point Likert scale). Second, indexes often combine objectively measurable values such as prices or income, while scales are designed to assess subjective or judgmental constructs such as attitude, prejudice, or self-esteem. Some argue that the sophistication of the scaling methodology makes scales different from indexes, while others suggest that indexing methodology can be equally sophisticated. Nevertheless, indexes and scales are both essential tools in social science research.

Typologies

Scales and indexes generate ordinal measures of unidimensional constructs. However, researchers sometimes wish to summarize measures of two or more constructs to create a set of categories or types called a **typology**. Unlike scales or indexes, typologies are multidimensional but include only nominal variables. For instance, one can create a political typology of newspapers based on their orientation toward domestic and foreign policy, as expressed in their editorial columns, as shown in Figure 6.2. This typology can be used to categorize newspapers into one of four "ideal types" (A through D), identify the distribution of newspapers across these ideal types, and perhaps even create a classificatory model to classifying newspapers into one of these four ideal types depending on other attributes.

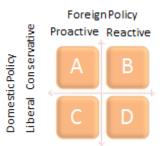


Figure 6.2. A multi-dimensional typology of newspapers

Summary

In closing, scale (or index) construction in social science research is a complex process involving several key decisions. Some of these decisions are:

- Should you use a scale, index, or typology?
- How do you plan to analyze the data?
- What is your desired level of measurement (nominal, ordinal, interval, or ratio) or rating scale?
- How many scale attributes should you use (e.g., 1 to 10; 1 to 7; -3 to +3)?
- Should you use an odd or even number of attributes (i.e., do you wish to have neutral or mid-point value)?
- How do you wish to label the scale attributes (especially for semantic differential scales)?
- Finally, what procedure would you use to generate the scale items (e.g., Thurstone, Likert, or Guttman method) or index components?

This chapter examined the process and outcomes of scale development. The next chapter will examine how to evaluate the reliability and validity of the scales developed using the above approaches.