
Model-Driven Software
Development

ffirs.fm Page i Tuesday, February 28, 2006 6:50 PM

ffirs.fm Page ii Tuesday, February 28, 2006 6:50 PM

Model-Driven Software
Development

Technology, Engineering, Management

Thomas Stahl

and

Markus Völter

with

Jorn Bettin, Arno Haase and Simon Helsen

Foreword by Krzysztof Czarnecki

Translated by Bettina von Stockfleth

ffirs.fm Page iii Tuesday, February 28, 2006 6:50 PM

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright,
Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The
Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold
on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Cataloging-in-Publication Data

(to follow)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-02570-3
ISBN-10: 0-470-02570-0

Typeset in insert
Printed and bound in Great Britain by insert Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

ffirs.fm Page iv Tuesday, February 28, 2006 6:50 PM

v

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

Contents

Part I Introduction 1

1 Introduction 3
1.1 The Subject of the Book 3

1.1.1 MDA 4
1.2 Target Audience 4

1.2.1 Software Architects 5
1.2.2 Software Developers 5
1.2.3 Managers and Project Leaders 5

1.3 The Goals of the Book 5
1.4 The Scope of the Book 6
1.5 The Structure of the Book and Reader Guidelines 6
1.6 The Accompanying Web site 8
1.7 About the Authors 8
1.8 About the Cover 8
1.9 Acknowledgments 9

2 MDSD – Basic Ideas and Terminology 11
2.1 The Challenge 11

2.1.1 Historical View 12
2.1.2 The Status Quo 12

2.2 The Goals of MDSD 13
2.3 The MDSD Approach 14
2.4 Basic Terminology 16

2.4.1 An Overview of MDA Concepts 18
2.5 Architecture-Centric MDSD 21

2.5.1 Motivation 21
2.5.2 Generative Software Architectures 22
2.5.3 Architecture-Centric Design 24
2.5.4 Development Process 26
2.5.5 The Properties of Architecture-Centric MDSD 27

ftoc.fm Page v Tuesday, February 28, 2006 6:04 PM

vi Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

3 Case Study: A Typical Web Application 29
3.1 Application Development 29

3.1.1 The Application Example 30
3.1.2 MDSD Tools 32
3.1.3 Example 1: Simple Changes to Models 33
3.1.4 Example 2: Model Changes and Protected Regions 35
3.1.5 Example 3: Working with Dynamic Models 37
3.1.6 Interaction Between Development and Architecture 39
3.1.7 Intermediate Result 39

3.2 Architecture Development 40
3.2.1 The UML Profile 40
3.2.2 Transformations 42
3.2.3 The Mode of Operation of the MDSD Generator 47
3.2.4 Bootstrapping 49
3.2.5 Adaptations of the Generative Software Architecture 49
3.2.6 The Boundary of Infrastructure Code 53
3.2.7 Structuring Metaprograms 53

3.3 Conclusion and Outlook 54

4 Concept Formation 55
4.1 Common MDSD Concepts and Terminology 55

4.1.1 Modeling 56
4.1.2 Platforms 59
4.1.3 Transformations 60
4.1.4 Software System Families 61

4.2 Model-Driven Architecture 63
4.3 Architecture-Centric MDSD 64
4.4 Generative Programming 65
4.5 Software Factories 68

4.5.1 The Software Factory Schema 68
4.5.2 The Software Factory Template 69
4.5.3 The Role of DSLs and their Relationship to MDSD 69

4.6 Model-Integrated Computing 70
4.7 Language-Oriented Programming 70
4.8 Domain-Specific Modeling 71

5 Classification 73
5.1 MDSD vs. CASE, 4GL and Wizards 73
5.2 MDSD vs. Roundtrip Engineering 74
5.3 MDSD and Patterns 75

5.3.1 Patterns and Transformations 75
5.3.2 Patterns and Profiles 76
5.3.3 Patterns Languages as a Source of DSLs 77

ftoc.fm Page vi Tuesday, February 28, 2006 6:04 PM

Contents vii

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

5.4 MDSD and Domain-Driven Design 77
5.5 MDSD, Data-Driven Development and Interpreters 78
5.6 MDSD and Agile Software Development 78

5.6.1 The Agile Manifesto and MDSD 79
5.6.2 Agile Techniques 80

Part II Domain Architectures 83

6 Metamodeling 85
6.1 What Is Metamodeling? 85
6.2 Metalevels vs. Level of Abstraction 88
6.3 MOF and UML 88
6.4 Extending UML 89

6.4.1 Extension Based on the Metamodel 89
6.4.2 Extension With Stereotypes in UML 1.x 92
6.4.3 Extension With Profiles in UML 2 92

6.5 UML Profiles 93
6.6 Metamodeling and OCL 96
6.7 Metamodeling: Example 1 98
6.8 Metamodeling: Example 2 99
6.9 Tool-supported Model Validation 102
6.10 Metamodeling and Behavior 106
6.11 A More Complex Example 107

6.11.1 The Basics 108
6.11.2 Value Types 109
6.11.3 Physical Quantities 110

6.12 Pitfalls in Metamodeling 113
6.12.1 Interfaces 113
6.12.2 Dependencies 114
6.12.3 IDs 115
6.12.4 Primary Keys 116
6.12.5 Metalevels and Instanceof 116

7 MDSD-Capable Target Architectures 119
7.1 Software Architecture in the Context of MDSD 119
7.2 What Is a Sound Architecture? 120
7.3 How Do You Arrive at a Sound Architecture? 121

7.3.1 Architectural Patterns and Styles 121
7.4 Building Blocks for Software Architecture 122

7.4.1 Frameworks 122
7.4.2 Middleware 123
7.4.3 Components 123

7.5 Architecture Reference Model 124

ftoc.fm Page vii Tuesday, February 28, 2006 6:04 PM

viii Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

7.6 Balancing the MDSD Platform 125
7.6.1 Examples 126
7.6.2 Integration of Frameworks 127

7.7 Architecture Conformance 127
7.8 MDSD and CBD 129

7.8.1 Three viewpoints 129
7.8.2 Viewpoint Dependencies 132
7.8.3 Aspect Models 132
7.8.4 Variations 134
7.8.5 Component Implementation 136

7.9 SOA, BPM and MDSD 137
7.9.1 SOA 137
7.9.2 BPM 139
7.9.3 SOA and BPM 140

8 Building Domain Architectures 143
8.1 DSL construction 143

8.1.1 Choose a suitable DSL 143
8.1.2 Configuration and Construction – Variants 144
8.1.3 Modeling Behavior 146
8.1.4 Concrete Syntax Matters! 148
8.1.5 Continuous Validation of the Metamodel 149

8.2 General Transformation Architecture 150
8.2.1 Which Parts of the Target Architecture Should

Be Generated? 150
8.2.2 Believe in Reincarnation 150
8.2.3 Exploit the Model 150
8.2.4 Generate Good-looking Code – Whenever Possible 152
8.2.5 Model-driven Integration 153
8.2.6 Separation of Generated and Non-generated Code 154
8.2.7 Modular Transformations 155
8.2.8 Cascaded Model-Driven Development 158

8.3 Technical Aspects of Building Transformations 159
8.3.1 Explicit Integration of Generated Code and Manual Parts 159
8.3.2 Dummy Code 164
8.3.3 Technical Subdomains 166
8.3.4 Proxy Elements 167
8.3.5 External Model Markings 168
8.3.6 Aspect Orientation and MDSD 169
8.3.7 Descriptive Meta Objects 170
8.3.8 Generated Reflection Layers 172

8.4 The Use of Interpreters 173
8.4.1 Interpreters 174

ftoc.fm Page viii Tuesday, February 28, 2006 6:04 PM

Contents ix

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

8.4.2 MDSD Terminology Revisited 175
8.4.3 Non-functional Properties of Interpreters 176
8.4.4 Integrating Interpreters into a System 177
8.4.5 Interpreters and Testing 179

9 Code Generation Techniques 181
9.1 Code Generation – Why? 181

9.1.1 Performance 181
9.1.2 Code Volume 181
9.1.3 Analyzability 182
9.1.4 Early Error Detection 182
9.1.5 Platform Compatibility 182
9.1.6 Restrictions of the (Programming) Language 182
9.1.7 Aspects 182
9.1.8 Introspection 182

9.2 Categorization 183
9.2.1 Metaprogramming 183
9.2.2 Separation/Mixing of Program and Metaprogram 183
9.2.3 Implicit or Explicit Integration of Generated With

Non-generated Code 184
9.2.4 Relationships 184
9.2.5 Examples of the Blending of Program and Metaprogram 185

9.3 Generation Techniques 186
9.3.1 Templates and Filtering 187
9.3.2 Templates and Metamodel 188
9.3.3 Frame Processors 189
9.3.4 API-based Generators 192
9.3.5 In-line Generation 194
9.3.6 Code Attributes 196
9.3.7 Code Weaving 197
9.3.8 Combining Different Techniques 198
9.3.9 Commonalities and Differences between the

Different Approaches 199
9.3.10 Other Systems 201

10 Model Transformation Techniques 203
10.1 History 203
10.2 M2M language requirements 204
10.3 Overall Architecture 207
10.4 An Example Transformation 209

10.4.1 The Example in the QVT Relations language 212
10.4.2 The Example in the QVT Operational Mappings language 217

ftoc.fm Page ix Tuesday, February 28, 2006 6:04 PM

x Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

10.5 The OMG Standardization Process and Tool Availability 220
10.6 Assessment 221

11 MDSD Tools: Roles, Architecture, Selection Criteria,
and Pointers 223
11.1 The Role of Tools in the Development Process 223

11.1.1 Modeling 223
11.1.2 Model Validation and Code Generation 224
11.1.3 Build Tool 225
11.1.4 Recipe Frameworks 226
11.1.5 IDE Toolkit 227

11.2 Tool Architecture and Selection Criteria 227
11.2.1 Implement the Metamodel 227
11.2.2 Ignore the Concrete Syntax 227
11.2.3 Modular Transformations 229
11.2.4 Model Transformations are ‘First-Class Citizens’ 229

11.3 Pointers 230
11.3.1 The Eclipse World 230
11.3.2 Trends in UML tools 233
11.3.3 UML 2 Composite Structure Diagrams 233
11.3.4 Other kinds of Editors 235
11.3.5 Integrated Metamodeling IDEs 236

12 The MDA Standard 239
12.1 Goals 239
12.2 Core Concepts 239

12.2.1 UML 2.0 240
12.2.2 MOF – The Meta Object Facility 241
12.2.3 XMI 242
12.2.4 PIM/PSM/PDM 243
12.2.5 Multi-stage Transformations 244
12.2.6 Action Languages 244
12.2.7 Core Models 247
12.2.8 Controlling the PIM to PSM Transformation 248
12.2.9 Executable UML 250

Part III Processes and Engineering 251

13 MDSD Process Building Blocks and Best Practices 253
13.1 Introduction 253
13.2 Separation between Application and Domain Architecture

Development 253
13.2.1 The Basic Principle 253

ftoc.fm Page x Tuesday, February 28, 2006 6:04 PM

Contents xi

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

13.2.2 Domain Architecture Development Thread 255
13.2.3 Application Development Thread 260

13.3 Two-Track Iterative Development 262
13.4 Target Architecture Development Process 263

13.4.1 Three Phases 264
13.4.2 Phase 1: Elaborate 265
13.4.3 Phase 2: Iterate 269
13.4.4 Phase 3: Automate 269

13.5 Product-Line Engineering 271
13.5.1 Software System Families and Product Lines 272
13.5.2 Integration into the MDSD Process 272
13.5.3 Methodology 272
13.5.4 Domain Modeling 277
13.5.5 Further Reading 277

14 Testing 279
14.1 Test Types 279
14.2 Tests in Model-Driven Application Development 280

14.2.1 Unit Tests 281
14.2.2 Acceptance Tests 286
14.2.3 Load Tests 287
14.2.4 Non-functional Tests 288
14.2.5 Model Validation 288

14.3 Testing the Domain Architecture 290
14.3.1 Testing the Reference Implementation and the

MDSD Platform 290
14.3.2 Acceptance Test of the DSL 290
14.3.3 Test of the MDSD Transformations 290

15 Versioning 293
15.1 What Is Versioned? 293
15.2 Projects and Dependencies 293
15.3 The Structure of Application Projects 294
15.4 Version Management and Build Process for Mixed Files 295
15.5 Modeling in a Team and Versioning of Partial Models 297

15.5.1 Partitioning vs. Subdomains 297
15.5.2 Various Generative Software Architectures 298
15.5.3 Evolution of the DSL 298
15.5.4 Partitioning and Integration 300

16 Case Study: Embedded Component Infrastructures 305
16.1 Overview 305

16.1.1 Introduction and Motivation 306
16.1.2 Component Infrastructures 306

ftoc.fm Page xi Tuesday, February 28, 2006 6:04 PM

xii Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

16.1.3 Component Infrastructure Requirements for
Embedded Systems 307

16.1.4 The Basic Approach 307
16.2 Product-Line Engineering 307

16.2.1 Domain Scoping 308
16.2.2 Variability Analysis and Domain Structuring 309
16.2.3 Domain Design 312
16.2.4 Domain Implementation 315

16.3 Modeling 315
16.3.1 Definition of Interfaces 315
16.3.2 Definition of Components and Ports 316
16.3.3 Definition of a System 318
16.3.4 The Complete Model 320
16.3.5 Processing 320

16.4 Implementation of Components 321
16.5 Generator Adaptation 323

16.5.1 Parsing of the textual syntax 323
16.5.2 Parsing the System Definition XML 325
16.5.3 Parsing and Merging the Complete Model 326
16.5.4 Pseudo-declarative Metamodel Implementation 328

16.6 Code Generation 330
16.6.1 References 330
16.6.2 Polymorphism 333
16.6.3 Separation of Concerns in the Metamodel 335
16.6.4 Generation of Build Files 337
16.6.5 Use of AspectJ 338

17 Case Study: An Enterprise System 341
17.1 Overview 341
17.2 Phase 1: Elaboration 341

17.2.1 Technology-Independent Architecture 341
17.2.2 Programming Model 342
17.2.3 Technology Mapping 343
17.2.4 Mock Platform 344
17.2.5 Vertical Prototype 344

17.3 Phase 2: Iterate 344
17.4 Phase 3: Automate 345

17.4.1 Architecture Metamodel 345
17.4.2 Glue Code Generation 346
17.4.3 DSL-based Programming Model 346
17.4.4 Model-Based Architecture Validation 354

17.5 Discussion 355

ftoc.fm Page xii Tuesday, February 28, 2006 6:04 PM

Contents xiii

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

Part IV Management 357

18 Decision Support 359
18.1 Business Potential 359
18.2 Automation and Reuse 361
18.3 Quality 365

18.3.1 Well-defined Architecture 365
18.3.2 Preserved Expert Knowledge 365
18.3.3 A Stringent Programming Model 365
18.3.4 Up-to-date and Usable Documentation 366
18.3.5 The Quality of Generated Code 366
18.3.6 Test Effort and Possible Sources of Errors 367

18.4 Reuse 367
18.5 Portability, Changeability 368
18.6 Investment and Possible Benefits 369

18.6.1 Architecture-centric MDSD 369
18.6.2 Functional/Professional MDSD Domains 373

18.7 Critical Questions 374
18.8 Conclusion 378
18.9 Recommended Reading 378

19 Organizational Aspects 379
19.1 Assignment of Roles 379

19.1.1 Domain Architecture Development 379
19.1.2 Application Development 382

19.2 Team Structure 383
19.2.1 Definition of Roles and Staffing Requirements 384
19.2.2 Cross-Cutting Teams 385
19.2.3 Tasks of the Architecture Group 385

19.3 Software Product Development Models 386
19.3.1 Terminology 387
19.3.2 In-house Development 387
19.3.3 Classical Outsourcing 388
19.3.4 Offshoring 389
19.3.5 Radical Offshoring 389
19.3.6 Controlled Offshoring 390
19.3.7 Component-wise Decision 391

20 Adoption Strategies for MDSD 393
20.1 Prerequisites 393
20.2 Getting Started – MDSD Piloting 393

20.2.1 Risk Analysis 394
20.2.2 Project Initialization 395

ftoc.fm Page xiii Tuesday, February 28, 2006 6:04 PM

xiv Contents

 ftoc.fm Version 0.3 (final) February 28, 2006 6:04 pm

20.3 MDSD Adaptation of Existing Systems 396
20.4 Classification of the Software Inventory 397
20.5 Build, Buy, or Open Source 398
20.6 The Design of a Supply Chain 399
20.7 Incremental Evolution of Domain Architectures 400
20.8 Risk Management 400

20.8.1 Risk: Tool-centeredness 400
20.8.2 Risk: A Development Tool Chain Counterproductive

to MDSD 401
20.8.3 Risk: An Overburdened Domain Architecture Team 401
20.8.4 Risk: Waterfall Process Model, Database-centered

Development 402
20.8.5 Risk: The Ivory Tower 402
20.8.6 Risk: No Separation of Application and Domain

Architecture 403

A Model Transformation Code 406
A.1 Complete QVT Relations alma2db Example 406
A.2 Complete QVT Operational Mappings alma2db Example 412

References 416

Index 629

ftoc.fm Page xiv Tuesday, February 28, 2006 6:04 PM

xv

 fforw.fm Version 0.3 (final) February 28, 2006 5:58 pm

Foreword

by Krzysztof Czarnecki

Modeling is a key tool in engineering. Engineers routinely create models when analyzing and
designing complex systems. Models are abstractions of a system and its environment. They
allow engineers to address their concerns about the system effectively, such as answering par-
ticular questions or devising required design changes. Every model is created for a purpose. A
particular model may be appropriate for answering a specific class of questions, where the
answers to those questions will be the same for the model as for the actual system, but it may
not be appropriate for answering another class of questions. Models are also cheaper to build
than the real system. For example, civil engineers create static and dynamic structural models
of bridges to check structural safety, since modeling is certainly cheaper and more effective
than building real bridges to see under what scenarios they will collapse.

Models are not new in software development. Over the past few decades, the software indus-
try has seen numerous analysis and design methods, each with its own modeling approaches and
notations. More recently, we have witnessed the remarkable progress of Unified Modeling Lan-
guage (UML), which now has a larger market penetration than any single previous modeling
notation. Still, analysis and design models rarely enjoy the same status as code. The reality of
most software projects is that models are not kept up-to-date with the code, and therefore they
become obsolete and useless with time.

Model-Driven Software Development (MDSD) puts analysis and design models on par with
code. Better integration of such models and code should significantly increase the opportunity to
effect change through the models, rather than simply modifying the code directly. MDSD
encompasses many different techniques across the entire spectrum of software development
activities, including model-driven requirements engineering, model-driven design, code genera-
tion from models, model-driven testing, model-driven software evolution, and more.

The Model-Driven Architecture (MDA) initiative by the Object Management Group (OMG)
has also certainly contributed a great deal to the recent surge of interest in software modeling
and model-driven techniques. But the effects of that initiative have been both good and bad. On
the positive side, I’m glad that modeling has been moved into the center of interest and that
organizations are now trying to figure out how their current practices can be leveraged through
model-driven techniques. At the same time, the marketing hype around MDA has tended to cre-
ate some unrealistic expectations. Putting all this hype aside, I do think that MDSD has great
ideas to offer, many of which can be put to work in practical situations today. Realizing these

fforw.fm Page xv Tuesday, February 28, 2006 6:04 PM

xvi Foreword

 fforw.fm Version 0.3 (final) February 28, 2006 5:58 pm

potentials requires a solid understanding of current MDSD technology, its applicability, and its
limitations.

The authors of this book are at the forefront of MDSD research and practice. Markus and Jorn
have organized and participated in a series of MDSD workshops at several OOPSLA confer-
ences. Simon has participated in OMG’s standardization efforts on model transformation. All
the authors are pioneering this technology in practice in several domains, ranging from enter-
prise applications to embedded software in both small and large organizations, such as b+m, Sie-
mens, and BMW.

I’m very pleased to introduce this book to you. In my view, this is one of the rare books in the
model-driven space that talks not only about the vision, but also about what is possible today,
and how to do it. After a minimal but necessary dose of basic concepts and terminology, the
authors cover a wide range of MDSD technology topics such as metamodeling, component
architectures and composition, code generation, model transformation, MDA standards, and
MDSD tools. I particularly like the hands-on approach that the authors have taken. They illus-
trate available tools and techniques through concrete modeling examples and code snippets, and
they give numerous practical tips and ‘mind-the-gap’ hints. In addition to the technology topics,
the authors also present a comprehensive treatment of essential software engineering aspects
such as testing, versioning, process management, and adoption strategies, as they apply to
MDSD. The content is topped off with two case studies, that were inspired by realistic applica-
tions from the authors’ collective experiences.

The authors present a broad perspective of MDSD that goes beyond MDA to cover a range of
related approaches including software product lines, domain-specific languages, software facto-
ries, and aspect-oriented and generative programming. As in any young, dynamic, and still
evolving field, the abundance of competing ideas, concepts, and parallel terminologies in today’s
model-driven space can be bewildering. As a result, the authors had to do a lot of ‘sifting
through the mud’ to give us a clear and balanced picture of the entire model-driven field.In this
book, they have done just that, tremendously well.

I invite you to explore this new and exciting field, and this book is a great place to start!

Krzysztof Czarnecki
Waterloo, January 2006

fforw.fm Page xvi Tuesday, February 28, 2006 6:04 PM

1

 p01.fm Version 0.3 (final) February 28, 2006 6:07 pm

Part I
Introduction

p01.fm Page 1 Tuesday, February 28, 2006 6:07 PM

p01.fm Page 2 Tuesday, February 28, 2006 6:07 PM

3

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

1 Introduction

1.1 The Subject of the Book

This book is about Model-Driven Software Development, or ‘MDSD’. A less precise but com-
mon name for this discipline is Model Driven Development (MDD). Maybe you wonder why we
decided to write such a book. We believe that Model-Driven Software Development is quite
important, and will become even more so in the future. It is the natural continuation of program-
ming as we know it today.

The application of models to software development is a long-standing tradition, and has
become even more popular since the development of the Unified Modeling Language (UML).
Yet we are faced with ‘mere’ documentation, because the relationship between model and soft-
ware implementation is only intentional but not formal. We call this flavor of model usage
model-based when it is part of a development process. However, it poses two serious disad-
vantages: on one hand, software systems are not static and are liable to significant changes,
particularly during the first phases of their lifecycle. The documentation therefore needs to be
meticulously adapted, which can be a complex task – depending on how detailed it is – or it will
become inconsistent. On the other hand, such models only indirectly foster progress, since it is
the software developer’s interpretation that eventually leads to implemented code. These are the
reasons why – quite understandably – many programmers consider models to be an overhead and
see them as intermediate results at best.

Model-Driven Software Development has an entirely different approach: Models do not con-
stitute documentation, but are considered equal to code, as their implementation is automated.
A comparison with sophisticated engineering fields, such as mechanical engineering, vividly
illustrates this idea: imagine, for example, a computer-controlled mill that is fed CAD1 data
that enables it to transform a model into a physical workpiece automatically. Or consider an
automotive production line: your order for a car that includes custom features is turned into
reality. Here, the actual production process is mostly automated.

These examples demonstrate that the domain is essential for models, just as for automated
production processes. Neither the customer-oriented ‘modeling language’ for car manufacture –
in this case, an order form – nor the manufacturer’s production line are able to build prefabricated
houses, for example.

1 CAD = Computer Aided Design

c01.fm Page 3 Tuesday, February 28, 2006 10:31 AM

4 Introduction

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

MDSD therefore aims to find domain-specific abstractions and make them accessible
through formal modeling. This procedure creates a great potential for automation of software
production, which in turn leads to increased productivity. Moreover, both the quality and main-
tainability of software systems increase. Models can also be understood by domain experts. This
evolutionary step is comparable to the introduction of the first high-level languages in the era of
Assembler programming. The adjective ‘driven’ in ‘Model-Driven Software Development’ – in
contrast to ‘based’ – emphasizes that this paradigm assigns models a central and active role:
they are at least as important as source code.

To successfully apply the ‘domain-specific model’ concept, three requirements must be met:

• Domain-specific languages are required to allow the actual formulating of models.
• Languages that can express the necessary model-to-code transformations are needed.
• Compilers, generators or transformers are required that can run the transformations to

generate code executable on available platforms.

In the context of MDSD, graphical models are often used, but this is neither mandatory nor
always suitable. Textual models are an equally feasible option. Typically, these models are
translated into programming language source code to enable their subsequent compilation and
execution.

1.1.1 MDA

If you are familiar with the Object Management Group’s (OMG) Model Driven Architecture
(MDA), you might think that this sounds a lot like MDA. This is correct to a certain extent. In
principle, MDA has a similar approach, but its details differ, partly due to different motivations.
MDA tends to be more restrictive, focusing on UML-based modeling languages. In general,
MDSD does not have these restrictions. The primary goal of MDA is interoperability between
tools and the long-term standardization of models for popular application domains. In contrast,
MDSD aims at the provision of modules for software development processes that are applicable
in practice, and which can be used in the context of model-driven approaches, independently of
the selected tool or the OMG–MDA standard’s maturity.

At present (2005) the MDA standardization process is still in its fledgling stages, which
means that, on one hand, some aspects of the original MDA vision must be omitted, while others
need be interpreted pragmatically to get practicable results. On the other hand, a practical meth-
odological support for MDA is not necessarily the OMG’s main focus. This is in part also
reflected by MDA’s goals.

In this book we take a closer look at the relationship between MDA and MDSD. For now, it is
safe to state that MDA is a standardization initiative of the OMG focusing on MDSD.

1.2 Target Audience

Specific concepts, terminology and basic ideas must be understood by all those involved in an
MDSD project, otherwise it cannot be completed successfully. The introductory chapters of this
book are therefore mainly dedicated to these aspects.

c01.fm Page 4 Tuesday, February 28, 2006 10:31 AM

1.3 The Goals of the Book 5

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

1.2.1 Software Architects

Three aspects concerning MDSD are relevant for the software architect:

• First, the approach requires a clear and concise definition of an application’s architectural
concepts.

• Furthermore, MDSD often takes place not only as part of developing an entire applica-
tion, but in the context of creating entire product lines and software system families.
These possess very specific architectural requirements of their own that the architects
must address.

• In addition, a totally new development approach must be introduced to the project. This is
due to the separation of models and modeling languages, of programs and generators, of
respective tools and specific process-related aspects.

All these issues will be discussed in this book.

1.2.2 Software Developers

When dealing with a software development paradigm, it almost goes without saying that the role
of the software developer is pivotal. To some extent, MDSD implies more precise and clearer
views of aspects such as the meaning of models, the separation of domain-specific and technical
code, the relationship between design and implementation, round-trip problems, architecture and
generation, framework development, versioning and tests. When applied correctly, MDSD will
make the software developer’s work much easier, help to avoid redundant code, and enhance
software quality through the use of formalized structures.

1.2.3 Managers and Project Leaders

Economic considerations such as the cost-value ratio or the break-even point underlie the decision
to use Model-Driven Software Development. There is no ‘free lunch’: model-driven software
comes with a price too. There are many project contexts for which a model-driven approach can
be recommended, but there are some circumstances under which we would advise against it.
Even though the focus of this book is technical, we will take into account organizational and
economic aspects that are relevant from the project’s or company’s viewpoint.

A model-driven approach also impacts project organization and team structure as well as the
software development process. We will address this as well.

1.3 The Goals of the Book

The goal of the book is to convince you, the reader, that MDSD is a practicable method today,
and that it is superior to conventional development methods in many cases. We want to encour-
age you to apply it sooner rather than later, since MDSD is neither merely a vision nor dry theory.
To this end, we want to equip you with everything you need. If you already practice MDSD, this
book might offer you some advice or provide further insight into specific topics or fields.

c01.fm Page 5 Tuesday, February 28, 2006 10:31 AM

6 Introduction

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

More specifically, we pursue a number of ‘subgoals’ – independent of the book’s structure –
that we want to elaborate briefly here.

First, we introduce the theoretical framework for MDSD, its basic concepts and terminology.
We also touch on related topics and approaches, such as OMG’s Model Driven Architecture
(MDA). We also want to provide hands-on help for specific MDSD-relevant issues. Among
these are metamodeling (with UML and MOF2), code generation, versioning, testing, as well
as recommendations for choosing the right tools. Organizational and process-related issues are
also very important to us. Additionally, we want to argue for MDSD from an economical
standpoint.

Although it is impossible to work without at least some theoretical basis, the book first and
foremost aims to provide practical support, as well as taking a more detailed look at some of the
relevant theoretical issues mentioned above. Best practice, as well as the dissemination of con-
crete experiences are important to us, as well as, in part, personal opinions. A number of case
studies from various domains supplement the more detailed parts of the book.

We also wish to answer prevailing questions and address current discussions, so an outlook on
trends and visions in the MDSD context completes the book.

1.4 The Scope of the Book

This is not an MDA book. We describe the basic concepts and terminology of the OMG MDA
standard as well the underlying vision, and we also offer a synopsis of the current state of
standardization (see Chapter 12). However, the book represents our own views and experiences.
Secondary literature about MDA can be found in sources such as [Fra02], as well as in the
OMG specification itself.

Our book does not intend to define a cohesive, heavyweight MDSD development process.
Instead, we report on best practices that lend themselves to being used in agile processes, as
described by Crystal [Coc01], and in the context of product line development for the construc-
tion of customized development processes (see Section 16.2).

1.5 The Structure of the Book and Reader Guidelines

This book describes the model-driven approaches which the authors have successfully applied in
practice for many years. We look at the subject-matter from a technological as well as from an
engineering and management perspective, as you will see from the book’s structure.

• Part 1 – Introduction. This part contains the introduction you are reading, plus an expla-
nation of the most important basic ideas behind MDSD, and the basic terminology
derived from the Model Driven Architecture. We then proceed to address the architecture-
centric flavor of MDSD, which is ideally suited for a practice-oriented introduction. We
convey the concrete techniques based on a comprehensive case study from the e-business/
Web application field, followed by a more comprehensive MDSD concept formation

2 MOF = Meta Object Facility, an OMG standard

c01.fm Page 6 Tuesday, February 28, 2006 10:31 AM

1.5 The Structure of the Book and Reader Guidelines 7

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

building on the points made. This chapter is extremely important, particularly because the
rest of the book is based on the terminology defined here. This is also where you can find
the conceptual, artifact-related definition of MDSD. The first part of the book is com-
pleted by a classification of and distinction between related topics such as agile software
development.

• Part II – Domain Architectures. Domain architecture is the core concept of MDSD.
Among other aspects, it contains the domain’s modeling language and the generation rules
that are supposed to map the models to a concrete platform. This part of the book conveys
best practices for the construction of such domain architectures. The chapter on metamod-
eling forms its basis, followed by a detailed examination of the special role of the target
architecture in the MDSD context. The three following chapters take a more detailed look
at building transformations, including a description of code-generation techniques and
QVT-based model-to-model transformations (QVT is the OMG’s standard for model-to-
model transformations). A short comparison with interpreter-based approaches is also
included. For building domain architectures, generic tools are best used, so the chapter on
tool architecture and selection provides some background for this. Finally, we take a
deeper look at the MDA standard in the last chapter of Part II.

• Part III – Processes and Engineering. In the third part of the book we deal with process-
related aspects of MDSD and engineering issues that assume specific characteristics
through MDSD. Here at last it should become clear that MDSD is not just a technology.
We present a number of best practices that can be combined into a practical and pragmatic
development process, look at architecture development, and take a glimpse into product-
line engineering. Following that, we tackle testing and versioning issues. We finally look
at two case studies, one from the embedded domain, the other from the world of enterprise
systems.

• Part IV – Management. The last part of the book is aimed primarily at IT managers and
project leaders. It can largely be read independently from the rest of the book. We take a
closer look at economic and organizational aspects and discuss adoption strategies. The
first chapter of this part includes a FAQ3 section of MDSD-related questions.

We have taken the utmost care in structuring this book so that its didactic effect is optimal when
read sequentially in spite of its cyclic dependencies. However, since we address a divergent
audience, some readers might initially wish to read the book selectively. In this context, please
note that readers whose interest is primarily technical and who already possess some MDA
knowledge can start directly with the case study in Part I, continue with Chapter 4, then
immerse themselves in the technical issues addressed in Parts II or III before moving on to the
rest of the book.

If you want to know what the economic advantages of MDSD are before learning about
MDSD in more detail, please read Chapter 18 first. To gain a better understanding of it, we
recommend that you also read Chapter 2.

3 FAQ: Frequently asked questions

c01.fm Page 7 Tuesday, February 28, 2006 10:31 AM

8 Introduction

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

1.6 The Accompanying Web Site

Some topics dealt with in this book are undergoing rapid evolution, while others could only be
touched upon due to space limitations. The book’s accompanying Web site can be found at
http://www.mdsd-buch.org. You can find up-to-date information there, as well as interesting
links that we update on a regular basis.

1.7 About the Authors

Thomas Stahl works as chief software architect at b+m Informatik AG, where he is responsible
for project-centric architecture management, including reusable software assets. He creates soft-
ware architectures and frameworks and accompanies their use in both large and small projects.
He also works as a consultant. His main focus is currently the field of Model-Driven Software
Development, in which he has significant and practical long term experience. The creation of a
good MDSD-generator framework was a pioneering effort. It is a popular Open Source project
(http://www.openArchitectureWare.org) and is supported by a very active developer community.
Besides his project-related work in several domains, Thomas writes articles for IT magazines
and speaks at software conferences. He spends his spare time, among other things, as an active
musician. He can be reached at t.stahl@bmiag.de

Markus Völter works as an independent consultant in software technology and engineering.
His work focuses on software architecture and Model-Driven Software Development, as well as
on middleware. Markus has extensive experience with these topics in many sectors, including
the automotive industry, science, health care, telecommunications, and banking, as well as Web-
based systems and telematics. He has worked and consulted for many leading enterprises,
mostly but not exclusively in Germany, in projects ranging from three to 150 developers. Markus
is also a regular speaker at international software conferences, as well as an active member of the
international patterns community.

In addition to this book and its German predecessor, Markus has also co-authored two patterns
books, Server Component Patterns and Remoting Patterns, both published in Wiley’s Software
Design Pattern series. He has also contributed to a German book on software architecture. As
with Tom Stahl, Markus is also a contributor to the openArchitectureWare framework. When not
working, Markus spends his time in his sailplane. He can be reached via http://www.voelter.de
or at voelter@acm.org.

1.8 About the Cover

When we discussed the cover we thought that we wanted something that resembled the concept
of ‘model-driven’ in some way. So, showing ‘something’, as well as a ‘model of something’ was
the idea. We thought about buildings or machines. Then we thought about using an aircraft,
since Markus’ hobby is flying. After a couple of draft covers we agreed on the final one. This
shows an Alexander-Schleicher ASW 27 – one of the highest-performance racing-class gliders
– as well as a technical drawing of the same plane. The picture shows Markus’ own plane with
the German registration D-6642. If you are interested in more information about this aeroplane,
you might want to visit the manufacturer’s site at http://www.alexander-schleicher.de. A huge

c01.fm Page 8 Tuesday, February 28, 2006 10:31 AM

1.9 Acknowledgments 9

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

collection of photos of this and other such aircraft can be found at http://www.voelter.de/flying/
pictures.html and http://www.schogglad.de. Have fun.

1.9 Acknowledgments

Writing a book like this is more challenging than you might think. Without the support of a large
number of people its completion would have been even more of a challenge, which is why want
to thank the following people.

First of all, there are our contributing authors, Jorn Bettin, Arno Haase, and Simon Helsen.
Jorn contributed mainly to the book’s section about management, helped us with terminology
issues, and provided valuable input regarding the structuring of this work. Simon provided us
with a unique insight into QVT and the processes and institutions behind it. We could not have
written the QVT chapter without this vital input. Arno added to the book by looking into how
interpreters fit into the MDSD world. Of course we also want to thank Krzysztof Czarnecki for
writing a great foreword.

We wish to thank Bernd Oesterreich for discussions as well as for the material that found its
way into the first case study in the book. We also thank Peter Roßbach for the interesting discus-
sion about MDSD, particularly from the test perspective.

We – and especially Simon – also want to thank Sreedhar Reddy and Mariano Belaunde for
their feedback on the QVT chapter. Gabor Karsai and Akos Ledeczi provided support in the con-
text of MIC and GME – thanks for that! Thanks also to Juha-Pekka Tolvanen for providing us
with screenshots for MetaEdit+.

Furthermore, we very much wish to thank our reviewers for fruitful discussions and useful
feedback regarding many details, and also for input regarding the structuring of this book. The
reviewers were, in alphabetical order, Frank Derichsweiler, Wolfgang Görigk, Michael
Kircher, Michael Kunz, Wolfgang Neuhaus, Jürgen Rühle, Martin Schepe, Klaus-Dieter
Schmatz, Eberhard Wolff, and Ghica van Emde Boas.

A very big thanks goes to our copy-editor Steve Rickaby of WordMongers. As with Markus’
previous books, he has done a wonderful job of polishing the manuscript with regards to lan-
guage, as well as other (small and not-so-small) issues.

We also want to thank Rene Schoenfeldt, who was our editor for the original German edition
of the book. He is a great to work with. The same is true for the people at Wiley for this English
edition: specifically we want to thank our editor Sally Tickner.

Thomas wishes to expresses his gratitude to Markus for the extensive amount of work and
time he has spent on the updates that went into the English edition. He also most profoundly
wants to thank his wife Anja and his children, who gave him the support he needed and greatly
helped him with their considerateness.

c01.fm Page 9 Tuesday, February 28, 2006 10:31 AM

 c01.fm Version 0.3 (final) February 28, 2006 10:31 am

c01.fm Page 10 Tuesday, February 28, 2006 10:31 AM

11

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

2 MDSD – Basic Ideas and Terminology

This chapter introduces the most important basic concepts of Model-Driven Software Develop-
ment, as well as the motivation for them. We prefer the abbreviation MDSD for Model-Driven
Software Development over the less-precise variant ‘MDD’ (Model Driven Development). The
first abbreviation has become more popular in the software modeling community over the past
two years.

The Object Management Group’s Model Driven Architecture (MDA) is both a flavor and a
standardization initiative for this approach. Our focus here is its practicability in software
projects. In many respects our concepts and experiences are congruent with those of OMG’s
MDA vision, but in other respects they differ. We point out the latter and discuss them. Apart
from this, the MDA terminology, due to its standardization and pervasiveness, is extremely use-
ful for providing an introduction to this topic, and this is exactly how you should approach the
second part of this chapter: MDA provides the basic terminology for MDSD. The chapter’s third
part introduces the concepts that have been missing until then and which are required to under-
stand the case study.

2.1 The Challenge

In the twenty-first century software is all around us. The software industry has become one of
the largest on the planet, and many of today’s most successful businesses are software produc-
tion companies or offer services in the software field.

Software is today a relevant part of the machinery of all technology-based and many serv-
ice-based businesses. High software development costs have significant economic impact,
and bad software design, which impairs the productivity of users, can have even more serious
consequences.

Many manufacturers of business software are so involved in dealing with the constantly-
changing implementation technologies that productivity effort and risk management fall behind.
Neither off-shoring, nor the newest generation of infrastructure software such as integrated
development environments (IDEs), EAI1 or BPM2 tools and middleware, are much use here. In
most cases, productivity problems are the result either of insufficient consistency or openness in

1 EAI = Enterprise Application Integration
2 BPM = Business Process Management

c02.fm Page 11 Tuesday, February 28, 2006 2:51 PM

12 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

the application architecture, or of inadequate management or dependencies between various
software components and unsuitable software development processes.

2.1.1 Historical View

The nineteen-nineties were mainly influenced by two software development paradigms. At the
beginning of the nineties, these were Computer Aided Software Engineering (CASE) and
fourth-generation languages (4GLs). In the second half of that decade, Object-Orientation
entered the mainstream.

CASE methods and the corresponding tools were expensive, and proprietary approaches col-
lided with a growing awareness of open standards. Many companies had bad experiences with
some manufacturers, so eventually not only the tools but also the model-based software develop-
ment approach were dumped. Object-orientation did not keep all of its promises, but it did
become the foundation of component technologies, and object-oriented languages successfully
replaced the previous generation of programming languages.

With the departure of 4GLs and CASE, OO modeling tools became the center of tool manu-
facturers’ attention, resulting in the Unified Modeling Language (UML) notation standard and
in tools based on a ‘round-trip’ philosophy. This enables smooth switching between UML mod-
els and the corresponding implementation code. Superficially, UML tools impress with their
ability to keep models and code synchronized. However, on closer inspection one finds that
such tools do not immediately increase productivity, but are at best an efficient method for gen-
erating good-looking documentation3. They can also help in understanding large amounts of
existing code.

2.1.2 The Status Quo

The boundaries between modern UML tools and Integrated Development Environments (IDEs)
are disappearing. For example, some UML tools have ‘comfortable’ code editors and integrated
compilers, while traditional IDEs are equipped with UML modeling components. Software
development tools, meanwhile, provide increasingly smart wizards that support users in the
application of design patterns, the creation of user interfaces, and the generation of code skele-
tons for use with popular frameworks.

Although this approach constitutes an improvement compared to older UML tools that were
only able to generate empty class skeletons, they strongly resemble CASE tools, as they are sim-
ilarly inflexible. If, for example, a design pattern changes, today’s UML tools are unable to trans-
fer the effects automatically and iteratively to the source code of an application system without
losing the abstraction.

Eventually, the weaknesses of mainstream IDEs and UML tools led to the formation of the
OMG’s MDA initiative. Appropriate tools allow users to define precisely how UML models are
to be mapped to combinations of company-specific implementation technology. Unfortunately,
in this context some traditional CASE tool manufacturers have spotted a second opportunity to
offer their tools in a new package, as commercial MDA products. The tools cannot however be

3 They offer a different graphic view of the code, but no real abstraction.

c02.fm Page 12 Tuesday, February 28, 2006 2:51 PM

2.2 The Goals of MDSD 13

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

customized to meet individual requirements or customer needs, as they still adhere to the ‘one
size fits all’ dogma. Most tools listed on the OMG’s Web pages, however, actually deserve the
label ‘MDA tool’. In parallel with the progress in the field of software development tools, a sig-
nificant evolution has also taken place in the field of software development methods, which has
hardly been addressed yet in MDA.

The speedy propagation of agile approaches demonstrates an increasing resistance to tradi-
tional software development methods, which usually require a large amount of manually-created
prose text documents. Today it is openly acknowledged that traditional methods required the
production of such documentation, but in practice this cannot be reconciled with the market’s
demand for lower software development costs. Admittedly, agile methods such as Extreme Pro-
gramming (XP) [Bec00] alone do not offer sufficient guidance for the creation of high quality
software, and they do not scale to more complex projects. The odd misbelief that they can com-
pensate for a development team’s lack of analytical abilities or software design experience is par-
ticularly problematic.

2.2 The Goals of MDSD

Before we proceed to discuss the concepts and terminology of MDSD, we want to make a few
comments on the goals of MDSD. However, we can only touch on how these can be achieved
here.

• MDSD lets you increase your development speed. This is achieved through automation:
runnable code can be generated from formal models using one or more transformation
steps.

• The use of automated transformations and formally-defined modeling languages lets you
enhance software quality, particularly since a software architecture – once it has been
defined – will recur uniformly in an implementation.

• Cross-cutting4 implementation aspects can be changed in one place, for example in the
transformation rules. The same is true for fixing bugs in generated code. This Separation
of Concerns [Lad03] promises, among other things, better maintainability of software sys-
tems through redundancy avoidance and manageability of technological changes.

• Once they have been defined, architectures, modeling languages and transformations can
be used in the sense of a software production line for the manufacture of diverse software
systems. This leads to a higher level of reusability and makes expert knowledge widely
available in software form.

• Another significant potential is the improved manageability of complexity through
abstraction. The modeling languages enable ‘programming’ or configuration on a more
abstract level. For this purpose, the models must ideally be described using a problem-
oriented modeling language.

• MDSD offers a productive environment in the technology, engineering, and management
fields through its use of process building blocks and best practices. It thus contributes to
meeting the goals described here.

4 Aspects that cannot be easily located in a single module.

c02.fm Page 13 Tuesday, February 28, 2006 2:51 PM

14 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

• Finally, based on the OMG’s focus and history, the organization’s primary motivations for
MDA are interoperability (manufacturer-independence through standardization) and port-
ability (platform-independence) of software systems. These goals that can be met only if a
standardization – such as the OMG’s MDA effort – is achieved. The same motivation has
already led to the definition of CORBA5. To achieve these goals, the OMG aims at sepa-
rating the specification of a specific functionality from its implementation on a specific
platform. The MDA serves the purpose of providing guidelines and standards that should
lead to a corresponding structuring of system specifications in the form of models.

Most of the goals presented here are not new. On the contrary, they represent something like the
IT industry’s ‘Holy Grail’: no-one is inclined to believe in beneficial promises anymore, and
rightly so. But if you take a look at the history of IT or computer science, you can see that an
ongoing evolution is taking place. High-level languages, object-orientation and component sys-
tems were milestones on the road toward meeting these goals – and MDSD is another. This par-
adigm takes us a small – or even a big – step closer to these goals.

2.3 The MDSD Approach

Each software has its inherent construction paradigms, expressed in the source code – an inner
structure. How sound and how pronounced this structure consequently is directly influences
development speed, quality, performance, maintainability, interoperability, and portability of the
software. Those are extremely important key economic factors.

The problem is that it is difficult to recognize the actual construction paradigms on a pro-
gramming language level, because their abstraction level is much lower. To put it differently, the
much-treasured inner structure is present in a cloudy, distributed, and of course also a strongly
individualized form. It is no longer directly represented in the system itself. Its quality varies,
depending on the skills and interpretation of the developers.

The idea of modeling is not exactly new, and is used mostly for sophisticated development
processes to document a software’s inner structure. Developers then try to counteract the inevita-
ble consistency problems with time-consuming reviews. In practice, these reviews and also the
models are among the first victims when time presses – from a pragmatic point of view, even
rightly so. Another approach is ‘round-trip’ or reverse engineering, which most UML tools offer,
which is merely source code visualization in UML syntax: that is, the abstraction level of these
models is the same as for the source code itself6. Visually it may be clearer, but the essential
problem remains the same.

Model-Driven Software Development offers a significantly more effective approach: Models
are abstract and formal at the same time. Abstractness does not stand for vagueness here, but for
compactness and a reduction to the essence. MDSD models have the exact meaning of program
code in the sense that the bulk of the final implementation, not just class and method skeletons,
can be generated from them. In this case, models are no longer only documentation, but parts of

5 CORBA: Common Object Request Broker Architecture (an OMG standard)
6 In the meantime, UML tools have been improved to handle the J2EE programming model and can thus represent an

EJB Bean through a UML class. However, abstraction cannot be taken any further than that, because the tool does
not ‘know’ the application architecture's concepts. Unique mapping to the source code is also impossible.

c02.fm Page 14 Tuesday, February 28, 2006 2:51 PM

2.3 The MDSD Approach 15

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

the software, constituting a decisive factor in increasing both the speed and quality of software
development. We emphasize ‘model-driven’ as opposed to ‘model-based’ to verbally highlight
this distinction.

The means of expression used by models is geared toward the respective domain’s problem
space, thus enabling abstraction from the programming language level and allowing the corre-
sponding compactness. All model-driven approaches have this principle in common, regardless
of whether the domain is labeled ‘software architecture’, ‘financial service systems’, ‘insur-
ances’, or ‘embedded systems’. To formalize these models, a higher-level Domain-Specific
Modeling Language (DSL) is required. From this ‘bird’s eye view’, it doesn’t matter whether this
is a UML-based language or not.

Besides formal and abstract models, ‘semantically rich’, domain-specific platforms make up
the second foundation pillar: prefabricated, reusable components and frameworks offer a much
more powerful basis than a ‘naked’ programming language or a technical platform like J2EE.
First and foremost, this means that the generator, which is supposed to transform the formal
model, will be simplified once the generated code can rest on APIs of significantly higher qual-
ity. The introduction of reusable frameworks, super classes, and components to avoid code
redundancy is not a new idea, but in the context of MDSD they serve additionally to intercept
the model transformation half-way in the form of a well-formed platform, which causes a signif-
icant complexity reduction of the code generators7.

Figure 2.1 shows the relationships in application development with MDSD.

Let’s take a look at an existing application or a reference implementation (the upper left cor-
ner of the diagram). These are unique items with individual structures. We can restructure the

7 The transformations become less complex because they don’t have to generate code that runs on low-level platforms,
but can assume that there is a platform that provides basic services. This reduces the complexity of the transforma-
tion, since the ‘abstraction gap’ is reduced.

Figure 2.1 The basic ideas behind Model-Driven Software Development

Applikations-
Modell

Applikations-
Modell

CodeCode

Code of Application or
Reference Implementation

analyse separate

Platform

Individual
Code

Application
Model

DSL

Trans-
formations

uses creates

Generic
Code

Individual
Code

Schematic
Repetitive

Code

Schematic
Repetitive

Code

c02.fm Page 15 Tuesday, February 28, 2006 2:51 PM

16 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

code of these application in our minds so that three parts can be separated8 (the lower left
corner): a generic part that is identical for all future applications, a schematic part that is not
identical for all applications, but possesses the same systematics (for example, based on the
same design patterns), and finally an application-specific part that cannot be generalized. At
this point, we won’t make any statements about the significance of each part: in extreme
cases, the application-specific part can even be empty. Model-Driven Software Development
aims to derive the schematic part from an application model. Intermediate stages can occur
during transformation, but in any case DSL, transformation, and platform will constitute the
key elements. They must only be created once for each domain, for example ‘enterprise soft-
ware architecture’ or ‘inventory system for insurance’ (lower right).

2.4 Basic Terminology

This section introduces the most important concepts and terms of the MDA standard, to establish
the basic terminology for MDSD.

Domain-related specifications are defined in Platform-Independent Models (PIMs). To this
end, a formal modeling language is used that is specific to the concepts of the domain to be
modeled. In most cases, one would use UML that has been adapted via profiles to the respective
domain, not least because of its tool support (see Section 6.5). These domain-specific descrip-
tions are completely independent of the later implementation on the target platform. Such target
platforms can be, for example, CORBA, J2EE, .NET or proprietary frameworks/platforms.
Figure 2.2 illustrates this basic principle.

Via model transformation, usually automated with tools, Platform-Specific Models (PSMs)
are created from the Platform-Independent Models. These Platform-Specific Models contain
the target platform’s specific concepts. The implementation for a concrete target platform is

8 Where appropriate through refactoring.

Figure 2.2 The basic principle of MDA

CORBA
Model

J2EE
Model

XML
Model

CORBA / C++
Code

J2EE / Java
Code

XML-
Code

Platform-IndependentModel
(PIM), via UML-Profile

Model-to-model transformation

Platform-SpecificModel
(PSM), via UML-Profile

Model-to-code transformation

Implementation

Domain-related
Specifications

c02.fm Page 16 Tuesday, February 28, 2006 2:51 PM

2.4 Basic Terminology 17

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

then generated with another tool-supported transformation based on one or more PSMs (see
Figure 2.3).

It is important to note that a PIM and a PSM are relative concepts – relative to the platform. In
the example shown above, the EJB-PSM is specific to the EJB 2.0 platform, yet it is independent
regarding its concrete, application server-specific realization.

Let’s look at another example. Figure 2.4 shows a small part of a PIM. It shows a class model
with two domain classes: Customer and Account. Both classes have the «Business Entity» ster-
eotype, and both have an attribute that is assigned the stereotype «UniqueID». The method
findByLastName features the stereotype «Query» under Customer.

Figure 2.3 PIM, PSM and transformation

Figure 2.4 An example that illustrates the relationship between PIM, PSM and code

PIM PSM
(Components)Transformation

PSM
(EJB 2.0)Transformation

PSM
(WLS 7.1)

Transformation

Code
(Java + XML) Transformation

PIM

1
<<UniqueID>> number : Integer
balance : Float

<<BusinessEntity>>
Account

<<Query>> findByLastName()

<<UniqueID>> id : String
lastName : String
firstName : String

<<BusinessEntity>>
Customer*

PSM (EJB)

1
<<PrimaryKey>> number : int
balance : float

<<EJBEntityBean>>
Account

<<EJBFinderMethod>>
findByLastName()

<<PrimaryKey>> id : String
lastName : String
firstName : String

<<EJBEntityBean>>
Customer*

customeraccount

Code

public interface Account extends EJBObject {...}
public interface AccountHome extends EJBHome {...}
public abstract class AccountBean implements EntityBean {...}
public class AccountPK implements Serializable {...}

c02.fm Page 17 Tuesday, February 28, 2006 2:51 PM

18 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

The annotation of stereotypes on UML model elements allows us to change or specify the
meaning of an element. A class with the stereotype «Business Entity» is not just a simple class,
but is rather a self-contained entity in business applications. What this means in practice is
determined by transformations that define how a stereotype such as «Business Entity», for
example, is mapped to an existing platform such as J2EE.

Such an extension of the standard language vocabulary of UML through stereotypes is called
a (UML) profile. It is a standard mechanism specified by the OMG to ensure openness, and is
used here to define a formal modeling language. This formalization is mandatory for trans-
forming a UML model into an MDA model. The concepts «Business Entity», «UniqueID», and
«Query» are completely independent of the target platform. Dependency occurs through the
transformation from PIM to PSM. Here, we find the stereotypes that are specific to J2EE:
«EJBEntityBean», «PrimaryKeyField», and «EJBFinderMethod». These are also originally con-
cepts that acquire their meaning through transformations, in this case transformations into the
Java programming language.

The transformation eventually turns the PSM into source code, in which the concepts
described here can be found in their concrete manifestation.

2.4.1 An Overview of MDA Concepts

The Model

A model is an abstract representation of a system’s structure, function or behavior. MDA models
are usually defined in UML9. In principle, the MDA formally considers even classic program-
ming languages as MDA modeling languages that in turn maintain relationships with a platform.
Without a doubt this is correct, but we are of the opinion that this approach occasionally ham-
pers the elucidation of concepts, so from now on we will keep the terms model and modeling
language clearly separate from the terms program and programming language.

UML models are not per se MDA models. The most important difference between common
UML models (for example analysis models) and MDA models is that the meaning (semantics)
of MDA models is defined formally. This is guaranteed through the use of a corresponding mod-
eling language which that is typically realized by a UML profile and its associated transforma-
tion rules. We discuss these mechanisms in greater detail later in this chapter. All in all, this
means that the mapping of a model to an existing platform is clearly defined.

The Platform

At first the MDA says nothing about the abstraction level of platforms. Platforms can build on
each other, for example an Intel PC is a platform for Linux. Similarly, CORBA, J2EE, or Web
Services are possible platforms for an e-business system, and C++ is a possible platform for
CORBA. A well-defined application architecture, including its runtime system, can also be a
platform for applications. We consider the latter idea of the key concepts for Model-Driven Soft-
ware Development and discuss it in greater detail later on.

9 According to the standard with MOF-based models – see Chapter 6.

c02.fm Page 18 Tuesday, February 28, 2006 2:51 PM

2.4 Basic Terminology 19

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

UML Profiles

UML profiles are the standard mechanism for expanding the vocabulary of UML. They contain
language concepts that are defined via basic UML constructs such as classes and associations,
stereotypes, tagged values, and modeling rules (constraints) – see Figure 2.5.

A UML profile is defined as an extension of the UML metamodel. A metamodel defines,
among other things, the basic constructs that may occur in a concrete model. Conceptually, a
model is an ‘instance’ of a metamodel. Accordingly, the UML metamodel contains elements
such as Class, Operation, Attribute, or Association. The metamodel concept is one of the most
significant concepts in the context of MDSD. For this reason, we dedicate a whole chapter to it,
Chapter 6. However, at this stage we are content just to gain an intuitive understanding. The
relationship between the metamodel and profile is clarified in Figure 2.6, using a simplified
example – a UML profile for Enterprise Java Beans (EJB).

In the UML profile, the standard UML concepts Attribute, Class and Operation are supple-
mented by the specific concepts PrimaryKeyField, EJBEntityBean and EJBFinderMethod. In
addition, a new UML 2.0 language construct, an extension, is used. This is indicated by the
filled-in inheritance pointer. To avoid confusion, we made these larger.

Additional extensions are defined through tagged values and modeling guidelines in the form
of constraints. A constraint is usually annotated as a comment for the respective model elements:
we use the formal constraint language OCL here. Tagged values are rendered as attributes of the
stereotype.

A UML profile therefore offers a concrete notation for referencing metamodels from a model,
and determines whether a certain model is ‘well-formed’, that is, valid or not. In short, it defines
a formal modeling language as an extension of UML.

Further details of these relationships are elaborated on in Chapter 6.

Figure 2.5 Use of a UML profile

1

{EJBPersistenceType=Container}

<<PrimaryKey>> number : int
balance : float

<<EJBEntityBean>>
Account

{EJBPersistenceType=Container}

<<EJBFinderMethod>>
findByLastName()

<<PrimaryKey>> id : String
lastName : String
firstName : String

<<EJBEntityBean>>
Customer

*

customeraccount

Stereotype

Tagged Value

context Account:
inv: number > 1000000 and
 number < 9999999

Constraint

c02.fm Page 19 Tuesday, February 28, 2006 2:51 PM

20 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

PIM and PSM

The separation of Platform-Independent Model (PIM) and Platform-Specific Model (PSM) is a
key concept of the OMG’s MDA. The background to this is as follows: concepts are more stable
than technologies, and formal models are potentially useful for automated transformations. The
PIM abstracts from technological details, whereas the PSM uses the concepts of a platform to
describe a system (see Figure 2.7). The reverse route – the extraction of a PIM from a PSM – is
extremely hard to automate, and in some cases impossible. That usually requires manual, intel-
lectual work, which is somewhat awkwardly termed Refactoring in the MDA specification. (The
meaning of Refactoring leans more toward equivalence transformations – see [Fow99].)

Figure 2.6 UML metamodel and UML profile for EJB (section of)

Figure 2.7 The relationship between PIM, PSM and platform

UML Meta Model

<<metaclass>>
Class

<<metaclass>>
Attribute

<<metaclass>>
Operation

operation

0..*

attribute

0..*

Simple
EJB Profile

<<stereotype>>
PrimaryKey

EJBPersistenceType: (Bean, Container)

<<stereotype>>
EJBEntityBean

<<stereotype>>
EJBFinderMethod

context EJBEntityBean:
inv: attribute->exists(isStereoKinded("PrimaryKey")

PIMPIM'

PSM-1

Mapping

PSM-1'

Refactoring

Platform-1

based on

c02.fm Page 20 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 21

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

Transformations

Transformations map models to the respective next level, be it further models or source code. In
terms of the MDA, transformations must be definable flexibly and formally based on an existing
profile. This is a prerequisite for the desired automation of the transformation via generators.

Most of the currently-available MDA/MDSD tools define their transformation rules not
between two metamodels, but instead for example use templates for the direct generation of
source code, without the programming language’s metamodel being formally known to the gen-
erator. However, generators exist that attach the transformation rules to the UML profile or,
respectively, its corresponding metamodel. Such approaches are absolutely workable in practice,
and are described in Chapters 3 and 9. The advantage of a transformation based on two meta-
models (source and target) is mostly the elegant mapping from one metamodel to another. We
doubt whether this paradigm is feasible for the generation of source code in practice, however.

Current generators solve this problem in a different way, through the use of proprietary trans-
formation languages. In this context, JPython, TCL, JSP, XSLT, or custom script/template lan-
guages are used10. The generator templates defined with these languages principally work like
macros and use the models as input data. As a consequence, at present no interoperability for
model transformations exists: standardization is on its way, however – see Section 10.5. Here we
will have to wait until standardization has been accomplished.

Chapter 12 provides a deeper insight into the MDA standard.

2.5 Architecture-Centric MDSD

In this section we want to supply the foundations that can enable you to understand the later case
study: one flavor of MDSD that is termed Architecture-Centric MDSD (AC-MDSD). The
approaches described here have evolved in the course of six years’ practical experience with
many projects, and particularly focus on practical usability.

2.5.1 Motivation

In contrast to the primary goals of the OMG for MDA, interoperability and software portability,
AC-MDSD aims at increasing development efficiency, software quality, and reusability. This
especially means relieving the software developer from tedious and error-prone routine work.
Today developers are confronted with extremely complex software infrastructures: application
servers, databases, Open Source frameworks, protocols, interface technologies and so on, which
all need be connected to create robust and maintainable high-performance software. Due to
increasing complexity in this field, the discipline of software architecture assumes more and
more importance.

The existence of a software infrastructure also implies the existence of corresponding infra-
structure code in the software systems using it. This is source code, which mostly serves to
establish the technical coupling between infrastructure and applications to facilitate the devel-
opment of domain-specific code on top of it. The J2EE/EJB programming model is a prime

10 These languages are themselves domain-specific languages for the domain of defining code-generation templates.

c02.fm Page 21 Tuesday, February 28, 2006 2:51 PM

22 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

example in this context: home and remote interfaces, Bean classes, descriptors – technical
code that admittedly contains domain-related information such as method signatures, but
which also exhibits a high degree of redundancy. After they have built four or five Enterprise
Beans manually, if not before, a J2EE developer will long for a generator to create this type of
infrastructure code – and can get this kind of support, typically in the shape of a preprocessor
or an IDE wizard.

At best, some infrastructure components will bring their own ‘helpers’ for the generation of
their own infrastructure code11. The problem here is that these tools do not ‘know’ each other,
which is why they fall short of the possibility of a holistic and architecture-centric approach, as
we will see in the case study.

Ergo, the goal of AC-MDSD must be integrated automation of infrastructure code genera-
tion and, as a consequence, the minimization of redundant infrastructure code in application
development.

When we talk about infrastructure code, we are not talking about peanuts: measurements
[Chapter 18] show that between 60% and 70% of modern e-business applications typically con-
sists of infrastructure code.

2.5.2 Generative Software Architectures

As the adjective architecture-centric already implies, software architecture plays the central role
in the MDSD flavor discussed here. Actually, a holistic, generative approach for the creation of
infrastructure code can only work on the basis of a thoroughly worked-out and formalized soft-
ware architecture.

You can imagine this as follows: the more and the better a software architecture has been elu-
cidated, the more schematic the source code of applications using this architecture will become.
If the architecture’s definition consists only of slides representing the system infrastructure
(databases, application server, mainframes, networks and so on) and maybe additionally the
most important layers, it is likely that two developer teams will realize the same application in
entirely different ways – including the implementation of the software architecture: two unique
applications will be created.

If we assume however that a team of architects does some groundwork and develop some sort
of technical reference implementation that shows the concrete realization of the most important
software architectural aspects at the source code level, application developers can use this refer-
ence as a blueprint. Since the same technical realizations – notwithstanding domain variations –
recur in development practice (for example use of a specific interface technology or an MVC
pattern), the majority of the workload would be copy and paste programming. Of course, this
sort of programming is much more efficient than individually thought-out code created from
scratch.

In essence, the more of a software architecture’s definition has been fleshed out in source
code, the more schematic and repetitive the application development process will become. Sche-
matic programming means mostly copy and paste, followed by modifications that depend on the
domain context. This part of the work is clearly non-intellectual. If we pursue this train of
thought, it is not too far-fetched to leave the tedious and error-prone copy/paste/modify job to a

11 In the case of EJB this will for example be realized in Version 3.0.

c02.fm Page 22 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 23

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

generator, which ultimately leads to a generative software architecture. Here, all implementation
details of the architecture’s definition – that is, all architectural schemata – are incorporated in
software form. This requires a domain model of the application as its input, and as output it gen-
erates the complete infrastructure code of the application – the very code that otherwise would
need to be generated via a tedious copy/paste/modify process. To this end, the model only needs
to have specific annotations that reference the architectural concepts defined as part of the gen-
erative software architecture.

Usually an architecture-centric UML profile is used for modeling in AC-MDSD. Thus a for-
mal, architecture-centric application design is created. The model-to-code transformations are
defined typically in the form of generator templates, so that the complete infrastructure code can
be generated automatically from the architecture-centric design model. It is important to note
that the model must already contain all relevant information for the generation of the infrastruc-
ture code – it is just a lot more abstract and more compact than the expanded code. The tem-
plates can use the entire infrastructure’s power and base the generated code on this platform, as
described in Section 2.3, simplifying the templates. Since the generation of the code is motivated
by technical and architectural concerns, a ‘semantic gap’ remains: developers must manually
create the application’s actual domain code, that is, the actual, domain-specific functionality that
is not infrastructure code.

There are various techniques for the integration of generated and manually-created code. We
look at them in detail in Chapter 8 and Chapter 9. Figure 2.8 illustrates these correlations. They
are explained further in the next chapter’s case study, using a practice-oriented, realistic example.

A generative software architecture is a powerful means to achieve the goals we listed in
Section 2.2. Its most important advantages are higher development speed and software quality,
better maintainability, and practical reusability – reusability within one application, but of
course even more beyond the boundaries of a single application. A generative software archi-
tecture can support an entire group or family of architecturally-similar applications – a soft-
ware system family. In effect, AC-MDSD deals with the creation of generative software
architectures for software system families, instead of creating unique products.

Figure 2.8 The principle of architecture-centric MDSD

Application

Architecture-centric
Design Model

Infrastructure Code

Business
Logic Code

(manually developed)

Generative Architecture

Architecture-centric
UML Profile (DSL)

modeled using

Generator Templates
(Model-2-Code

Transformation)

Infrastructure
Components (Platform)

Generator

supported by

transformed into

c02.fm Page 23 Tuesday, February 28, 2006 2:51 PM

24 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

2.5.3 Architecture-Centric Design

The defined design language (typically a UML profile) contains the software system family’s
architecture concepts in the shape of a ‘platform-independent’12 abstraction. Designers use this
design language to create the domain’s application design in the form of PIMs. Other than when
dealing with the OMG–MDA vision, they will in most cases deliberately forego the transforma-
tion of these PIMs into explicitly visible, platform-dependent UML models (PSMs) when work-
ing with AC-MDSD.

Practical project experience has hitherto proved that this simplification is usually more useful
than the additional degrees of freedom gained with PSMs. As a consequence, one need not con-
trol, manipulate, and enrich the various intermediate transformation results with specific infor-
mation13. This not only allows for a more efficient development, but also avoids potential
consistency problems: a manual change of an intermediate model might result in an inconsist-
ency with higher abstraction levels that is not automatically correctable.

Similarly, we forego reverse engineering from the source code to the PIM, which in general is
not feasible anyway. A model that has been created ‘backwards’ from source code is naturally as
little abstract as the source code itself. Only its presentation is different, perhaps providing better
understandability for some purposes. For specific arbitrary sections of source code, a PIM from
which the program could be derived via transformation14 may not exist – especially if the PIM
modeling language focuses on a specific domain such as software architecture for e-business
systems. In the context of MDA specifications, this fact is more or less ignored by the OMG
however.

Some members of the MDSD tool-builders community anticipate tool-supported wizards or
some similar solution that will at least enable semi-automated reverse engineering. In our opin-
ion this is a concession rather than a goal-oriented concept15 – at least where newly developed
software is concerned. Admittedly, this view may first be perceived as being disadvantageous,
depending on your personal work preferences, but in truth it is an advantage, as we will learn
later on. Basically, AC-MDSD builds on forward engineering.

This forward-engineering based, generative approach allows us to derive conclusions about
generated applications from the ‘hard facts’ of architecture-centric models. A generative archi-
tecture can guarantee a loose coupling of components or the absence of access paths between
different application layers. For example, it can ensure that a presentation layer, for example a
Web user interface, cannot access a database’s SQL interface directly.

At this point it’s important to note that forward engineering is not to be mistaken for a model
that uses the waterfall approach to development. It merely means that design changes must be
made to the model instead of the source code, which of course does not mean that the whole
application must be modeled at once. We concede that forward engineering does not exclude
such an approach, but this does not mean that it is mandatory. In fact, we favor an iterative,
incremental process [Oes01].

12 Platform-independence is a relative term. Here, it refers to the independence of standard software platforms like
J2EE.

13 We are not against the modularization of transformations through successive execution here, yet we do not favor
explicitly visible and manipulable intermediate results.

14 Mathematicians would say that the mapping of a PIM model to a programming language is not surjective.
15 In the context of adaptation of legacy software for MDSD, reverse engineering can make sense, quasi as boot-

strapping.

c02.fm Page 24 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 25

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

Let’s now examine an example of such a PIM, shown in Figure 2.9. This model does not
reveal anything about the technologies that were used – the technological realization of such
models is defined only once it is mapped to a concrete platform. A formal UML design language
is created through the semantic enrichment of the model with stereotypes, tagged values, and
constraints. For AC-MDSD, the abstraction level of this language lies on the level of architec-
tural concepts, which is why we speak of architecture-centric design. In other words: the domain
of AC-MDSD is software architecture.

The domain-related meaning of the diagram in Figure 2.9 is fairly obvious: at its core is an activ-
ity, a module for superordinate process models that is able to carry out an action for the creation
of a customer-specific account overview. The customer entity serves as input, which is transmit-
ted to the activity. Besides two domain-related attributes, the customer entity possesses an iden-
tifying characteristic (a key) and is able to calculate the total balance by adding balances of the
associated accounts. The activity, or respectively its action, uses a presentation with three
domain-related attributes to display the result.

A standard Java code generator would ignore the annotated stereotypes and generate the sig-
natures of four simple Java classes. In AC-MDSD, the realization of the model on the program-
ming language side is realized by a mapping to a concrete platform. This is illustrated by the two
examples that follow.

For an EJB-Based Architecture with HTML Clients

Activity classes are stateless session Beans that implement the interfaces of a server-
side process engine. Each action is declaratively transactional. The entity classes are
Beans with corresponding local interfaces. Attributes of the type key constitute the pri-
mary key classes. For public attributes, getter and setter methods are applied. Container
Managed Persistence (CMP) is used for persistence. The necessary descriptors can be
deduced from the model. For associations, access methods are available that are based

Figure 2.9 An example of architecture-centric design

<<action>> + createOverview()

<<activity>>
CreateAccountOverview

calculateTotalBalance() : Double

<<key>> + CustomerNumber : String
+ Surname : String
+ Forename : String

<<entity>>
Customer

<<input>>

1

<<key>> + AccountNumber : String
+ BankCode : String
+ Balance : Double

<<entity>>
Account1 1..n

+ Surname : String
+ Forename : String
+ TotalBalance : Double

<<presentation>>
AccountOverview

c02.fm Page 25 Tuesday, February 28, 2006 2:51 PM

26 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

on the associated model’s finder methods. The presentation classes specify JSP models
that serve to fill JSP/HTML pages. The presentation implementations are activated by a
FrontController framework.

For a C++/CORBA-Based Client-Server Architecture

For each activity class there is an IDL interface. All attribute and parameter types of the
design are mapped to corresponding IDL types. A suitable C++ skeleton exists. The
activity classes implement the interfaces to a specific workflow system. Actions (action
operations) are transactions on an Object Transaction Monitor (OTM). All entity
classes are non-distributable C++ classes: their instances are submitted to a RDBMS
via object-relational mapping. Attributes of the type key serve as primary keys. The
presentation classes are Java Swing GUIs that implement the interfaces of a specific
client-framework.

By means of this simple example of a model we can easily recognize the main
advantages of this approach: architecture-centric models are compact, sufficiently rich
in information and do not contain any superfluous details that would impede portability
and lower their degree of abstraction. They are therefore more concise and easier to
maintain. Moreover, they are better suited for enabling discussions with other project
members, as they are not polluted with technical details.

2.5.4 Development Process

Generative software architectures and architecture-centric design can only be applied effectively
when the development methodology is adequately adapted. This extremely important issue is not
in the focus of the MDA’s attention. We dedicate the whole of Chapter 13 to this issue, which
illuminates MDSD from a process point of view. Since we are dealing with the special case of
architecture-centric design here, preparing the foundations for the following case study, we high-
light only a few aspects here.

Separation Between Architecture Development and Application
Development

We have already seen that a generative software architecture leads to a modularization of appli-
cation development: UML profile, generator templates, and infrastructure components on one
hand, architecture-centric design, generated infrastructure code, and manually-implemented
code on the other.

Quite clearly, the applications depend on the generative software architecture, but not vice
versa. This leads us to the consideration of splitting the creation of these artifacts into two sep-
arate paths: as in framework development, one team can handle the creation of the generative
software architecture (the architecture development track) while another team deals with appli-
cation development (the application development track). The dependencies must be alleviated
by a suitable synchronization of the iterations, or through release management – more about

c02.fm Page 26 Tuesday, February 28, 2006 2:51 PM

2.5 Architecture-Centric MDSD 27

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

this topic can be found in Chapter 13. Regardless of the question of whether one wants to assign
different people to the two paths or not, we are obviously dealing with substantially different
activities here, so that a role-oriented view makes sense:

• Architects develop the generative software architecture.
• Designers create the application’s architecture-centric model.
• Developers program the application logic and integrate it in the generated infrastructure

code.

The Importance of the Reference Implementation

A practical generative software architecture is not realized out of the blue – a blueprint is needed
for the code to be generated. This blueprint is called a reference implementation. We are refer-
ring to a runnable sample that is as concise as possible with respect to actual domain functional-
ity, but which shows the semantics of the architecture-centric UML profile constructs on the
source code level. In the next step, generator templates can be derived from such a reference
implementation. We will concretize these in the course of a case study, as well as discussing
them in greater detail in Chapter 13.

2.5.5 The Properties of Architecture-Centric MDSD

Before we get started with the case study in the next chapter, we’ll briefly summarize the proper-
ties of architecture-centric MDSD. Methodological aspects come to the fore here: AC-MDSD
supports individual architectural requirements. Its focus is clearly the engineering principle and
not the integrated development environment (CASE or MDA tool/IDE). In other words, nothing
will be generated that hasn’t been verified before via a reference implementation. Therefore, we
can skip questions that often emerge in the context of generative approaches, such as “How good
is the runtime performance of the generated code?” or “How good is the quality of the generated
source code?” The generated code is as good (or as bad) as the reference implementation from
which the generator templates are derived.

• Software system families instead of unique items. AC-MDSD not only aims at increas-
ing efficiency and quality when developing one-off applications, it also aims at the
reuse of generative software architectures for architecturally-similar applications that
therefore constitute software system families. This aspect is not explicitly a main con-
cern of the MDA.

• Architecture-centric design. Other than the MDA, we (usually) work without platform-
specific models. Instead we apply platform-independent models in architecture-centric
design. This approach, which on one hand poses a limitation, clearly leads to optimization
on the other. The maintenance effort for intermediate results is reduced and consistency
problems are avoided.

• Forward engineering. Contrary to the MDA vision, we deliberately avoid round-trip
engineering. Since architecture-centric MDSD models require real abstractions, reverse

c02.fm Page 27 Tuesday, February 28, 2006 2:51 PM

28 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) February 28, 2006 2:39 pm

engineering is either not possible, or does not make sense. Design changes have to be
made to the actual design – that is, the model. Thus the model will always be consistent
with the generated source code.

• Model-to-model transformation for modularization only. We use a PIM that is as abstract
as possible, but ideally is directly (and of course iteratively) transformable into source
code. The ‘transformation gap’ can be modularized via model-to-model transformations,
but intermediate models occurring en route are implementation details that are invisible to
the application developer.

• Source code generation without explicit use of the target metamodel. The generation of
programming language source code is essential for AC-MDSD (Chapter 9). However, we
believe that model transformations as they are currently being discussed in the context of
the MDA standardization are only helpful for model-to-model transformations. The gener-
ation of architecturally-motivated infrastructure source code in this manner is very cum-
bersome, whereas the use of generator templates is proven and can be handled very
intuitively. The source metamodel (that is, that of the design language) is, with the excep-
tion of the target metamodel, very useful for the generation of source code in order to
structure the transformation rules, as our case study will demonstrate.

• No 100% generation. As a rule, ‘only’ 60% to 80% of software is generated from architec-
ture-centric models. We think that 100% generation is possible, and wise, in only very few
exceptional cases16. Architectural infrastructure code of an application is 100% generated,
but the individual/domain-related aspects are supplemented in the target language.

• Software architecture becomes manageable. Generative software architecture is per se for-
mal and up-to-date. The developers cannot leave the frame of the infrastructure code that
has been set, either accidentally or on purpose. This is clearly an advantage as far as qual-
ity is concerned. Developers and designers can immediately detect all changes in the
architecture and can handle them in the right place – that is, centrally in the generative
software architecture, instead of distributed all over the application. Technical and
domain-related aspects are clearly separated. Therefore AC-MDSD makes sure the archi-
tecture is really used consistently in an application, and helps to realize architectural
changes that cut across the system. This again supports the scalability of the development
process. In other words, AC-MDSD is a very useful and powerful instrument for software
architecture management.

So where do we go from here? After you have established a stable AC-MDSD infrastructure, it is
often useful to cascade additional MDSD-layers on top of it. This approach, called cascaded
MDSD, is explained in Section 8.2.8.

16 This statement is valid for AC-MDSD only, not for MDSD in general.

c02.fm Page 28 Tuesday, February 28, 2006 2:51 PM

29

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

3 Case Study: A Typical Web Application

After we have established the foundations for MDSD in general, and Architecture-Centric,
Model-Driven Software Development (AC-MDSD) in particular, we can now proceed to a
hands-on case study to familiarize ourselves with AC-MDSD in practice.

3.1 Application Development

First, we assume the application developer’s position and presuppose the existence of a genera-
tive software architecture, as described in Section 2.5. This will typically be created iteratively
and incrementally in parallel with application development. We will discuss the methodology
required for this purpose in greater detail in Chapter 13.

We should mention that this view constitutes a role-based representation. However, we will
not say anything about the allocation of roles to people yet, since this is a matter of project
organization, which is covered in Chapter 19. Here we focus primarily on categorizing the vari-
ous activities to help an understanding of the subject matter. Based on an example application,
we explain the most important steps, then proceed to describe the relationship between applica-
tion development and the generative architecture.

An iteration in application development begins with the creation or extension of an applica-
tion design, in this example using a UML tool. The application design’s XMI1 representation,
exported from the UML tool, is transformed into an implementation skeleton via an MDSD gen-
erator. The actual business logic is programmed manually and integrated into the generated
infrastructure code. To this end, we use protected regions, also known as protected areas. Syn-
tactically, these are comments in the target language, but are interpreted by the MDSD generator.
Each protected region within the generated code possesses a globally unique identifier disguised
as a comment, and is thus uniquely linked to a model element. In this way the generator can pro-
tect the contents of these regions, insofar as it re-inserts their contents at the correct locations in
the generated code during iterative regeneration. This procedure is also quite robust with respect
to renamings in the model, because the protected regions’ IDs are generated from UUIDs2 of the
model (more precisely, from the XMI format), rather than from names of model elements such

1 XMI: XML Metadata Interchange. A MOF–XML mapping that is used mostly to serialize UML models in XML
form. Almost all UML tools support XMI, which is an interoperable export format.

2 Universal unique identifiers for model elements.

c03.fm Page 29 Tuesday, February 28, 2006 4:29 PM

30 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

as class names or something similar. Using this approach, protected region contents will also
survive renamings in the model. The content of its protected regions will be deleted only if you
delete a model element.

Protected regions are not always the best means for integrating generated and manually pro-
grammed code, but this is not our concern yet.

3.1.1 The Application Example

The following example has been taken from an MDA/MDSD tutorial, and has been presented as
a ‘hands-on’ session with great success at various conferences (JAX, OOP, and others). The
application was created to illustrate a holistic software development approach, ranging over
business process analysis, architecture-centric design, and model-driven code generation, to the
implementation of the business logic, while being based on a simple but non-trivial example.
The analysis model was taken from tutorial material from oose.de GmbH, and the generative
software architecture was built by b+m Informatik AG.

The example describes the development of an information system for a car-sharing company.
Figure 3.1 shows the use-case overview of the fictitious application ‘Car-Sharing 1.0’.

Car-Sharing Version 1.0 implements the system use case ‘Make car reservation’ and allows car res-
ervations as well as car management. The members of the car-sharing community are registered in

Figure 3.1 Use case overview of the car-sharing application

Cancel
Reservation

Edit Reservation
{abstract}

Change
Reservation

<<secondary>>
Identify Member

<<include>>

<<secondary>>
Determine
Reservable

Cars

<<secondary>>
Take Reservation

Request

<<include>>

<<include>><<include>>

Reserve
Car

<<include>>
<<include>><<include>>

c03.fm Page 30 Tuesday, February 28, 2006 4:29 PM

3.1 Application Development 31

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

the system for authorization and – later – billing purposes. The main purpose of the system is the
electronic execution of car reservations through call-center agents.

The architecture of the car-sharing application is a classic three-tier architecture, consisting of
a presentation layer, a process layer, and a persistence layer – see Figure 3.2. It is based on the
J2EE framework.

The presentation layer uses the MVC pattern based on the Servlet Model 2 architecture à la
Struts [STRT]. All HTTP requests from the browser are intercepted centrally by a FrontControl-
ler, then evaluated and dispatched to the respective view to be displayed. The FrontController
delegates the evaluation and processing of triggered GUI actions, as well as the evaluation of
guards in the navigation sequence to the according SubController. The SubController provides
the data required by a View’s display in the shape of a ViewModel. For the purposes of flow con-
trol, this layer uses the Struts framework. Data exchange with the process layer takes place via
ValueObjects. The process layer offers the presentation layer’s controllers stateless transactional
services in the form of methods on ProcessObjects. These process objects allow controllers to
read the view-relevant data and to store newly-received data. At the same time, entities located
in the persistence layer are protected from being directly accessed by objects in the presentation
layer.

The persistence layer possesses a persistent business object model (BOM) that is implemented
using Java Entity Beans. Persistence is handled by the CMP mechanism (Container Managed
Persistence) in combination with an SQL database. The target platform and runtime environ-
ment of the application are built exclusively from Open Source software: a Tomcat Web server
[TOMC], the EJB 2.0-compliant application server JBoss [JBOS], and the HyperSonic SQL
[HSQL] database. The runtime environment’s central element is the Struts framework, which
controls the application’s processes. In addition, the runtime environment is completed by some
super and helper classes.

Figure 3.2 Car sharing architecture

Struts

Presentation Business Logic Persistence

ProcessObject
(Session Bean)

Value Object
(Java Bean)

EntityObject
(Entity Bean)

OR Mapping
(CMP)

View
(JSP)

Model
(ActionForm)

Controller
(Action)

Front
Controller

request

response

activates
controls

c03.fm Page 31 Tuesday, February 28, 2006 4:29 PM

32 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The creation of the car-sharing application’s design in the form of a PIM is conducted with the
help of a design language (UML profile) which describes architecture concepts. In the UML
profile we can find the concepts that were laid out in the conceptual architecture overview in a
simplified form (for example EntityObject, ValueObject and so on). We discuss the exact profile
definition later. Transformation to the target platform (the platform binding) is achieved via a set
of generator templates that generate the required source code from the model information. The
design language and the platform binding, in the form of templates, make up the generative soft-
ware architecture (Section 2.5), which can be seen in Figure 3.3.

3.1.2 MDSD Tools

To apply AC-MDSD in practice we need a UML modeling tool and an MDSD generator. The
UML tool must be able work with UML profiles for UML language extensions. At present, no
mainstream UML tool exists that is able to evaluate modeling constraints, that is, able to check
the assertions made on the metalevel in the form of OCL expressions3. Checking constraints
therefore needs to be supported by the MDSD generator.

The generator tool must read the models provided by the respective UML tool and use them as
input for generation. Today, most UML tools are able to save models in XMI format, but XMI
quality varies. Thus the MDSD generator should offer predefined and customizable adapters for
different modeling tools.

A more detailed discussion of tools and requirements can be found in Chapter 11.

Figure 3.3 Generative software architecture and runtime environment

3 OCL: Object Constraint Language, part of UML.

CMP-2.0 Mapping

SessionBean

Struts-Config

JSP

Architectural Concepts/
UML Profile

Generator Output Platform

Presentation

ActivityController

ValueObject

ProcessObject

EntityObject

Struts-ActionForm

Struts-Action

Java-"Struct"

BusinessInterface

BusinessDelegate

Entity Bean

Tomcat

Struts

Baseclasses / Util

HSQL DB

JBoss

= Transformation

c03.fm Page 32 Tuesday, February 28, 2006 4:29 PM

3.1 Application Development 33

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

In our scenario, we use the UML tool Poseidon UML Community Edition from Gentleware
[POSE], whose XMI output is transformed into source code by the openArchitectureWare gen-
erator framework [OAW] via generator templates. This source code is then further modified in
the Eclipse IDE [ECLI]. The generator framework is supplemented with an Eclipse plug-in, so
that its use in an integrated development environment is feasible. It also meets the requirements
stated above.

The following examples outline the developer’s activities at the various levels of application
programming that occur in the course of the design/generate/build cycle.

3.1.3 Example 1: Simple Changes to Models

The first example describes a simple change to the static class model of the car-sharing applica-
tion and the execution of one cycle of design, generate and build. Since the JSPs required for the
car-sharing application are completely generated from the information in the class that has the
«Presentation» stereotype, it is advisable to change something in the presentation layer (see
Figure 3.4).

The left of Figure 3.4 shows the presentation class UserRegistration, and the right-hand side
shows the dialog (JSP) that is generated from it, after HTML rendering. The methods of the
Presentation class have as their counterparts the Continue buttons in the browser’s JSP presenta-
tion. The renaming of the method Finish as Exit in the UserRegistration class results in a change
of the respective button’s label, as you can see from the dialog. Besides the JSP, the Struts
ActionForm, which constitutes a View Model, is completely generated from the presentation
class. Both artifacts are the results of transformations.

Figure 3.4 Transformation of UserRegistration model to the concrete dialog
UserRegistrationView

c03.fm Page 33 Tuesday, February 28, 2006 4:29 PM

34 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The following code shows the generated JSP UserRegistration.jsp.

The following listing shows the form class behind it:

...
<html:form action="<%= (String) request.getAttribute("FormAction") %>"
method="Post">
 <table border="0" cellspacing="0" cellpadding="0" >
 <tr>

<td><bean:message
key="de.amg.carsharing.user.presentation.UserRegistration.userid"/> </td>
 <td>
 <html:text property="userid"/>
 </td>
 </tr>
 <tr>
 <td><bean:message
key="de.amg.carsharing.user.presentation.UserRegistration.password"/> </
td>
 <td>
 <html:password property="password"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="hidden" name="registration.jsp.Event" value="Continue">
 <input type="submit" name="Event" value="Continue"/>
 </td>
 <td>
 <input type="hidden" name="registration.jsp.Event" value="Exit">
 <input type="submit" name="Event" value="Exit"/>
 </td>
 </tr>
</table>

</html:form>
...

package de.amg.carsharing.user.presentation;

import org.apache.struts.action.ActionForm;
public class UserRegistrationForm extends ActionForm
{

private String userid;
private String password;
public String getUserId()

{
 return userid;
}
public void setUserId(String aUserId)
{
 userid = aUserId;
}

c03.fm Page 34 Tuesday, February 28, 2006 4:29 PM

3.1 Application Development 35

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

Where simple changes during development are concerned, we work exclusively at the model
level. After such changes have been made, the model is exported to XMI format. The generator
interprets the XMI and generates the corresponding sources. Building as well as deployment
both take place in the IDE or via Ant [ANT].

It is clear that the model here takes the place of source code. – all information regarding the
change is kept in the model. It is therefore advisable to integrate the model into the application’s
release management in addition to the actual sources.

3.1.4 Example 2: Model Changes and Protected Regions

The second example illustrates how individual parts of business logic in protected regions can be
supplied. For this purpose, we look at how a parameter that is required for making reservations is
determined in the process layer and made available to the presentation layer.

Figure 3.5 shows the part of the model that is needed in the process layer. Here, the MakeReser-
vationPO gets the getReservationParameter() method, which returns ReservationParameterVO.

 public String getPassword()
 {
 return password;
 }
 public void setPassword(String aPassword)
 {
 password = aPassword;
 }
}

Figure 3.5 MakeReservation process view

+ checkAvailability(reservationStart : Date, reservationEnd: Date,
selectedStationID : String, selectedCarCategoryID : String) : Collection

+ getReservationParameter() : ReservationParameterVO

+ reserveCar(reservationStart : Date, reservationEnd: Date,

selectedCarNo : String, memberId : String) : ReservationConfirmationVO

<<ProcessObject>>
MakeReservationPO

- Member : String
- Station : String
- Car : String
- ReservationStart : Date
- ReservationEnd : Date

<<ValueObject>>
ReservationConfirmationVO

- Stations : Collection
- CarCategories : Collection

<<ValueObject>>
ReservationParameterVO

- ReservationStart : Date
- ReservationEnd : Date
- Station : String
- CarCategory : String
- Car : String
- CarId : String

<<ValueObject>>
CheckAvailabilityVO

c03.fm Page 35 Tuesday, February 28, 2006 4:29 PM

36 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The ReservationParameterVO serves as a data container to enable passing of data from the proc-
ess layer to the presentation layer. During generation, all classes, Java interfaces and deployment
descriptors necessary for the execution of MakeReservationPO in a Session Bean are generated
from this model. Additionally, a MakeReservationBusinessDelegate is generated that is based
on the business delegate pattern from the J2EE core patterns [CORE]. The Reservation-
ParameterVO is 100% generated, whereas for the method getReservationParameter() only the
method signature is generated. The implementation must be added manually in the IDE. This is
done in protected regions, as the following code excerpt illustrates:

The decision as to whether protected code regions are required or not must be made at the archi-
tecture level when the generator templates are created (see Section 3.2). Additions or changes
outside these protected areas are not allowed, because they would undermine the clear separation

public ReservationParameterValueObject
 getReservationParameter()
 throws RemoteException {
 // PROTECTED REGION ID(12Operation_MethodBody) START
 ReservationParameterValueObject vo = null;
 try
 {
 CarSharingModuleComponent component =
 new CarSharingModuleComponentImpl();
 StationHome home = component.getStationHome();
 Collection stations = home.findByAll();
 Collection colStations = new ArrayList();
 for (Iterator i = stations.iterator();
 i.hasNext();) {
 Station station = (Station) i.next();
 colStations.add(station.getName());
 }

 Collection colCarCategories = new ArrayList();

 colCarCategories.add(CarCategory.COMPACT);
 colCarCategories.add(CarCategory.VAN);
 colCarCategories.add(CarCategory.SPORT);
 colCarCategories.add(CarCategory.LUXURY);

 vo = new ReservationParameterValueObject(
 colStations, colCarCategories);
 }
 catch (Exception e) {
 e.printStackTrace();
 throw new RemoteException("Error: "+
 "Registration parameter search failed", e);
 }

 return vo;

 // PROTECTED REGION END
}

c03.fm Page 36 Tuesday, February 28, 2006 4:29 PM

3.1 Application Development 37

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

between modeling and programming on one hand, and between application and architecture
modeling on the other: design changes must be made in the design (the application model) and
architectural changes – that is, systematic changes to the generated code – must be made in the
generative architecture. The generator framework ensures this: changes that are made outside
protected regions will get lost in the course of iterative regeneration. This is not intended to
restrict the freedom of application developers, but guarantees consistency, as well as regular
communication between application and architecture development. The definition of this bound-
ary between generated and non-generated code is pivotal and its handling requires some experi-
ence. This subject is described in more detail in Chapter 7.

3.1.5 Example 3: Working with Dynamic Models

Besides the options for generation of source code based on static models, as shown in the previ-
ous examples, dynamic models such as activity diagrams and state diagrams can also be used
for code generation. This example describes how this can work. Figure 3.6 shows an activity

Figure 3.6 Change in the navigation order

User
Registration

Member
Identification

Show
Reservation

Select Car
Category

Reservation
Confirmation

Edit
Reservation

[OK] [OK]

[Cancel]

[End]
[Cancel]

[OK]

[OK]

[Cancel]

[Show
Reservation]

[Cancel]

[Create
Reservation]

Member
Identification

User
Registration

Show
Reservation

Select Car
Category

Reservation
Confirmation

Edit
Reservation

[OK] [OK]

[Cancel]

[End]
[Cancel]

[OK]

[Show
Reservation]

[Cancel]

[Create
Reservation]

[OK]

[Cancel]

c03.fm Page 37 Tuesday, February 28, 2006 4:29 PM

38 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

diagram before and after a change in the navigation order of the resulting application. In the
new version, the step leading to the identification of the calling member must be carried out
before a user registration can take place. (Whether this makes sense or not is open to dispute.)

Since we chose Struts as the control flow framework for our example, the necessary flow con-
trol configurations must be generated based on the activity diagram. The following excerpt from
the Struts configuration shows what this looks like:

The following XML fragment is an extract from the corresponding Struts config.xml, which con-
trols the acquisition of the member ID4.

<!-- ControllerState "UserRegistration" -->
<action
 path="/ UserRegistration_a64aa2a7d0162ba7ffb_Init"
 type="de.amg.carsharing.user.
 presentation.UserRegistrationController"
 name="UserRegistrationForm"
 input="/UserRegistration.jsp"
 scope="request"
 parameter="UserRegistration_Init,a6488aa27d162ba7ffb">
 <forward name="Ok"
 path="/UserRegistration.jsp"
 contextRelative="true"
 />
</action>

<action
 path="/UserRegistration_a64aa2a7d0162ba7ffb_Exit"
 type="de.amg.carsharing.user.
 presentation.UserRegistrationController"
 name="UserRegistrationForm"
 input="/UserRegistration.jsp"
 scope="request"
 parameter="UserRegistration_Exit, a6488aa27d162ba7ffb ">
 <forward name="UserRegistration_To_Exit"
 path="/MemberIdInput_a6affa_Init.do"
 />
 <forward name="Continue"
 path="/SelectCategory_a64aac9_Init.do"
 />
 <forward name="Error"
 path="/UserRegistration_a64aa30f0fbfb_Init.do"
 />
</action>

4 The config.xml file is used to configure pages and page flow in the Struts framework.

c03.fm Page 38 Tuesday, February 28, 2006 4:29 PM

3.1 Application Development 39

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The control flow can be generated completely from the application design. Further manual
manipulations of the Struts configuration are not required. Our experience shows that this is par-
ticularly advantageous, because activity diagrams also document the navigation extremely well
and can thus be used for discussion with domain experts.

3.1.6 Interaction Between Development and Architecture

Good coordination between application development and architecture is the key to success in
MDSD projects. Development of the generative architecture is not finished when the generative
software architecture has been delivered. As the application development steps described in our
examples show, in most cases requirements for change of the generative software architecture
will emerge in the course of the project. On one hand, additional protected code regions are
needed to allow individual adaptations. On the other hand, new architecture patterns are identi-
fied that must be generatively supported. The team will arrive at an optimal, sustainable solution
that meets the requirements only if it manages to accept and incorporate feedback from applica-
tion development into the generative software architecture. In this respect, the generative soft-
ware architecture evolves like a framework. Similarly, it must be versioned and made accessible
to the projects that use it. We will take a closer look at these topics in the third part of this book.

To examine your own ideas for improvement of the generative software architecture in use,
you can test it locally in a ‘sandbox’. The code outside the protected regions will remain
unchanged until a regeneration occurs. If the change yields the desired result, it can be made
accessible to the entire project through an adaptation of the generative software architecture. The
advantage of such an approach is that the generative software architecture is always available in
a well-defined and consistent state.

3.1.7 Intermediate Result

When you assume the role of the developer you gain more time to deal with essential tasks – the
realization of the project-specific business logic. Tedious copy and paste work for the develop-
ment of technical infrastructure code that is totally meaningless for business-related program-
ming is taken on by a MDSD generator or the generative software architecture. Correction of

<!-- ControllerState "MemberIdInput" -->
<action
 path="/MemberIdInput_a64aa3a062ba7ffa_Init"
 type="de.amg.carsharing.member.
 presentation.MemberIdentificationController"
 name="MemberIdentificationForm"
 input="/MemberIdentification.jsp"
 scope="request"
 parameter="MemberIdInput_Init,a60f06b7f">
 <forward name="Ok"
 path="/MemberIdentification.jsp"
 contextRelative="true"
 />
</action>

c03.fm Page 39 Tuesday, February 28, 2006 4:29 PM

40 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

errors in technical code is much easier and can be carried out more efficiently compared to non-
generative approaches. A bug in the infrastructure code must only be fixed in one place, in the
transformation rule of the generative software architecture, similarly to bug-fixing in a frame-
work. After regeneration, all flawed code fragments are replaced with corrected ones.

Because we integrate manually-written business logic code into the generated skeleton, we
however lose our application’s complete platform independence and automatic portability. Quite
clearly, the contents of the protected regions possess dependencies on the programming lan-
guage Java and the Struts framework. There are patterns (such as BusinessDelegate, which has
been used here) that help to reduce these dependencies, yet we are nowhere near a realization of
the OMG’s vision of executable models. Here, the different goals become clear (see Section 2.5):
AC-MDSD is pragmatic and emphasizes the enhancement of development efficiency, quality,
maintainability and reusability, while MDA emphasizes portability and interoperability.

3.2 Architecture Development

The previous section examined AC-MDSD from the application development perspective. In
this context, we assumed the existence of a UML profile (design language), a platform (J2EE,
Struts, persistence layer and so on) as well as a generative software architecture that works for
us. Now we will look at how these artifacts may appear in detail.

One of the key concepts is redundancy avoidance. Redundancy (artifacts that occur multiple
times in different instantiations) cannot be found only on the EJB level, but also in all other lay-
ers of modern software architectures: flow control (such as Struts), presentation (such as JSPs
and ActionForms), controllers, legacy integration and so on. It is our goal to delegate this redun-
dancy as completely as possible into a generative software architecture that ‘knows’ all the con-
struction principles and programming models from various layers, not just single parts or
aspects. The benefit of this approach will be an enormous increase in application development
productivity, as the examples in Section 3.2 demonstrate.

Such a generative software architecture goes far beyond simple generator tools such as XSLT
or XDoclet and does not depend on a specific application. It is reusable and supports an entire
family of software systems with the same technological properties. The car-sharing application
and an insurance application could be among such families as long as they share the same under-
lying technological principles. In this section we are going to create a manufacturing process for
applications that will allow us to automate application development to a great extent based on
models. This is similar to the concept of production lines in automotive engineering. The archi-
tecture development aspect of our MDSD process deals with the creation of such software ‘pro-
duction lines’. This concept is elaborated in Section 13.5.

3.2.1 The UML Profile

First, we need an architecture-centric UML profile that allows us to create formal MDSD
models. Let’s take a look at the model in Figure 3.7.

c03.fm Page 40 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 41

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The domain-related meaning of this model is clear: The class UserRegistrationCtrl, being one
step in the control flow, is able to activate a presentation in which a user’s ID and password can
be entered and committed to the system. For authentication against the system, the controller
uses the service userRegistration() of UserRegistrationPO.

The ProcessObject gets the entity representing the user based on the user ID, which consti-
tutes the user’s identifying characteristic, and validates the supplied password. If registration is
successful, the service issues the controller a UserRegistrationVO with the respective access
data.

For modeling purposes, a design language is used that captures the architectural concepts
used in the application. The focus of this design language is on architectural reusability, and
results in an architecture-centric design, completely abstracting from technological details. The
model can be transformed into source code for various target platforms via suitable rules.

We have already familiarized ourselves with the most important elements of the UML pro-
file in the left column of Figure 3.3. The transformations in the generator are used to achieve
the binding to the platform used in the car-sharing application, shown in the right column of
Figure 3.3.

Figure 3.7 Architecture-centric design for UserRegistration

+ RegistrationSuccessful() : Boolean

<<ActivityController>>
UserRegistrationCtrl

+ Next()
+ End()

- userid : String
- password : String

<<Presentation>>
UserRegistration

- Name : String
- Password : String
- Userid : String

<<ValueObject>>
UserRegistrationVO

registerUser(userid : String,
 password : String) : UserRegistrationVO

<<ProcessObject>>
UserRegistrationPO

- <<Key>> Name : String
- Password : String
- Userid : String

<<EntityObject>>
User

c03.fm Page 41 Tuesday, February 28, 2006 4:29 PM

42 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

Figure 3.8 shows a section of the formal UML profile definition:

This profile represents a specialization of the standard UML metamodel (Chapter 6) on the
class, attribute, and operation level, leading to a special language profile for the specific require-
ments found in the car-sharing’s application three-tier architecture.

The UML extension mechanism’s stereotype and tagged value are used here. For example, the
classes that are assigned the stereotype «Presentation», such as UserRegistration, are responsible
for the presentation and input of data. Classes labeled «EntityObject», such as User, constitute the
application’s persistent business data types, and offer mechanisms for identification and querying.
Design constraints (modeling rules) are also an important part of the profile, and can be formu-
lated with the help of the Object Constraint Language.
Ideally, the profile definition, including the constraints, would take place in the UML tool and
also be interpreted by it, so that exactly those tagged values defined for a certain stereotype are
allowed, and the modeling rules (constraints) of the profile are checked. Unfortunately, many
commonly-used UML tools do not yet possess these features, so that the formal UML profile
definition still has the character of documentation.

3.2.2 Transformations

After we have defined a UML profile, we can now tackle the actual code generation. This is not
a simple task. Fortunately, some partial tasks are of a more general nature, and there are MDSD
tools that will do the work for us. This includes the neutralization of the UML tool’s XMI output,
template expansion control, input/output stream handling, and scanning and persistence of pro-
tected code regions for business logic implementation. Most MDSD generators are frameworks
and use a template-like language to describe transformations from model to code in a straight-
forward way.

Figure 3.8 UML profile definition for the design language

Class
<<stereotype>>

ProcessObject

<<profile>>
EBusinessApps

context EntityObject:
inv: features->
 collect(i|i.hasStereotype("Key")->size() >= 1

<<stereotype>>
EntityObject

<<stereotype>>
ValueObject

<<stereotype>>
Controller

Attribute
<<stereotype>>

Key

keyType : {USER, SYSTEM}

c03.fm Page 42 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 43

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

Using XSLT in this context, one very soon realizes its limitations, particularly when the style
sheet directly transforms the UML tool’s XMI output. Here, the XMI structures are so deeply
entangled and indirectly referenced that XSLT stylesheets very soon become incomprehensible
and therefore unmaintainable. The power of a programming language is also missing, and even
protected code segments are difficult to realize and unwieldy. Sadly, no standard for MDA (or
MDSD) generators or transformations is currently in existence, so the market offers many dif-
ferent approaches with various features. In the following sections we use the Open Source gen-
erator framework openArchitectureWare and the car-sharing example to demonstrate how
metaprogramming in the context of the generative software architecture works in detail.

Metamodel/Profile Implementation

To enable the generator framework to generate the implementation skeleton for the target plat-
form, it requires a Java implementation of the applied UML profile (see Section 3.2.3). The
openArchitectureWare framework makes dealing with this task much easier, as it features a
Java implementation of the UML class together with an activity core metamodel that can be
specialized via Java inheritance. Hence we must create a Java class of the same name for each
stereotype in the profile, which in turn must inherit from the metaclass to which the respective
stereotype will be applied, that which is specified in the UML profile as a scope for the stereo-
type. For example:

Class and Attribute are not classes from the java.lang.reflect package, but – as already stated –
metaclasses supplied by the openArchitectureWare framework.

The clue here is that the generator framework can instantiate this specialized metamodel – at
the beginning of a generator run, it creates an instance of the metaclass EntityObject for each
model element that has the «EntityObject» stereotype. Each single element of the input design
model (classes, associations, attributes, operations, parameter, activities, transitions) is exactly
represented by a Java object of the respective type in the generator’s JVM. Non-stereotyped ele-
ments will, of course, lead to the instantiation of the corresponding core metaclass. As a conse-
quence, the metamodel implementation will be instantiated, that is, a design model will be
transformed into a Java object graph that is ready to be accessed by the generator templates.

Besides the representation of stereotypes, the specialized classes have other important tasks in
openArchitectureWare:

• Tagged values. A stereotype-specific tagged value in the UML profile is simply mapped to
a string attribute of the same name of the corresponding Java metaclass.

• Service methods for generation. To simplify template programming and to prevent the
template language from becoming a full-blown programming language, helper methods
needed for code generation are programmed in Java as public methods of metaclasses.
These can then be called from the templates as metaclass properties.

public class EntityObject extends Class
{}
public class Key extends Attribute
{}

c03.fm Page 43 Tuesday, February 28, 2006 4:29 PM

44 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The following listing shows this next step5:

Attribute is inherited from Class here and constitutes the Java representation of the meta-
relationship between classes and their attributes: in other words, you can learn which
attributes the designer has modeled on the current Class via this API (in this case even an
EntityObject).

The template language of openArchitectureWare does not differentiate between access to
attributes and access to methods of a metaclass – they are just properties. Methods hide attributes
of the same name. The Key property defined here returns all of the EntityObject's attributes that
have the stereotype «key» applied to them. This allows elegant generation of the PrimaryKey class
in the template, for example.

If the UML tool used does not support design constraints, they can be specified in the meta-
model implementation: the generator automatically calls the respective operation prior to actual
generation. After instantiation of the metamodel implementation, the generator tests all con-
straints by calling the CheckConstraints() operation of all model elements. As you can see in the
next listing, this is how it can be ensured that, for each EntityObject, at least one Key is defined.

5 For common constraints, for example like those in the following listing, openArchitectureWare offers predefined
helper functions. To keep our example simple, we do not use these here. The second case study in Chapter 16 illus-
trates this approach.

public class EntityObject extends Class
{
 /** set contains all Key-attributes of this EntityObject */
 protected ElementSet KeyList = null;
 /** returns set with all Key-attributes of this EntityObject */
 public ElementSet Key() throws DesignException
 {
 if (KeyList == null) {
 KeyList = new ElementSet();
 for (int i=0; i < Attribute.size(); i++){
 if (Attribute().get(i) instanceof Key) {
 KeyList.add(Attribute().get(i));
 }
 }
 }
 return KeyList;
 }
}

// EntityObject.CheckConstraints() defines the
// DesignConstraints for Elements with
// stereotype <<EntityObject>>
public String CheckConstraints() throws DesignException {
 if(Key().isEmpty())
 throw new DesignException("Constraint violation:
 "+No Key found for EntityObject '" +
 this.Name() + "'");
 return "";
}

c03.fm Page 44 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 45

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

In case of a modeling error, descriptive error reports are created instead of an incomprehensible
generator exception. This sort of feature is indispensable for productive use of MDSD in real-
life projects.

Template Programming

The platform-specific implementation skeleton is generated by templates. Templates are very
similar to generated code and can therefore be derived easily from a reference implementation.
When templates are created, the constant parts of the reference implementation are copied into
the template definitions as plain text and – with the aid of the template language’s control
structures – combined with the properties read from the metamodel. In this way, for example,
all classes and descriptors of the car-sharing application’s EJB EntityBeans, with their proper-
ties for deployment, persistence, and relationships, are completely generated from classes
labeled EntityObject, except for the EQLs for business logic-related finders.

We use the template for the generation of the naming entry for an Entity Bean in the platform-
specific deployment descriptor jbossDD.xml as a simple example here:

The output for the User class from our sample is written to the file UserjbossDD.xml and looks
like this:

This brief template example already hints at the simplicity and conciseness of the template lan-
guage. Only the identifiers in uppercase are elements of the template language. The other identi-
fiers inside the « » brackets are properties of the metamodel. The remainder are expanded into

«DEFINE DeplDescr FOR EntityObject»
 «FILE FullPathName"/"Name"jbossDD.xml"»
 <entity>
 <ejb-name>«Name»EJB</ejb-name>
 «IF needsRemote»
 <jndi-name>
 «FullPackageName».«Name»RemoteHome
 </jndi-name>
 «ENDIF»
 <local-jndi-name>
 «FullPackageName».«Name»Home
 </local-jndi-name>
 </entity>
 «ENDFILE»
«ENDDEFINE»

<entity>
 <ejb-name>UserEJB</ejb-name>
 <local-jndi-name>
 de.amg.carsharing.user.entity.UserHome
 </local-jndi-name>
</entity>

c03.fm Page 45 Tuesday, February 28, 2006 4:29 PM

46 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

the target file as static text strings. The section of the metamodel implemented in Java that is rel-
evant for this template is shown in Figure 3.9:

The class EntityObject corresponds with the design language’s stereotype of the same name. The
other classes are part of the core metamodel of class diagrams (see Section 3.2.3). The design of
the example in Figure 3.7 would deliver exactly one instance of the class EntityObject. The
entity instance with the name User would have three associated attribute instances with the
names Name, Password and UserID.

The set property Key provides, as we have seen, a collection of key instances of the associated
attributes. The Boolean property needsRemote lets you inquire whether the entity is callable
remotely, in which case corresponding remote interfaces must be generated for the existing plat-
form. The string properties of the super class JavaObject, FullPackageName and FullPathName,
traverse the design’s package hierarchy and return target language-conforming strings for the
generation of Java import statements or file names, including their paths. Viewed from the tem-
plate’s perspective, these are reusable services. The new super class has been inserted because
the properties not only make sense for EntityObject, but also for ProcessObject, Value Object
and other metaclasses. However, it is abstract and therefore cannot be instantiated directly.

Even this small example proves that metamodels are actually a pivotal issue in MDSD. for this
reason, we have dedicated the whole of Chapter 6 to it.

Figure 3.9 The relevant section of the metamodel implemented in Java

Name : String

Element

Type

Class

isPublic() : boolean

Visibility : String

AttributePackage

SuperPackage

0..1

SubPackage0..*

Package

Class1
0..* Class

Attribute1

0..*

FullPackageName() : String
FullPathName() : String

JavaObject

needsRemote() : boolean
Key()

Key : ElementSet

EntityObject Key

c03.fm Page 46 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 47

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The DeplDescr template is defined in a special template file, a simple text file with the suffix
.tpl, with the aid of a DEFINE block (DEFINE … ENDDEFINE). It relates to a class of the met-
amodel (EntityObject) via FOR EntityObject. When a property access takes place, Java-side
inheritance can be used so that all properties (for example FullPackageName) of JavaObject and
its super classes Class, Type and Element are at its disposal.

The FILE block (FILE … ENDFILE) enables direct expansion of templates into a file, while the
file name in the example is created dynamically through a combination of string properties and
string constants. In the metamodel implementation, FullPathName is a method, and Name is an
attribute. This makes no difference regarding the type of access from the template’s perspective.

Conditional expansion of parts of the template is supported via the IF ... ENDIF block. For
our example this means that either a remote or a local home interface can be generated alterna-
tively into the jboss.xml deployment descriptor.

A particularly useful feature of this template language is its support of polymorphism at the
template level: at generator runtime, template definitions of the same name are bound via the
dynamic type of the model element, similar to methods in Java. This is one of the most important
OO concepts and serves to avoid ‘type switches’ (using instanceof) that are hard to maintain and
often distributed all over the code.

The entire template language6 of the openArchitectureWare framework consists of less than
thirty constructs.

3.2.3 The Mode of Operation of the MDSD Generator

Figure 3.10 shows how the openArchitectureWare framework processes a generative software
architecture.

6 The openArchitectureWare template language is called XPand.

Figure 3.10 How the openArchitectureWare framework works

ApplicationGenerative Architecture

Design Language

Meta Model Imple
mentation (in Java)

Platform

Templates

UML Tool

UML Design

Generator
Framework

Instantiator

Generator Backend

Instantiated Meta
Model

XMI Instantiation
Rules

UML Design

Platform

Generated Skeleton

Manual
Coding

L
o

ad
/

S
av

e

Export

g
en

er
at

e

Import

Iteration

c03.fm Page 47 Tuesday, February 28, 2006 4:29 PM

48 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The components and their functions are as follows:

• The generative software architecture contains all the necessary modules for use by the
generator.

• Design language. A UML profile is often used as the design language: stereotypes, tagged
values, and constraints serve to extend the standard UML with domain-specific concepts7.

• UML design. The UML design is the model of a concrete application of the software sys-
tem family. The design language is used for modeling.

• XMI input. The UML design is exported to an XMI representation via the modeling tool.
The design’s XMI representation can be further processed by the generator. Each model
element must be assigned a UUID (universally unique ID).

• Metamodel implementation (in Java). The MDSD generator features a freely-configurable
metamodel. This is implemented in Java, which means that precisely one Java class exists
in the metamodel for each standard UML element and for each stereotype in the design
language. This enables the generator framework’s instantiator to use the XMI input infor-
mation to instantiate the metamodel using reflection APIs. For this purpose, it uses an
instantiation rule that defines which XMI element is mapped to which metamodel class.
From this point on, the UML design is available as a Java object graph in the heap of the
generator’s JVM. The objects of this graph are simply instances of the metamodel’s
classes: this technique is comparable to the DOM tree that is instantiated when XML doc-
uments are parsed – compiler builders speak of an ‘abstract syntax’. The instantiated met-
amodel constitutes the generator backend interface and shields the templates from the
complex XMI structures. At the same time, it supports the Java-based development of
helper methods for the generation and testing of the modeling rules of the UML profile.

• Templates. The openArchitectureWare framework uses a template language that, together
with the metamodel implemented in Java, is an object-oriented generator: the metamodel’s
constructs translate themselves. The template language allows a simple and elegant formu-
lation of the desired transformations based on the metamodel – see the examples in this
section. The templates are dynamically connected with the instantiated Java metamodel
via the generator backend and control the actual source code generation.

• Generator backend. The backend interprets the templates and does the file handling, as
well as the scanning of protected regions and the preservation of contents, the existing
manually-written code, in the newly generated skeleton. To ensure that nothing gets lost,
for example during renaming of classes in the design, the generator uses the UUIDs in the
XMI representation to identify the protected regions.

• Instantiation rule. This generator allows the mapping between XMI representation and
metamodel to be defined in the form of a XML file. Thus XMI formats, for example from
different UML tools, and the metamodel can vary independently of each other. In princi-
ple, it is even possible to process non-UML XML inputs. Due to the abstract syntax con-
cept (the metamodel), the templates are not affected by a change of the concrete input
format.

• Runtime system. Logically, the runtime system or the platform are part of the generative
software architecture, since it does not depend on a concrete application. However, each

7 Any other modeling languages can also be used.

c03.fm Page 48 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 49

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

generated application uses the runtime system. In other words: the generated code –
method calls, extends or implements relationships and so on – depends on the platform.

A more elaborate version of this process is described in Section 11.1.2.

3.2.4 Bootstrapping

Some kind of bootstrapping process is required to create the metamodels, templates, and pro-
files described above initially. It is not sensible – and difficult – to begin a project with the devel-
opment of the templates before a generative software architecture is present. Instead, the code to
be generated later should be ‘handmade’ first, to act as a blueprint from which the templates will
later be extracted. A runnable reference implementation provides the basis for this. Static code
fragments can be transferred to the templates one for one. The variable parts of the code are
worked out with the help of the template language based on the metamodel. Thus the generation
of templates becomes a task that deals essentially with the elegant replacement of text, and no
longer with the definition of architectural concepts. This differentiation simplifies the execution
of both subtasks.

Chapter 13 details the process-related aspects of Model-Driven Software Development further.

3.2.5 Adaptations of the Generative Software Architecture

Changes and extensions to the functional requirements will be necessary in the course of an
application’s lifecycle, but requirements relating to architectural aspects of the application will
also change, for example due to the software’s use on a different application server, or migration
to a new version of EJB or Struts. Whereas normally all affected classes must be manually
adapted, the use of an MDSD generator allows these changes to be made in one place only. The
transformation is adapted accordingly in the templates, and the new infrastructure code is regen-
erated. Manual adaptations are required exclusively in the protected regions of the source code,
and only if the structural change affects the programming model – that is, the way in which the
manually-developed code interacts with the generated code.

Even a small excerpt from the example used here demonstrates clearly how the developer’s
work can be simplified. If the structure of descriptors changes because of a new version of the
EJB component model, or because another application server is used, only the template shown
below need be adapted, rather than all of the application’s *jbossDD.xml files for all EntityOb-
ject classes. If we assume a migration of the JBoss container to the container of a Bea Weblogic
server, for example, the «EntityObject» User in our example would require, among other things,
the following descriptor:

<weblogic-enterprise-bean>
 <ejb-name>UserEJB</ejb-name>
 <entity-descriptor>

<persistence>
 <persistence-use>

<type-identifier>
WebLogic_CMP_RDBMS

c03.fm Page 49 Tuesday, February 28, 2006 4:29 PM

50 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

To propagate these changes for all classes of type EntityObject, we change the template for the
generation of the descriptor files as described in the following listing, then re-run the generator.

The architectural aspects’ requirements can not only necessitate changes to existing structures,
but can also require extensions. To explain the necessary steps for the expansion of a generative
software architecture, a tagged value for business classes should be introduced. This tagged value
should be labeled KeyType and can either assume the value USER or SYSTEM. Via KeyType, the
type of the business class’ unique key can be determined. In the case of KeyType==SYSTEM an
attribute and a unique key are generated, otherwise, for KeyType == USER, the key is determined

 </type-identifier>
 <type-version>6.0</type-version>
 <type-storage>
 META-INF/weblogic-cmp-rdbms-jar.xml
 </type-storage>
 </persistence-use>
 </persistence>
 </entity-descriptor>
 <local-jndi-name>
 de.amg.carsharing.user.entity.UserHome
 </local-jndi-name>
</weblogic-enterprise-bean>

«DEFINE DeplDescr FOR EntityObject»
«FILE FullPathName"/"Name"weblogic-ejb-jarDD.xml"»
 <weblogic-enterprise-bean>
 <ejb-name>«Name»EJB</ejb-name>

 <entity-descriptor>
 <persistence>
 <persistence-use>
 <type-identifier>
 WebLogic_CMP_RDBMS
 </type-identifier>
 <type-version>6.0</type-version>
 <type-storage>
 META-INF/weblogic-cmp-rdbms-jar.xml
 </type-storage>
 </persistence-use>
 </persistence>
 </entity-descriptor>
 «IF needsRemote»
 <jndi-name>
 «FullPackageName».«Name»RemoteHome
 </jndi-name>
 «ENDIF»
 <local-jndi-name>
 «FullPackageName».«Name»Home
 </local-jndi-name>
 </weblogic-enterprise-bean>
«ENDFILE»
«ENDDEFINE»

c03.fm Page 50 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 51

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

through identification of an attribute with the stereotype «Key». In the example provided in
Figure 3.11, the business class User possesses the KeyType == USER and the attribute Name
labeled as «Key».

Due to the extension of the profile element «EntityObject», the modeling constraint must be
adapted accordingly: «Key» attributes must and may only be defined in the case of KeyType ==
USER. Figure 3.12 shows the respectively adapted formal profile definition with tagged value
and OCL constraint.

In our generative software architecture’s implementation, the metamodel’s tagged value is intro-
duced into the class EntityObject as a property, which is set by the generator framework during
instantiation of the metamodel. Thus the implementation of the CheckConstraints() method
must be extended respectively:

Figure 3.11 Extended EntityObject User

Figure 3.12 Profile definition with constraints

public class EntityObject extends JavaObject {
 public String KeyType = "USER"; //TaggedValue Default
 ...

- <<Key>> Name : String
- Password : String
- Userid : String

<<EntityObject>>
User

{KeyType=USER}

Class
<<stereotype>>

ProcessObject

<<profile>>
EBusinessApps

context EntityObject:
inv: (taggedValue.exists(tv: taggedValue |
 tv.name = "KeyType" and
 tv.dataValue = "USER")
 implies
 features->collect(i|i.hasStereotype("Key")->
 size() >= 1)
 and (!taggedValue.exists(tv: taggedValue |
 tv.name = "KeyType" and
 tv.dataValue = "SYSTEM")
 implies
 features->collect(i|i.hasStereotype("Key")->
 size() == 0)

<<stereotype>>
EntityObject

<<stereotype>>
ValueObject

<<stereotype>>
Controller

Attribute
<<stereotype>>

Key

KeyType : {USER, SYSTEM}

c03.fm Page 51 Tuesday, February 28, 2006 4:29 PM

52 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

The higher expressive power of the UML profile is also reflected by the templates. Here, the
following transformations must take place, depending on the KeyType, as indicated below for the
Entity Bean class:

You can see what the generated Entity Bean class looks like in the implementation directly
from the template. Depending on the KeyType, either the «Key» attributes will be set in the con-
structor, or a system-side ID is assigned.

As we have shown, changes and extensions of architectural aspects need only be made in a
single place in the generative software architecture, rather than in many distributed places in the
applications’ code.

 // EntityObject.CheckConstraints()
 // defines the DesignConstraints for
 // Elements with stereotype <<EntityObject>>
 public String CheckConstraints()throws DesignException {
 if(Key().isEmpty() &&
 KeyType.equals("USER")) {
 throw new DesignException("Constraint "+
 +"violation: No Key found for "+
 +"EntityObject '" + this.Name() + "'");
 }
 return "";
 }
 ...
}

«IF KeyType == "SYSTEM"»
 // init-method
 private void init() {
 long time;
 time = System.currentTimeMillis();
 setImplId(String.valueOf(time) + "+" +
 System.identityHashCode(this));
 }
 public «Name»PK ejbCreate() throws CreateException {
 init();
 ...
«ELSE»«REM KeyType==”USER”»
 public «Name»PK ejbCreate(
 «EXPAND Attribute::Signature FOREACH Key
 USING SEPARATOR ", "»)
 throws CreateException {
 «FOREACH Key AS CurKey EXPAND USING SEPARATOR "\n"»
 setImpl«CurKey»(«CurKey.asPARA»);
 «ENDFOREACH»
 ...
«ENDIF»

c03.fm Page 52 Tuesday, February 28, 2006 4:29 PM

3.2 Architecture Development 53

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

3.2.6 The Boundary of Infrastructure Code

Up to this point we have shown which tasks must be taken on in the context of architecture
development and how the infrastructure code is defined. But how can the manually-developed
code – typically, the business logic – be implemented within this skeleton, and how can we
maintain it if iterative regeneration and structural changes occur? There are various approaches
to the integration of generated infrastructure code and manually-written business code, and we
expand on these in Chapter 9.

The MDSD generator used in this example supports protected regions: that is, it is possible to
designate certain areas of code in which developers implement the business logic. To preserve the
code during regeneration, it is necessary to mark these areas as unique. To this end, the relevant
protected regions are assigned unique, constant IDs from the model, the UUIDs from the UML
tools’ XMI output. The definition of a protected region of the template might look like this:

3.2.7 Structuring Metaprograms

The templates introduced here – together with the properties of the metamodel implemented in
Java – constitute one possible implementation technique for MDSD transformations, in this case
distributed across two languages. We are effectively dealing with metaprograms here, since they
serve the creation of programs. It should be kept in mind, however, that metaprograms are pro-
grams too. This means that on this (meta-)level software is also created in real-life projects –
software that must be structured so that it can grow iteratively and incrementally.

Here, mechanisms such as those we know from object-orientation are required. For example,
construction of components is desirable. There might for example be a need to switch the com-
ponent for the generation of the Entity layer to facilitate a migration from EJB 1.1 to EJB 2.0.
Inheritance and polymorphism are useful allies here too. The availability of such features says a
lot about how good your MDSD tool really is.

More information on this topic can be found in Chapter 11, as well as in the second case study
in Chapter 16.

«PROTECT CSTART "//" CEND "" ID Id"Operation_MethodBody"»
 //add custom initialization here ...
«ENDPROTECT»
This leads to the following generator output:
// PROTECTED REGION ID(12aaaeOperation_MethodBody) START
 ReservationParameterValueObject vo = null;
 try {
 CarSharingAutoModuleComponent component =
 new CarSharingModuleComponentImpl();
 ...
 } catch (…) { … }
 return vo;
// PROTECTED REGION END

c03.fm Page 53 Tuesday, February 28, 2006 4:29 PM

54 Case Study: A Typical Web Application

 c03.fm Version 0.3 (final) February 28, 2006 4:25 pm

3.3 Conclusion and Outlook

The practicability of the OMG–MDA approach is often partially met with skepticism, which
may not be totally unfounded. There are quite a few people who consider MDA to be merely a
‘discipline for theorists’. However, the pragmatic version of architecture-centric MDSD intro-
duced here has proved its practical value over many years and in projects of differing scope and
size, and early adopters have come to use this approach productively.

Some think the introduction of generative approaches will limit their personal freedom, or
they fear being locked in by the generator supplier. Such prejudices typically emerge due to bad
experiences with CASE approaches, or through missing or bad information. The approach itself
does not require the assignment of roles to specific people, it merely describes the tasks that
come with certain roles, such as developer and architect. The allocation of roles is the sole
responsibility of the team or project management.

Besides a suitable methodology, the availability of tools that support realization of the
required concepts is significant for the successful use of AC-MDSD. In our view, this support is
not yet optimal. Better support on the UML tool side through distributed modeling, profiling,
generator integration and OCL constraint support on the metalevel are particularly desirable.
However, there are promising attempts to provide for example debugging or traceability at the
metalevel as part of MDSD generators.

Architecture-centric MDSD is not the only MDSD variant. For example, profiles for busi-
ness-related domains focus on much narrower application domains, yet their generation poten-
tial is usually much higher (often 100%). We deal with this more comprehensive topic in the
remaining parts of this book. However, we want to point out that the tools introduced in this
chapter can also be used for this purpose, especially as they do not depend on a concrete domain.

c03.fm Page 54 Tuesday, February 28, 2006 4:29 PM

55

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

4 Concept Formation

Different approaches to Model-Driven Software Development exist, as we have seen in part and
will see further in this chapter. Each approach comes with its own terminology, a phenomenon
that is largely the result of differing intentions and histories. This is not really critical in practice,
but it can lead to confusion and hamper communication. We therefore aim to create a common,
conceptual superstructure, a unified MDSD terminology. We believe that this is helpful in gain-
ing a deeper insight into the subject matter of this book and as a basis for further chapters.

4.1 Common MDSD Concepts and Terminology

Certain techniques, sub-areas or specific flavors of MDSD are not at all new. Terms like ‘gener-
ative programming’, ‘domain-specific modeling’, ‘product-line engineering’, and especially
‘code generation’ have been established for a long time. although they vary greatly in popularity.
The OMG started a standardization process for certain core concepts with its MDA initiative,
albeit with a primary focus on interoperability and portability. The MDA soon achieved a com-
paratively high degree of popularity and thus overshadowed the techniques listed above to a cer-
tain extent, yet without entirely overshadowing them. We therefore recognize the need for a
unified common context, including its terminology, and we venture to create both. This concep-
tual context is Model-Driven Software Development, and the standard nomenclature of the
OMG will serve as a basis as far as seems sensible and possible.

We will develop the common concepts and their relationships – that is, the MDSD concept
space – in the form of a static UML model that we will expand and refine step-by-step.

c04.fm Page 55 Tuesday, February 28, 2006 2:54 PM

56 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

4.1.1 Modeling

The Domain

The starting point in MDSD is always a domain. This term describes a bounded field of interest
or knowledge. To internalize and process this knowledge, it is useful to create an ontology of a
domain’s concepts. Domains can be motivated technically as well as professionally, if one
wishes to make such a distinction. The case study in Chapter 3, for example, resides in the
‘architecture for business software’ domain, because it contains concepts like Entity, SystemUse-
Case, Controller and Presentation. A ‘professional’ domain could be ‘insurances’ with concepts
like insurance product, rate, loss or damage, service, policy holder, insurance contract and so
on. Further examples of domains might include ‘embedded systems«, ‘EAI’ or ‘astronomy’.

Domains can be composed of smaller subdomains. Two kinds of subdomains can be distin-
guished:

• Technical subdomains describe single parts or aspects of an entire system for which a
specialized modeling language is appropriate. Typical examples include GUI layout and
persistence.

• A comprehensive system can be broken down into partitions or content increments. In an
insurance domain, for example, partitions could be defined for single sections or product
types, such as a ‘life«, ‘vehicle«, ‘liability’ and so on.

The Metamodel

In the context of MDSD, it is absolutely mandatory to be clear about the structure of a domain
(that is, its ontology), so that one can formalize this structure or its relevant part. This is the basis

Figure 4.1 Concept formation: modeling and DSLs

Domain Meta Model
Abstract
Syntax

Static
Semantics

describes
relevant

concepts of

Formal
Model

0..*

Subdomain

<<instanceof>>

Concrete
Syntax

specified based on

Semantics
gets meaning from

specified
based on

DSL

respects

Modeling
Language

Meta Meta
Model

<<insta nceof>>

<<synonym>>

c04.fm Page 56 Tuesday, February 28, 2006 2:54 PM

4.1 Common MDSD Concepts and Terminology 57

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

for every automation. Formalization takes place in the form of a metamodel. The UML profile
in Section 3.2.1 is an example of such a metamodel. It specializes the basic UML metamodel
with the relevant concepts of the domain. In general a metamodel is not necessarily UML-based,
however.

The metamodel compasses the abstract syntax and the static semantics of a language, and is
an instance of the meta meta model.

The Meta Meta Model

The term meta is relative. A metamodel describes concepts that can be used for modeling the
model (i.e. in the instances of the metamodel). Consequently, the metamodel must itself have a
metamodel that defines the concepts available for metamodeling. This is the role of the meta
meta model. Meta meta models are important in two respects: for people defining metamodels, it
defines the language used to do so. For tool integrators, the meta meta model is even more
important, since it is the basis for integration among metamodels. So, as a tool builder, you typi-
cally require metamodels to be built using a specific meta meta model. Knowledge of the meta
meta model is hardcoded into the tool.

You can find more details about models, metamodels and meta meta models in Chapter 6.

Abstract and Concrete Syntax

While the concrete syntax of a language such as Java specifies what a parser for the language
accepts, the abstract syntax merely specifies what the language’s structure looks like. An
abstraction is introduced, for example, from such details as the spelling of keywords. One could
therefore say that the concrete syntax is the realization of an abstract syntax. It’s interesting that
various concrete syntax forms can have a common abstract syntax. Put anther way, the meta-
model of a domain can be expressed in different notations, for example in a graphical UML-
based notation or in a textual one.

From a technical viewpoint, the abstract syntax of a language is instantiated typically by the
parser— that is, it is used by the compiler to represent the input (the program source code) in
the heap of the compile process in order to further work with it. This paradigm is familiar from
the XML sphere: an XML document is formulated in the concrete syntax of XML, from which
a generic XML parser instantiates a representation in memory – the DOM1 tree. The DOM
itself is the abstract syntax of XML.

UML is another example: it possesses a graphical notation consisting of small boxes and
arrows as its concrete syntax, while its abstract syntax contains constructs such as class, attribute,
operation, association, dependency and so on, and the relationships between these constructs.

The question naturally emerges: how the abstract syntax or the metamodel of a domain can
actually be specified or written? For this purpose a meta meta model usually exists. In the context
of the OMG standard, this is the MOF – the meta object facility (Chapter 6). Metamodels can be
described using this original form. UML profiles constitute a special case in this context – in
other words, MOF offers only one possible concrete syntax for the specification of metamodels.

1 DOM: Document Object Model.

c04.fm Page 57 Tuesday, February 28, 2006 2:54 PM

58 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

Static Semantics

The static semantics of a language determine its criteria for well-formedness. A typical exam-
ple from the world of programming languages is the rule that variables must be declared. The
syntax of a language (both abstract and concrete) typically cannot determine this, – that is, the
parser does not recognize an undeclared variable as an error – but the compiler’s static analysis
will fail2.

In Chapter 3 we saw how the static semantics of UML profiles can be defined formally using
OCL expressions that build on the abstract syntax of the language, that is, the class structure of
the profile. In the context of MDSD, static semantics are particularly important. They serve to
detect modeling errors in terms of the formalized domain.

Domain-Specific Languages

We now have the concepts needed for understanding the notion of domain-specific languages
(DSL). A DSL serves the purpose of making the key aspects of a domain – but not all of its con-
ceivable contents – formally expressable and modelable. To this end, it possesses a metamodel,
including its static semantics, and a corresponding concrete syntax. That alone is not enough:
the dynamic semantics required to give meaning to the constructs of the metamodel are still
missing. The semantics of a DSL are relevant in several respects: on one hand, the modeler must
know the meaning of the language elements at their disposal to be able to create reasonable mod-
els, while on the other, automatic transformations of the models must execute exactly these
semantics. More about this later.

The semantics of a DSL must either be well-documented or be intuitively clear to the modeler.
This is made easier in that the DSL adopts concepts from the problem space, so that a domain
expert will recognize its ‘domain language’3.

Often the term modeling language is used synonymously with DSL. We prefer the term DSL.
because it emphasizes that we always operate within the context of a specific domain.

DSLs can vary in their power and complexity. Simple textual configuration options with
validity tests can constitute a DSL, while at the other end of the spectrum DSLs can be graphical
languages with corresponding language-specific editors.

Two classes of DSL editors exist: generic tools, such as UML tools that are configured via a
profile, and custom-made DSL-specific tools.

Formal Models

We will now talk about formal models in the context of MDSD. Formal models are the starting
point for automated transformations – even a purely interpretative approach requires a formal
model. A formal model needs a DSL, and is thus obviously connected with the respective
domain. It is formulated in the DSL’s concrete syntax and it constitutes an instance of the given
metamodel at least conceptually, and in most cases also technically.

2 Conceptually, static semantics belong to the syntax rather than to the semantics of a language.
3 In an architecture-centric context, the domain expert is more of a software architect, because the domain here is soft-

ware architecture.

c04.fm Page 58 Tuesday, February 28, 2006 2:54 PM

4.1 Common MDSD Concepts and Terminology 59

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

A formal model is therefore a sentence formulated in the DSL, and obtains its meaning from
the DSL’s semantics. It is clear therefore that in MDSD the context of the domain is of the utmost
importance.

Let’s now look at a few examples:

• The architecture-centric designs from the case study in Chapter 3 are formal models in the
context of MDSD. Their domain is the architecture of business software.

• A Java program is an instance of the programming language Java, or rather of its corre-
sponding metamodel. Java also possesses semantics. But what is the domain of Java?
One could say that it is ‘Turing-calculable functions’ – that is, in principle, ‘everything
that can be done with computers«. The same is true for Executable UML, a directly exe-
cutable variant of UML described in Chapter 12. In the context of MDSD, such a domain
is of little help, because our approach here is to formalize concepts of a higher-level
problem space in order to set them apart from the abstraction level of a programming
language.

• A Powerpoint slide per se is not a formal model in terms of MDSD, although it possesses
a very generic metamodel (rectangle, arrow, eclipse, text), yet there are no semantics for
such models. Once a real DSL is defined in a Powerpoint-based, concrete syntax, it
would then be possible further to process Powerpoint slides that are accordingly well-
formed as formal models and, for example, generate code for graphical user interfaces
(GUIs) from them.

4.1.2 Platforms

We now expand our ontology of the domain MDSD by the next partition: we represent the
problem space with the help of the DSL, allowing formal models to be processed (transformed)
further or interpreted. To this end, we need something on the ‘other side’ – that is, in the solution
space – that supports the transformation or respectively interpretation – something on which the
code that has been generated by the transformation builds.

Figure 4.2 Concept formation: platforms

Domain

0..*
based on

Platform
supports

<<abstract>>
Building

Block

Framework Component AspectLibraryMiddleware

{open}

c04.fm Page 59 Tuesday, February 28, 2006 2:54 PM

60 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

The Platform

The term platform is used in the MDA context (Chapter 2 and Chapter 12) as well as in software
production line engineering. It is general enough to be useful for the description of MDSD. The
platform has the task of supporting the realization of the domain, that is, the transformation of
formal models should be as simple as possible. In the case study in Chapter 3 we used J2EE
with Apache Struts as a platform, plus some superclasses and helper classes that we created
ourselves. The domain’s DSL (the architecture-centric UML profile used here) describes the
problem space (entity, controller, presentation), but not the solution space, the platform. Clearly,
the easier the transformations are to build, the more powerful is the platform. If we removed
Struts and our helper classes from the platform, the effort required in mapping the dynamic
constructs of our DSL (its activity diagrams) as part of the code generation would be much
greater. Platforms can also be cascaded.

In the extreme case of interpretation, the platform assumes the role of a virtual machine (an
interpreter) for executable models, so that the model transformation becomes trivial.

Building Blocks

A platform can be founded on existing building blocks. These can be middleware, libraries,
frameworks, components, or aspects in terms of AOP4.

4.1.3 Transformations

After looking modeling and platforms, we can now connect these two partitions in our concep-
tual space:

4 Aspect-Oriented Programming [Lad03].

Figure 4.3 Concept formation: transformations

Platform Platform
Idioms

<<role>>
Product

Non-generated
Artifact

0..*

Generated
Artifact

0..*

Model2Plat-
form Transform

0..*

1..*

Target

<<abstract>>
Transfor-
mation

Formal
Model

Source

Model2Model
Transform

TargetMeta
Model <<instanceof>>

Target Meta
Model

Source
Meta Model

Semantics

gets meaning
from

c04.fm Page 60 Tuesday, February 28, 2006 2:54 PM

4.1 Common MDSD Concepts and Terminology 61

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

Transformations

MDSD transformations are always based on a source metamodel, since the source model to be
transformed is exactly one instance of this metamodel. The transformation rules can only be
based on the metamodel’s constructs, and this is its main purpose, as the transformations
implement the DSL’s semantics.

We distinguish between model-to-model transformations (Model2ModelTransform) and
model-to-platform transformations (Model2PlatformTransform), the latter often also called
model-to-code transformation.

A model-to-model transformation creates another model. However, this model is typically
based on a different metamodel than the source model. Such transformations generally describe
how the constructs of the source metamodel are mapped to the constructs of the target meta-
model. The MDA implements this approach with its query/view/transformation specifications,
as described in Chapter 12.

A model-to-platform transformation, in contrast, ‘knows’ the platform and generates artifacts
(generated artifacts) that are based on the platform. Generated source code that fits into an
existing framework would be one example. For this class of transformation, a target metamodel
is not needed, because usually we are dealing with simple text replacements exclusively. The
template definitions in Chapter 3 fall into this category. Note that in addition to transformations,
interpreters can also be used to execute models (see Section 8.4).

Platform Idioms

The fact that model-to-platform transformations can use the complete knowledge about the
platforms provides them with a powerful tool, Platform-specific Idioms (Platform Idioms),
which can be used transparently by the transformations. In the case study in Chapter 3 we gen-
erated code that uses the Business Delegate pattern to keep the domain model clear of the EJB
programming model. The use of this pattern did not need to be specified anywhere in the
model – the knowledge of where and how the pattern is to be applied is stored in the transfor-
mations alone.

The Product

MDSD pursues the goal of creating a software product in part or in whole through one or more
transformations. The product can be an entire application or merely a component to be used as a
building block elsewhere. Such a product aggregates the platform, generated, and sometimes
even non-generated artifacts, in terms of MDSD. Non-generated artifacts can for example be
application-specific helper classes or manually-programmed business logic.

4.1.4 Software System Families

The next MDSD partition looks at the correlations between a domain’s products and addresses
the aspect of reusability.

c04.fm Page 61 Tuesday, February 28, 2006 2:54 PM

62 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

The Domain Architecture

The metamodel of a domain, a platform, and the corresponding transformations, including the
implemented idioms, are the tools that are needed to make the transition from the model to the
product, whether completely or partially automated. The aggregation of these items is what we
generally call the domain architecture – the central MDSD concept. Other than the architecture
of a platform, a domain architecture determines which concepts are supported formally
(although not necessarily the concrete syntax) and how these are to be mapped to an existing
platform. The platform assumes the role of the runtime system in this context: a domain
architecture is always relative to a platform. The generative software architecture in the case
study in Chapter 3 is one example of a domain architecture.

Software System Families

Obviously a domain architecture is suitable for building all the products that can be expressed
with the given metamodel and that are realized on the same platform.

The set of all products that can be created with a certain domain architecture is commonly
referred to as a software system family. In other words, the software system family uses the domain
architecture for its realization, and the domain architecture is reusable for all products of the soft-
ware system family. The domain architecture must be flexible enough to allow the expression of
the differences (variabilities) between various products that make up the software system family.

The Product Line

A product line is a set of complementary single products. From a user’s perspective, the products
in a product line can constitute alternatives – that is, they be applicable in different but related
contexts – or can complement each other content-wise and thus define a ‘suite«. It is important
to notice that the products of a software system family do not necessarily share any technical
commonalities. A software system family can form the basis of a product line, but doesn’t have to.

Figure 4.4 Concept formation: domain, product Line, software system family

Product Line

<<role>>
Product

Domain

Software
System Family

may support

1..*

Domain
Architeture

Transfor-
mation

0..*

DSL

1

Platform

supports

Runtime
System

describes
relevant

concepts of

c04.fm Page 62 Tuesday, February 28, 2006 2:54 PM

4.2 Model-Driven Architecture 63

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

4.2 Model-Driven Architecture

The contents, direction, and trends of MDA are dealt with in Chapter 12. This section discusses
how this standard can be conceptually placed in the general framework of MDSD described in
the previous section. Figure 4.5 shows the placement of MDA in the concept space of MDSD.

Ontologically, MDA is a specialization of MDSD with the following characteristics:

• Software system families and product lines have no direct equivalent in MDA terminology,
and the terms are not directly relevant in this context.

• MDA uses MOF as its meta meta model – that is, as a means for the definition of meta-
models.

• MDA expects DSLs to be based on MOF. Any notations and metamodels are feasible as
long as they have been defined with the help of the OMG meta meta model. In practice,
MDA recommends the use of UML profiles as a concrete syntax for a DSL. The DSL is
therefore predisposed to use UML at its core. Accordingly, the static semantics are speci-
fied by OCL expressions.

• Various perspectives on formal models are defined: a domain model can be specific (PSM)
or non-specific (PIM) relative to a platform. The MDA recommends that transformations
between models are carried out in several steps, but it doesn’t prohibit a direct PIM-to-code
transformation.

Figure 4.5 Concept formation: placement of MDA concepts

<<MDA>>
MOF

Meta
Meta Model

<<MDA>>
Action

Semantics

Abstract
Syntax Semantics Model2Model

Transformation

<<MDA>>
QVT

Concrete
Syntax

Graphical
Syntax

<<MDA>>
UML Profile <<MDA>>

OCL
Static

Semantics

Formal
Model

specified on
basis of

<<MDA>>
PIM

<<MDA>>
PSM

<<MDA>>
Executable

Model

refines

Platform
specific to

runs on

<<MDA>>
PDM

describes
relevant

concepts of

c04.fm Page 63 Tuesday, February 28, 2006 2:54 PM

64 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

• To be able to describe even the final transformation, that connecting with the platform, as
a model-to-model transformation, the platform must also be described via a metamodel.
For this purpose, PDMs – Platform Description Models – are used.

• At this stage no standardized transformation language exists. The OMG’s QVT is
expected to be finalized by the end of 2006 (see also Section 10.5). Its goal is mainly the
description of transformations between source and target metamodel for model-to-model
transformations.

• Executable UML models stand out and are one of the main objectives of many MDA rep-
resentatives: they are more or less directly executable on a suitably powerful and generic
platform – that is, they are interpreted by a UML virtual machine, or completely compiled
via transformations, so that they can be executed on a lower-level platform. In contrast to
a domain like ‘insurance business«, which has a professional focus, we are dealing with a
‘domain’ here that corresponds to the expressiveness of a programming language, so a
UML profile is not needed. This obviously increases the semantic gap between the mod-
elling language and the professional domain.

• The action semantics of the UML are an essential building block for executable UML,
because they allow the specification of algorithms in an abstract form. When a (tool-
specific, hence non-standardized) concrete syntax is used, you can use action semantics
to program like in any other programming language, although the program is integrated
with the static model’s content.

4.3 Architecture-Centric MDSD

AC-MDSD is one of the main issues of this book, and we are now able to introduce the terminol-
ogy properly. Figure 4.6 shows a classification of the approach in the general context of MDSD:

Figure 4.6 Concept formation: classification of the AC-MDSD concepts

Domain
Architecture

<<acmdsd>>
Generative

Architecture

Non-generated
Artifact

<<acmdsd>>
Code Snippet

Generated
Artifact

<<acmdsd>>
Skeleton

complements

<<acmdsd>>
Template

Target

Model2Platform
Transformation

Target1..*

DSL
<<acmdsd>>

Design
Language

Meta Model
<<acmdsd>>

Architecture-centric
Meta Model

Formal
Model

<<acmdsd>>
Design

c04.fm Page 64 Tuesday, February 28, 2006 2:54 PM

4.4 Generative Programming 65

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

AC-MDSD is a specialization of MDSD that conceptually overlaps with MDA. It builds on the
following cornerstones:

• The domain is architecturally motivated, for example ‘architecture for business software’
or ‘component infrastructure for embedded systems«’.

• The products to be created are usually complete applications.

• From a black box viewpoint, usually only singe-step model-to-platform transformations
exists – or more precisely, model-to-code transformations. However, these can be inter-
nally structured (white box), serving modularization purposes for sequential execution of
several transformations.

• The DSL’s metamodel therefore contains architectural concepts that are as abstract as pos-
sible, as described in Chapter 3.

• The DSL is also called a design language. Usually, UML profiles are used here, some-
times combined with additional textual specifications.

• The formal models are also called designs.

• Typically, the model-to-platform transformation is a template that shows great similarity
to the generated code, and can thus be extracted easily from a reference implementation
(Section 2.5).

• The transformation does not aim to create the complete application, but merely an imple-
mentation framework that contains the architectural infrastructure code, the skeleton.

• The non-generated, implementation code (»business logic«) is manually implemented in
the target language to create a code snippet. For this purpose, the generated skeleton may
contain protected regions to supplement the application logic that persists after iterative
regeneration. Alternatively, generated and non-generated code can be integrated using
suitable design patterns, as described in Chapter 9.

• Design language, templates, and platform constitute a generative architecture. Here, we
are obviously dealing with a special domain architecture that supports the software system
family.

With the creation of a platform that provides the most important architectural concepts, AC-
MDSD tries to minimize the gap between model and target platform. The metamodel used for
application modeling can be tightly aligned with this target architecture/platform – hence the
name. In consequence, one can easily achieve a single generation step instead of having to apply
several sequential transformation steps.

4.4 Generative Programming

As we are discussing this approach here for the first time, we do not only look at its relationship
with MDSD, but also want to provide a brief overview of its motivation, history, and primary
focus.

c04.fm Page 65 Tuesday, February 28, 2006 2:54 PM

66 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

The term Generative Programming (GP) has been in use for several years. The term became
popular mainly through Krzysztof Czarnecki’s and Ulrich Eisenecker’s book Generative Pro-
gramming [EC001], which defines GP as follows:

Generative Programming is a software engineering paradigm based on modeling software sys-
tem families such that, given a particular requirements specification, a highly customized and
optimized intermediate or end-product can be automatically manufactured on demand from ele-
mentary, reusable implementation components by means of configuration knowledge.

The driving factors in GP are:

• Adherence to industrial production paradigms such as those that of automotive manufac-
tuting. The metaphors of a production line and an order form are widely used.

• GP claims to produce complete products (applications) from specifications – 100%
automation.

• GP emphasizes the creation (configuration) of applications from predefined atomic
components.

• Generation of products that are optimized for specific aspects such as performance or
code size.

The goal of GP is therefore the creation of precisely fitted and optimized products from a model
such as a formal requirements specification. To illustrate this, let’s take a look at the generative
domain model:

The formal requirements of an application are defined in the domain’s problem space. This can
be done via different models and specifications, among others, with the help of feature models
(see Section 13.5.3). In the solution space, the respective application – the product – is imple-
mented through elemental components. These must combine well and be non-redundant as far
as their functionalities are concerned. In this context, components can also be aspects in terms
of AOSD. The relationship between them is established by configuration knowledge, which
includes among other aspects useful defaults, dependencies, and illegal combinations: products
with illegal specifications will therefore not be created. Moreover, the configuration knowl-
edge contains the production plan as well as possible optimizations. Thus it also contains the
generator.

Figure 4.7 Domain model of Generative Programming

Configuration
Knowledge
Defaults
Dependencies
Invalid Combinations
Production Plan
Optimizations

Solution Space
Elementary Components
Usable in many
Combinations
Minimally redundant
Architecture of the
Software System Family

Problem Space
Features
Domain-specific terms
Specifications
Models

c04.fm Page 66 Tuesday, February 28, 2006 2:54 PM

4.4 Generative Programming 67

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

Let’s now look at the approach and its terminology in the context of its classification in
MDSD (Figure 4.8):

Ontologically, GP is a special form of MDSD with the following characteristics:

• The idea of the software system family plays a central role in GP. It is assumed that a
domain is modeled via feature models (Section 13.5.3) and single products are generated
on this basis.

• Traditionally, the idea of (UML) modeling is less pronounced. Instead an – often textual –
DSL is defined based on domain analysis, which serves to make products of the family
describable.

• Feature models often serve as a basis for DSL or the metamodel, although this is not man-
datory. In principle, any type of metamodel or DSL can be used in GP.

• If a feature model is used to describe the specification of the product, it assumes the role
of the formal model in the context of MDSD.

• The domain is also called a problem space, whereas the platform and the components that
constitute the product are termed the solution space.

• The configuration knowledge is stored in a generator that performs a one-step model-to-
code transformation, as in AC-MDSD. The static semantics (the recognition of invalid
product configurations) are similarly realized with configuration knowledge.

• The platform typically consists of maximally combinable and minimally redundant com-
ponents, which ultimately realize the expressive power of DSL.

• The tools used in GP are often feature modeling tools. Of course this is not inevitable:
depending on the DSL, other tools can be used as well. In the context of C++ template
meta programming, for example, the C++ IDE would be the modeling tool of choice.

Even though the definition of GP does not enforce it, static generation techniques are often
applied. This is due to GP’s emphasis on products optimized for efficiency (performance or
footprint). The configuration of frameworks or the creation of a virtual machine is fairly

Figure 4.8 Concept formation: classification of Generative Programming concepts

Domain
<<gp>>

Problem Space
<<synonym>>

Meta Model

describes
relevant

concepts of

Formal
Model

<<instanceof>>

<<gp>>
Feature
Model

{open}

<<gp>>
Specification

Static
Semantics

<<respects>><<gp>>
Configuration

Knowledge

Model2Platform
TransformationPlatform<<gp>>

Solution Space

<<synonym>>

c04.fm Page 67 Tuesday, February 28, 2006 2:54 PM

68 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

uncommon. Nevertheless, it is important to understand that GP is not simply code generation.
GP should also not to be equated with C++ template meta programming, which merely consti-
tutes one implementation technology for GP.

Traditionally, GP has focused more on the creation of small but highly efficient products.
Large, distributed enterprise applications or families have been of lesser interest. For details
about more recent developments in the GP field, please see Krzysztof Czarnecki’s Web site
[CH05].

4.5 Software Factories

The term Software Factories has been coined by Microsoft and is described extensively in
Jack Greenfield and Keith Short’s book of the same name [GS04]. In a nutshell, a Software
Factory is an IDE specifically configured for the efficient development of a specific kind of
application, such as applications in a specific domain. The configured IDE makes the use of
domain-specific models, DSLs, frameworks, and patterns as simple as possible. The concept
of Software Factories is thus the industrialization of software development ‘from craftsman-
ship to manufacturing’. Software Factories are described by some people as ‘doing product
lines the Microsoft way’ – for some detail about product-line engineering, see Section 13.5.
While the product line aspect of that statement is certainly true, Microsoft is working on mak-
ing sure the approach is not considered to be a Microsoft-only concept. For example, the
respective workshop at the OOPSLA 2005 conference [SFW05] ensured that people from out-
side Microsoft were on the program committee. However, the public perception is still that it
is very much Microsoft-centric.

Since the concept of Software Factories looks at the complete product-line engineering proc-
ess, it is much wider in scope than ‘just’ Model-Driven Software Development, although DSLs,
modeling. and transformations are an important ingredient. We will therefore look first at the
overall approach, then at its DSL-specific aspects.

4.5.1 The Software Factory Schema

The cornerstone of the whole concept is arguably the Software Factory Schema. This defines the
viewpoints that are useful and necessary for building a system of the respective kind. For exam-
ple, an enterprise system might encompass the following viewpoints:

• Presentation, including form layout and workflow
• Component structure and business data model
• Persistence mapping
• Deployment viewpoint

For each of these viewpoints, the schema identifies core artifacts, as well as the most efficient
way of producing them. Such ways could include manual programming, using patterns in spe-
cific ways, using frameworks that are extended or configured, as well as designing and subse-
quently using DSLs and then generating various artifacts such as code or configuration files.
The viewpoints can depend on each other and thus form a directed graph – in other words, the

c04.fm Page 68 Tuesday, February 28, 2006 2:54 PM

4.5 Software Factories 69

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

deployment viewpoint depends on the component structure: you cannot deploy what you haven’t
defined.

The schema is therefore a conceptual framework or ‘recipe’ for separating the concerns in the
respective application domain, based on abstraction level or its position in the architectural or
development process. The schema also identifies the commonalities as well as the differences
among the applications in the domain addressed by the schema.

4.5.2 The Software Factory Template

The schema is basically a structured document. However, to be able to configure the develop-
ment environment for the respective kind of applications– and such tool configuration is the
ultimate goal of Software Factories – we must make all this ‘tool usable’. This configuration
for the IDE is called a Software Factory Template. It can be loaded into your IDE (usually
Visual Studio) to configure the IDE for developing the respective kind of application. Thus,
for example it:

• Provides the necessary frameworks or libraries.
• Contributes certain kinds of projects whose structure is suitable for the factory.
• Delivers build scripts.
• Extends the IDE with new DSL editors and transformations.

We also need to have the necessary tools to build some of these artifacts in the first place. While
building frameworks requires nothing specific from an IDE, this is different for DSLs. Tools for
defining metamodels, concrete syntax, and transformations are required.

4.5.3 The Role of DSLs and Their Relationship to MDSD

Up to this point we have looked at the general approach to software (product line) development
proposed by Software Factories. From this approach, it is obvious that it does not make sense to
compare such an approach to MDSD directly. However, we can compare the use of models as
well as the construction of the respective infrastructure in Software Factories to MDSD. This is
the goal of this section.

In general, Software Factories use the concepts defined in Section 4.1 without major
changes or renamings. Domain-Specific Languages are used to build models. Those languages
are often – but not necessarily – graphical. Visual Studio provides tools to define the meta-
models as well as the concrete syntax and editors – remember its tooling focus. Microsoft does
not use any of the OMG standards for their infrastructure: DSLs are not UML based, and met-
amodels are not based on the MOF, but rather use the MDF, the metadata framework for that
purpose.

From the application developer’s perspective, models are first-class artifacts in development
projects, and editors and transformations integrate seamlessly into the IDE. From the perspec-
tive of the infrastructure developer, metamodels, editor definitions and transformations are first-
class artifacts, and the tools to build them are seamlessly integrated into the IDE. Microsoft also
consistently follows the approach of not modifying generated code. Integration can happen

c04.fm Page 69 Tuesday, February 28, 2006 2:54 PM

70 Concept Formation

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

using patterns, as is described in Section 8.3.1. In the .NET environment, these have specifically
added the concepts of partial classes, which means that a class definition can be spread over
many files, based on the idea that some of these files are generated and some are handwritten.

4.6 Model-Integrated Computing

Model-Integrated Computing started in the technical computing area, more specifically in the
context of distributed realtime and embedded systems (DRE systems). Such systems are used in
many domains: important examples are industrial monitoring and control systems, defense, and
avionics. As a consequence, you come across the term MIC used mainly by practitioners in those
industries and their associated research institutions. For example, Vanderbilt University’s Insti-
tute for Software Integrated Systems (ISIS) is very involved in MIC. ISIS is also the builder of a
very popular MIC tool called GME – the Generic Modelling Environment [GME]. Section
11.3.5 includes two screenshots taken from GME.

Technically MIC is conceptually quite compatible with MDSD, and specifically aims at using
‘real’ DSLs rather than UML profiles, and several models to describe the various aspects of a
system. There are several points that should be specifically mentioned, though:

• Models are at the center of the complete lifecycle of systems, rather than just during their
development. Analysis, verification, integration, and maintenance are also addressed.

• Since MIC is traditionally used for dependable systems, the verification of models is a pri-
mary concern, for example using simulation techniques.

• Model-to-model transformations are important, not so much because of the MDA-like
multi-step transformation approach, but rather to be able to transform (certain aspects of)
models into different representations, so that various analysis, verification, and simulation
tools can use them.

• As exemplified by GME, building ‘meta tools’ – tools that can be used to build modeling
tools efficiently – are a cornerstone.

Note that MIC is also now supported by the OMG. Currently, this comprises the MIC PSIG and
the yearly industry-oriented workshop. (The OMG’s MIC initiative is not related to MDA.)

4.7 Language-Oriented Programming

The term Language-Oriented Programming has recently been used mainly by Sergey Dmitriev
and his company JetBrains, the makers of the IntelliJ IDE. They are working on a new product
called MPS, the ‘meta programming system’ [MPS]. This tool lets you define your own lan-
guages integrated in the MPS IDE. This means that defining a language also entails defining the
respective editor, compiler (and transformations), and debugging support. In the context of MPS
the languages are typically textual. Again, domain-specific metamodels play a central role – the
metamodel is the first step in defining the languages.

MPS is an example of what Martin Fowler calls a ‘language workbench’ in his articles on
DSLs [Fow05]. He argues that the fate of DSLs basically depends on how easy it is to build new

c04.fm Page 70 Tuesday, February 28, 2006 2:54 PM

4.8 Domain-Specific Modeling 71

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

languages and integrate them into everyday development environments. He therefore considers
language workbenches the ‘killer app’ for DSLs. In addition to MPS, other similar tools exist:

• GME, introduced in Section 4.6, can quite well be considered a language workbench –
albeit focusing on graphical languages. The same is true for MetaEdit+ and Xactium’s
XMF Mosaic [XMF].

• Historically, the ‘intentional programming’ research project lead by Charles Simonyi had
the same goals. According to [EC00] the tool they built – which has not ever really left
Microsoft – must have been quite impressive.

• Charles Simonyi, as well as a couple of other people, have meanwhile founded a company
called Intentional Software. The community expects that they will build a comparable tool.

4.8 Domain-Specific Modeling

Domain-Specific Modeling (or DSM) is primarily known as the idea of creating models for a
domain in a DSL suitable for that domain. In this respect, DSM is mostly about the modeling
aspect of MDSD. However, generation techniques have been in use for some time in the DSM
community. It can be observed that the discrepancies between DSM and MDSD are beginning
to dwindle. One of the best-known players in the DSM space is the Finnish company Meta-
case Consulting, with their tool MetaEdit+. A screenshot taken from MetaEdit+ can be seen
in Section 11.3.5.

c04.fm Page 71 Tuesday, February 28, 2006 2:54 PM

 c04.fm Version 0.3 (final) February 28, 2006 2:54 pm

c04.fm Page 72 Tuesday, February 28, 2006 2:54 PM

73

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

5 Classification

We established a uniform terminology for MDSD in Chapter 4, so we can now take on the clas-
sification of related topics.

5.1 MDSD vs. CASE, 4GL and Wizards

One remarkable characteristic of Model-Driven Software Development is that the development
environments used are by no means generative and static, but that in fact any target architectures,
modeling and target languages, interfaces, and runtime components can be supported.

In contrast, a CASE or 4GL tool will predetermine at least one component of a domain
architecture – and in most cases, all of them:

• DSL (modeling language)
• Transformations
• Platform and target architecture

Such tools focus on a domain that is not specific: they try to adhere to the dogma of ‘one size
fits all’ – one premeditated combination fits all applications. This assumption is completely
unrealistic in practice and causes significant problems. Typically, 80% of an application can be
created fairly quickly in this manner, whereas the remaining 20% will eventually require 80% of
the total effort. This is because the tools’ inflexibilities enforce workarounds to combat them.
Individual architectural requirements and interfaces cannot be applied here, let alone domain
knowledge.

MDSD means an explicit abandonment of all ‘one size fits all’ approaches. Its emphasis is
clearly on development methodology, not on development environment.

As a rule, all the aspects one wishes to generate will be implemented manually and verified at
least once. Only in a second step is the domain architecture derived from them, which will then
generate specific features automatically based on an input model. Questions that arise in the
context of traditional, generative approaches can thus be put aside:

• How good is the (generated) system’s runtime performance?
• How good is the quality/legibility of the generated source code?

c05.fm Page 73 Tuesday, February 28, 2006 2:56 PM

74 Classification

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

…and so on. All these factors are as good or as bad as the reference implementation from which
the transformations are inferred.

It is of course not necessary to start from scratch: as soon as a software system family is gen-
eratively applicable, its usefulness multiplies with each application that can use its technological
basis: that is, any application that is a ‘member’ of that family.

MDSD cannot be compared to a code wizard or pattern expander. The ‘useful helpers’ part of
commonly-used development environments, or the pattern expansion of some UML tools, allow
for automatic generation of class skeletons, for example for EJBs, or for the generation of class
structures (depending on the design pattern). Other than in MDSD, this step can usually be car-
ried out only once. The repeatable transformation achieved with MDSD, while simultaneously
maintaining the customization made, is missing. Moreover, the extra abstraction level introduced
via MDSD is lost.

5.2 MDSD vs. Roundtrip Engineering

Roundtrip engineering is the concept of being able to make any kind of change to a model as
well as to the code generated from that model. The changes always propagate bidirectionally and
both artifacts are always consistent. The transition from code to model (the reverse engineering)
is especially interesting in this context.

In the context of these approaches the model typically possesses the same abstraction level as
the code (that is, ‘one rectangle per class«). It is actually the visualization of a program’s struc-
ture. In such a scenario, it is both feasible and useful to track changes to the code in the model
automatically.

MDSD takes a different approach: the model is definitely more abstract than the code gener-
ated from it. Thus it is generally impossible to keep the model consistent automatically after a
manual change of the generated code. For this reason, manual changes to generated code
should be avoided. A precise definition that states which parts are generated and which are

Figure 5.1 Forward/reverse/roundtrip engineering and MDSD

Model Code

Forward Engineering

Model Code

Reverse Engineering

Model Code

Roundtrip Engineering

Model Code

Model-Driven Software Development

c05.fm Page 74 Tuesday, February 28, 2006 2:56 PM

5.3 MDSD and Patterns 75

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

implemented manually is therefore necessary. To obtain the desired code without using round-
trip engineering, you can resort to various other methods [Fra02]:

1. Abstraction. The abstraction level of decisions is raised to model level. This only makes
sense if a corresponding abstraction on the model level can be identified.

2. Tagging the model. This involves the adoption of decisions in the code into the model
without raising the abstraction level. This procedure is called ‘tagging’ the model with
implementation decisions. It soon leads to contamination of the models with implementa-
tion concepts that are not derived from the modeler’s domain or the domain expert, and
therefore constitutes a potential source of errors. When tagging the model is used, it
should preferably be done via introduction of a technical subdomain (see Section 8.3.3), so
that modelers and domain experts are spared the implementation concepts.

3. Separation of code classes. This involves the adaptation of the target architecture in such a
way that manually-created code must be written into classes specifically created for this
purpose.

4. Tagging the code. This consists of the introduction of protected regions to the code, and is
accomplished through the use of special tags that protect the code placed between them
from overwriting during regeneration. This is a pragmatic procedure for blending generated
and manually-created code at generation time. Different variations of this procedure are in
existence, including procedures that not only allow the insertion of manually-created code,
but also allow the optional replacement of generated instructions.

This list reflects the various solution’s elegance in strictly descending order. Tagging the model
still allows a clear separation of responsibilities and enables a fully-automated regeneration
without further manual treatment. Tagging the code should only be applied with care, because it
hampers versioning, amongst other things.

5.3 MDSD and Patterns

Patterns (architecture patterns, design patterns, idioms) don’t have anything to do with MDSD
specifically. Patterns are documented best practices for solving specific recurring problems.
There are, however, some interesting relationships between the two fields. We outline them in
this section.

5.3.1 Patterns and Transformations

The relationship of patterns with MDSD stems from the fact that transformations are a form of
‘formalized best practices’ insofar that structures in the target model (and correspondingly in
generated code) corresponding with the structure of a pattern’s solution are often created
through transformations. The figure below illustrates the dependency between GUIs and entities
mapped to, for example, the implementation of the observer pattern (see Figure 5.2).

c05.fm Page 75 Tuesday, February 28, 2006 2:56 PM

76 Classification

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

However, in this context it is important to understand that a pattern doesn’t just consist of the
solution’s UML diagram! Significant parts of a pattern explain which forces affect the pattern’s
solution, when a pattern can be applied and when it cannot, as well as the consequences of using
the pattern. A pattern often also documents many variations of itself that may all have different
advantages and disadvantages. A pattern that has been implemented in the context of a transfor-
mation does not account for these aspects – the developer of the transformations must take them
into account, assess them and make decisions accordingly.

Another important issue is that the use of MDSD allows additional alternatives for solving
specific problems. In the case of the Observer pattern, for example, nobody would consider
hard-wiring the dependencies and notifications into the code, because this would be both
extremely inflexible and a lot of extra work. In specific circumstances it might be the best solu-
tion (with respect to performance or footprint) to use the latter approach and generate the nec-
essary code from models that describe the dependencies. Patterns have not been described with
code generation in mind, so MDSD might make additional solutions to the problem described
by a certain pattern feasible that would not have been considered seriously in a non-generative
environment.

An MDSD transformation can also serve to generate a solution structure (including its behav-
ior) into a model or code. However, the consideration or whether and how a pattern is applied
must still be made by the developer – the developer of the transformation, that is, not the devel-
oper who uses the transformation in application development.

5.3.2 Patterns and Profiles

Some UML tools and also MDA (or more precisely, the EDOC pattern profile, see Section
12.2.7) define tool-supported macro definitions at the UML level that serve to package models
as ‘patterns«. This is misleading, because a real pattern, as we have already explained, is much

Figure 5.2 The use of patterns in transformations

Entity

GUI

<<observes>>

Dialog

Report

View

{o
p

en
}

Domain Meta Model

Entity
Implementation

Base

addObserver(Observer o)
removeObserver(Observer o)
update();

GUIBase

entityChanged()

<<interface>>
EntityObserver
entityChanged()

Target Meta Model

*

Report
Base

Dialog
Base

...

c05.fm Page 76 Tuesday, February 28, 2006 2:56 PM

5.4 MDSD and Domain-Driven Design 77

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

more than merely a UML macro. In addition, in many tools these ‘patterns’ can only be
expanded once, so that the compaction is lost afterwards.

5.3.3 Patterns Languages as a Source of DSLs

Pattern languages use a collection of patterns to describe a potentially complex (technical)
design or architecture: examples are EAI applications [Fow04], remoting infrastructures
[VKZ04], and component containers [VSW02]. Such a collection of patterns is highly struc-
tured, and the dependencies among the patterns are clearly defined: usually they have to be read
in sequence, because a specific pattern builds on its predecessor(s). Often the patterns are
aligned with the main structural artifacts of the system they describe, or illustrate its most
important behaviors. Thus, among other things, pattern languages are a conceptualization of the
class of systems they describe.

As a consequence, such pattern languages are a good start for mining elements for metamod-
els that are needed for a DSL that can describe the relevant class of systems. Let’s look at remot-
ing patterns as an example: if you wanted to build a DSL for configuring/generating remoting
middleware infrastructures, the pattern language helps you identify key concepts you might need
to represent in the DSL, such as:

• The invoker
• Interfaces
• Client and server request handlers
• Object identification
• Lifecycle alternatives such as lazy/eager acquisition, pooling, or leasing
• Asynchronous communication using fire and forget, sync with server, poll objects, or

result callbacks

For each of these, the patterns in the pattern language describe ‘hot spots’ that might need con-
figuration when describing such a system, in order to be able to generate it. The concepts, their
relationships, as well as their configuration alternatives can quite easily be refactored into a met-
amodel that underlies a DSL for remoting infrastructure description and configuration.

5.4 MDSD and Domain-Driven Design

The term Domain-Driven Design (DDD) became popular mostly through the book of the same
name written by Eric Evans [Eva03]. When it comes to developing a domain-specific platform,
this approach has something in common with MDSD: Evan’s DDD do not use DSLs, nor does
he recommend generating code. Instead, Evans describes techniques, patterns, and process ele-
ments that aim at the creation of ‘good«, and mostly UML-based, models of a domain, and at the
creation of code that preserves or expresses an application’s design as faithfully as possible.

Although there is no strong interrelation between MDSD and DDD, it is nevertheless useful to
learn more about DDD to increase the quality of the modeling process, generated code, and the
programming model.

c05.fm Page 77 Tuesday, February 28, 2006 2:56 PM

78 Classification

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

5.5 MDSD, Data-Driven Development and Interpreters

In data-driven development essential parts of application functionality are defined using data
structures that are read and interpreted by a framework. Traditionally these data structures are
defined in a relational database that also stores the application data. The aspects described with
such data structures are often those that vary from application installation to installation, allow-
ing for easy customization of the application at a customer site, often even without the need to
restart the application after a change.

In an enterprise application, for example, special tables in the database define data structures
(and thus the structure of the application data tables in the same database), field validation rules,
or the structure and workflow of forms.

Just as in MDSD, you have to define a metamodel that defines the structure of the data that
you use to configure the application. Instead of using that data before runtime to generate the
application artifacts, however, frameworks are used to customize the system dynamically at
runtime. The consequences are obvious:

• With data-driven approaches, you can change the application dynamically without the
need to regenerated/restart.

• Performance might be slightly worse because of the framework overhead.
• If your platform, such as in J2EE, requires the presence of specific artifacts such as deploy-

ment descriptors in order to take advantage of specific platform features such as security,
you might be required to actually generate these artifacts.

Note that while the data-driven development legacy is largely ignored in the MDSD discussion,
the two areas are actually quite closely related. The conceptualization of a problem domain in
the form of metamodels is a core concept in both. MDSD platforms also often contain data-
driven aspects for which the MDSD generator generates the input data, an approach that is
explained in Section 7.6.

An essential aspect of data-driven development is interpretation of models, as the above dis-
cussion shows. In fact, the frameworks that work with the data in the enterprise application
example above can be thought of as an interpreter. However, interpreters are associated tradition-
ally more with executing behavior, such as mathematical calculations in the insurance domain.
We take a closer look at interpreters in Section 8.4.

5.6 MDSD and Agile Software Development

An iterative-incremental process is a strong ally for MDSD, and strict timeboxing helps to
implement the feedback loop between architecture development and application development
smoothly. One of the highest priorities in agile software development is the development of run-
nable software that can be validated by both stakeholders and end users– as it is also in MDSD.
MDSD encompasses a number of techniques and methods that enable the use of principles of
agile software development in complex projects. These techniques support agile requirements
management and the regular validation of software under construction. These issues will be
addressed in more detail in Chapter 13.

c05.fm Page 78 Tuesday, February 28, 2006 2:56 PM

5.6 MDSD and Agile Software Development 79

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

It is not the goal of MDSD to dictate a particular (agile) method. As long as the few, but strict,
MDSD rules for iterative software development are observed, the micro-activities of the devel-
opment process can be governed by any agile methodology. In practice, the assignment of roles
in agile teams is based on the strengths and abilities of individuals rather than on rigid job
descriptions.

MDSD emphasizes the importance of models. These have the same significance as source
code rather than that of optional documentation. The ‘production’ or generation of a system
via domain architecture is automated to the same extent as the automation of 3GL language
compilation. The issue of agility concerns the creation of the domain architecture as well as
the modeling and implementation of an application.

5.6.1 The Agile Manifesto and MDSD

In the remainder of this section we explore how well MDSD and agile development match each
other. Let’s first look at the agile manifesto, which can be found at http://agilemanifesto.org.

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

Let’s now analyze these statements one by one in the context of MDSD.

Individuals and Interaction vs. Processes and Tools

This statement first and foremost expresses a high esteem for people. After all, it means that no
over-formal processes that don’t heed people should be established. A team should define its
own development process, suited to its specific conditions, and continue to evolve it over time.
Interaction between team members takes precedence over formal document-centric processes.

The use of tools such as versioning systems or compilers is obviously not being not criticized
here. Under the premise that a part of the programming in MDSD is done via DSL, the generator
replaces the compiler and there is no contradiction with agile development.

Working Software vs. Comprehensive Documentation

In project practice it is more important to deliver runnable software instead of good-looking doc-
uments such as requirements, concepts, architecture, design. In MDSD, the model is the source
code. Diagrams are not just adornments, but a central artifact. The diagrams and the software

c05.fm Page 79 Tuesday, February 28, 2006 2:56 PM

80 Classification

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

will not drift apart and are always up-to-date, because the application is directly generated from
the model.

The creation of runnable software is noticeably accelerated through MDSD because tedious,
recurring implementation tasks are automated. We are not propagating a waterfall-like process
in which the domain architecture is implemented first and then, in a second project phase, an
application is built using it. A closer interlocking of both aspects allows timelier creation of run-
nable, while not necessarily complete, applications.

Customer Collaboration vs. Contract Negotiation

This aspect expresses the wish to allow the customer to participate as much as possible in appli-
cation development. Particularly, a fast response to changing customer requirements should be
possible in the course of the project instead of having a fixed contract right from the start. (See
also the next section).

Here MDSD can have a considerable advantage over traditional iterative, incremental devel-
opment. This is especially true if a non-technical DSL is applied that can be (re-)used to commu-
nicate with the customer, thereby shortening feedback cycles: a DSL is otherwise independent of
whether MDSD is applied or not.

Responding to Change over Following a Plan

This valuation is about incorporating the (changing) requirements of the customer flexibly in the
course of a project, instead of insisting on formally-defined requirements that are written down
at the start and which may no longer be relevant for the customer. MDSD makes this procedure
much easier:

• When domain-related requirements change the generative approach allows these
changes to be implemented much faster and more consistently than in traditional soft-
ware development.

• Technical aspects implemented by the transformations can be adapted in one place, and
the change is automatically propagated in the entire application.

5.6.2 Agile Techniques

In this section we briefly address the interplay between MDSD and agile techniqes.
Pair programming is a technique that is mostly known from the Extreme Programming (XP)

field, in which two developers share one terminal and implement the application together. The
advantage is that errors are quickly detected, because one of the developers implements the
details while the other has the overall concept in mind and recognizes errors. Of course this also
works for MDSD. During modeling (depending on the DSL), developers and domain experts
could even sit in front of a terminal together.

Another important technique is test-driven development, also known as test first. The idea
here is to first implement tests, then develop the application against them, until all tests pass. In

c05.fm Page 80 Tuesday, February 28, 2006 2:56 PM

5.6 MDSD and Agile Software Development 81

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

the context of MDSD, such an approach is of course also possible, in principle. However, due to
the models’ additional specification level, an even wider range of possibilities exists.We discuss
these in detail in Chapter 14.

The fact that an application design is transformed into a standardized implementation is seen
often as a restriction of the developer’s freedom, as well as a restriction of their ability to respond
to customer wishes. On the other hand, a significant part of the refactoring effort is focused on
approximating the desired architecture with the implementation, especially in agile projects. In
this respect, the codification of architecture in the transformations is only a logical next step in
this train of thought. Refactoring as an agile technique can basically be applied to models, plat-
forms, transformations, as well as of course to manually-implemented code.

Not only do we think that MDSD and agility are not opposing each other, we are even of the
opinion that MDSD can help to scale agile techniques through the explicit codification of archi-
tecture and domain knowledge, as well as through the separation of domain architecture and
application development.

c05.fm Page 81 Tuesday, February 28, 2006 2:56 PM

 c05.fm Version 0.3 (final) February 28, 2006 2:55 pm

c05.fm Page 82 Tuesday, February 28, 2006 2:56 PM

83

 p02.fm Version 0.3 (final) February 28, 2006 6:07 pm

Part II
Domain Architectures

In the first part of this book we came to know the practical side of MDSD, and in Chapter 2 we
defined a domain architecture – the core concept of MDSD. The case study demonstrated what a
domain architecture can look like in practice.

In this part of the book, we discuss the construction of domain architectures. In this context
we address technical questions, rather than questions that relate to the development processes:
the latter are detailed in Part III. A central question will be: ‘Which engineering approaches can
be recommended for finding DSLs?’

The next five chapters introduce techniques and best practices that are relevant for the devel-
opment of domain architectures, beginning with metamodeling as the key to DSL definition.
This is followed by the special role of target software architecture in the context of MDSD and
the details of model-to-model transformations and code generation.

Many of the fairly technical questions with which a domain architect is confronted, such as
those concerning code generation, are generic – that is, they are for the most part domain-
independent. In other words, many problems can be solved with generic tools that can be
reused in any, or at least related, domains. Chapter 11, on tool selection and architecture, gives
you some background in that respect. The principles and best practices conveyed there are
suitable for construction as well as for selecting MDSD tools, and are therefore not restricted
to those developing MDSD tools themselves.

Finally, we take a deeper look into the MDA standard in Chapter 12.

p02.fm Page 83 Tuesday, February 28, 2006 6:07 PM

p02.fm Page 84 Tuesday, February 28, 2006 6:07 PM

85

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6 Metamodeling

Metamodeling is one of the most important aspects of Model-Driven Software Development.
Metamodeling knowledge is needed for dealing with the following MDSD challenges:

• Construction of domain-specific modeling languages (DSLs): the metamodel describes
the abstract syntax of such a language (see Chapter 4).

• Model validation: models are validated against the constraints defined in the metamodel.
• Model-to-model transformations: such transformations are defined as mapping rules

between two metamodels.
• Code generation: the generation templates refer to the metamodel of the DSL.
• Tool integration: based on the metamodel, modeling tools can be adapted to the respective

domain.

This list helps to justify why we dedicate an entire chapter to this subject.

6.1 What Is Metamodeling?

Metamodels are models that make statements about modeling. More precisely, a metamodel
describes the possible structure of models – in an abstract way, it defines the constructs of a
modeling language and their relationships, as well as constraints and modeling rules – but not
the concrete syntax of the language. We say that a metamodel defines the abstract syntax and the
static semantics of a modeling language (see Chapter 4). Vice versa, each formal language, such
as Java or UML, possesses a metamodel.

Metamodels and models have a class-instance relationship: each model is an instance of a
metamodel. To define a metamodel, a metamodeling language is therefore required that in turn
is described by a meta meta model. In theory, this abstraction ‘cascade’ can be continued ad
infinitum, but in practice other steps are taken, as we will soon learn.

In the context of MDSD, the domain’s DSL is defined by a metamodel. The concrete syntax –
that is, the concrete form of the textual or graphical constructs with which the modeling is
done – is conceptually irrelevant: it must merely render the metamodel in an unambiguous way.
The distinction between abstract and concrete syntax is very important here, because the meta-
model (and not the concrete syntax) is the basis for the automated, tool-supported processing of

c06.fm Page 85 Tuesday, February 28, 2006 5:18 PM

86 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

models. On the other hand, a suitable concrete syntax is the interface to the modeler – without it,
no models could be created – and its quality decides what degree of readability the models have1.

As a consequence of this decoupling, the metamodel and the concrete syntaxes of a DSL can
maintain a 1:n relationship: the same metamodel can be realized by a graphical as well as a tex-
tual syntax.

In principle models can be described in an arbitrary modeling language. Language selection
should be made based on the language’s suitability for the domain to be described. In real life,
this decision is often determined by the question of whether or not practically usable tools are
available for the modeling language, which means that today UML is used for modeling in many
cases. It is therefore of particular relevance to look at metamodeling in the context of UML.

The meta relationship is always to be seen relative to a model. An absolute definition of the
term metamodel does not make sense in theory, but in practice it is quite useful. For this reason,
the OMG defines four metalevels. These are shown in Figure 6.2 and are described further in the
following sections.

1 What has been said so far is not only true for models/modeling languages, but analogously also for programming/
programming languages.

Figure 6.1 Relationship between the real world, model and metamodel

Figure 6.2 The four metalevels of OMG

Elements
"Real World" Model Elements

Domain Model

describes

Meta Model

Meta Model
Elements

describes

M0: Instances

M1: Model

M2: Metamodel

M3: Meta-Metamodel

instanceof

instanceof

instanceof

describes

describes

Typ: Person
ID: 05034503
Name: Doe
Vorname: John

Typ: Class
ID: 21436456
Name: Person
Attribute: Name, Firstn.
Operation: ...
Association: ...

Typ: Classifier
ID: 764535
Name: Class
Features: Attributes,
Operations, Assoc's, ...

Typ: Classifier
ID: 5346456
Name: Classifier

instanceofdescribes

describes

c06.fm Page 86 Tuesday, February 28, 2006 5:18 PM

6.1 What Is Metamodeling? 87

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Below the dashed line we find ourselves on familiar ground as software developers. In M1, in
the model, a class is defined. This class is given a name, Person, and a number of attributes, in
this case name and first name. Instances of this class are created in M0, usually at program
runtime: in the example in the figure, the person with the (internal) ID 05034503, the last
name Doe and first name John – or more precisely, the attributes name and first name have the
value Doe and John, respectively, for this instance. During the instantiation of a class, there-
fore, values are assigned to attributes of the class. Note that a class can have more than one
instance. The model (here: the class Person) is defined via a language – in our case UML –
even though this is not shown in Figure 6.2.

We now move up one metalevel. In M2, the metamodel, the constructs that are used in the
M1 model are defined. The elements of the M1 model are thus instances of the elements of the
metamodel at the M2 level. Since we use classes in the M1 model, the construct Class must be
defined in M2. This is actually the case in the UML metamodel2.

The construct Class in the UML metamodel is now an instance of the meta meta element
MOF Classifier. MOF classes are defined in M3. The meta object facility (MOF) is the OMG’s
meta meta model (see Chapter 12). The MOF serves to define modeling languages at M2, such
as for example UML. The idea behind this is that UML will not remain the only modeling lan-
guage, but that additional domain-specific and possibly standardized modeling languages will
be defined that are based on the MOF. The MOF is also able to define non-OO modeling lan-
guages. We provide an example of this ability below.

There is no metalevel in the OMG model above the MOF – basically, the MOF defines itself.
Figure 6.3 shows a (simplified and incomplete) excerpt of the MOF.

2 As we use UML as a language in M1, M2 must define the language UML – the UML metamodel is applied here as
M2.

Figure 6.3 An excerpt from the MOF

Model
Element

Import Namespace Constraint FeatureTag

Generalizable
Element

Behavioral
Feature

ClassifierPackage

ClassAssociation

ExceptionOperation

can throw

generalizes

imports

c06.fm Page 87 Tuesday, February 28, 2006 5:18 PM

88 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

As the name MOF implies, this is a meta meta language based on the object-oriented paradigm.
For this purpose, the MOF borrows the UML’s class core, thus using the same concepts and the
same concrete syntax.

Whenever we expand the UML metamodel, for example through a derivation of a metaclass
MyMetaClass from UML::Class, we do this by means of the MOF. The inheritance relationship
between the two metaclasses is the inheritance relationship as it is defined in the MOF::Classi-
fier or its super class MOF::GeneralizableElement, respectively.

6.2 Metalevels vs. Level of Abstraction

Models can have different relationships to each other. This chapter illuminates the meta relation-
ship, which states that the metamodel defines the concepts with which a model can be created.

On the other hand, models can also be located on different abstraction levels, even though they
are located on the same metalevel. Typically, transformations are used to map models at a higher
abstraction level to models with a lower abstraction level. Each of the models is (inevitably) an
instance of a metamodel. The metamodels of the two models are therefore different, yet the
models as well as the metamodels can be found on the same metalevel. Figure 6.5 shows this.

6.3 MOF and UML

UML is an instance – an application – of the MOF. Various details must be considered.
First, UML existed before the MOF. UML was originally not formally defined – that is, it was

defined purely verbally. The MOF was defined later to specify UML formally based on the
MOF. The problems that emerged from this sequence were cured in later UML revisions, so that
UML can now be called a MOF language in good faith.

The notation for MOF models is the concrete syntax of UML. Occasionally, this can lead to
confusion. Formally, this problem can be solved through the specification of namespaces/pack-
ages for model elements, yet the potential for confusion remains.

It should also be observed that the MOF contains a number of model elements that are also
present in UML. For example, both languages possess an element called Class. Even though the
elements have the same name and often superficially describe the same feature, they are not
identical – if only because they are located on different metalevels.

Figure 6.4 Metamodel expansion in relation to the MOF

MyMetaClass

UML::Class

MOF::Classifier

generalizes

<<instanceof>>

<<instanceof>>

Extended UML meta model MOF

c06.fm Page 88 Tuesday, February 28, 2006 5:18 PM

6.4 Extending UML 89

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6.4 Extending UML

In the context of software development, often one will not start by defining a completely new
M2 language based on the MOF. It is more likely that one will start with the UML metamodel
and extend it as needed. To carry out this extension, there are three options:

• Extension based on the UML’s formal metamodel.

• Extension using stereotypes/profiles (by means of UML 1.x).

• Extension using stereotypes/profiles (by means of UML 2).

We look at each of these alternatives in the following sections. In practice, one would mainly use
the stereotype/profile mechanisms, due to the number of available tools for the definition of
UML-based metamodels.

6.4.1 Extension Based on the Metamodel

This type of extension expands the UML’s metamodel. To this end we apply, as always in mode-
ling, the language of the next-higher metalevel, which in this case is the MOF. Such an extension
can take place within a tool only if the tool possesses an explicitly-represented, disclosed MOF-
based metamodel.

To define, for example, one’s own kind of class, you would create a new M2 class that inherits
from the UML metaclass UML::Class. Figure 6.6 illustrates this process.

Figure 6.5 Meta versus abstract

MOF

PSM-
Meta Model

<<instanceof>><<instanceof>>

M3

M2

M1

PIM-
Meta Model

"meta"

<<instanceof>>

Transformation

"abstract"

PIM PSM

c06.fm Page 89 Tuesday, February 28, 2006 5:18 PM

90 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Here, a new language construct is defined – the CM::Component. This is a subclass of the Class
element of the UML. As we explained in the previous section, an inheritance mechanism of the
MOF is used here too, since after all we are dealing with a MOF model of the UML version
extended by us here.

It is theoretically possible to assign a graphical representation – a concrete syntax – to each
language element we define, as is illustrated by (e) in Figure 6.7. This is often impossible in
practice, however, because the tool does not support it. Other types of representations can be
used, most of them based on stereotypes.

Figure 6.7 (a) shows a CustomerManagement::Person class as a direct instance of the meta-
class CM::Component. (b) uses the name of the metaclass as a stereotype, while (c) uses an
abbreviation agreed by convention, (d) a tagged value stating the metaclass, and (e) an individ-
ual graphical notation. The approach (c) has proved to be the most practicable in real life, while
(e) is a viable alternative if the tool allows this option.

The CM::Component cannot be distinguished from a UML class – apart from its formal
type – because it neither adds nor overwrites any attributes and operations, and does not define
constraints. This is not necessarily always true: we can define new attributes for our own meta-
class. These will typically be represented by tagged values in the target models, as can be seen in
Figure 6.8.

Figure 6.6 UML adaptation through extension of the UML metamodel

Figure 6.7 Representation of the metamodel expansion through stereotypes

UML::Class CM::Component

MOF::Class

<<instanceof>><<instanceof>>

CM::Component

instanceof

CustomerManagement::
Person

(a)

CustomerManagement::
Person

<<CM::Component>>

CustomerManagement::
Person

<<component>>

(b)

(c)

CustomerManagement::
Person

(d)

{metaclass=
 CM::Component}

CustomerManagement::
Person

(e)

c06.fm Page 90 Tuesday, February 28, 2006 5:18 PM

6.4 Extending UML 91

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

The type of adaptation of modeling languages introduced here – the extension of the meta-
model using the MOF – doesn’t only work in a UML context, but also for all other MOF-based
modeling languages,. The mechanism based on profiles, which is introduced further below, is
in contrast restricted to UML, since it is defined as part of UML itself.

It is important to point out that there is no switching to another metalevel when the metamodel
is extended via inheritance. Figure 6.9 shows this.

Figure 6.8 Tagged values as concrete syntax of metamodel attributes

Figure 6.9 Inheritance inside the M2 layer

UML::Class

CM::Component

transactional : Boolean

CustomerManagement::
Person

<< CM::Component >>

{transactional = true }

MOF

UML-Meta Model

<<instanceof>>

Meta Model
Domain 2

Application
Model

Domain 2

Application
Model

Domain 1

<< instanceof >><< instanceof >>

UML
Model

<< instanceof >>

M3

M2

M1

"meta"

"base"

Meta Model
Domain 1

"meta"

c06.fm Page 91 Tuesday, February 28, 2006 5:18 PM

92 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Figure 6.9 also shows that the prefix meta is in principle always relative to a model3. When a
metamodel is extended, the origin is called the basic metamodel.

6.4.2 Extension With Stereotypes in UML 1.x

Extension with stereotypes is a UML-specific functionality, defined as part of the profile mech-
anism. This means that the UML itself is a way in which the UML metamodel can be extended
to a certain extent, or, more precisely, be specialized without being required to using the means
of modeling language definition provided by the MOF. One reason for this is probably that when
UML was originally defined, the MOF did not exist, so some other means of extension had to be
provided. So far this extension mechanism works with UML only, so other MOF-based lan-
guages must define their own extension mechanisms.

Figure 6.10 shows the definition of the stereotype CM::Component, including the tagged
value transactional.

It is important to note that the diagram in Figure 6.10 is formally an M1 model of the MOF hier-
archy, since it is a UML model, and not a part of the UML’s metamodel. Semantically, it is at the
M2 level, because quite clearly a UML metaclass (UML::Class) is specialized here.

Serious limitations or this approach when compared to the metamodel’s extension via MOF
are that tagged values are not typed (all tagged values are Strings) and no new meta associations
between existing metamodel classes or stereotypes can be defined. The advantage, however, is
its usability in the field of generic UML tools.

6.4.3 Extension With Profiles in UML 2

With the definition of UML 2.0 the stereotype mechanism has been extended and placed in the
context of a more comprehensive profile mechanism (see also Section 6.5 and Chapter 12). The
concept of extensions is pivotal here. An extension is a new symbol, and thus a new language
construct, of UML. It is rendered as a filled inheritance arrow, as shown in Figure 6.11.

3 Levels 0–3 have fixed names only in the context of the OMG.

Figure 6.10 Definition of a stereotype in UML 1.x

Figure 6.11 Definition of a stereotype in UML 2.x

<<metaclass>>

UML::Class

<<stereotype>>

CM::Component
{<<taggedValue>> transactional}

<<stereotype>>

<<metaclass>>

UML::Class
<<stereotype>>

CM::Component

c06.fm Page 92 Tuesday, February 28, 2006 5:18 PM

6.5 UML Profiles 93

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

It should be emphasized that we are not dealing with inheritance, implementation, stereotypical
dependency, or association here, but with a completely new UML language construct that is also
defined formally in the UML metamodel.

A stereotype can have attributes. As in UML 1.x, these are rendered as tagged values in the
model in which the stereotype is used (see Figure 6.12). From UML 2 onwards a tagged value
can be assigned a type, thus all tagged values are no longer strings per se.

Another difference between UML 2.0 and UML 1.x is that a model element can now have mul-
tiple stereotypes simultaneously. It then possesses the attributes of all stereotypes as tagged
values4.

6.5 UML Profiles

Profiles support adaptation or extension of UML to fit professional or technical domains. One
might also say that UML is not a language, but a language family: in this case, UML profiles are
elements – concrete languages – in this family. The objective is that UML tools and generators
can process profiles like plug-ins: one first loads a specific profile, then modeling can take place
based on the profile. To make this work smoothly in practice, a clear-cut separation between
model, profile, transformations and tools is mandatory. For this purpose, the OMG defines a
profile mechanism for the UML. (Here, too, we are dealing with a UML-specific mechanism.)

Principally, UML profiles consist of three categories: stereotypes, tagged values, and con-
straints5. Profiles can extend UML’s valid constraints – that is, further constrain them – but can-
not relax their restrictions. In UML 1.x the construct of the profile is only defined verbally. In
UML 2.0, the concept of the profile based on the UML metamodel is defined formally. Here we
also find a definition of the extension concept mentioned in the previous section.

Figure 6.13 shows the metamodel of the profile definition of the UML 2.0 specification –
which itself can serve as an example of metamodeling. We omitted explicitly marking up the
namespace for each element, since it’s all part of the UML metamodel6.

Figure 6.12 Tagged values in UML 2.0

4 Strictly speaking, tagged values are no longer tagged values, but the representation of the stereotypes’ attributes.
Since they still look like tagged values, though, they are still termed tagged values.

5 UML 2.0 formally defines this a little differently – see below.
6 In the interest of brevity, some constraints are left out.

<<metaclass>>
UML::Class

<<stereotype>>
CM::Component

transactional: Boolean

CustomerManagement::
Person

<<CM::Component>>

{transactional = true }

c06.fm Page 93 Tuesday, February 28, 2006 5:18 PM

94 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

According to Figure 6.13, a profile is first defined as a specialization of a UML::Package.
Packages can be profiled through the use of a ProfileApplication, a specialization of Package-
Import. More loosely one could say that when a package imports a profile package, this means
that the profile is applied to the importing package. A profile contains a number of
stereotypes – a stereotype is a specialization of UML::Class. In this context, the extension (see
Section 6.4.2) is a specialization of UML::Association in which one end of the UML::Associa-
tion must reference a stereotype.

UML now offers the linguistic options for expressing profiles via UML as well as for notating
its use with application models. Figure 6.14 shows the definition of an (extremely simplified)
profile for EJB7.

This diagram should be more or less self-explanatory after the explanations above. However,
some interesting aspects should be mentioned in this context. On one hand, stereotypes can be
abstract, which conceptually means the same as for abstract classes: they cannot be directly
annotated to model elements; they merely serve as a basic (meta-) class for further stereotypes.
Stereotypes can also inherit from each other. Constraints that are defined for stereotypes mean
that these constraints must be valid for classes to which the stereotype is applied. In our example
in Figure 6.14, this means that a Bean must implement exactly one Remote and one HomeInter-
face. Additionally, this example demonstrates how Enumerations, which are used only for typing
a tagged value in this case, are modeled.

Figure 6.13 Metamodel of the profile concept

7 The OCL that is used for the constraints in this model are explained later.

Package

PackageImport

ProfileApplication
{subsets

packageImport}

appliedProfile

<<metaclass>>
Class Extension

ExtensionEndStereotype

1
n

/metaclass

/extension1

n

Association

{subsets
ownedEnd}

1

1

Property

type

1 n

Profile

imported Profile

1

n

{subsets importedPackage}

1

n

owned
Stereotype

{subsets
ownedMember}

c06.fm Page 94 Tuesday, February 28, 2006 5:18 PM

6.5 UML Profiles 95

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

A profile is not independent. Instead it always depends on and uses a reference metamodel.
This can either be the UML metamodel or an existing profile. The profile is unable to change
or remove the existing definitions in the reference metamodel, but the profile mechanism is a
well-defined back-door through which new constructs (stereotypes) and their properties
(tagged values) can be added. The same is true for additional modeling rules (constraints) that
further restrict the constructs’ interplay, and are thus able to formalize the well-formedness of
models of the specific language.

This can also serve as a basis for the adaptation of UML tools, so that the developer is
alerted to profile-specific modeling errors as early as during modeling. As a rule, most of the
currently-available UML tools are not as advanced as this yet. In many tools, modeling rules
are still supported – if at all – by proprietary mechanisms such as scripts or plug-ins. Until this
changes, the following options for dealing with profiles in practice are available:

• The constraints in the profile only serve documentation purposes: if necessary, they are
merely notated non-formally.

• The formalization (implementation) of profile constraints is carried out via specific UML
tool mechanisms.

• Testing for well-formedness is left to the MDA/MDSD generator, which can validate a
profiled model independently of the UML tool, should this be required. In this case, the
modeling rules would have to be ‘taught’ to the generator. If an OCL interpreter is used for
this purpose, it is even possible to evaluate an OMG-conformant formal profile definition.

Figure 6.14 A simple EJB profile

Component
<<stereotype>>

Bean

<<stereotype>>
EntityBean

<<stereotype>>
SessionBean

state: StateKind

<<enumeration>>
StateKind

stateful
stateless

Artifact
<<stereotype>>

JAR

Interface

<<stereotype>>
Remote

<<stereotype>>
Home

<<profile>>
EJB

context Bean:
inv: realization->realizer->
 collect(i|i.hasStereotype("Remote")->size() == 1
 &&
 realization->realizer->
 collect(i|i.hasStereotype("Home")->size() == 1

c06.fm Page 95 Tuesday, February 28, 2006 5:18 PM

96 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6.6 Metamodeling and OCL

OCL is the abbreviation for Object Constraint Language. This is a side-effect-free, declarative
language for the definition of constraints (restrictions) such as modeling rules for MOF-based
modeling languages. Constraints enrich models with additional information about the validity of
model instances. Constraints are suitable for application at the M1 as well as the M2 levels.

Let’s assume we have a UML model that contains an association between people and cars, as
shown in Figure 6.15. A person can either have the role either of driver or passenger. While any-
one can be passengers, drivers must be by definition at least eighteen years old and hold a
driver’s license. How can we express this in UML?

Apart from the suboptimal option of defining a subclass of people called AdultPersonwith-
Driver’sLicense and its driver-association, the only other option is to use a constraint. In the fol-
lowing examples, constraints are described verbally and via OCL.

For all instances of Car it holds that drivers of a car must be at least eighteen years old
(invariant).

For all instances of Company it holds that a company’s potential drivers are all those employees
who are older than eighteen.

Figure 6.15 A sample model to illustrate OCL

Car
driver.age >= 18

Company
potentialDrivers = employees->select(age >= 18)

recruit(p: Person): void

Company

drive(p: Person): void

Car

-age: int

Person

0..1

1..*

1 driver

vehicle

0..*

employer

employee

potentialDrivers

owningCompany

c06.fm Page 96 Tuesday, February 28, 2006 5:18 PM

6.6 Metamodeling and OCL 97

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

For the operation drive() of the class Car it holds this it can only be called when no driver is
seated in the vehicle and the person passed as the argument is older than eighteen (precondition).
After the operation has been carried out, the person passed as the argument takes on the role of
driver (postcondition).

For the operation recruit() of the class Company it holds that after the operation has been exe-
cuted, the list of employees has grown by one, and the added person is now part of this list.

As should be clear from these examples, constraints written in OCL are both more precise and
more concise than free text. In particular, they are formally coupled with the model. OCL does
have special meaning in the metamodeling context. This is because metamodels should be
extremely precise and tool-processable: a constraint written in natural language can’t be proc-
essed by a verification tool.

First and foremost, OCL constraints are modeling language-independent. This especially
means that OCL constraints can be used at various metalevels. The example given above uses
OCL in a concrete UML model, that is, at the M1 level. Here, it affects the instances of this
model’s elements: in general, a constraint in Mn affects Mn-1. OCL is particularly significant in
the context of model-driven development, because it can also be used at M2, for example in the
context of a metamodel extension. Figure 6.16 shows an extension of the UML metamodel with
an OCL constraint.

Car::drive(p : Person)
pre : (driver == null) &&
 (p.age >= 18)
post: driver = p

Company::recruit(p : Person)
pre : -- none
post: (employees.size =

Figure 6.16 OCL constraints at the metamodel level

<<metaclass>>

CM::ConfigParam

<<metaclass>>

UML::Attribute

name : String
type : Type
[...]

context Attribute:
inv: Type.Name == "String"

c06.fm Page 97 Tuesday, February 28, 2006 5:18 PM

98 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6.7 Metamodeling: Example 1

We now develop our own metamodel for demonstration purposes that has nothing to do with the
UML, that is, one that doesn’t extend the UML metamodel. For our example, we are going to use
the feature models known from generative programming and the FODA method ([EC00],
[FODA]). This example is introduced in more detail in Section 13.5.

Figure 6.17 shows the metamodel of such feature models. Please note that this is the meta-
model of the feature model. We will not discuss its graphical representation as a diagram
here.

We first define a Feature as an instance of MOF::Class. A feature can have a number of subfea-
ture groups. A SubfeatureGroup is also a MOF::Class and contains various subfeatures. A sub-
feature group has a kind, which can be required, optional, alternative or n-from-m, modeled
using the attribute kind. Here, GroupKind gets the attributes Type and Value through inheritance
from the super metaclass MOF::Attribute. Alternatively, one could have also defined Subfea-
tureGroup as an abstract metaclass and the various kinds as concrete subclasses.

The diagram in Figure 6.18 shows an excerpt of the example-feature model in Section 13.5.3
as a UML object diagram based on the metamodel we just defined. This diagram shows very
clearly why it is important to use a suitable graphical notation, in this case that of the feature dia-
grams. This is much more readable and easier to create than a (theoretically adequate) UML
object diagram. The acceptance of domain-specific modeling is often mainly a question of the
suitable graphical notation, and of matching tool support.

Feature models can be enriched by further information. For example, one can determine
whether a feature is considered final or whether possibly additional features may be added, if
necessary in connection with a new SubfeatureGroup. In the latter case, such a feature is called

Figure 6.17 A metamodel for feature models

MOF::Class

MOF::Attribute

MOF

FM::Feature FM::SubfeatureGroup FM::GroupKind

FM::GroupKind

instanceof instanceof

instanceof

FM::Concept FM::Concept

features
n

n1
1

1 1

Feature
Modelling

parent

groups

attributes

kind

type : String
value : String

Inv: value == "required" || value == "optional" ||

Inv: type == "String"
value == "alternative" || value == "nOfM"

inv: parent == null

c06.fm Page 98 Tuesday, February 28, 2006 5:18 PM

6.8 Metamodeling: Example 2 99

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

open. The metamodel can easily be extended, and its rendering in an instance diagram is obvi-
ous, as Figure 6.19 indicates.

The use of feature models is discussed in depth in Section 13.5.3.

6.8 Metamodeling: Example 2

An extremely simplified component infrastructure [VSW02] usable for small devices and embed-
ded systems (see Chapter 16 and [Voe02]) will serve as another example for metamodeling. A cen-
tral ingredient of applications based on this infrastructure are – obviously – components. During

Figure 6.18 Feature model visualized using the concrete syntax of UML object diagrams
(the affected part is shown in a feature diagram in the lower left corner)

Figure 6.19 Metamodel and concrete syntax

Additional
Features

stackFeature:
FM::Concept

AdditionalFeature
FM::Feature

name = "AdditionalFeatures"

additionalFeatureSFG
FM::SubfeatureGroup

kind = "optional"

threadFeature

FM::Feature

name = "ThreadSafety"

boundsFeature

FM::Feature

name = "BoundsCheck"

typeFeature
FM::Feature

name = "TypeCheck"

addFeatureTwoSFG

FM::SubfeatureGroup

kind = "nOfM"

optimizationSFG

FM::SubfeatureGroup

kind = "optional"

optimizationFeature

FM::Feature

name = "Optimization"

speedFeature

FM::Feature

name = "Speed"

memoryFeature

FM::Feature

name = "MemoryUsage"

optimizationKindSFG

FM::SubfeatureGroup

kind = "alternative"

Optimization

Speed Memory
Usage

Thread
Safety

Bounds
Check

Type
Check

Stack

FM::Feature
open : Boolean

optimizationFeature
FM::Feature

name = "Optimization"
open = true

Optimization
[open]

Meta Model Object Diagramm Feature Diagram

c06.fm Page 99 Tuesday, February 28, 2006 5:18 PM

100 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

architecture definition, it makes sense to define what a component is, which is why we start with
the definition of a metamodel for components of this infrastructure8.

Figure 6.20 shows a simple example of a concrete model that uses the component concept. It
shows component dependencies in a mobile phone SMS messaging application. First, we want to
express the fact that a component can offer a number of services that are defined as provided
ports. A provided port is associated with an interface that defines the available operations. Fur-
thermore, a component must convey which resources it needs. This is accomplished by assigning
a required port to the component. This port, too, has an interface. In this case the interface speci-
fies which operations the component requires from other components.

In addition, a component has a number of configuration parameters. To simplify matters,
these are attributes of the component class that must be of the type String, as they are read from
a configuration file at system start-up.

Finally, there are special types of components that only use services and don’t offer any:
applications.

The example in Figure 6.20 features an application SMSApp that defines three required ports.
These are linked to interfaces that define the respective other ports. For example, the service
interface of the TextEditor component is needed for the user to input an SMS. The TextEditor as
well as the MenuUtilities need the UIManager to be able to access the screen. Figure 6.21 shows
the metamodel of this architecture.

This metamodel formally expresses what we described above in words, at least in part. The
coupling of an instance diagram (the SMS application shown in Figure 6.20) with the meta-
model is accomplished via stereotypes and graphical notations: the ports are – following UML
2.0 – modeled as small rectangles on the component’s edge. Attributes of such components are
by definition configuration parameters. As components, applications are assigned the stereotype
«Application».

8 Since we map the concepts of the target architecture in the metamodel, this is an example of architecture- centric,
model-driven development.

Figure 6.20 An example of a simple component-based system

<<application>>
SMSApp TextEditor

UIManager
GSMStack

CallIFSMSIF EMSIF

SMSIF

MenuUtilities

lookAndFeel: String

c06.fm Page 100 Tuesday, February 28, 2006 5:18 PM

6.8 Metamodeling: Example 2 101

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

To avoid having to create a completely new metamodel from scratch, the UML metamodel will
serve as a basis for our own. We remember the statement ‘A configuration parameter is an
attribute of type String’. In slightly different words: the metaclass Attribute occurs in the UML
metamodel. It has an attribute named Type. We are merely saying that the metaclass Config-
Param is a subclass of Attribute, whose attribute Type must have the value String. The diagram
in Figure 6.22 illustrates this, as well as the other consequences of basing our metamodel on the
UML metamodel. Note the use of OCL for defining the necessary constraints.

We can now proceed analogously for the other elements of our metamodel. Figure 6.22 shows
the result, while we introduce the namespace, respectively the package CM (for Component
Model).

What is the actual benefit of this explicit metamodeling? As always, modeling only makes
real sense if the models don’t end up collecting dust in a drawer: they must be usable in software
development, true to the MDSD principle. This applies to metamodels too, of course. These
should be implementable and support the further development process. Therefore, it is important
not to just ‘draw’ a metamodel in the form of a diagram, but to adapt the development tools
using the metamodel too.

Effective, domain-specific modeling can only work if a suitable modeling language is availa-
ble for the domain to be modeled and this language is ‘understood’ by the development
tools.The aspects listed at the beginning of this chapter – model validation, transformation, code
generation and tool adaptation – are relevant here.

We next take a closer look at the first of these aspects, model validation. The remainder are
illustrated in the case study in Chapter 16, which expands the component example featured
above.

Figure 6.21 Metamodel for the description of components

Component Port
*1

RequiredPort ProvidedPort

Interface
* 1

Application

ports

context Application
inv: ports->collect(p | p isKindOf ProvidedPort)->isEmpty

Port
Dependency

tofrom

context PortDependency
inv: to.Interface == from.Interface

ConfigParam
*

{subsets
Attributes}

c06.fm Page 101 Tuesday, February 28, 2006 5:18 PM

102 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6.9 Tool-supported Model Validation

Tool support for metamodeling varies widely. It is possible to distinguish between the following
alternatives:

• No support. Most UML modeling tools offer hardly any support for metamodels. This is
not meant as negative criticism – they are simply not made for this purpose. They are
implicitly based on the UML metamodel, which is unchangeable. Of course, this leaves
the option of coupling a model to a metamodel via a stereotype, yet no further support (or
validation) is provided. Practically all widely-used UML tools fall in this category. How-
ever, there is a slow yet noticeable tendency toward growing support for UML profiles.

• Separate tools. Some tools are applied after a model has been created with a normal UML
tool. Typically, the model is exported from the UML tool using XMI (XMI is an XML
mapping for MOF, see Chapter 12) and further processed on this basis. Such tools include
model validators, transformers, and code generators – almost anything that covers the full
range of these tasks, often not limited to UML/MOF – and can even handle any modeling
language. One example of this category is the Open Source generator openArchitecture-
Ware described in Chapter 3.

• Integrated (meta-)modeling tools. Other than normal UML modeling tools, integrated
(meta-)modeling tools are actually internally based on a metamodel. With the help of the

Figure 6.22 Component metamodel connected to the UML metamodel

Component Port
*1

RequiredPort ProvidedPort

Interface
* 1

Application

ports

context Application
inv: ports->collect(p | p isKindOf ProvidedPort)->isEmpty

Port
Dependency

tofrom

context PortDependency
inv: to.Interface == from.Interface

ConfigParam
*

UML::Class
name : String
type : String

UML::
Attribute UML::

Interface

{subsets Features}

* Attributes

{subsets
Attributes}

context ConfigParam
inv: type == "String"

c06.fm Page 102 Tuesday, February 28, 2006 5:18 PM

6.9 Tool-supported Model Validation 103

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

tool, the user can not only adapt the metamodel, but can also create new models based on
this metamodel. The tool will then adapt its interface and ensure that only valid models
can be created. In most cases, validation takes place in real-time, that is, during input.
Examples of such tools are MetaEdit+ [MC04] or GME [M. Völter, A. Schmid, E. Wolff,
Server Component Patterns, John Wiley & Sons, 2002].

Most common is a combination of a UML tool and a separate generator/validation tool. Unfortu-
nately, integrated metamodeling tools are still largely ignored by the market.

Let’s now look at model validation via openArchitectureWare. Its functional principle is illu-
minated in Figure 6.23.

The generator uses any model as its input data. This is parsed by the parser, and the resulting
parse tree is then instantiated by the metamodel instantiator using the configured metamodel.
The input (model) format is interchangeable, because different parsers can be used in the gener-
ator. In our example, XMI is used, as in many cases. After instantiation of the metamodel, the
model is available as an object graph of Java objects in the generator’s memory. The object’s Java
classes correspond to the metaclasses of the metamodel. The actual code generation via tem-
plates can now take place, as we explained in our first case study in Chapter 3. We said above
that metamodeling is, after all, a means for defining the ‘language’ available to the modeler.
This especially includes the definition of modeling rules and the respective validation of con-
crete models.

Let’s return to our component example above. The generator we use possesses an explicit,
configurable metamodel. This is implemented in Java. The principle has been explained in detail
in Section 3.2. Thus it should be clear what a metamodel adaptation looks like: we create a sub-
class of the corresponding metaclass and configure in the generator that instances of the new
metaclass are mapped to the newly-implemented metaclass in the model. Here the example for
ConfigParam:

Using a configuration file (not shown here), we tell the generator that all UML attributes with
the stereotype «ConfigParam» are in reality configuration parameters, which is why it should

Figure 6.23 Functional principle of the openArchitectureWare generator

package cm;
public class ConfigParam extends Attribute {
}

openArchitectureWare

Parser Meta Model
Instantiator

Meta Model
Instance

Code
Generator

Input
Model

Meta Model
Classes Templates Generated

Code

c06.fm Page 103 Tuesday, February 28, 2006 5:18 PM

104 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

instantiate the subclass ConfigParam instead of Attributes. From the generator’s perspective, this
is not a problem, because as always in OO programming, an instance of a subclass can be used if
a variable is typed with the superclass – polymorphism.

So far this class ConfigParam is not of much use to us, especially since we haven’t contributed
much to model validation at this point. ConfigParam is for example missing the constraint that
the type of a ConfigParam always has to be String. To check such constraints, all metaclasses
possess an operation CheckConstraints that is called by the generator once the entire metamodel
has been instantiated. This is the primary place where model validation takes place. If this oper-
ation detects a problem it throws a DesignError-Exception that is then reported to the developer,
indicating that the processed model is not consistent with the metamodel. This is the code for
CheckConstraints of the class ConfigParam9:

To gain a better understanding of what is happening here, it is helpful to look at the UML meta-
model used by the generator and extended by ConfigParam, as shown in Figure 6.24.

9 In this example, Type and Name are attributes of the metaclass Attributes. Unfortunately in this case the generator
uses attributes spelled with capitals at the beginning of a word, which is a little confusing, but outside our control.

public String CheckConstraints()
 throws DesignError {
 if (!Type().Name().toString().equals("String")) {
 throw new DesignException(
 "ConfigParam Type not String");
 }
 return super.CheckConstraints();
}

Figure 6.24 ConfigParam excerpt from the metamodel

Component

1

ConfigParam
*

name : String

UML::Class

name : String

UML::
Attribute

{subsets Features}

* Attributes

name : String

UML::Type

c06.fm Page 104 Tuesday, February 28, 2006 5:18 PM

6.9 Tool-supported Model Validation 105

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Since we are operating in the context of the class ConfigParam, the expression Type() provides
the instance of the UML::Type object by following the inherited Type association of the class
Attribute. The type has an attribute Name of the type String, which contains the name of the
type. Note that the implementation of the constraint does not happen declaratively with OCL,
but operationally via Java. The integration of an OCL/Java compiler is possible here, and will
certainly happen in the near future in the context of the openArchitectureWare Open Source
project.

In the same manner, we now proceed to create metaclasses for Component, ProvidedPort and
RequiredPort. A few examples follow.

The metaclass for Component can e.g. look something like this:

The helper function Util.filter() filters a number of objects (here, the ports) for a specific meta-
class. For example, the operation ProvidedPort() returns all ports that are actually provided
ports. Note also the operation CheckConstraints(), which can be used for implementing invari-
ants of the metamodel.

We can now look at the metaclass Application. This is a special kind of component that is not
allowed to have ProvidedPorts.

Here, too, CheckContraints() is used to guarantee that an application has no provided ports.

public class Component extends Class {

 public ElementSet Port() {
 // return all ports of the component
 }

 public ElementSet RequiredPort() {
 return Util.filter(Port, RequiredPort.class);
 }

 public ElementSet ProvidedPort() {
 return Util.filter(Port, ProvidedPort.class);
 }

 public void CheckConstraints() {
 Util.assert(Operation().size() == 0,
 "Component must not define operations by itself");
 }
}

public class Application extends Component {
 public void CheckConstraints() {
 Util.assert(ProvidedPort().size() == 0,
 "Application must not have any provided"+
 "ports, only required ports are allowed.");
 }
}

c06.fm Page 105 Tuesday, February 28, 2006 5:18 PM

106 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6.10 Metamodeling and Behavior

Behavior in the context of metamodeling is interesting in two respects. On one hand behavior can
be hidden in the metamodel’s meaning, while on the other one can use metamodeling to make
behavior modeling explicitly accessible, for example in the form of activity or state diagrams.

Here, we will focus on the former scenario. We’ll illustrate this using the familiar component
example: let us assume we require each component to have an operation init(). This is realized
most easily if we define an interface that contains this operation and that also require that all
instances of the metaclass Component must implement the interface.

A simple calculator serves as an example, as is shown in Figure 6.25.

The question is, what happens in the init() operation? For example, one can check whether links
are available for all RequiredPorts. These links10 are created by the Container. For this purpose,
the component implementation offers a corresponding set operation for each RequiredPort,
which is called by the container. The implementation of these operations saves the reference to
the component that provides the ProvidedPort for the respective RequiredPort in an attribute.
When init() is called by the container, the component instance expects these links to be present,
that is, the corresponding attributes must no longer be null. The algorithm to verify this is as
follows:

Figure 6.25 An example of ‘All components must implement a specific interface’

10 References are instances of associations.

foreach r:RequiredPort {
 if (Attribute with the name of the port == null) {
 ERROR!
 }
}

UML Meta Model

<<metaclass>>

CM::Component

<<Component>>

Calculator

init() : void

<<metaclass>>

UML::Class

context Attribute:
inv: implements("LifecycleInterface")

Custom Meta Model

Model

<<metaclass>>

UML::Interface

<<interface>>

LifecycleInterface

init() : void

instanceof

instanceof

c06.fm Page 106 Tuesday, February 28, 2006 5:18 PM

6.11 A More Complex Example 107

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

This is a behavior that is not programmed by the user, but is instead implicitly determined by the
architecture’s guidelines. This has the following effects:

• The programmer who creates an application doesn’t have to deal with it.
• In this case, the model validation is limited to making sure that each component imple-

ments the LifecycleInterface. This happens as explained above. The behavior within the
method is not validated, because the implementation code (see below) can be generated
automatically.

• If desired, one can also specify this behavior at the metamodel level, for example via
sequence diagrams, action semantics (see Chapter 12), or – in this case – also using a con-
straint that states that all resource attributes must not be null once the operations have been
executed.

• In the course of code generation, the implementation code for such operations can be
generated directly. All information required for generation is present at generation time.
The following section gives an example of the procedural realization of the constraint
described above:

By the way, it is noteworthy that large parts of application’s behavior are often really behavior
that is defined by the architecture. Among these are persistence, workflow, or remote proxys. All
these aspects can easily be generated completely. For more details on modeling behavior in
DSLs, see Section 8.1.3.

6.11 A More Complex Example

This section contains a more complex example of metamodeling. We are dealing with a part
of the ALMA telescope here11. ALMA [ALMA] is an international astronomy project that
pursues the goal of building an array of fifty radio antennas in the Atacama Desert in Chile.
Several international organizations participate in this project: ESO, IRAM, MPI, NRAO. The
fifty antennas are all connected via computer as a radio interferometer to achieve much
higher resolution than is possible with a single antenna. To vary the telescope’s resolution, the
positions of all fifty antennas can be physically changed using fork lift trucks.

«DEFINE InitOperation FOR Component»
 public void init() throws IllegalConfiguration {
 «FOREACH Operation o IN RessourceInterface»
 if («o.NameWithoutSet» == null) {
 throw (new IllegalConfiguration(
 "Resource «o.NameWithoutSet» not set!”));
 }
 «ENDFOREACH»
«ENDDEFINE»

11 We thank the European Southern Observatory (ESO) for their kind permission to let us use this example here.

c06.fm Page 107 Tuesday, February 28, 2006 5:18 PM

108 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Naturally, such a project requires a fairly elaborate software infrastructure. This consists of:

• Real-time parts for steering the antennas, implemented in C++ and CORBA.
• Job definition scripts, implemented in Python.
• High-performance calculating modules for correlation and post-processing of digital

images, implemented in C++.
• A ‘classic’ IT infrastructure, implemented in Java, for definition of the projects, data man-

agement, and remote access to the telescope infrastructure – the telescope is located at a
height of 5,000 meters in Chile, while the scientists do their work from home over the
Web.

Many of the system’s data structures are needed by several of these subsystems. Due to the many
non-functional requirements, the data structures must be available in different representations:
XML for storage and remote transport, CORBA structures in the telescope control system, as
well as some astronomy-specific formats for more efficient processing of raw data.

It was therefore decided to define the data structures with UML and to generate the various
other artifacts from that12:

• XML schemata
• Wrapper classes for XML as well as (de-)marshalers in various languages (C++, Java,

Python)
• Converters for the proprietary data formats
• HTML documentation for the data model

6.11.1 The Basics

We must first differentiate between Entities and DependentObjects. Entities have their own ID
and can be searched based on several properties. An Entity can be subdivided. Its parts are
DependentObjects. These do not have an identity of their own and cannot be searched – only the
possessing entity knows them and references them. Parts can contain further parts. Figure 6.26
shows two examples:

12 For any astronomers amongst our readers: of course, the example is somewhat simplified.

Figure 6.26 An example of Entities and DependentObjects

<<entity>>
Observation

Project

<<do>>
Observation

Unit

program

<<entity>>
FeedData

<<do>>
Feed

<<do>>
Focus

<<do>>
Pointing

1 *

c06.fm Page 108 Tuesday, February 28, 2006 5:18 PM

6.11 A More Complex Example 109

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

An ObservationProject contains multiple ObservationUnits. These form a tree whose root is ref-
erenced with program by the ObservationProject. In the other example, observation data is
shown. Without wishing to go into too much detail here, one can see that the FeedData consists
of various substructures.

After coupling the metamodel to UML (that is, extending the UML metamodel), the meta-
model for such models looks like Figure 6.27:

6.11.2 Value Types

Other distinctions of the data exist in the data model. Specific information, such as a star’s
position in the sky, are neither DependentObjects nor are they primitive types. For this reason,
we introduce ValueTypes. ValueTypes have no identity: they consist of only their value. Two Val-
ueType instances of the same value are considered identical. As a convention, it is defined that
the attributes of Entities or DependentObjects can only be primitive types or ValueTypes. The
reason for this is that these values occur repeatedly all over the system. An example for the use
of ValueTypes is shown in Figure 6.28:

Figure 6.27 Metamodel for Entities and DependentClasses, coupled with the UML
metamodel

Figure 6.28 An example of the modeling and usage of ValueTypes

UML::Class

Alma::Entity Alma::
DependentClass

/part

0..*

/part

0..*

timestamp : Time

<<entity>>
FeedData

position: Position
shape: BeamShape

<<do>>
Pointing

day : short
month : short
year : short
hour : short
minute : short
seconds : short
millis : short

<<valuetype>>
Time

azimuth : int
altitude : int

<<valuetype>>
Position

...

<<valuetype>>
BeamShape

c06.fm Page 109 Tuesday, February 28, 2006 5:18 PM

110 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

The metamodel is expanded accordingly. Since Entities as well as DependentObjects and
ValueTypes have the same restrictions on their attributes, a corresponding abstract metaclass
AlmaAbstractClass is introduced. This is common practice in object-oriented programming
and is used here at the metalevel, as Figure 6.29 shows.

In this case we agreed to write the constraints in natural language rather than in OCL, because
the generator requires manual programming of the constraints in Java anyway. The constraint for
the attribute types could be described as an OCL constraint as follows:

6.11.3 Physical Quantities

Since ALMA is, after all, a physical measurement instrument, the data it works with involves
lots of physical quantities. It therefore makes sense to provide physical quantities explicitly as
such in the metamodel. Physical quantities possess both a value and a unit, such as ‘10 arcsec’ –
10 is the value, arcsec the unit. Various quantities have certain well-defined units and value
ranges. For example, angles have the units degree or arcsec (arcsecond). Distances are measured
in mm, cm, km, and pc (parsecs). All these aspects have to be reflected in the model. There are
different options for visualizing this information in the model – we decided to use the one shown
in Figure 6.30. Again, angle and distance serve as examples here.

Figure 6.29 Metamodel with AlmaAbstractClass factored out

context AlmaAbstractClass
inv: attribute->forAll(a |
 (a.oclIsKindOf(ValueType) ||
 a.oclIsKindOf(primitiveType)))

ALMA
Meta Model

UML Meta Model

UML::Class

Alma::Entity Alma::
DependentClass

/part

0..*

/part

0..*

Alma::
ValueType

Alma::
Alma

AbstractClass

attributes must
be primitive types
or value types

c06.fm Page 110 Tuesday, February 28, 2006 5:18 PM

6.11 A More Complex Example 111

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

The units are laid down in an attribute unit, which must be of type String. The value must be of
type int, long, float. or double. The list of valid values for the unit attribute is given via tagged
values: we use a list divided by ‘|’. Physical quantities can be used like ValueTypes, so they must
also appear as attributes of an AlmaAbstractClass.

We next want to develop the respective metamodel. First, PhysicalQuantity is a subclass of
ValueType (this should be clear after the discussion above) – PhysicalQuantities are a special
kind of ValueType. Look at Figure 6.31 for the metamodel – for reasons of simplicity, we have
again formulated the constraints in plain English.

Figure 6.30 Definition and use of physical quantities

Figure 6.31 Metamodel for physical quantities

Figure 6.32 Special kinds of attributes

<<physicalquantity>>
Angle

unit : String {values=deg|arcsec}
value : float {min=−1000,max=1000}

<<physicalquantity>>
Length

unit : String {values=mm|cm|m|km|pc}
value : double {min=0,max=999999}

angle : Angle
legth : Length

<<entity>>
SomeEntity

Alma::
ValueType

Alma::
Physical
Quantity

Type of value
attribute must be
int, long, float or
double

Type of unit
attribute must be
String

must have only
the value and the
unit attribute, no
other attributes

UML::Attribute

min : self.Type
max : self.Type

Alma::Bounded
AttributeType must be

int, long, float or
double values : String

Alma::
EnumAttribute the values are a

list of tokens
separated by !

c06.fm Page 111 Tuesday, February 28, 2006 5:18 PM

112 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

BoundedAttribute must be of the type int, long, float, or double. Two attributes min and max are
also defined. These attributes of the metaclass appear in the model as tagged values, and are
actually characteristics of the physical quantity defined in the model. The minimum and the
maximum value are of the same type as the attribute itself. EnumAttribute can have any type.
The tagged value values defines the valid values of the type to be defined.

However, the correlation between the physical quantity and the two new metatypes is still
missing. Figure 6.33 shows this.

Figure 6.33 Excerpt from the complete ALMA metamodel

ALMA
Meta Model

UML Meta Model

UML::Class

Alma::
ValueType

Alma::
Alma

AbstractClass

Alma::
Physical
Quantity

UML::Attribute

min : self.Type
max : self.Type

Alma::Bounded
Attribute

Type must be
int, long, float or
double

values : String

Alma::
EnumAttribute

1valueAttr
1unitAttr

{subsets
attribute}

{subsets
attribute}

Type of value
attribute must be
int, long, float or
doubleType of unit

attribute must be
String

must have only
the value and the
unit attribute, no
other attributes

/attribute

0..*

the values are a
list of tokens
separated by !

c06.fm Page 112 Tuesday, February 28, 2006 5:18 PM

6.12 Pitfalls in Metamodeling 113

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

6.12 Pitfalls in Metamodeling

This section presents a few tips and tricks and reveals some of the pitfalls in metamodeling that
particularly concern UML:

• One often reaches a point in metamodeling where it is no longer obvious which notation
must be used.

• Accidentally finding oneself on the wrong metalevel.

In general, asking the central question of how the metamodel could be implemented in a pro-
gramming language can prove useful. This view can, if reversed, give us hints for revealing
which notation is the correct one.

6.12.1 Interfaces

Problem: You wish to express the fact that instances of a metaclass Entity (that is, all Entities)
must implement a certain interface.

Correct solution: The set of an implemented interfaces of an Entity must contain SomeInter-
face. This can either be expressed via an OCL constraint, or by subsetting the respective meta-
association (see Figure 6.34).

Incorrect solution: Figure 6.35 shows that the metaclass Entity implements the interface
SomeInterface. This is not the same statement as the original one.

Figure 6.34 All Entities must implement a certain interface (correct)

Figure 6.35 All Entities must implement a certain interface (incorrect)

Entity Realization->exists(Realizer
oclTypeOf SomeInterface)

Entity:

Entity SomeInterface
{subsets Realization} 1

Entity<<interface>>
SomeInterface

c06.fm Page 113 Tuesday, February 28, 2006 5:18 PM

114 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Sometimes, the latter is required for other reasons. Assume there is a number of metamodel ele-
ments whose instances must all have names. It will possibly make sense to define an interface on
the metalevel that contains the operation Name(). Figure 6.36 shows this.

6.12.2 Dependencies

Problem: You want to express the fact that components can depend on interfaces because they
invoke their operations.

Correct solution: You define an association between component and interface and call it uses.
Figure 6.37 demonstrates that a component can use many interfaces and that an interface can be
used by many components.

Incorrect solution: The model in Figure 6.38 states that the metaclass Component somehow
depends on the metaclass Interface.

Figure 6.36 Use of interfaces and the Implements relation at the metamodel level

Figure 6.37 Dependencies (correct)

Figure 6.38 Mappings (incorrect)

Entity

getName()

<<interface>>
NamedElement

Service Node

Component Interface
uses

**

Component Interface

c06.fm Page 114 Tuesday, February 28, 2006 5:18 PM

6.12 Pitfalls in Metamodeling 115

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

Note that a Dependency like the one in Figure 6.38 can never have cardinalities. The statement
‘depends on several interfaces’ cannot therefore be mapped.

6.12.3 IDs

Problem: Entities must have exactly one attribute with the name ID of type String. This repre-
sents the identifying attribute or the primary key. We proceed on the premise that the metaclass
Entity inherits from UML::Class and thus possesses the inherited association Attribute, which
defines the attributes of the class.

Correct solution: The correct solution in Figure 6.39 uses an OCL constraint that states that
among the attributes of the entities there must be one with the name ID and the type String.

Incorrect solution: The definition of an Entity attribute of the name ID, as shown in
Figure 6.40, does not yield the correct result. Instead, it represents a definition of a tagged value
for the metaclass Entity.

By the way, the following constraint in the correct model would also be incorrect:

Figure 6.39 Entities must have exactly one attribute with the name ID of the type String
(correct)

Figure 6.40 Entities must have exactly one attribute with the name ID of the type String
(incorrect)

context Entity inv:
 Attribute->select(
 (Name = "ID") && (Type.Name = "String")
)->size = 1

Entity

Entity:
(Attribute->select(Name = "ID")->size = 1)
&&
(Attribute->select(Name = "ID")->forAll(
 Type.Name = "String"
)

ID : String

Entity

c06.fm Page 115 Tuesday, February 28, 2006 5:18 PM

116 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

This constraint would permit the existence of various attributes of the name ID, but only one of
the type String.

6.12.4 Primary Keys

Problem: All instances of Entity must have among their attributes exactly one of the type Enti-
tyPK. Here, EntityPK is a specialization of the metaclass Attribute.

Correct solution: Figure 6.41 shows the correct metamodel:

Incorrect solution: Figure 6.42 displays the same problem that we dealt with in the Section
6.12.3, the definition of a tagged value.

6.12.5 Metalevels and Instanceof

This example illustrates one of the pitfalls in the use of complex modeling languages using
UML an example.

Figure 6.43 shows a UML class diagram (M1) and a UML object diagram (M0). Objects are
instances of classes that are defined in the class diagram. So far, the object-class relationship is

Figure 6.41 All instances of Entity must have among their attributes exactly one attribute
of the type EntityPK (correct)

Figure 6.42 All instances of Entity must have among their attributes exactly one attribute
of the type EntityPK (incorrect)

Entity
{subsets Attribute} 1

EntityPK

UML::Class UML::Attribute
{subsets Feature} *

Attribute

pk : EntityPK

Entity

c06.fm Page 116 Tuesday, February 28, 2006 5:18 PM

6.12 Pitfalls in Metamodeling 117

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

very clearly an instanceof relation, of which the fact that more than one object of the same class
can exist is further proof. The same is true for the relationship between link and association.

As can be seen in Figure 6.43, objects and classes are located on different metalevels. On the
other hand, they are on the same metalevel in terms of UML. Classes as well as object models
are instances of UML metamodel elements. Figure 6.44 shows this:

On closer inspection, this apparent contradiction is easily resolved: the two instanceofs are not
the same language construct. In the first example, instanceof is part of UML and is defined in
that context (see Figure 6.45).

Figure 6.43 Objects as instances of classes

Figure 6.44 Model elements as instances of metamodel elements

Car Person
driver

myVWBus
:Car

me
:Person

<<
in

st
an

ce
o

f>
>

myFathersGolf
:Car

myFather
:Person

<<
in

st
an

ce
o

f>
>

<<
in

st
an

ce
o

f>
>

<<
in

st
an

ce
o

f>
>

M0

M1

Car

UML::Class

Person

UML::Object

me:

father:

myWBus:

myFathersGolf:

<<
in

st
an

ce
o

f>
> <<instanceof>><<instanceof>>

c06.fm Page 117 Tuesday, February 28, 2006 5:18 PM

118 Metamodeling

 c06.fm Version 0.3 (final) February 28, 2006 5:17 pm

The relation between UML::Class and UML::Object is an MOF::Association. It defines the
instanceof relation between instances of UML::Class and UML::Object in instances of this
(meta-)model – that is, in UML models. Nevertheless, all model elements (me, my father, myVS-
bus, myfathersGolf) are of course instances of UML metaclasses, in this case UML::Class or
UML::Object.

Figure 6.45 The instanceof relation defined in UML

UML::Class UML::Object
instanceof

type

1

instance

*

UML::Association UML::Link
instanceof

type

1

instance

*

AssociationEnd

roleName
cardinality

1
2

c06.fm Page 118 Tuesday, February 28, 2006 5:18 PM

119

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

7 MDSD-Capable Target Architectures

7.1 Software Architecture in the Context of MDSD

As important as the term software architecture is, unfortunately it is also just as vaguely defined.
We neither wish nor have to make the attempt to deliver a universally-valid and detailed defini-
tion – to this end, we recommend the appropriate literature, such as [BCK98], [POSA1], [JB00],
[PBG04]). For further discussion, it is sufficient to carve out the relevant points of view and spe-
cifics. The following, simple ‘definition’ of the term software architecture will serve as a basis:

Software architecture describes to a certain level of detail the structure (layering, modulariza-
tion etc.) and the systematics (patterns, conventions etc.) of a software system.

The topic of software architecture plays a role in various subcontexts of MDSD:

• First, a software architecture serves to structure the software systems to be generated or
created at large. Here the reference implementation plays a central role: the software archi-
tecture of applications to be generated is already visible in its entirety – if only as an exam-
ple. Yet each complete member of the software system family possesses the same software
architecture. This view of the topic is therefore the classic and common one: How do you
structure applications or, respectively, software systems? The answer to this question is
independent of whether development is model-driven or not, which is why you can draw
on the whole toolbox of software architecture to come up with answers. In the context of
MDSD, additional requirements must also be considered. This MDSD perspective on the
topic of software architecture leads us to the term target architecture. The target architec-
ture contains the platform architecture (see below).

• An MDSD domain architecture (see Chapter 4) is also a software architecture. It defines
the whole of the metamodel, DSL, and platform, as well as transformations. The domain
architecture provides the basis for a software system family’s products. Here, we are to a
certain extent operating at the metalevel, because a domain architecture serves the creation
of software – the domain architecture determines substantial parts of the target architecture.

• Software architecture is relevant in the context of the MDSD platform, where it describes
the most important platform components, their interactions, as well as their non-functional
characteristics, which is why we call it platform architecture in this context. The platform
can be found at both the metalevel, because it is part of the domain architecture, and on the

c07.fm Page 119 Tuesday, February 28, 2006 3:15 PM

120 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

concrete level, because it is also part of each software1 that was generated with the help of
the domain architecture – otherwise the software would not be complete: that is, runnable.

• Software architecture also plays a role in MDSD transformations, because it actually
defines the software architecture of the generated code – which is part of the target archi-
tecture, as explained above – and, if necessary, concrete integration points for custom logic
that must be programmed manually. Transformations are software too, and should therefore
be structured by a software architecture. We call the latter a transformation architecture.

• Finally, generic MDSD tools must also meet certain architectural standards. We call their
software architecture tool architecture.

This categorization provides us with a topical segmentation that we can use to further structure
the next chapters of this part of the book:

• This chapter discusses target architecture, as well as platform architecture.
• Chapter 8 deals with transformation architecture, and also covers domain architecture.
• Chapter 9 looks in detail at code generation techniques.
• Chapter 10 provides insight into the state of the art of model transformations.
• Chapter 11 introduce the basics of and selection criteria for tool architectures.

In the context of MDSD, the target architecture is of extreme importance. The generation of
parts of this architecture can be automated at all only if its concepts are well-defined. If the arti-
facts to be generated cannot be described systematically, the creation of generation rules (trans-
formations) and thus of a domain architecture, is impossible. All of the recommendations in this
chapter are therefore relevant for the creation of MDSD reference implementations.

7.2 What Is a Sound Architecture?

As we explained in Section 7.1, the application to be created must have a sound architecture.
From our viewpoint, a sound architecture exhibits the following characteristics:

• First of all, the architecture must sufficiently support the functional requirements of the
application for which it is created. Without this property, the architecture is useless.

• Furthermore, it must realize the expected non-functional requirements. Among these are
dynamic aspects such as performance or scalability, but also factors like availability, testa-
bility, and maintainability.

• The architecture should comprise as small as possible a set of clearly defined constructs.
Thus the architecture becomes simpler, easier to understand and, in consequence, prac-
ticable.

• The architecture should also allow specific growth/development paths for the application.
This is not about creating an ideal solution that serves all purposes, but about creating a
clearly-defined architecture that is potentially expandable.

• A sound architecture is also well-documented. This includes a brief and concise documen-
tation of all the points listed above, a programming model that explains how one imple-
ments applications based on the architecture, as well as a rationale elaborating why the
architecture was created the way it is and why possible alternatives were rejected.

1 This is a uses relation: the platform is used by the (generated) software products, but it doesn't belong to them.

c07.fm Page 120 Tuesday, February 28, 2006 3:15 PM

7.3 How Do You Arrive at a Sound Architecture? 121

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

You know that you are dealing with a sound architecture if it can be implemented and used in
everyday project business – even when time presses – in the way that its designer envisaged, and
if it stands the test of time in daily practice.

In the context of MDSD, there are two important aspects to observe:

• First, the architecture must be able to support all products of the software system family. It
should also be able to map new products in the family that were not known in detail at the
time the domain architecture was defined (for further details, see Section 13.5).

• The architecture’s concepts must be defined even more clearly, otherwise they cannot be
generated automatically via transformation from models.

The second aspect is especially interesting: the concepts and constructs of an architecture that is
to serve as a platform for MDSD must be defined very precisely. Although we have identified
well-definedness as a sign of quality in a good architecture, one could say that the application of
MDSD not only fosters a sound software architecture, but actually enforces it.

7.3 How Do You Arrive at a Sound Architecture?

The question of how one comes up with a sound architecture – generatively or not – fills whole
books, and we do not wish to discuss it here in its entirety. Nevertheless, we want to address
some of its aspects.

7.3.1 Architectural Patterns and Styles

In software technology only a limited number of architectural blueprints that work well are
known. These have been described using various forms: among others, as patterns [POSA1], or
styles [BCK98]. Figure 7.1 shows some typical architectural styles.

Figure 7.1 Some popular software architectural styles

Independent
Parts

Communicating
Processes

Event/Message-
based Systems

Data Flow

Batch Sequential Pipes and Filters

Data-
Centered

Repository Blackboard

Virtual Machine

Interpreter Rule-based Microkernel

Call and Return

Procedural Object-
oriented Layers

Reflection

ComponentsPlug-Ins

Frameworks

Workflow

c07.fm Page 121 Tuesday, February 28, 2006 3:15 PM

122 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

A proven way of obtaining a good architecture is the use of a tried and tested architectural pattern
or style as basis of one’s own architecture. [POSA1] describes the basic architectural patterns quite
well and extensively. Additionally, there are a number of books that describe the architecture of
specific types of systems. Here, a few examples:

• Patterns for Concurrent and Networked Objects describes distributed, multi-threaded sys-
tems [POSA2].

• Resource Management Patterns, addresses the architecturally-significant aspect of
resource management [POSA3].

• Server Component Patterns describes the internal architecture of component infrastruc-
tures such as EJB, CCM, or COM+ [VSW02].

• Remoting Patterns describes the internal architecture of remoting middleware such as
CORBA, .NET Remoting, or Web Services [VKZ04].

• Patterns of Enterprise Architecture describes the architecture of big enterprise systems in
general [Fow04].

• Enterprise Integration Patterns describes the architecture of EAI systems and messaging
middleware [Hor04].

Today, reference architectures and platforms like J2EE or .NET are often used as a basis for
architectures. The use of such a platform does not yield a solid architecture automatically, but it
can serve as a solid foundation, specifically for non-functional aspects. One still has to decide
which concepts offered by the platform one wishes to use and how.

A proven method for obtaining a good architecture is continuously to develop an architecture
over the course of several applications (ideally of the same software family). The experience
gathered working with the architecture can contribute to improving newer versions of the archi-
tecture or other members of the system family. In this respect, too, MDSD has a positive effect
on the software architecture of the application created.

7.4 Building Blocks for Software Architecture

This section discusses some aspects of software architectures and their relevance in the context
of MDSD.

7.4.1 Frameworks

We call frameworks anything that can be adapted or extended via systematic extension or config-
uration. For example, developers who use a framework must specify specific configuration
parameters, extend superclasses, or implement callbacks. As a rule, more than one of these adap-
tations must be made to realize a specific functionality (that is, a specific feature). It is important
that these adaptations are compatible with each other. For many frameworks, this is not always
easily accomplished, which is one of the main reasons why frameworks are sometimes difficult
to use and enjoy a dubious reputation.

MDSD can help insofar as it lets you specify the required features via a suitable DSL. You can
then proceed to generate the various adaptations of the framework from the models built with the

c07.fm Page 122 Tuesday, February 28, 2006 3:15 PM

7.4 Building Blocks for Software Architecture 123

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

DSL. Frameworks and DSLs are therefore an ideal combination: MDSD platforms can be very
well implemented with the aid of frameworks.

7.4.2 Middleware

Middleware can be seen as a kind of framework. In most cases, it is specific to a technical
domain such as distributed systems, messaging, or transactions, and provides the technical basis
for a target architecture. Due to its focus on technical aspects, middleware is applicable in many
functional and professional domains2, and is thus often standardized. Well-known examples are
CORBA, DCOM, MQSeries, and CICS.

7.4.3 Components

Component infrastructures are an especially powerful and very popular type of middleware.
Without wanting to fully immerse ourselves in a discussion of how to define the term ‘compo-
nent’, a brief explanation is in order here

A component is a self-contained piece of software with clearly-defined interfaces and explicitly-
declared context dependencies.

Components therefore constitute the basis of tidily modularized and assemblable systems. Many
domain architectures serve to define components or to put pre-fabricated components together
to build an application.

Another important aspect of components is that they are the ‘smallest common denominator’
for the composition of systems that are specified via different DSLs, because of the various sub-
domains in a system. Ideally, this assembly should take place at the model level (see Chapter 15),
but the tools needed for this purpose (model transformers) are not always available or applicable
in practice. For this reason, the combination of different subsystems happens at the implementa-
tion level, as illustrated in Figure 7.2.

Container infrastructures such as EJB, COM+, or .NET Enterprise Services constitute an
important foundation for MDSD. After all, they provide a technical platform for components that
ideally only contain code that is related to the functional requirements of the system. In this case
containers factor the technical aspects from components and make them available in a standard-
ized and reusable form. Such containers are mostly not generated, but merely configured by
MDSD through generation of configuration files from the model (deployment descriptors in
EJB). The exception are component infrastructures for embedded systems, which we discuss in
Chapter 16.

2 We use the term ‘functional/professional’ throughout the book as an English version for the German word fachlich.
The word does not have a direct equivalent in English: in German we speak of technischen domains and fachlichen
domains as their opposite. Technisch clearly deals with technical issues such as scalability, persistence, transactions,
load balancing, security. A functional/professional (fachlichen) domain is one that deals with application-orientated
issues, for example insurance, radio astronomy, tax calculation, engine management and so on.

c07.fm Page 123 Tuesday, February 28, 2006 3:15 PM

124 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

The integration of MDSD and component-based development is further illustrated in the
remaining sections of this chapter and in Chapter 17.

7.5 Architecture Reference Model

In practice a layered model has proven to be most useful in software architectures. This structure
can be found in some form in almost all well-structured software systems. Figure 7.3 shows this.

Figure 7.2 Integration on the implementation level

Figure 7.3 An architecture reference model

Model 1

Comp
A

Generator 1

DSL X

based on

Model 2

based on

accepts

Comp
B

Comp
C

Generator 2

Model 3

DSL Ybased on

Comp
D

Comp
E

Component Infrastructure

accepts

Business
Plattform

Technical
Plattform/
Middleware

Operating System

Programming Languages & Libraries

- Persistence
- Transactions
- Distribution
- Scheduling
- Hardware Access

- Main Entities
- Main Valuetypes
- Business Rules
- Business Services

Application

c07.fm Page 124 Tuesday, February 28, 2006 3:15 PM

7.6 Balancing the MDSD Platform 125

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

The operating system and the programming language form the basis of each architecture. Build-
ing on this foundation, there is usually a technical framework that provides essential technical
services, often implemented using middleware. These can be persistence, transactions, distribu-
tion, workflow, GUIs, scheduling, or hardware access functions. The question of which services
are actually offered by this layer depends on the technical domain, such as real-time embedded,
business, or peer-to-peer domains. Typical examples of such frameworks are J2EE and .NET in
the enterprise field, and Osek + Standard Core in the field of embedded systems, mostly in the
automotive sector.

It is typical to find a framework based in this layer that provides the foundation for the func-
tional/professional domain:

• Entities represent concepts that possess an identity and a lifecycle – for example, each cus-
tomer has an identity that must be preserved as long as the object exists.

• Value objects represent values. Amounts of money in banking, for example, or coordinates
sets in a GPS application are good examples of value objects. Value objects do not have an
identity: only their value is relevant, and two objects with the same value are considered
identical.

• Business rules and Constraints. Here, the domain’s basic rules that cannot be assigned to
an Entity are captured, for example that drivers of cars must always be older than eighteen,
or that the amount of money in a transaction can never be negative.

• Services. Basic services are defined here that cannot be assigned to an Entity, for example
the execution of a transaction, or the validation of a complex document structure in edito-
rial systems.

Even though this list is based on Enterprise/Business systems, these statements are also valid for
technical or embedded systems, although the terminology and the software/technical implemen-
tations are different in that context.The actual application builds on these frameworks.

7.6 Balancing the MDSD Platform

In the context of MDSD the reference model is very important – not only for structuring the tar-
get architecture, but specifically to define the boundaries of the MDSD platform, which is part
of the target architecture. Finally, the application models must be mapped to the MDSD plat-
form using transformations in order to make them executable. The larger the difference between
the concepts of the MDSD domain and the concepts of the MDSD platform, the more complex
the necessary transformations will be. This should be avoided, especially since complexity at the
metalevel is harder to cope with than complexity at the concrete level of the target architecture.
To decrease complexity, the MDSD domain and the MDSD platform should be as close to each
other as possible – more precisely, the MDSD platform should ‘meet the MDSD domain half-
way’. We also call such a platform a rich, domain-specific platform.

As far as the reference model is concerned, we now have several basic options for reducing
the conceptual distance between domain and platform:

• MDSD domain and platform are located at the level of the reference model’s technical
platform. This would for example lead to a choice of a UML profile for J2EE as DSL and

c07.fm Page 125 Tuesday, February 28, 2006 3:15 PM

126 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

J2EE as an MDSD platform. Such a domain architecture is of course feasible, but due to
its limited abstraction level it does not use the full potential for automation: the bulk of a
modeled application must be programmed manually. On the other hand, the MDSD
domain is quite versatile – the domain architecture allows for the production of very dif-
ferent applications.

• MDSD domain and platform are at the level of the target architecture’s concepts. AC-
MDSD is an example of this, as in Chapter 3’s case study. Here the architectural realiza-
tion patterns of the functional platform are derived from the reference model for the DSL
definition, as well as for the MDSD platform. In this case, the domain is less versatile, but
its abstraction level is increased and thus its potential for automation is higher.

• MDSD domain and platform are at the level of the functional/professional platform of the
reference architecture. In this case the functional/professional platform of the reference
architecture becomes the MDSD platform. The domain is significantly less versatile than
in the architecture-centric case, but automation can reach 100% without a problem.

We recommend the last two options – or even a cascading of both – that is, the creation of a
functional/professional MDSD platform on top of an architecture-centric domain architecture.
This approach is illustrated in the case study in Chapter 16.

7.6.1 Examples

Where the boundary of the MDSD platform is drawn in practice, and where in each particular
case, depends typically on how much flexibility is needed in the specific context. Here are some
examples:

• Typical ingredients of an architecture-centric MDSD platform for e-business systems are
flow control or workflow engine, persistence framework, superclasses for GUIs, activities
and entities and so on, and technical standard infrastructures such as J2EE containers and
relational databases. All these artifacts are identical for each software system of the
architecture-centric MDSD domain.

• In the context of a system family for radio telescopes in the astronomy domain, stars, gal-
axies, or planets are relevant entities. Their properties usually don’t change much, there-
fore these entities are part of the MDSD platform. Also, many ‘business rules’ are static in
this case because they are based on the laws of physics.

• For insurance companies, insurance products are relevant entities. These are actually very
different and change frequently. Such entities are conveniently described using the DSL,
and their implementation is generated. Other core entities such as Person or Account can
be part of the MDSD platform.

• In the context of a component infrastructure for distributed embedded systems, even the
technical platform, the middleware, is generated based on predefined system constraints
and topology definitions and is thus not part of the MDSD platform. Even if all basic
entities or the technical infrastructure are generated, a domain-specific basic framework
typically exists as part of the MDSD platform. In an embedded system, for example, we

c07.fm Page 126 Tuesday, February 28, 2006 3:15 PM

7.7 Architecture Conformance 127

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

might find bus drivers and marshalers to serialize a data structure for transport across the
network.

We recommend that you expand the power of your MDSD platform incrementally in the course
of your project, in keeping with your growing understanding of the domain. This will reduce the
scope and complexity of the code developers have to write to customize the framework, which
must either be generated or even partially be written manually.

The general rule is that generic and generalizable code segments should be part of the MDSD
platform. Existing frameworks are usually also well-suited for integration in the MDSD platform.

7.6.2 Integration of Frameworks

The use of complex frameworks can be significantly simplified and sped up through the use of
customized DSLs. This is often overlooked by framework purists. In many cases, only a DSL
and a model-driven approach can guarantee that a framework is used correctly – that is, as
intended by its inventor. Today’s implementation languages do not possess any particularly pow-
erful mechanisms for preventing faulty framework use. By definition frameworks entail a strong
interlocking of framework implementation and framework use, which often contradicts the
encapsulation principle. The domain can be clearly isolated from the applied implementation
platform only via a DSL.

On the other hand, highly configurable, generic frameworks attract the danger of overburden-
ing their implementation, making them difficult to maintain and hard to debug. This should be
considered in MDSD platform construction.

The key to successful MDSD platform design is an iterative, incremental approach, as is
described in Chapter 13. The development of powerful frameworks in large, independent
projects that have no direct iterative connection with real-life application development projects
will inevitably result in failure. Instead, small frameworks combined with code generation offer
a solid basis for iterative development. When code generation – that is, writing templates –
becomes too difficult, it is worth enhancing the frameworks and implementing more features
with their help. Vice versa, if the implementation of the framework becomes overly complicated,
or its runtime performance deteriorates, the use of generative techniques will often lead to ele-
gant solutions.

7.7 Architecture Conformance

A good target architecture can exhibit its advantages only if it is not ignored or circumvented in
the daily project routine. Traditional methods such as reviews and excessive documentation are
not easily scalable when working with bigger teams. For generated code, MDSD per se offers the
solution, particularly because the aspects of the architecture that are described using the models
are laid down in the form of transformation rules.

The component example described in Chapters 6 and 16 serve as an example of how one
can enforce or control the observation of specific characteristics of the target architecture in
manually-programmed parts of systems as well. We can to demonstrate which effects the use

c07.fm Page 127 Tuesday, February 28, 2006 3:15 PM

128 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

of these options can have on the target architecture. Figure 7.4 helps to illustrate this example
once more:

The figure shows, among other things, that the component SMSApp depends on the components
MenuUtilities, TextEditor, and GSMStack via their interfaces. The explicit description of such
dependencies and their management is an essential aspect of architecture in large projects.
Therefore, it should be impossible for a component or its implementation code to access inter-
faces or components for which no dependency is defined in the model. This must actually be
ensured in large projects, ideally by automation. It can be achieved with MDSD, particularly
through its aspect of code generation. The following code segment shows a ‘classic’ implemen-
tation of a component: access to other components is obtained by querying the corresponding
reference from a central component factory:

It is not easy to ensure that the developer does not illegally obtain other references from the fac-
tory. This can only be accomplished through reviews or other tools such as AspectJ. However, if
development is model-driven, there is another option: for each component, a component context
[VSW02] can be generated, which exclusively permits access to those components or interfaces
to which a dependency is given in the model. The following code illustrates this:

Figure 7.4 An example of dependencies between components

public class SMSAppImpl {
 public void tueWas() {
 TextEditor editor = (TextEditor)

 Factory.getComponent("TextEditor");
 editor.setText(someText);
 editor.show();
 }
}

public interface SMSAppContext
 extends ComponentContext {

<<application>>
SMSApp TextEditor

UIManager
GSMStack

CallIFSMSIF EMSIF

SMSIF

MenuUtilities

lookAndFeel: String

c07.fm Page 128 Tuesday, February 28, 2006 3:15 PM

7.8 MDSD and CBD 129

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

Now the developer can no longer autonomously get arbitrary references – they can only access
those for which accessor operations exist in the component context. These access operations are
generated from the model. If the developer wishes to access other interfaces, they must include
them in the model, otherwise the necessary accessor method will not be available in the code. This
guarantees that a component only possesses those dependencies that it explicitly declares in the
model. A more extensive infrastructure is required, of course: for example, ‘someone’ must call the
operation init() and provide the correct context object. In component-based systems this is the task
of a container – in this case the runtime system, which is in charge of the component’s lifecycle.

This approach has the pleasant side-effect that in modern IDEs one is conveniently informed,
via code completion, of which operations are present in the component context – thus informa-
tion on the legal dependencies can be found directly in the code, making it easier for the devel-
oper to observe the architecture’s rules!

The example given above also shows what effects the use of MDSD has on the architecture. It
would never occur to a developer to provide a separate context class for each component if this had
to be implemented manually. The use of MDSD therefore opens up additional architectural alterna-
tives. It is pivotal to know about and use these alternatives when the target architecture is defined.

7.8 MDSD and CBD

Component-Based Development (CBD) is a popular metaphor for building complex systems, as is
Service-Oriented Architecture, which is covered in Section 7.8. We have already covered some
aspects of the interplay between MDSD and CBD in the previous sections: in this section we want
to take it a step further. From our experience in development projects, we find that we almost
always start by modeling the component structure of the system to be built. To do that, we start by
defining what a component actually is — that is, by defining a metamodel for component-based
development. Independent of the domain in which the development project resides, these meta-
models are quite similar across application domains – insurance, e-commerce, radio astronomy,
and so on (as opposed to technical domains such as persistence, transaction processing, security.)
We therefore show parts of these metamodels here to give you a head start when defining your own
component architecture. This ties in nicely with the architectural process proposed in Section 13.4.

public TextEditorIF getTextEditorIF();
 public SMSIF getSMSIF();
 public MenuIF getMenuIF();
}
public class SMSAppImpl implements Component {
 private SMSAppContext context = null;
 public void init(ComponentContext ctx) {
 this.context = (SMSAppContext)ctx;
 }
 public void tueWas() {
 TextEditor editor =

 context.getTextEditorIF();
 editor.setText(someText);
 editor.show();
 }
}

c07.fm Page 129 Tuesday, February 28, 2006 3:15 PM

130 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

7.8.1 Three Viewpoints

It is useful to look at a component-based system from three viewpoints, and idea that we enlarge
on in the case study on enterprise systems in Chapter 17.

The Type Viewpoint

The type viewpoint describes component types, interfaces, and data structures. A component pro-
vides a number of interfaces and references a number of required interfaces. An interface owns a
number of operations, each with a return type, parameters, and exceptions. Figure 7.5 shows this.

To describe the data structures with which the components work (Figure 7.6), we start out with
the abstract type Type. We use primitive types as well as complex types. A complex type has a
number of named and typed attributes. There are two kinds of complex types. Data transfer
objects are simple structs that are used to exchange data among components. Entities have a
unique ID and can be made persistent (this is not visible from the metamodel). Entities can refer-
ence each other and thus build more complex data graphs. Each reference has to specify whether
it is navigable in only one or in both dimensions. A reference also specifies the cardinalities of
the entities at the respective ends.

Figure 7.5 The metamodel for components, interfaces, and their dependencies

Figure 7.6 The metamodel for data structures

Interface Operation*

target

providedInterface
Component

Component
Interface

Requirement

*
required
Interface

name name

name

name

Type

returnType

name

Parameter

name

*

type

Exception

*exception

Type

name

Primitive
Type

Complex
Type

Data
Transfer
Object

Entity

Attribute*

name
attribute type

Entity
Reference

name
isBidirectional
targetMultiplicity
sourceMultiplicity

*

ref

target

src

c07.fm Page 130 Tuesday, February 28, 2006 3:15 PM

7.8 MDSD and CBD 131

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

The Composition Viewpoint

This viewpoint, illustrated in Figure 7.7, describes component instances and how they are con-
nected. A configuration consists of a number of component instances, each knowing their type.
An instance has a number of wires: a wire is an instance of a component interface requirement.
Note the constraints defined in the metamodel:

• For each component interface requirement defined in the instance’s type, we need to sup-
ply a wire.

• The type of the component instance at the target end of a wire needs to provide the inter-
face at which the wire’s component interface requirement points.

Using the type and composition viewpoints, it is possible to define component types as well as
their collaborations. Logical models of applications can be defined. You could, for example, use
UML to render these two kinds of models, generate skeleton classes, and then implement the
application logic in subclasses. From the composition viewpoint, you can generate or configure
a container that instantiates the component instances. Unit tests that verify the application logic
can be run here.

The System Viewpoint

This third viewpoint describes the system infrastructure onto which the logical system defined
with the two previous viewpoints is deployed.

Figure 7.7 Component instances and their connections in the composition metamodel

Interface*

target

providedInterface
Component

Component
Interface

Requirement

*
required
Interface

name name

name
Component Stuff

Composition Stuff

Component
Instance

name

Configuration

name

*
instance

type

Wire

name

*

cireq

target

context ComponentInstance inv:
foreach of type’s Component-
InterfaceRequirements
there must be a Wire of the
same name

context Wire inv:
the type of the target
instance must provide
the Interface pointed
to by the Wire’s cireq’s
target

c07.fm Page 131 Tuesday, February 28, 2006 3:15 PM

132 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

A system consists of a number of nodes, each one hosting containers. A container hosts a
number of component instances. Note that a container also defines its kind – this could be things
like CCM, J2EE, Eclipse or Spring. Based on this information, you can generate the necessary
‘glue’ code to run the components in that kind of container.

The node information, together with the connections defined in the composition model,
allows you to generate all kinds of things, from remote communication infrastructure code and
configuration to build and packaging scripts.

7.8.2 Viewpoint Dependencies

You may have observed that the dependencies among the models are well-structured. Since you
want to be able to define several compositions using the same components and interfaces, and
since you want to be able to run the same compositions on several infrastructures, dependencies
are only legal in the directions shown in Figure 7.9.

7.8.3 Aspect Models

The three viewpoints described above are a good starting point for modeling and building com-
ponent-based systems. However, in most cases these three models are not enough. Additional
aspects of the system have to be described using specific aspect models that are arranged around
the three core viewpoint models, as illustrated in Figure 7.10.
The following aspects are typically handled in separate aspect models:

• Persistence
• Authorization and Authentication (important in enterprise systems)
• Forms, layout, pageflow (for Web applications)
• Timing, scheduling and other quality of service aspects (especially in embedded systems)
• Packaging and deployment
• Diagnostics and monitoring

Figure 7.8 The metamodel for systems

Figure 7.9 Dependencies among the viewpoint models

Component
Instance

name

Configuration

name

*
instance

Wire

name

*

Composition Stuff

System Stuff

System

name

Node

name

Container

name
kind

*

*

*

Composition Model(s)System Model(s) Type/Data Model

c07.fm Page 132 Tuesday, February 28, 2006 3:15 PM

7.8 MDSD and CBD 133

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

The idea of aspect models is that the information is not added to the three core viewpoints, but
rather is described using a separate model with a suitable concrete syntax. Again, the metamodel
dependencies are important: the aspects may depend on the core viewpoint models and maybe
even on one another, but the core viewpoints must not depend on any of the aspect models.
Figure 7.11 illustrates a simplified persistence aspect metamodel.

Figure 7.10 Arranging the aspect models around the three core viewpoint models

Figure 7.11 The metamodel for the (relational) persistence aspect

SystemModel(s)

C
om

po
si

tio
n

M
od

el
(s

)

Type/Data

Model

Aspect1

Aspect2

A
sp

ec
t3

Aspect4

Type

name

Primitive
Type

Complex
Type

Data
Transfer
Object

Entity

Attribute*

name
attribute type

Entity
Reference

name
isBidirectional
targetMultiplicity
sourceMultiplicity

*

ref

target

src

DBPrimitive
Type

base

EntityTable

entity

Column
*

name

column

attribute

name

Index

name

index*
*

{ordered}

pk

*

RefTable

name

ref1
0..1

from

to

Query

name
expression

*

Query
Component

Component

name

*

c07.fm Page 133 Tuesday, February 28, 2006 3:15 PM

134 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

7.8.4 Variations

The metamodels we describe above cannot be used in exactly this way in every project. Also, in
many cases the notion of what constitutes a component needs to be extended. So there are many
variations of these metamodels. However, judging from practice, even these variations are lim-
ited. In this section we want to illustrate some of these variations.

• You might not need separate interfaces. Operations could be added directly to the compo-
nents. As a consequence, of course, you cannot reuse the interface ‘contracts’ separately,
independently of the supplier or consumer components.

• Often you’ll need different kinds of components, such as domain components, data access
(DAO) components, process components, or business rules components. Depending on
this component classification you can come up with valid dependency structures between
components. You will typically also use different ways of implementing component func-
tionality, depending on the component types (see also Section 7.8.5).

• Another way of managing dependencies is to mark each component with a layer tag, such
as domain, service, gui, or facade, and define constraints on how components in these lay-
ers may depend on each other.

• Hierarchical components, as illustrated in Figure 7.12, are a very powerful tool. Here a
component is internally structured as a composition of other component instances. Ports

Figure 7.12 The metamodel for hierarchical components

Interface Component

name name

Port

name

 *

RequiredPort ProvidedPort

Wire

name

p2p1

PortInstance

name

port

ComponentInstance

name

*

HierarchicalComponent

*

*

context ConnectingWire inv:
One of the port ‘instance’s’ ports
must be a provided port, the
other a required port. Interfaces
of the two ports must be the
same

type may have additional
properties that define
how interfaces are
used

Connecting
Wire

Delegating
Wire

p1

p2

context
DelegatingWire inv:
If p1's port is a
ProvidedPort, then p2
must also be a
ProvidedPort. Similar
for RequiredPorts.
Interface of p1's Port
must be same as p2's
interface

context
DelegatingWire
inv:
p2's owning
component must be
the same as p1's
instance’s owning
hierarchical
component

*

Protocol0..1

c07.fm Page 134 Tuesday, February 28, 2006 3:15 PM

7.8 MDSD and CBD 135

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

define how components may be connected: a port has an optional protocol definition that
allows for port compatibility checks that go beyond simple interface equality. While this
approach is powerful, it is also non-trivial, since it blurs the formerly clear distinction
between type and composition viewpoints.

• A component might have a number of configuration parameters – comparable to com-
mand line arguments in console programs – that help configure the behavior of compo-
nents. The parameters and their types are defined in the type model, and values for the
parameters can be specified later, for example in the composition or the system models.

• You might want to say something about whether the components are stateless or stateful,
whether they are thread-safe or not, and what their lifecycle should look like (for example,
whether they are passive or active, whether they want to be notified of lifecycle events
such as activation, and so on).

• It is not always enough to use simple synchronous communication. Instead, one of the var-
ious asynchronous communication patterns, such as those described in [VKZ04], might be
applicable. Because using these patterns affects the APIs of the components, the pattern to
be used has to be marked up in the type model, as shown in Figure 7.13.

• In addition to the communication through interfaces, you might need (asynchronous)
events using a static or dynamic publisher/subscriber infrastructure. It is often useful that
the ‘direction of flow’ of these events is the opposite of the is the opposite of the uses-
dependencies discussed above.

• The composition model connects component instances statically. This is not always feasi-
ble. If dynamic wiring is necessary, the best way is to embed the information that deter-
mines which instance to connect to at runtime into the static wiring model. So, instead of
specifying in the model that instance A must be wired to instance B, the model only speci-
fies that A needs to connect to a component with the following properties: needs to pro-
vide a certain interface, and for example offer a certain reliability. At runtime, the wire is
‘deferenced’ to a suitable instance using an instance repository. This approach is similar to
CORBA’s trader service.

• Finally, it is often necessary to provide additional means of structuring complex systems.
The terms business component or subsystem are often used. Such a higher-level structure

Figure 7.13 Asynchronous communication

Interface
*

target

providedInterface
Component

Component
Interface

Requirement

*
required
Interface

name name

name
comm: CommType

<<enumeration>>
CommType

sync
async-oneway
async-syncWS
async-poll
async-callback

context ComponentInterfaceRequirement inv:
if oneway or syncWithServer is used, all operations in
the target interface must be void, and not throw any
exceptions!

c07.fm Page 135 Tuesday, February 28, 2006 3:15 PM

136 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

consists of a number of components. Optionally, constraints define which kinds of compo-
nents may be contained in a specific kind of higher-level structure. For example, you
might want to define that a business component always consists of exactly one facade
component and any number of domain components.

7.8.5 Component Implementation

Component implementation typically happens manually. This means that developers add manu-
ally-written code to the component skeleton, either by adding the code directly to the generated
class, or – a much better approach – by using other means of composition such as inheritance or
partial classes. The main reason is that action languages that support the generic formulation of
application logic at the model level are still not widely supported. However, using a generic
action language to describe the behavior of structural artifacts (such as a class’s operations or a
state’s actions) is only one alternative. There are other means of describing application logic,
some of which we outline below. All have in common that instead of providing a generic way of
modeling all kinds of behavior in models, they use notations that are specific to the kind of
behavior that should be specified.

• Behavior that is very regular can be implemented using the generator, after parametrizing
it in the model by setting a small number of well-defined variability points. Feature mod-
els are good at expressing the variabilities that need to be decided so that an implementa-
tion can be generated.

• For state-based behavior, state machines can be used.
• For things such as business rules, you can define a DSL that directly express these rules

and use a rules engine to evaluate them. Several rule engines are available off-the-shelf.
• For domain-specific calculations, such as those common in the insurance domain, you

might want to provide a specific textual notation that supports the mathematical opera-
tions required for the domain directly. Such languages are often interpreted: the compo-
nent implementation technically consists of an interpreter that is parametrized with the
program it should run.

Note that we are not generally arguing against Action Semantics Languages (ASLs), we just
want to point out that they don’t provide domain-specific abstractions, being generic in the same
way as for example UML is a generic modeling language. However, even if you use more spe-
cific notations, there might still be a need to specify small snippets of behavior generically. A
good example are actions in state machines.
To combine the various ways of specifying behavior with the notion of components, it is useful
to define various kinds of components, using subtyping at the metalevel, that each have their
own notation for specifying behavior. The case study in Chapter 17 illustrates this approach, and
the idea is also illustrated in Figure 7.14.

Since component implementation is about behavior, technically, it is often useful to use an
interpreter encapsulated inside the component. Such an ‘interpreter component’ is still a compo-
nent just as any other. Their introduction however raises an issue that needs to be addressed:
How does the interpreter know which script to execute?

c07.fm Page 136 Tuesday, February 28, 2006 3:15 PM

7.9 SOA, BPM and MDSD 137

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

There are basically three different approaches to this. Either the component always executes the
same script, the entire script is passed to the component as a parameter, or some sort of identifier
for the script is passed to the component. This can be done either as part of the configuration
process when the component is created, or it can be done with every method call. For more
details on interpretation, see Section 8.4.

As a final note, be aware that the discussion in this section is only really relevant for application-
specific behavior, not for all implementation code. Huge amounts of implementation code is
related to the technical infrastructure – remoting, persistence, workflow and so on – of an applica-
tion, and can be derived from the (structural) models.

7.9 SOA, BPM and MDSD

Service-Oriented Architectures (SOA) and Business Process Management (BPM) are two highly
hyped topics in today’s IT world. This section takes a MDSD-centric view of them and discusses
their possible synergy.

7.9.1 SOA

There is no commonly agreed definition of what SOA actually means. Some people equate SOA
merely to ‘using Web Services’. In fact SOA is at least driven by Web Service technology,
including BPEL (Business Process Execution Language). From our perspective, SOA has noth-
ing to do with specific technologies (WSDL, SOAP, HTTP), but rather constitutes a set of archi-
tectural best practices for building large, scalable, and composable systems. A well-constructed
component-based architecture with well-defined interfaces and clear-cut component responsibil-
ities can quite justifiable be considered SOA. Components are a natural choice for the building
blocks that provide and consume services. The industry realizes this and currently defines a
standard for Service-Component Architectures [SCA].

However, looking at SOA a bit more closely, it is possible to identify a number of important
properties that cannot readily be found in (most) component-based systems:

• Service interactions are message-oriented, or document centric. Instead of defining rigidly
typed interfaces, document structures (schemas) are defined that serve as the basis for

Figure 7.14 Subtypes of component to host various kinds of behavioral specifications

ProcessComponent

Component

CalculationComponent

StateMachine Script

c07.fm Page 137 Tuesday, February 28, 2006 3:15 PM

138 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

interactions. Done right, this can make evolution of message structures and versioning
much simpler.

• The interaction patterns – valid sequences of messages – are explicitly defined. Interac-
tions are often conversational – conversational session state is kept ‘on both sides’ of a
service interaction. These features are the basis for orchestration among services. Usually,
interactions are asynchronous.

• Quality of service aspects are explicitly addressed. Service providers do not just provide a
certain services’ functionality, they provide the functionality with a defined service level
in terms of performance and reliability.

• Service descriptions and characteristics are available at runtime. Using service registries,
systems can be assembled dynamically.

• Often, services are interoperable – they can be used by systems implemented on various
platforms.

In addition to these characteristics, services should be designed to be coarse-grained and encapsu-
late functionality relevant from a business perspective – although nobody can say what this really
means! Services are typically but by no means exclusively used by explicitly-modelled business
processes. Finally, like any good IT system, they are secure, transactional and manageable.

Opinions differ over whether these characteristics are really so different from today’s well-
constructed enterprise systems. However, what is obvious in our view is that models play a cen-
tral role in the definition and operation of service-oriented systems:

• Message schemas are data structure models that specify required and optional content, as
well as how message formats change during the evolution of a service.

• Interaction patterns between services are defined using models: for example, communicat-
ing state machines are useful notations to describe valid sequences of messages as well as
exceptional cases.

• The levels of quality provided by a service provider, and required by a service consumer,
are basically models that are evaluated and checked for compatibility.

• The runtime repository basically makes the model information available to runtime queries.
• Finally, interoperability can be achieved by generating implementations and bindings for

various platforms from the same authoritative model.

So the central idea to SOA in our view is to establish an interface contract first! The first thing
you specify when developing systems is how the communication partners actually interact –
which is independent of communication technology and independent of implementation plat-
form. Rather, you specify message formats, interaction patterns, and quality of service contracts
on an abstract and formal level. That basically means: use MDSD based on the architectural
process described in Section 13.4.

Figure 7.15 shows a simplified metamodel for services. It also shows how to connect the SOA
‘world’ with the component ‘world’ described in the previous section.

In the context of SOA you often see two pictures showing a spaghetti-like system with all those
interconnections labelled ‘old’ on one side, and a nicely-ordered set of components connected
through a single bus to which all components are attached, labelled ‘service-oriented’ on the other.
This leads people to think that in SOA all systems must be physically connected through a single

c07.fm Page 138 Tuesday, February 28, 2006 3:15 PM

7.9 SOA, BPM and MDSD 139

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

technical infrastructure often Web Services). Nothing could be more wrong! If you connect all
kinds of systems through the same infrastructure, you will have a hard time addressing non-techni-
cal requirements such as throughput, interoperability, or performance. The bus you often see on
such PowerPoint slides must be interpreted as a ‘logical bus’ – that is, a common, model-based
communications infrastructure through which messages can be mapped to various communication
technologies, and service endpoint be implemented on various platforms.

7.9.2 BPM

As with SOA, there is no commonly-agreed definition of BPM, but there seems to be a kind of
consensus among industry leaders:

• BPM deals with design and control of (rapidly changing) business processes, which leads
to tasks of structuring, automation, and optimization of these artifacts.

Figure 7.15 A simplified metamodel for services

Service

Message

name

Type

name

Attribute

name

*

type
Request
Message

Oneway
Message

Outbound
Message

1..*

Message
Flow

Control

*

*Elementary
Service

resp

Inbound
Messageaccepted

Message

1..*
Compound

Service

Component

name

Provider Consumer Provider
Consumer

0..1
1..*

1..*
1..*

provides
consumes p

c

1..*

Body

SimpleBodyXMLBody

c07.fm Page 139 Tuesday, February 28, 2006 3:15 PM

140 MDSD-Capable Target Architectures

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

• Business processes connect people with available information technology and material.
• Process definitions and implementations have to be flexible, so that you can change them

to meet the value creation chains of your business.
• BPM respects the complete lifecycle of a business process, which consists of definition

(standards-based graphical modeling, process simulation, business rules), creation (code
generation), execution (integration, automation and workflow), monitoring (business activity
monitoring, dashboards) and optimization (ability to adjust business rules dynamically).

• BPM is not a product and none of the following single product categories can be said to
cover BPM completely: workflow, enterprise application integration (EAI), business activ-
ity monitoring (BAM), rules engines, process-simulations. Ideally they can be part of a
system that supports BPM (BPMS).

Some standards exist, such as BPMN (Business Process Modeling Notation [BPMN] and BPML
(Business Process Modeling Language [BPML]) from OASIS [OASIS], or XPDL (XML Proc-
ess Definition Language, [XPDL]) from Wf MC [WfMC]. In practice we observe quite a confu-
sion, because respective tool suppliers often try to ‘improve’ their products with a BPM label.
As a consequence BPM products essentially suffer from not being comparable at all.

An isolated MDSD-view of BPM should be obvious: models and transformations are already
essential concepts of BPM in order to achieve it goals.

7.9.3 SOA and BPM

An intersection of SOA and BPM exists: modeling and specification of business processes on one
hand, and respective infrastructure software (middleware) on the other. SOA covers business
process modeling through BPEL (Business Process Execution Language, [BPEL]) which is based
on and coupled to Web Service technology. BPM covers business process modeling through more
abstract language concepts and (graphical) notations (BPML/N). So from a specific point of view
we can say that SOA is a bottom-up evolution and BPM a top-down one. The middleware in the
intersection placed by SOA is mainly referred to as ESB (Enterprise Service Bus), which should
be viewed as a logical bus for messaging, service composition, and orchestration, as we pointed
out in Section 7.9.1. BPM, on the other hand, comes with BPEs (Business Process Engine) or
BPMS (see above).

It is not enough to say that the intersection between these disciplines is not empty: there is
even conceptional mismatch in their intersection. For example, BPEL suffers (for now) from
concepts of human resources involved in a workflow, so essentially BPMN/L cannot be mapped
to BPEL yet.

Certainly we can hope and expect that these mismatches will be eliminated some day by a
proper standardization process. At least until then a distinguished approach may serve as a way
to find a useful synthesis for SOA and BPM – the principle of Separation of Concerns. BPM
needs SOA in order to be as flexible as required, but not the other way round. If there is a deci-
sion in your company to have both architectural concepts combined in an enterprise architecture,
it may be reasonable to use BPM concepts with respective middleware for the business process
layer, and SOA concepts with respective middleware on a business service/component layer,
which is placed logically below the business process layer. In that case, you do not use SOA (for
example, BPEL) to model and maintain business processes.

c07.fm Page 140 Tuesday, February 28, 2006 3:15 PM

7.9 SOA, BPM and MDSD 141

 c07.fm Version 0.3 (final) February 28, 2006 3:07 pm

To conclude this section we will try to place MDSD/MDA in the context of a synthesis of
SOA and BPM:

• MDSD/MDA can provide standards-based modeling of business processes (that is, stand-
ardized, MOF-based metamodel definition for BPM) and respective ‘generic’ notations
(for example BMPN as a UML-profile). The OMG has already set up corresponding
activities.

• MDSD/MDA can provide a sound and complete architecture-centric MDSD-production
line that supports all layers (business processes, service/components, entities, persistence)
of an enterprise architecture in a consistent and defined way. It can take advantage from
the knowledge of all these layers and their interaction in order to check comprehensive
constraints and generate infrastructure code even between the layers. Hooks for version
handling of services or business process definitions and support for transactions or com-
pensations may be generated. Different model-to-code transformations may be imple-
mented to realize a ‘fan out’ that is capable of adopting different platform technologies.
But before you can automate an architecture you have to define and build it – at least par-
tially (see Section 13.4).

• Some people claim that MDSD is useful for service enabling – that is, SOA-oriented re-
engineering of monolithic legacy applications in to make them usable for BPM – since
models derived from existing applications can serve as the essence of those applications.
We think that this idea is quite ambitious but at least worth mentioning.

c07.fm Page 141 Tuesday, February 28, 2006 3:15 PM

c07.fm Page 142 Tuesday, February 28, 2006 3:15 PM

143

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

8 Building Domain Architectures

In this chapter we discuss how a suitable domain architecture can be constructed for an existent
target and platform architecture, as described in the previous chapter. We look at building DSLs,
general best practices for building the transformation architecture, as well as a couple of detailed
technical aspects.

Please do not consider this chapter an outline for the process, because the best practices intro-
duced here can affect the target architecture and/or the reference implementation. Questions
about the development process are addressed in Part III of the book.

8.1 DSL Construction

This section contains some hints about constructing the DSL itself. Note that apart from the
items listed in this section, you can find a great number of examples for DSLs throughout the
book. An important ingredient for building DSLs is of course metamodeling, which is described
extensively in Chapter 6.

8.1.1 Choose a Suitable DSL

When trying to find a DSL for a certain domain, you should always take into account the
required amount of variability you need to express. So, before embarking on a fully-fledged,
graph-like textual or graphical DSL, ask yourself whether or not simpler forms of DSLs are
enough. Figure 8.1 shows the alternatives as adapted from Krzysztof Czarnecki’s work.

c08.fm Page 143 Tuesday, February 28, 2006 6:15 PM

144 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

If you only need to do routine configuration, then simple property files or wizards are probably
enough to express the variability that is needed to describe a product. If you need more
freedom – the variability space from which you have to select is larger – then tabular or tree-
based configurations are more appropriate, feature models (Section 13.5.3) being the most pow-
erful of the DSLs that follow a primarily configuration-oriented approach. Up to this point, using
the DSL consists basically of selecting from a number of options – that is, configuration work.

If this is not enough, you have to adapt a creative construction approach to modeling, in
which you can creatively instantiate, arrange, and connect the modeling elements available in a
DSL using powerful graphical or textual languages. This is of course much more powerful, but
also provides much less guidance to the developer. If you need to express structural variability,
especially – for example, ‘I need one of type A connected to this instance of type B, and then I
need another three of type C’ – then the configuration-oriented approach quickly become awk-
ward and you have to revert to creative construction.

Often you will use combinations of such DSLs to describe a complete system. In the case
study in Section 16.3.3, for example, we use graphical and XML-based graph-like languages to
define the system structure, but use simple configuration parameters derived from feature mod-
els to characterize the communication.

Note how you can find frameworks and in general, manual programming, to the right of the
graph-like languages in Figure 8.1. They provide the most freedom and flexibility, but also
require the highest effort, provide the least guidance, and are thus the most complex approach.

8.1.2 Configuration and Construction – Variants

We can now see two ‘kinds’ of DSL: those that support creative construction and those that
provide means for configuration. It is very interesting to combine the two. Consider the meta-
model in Figure 8.2, which serves as the basis for a creative-construction DSL that describes
data structures.

Figure 8.1 Various ways of building DSLs

Framworks

Routine
Configuration

Creative
Construction

Wizards

Property Files

Feature-Model
Based

Configuration

Graph-Like
Languages

Tabular
Configurations

Manual
Programming

Guidance,
Efficiency

Complexity,
Flexibility

Configuration
Parameters

c08.fm Page 144 Tuesday, February 28, 2006 6:15 PM

8.1 DSL Construction 145

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Using this metamodel you can define all kinds of data structures, such as those defined in
Figure 8.3.

Now, assume that you want to describe variants of model. For example, in the context of people
and addresses, the following variants might make sense:

• A party may have one or more address
• A party may or may not store telephone numbers
• In the case of telephone numbers, you may want to store the country code
• Addresses may have a state field, typically in the US

To express these variants you can overlay a feature model – a routine configuration DSL – over
the model built with a creative construction DSL. Selecting or deselecting certain features in the
feature model then results in the inclusion or removal of specific model elements. You have to
associate specific model elements in the structural model with features in the configuration
model: Figure 8.4 shows an example.

To make such an approach a practical reality, however, tool support must be available. The
authors have built a prototype that uses the following components:

• The structural model is built with any UML tool.
• The feature model is built with pure::variants, a feature-model based variant management

tool [PV].
• openArchitectureWare [OAW] is used to process and ‘relate’ both of these models.

Figure 8.2 A simple metamodel for data structures

Figure 8.3 Two example models based on the metamodel defined in Figure 8.2

Data

Base
name: String

Attribute
type: String

Entity DependentObject
id: long

0..n

0..n

<<entity>>

Customer

name: String

a) b)

<<entity>>

Party

name: String

<<dependentOb>>

Address

city: String
zip: String
street: String

0..n

c08.fm Page 145 Tuesday, February 28, 2006 6:15 PM

146 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

After reading both models, openArchitectureWare modifies the structural UML model based on
the features present in the feature model. The association between UML model elements and the
features is based on a special notation in the name (other approaches using tagged values or ster-
eotypes could have been used, too). Figure 8.5 shows an example.

Krzysztof Czarnecki and his team at the University of Waterloo have built a similar (and
much more sophisticated) tool based on their feature modeling plug-in [FMP] and the Rational
Software Modeller UML tool. They provide good model integration in the same tool (Eclipse
Platform) as well as various verifications of the correctness of model variants.

8.1.3 Modeling Behavior

Most examples of DSLs presented in this book, and also in most of the other publications on
MDSD, describe structural aspects of a software system, things like component structures, per-
sistence mapping, or input forms. However, most systems also have behavioral aspects that need
to be modelled. In this section we want to provide a couple of hints on how to do that.

The easiest way to model behavior is to reduce the behavior to simple descriptive tags, if
possible. For example, if you need to describe how the communication between components

Figure 8.4 Attaching model elements to a configuration (feature) model

Persistence

XML JDOHibernate

Party
NeedsState

Multiple
Addresses

Phone

International
Phone LocalPhone

<<entity>>
Party

name: String

<<dependentOb>>
Address

city: String
state: String
zip: String
street: String

address

1

address

0..n

<<dependentOb>>
Phone

number: int
regionCode: int
countryCode: int

0..n

no
t

c08.fm Page 146 Tuesday, February 28, 2006 6:15 PM

8.1 DSL Construction 147

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

happens (for example synchronous, asynchronous), and if you are able to identify a limited
number of well-defined behavioral alternatives, then the behavior can be described by just
marking it with the respective alternatives. You don’t have to actually describe the behavior,
you just denote which alternative you need, and the transformation or the code generator can
make sure the generated system does indeed behave as specified. Selecting a valid option can
be as easy as specifying a specific property, or as complex as a sophisticated selection based on
a feature diagram. This is an example of using routine configuration (see the previous sections)
for behavior. An example of this approach can be found in Section 16.3.3.

Another relatively simple alternative for describing behavior is to use a well-known formalism
for specifying specific kinds of behavior. The classical example of that approach is state charts,
other examples include first-order predicate logic and business rule engines. Of course such
approaches only work if the required behavior can actually be described in the selected formal-
ism. If so, this has a number of advantages: the description and the semantics of the behavior are
often quite clear, and editors and other tools are available. It is also usually well documented
how to implement ‘engines’ for the particular formalism, to execute the specifications.

Within the constraints of the selected formalism, this approach already constitutes creative con-
struction, rather than configuration. An example of this approach can be found in Section 17.4.3,
where state charts are used to describe business processes.

In case a given formalism does not work, you might want to invent your own. For example, in
the insurance domain, you might want to use textual languages that specify verification con-
straints for insurance contracts, or that can be used to define certain mathematical algorithms
relevant in that domain. In that case you have to define the formalism (the language) yourself,
and you have to build all the tooling. Writing engines might not always be easy, because it’s not
trivial to get the semantics of an ‘invented’ formalism right.

The last alternative you have is to use existing Turing-complete languages, such as a 3GL or
UML action semantics languages (Section 12.2.6). Here you can specify any kind of behavior –
albeit using a very general language that is not domain-specific for the kind of behavior at hand.

Which alternative should you use? The alternatives described above are ordered by increasing
flexibility and by increasing complexity. If you can clearly identify behavioral alternatives, then
using simple configuration to chose one of them is certainly best. If this is not possible and you
need to revert to creative construction, you should still use a DSL that is as close as possible to
the kind of behavior you need to specify. Only as a last resort should you fall back to action lan-
guages or 3GLs in general.

Figure 8-5 Using special names to associate UML model elements with a pure-variants model

<<entity>>
Party

name: String

<<dependentOb>>
Address

city: String
State [NeedsState]: String
zip: String
street: String

address [!MultipleAddresses]

1

address [MultipleAddresses]

0..n

<<dependentOb>>
Phone

number: int
regionCode: int
countryCode [InternationalPhone]: int

0..n

c08.fm Page 147 Tuesday, February 28, 2006 6:15 PM

148 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Note that it is always necessary to associate an individual behavior with a structural element.
For example, a state machine can be implemented as part of a component, or an insurance-
related mathematical algorithm defined to be the implementation of an operation or activity
described structurally somewhere else. Structural ‘behavior wrappers’ provide a natural point of
integration between structural models and behavioral models. Considering again the idea of
using the most specific possible way to specify behavior, as explained in the preceding para-
graph, you should then define certain subtypes of structural elements that implement their
behavior with a certain formalism, rather than just allow developers to ‘implement’ the struc-
tural element.

To illustrate the idea, consider the example from Chapter 17. The main structural element is
the Component. Instead of just saying ‘components have operations, you can implement them
with an action language’, you might identify the following submetatypes:

• Process components represent business processes: behavior is modelled using state
machines.

• Business rule components capture (often changing) business rules: behavior is modelled
using predicate logic.

• Insurance contract calculation components are implemented with a specific textual DSL.
• 3GLs are used to implement the behavior for the rest of the components, which should be

limited in number.

A final word on implementing behavior: while structural models almost always result in gener-
ated code that resembles the modelled structure in one way or another, behavior often lends
itself to interpretation. So instead of generating state machine implementations, you might run
an interpreter in the business process component that interprets state machines specified in
XML: from the model, you just generate the XML representation. Another example could be
an interpreter for insurance contract calculations. In this case you would embed the interpreter
in the respective component. (Section 8.4 contains a more detailed look at interpreters in the
context of MDSD.)

8.1.4 Concrete Syntax Matters!

From the perspective of model transformation or code generation, the concrete syntax of a DSL
does not really matter as long as there is a way of transforming it into the abstract representation
with which the generator works, and as long as the metamodel suitably represents the concepts
that should be modelled with the DSL. However, the DSL is the ‘user interface’ for the meta-
model — that is, application developers must be able to read, write and understand the models
properly. This is a very important issue that should not be overlooked. After all, the idea of
MDSD is to provide more efficient means of expressing domain concepts: this efficiency
strongly depends on the concrete syntax. This is the main reasons why we think UML + profiles
is not enough for MDSD.

Coming up with a suitable concrete syntax theoretically or on a flip chart is relatively easy.
However, especially for graphical syntaxes, building the necessary editor can involve considera-
ble work. When deciding for a specific form of concrete syntax, therefore, you should always

c08.fm Page 148 Tuesday, February 28, 2006 6:15 PM

8.1 DSL Construction 149

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

consider the tooling you can use to build the respective editor. Section 11.3 provides a number of
hints here.

When considering the concrete syntax, bear in mind that you typically don’t ‘draw’ the mod-
els on a flip chart, but rather in an interactive editor. This means you might have features such as
zooming, panning, context menus and buttons, or folding at your disposal. The way you interact
with the diagram, and the means to adapt the diagram to specific views/parts are an important
aspect of editor design, and can make DSLs that look crowded on paper perfectly feasible.

8.1.5 Continuous Validation of the Metamodel

The importance of continuous validation and evolution of a domain’s formal metamodel is best
demonstrated with a simple example (see Figure 8.6).

The metamodel must be checked with the aid of domain experts. The development teams must
be able to use it smoothly and without misunderstandings. To this end, it is useful to use the met-
amodel’s terminology in all discussions with stakeholders – the metamodel can be considered a
grammar for building valid sentences in the respective domain. In most cases, errors and incon-
sistencies that have sneaked into the metamodel are easily uncovered this way. In discussions
with stakeholders, sentences such as the following can be used:

• A component has any number of ports.
• Each port implements exactly one interface.
• There are two kinds of ports: required ports and provided ports.
• A provided port implements the operation of its interface.
• A required port offers access to operations that are defined in its interface.

As soon as something cannot be expressed easily with the metamodel’s vocabulary, this means
that the formulation does not correspond with the metamodel, the metamodel has errors, or it is
imprecise.

Figure 8.6 Simple components metamodel

Component

Port
has *

Interface
implements 1

Required Port Provided Port

implements
operations
defined in

provides access to operations of

c08.fm Page 149 Tuesday, February 28, 2006 6:15 PM

150 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

This technique is very popular in domain modeling. In his book on domain-driven design,
Eric Evans calls this technique ubiquitous language [Eva00]. His book describes many useful
techniques for the design of domain-specific frameworks.

8.2 General Transformation Architecture

8.2.1 Which Parts of the Target Architecture Should Be Generated?

We discussed the correlation and balance between the MDSD domain, the MDSD platform, and
its target architecture, at length in the last chapter. Now, we must only draw the dividing line
between code that is generated and code to be manually programmed.

In the context of a domain architecture, one will always generate those artifacts that on one
hand are not covered by the platform, and on the other, cannot be described well and compactly
using a DSL.

A reliable sign that generation has been taken too far is usually the introduction of typical pro-
gramming language-based constructs such as loops into the DSL1. The DSL should be mostly
declarative and not mutate into a classic programming language – if this occurs, one should actu-
ally use a programming language and integrate the manually-written code in the generated code.

8.2.2 Believe in Reincarnation

The final, implemented application should be created using a fully-automated build process
that includes the regeneration of all generated/transformed artifacts. Once a single manual
step is required as part of the build process, or a single line of source code must be adapted
manually after regeneration, it is only a question of time until MDSD is given up in favour of
traditional, non-generative development, since manual adaptation of generated artifacts is
tedious and error-prone.

This does not mean that you should – or must – generate 100% of an application. It is abso-
lutely okay to continue to implement parts of it in a 3GL, as long as the 3GL is suited for this
purpose. This best practice only states that those parts that are generated must be completely
generated, so that the complete system can be recreated in one go. Subsequent adaptation of gen-
erated artifacts is off-limits!

8.2.3 Exploit the Model

The information contained in a model should be exploited as much as possible, to avoid duplica-
tion and minimize the amount of manual work. This means that you will usually generate more
than source code: build and deployment scripts, skeletons/fixtures for component tests, maybe
even test implementations, test data and mock objects, database generation scripts, data migra-
tion and filling scripts, simple interfaces for master and test data maintenance or parts of the
documentation. All this can save you a lot of trouble and effort in routine project work. The right

1 Executable UML is an exception here – see Chapter 12.

c08.fm Page 150 Tuesday, February 28, 2006 6:15 PM

8.2 General Transformation Architecture 151

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

balance between the effort of automation and that of repeatedly executing the same steps manu-
ally should be found based on ‘sustainability’ considerations – that is, based on what is reasona-
ble and economic over longer periods in the sense of extreme programming (»three strikes and
you automate«). A rule of thumb that applies here is: compare a rough estimate of the required
key strokes and user gestures to reach a specific goal, then select the method that requires the
smallest amount of work. Keep in mind that manually-created artifacts must often be recreated
or adapted.

Please do not take this advice the wrong way and generate things that are already available on
the market. Choose between buying, creating, and the use of Open Source software. Often others
have already done the necessary work, and you can save yourself a lot of the thinking and typing
that would be needed if you reinvented the proverbial wheel.

Generation of Component Configurations

In the last chapter we explained that frameworks and DSLs suit each other insofar as DSLs
can be used as a ‘configuration language’ for frameworks. For complex platforms, these con-
figurations are often not source code, but configuration files in the broadest sense, which
these days are often rendered in XML. In most cases, such configurations can be easily gener-
ated from the model, because the necessary information is often already contained in it. Here
are some examples:

• The EJB deployment descriptors can be created from the model if some additional annota-
tions are defined that, for example, define the transactional behavior of operations.

• The definitions for the Struts page flow framework can be generated from state diagrams
or activity diagrams. These configurations, too, are specified in XML.

• Hibernate, a Java persistence framework, also works with XML-based configuration files
that describe the classes and attributes to be persisted. These, too, can be easily generated.

• CORBA IDL is yet another candidate. The creation of IDL definitions for model elements
can also be easily automated. From these, the CORBA artifacts are derived in a further
generation step.

The CORBA example is interesting insofar as it demonstrates that the generated artifacts them-
selves can serve as the input (model) for further generators – cascading. Of course we could also
generate the CORBA stubs and skeletons directly from our model, but the idea of reusability for-
bids this approach. This shows that the sequencing of several transformations – with well-
defined intermediate formats, here CORBA IDL – is an extremely useful approach. (Cascading
is explained in Section 8.2.8, and an example can be found at the end of Chapter 17.)

Support of the System Architecture

No system can be built with an exclusive focus on software architecture. A system architecture
that makes statements about existing machines, processes, and the assignment of software to

c08.fm Page 151 Tuesday, February 28, 2006 6:15 PM

152 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

them is always required. In spite of the progress in the field of MDSD, we are not yet able to
generate hardware, but we can significantly support software deployment.

Assume we wish to run a complex system with many components on a server farm. To this
end, the following things must be done:

• The components must be installed on the respective machines.

• If necessary, the correct tables must be created and initialized on the correct database
instances.

• If necessary, the infrastructure must be configured. A typical example are load balancers.

The respective system structures can simply be modeled, for example with UML deployment
diagrams. Based on these models, one can then generate the required artifacts, such as installa-
tion and configuration scripts.

Here is an example: in the infrastructure of distributed, embedded systems (see Chapter 16),
the topology of the distributed system is defined in a model. Moreover, the network connections
between the single nodes are described. The generator then creates the complete images for the
required nodes, which can be deployed directly and run on the respective system node.

8.2.4 Generate Good-Looking Code – Whenever Possible

It is unrealistic to assume that developers will never see the generated code. Even if developers
don’t have to change generated code, for example by inserting manually-written sections, they
will be confronted with it if they debug the generated applications with conventional tools, or if
they have to check the generator configuration. How can one make sure that application devel-
opers understand the generated code and are not afraid of working with it?

The prejudice that generated code cannot be properly read, understood, or debugged is deeply
rooted. In some cases, this prejudice is used as an excuse for not applying Model-Driven Soft-
ware Development at all. This can be avoided if you try to generate ‘good’ code. Consider the
following points:

• You can generate comments. In the templates, you have most, if not all, necessary
information at hand to produce sensible comments. Typically, generated comments are
not static text, but are based on information taken from the model like the rest of the
templates.

• Because the options for working with whitespace in code generation templates are often
quite limited, you must decide whether the templates or the generated code will be
indented correctly: the generator often cannot distinguish if an indention serves to struc-
ture the templates or to structure the generated code. In many cases, it is best to focus on
the templates’ readability, and use a downstream pretty-printer/beautifier that can format
the code correctly. Pretty-printers are available for the majority of all programming lan-
guages, as well as for XML.

c08.fm Page 152 Tuesday, February 28, 2006 6:15 PM

8.2 General Transformation Architecture 153

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

• A third and very useful technique is the application of location strings that identify the
transformation or the template used, as well as the underlying model elements in the gen-
erated code. A location string might look like this:

The use of this best practice is important in increasing the acceptance of code generation
among developers. In essence, it aims at applying the same quality standards and style guide-
lines to generated code as to non-generated code. Logically-correct indentation regarding con-
trol structures is of particular importance. If you convert a high-quality application prototype
into templates, you should have all necessary comments at hand to integrate them into the
templates.

The only restriction/exception to this best practice concerns the generation of performance-
optimized code. In such cases, one must often resort to constructs that impair the code’s reada-
bility. These cases should be explicitly identified and described, and the generated code should
be managed separately from all other code. Manual implementation too, of course, can make it
necessary to sacrifice structure to save performance.

The fundamental statement behind this best practice applies not only to generated code, but
also to hand-written code: source code is no longer primarily written for machines, but instead
for reading by other source code users – humans.

8.2.5 Model-Driven Integration

In many cases you will have to integrate your system developed using MDSD with existing sys-
tems and infrastructures. Software projects that take place in isolation are rare in practice. In
most cases, software is developed in the context of existing system environments that have
remaining lifetime ahead of them. In addition, developers often wish to replace legacy systems
incrementally with newer and better suitable functionality that should be realized with modern
technology over time.

Integration typically includes the systematic mapping of various APIs, as well as of the
required data and protocol transformations between these APIs. Depending on the integration
strategy, integration code must be added either to the application to be developed, or into the
existing legacy application that is to be integrated. The required artifacts often also include suit-
able data conversion scripts for one-time use.

Data and interface mappings between systems are most valuable if they are mapped in a
model. You therefore need to approach the integration issue as a part of MDSD. Do not ignore
it! Define a technical subdomain (a specific DSL) for model-driven integration. If things get
more complicated, consider using a technical subdomain for each of the systems to be inte-
grated. Define DSLs in those subdomains that support an exact description of the mapping
rules between model elements and existing legacy applications. Use automation to simplify the
shutting down of legacy systems to the extent that no expert knowledge is needed for this step.

[2003-10-04 17:05:36]
GENERATED FROM TEMPLATE SomeTemplate
MODEL ELEMENT aPackage::aClass::SomeOperation().

c08.fm Page 153 Tuesday, February 28, 2006 6:15 PM

154 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Integration with existing systems is a strength and not – as some people argue – a weakness
of MDSD.

In the case of the integration of two different, model-driven systems, it might prove reasonable
to structure the integration code in such a manner that the required knowledge about implemen-
tation technologies is not needlessly duplicated in the template source code of both systems.

When dealing with simple integration tasks, a technical subdomain can be unnecessarily com-
plicated, and it may suffice to use UML-tagged values or the like in the models that are used for
modeling the actual application. However, you should use this approach only if the integration
information does not unnecessarily impair the model’s clarity, and if the integration is of a per-
manent nature and not applied to a legacy system with a limited life span. In the latter case, you
should make sure that the integration code can be removed easily as soon as it is no longer
needed. Otherwise, ‘dead code’ will only contribute to the architecture’s pollution. Use an anti-
corruption layer [Eva03], and specify the mappings via external model markings – overlaid
models that add a specific aspect to the model.

Try to automate the step-wise shutting-down of legacy systems to the extent that you can label
the parts to be shut down in a DSL. You will make the lives of future (developer) generations
much easier, because the people who will shut down the last parts of a legacy system three years
from now might know very little about the details of the integration code.

8.2.6 Separation of Generated and Non-Generated Code

When only parts of an application are generated – often the case in many of today’s scenarios –
the gaps must be filled with manually-written code. However, the modification of generated
code harbors a wealth of problems in terms of consistency, build management, versioning, and
consistency between the model and generated source code, particularly due to repeated regener-
ation, even though the latter aspect is – from an exclusively technical point of view – mastered
by modern generators.

If the files with the generated code are never modified, the generated code can simply be
deleted if necessary and a complete regeneration can take place. If generated code must be
changed manually, this may only occur in specially-designated areas that will not be overwritten
during regeneration (often called protected regions).

Therefore, keep generated and non-generated code in separate files: in most cases, it is even
sensible to use separate directories. Never modify generated code! Design an architecture that
defines clearly which artifacts are generated and which must be created manually. In the context
of this architecture, you should also define how generated and non-generated code is combined
in terms of the target architecture. Interfaces, abstract classes, delegation, and design patterns
such as Factory, Strategy, Bridge or Template Method [GHJ+94] are suitable means in the realm
of object-orientation. In languages that are not object-oriented, one can for example work with
includes.

The separation of generated and non-generated code forces architects to choose a design that
very cleanly separates various aspects – in our view, a highly desirable side-effect. As a conse-
quence of this best practice, generated source code can be seen as a disposable product that need
not even be versioned, which can reduce consistency problems. In all cases in which manually-
implemented code and generated code are used together, however, inconsistencies can occur if
the model is altered in such a way that it is no longer structurally or semantically compatible

c08.fm Page 154 Tuesday, February 28, 2006 6:15 PM

8.2 General Transformation Architecture 155

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

with the handwritten code, even if the handwritten code has been completely delegated to sepa-
rate classes.

If, for performance reasons, or because the target language doesn’t offer any options for con-
solidating different artifacts, handwritten code must be inserted into generated code directly, the
introduction of protected areas is inevitable. Please do this only if such exceptional conditions
require this approach!

The best practice described here can be generalized in the sense that different generators can
be used to generate different parts of the system, such as various technical subdomains. In such
cases, handwritten code can be seen as the result of a very special ‘generator’ – the human
programmer. The system architecture must of course make allowances for all these different
aspects.

8.2.7 Modular Transformations

To enable the reuse of (parts of) transformations, it is advisable to modularize transformations.
Depending on the transformation language used, this can (and should) be done using the con-
cepts of structured or object-oriented programming, just as in classical programming. Among
these are subroutines/procedures, classes, or loosely-coupled components (often called car-
tridges) that are then responsible for generating different layers or aspects of the target architec-
ture. They can also be exchanged separately. Such means for structuring are usually tool-specific
(see Chapter 11), yet very important – use them!

Figure 8.7 shows how this approach might look in the context of a template-based approach.
This example is about extending the standard UML-Java mapping in such a way that JavaBeans
can be generated. For each attribute in the model, both an attribute in the Java class and also the
respective getters and setters should be generated.

Figure 8.7 Template modularization

Main AttributeDecl

OperationDecl

UML/Java

UML/JavaBeans

Main PropertyDecl

OperationDecl

ParamDecl

ParamDecl

c08.fm Page 155 Tuesday, February 28, 2006 6:15 PM

156 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

In this example, the Main template for the Bean is newly-defined, so that it uses the newly-
defined PropertyDecl instead of the ‘old’ AttributeDecl for each attribute. The other templates
remain in use as they are, that is, unchanged.

A form of modularization that goes beyond the scope of this example is the breaking up of a
transformation into several transformations that are then carried out sequentially. Consider the
example in Figure 8.8:

In this figure, the model of a banking application is transformed into an application that runs on
J2EE, specifically on two different application servers, BEA WLS and IBM Websphere. However,
the transformation does not take place in a single step, but in several phases:

• First, the process aspects of the banking domain are mapped to a process model and the
remaining aspects to an OO-model.

• In the next step, the two models are mapped to J2EE.
• Afterwards, this J2EE model is mapped to an application server-specific model.
• In the last step, the two models are converted into code.

Now imagine that we wish to create J2EE code for call-center applications. Since the transfor-
mations are modular, we need only exchange the first part of the transformation. The subsequent
transformations can be reused without changes, which saves us a lot of work (see Figure 8.9).

Figure 8.8 Modular transformation

Figure 8.9 Adaptation of the transformation process to another professional domain –
from banking to call centers

Banking
Meta Model

Bank /
OO

OO Meta Model

J2EE Meta Model
Process

Meta Model
Bank /
Process

OO/
J2EE

Process/
J2EE

WLS
Meta Model

WebSphere
Meta Model

J2E
E

/
B

E
A

J2E
E

/
IB

M

Java Meta
Model

BEA/
Java

IBM/
Java

Callcenter
Meta Model

CC /

OO
OO Meta Model

Process
Meta Model

CC /

Process

...

...

...

c08.fm Page 156 Tuesday, February 28, 2006 6:15 PM

8.2 General Transformation Architecture 157

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

If we now wish to port both software families to .NET, we only have to exchange the second part
of the transformation, as shown in Figure 8.10

If we used only a single, direct transformation, this kind of reuse would be unthinkable.
In contrast to the OMG’s opinion, we recommend not to modify the intermediate models man-

ually or add further markings. They are merely needed as an ‘interface’ between the various
transformation steps, an agreed data model.

If we need additional information to control or configure subsequent transformations, we
should implement those markings in the form of external model markings. This approach is
not only clean in terms of separation of concerns (»aspect-oriented modeling«), but also much
more practicable with the currently-available tools. Figure 8.11 shows why: transformations
are used only inside the generator tool – that is, the transformation result is not editable in the
modeling tool. The (multi-step) transformations are used exclusively to modularize the trans-
formation process. Generator-internal JUnit tests are used to verify that the transformation
works as expected.

Figure 8.10 Adaptation of the transformation process to another technology

Figure 8.11 Using model transformation inside the transformation framework illustrated
by openArchitectureWare

OO Meta Model

Process
Meta Model

OO/

.NET

Prozess/

.NET

.NET Meta Model
.NET/

C# C# Meta Model

openArchitectureWareModel
(UML)

Model
(XMI)

Parser

Model
(Object Graph)

Model
Trans-
former

Modified Model
(Object Graph)

export

Generated
Code

Code
Generator

(may be repeated)

c08.fm Page 157 Tuesday, February 28, 2006 6:15 PM

158 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

This discussion also makes it obvious that one person’s target model is another’s source model.
Thus multi-step transformations constitute the basis for the reuse of transformation steps. Cas-
cading, model-driven development points in the same direction.

8.2.8 Cascaded Model-Driven Development

We saw in the previous section that modularizing a transformation process using model-to-model
transformation is useful. However, the question remains of into which steps a potentially complex
transformation process should be broken down. The MDA uses the metaphor of PIM and PSM to
guide these decisions: you should model your business logic in the PIM and then transform it into
the PSM, from which you finally generate code. In practice we find that this guideline is often not
specific enough. Based on our own experience, we recommend a different approach.

We start with architecture-centric MDSD (see Section 4.3). This means that you provide
MDSD-support for your (technical) software architecture. The metamodel contains the architec-
tural building blocks, and models describe systems from a technical point of view. Once you
have built this infrastructure, you can cascade additional layers of MDSD-infrastructures onto it,
as shown in Figure 8.12.

These additional layers typically address a more limited (sub)domain and become less technical,
and thus more functional, with every layer. The idea is that the more specific higher layers map
the more specific concepts to the already-defined more general (architectural) concepts of the
lower layers. This automatically leads you to the ‘right’ modularization steps, as you add more

Figure 8.12 Cascaded Model-Driven Software Development.

MDSD-
Infrastructure

Input Models

Output Model

Code Generator for
Architectural MDSD Infrastructure

Code for Target Platform

Programming Model
(based on Architecture-Metamodel)

M2M/Code
Generator for SD 1

Model for Subdomain 1

M2M/Code
Generator for SD 2

Model for Subdomain 2

...

...

...

...

...

...

c08.fm Page 158 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 159

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

specific layers as you need them. Eventually you will arrive at completely non-technical, func-
tional model that your domain experts are able to specify. You can see this approach in action in
the case study in Section 17.4.3.

Cascaded MDSD can also help you out of another dilemma. If you are working with a main-
stream platform such as J2EE or Spring+Hibernate, you often have the chance to use third-party
off-the-shelf cartridges (a cartridge is a ‘piece of generator’ for a certain architectural aspect).
The problem then often becomes how to combine these different cartridges, especially if they
have been developed independently and thus use different metamodels – different stereotypes,
tagged values, and so on. You certainly don’t want to model things several times merely to be
able to use various incompatible cartridges.

We recommend the approach shown in Figure 8.13. As usual, you start by defining your own
project-specific architecture-centric metamodel. Applications are modelled using the concepts
defined in that layer. Your project-specific cartridge uses model-to-model transformations to
create the models required as the input for the third-party cartridges. These in turn generate the
code for their specific architectural aspects. Your cartridge generates the code to glue together
the artifacts generated by the various third-party cartridges.

8.3 Technical Aspects of Building Transformations

In addition to the best practices described in this section, we describe a number of details of code
generation and model-to-model transformations in the two following chapters.

8.3.1 Explicit Integration of Generated Code and Manual Parts

Explicit integration means that in the beginning, the generated code is totally independent of
handwritten code. It is up to the developer to integrate the artifacts. There are only very few, rare

Figure 8.13 Using cascaded MDSD to shield technology-specific cartridges from the
modelling layer

Conceptional
Architecture

Model

Generator

Cartridge
Specific
to the

Conceptional
architecture

Model suitable
for C2

Model suitable
for C3

Off-the-Shelf
Cartridge C2

Off-the-Shelf
Cartridge C3

Code generated
by C2

Code generated
by C3

Project-specific
code

Manually-
written code

c08.fm Page 159 Tuesday, February 28, 2006 6:15 PM

160 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

cases in which both kinds of code are factually completely independent – non-generated code
often depends on generated code, since they are commonly used together in a system’s context.

The simplest integration method is to create protected areas in the generated code in which the
developer can insert handwritten code. These areas are designated in such a way that they can be
read by the generator, so that the handwritten code will not be overwritten during subsequent
generator runs.

UML tools typically work in this manner. Here, class stubs are generated from model data,
into which the developer then integrates the behavior. Figure 8.14 shows this:

This approach has a number of disadvantages:

• The generator is more complex, because it must recognize the management, recognition,
and preservation of protected areas.

• Preserving the contents of the protected areas is not always easily accomplished. In prac-
tice, code sometimes gets lost.

• The separation of generated and handwritten code dissolves, because both are in the same
file/class.

The last point is the most problematic one because the developer must work in the generated
code. For this purpose, they must first understand it, which is not always easy. Other aspects of
software development such as versioning are also made more complicated.

Other mechanisms for integration should therefore be considered. A solution that is often
applied (and one that also handles integration with the platform) is 3-tier implementation. In many
cases, the system components that must be generated consists of three kinds of functionality:

• Functionality that is identical for all components of a certain type.

• Functionality that is different for each component, but that can be generated from the
model.

• Functionality that must by implemented manually by the developer.

Figure 8.14 Generated code with protected areas

Car

speed: int

accelerate(dv: int)

stop()

public class Car {
 int speed = 0;
 public void accelerate(int dv) {
 // protected area begin - 0001
 // insert your code here
 // protected area end - 0001
 }
 public void stop() {
 // protected area begin - 0002
 // insert your code here
 // protected area end - 0002
 }
}

c08.fm Page 160 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 161

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

The approach illustrated in Figure 8.15 is a proven technique for implementing this in object-ori-
ented languages:

An abstract superclass for all components of a certain type is implemented as part of the plat-
form. For each component, the generator generates an abstract intermediate class that inherits
from the superclass and realizes all aspects that can be deduced (and thus generated) from the
model. Last but not least, the developer creates a non-abstract implementation class that inherits
from the generated class. This class is later used by the system by being instantiated. This manu-
ally-implemented class ‘fills the holes’ in the generated intermediate class. This can be done
quite elegantly with the aid of the Gang-of-Four patterns [GHJ+94]. The rest of this section, as
well as Figure 8-16, explains how.

In Figure 8-16, case a), generated code calls non-generated code. This is almost trivial. In
generated code, one will always access non-generated code – after all, one continues to use tried
and test libraries. In this case, interpretation should be taken a bit further: one should always
generate as little code as possible and, whenever it’s feasible, resort to using existing, tested code
that has its place in the domain architecture in the shape of the platform.

Case b) is a bit less obvious. Here, manually-implemented code calls generated code. For this
purpose, the manually-implemented code must ‘know’ the generated code, which can lead to
unpleasant dependencies in the build process. Case c) can help here. Here the generated code
can inherit from a manually-created class, or respectively implement a handwritten interface.
The handwritten code can then be programmed against that interface. At runtime, the instance of
a generated class will then be instantiated, for example with a factory operation.

Let’s return to the example with protected areas: one option for avoiding protected areas is
to use inheritance, as shown in case d). Here, an implementation class inherits from the gener-
ated superclass. The implementation class overwrites the generated operations and in this way
provides the behavior. A factory can again help with instantiation. Of course – as shown in
case e) – generated code can inherit from a non-generated class and, if necessary, invoke its
operations.

Figure 8.15 The three layers of a 3-tier implementation

Non-generated, abstract
Base Class

(Part of Platform)

Generated, abstract
"Middle"-Class

Hand-coded,
non-abstract Class

Platform Layer

Model Layer

Business Logic
Layer

c08.fm Page 161 Tuesday, February 28, 2006 6:15 PM

162 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Case f) is also interesting, where a manually-implemented class or its operations call the
operations of a generated subclass. This is basically a use of the Template Method pattern.
The non-generated superclass defines a number of abstract operations that are overwritten by
the generated class. Other operations of the superclass call the abstract operations. Once
more, a factory helps with instantiation.

Another way of integrating handwritten code and generated code (or, more generally, code
created through various tools) is to use partial classes – if your language supports them. For
example, on the .NET platform you can split a class declaration into several files by marking the
class definitions in each file with the additional keyword partial (public partial class XYZ...).
When compiling the code, the compiler considers all the partial declarations of a class together.
This allows you to generate one part of a class and manually implement the other.

The approach of integrating generated and non-generated code described in this section often
requires generation that comprises several steps. Of course, the application developer can imple-
ment their application logic in the lowest layer only if the middle layer has been generated. On
the other hand, in many cases an additional generation, compilation, and a further build step will
be required that use the generated artifacts as well as the platform’s artifacts, plus those that were
manually implemented, to merge them into a complete application.

Thus, often two generator runs must be executed: the first reads specific model elements and
generates a number of superclasses – that is, a kind of API – to which the developer then imple-
ments their application logic, which must be written manually.

The second run of the generator generates all model elements and uses them, as well as those
written manually by the developer, to create the complete application. Depending on the plat-
form, this step also encompasses processes such as compilation, linking, packing and so on. To
enforce the developer’s code to really inherit from the generated class, one can use dummy code
(see the next section) or a recipe framework (Section 11.1.4).

Figure 8-16 Pattern-based integration of generated and non-generated code

a)

b)

c) e) f)

generated code non-generated code

d)

c08.fm Page 162 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 163

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

If the right features of the targeted programming language are applied, this approach can also
serve to enforce certain architectural constraints. Consider the diagram in Figure 8.17:

In this case the goal is to anchor the pre- and post-condition defined in OCL in the model in the
generated code, and in such a manner that it is not possible for the programmer to circumvent the
check at runtime. Using protected areas, the following code could be generated:

Of course, it doesn’t really work like this. The developer can delete the pre- and post-condition
code at any time. The variant using simple inheritance is not practicable either. The developer
would overwrite the operation increase() and thus avoid the checking of the constraints. Alterna-
tively, one could define additional operations, increase_pre() and increase_post(), that check the
pre- and post-condition. The implementation operation in the subclass would have to invoke this
operation. However, in this approach the developer could forget to call these operations. There is
a rather elegant solution to this problem that uses the Template Method pattern:

Figure 8.17 A simple UML model with a constraint

// generated
class Account {
 int balance;
 public void increase(int amount) {
 assert(amount > 0); // precondition
 int balance_atPre = balance; // postcondition
 // --- protected area begin ---

 // --- protected area end ---
 assert(balance = balance_atPre + bamount);
 // postcond.
 }
}

// generated
public abstract class Account {

 int balance;

 public final void increase(int amount) {
 assert(amount > 0); // precondition

Account

increase(int amount) : void

context Account.increase(int amount)
pre: amount > 0
post: balance = balance@pre + amountbalance : int

c08.fm Page 163 Tuesday, February 28, 2006 6:15 PM

164 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Here the operation increase() is completely generated. It contains pre- and post-condition code
and internally invokes an operation increase_internal() for the execution of the actual behavior.
This is defined as an abstract method, and the subclass to be written manually by the developer
must implement the operation.

Since the external interface (the public method) is still increase(), a client of the class must
always invoke this operation, and therefore cannot circumvent the checks, because
increase_internal() is protected. A developer is also unable to overwrite the increase() operation
in the subclass to circumvent the checks, because it is final. Thus the problem’s solution is both
bulletproof and elegant.

8.3.2 Dummy Code

One often has to coerce a developer to do certain things to obtain a consistent system. In the con-
text of 3-tier implementation, it is for example necessary that the developer implements a class
of their own that meets the following requirements:

• It must follow a particular naming convention (has the same name as the superclass, only
with the suffix ‘Impl«).

• It must inherit from a certain (often generated) class and, if necessary, overwrite specific
operations.

• It must perhaps implement a specific interface, or otherwise provide specific predefined
operations.

Since we are dealing with manually-developed classes here, these things cannot be enforced by
simply enforcing them through code generation templates. However, what can be done is to

 int balance_atPre = balance; // postcondition
 increase_internal(amount)

 assert(balance = balance_atPre + amount);
 // postcond.
 }

 protected abstract void increase_internal(int amount);
}

// manually written code
class AccountImpl extends Account {
 protected void increase_internal(int amount) {
 balance += amount;
 }
}

c08.fm Page 164 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 165

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

generate code that checks the required characteristics with the compiler’s help. Let’s assume
that we have the following generated class:

Let’s further assume that the developer will inherit from this class, overwrite the operation some-
Operation(), call the class …Impl, and implement an interface IExampleInterface. The correct
implementation then looks as follows:

How can one enforce the developer to correctly implement this class, even if the framework (as
regularly happens) only instantiates the class dynamically in the context of a factory, thus pre-
venting the option of a compiler check?

The solution is to generate dummy code that only serves to verify the guidelines described
here:

public abstract SomeGeneratedBaseClass
 extends SomePlatformClass {
 protected abstract void someOperation();
 public void someOtherOp() {
 // stuff
 someOperation();
 }
}

public abstract SomeGeneratedBaseClassImpl
 extends SomeGeneratedBaseClass
 implements IExampleInterface {
 protected void someOperation() {
 // do something
 }
 public void anOperationFromExampleInterface() {
 // stuff
 }
}

public abstract SomeGeneratedBaseClass
 extends SomePlatformClass {
 // as before
 static {
 if (false) {

 new SomeGeneratedBaseClassImpl();
 // verifies that the class is present,
 // and that it is not abstract
 SomeGeneratedBaseClass a =
 (SomeGeneratedBaseClass)
 new SomeGeneratedBaseClassImpl();
 // verifies that the implemented class is
 // actually a subclass of SomeGeneratedBaseClass
 IExampleInterface x = new
 SomeGeneratedBaseClassImpl();
 // verifies that it implements the
 // IExampleInterface

c08.fm Page 165 Tuesday, February 28, 2006 6:15 PM

166 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

This mechanism ensures that the compiler issues corresponding error messages as soon as the
base class has been generated. This forces the developer to implement the subclass correctly.
Mistakes that might be hard to find later on are thus avoided. Note the if (false), which ensures
that the code is never executed at runtime2.

Depending on the level of support you get from your tool chain, using a recipe framework
(Section 11.1.4) is obviously a better approach than dummy code.

8.3.3 Technical Subdomains

Big systems typically encompass a variety of (technical) aspects. The description of all these
aspects in a single model (and consequently with a single DSL) is complicated and impractical.
The model runs the danger of being overburdened with details of different aspects and so
drowning in its own complexity. Furthermore, in most cases a certain DSL (or rather its nota-
tion) is well-suited for the description of one specific aspect, but not for that of other aspects in
the system.

Let’s for example examine a UML-based DSL for the description of business processes. In
addition, the persistence of model elements and the GUI design/layout must be described.

You must mark persistent model elements accordingly in the DSL, so that the required code
and RDBMS schemas (SQL DDL) can be generated. It is difficult to accommodate all this infor-
mation in a single model. A UML-based language is often not capable of covering all these
aspects.

Theoretically, the modeling of a detailed GUI layout with UML is conceivable, but it is not
practicable, especially because today’s GUI design tools provide very good graphical, WYSI-
WYG-style DSLs and accompanying wizards. GUI design can only be further automated via
real abstraction, for example if the platform strongly standardizes layout and design and makes
many decisions for the developer. Extensive standardization makes sense in some application
domains (business applications, administration interfaces), whereas in others too strong a stand-
ardization restricts the necessary leeway for design decisions (such as Web sites).

If you try to cover too many aspects in a single model, maintainability will be impaired, and
efficient distribution of modeling tasks for various (partial) teams also becomes more difficult. To
avoid such problems, introduce a structure of technical subdomains. Each subdomain should be
modeled using a DSL suited for this purpose. Model the various subdomains with separate mod-
els, and bring these different models together in the generator. To enable this, define a small
number of gateway metaclasses – that is, metamodel elements that are used in the metamodels of
various DSLs. These serve to link the models of the different DSLs, as can be seen in Figure 8.18.

 new SomeGeneratedBaseClassImpl().xyzOperation();
 // this would verify that the operation
 // xyzOperation is implemented in the class
 }
 }
}

2 Some IDEs are clever enough to notice that the code in the if (false) branch is never executed and thus complain
about the unreachable code. In this case one has to formulate the condition a bit less obviously.

c08.fm Page 166 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 167

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

This approach is particularly useful if you ignore the concrete syntax in the transformer/gener-
ator (see Chapter 11), because then the gateway-metamodel elements can be rendered in dif-
ferent concrete syntaxes in the different subdomains, while the transformer/generator alone
works with the abstract syntax. Thus a simple and natural integration of the subdomains is
possible.

Note that the approach described here partitions the system into technical subdomains instead
of structuring the system into functional subsystems. The latter is important and necessary too,
however, but is independent of the structure of the subdomains described here.

Model-driven integration is a very special technical subdomain. Mapping and wrapping rules
can be very elegantly defined in a customized DSL. Generator-based AOP is an alternative for
handling cross-cutting subdomains.

8.3.4 Proxy Elements

In principle the integration of different subdomains via gateway-metaclasses works well, but it
causes specific model elements to appear in a number of models, regardless of whether the mod-
els are models of different subdomains or shared elements such as example interfaces in various
partitions (partial models). To avoid duplication of information, it is often advisable to work
with proxys or references. Take a look at the example in Figure 8.19:

Figure 8.18 Linking of different technical subdomains via gateway-metaclasses

Figure 8.19 Examples for the use of proxy elements in the model

Technical Subdomain 1
(e.g. Workflow)

Meta Model
1

DSL 1

Technical Subdomain 2
(e.g. Persistence)

Meta Model
2

DSL 2

Technical Subdomain 3
(e.g. GUI)

Meta Model
3

DSL 3

SMSApp TextEditor

anOperation(int)
anotherOp(): long

<<interface>>
SomeInterface

<<interfaceref>>
SomeInterface

<<references>>

Model 1 Model 2

c08.fm Page 167 Tuesday, February 28, 2006 6:15 PM

168 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Here the interface reference in Model 1 refers to the interface of the same name in Model 2 –
matching is based on identical names. Of course, the metamodel must be extended accordingly.
You can see the respective excerpt in Figure 8.20.

A port implements an interface: an interface reference is a subclass of Interface, as in the
Proxy pattern in [GHJ+94], and references the delegate – that is, the object for which the proxy
stands. Note that this reference to the delegate is actually realized by an association in the con-
text of the metamodel — that is, in the generator, once all partial models are loaded. In the
models the delegate reference references the actual object via other properties: in this example,
it uses the name.

This approach presupposes that the generator has Model 2 at its disposal when generating
Model 1 in the example. The generator must dereference the reference to the actual object. Ide-
ally, it replaces the port’s association to the reference directly with an association to the actual
object. Alternatively, the proxy can forward any operation invocations to the delegate. Due to the
subtype relationship, this is no problem from a technical standpoint, via polymorphism.

Note that the application of this principle lets you merge any partial models (be they partitions
or technical subdomains) independently of the abilities of the modeling tool or the concrete syn-
tax. In practice, this is an extremely useful technique.

8.3.5 External Model Markings

To enable transformations of a source model into a target model (or to generate code), it is
sometimes necessary to provide additional information at generation time that is tailored to the
specific target metamodel. Adding this information to the source model would pollute it unnec-
essarily with target model concepts. The OMG suggests the use of model markings, but only
very few tools support this concept sufficiently. Instead, we recommend that this information is
described outside the model, for example in an XML file, and this external information pro-
vided to the generator/transformer at generation time.

Figure 8.20 Metamodel with interface-proxy

UML::Class

Component Interface

Port
*

InterfaceRef

delegate

c08.fm Page 168 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 169

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

If this is done correctly, no inconsistencies will emerge, because the generator can issue error
messages when information in the external model markings are missing for a model element, or
if information is given for nonexistent model elements. In principle, this procedure is a special
case of technical subdomains.

8.3.6 Aspect Orientation and MDSD

This section requires knowledge of aspect-oriented programming (AOP). Introductory material
can be found in [Lad04] and [AOSD].

Aspects in terms of AOP are cross-cutting concerns that traverse an application’s code ‘hori-
zontally«. Typical examples are often of a technical nature3, such as transactions, persistence, or
logging. Aspect orientation has the goal of localizing such cross-cutting concerns in the context
of a software system family in a single module, and thus making it more easily changeable or
configurable. Cross-cutting concerns can be addressed at different levels in the MDSD context:

• The generator can read different models that represent different aspects of the complete
system (technical subdomains), weaving them at the model level and generating code from
them that addresses all the aspects.

• The generator per se intrinsically localizes specific cross-cutting concerns. Since a
number of artifacts are generated using a single transformation rule or a single code gener-
ation template, a change in this one place in the template affects all the generated artifacts.

• Specific cross-cutting concerns can be addressed using architectural constructs. The clas-
sic examples of this approach are proxys and interceptors. In this case, the generator can
create the required proxys automatically while the required interceptors can be installed at
runtime after the necessary configuration has been defined.

• Finally, one can of course also integrate aspect-oriented programming by generating
aspects – for example in the shape of AspectJ – or at least the pointcuts4, which define
where the aspect influences the base system. An example of this can be found at the end of
Chapter 16.

Several concrete aspects can easily be realized with a generator:

• Thread synchronization. When the generator generates the implementation of a queue, it
can automatically insert the synchronization code if the queue is used from several
threads. (This must be stated in the model for the generator to know.)

• Resource allocation. The generator can generate the implementation of a factory that
supports various resource allocation strategies (eager acquisition, lazy acquisition, and
pooling – see [POSA3]).

• Security. The generator can create proxys for all components that carry out authorization
checks. The instantiation of components can take place via a factory that inserts these
proxys. It is important to make sure that the generator has introspective access to the
components at generation time: It know their interfaces, methods, parameters, and so on,
because these aspects are explicitly present in the model, or at least in the generator.

3 There are also functional cross-cutting concerns, but for simplicity we ignore them here.
4 A pointcut is a location in the execution of a program where an aspect can contribute additional behavior.

c08.fm Page 169 Tuesday, February 28, 2006 6:15 PM

170 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Another way of addressing cross-cutting concerns is the use of a suitable (technical) platform.
The generator will then only generate the necessary configuration files for that platform.

• Some platforms allow only some specific predefined technical aspects to be addressed.
EJB containers, for example, conduct security checks and manage transactions and
resource allocation. In this case the generator creates the corresponding deployment
descriptors.

• Other platforms only allow the configuration of specific aspects at predefined join points5.
CORBA’s portable interceptors are an example of this. Here, the generator would generate
the code for instantiation of an suitably configured POA or ORB Core.

We are faced with the question of which of these options we should use in practice. There is no
general answer. However, there are various factors that can influence a decision:

• At which granularity level must aspects be addressed? When corresponding hooks exist at
the platform level, using these is certainly the easiest approach.

• If the join points influenced by the aspect are generated by the generator, then the genera-
tor can take care of adding the respective aspects at these join points. In this case, a cross-
cutting concern in the generated code becomes – practically automatically – a ‘module’ in
the generator. The Strategies pattern [GHJ+94] is definitely applicable here!

• When aspects influence join points in non-generated code and the platform framework
provides no access to these join points, an aspect language such as AspectJ is certainly the
best choice. In this case, the generator would only decide – based on the model – which
aspect applies to which code sections. In consequence, the generator creates the configura-
tion for the aspect weaver6 and the pointcuts. An example of this can be found towards the
end of the second case study in Chapter 16.

The general rule is to avoid additional tools if possible. A more detailed elaboration of how MDSD
and AOSD/AOP relate to each other and how they can be used together can be found in [Voe04].

8.3.7 Descriptive Meta Objects

When a rich domain-specific platform is used for MDSD, the application often needs informa-
tion about model elements at runtime to be able to control the platform dynamically. How can
information from the generated application be made available at runtime and associated with
generated artifacts? How can a bridge between generated code and framework parts be built?

Let’s assume, for example, that you want to equip an application with a logging mecha-
nism for domain issues. The application needs to log the values of attributes from instances
of generated classes in a file. To this end, both the attributes’ values and the attributes’ names
are needed. In languages that do not feature a reflection facility, the implementation of such
functionality is non-trivial – unless you really want to endure the pain of implementing it
manually for each class.

Another case is the annotation of object attributes in the model with useful additional infor-
mation, such as multi-lingual descriptions for the use in GUIs, or regular expressions for

5 A joinpoint is a specific location in the execution of a program where an aspect’s advice can be woven in.
6 The tool that combines (weaves) aspect code with the base program.

c08.fm Page 170 Tuesday, February 28, 2006 6:15 PM

8.3 Technical Aspects of Building Transformations 171

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

checking simple value-range restrictions for attribute values. At runtime, you must be able to
access this information conveniently, for example to construct GUIs from it dynamically. Often
you cannot simply embed this information in existing classes, either for performance reasons,
to avoid dependencies, or due to other architectural restrictions.

To solve this problem:

• Use the information available in the model to generate meta objects that describe the gen-
erated artifacts at runtime.

• Provide a mechanism that lets the generated artifacts access their respective meta objects.
• Make sure that the meta objects have a generic interface that is accessible for the domain-

specific platform.

Figure 8.21 illustrates this approach, which makes selected parts of the model accessible to the
running application in an efficient manner. In theory, storage of parts of the model with the
application would be an alternative, but access to model information typically would be slow
and cumbersome, which is why in most cases this approach is useless in practice. An exception
are small textual model fragments (for example value restrictions) that can be evaluated by an
interpreter at runtime.

There are different ways of associating meta objects with the artifacts they describe. If the
artifact is completely generated, often a getMetaObject() operation can be generated directly into
the artifact.

Figure 8.21 The principle of descriptive meta objects

<<pk>> name : String
 {label="Surname"}
firstname : String
 {label="Forname"}
age : int
 {label="Age",
 min=0, max=100}
zip : String
 {label="ZIP-Code",
 regexp="99999"}

SomeClass

name : String
firstname : String
age : int
zip : String

SomeClass

attributeNames : String =
 {"name", "firstname",
 "age", "zip"}

:SomeClassMetaObject

getAttributeNames() : String[]
getAttribute(name:String):AttributeMetaObject

<<interface>>
ClassMetaObject

getName() : String
getValue() : Object
setValue(Object newVal) : void
getLabel()

<<interface>>
AttributeMetaObject

getRegexp() : String

<<interface>>
StringAttributeMetaObject

getMin() : int
getMax() : int

<<interface>>
NumAttributeMetaObject

meta

name : String = "zip"
label : String = "PLZ"

:StringAttributeMetaObject

name : String = "age"
label : String = "Age"
min : int = 0
max : int = 100

:NumAttributeMetaObject

...

<<instanceof>>

<<instanceof>> <<instanceof>>

Generated
Code

Model

c08.fm Page 171 Tuesday, February 28, 2006 6:15 PM

172 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

If this is not feasible, a central registry can be used instead, which provides access to meta
objects using a lookup function like MetaRegistry.getMetaObjectFor(an Artifact). The imple-
mentation of this operation is generated, of course.

Meta objects can be used not only to describe program elements, but also for working with pro-
gram elements, which results in a generated reflection layer, which we describe in Section 8.3.8.

In languages that support Annotations, such as .NET or Java 5, you can use this feature to
achieve a similar effect. The following fragment of code illustrates how to attach the information
to the source code. Reflection can be used at runtime to query the information.

8.3.8 Generated Reflection Layers

Meta object protocols such as those described in [KRB91] are a method for inspecting, modify-
ing, or ‘re-interpreting’ programming language objects. This typically happens dynamically, for
example in languages such as CLOS [Kos90]. In the context of MDSD, we can at least provide
one readonly meta object protocol, so that classes can be introspected or operations invoked
dynamically. This works independently of whether the underlying programming language sup-
ports reflection or other similar mechanisms: you can also implement this approach in C/C++! A
generic interface allows clients to access all kinds of generated classes. To simplify matters, we
illustrate this here with Java:

public class SomeClass {

 @StringAttributeMeta(name=“name“, label=“Name“)
 private String name;

 @StringAttributeMeta(name=“firstname“, label=“First Name“)
 private String firstname;

 @IntAttributeMeta(name=“age“, label=“Age“, min=0, max=0)
 private int age;

 @StringAttributeMeta(name=“zip“, label=“ZIP“)
 private String zip;

 // getters and setters ...
}

public interface RClass {
 // initializer – associates with base-level object
 public setObject(Object o);
 // retrieve information about the object
 public ROperation[] getOperations();
 public RAttribute[] getAttributes();
 // create new instance
 public Object newInstance();
}

c08.fm Page 172 Tuesday, February 28, 2006 6:15 PM

8.4 The Use of Interpreters 173

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

The implementation of this interface for the respective classes is generated. During generation,
you have access to all of the relevant information in the model. Since the interfaces are generic,
platforms or other dynamic tools can work with this data using the reflective interface.

8.4 The Use of Interpreters

by Arno Haase

For the most part this book discusses MDSD with code generation in mind. This is arguably the
most widely used way of doing MDSD, but interpreters are a different approach that shares the
same underlying principles and fits the definition of ‘automatically transforming formal models
into executable code’, albeit in a different fashion.

Interpreters and generators are functionally equivalent. Every model can serve as input for
either, at least in principle. It is however more common to use generators for structural aspects of
a system and interpreters for behavior. The rationale behind this is that structural aspects are –
well, structural. Many of the established mainstream libraries that handle structural aspects such
as persistence, remoting, or any kind of component interaction or integration, require data struc-
tures to be present as explicit source code, and therefore code needs to be generated to use them
as part of the platform. This is mostly a matter of taste, and it is easy to conceive frameworks for
structural aspects based on generic data structures that would allow the use of interpreters.
Widely-used libraries, however, currently follow a different path, one of the main reasons being
a traditional focus on performance.

Behavioral aspects, on the other hand, have traditionally been perceived as less critical to the
overall performance of a system7. In addition, the abstractions of behavioral models are often
large compared to the amount of code that glues them together (for example steps in a work-
flow), further reducing the performance impact of an interpreter. Interpreters for expressions are
more convenient to build and test than generators. In addition to that, changing the model for an

public interface ROperation {
 // retrieve information about op
 public RParameter[] getParams();
 public String getReturnType();
 // invoke
 public Object invoke(Object[] params)
}
public interface RAttribute {
 // retrieve information about op
 public String getName();
 public String getType();
 // set / get
 public Object get();
 public void set(Object data);
}

7 Obviously there are exceptions to this. But even in the domain of numerical simulations, it is common for a system to
read and interpret a model of the problem to be solved. Good performance is achieved by using big building blocks,
such as entire solvers for differential equations, as part of the platform.

c08.fm Page 173 Tuesday, February 28, 2006 6:15 PM

174 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

interpreter requires nothing more than perhaps a restart of the system, adding to the convenience
of this approach. Behavioral aspects of systems are therefore often implemented using an inter-
preter rather than a generator.

The following section takes a closer look at interpreters in the context of MDSD.

8.4.1 Interpreters

An interpreter is a piece of software that reads and evaluates a model at runtime, performing
whatever operation is specified in the model. Just as does a generator, an interpreter works on
formal models with precisely-defined semantics, and both techniques result in the execution of
the operations specified in the model. The term ‘execution of operations’ is used in a very loose
fashion: it is meant to include code that a compiler generates to handle a generated structural
definition.

Both approaches require a parser for the model, that is, a piece of software that transforms a
model from its concrete syntax into an abstract syntax, typically an object graph in memory.
This parser is identical for both approaches in the degree to which it can be shared by a generator
and an interpreter for the same models.

An interpreter differs from a generator (or compiler, using programming language lingo) in
two respects: the point in time at which the model is analyzed, and the way the operations are
executed. Let’s look at these two differences in more detail:

• Analysis time. For the system to be built, a generator typically analyzes the model at build
time, whereas an interpretative approach makes it possible to read and analyze the model
at runtime, allowing late binding and changes to the running system.

• Mode of execution. It is understood that an interpreter consecutively looks at chunks of the
model, distinguishing between the different kinds of model elements and executing differ-
ent pieces of code based on what it sees. This is different than a generative approach, in
which the generator looks at chunks of the model and combines different sections of code
into source files that are then compiled. Interpreters use one more level of indirection at
execution time.

These distinctions are however less strict than they might appear (or, for the nostalgic among us,
than they used to be). In some domains it has for example become common practice to generate
Java byte code at execution time, giving a generator the benefits of very late binding. There is
also a growing trend for interpreters to come with a preprocessing component that checks and
validates a model at build time, ensuring that some types of errors are found at build time rather
than during execution.

An increasing number of interpreters go a step further by following a two-step approach. The
original models are read and validated at build time, and are then transformed into an optimized
intermediate format usually referred to as byte code 8. The actual interpreter (or virtual machine)
then reads and interprets only the byte code. The advantage of using such an intermediate format

8 This byte code can make use of an existing virtual machine such as the JVM, but it is perfectly possible to define a
specific kind of byte code that fits the domain in question particularly well. One example of this is the Eclipse GMT
ATL model-to-model transformation engine.

c08.fm Page 174 Tuesday, February 28, 2006 6:15 PM

8.4 The Use of Interpreters 175

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

is the same as that of transforming models in several steps: it simplifies each step by introducing
a well-chosen intermediate abstraction.

Another particularly common practice that combines the two approaches is to generate mod-
els that are interpreted at execution time. This is very commonly done for configuration files,
and often for platform libraries such as a persistence framework.

So while it is useful to distinguish between interpreters and generators, it is good to keep in
mind that the decision of one or the other is not a black and white question. Instead, it is possible
to combine the approaches, or move gradually from one to the other as the need for specific non-
functional properties arises.

Another approach to this duality has been adopted by many rule engines. It is common for
these to offer both an interpreter and a generator for the same model, leaving the choice between
them, with its non-functional implications, to the developer using the engine.

8.4.2 MDSD Terminology Revisited

Interpreters and generators are both technologies for implementing MDSD, and therefore obvi-
ously share the core abstractions of MDSD. But interpreters come from a different background
of programming culture and involve different trade-offs than do generators, so it is beneficial to
take another look at the key concepts of MDSD from an interpretative angle.

Domain

We defined a domain as a bounded field of interest of knowledge, intentionally making the term
widely applicable. This definition clearly makes no assumption about whether an interpreter or a
generator is used for a given domain.

Some domains however clearly lend themselves more to a generative approach – for structural
aspects in particular – whereas it is easier to envision others based on interpreters. Therefore it is
helpful during domain analysis to be consciously open-minded with regard to a later implemen-
tation technology, postponing the decision of whether to build a generator or an interpreter for a
given domain, or code it manually instead, until a solid understanding of the domain has been
reached.

The interpreter–generator decision also influences how we draw the boundaries of the
domains. The scope of a generator and an interpreter for a given domain are typically different to
some degree: it is for example more natural to include constraint checks in an entity metamodel
if the models are to be interpreted than if they serve as input for a generator. It is therefore good
practice to vary the domain boundaries a little to find the approach that best fits a given system
context.

Metamodel

Any kind of metamodel can serve as the basis for either a generator or an interpreter. It is how-
ever more common to use generators for structural metamodels and interpreters for those that
describe behavior.

c08.fm Page 175 Tuesday, February 28, 2006 6:15 PM

176 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Meta Meta Model

The parser is identical for interpreters and generators, and therefore the meta meta model is the
same for both – at least in principle. It is for example perfectly possible to define the abstract
syntax for an interpreted model in terms of MOF, even if it is a behavioral metamodel organized
around the key abstraction of ‘expression’. It is however far less common to do so for behavioral
models than it is for structural models.

Formal Model

Any model with any concrete syntax can serve as input for both a generator and an interpreter.
But behaviorally rich textual models are a domain in which interpreters particularly can show
their strengths, because they make it easy to use primitive building blocks with slightly different
semantics from those of the underlying programming language. As these textual models look a
lot like well-known 3GL source code, they are also often referred to as ‘source code’.

Platform

Both generators and interpreters are based on platform code – the code that already exists on the
target platform – and it is usually a good idea to use as much platform code as possible. The
interaction with the platform however looks different for interpreters than it does for generators.

Firstly, platform libraries and frameworks typically demand exactly one kind of interaction,
and whatever MDSD approach is used must cater to their needs. If for instance a persistence
framework requires business objects to be present in struct-like classes, then there may be no
way for an interpreter to provide them directly: they need to be generated. API calls, on the other
hand, can be performed both from generated code and from an interpreter.

Secondly and on a more conceptual note, interpreters themselves can be viewed as part of the
platform. The interpreters are written in the underlying programming language and can be
viewed as providing specific services. But even if we do not take quite so radical a view, the dis-
tinction between the interpreter and its supporting framework and library code is more blurred
than it is for generators, where a given piece of code is either generated or not.

8.4.3 Non-Functional Properties of Interpreters

So when should one use a generative approach, and when is an interpreter preferable? Most of
the strengths listed in Section 9.1 for generators hold for interpreters as well. That said, the fol-
lowing list discusses the different trade-offs of the two approaches.

Performance

This is the number one concern whenever interpreters are involved. Interpreters are inherently
slower than generated code, mainly because the compiler of the underlying programming lan-
guage can perform fewer optimizations and there are usually more indirections.

c08.fm Page 176 Tuesday, February 28, 2006 6:15 PM

8.4 The Use of Interpreters 177

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Obviously, there are domains in which performance is of paramount importance, such as
embedded real-time systems, which rules out an interpretative approach. For other systems how-
ever a performance overhead of 30 – 50% for a specific part of the operations might not even be
noticeable, because I/O operations take up the bulk of the time.

So while the performance impact sometimes rules out the use of an interpreter, it by no
means renders interpreters universally useless. The performance difference must be meas-
ured for every system individually, and often optimizations inside the interpreter can provide
sufficient performance.

Code Volume

Unless great care is taken, generators create more code than the original model contained, giving
them a bigger footprint than interpreters. On the other hand, that is not an issue for most sys-
tems. With embedded systems, where memory is an issue, analyzability and predictability are
good reasons to prefer generators over interpreters.

Binding Time

Interpreters allow late binding at runtime, whereas generated code is usually bound at compile
time. This is the single biggest advantage of interpreters compared to generators, opening the
door to a number of beneficial practices.

Firstly, it becomes possible to change a model at runtime and directly affect the behavior
of the system without the need for a a redeployment or rebuild, or even a restart. While not
terribly useful in a production setting, it makes for very short debugging cycles, making it
possible to hunt down and fix bugs while sitting in front of a machine with a requirements
engineer.

Secondly, it makes it very simple to run several versions of the business logic in parallel. This
is useful mainly in two situations: in mandator-based systems (that is, systems that consist of
separate logical ‘partitions’ for separate groups of users – the mandators), every mandator
potentially has a slightly different version of the logic. The other situation occurs in cases in
which you need to run older versions of the business logic with older data, while newer data
must be processed using new business logic. In such systems, every mandator or data set can
have a reference to the business logic model that is applicable to it, allowing all data to be proc-
essed using the same interpreter.

8.4.4 Integrating Interpreters into a System

To be useful, interpreters must be integrated with the rest of a system. There are three points at
which an interpreter touches the rest of the world, namely the interface through which it is called,
extension points at which a system can make specific functionality callable from a model, and
the mechanism through which the models are provided to the interpreter. We will look at these
three points in turn.

c08.fm Page 177 Tuesday, February 28, 2006 6:15 PM

178 Building Domain Architectures

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

Calling the Interpreter

Interpreters are pieces of code written in the platform’s programming language, and can there-
fore be called just like any other piece of code. An interpreter typically provides a simple inter-
face with basically just one method, taking objects passed as parameters to the interpreted
model – plus optionally an identifier describing which model or part of the model should be exe-
cuted – and returning the results of the execution of the model. This simple call interface lends
itself naturally to encapsulation in a component.

Like any other component, an interpreter can operate on other components or resources, such
as files or a database. In such cases the resources must be made known to the interpreter, just as
they would have to be made known to any other component, for example by using dependency
injection, parameter passing, a look-up in a centralized registry, or even global variables.

Extension Points

It is often not feasible to define a comprehensive metamodel that handles all facets of a domain.
To do that would often introduce significant additional complexity, and simplicity is one of the
reasons we do MDSD at all. Therefore it is a best practice to define extension points in the met-
amodel, allowing a model to reference code that is written in the underlying programming lan-
guage. A good example of this would be the algorithm for creating the value of a primary key in
a persistence language: common strategies should be explicit in the metamodel, but there should
also be a way to handle the rare cases in which an exotic strategy is needed.

The mechanics of how such an extension is done best depend on the programming language:
for Java, for example, the usual way is to provide a fully-qualified class name in the model and
use reflection.

Providing the Models

An interpreter needs a model to execute at runtime, so the application must provide it. Models
for interpreters are often text documents, which opens a wide range of possibilities for their stor-
age and provision.

The simplest approach is to deploy them as part of the system. How that can be done depends
on the underlying language – in Java they could for example be packaged inside one of the JAR
files that make up the system. This approach effectively removes much of the benefit of late
binding, but on the other hand it makes for a simple deployment model.

An alternative is to store the models as external resources and have the system retrieve them at
runtime. This could be achieved using files, possibly on a shared file server for clustered serv-
ers, but it is also perfectly possible to store them in a database, on FTP servers, or anywhere the
system can access. This makes them first-class resources, increasing flexibility, but adding com-
plexity to the deployment and system management.

c08.fm Page 178 Tuesday, February 28, 2006 6:15 PM

8.4 The Use of Interpreters 179

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

8.4.5 Interpreters and Testing

Interpreters need to be tested just like any other piece of software. And as with any kind of
MDSD, testing comes in two flavors.

Testing the Interpreter

Interpreters tend to be easier to test than generators because they do not require code to be gen-
erated. In fact, interpreters can be tested with plain vanilla unit tests in a straightforward fashion,
especially if they process textual models.

The most universal approach is to use black-box tests that provide the interpreter as a whole
with a model, then check the results. Many interpreters are naturally modular, however, which
allows tests at a finer granularity. This can for example take the form of providing just an expres-
sion as input to the parser and feeding the resulting abstract model to the expression part of the
execution part of the interpreter.

It is possible in principle to test at an even finer granularity by passing manually-assembled
abstract syntax trees to the execution engine of the interpreter. Bypassing the parser in this fash-
ion rarely yields any additional benefit for textual models, however, because it is usually
straightforward to find a piece of concrete syntax that yields a given fragment of abstract model.
It can however be useful for interpreters that are based on a very complex concrete syntax.

Testing the Models

The models can be tested using normal unit tests, calling the interpreter through its official inter-
face and checking the results or the side effects.

An added benefit of interpreters however is that models can be changed without restarting the
system, making the system expose the modified behavior immediately. That makes debugging
sessions in association with requirements engineer possible in which both parties iteratively
modify the model until the system behaves as desired.

c08.fm Page 179 Tuesday, February 28, 2006 6:15 PM

 c08.fm Version 0.3 (final) February 28, 2006 6:15 pm

c08.fm Page 180 Tuesday, February 28, 2006 6:15 PM

181

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

9 Code Generation Techniques

In keeping with the structure introduced in Chapter 1, we now want to address proven techniques
that are the foundation for the selection or construction of MDSD tools – that is, those aspects
that can be factored from domain architectures because they are of a more general nature. Yet a
domain architecture cannot work without them: code generation techniques are an important
foundation.

9.1 Code Generation – Why?

We have repeatedly mentioned that there is a close connection in MDSD between modeling,
code generation and framework development – for example, framework completion code for the
MDSD platform can be generated from a DSL. A rich, domain-specific platform, as described
in Chapter 7, simplifies code generation and lessens the need for it. On the other hand, code gen-
eration offers advantages over purely generic approaches, or at least supplements them.

9.1.1 Performance

In many cases, code generation is used because one wishes to achieve a specific level of per-
formance while maintaining a degree of flexibility. Traditional object-oriented techniques such
as frameworks, polymorphism, or reflection are not always sufficient regarding their achievable
performance. Using code generation, the configuration is stated abstractly – which also where
its flexibility lies – and efficient code is generated.

9.1.2 Code Volume

Another reason for code generation is code size. If you know at compile time which features will
be needed at runtime, the generator only needs to place those parts in the code. This can help to
make the image smaller. Vice versa, the excessive expansion of constructs at the source code
level can significantly enlarge the image. One example of this is C++ template instantiations.

c09.fm Page 181 Tuesday, February 28, 2006 5:29 PM

182 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

9.1.3 Analyzability

Complex, generic frameworks or runtime systems tend to relocate programming language-
related complexity to a proprietary configuration level. They usually make heavy use of
interpretation, which hampers the possibilities for static analysis of program properties, and
occasionally impairs error detection. In contrast, generated programming language source
code possesses the analyzability of manually-programmed code. As we have pointed out, a
sensible balancing of both approaches is ideal.

9.1.4 Early Error Detection

Flexible systems often use weak typing to allow decision-making at runtime (Object in Java,
void* in C/C++). Thus error detection is deferred to program runtime, which is often undesira-
ble, and which is one of the reasons why this kind of programming is not popular in embedded
systems. Some of these disadvantages can be cured through the use of ‘static frameworks«. Con-
figurations can be recognized as being flawed before compilation, and the compiler, too, usually
has more information, so that it can too can report error messages.

9.1.5 Platform Compatibility

The classical case of using code generation in the context of MDA is that application logic can
usually be programmed independently of the implementation platform. This enables an easier
transition to newer and potentially better platforms.

9.1.6 Restrictions of the (Programming) Language

Most programming languages possess inconvenient restrictions in their expressiveness, which
can be circumvented using code generation. Examples are type genericity in Java (at least before
version 1.5), or the downcast to a variable class. Another example is the introduction of object-
oriented concepts into a non-object-oriented language.

9.1.7 Aspects

Cross-cutting properties of a system such as logging or persistence can typically be implemented
locally – that is, not scattered through the application – via code generation. We will further
elaborate on this issue in the course of this chapter.

9.1.8 Introspection

The issue of introspection should not go unmentioned. Introspection describes a program’s
(read-only) access to itself. This allows the program to obtain information about itself, for exam-
ple about classes, their attributes and operations. In certain programming languages, such as

c09.fm Page 182 Tuesday, February 28, 2006 5:29 PM

9.2 Categorization 183

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

Java, this mechanism is supported dynamically. Other languages such as C++ do not offer intro-
spection. In such cases, code generation can create a substitute statically: instead of analyzing
the program structure at runtime, the structure is analyzed at generation time – that is, before
runtime – and code is generated that provides access to the respective structures.

9.2 Categorization

This section looks at various questions when dealing with metaprograms – programs that gener-
ate other programs. This includes the mixing/separation of the metaprogram and the base pro-
gram (the generated program), as well as ways of integrating generated and non-generated code
so that the metaprogram and the program are not mixed.

9.2.1 Metaprogramming

Code generators are metaprograms that process specifications (or models) as input parameters,
and which generate source code as output.

Metaprograms can be run at different times in relation to the generated program:

• Completely independently of the base program – that is, before it.
• During compilation of the base program.
• While the base program runs.

Typical MDA/MDSD generators adhere to the first approach. Here, the metaprogram and the
part of the base program to be created manually are usually specified separately. The generated
code is also separated from the manually-created code, and both must be integrated by the devel-
oper (see Section 8.3.1).

Systems such as the C++ preprocessor or the C++ template mechanism can also be used for
metaprogramming. Here, base program and metaprogram are mixed, and similarly the result of
the generation process already contains manually-created as well as generated code, so is also
mixed. However, the created program no longer knows anything about the metaprogram. We
refer to that as static metaprogramming.

Lisp and CLOS [Kos90] allow the execution of metaprograms at runtime via a meta object
protocol. This works because in Lisp programs are represented as data (lists). Metaprograms can
modify these lists and thus create or modify base programs at runtime. Changes of the metapro-
gram made from the base program enable the modification of the base program’s semantics.

9.2.2 Separation/Mixing of Program and Metaprogram

In the case in which metaprograms and base programs are mixed, a common (or at least inte-
grated) language exists for programming and metaprogramming, and the source code compo-
nents are not separated, but mixed. This can lead to invocation relationships between the two
levels, in principle in both directions. C++ template metaprogramming can fall into this cate-
gory, as well as Lisp and CLOS.

c09.fm Page 183 Tuesday, February 28, 2006 5:29 PM

184 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

Mixing programs and metaprograms is a very powerful approach. However, the resulting sys-
tem can easily become extremely complex, so its relevance to mainstream software development
is very limited. A further implication of the mixed approach is that the target language is no
longer a parameter of the code-generation process.

If program and metaprogram are separated, the system’s creation takes place in two distinct
phases. The metaprogram is run and creates the base program (or parts of it) as output, then ter-
minates. The program does not know that the metaprogram exists1. The separation is maintained
throughout the (meta-)programming process, including the build process.

The question of whether program and metaprogram are written in the same language is irrele-
vant here. For example, one can easily write a metaprogram in Java that generates Java, C++, or
C# as output.

The approach in which metaprogram and base program are separated does support meta object
protocols, but due to its lower complexity it is better suited for typical architecture-centric, Model-
Driven Software Development. The generator used in our book, openArchitectureWare [OAW], is
a hybrid with respect to the metaprogramming language: parts of it are implemented in Java (meta-
model of the application family), and parts in the template language Xpand. Thus one can combine
the advantages of an expressive template language with the power of a ‘real’ programming lan-
guage without overloading the templates with too much metaprogramming logic.

9.2.3 Implicit or Explicit Integration of Generated
with Non-generated Code

Implicit integration of both program types results in code that already constitutes a mix of gener-
ated and non-generated code. As a result, one no longer has to worry about the integration of the
two categories.

In the other case, the generated code is initially independent of handwritten code sections. The
two kinds of code must be integrated in an appropriate way: this was described in the previous
chapter.

9.2.4 Relationships

In general we can say that a relationship exists between the two aspects of generator categorization:

• Generators in which program and metaprogram are separated usually also create generated
code that is separated from the manually-created code, and which must therefore be inte-
grated manually.

• Generators with a mix of program and metaprogram do not require this manual integration
– the generator already creates the combined system.

Separation of program and metaprogram, as well as the explicit integration of generated code
and manually-created parts, is recommendable in practice. We will introduce the corresponding
techniques in detail later on, but first we give a few examples for the second category.

1 The program can partially learn about the metaprogram’s existence through descriptive meta objects.

c09.fm Page 184 Tuesday, February 28, 2006 5:29 PM

9.2 Categorization 185

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

9.2.5 Examples of the Blending of Program and Metaprogram

The C++ preprocessor is a system that blends program and metaprogram. The languages applied
here are independent of each other: one can also use the C++ preprocessor with other program-
ming languages, as it works purely textually on the source code. Since the system is based on
macro expansion, the preprocessor already produces source code that integrates both generated
and manually-created code. The following is a simple C++ macro:

If this macro is used in the source code, it is expanded by the preprocessor according to the rule
cited above:

becomes the following expression:

The generated code has been directly inserted where the macro to be expanded was originally
located.

Another example, again from C++, are templates. Templates are a way first and foremost to
implement type genericity in C++. Functions or classes can be parameterized with types. Due to
the fact that this feature is realized in C++ using static code generation, this method can also be
used for template metaprogramming [Ale01]. Here, generation takes place through the evalua-
tion of templates2. This approach is primarily used for performance optimization, optimization
of code volume, static program optimization, and in certain special cases, for the adaptation of
interfaces, for generative programming or other interesting purposes described in [Ale01].

Here too program and metaprogram are blended. Integration is clearly closer than in the case
of the preprocessor, because the template mechanism knows and uses C++’s type system. Simi-
larly, the resulting system consists of already-generated and manually-created code.

The adaptation of code volume can serve as an example of template metaprogramming here.
Specifically, we want to use the smallest possible data type (short int) adequate for the maxi-
mum value of a variable defined here so that we can decrease the memory footprint at runtime.
The following code fragment illustrates this:

The IF statement in the example above is evaluated at compile time. It is implemented using
templates, clearly visible from the use of the ‘<’ and ‘>’ brackets. Specifically, we apply partial

#define MAX(x,y) (x<y ? y : x)

int a,b;
int greaterValue = MAX(a,b);

int greaterValue = (a<b ? a : b);

2 Because this step takes place in the course of the C++ compilation process, source code is not the inevitable result,
but rather direct machine code or corresponding intermediate representations in the compiler.

#define MAXVALUE 200
IF<(MAXVALUE<255), short, int>::RET i; // type of i is short

c09.fm Page 185 Tuesday, February 28, 2006 5:29 PM

186 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

template specialization. We first define a template that has three parameters: a Boolean value, as
well as classes (types) for the true case and the false case.

In the context of the C++ template definition, we now define a new type using typedef. Based on a
commonly-accepted convention, this type is called RET. It serves as the template evaluation’s return
value. In the default case, we define the return type – the value of the template instance – as the
type that has been defined as the true case above, that is, the template parameter of the name Then.

Next, the template is partially specialized for the case in which the Boolean expression is false.
Now the template has only two parameters, since the Boolean expression has been set to false.

The return value RET is now the type parameter that was specified for the false case (the param-
eter Else). If the compiler finds an instance of this template, like in the short/int example given
above, it will use the template that is the most specific – the false case in this context. RET is
then defined with the type Else and is thus short.

9.3 Generation Techniques

In this section we introduce proven code generation techniques, including some code examples.
We have organized the generation techniques into various categories:

• Templates + filtering
• Template + metamodel
• Frame processors
• API-based generators
• In-line generation
• Code attributes
• Code weaving

We briefly introduce all these techniques and illustrate them with examples. Except for in-line
generation (and to some degree, code attributes), all these approaches require explicit integration.

Independent of the – in some cases important – differences between the various generation
techniques, they all have the following in common:

• A metamodel or respectively an abstract syntax always exists, at least implicitly.
• Transformations that build on the metamodel always exist.

template<bool condition, class Then, class Else>
struct IF {
 typedef Then RET;
};

//specialization for condition==false
template<class Then, class Else>
struct IF<false, Then, Else> {
 typedef Else RET;
};

c09.fm Page 186 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 187

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

• Some kind of front-end that reads the model (the specification) and makes it available to
the transformations exists.

9.3.1 Templates and Filtering

This generation technique describes the simplest case of code generation. As shown in Figure 9.1,
we use templates to iterate over the relevant parts of a textually-represented model, for example
using XSLT via XML.

The code to be generated is found in the templates. Variables in the templates can be bound to
values from the model. Below, we will present a simple example in which a Java Bean Person is
generated from an XML specification (for simplification purposes, we do not use XMI as the
model representation, instead we use a custom schema). This is the specification:

The generated code should look like the following:

Figure 9.1 Templates and filtering

<class name="Person" package="com.mycompany">
 <attribute name="name" type="String"/>
 <attribute name="age" type="int"/>
</class>

package com.mycompany;
public class Person {
 private String name;
 private int age;
 public String get_name() {return name;}
 public void set_name(String name) {this.name = name;}

Specification

Filter

apply to

Subset
of Specification Templates

apply to

Genererated
Code

c09.fm Page 187 Tuesday, February 28, 2006 5:29 PM

188 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

The XSLT stylesheet that performs this transformation looks roughly like the following:

The generation using templates and filtering is fairly straightforward and portable, but the style-
sheets soon become very complex. For this reason, this approach is totally unsuitable for larger
systems, particularly if the specification is based on XMI.

The XMI problem can be somewhat alleviated if one works in several steps: an initial transfor-
mation transforms the XMI into a concrete, domain-specific XML schema. Further transforma-
tion steps can now generate code based on this schema. One gains a certain decoupling of the
templates from the concrete XMI syntax, and the actual code generation – the second step –
becomes much easier. However, one still works on the abstraction level of the XML
metamodel – a problem that can clearly be solved using the approach presented next.

9.3.2 Templates and Metamodel

To avoid the problems of direct code generation from (XML) models, one can implement a
multi-level generator that first parses the XML, then instantiates a metamodel (which is adapta-
ble by the user), and finally uses it together with the templates for generation. Figure 9.2 demon-
strates the principle.

 public int get_age() {return age;}
 public void set_age(int age) {this.age = age;}
}

<xsl:template match="/class">
 package <xsl:value-of select="@package"/>;
 public class <xsl:value-of select="@name"/> {
 <xsl:apply-templates select="attribute"/>
 }
</xsl:template>

<xsl:template match="attribute">

 private <xsl:value-of select="@type"/>
 <xsl:value-of select="@name"/>;

 public <xsl:value-of select="@type"/>
 get_<xsl:value-of select="@name"/>() {
 return <xsl:value-of select="@name"/>;
 }

 public void set_<xsl:value-of select="@name"/> (
 <xsl:value-of select="@type"/>
 <xsl:value-of select="@name"/>) {
 this.<xsl:value-of select="@name"/> =
 <xsl:value-of select="@name"/>;
 }
</xsl:template>

c09.fm Page 188 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 189

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

The advantage of this approach is that on the one hand one gains greater independence from the
model’s concrete syntax, for example UML and its different XMI versions. On the other hand,
one can integrate more powerful logic for the verification of the model – constraints – into the
metamodel. In contrast to the templates, this can be implemented in a real programming lan-
guage, such as Java. This kind of code generation is of special significance in the context of
MDSD, as we pointed out in Chapter 6.

One interesting implementation aspect of the openArchitectureWare generator that falls in
this tool category should not go unmentioned: from the perspective of compiler construction,
metamodel implementation (for example in Java) and templates are part of the transformation.
The metamodel assumes the role of the abstract syntax. Since the abstract syntax and the trans-
formation are parameters of the compiler, we are in fact dealing with an open compiler frame-
work. What is remarkable is that the constructs of the syntax – that is, the metamodel elements –
compile themselves. Put another way, the compiler is object-oriented, which helps to avoid,
among other things, tedious type switches. The templates are – from a conceptual point of view
– compiler methods of the metamodel, just like the help methods implemented in Java. You can
see this from the template definitions («DEFINE method FOR metaclass»). Just like Java, the
template language also supports polymorphism and overwriting – both are necessary to build an
object-oriented compiler – and only the definition of classes is delegated to the Java part. This is
why we consider the template language to be object-oriented, even though no classes can be
defined directly in the template language.

9.3.3 Frame Processors

Frames, the central element of frame processors, are basically specifications of code that should
be generated. Like classes in object-oriented languages, frames can be instantiated, multiple
times. During this instantiation, the variables (which are called slots) are bound to concrete val-
ues. Each instance can possess its own values for the slots, just like classes. In a subsequent step,
the frame instances can be generated, so that the actual source code is generated.

Figure 9.2 Templates and metamodel

Specification
Meta Model

parse

Generated CodeMeta Model
Instance

yield
s

Templates

instance of
apply to

based on

c09.fm Page 189 Tuesday, February 28, 2006 5:29 PM

190 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

The values that are assigned to slots can be everything from strings to other frame instances. At
runtime, this results in a tree structure of frame instances that finally represents the structure of
the program to be generated. Figure 9.4 shows an example.

The following example uses the ANGIE processor [DSTG]. First, we show the generation of a
simple member declaration that looks like the following:

Figure 9.3 Frame processors

Figure 9.4 An example frame hierarchy

short int aShortNumber = 100;

Metamodel
Instance

Metamodel
Instance

Metamodel
Instance

Metamodel
Instance

Metamodel
Instance

Specification
Frame

Generated
Code

Code
Frame

Generator

1) create &
instantiate

in
st

an
ti

at
e

&
p

ar
am

et
er

iz
e

{repeat}
3) generate

4)

2) instantiate &
parameterize

Parent

value1 : int
value2 : FRAME
value3 : FRAME

AChild

value1 : string
value2 : FRAME

AChild2

value1 : string

AnotherOne

value1 : string

c09.fm Page 190 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 191

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

This code fragment already contains quite a number of variable aspects: the variable’s name, its
type, as well as an optional initialization parameter. The following frame generates this piece
of code:

The first code line declares the frame, which is basically a constructor with two parameters: the
name of the NumberElement and the maximum value. Based on this maximum value, the second
line decides whether we need a short int, a long int, or simply an ordinary int. Line four defines
the host code that is eventually generated in the course of code generation. The <!...!> syntax
accesses the value of a slot of the frame instance. The code between <?...?> is only generated if
the value of the slot contained in it is not undefined. The following piece of code instantiates the
frame:

It should be noted that this instantiation does not yet generate any code – only a frame instance is
created and assigned to the variable .myNumbElm. The instance is kept in the generator-internal
instance repository. If one finally executes:

the instance is ‘executed’ and the code generated. Instead of exporting the instance directly (and
thus immediately generating the code), it can also be assigned to another frame instance’s slot as
a value, to construct more complex structures. The next frame, which generates a simple Java
class, serves as an example:

This frame accepts the names of the class to be generated as a parameter. Moreover, a multi-
value slot (a collection) is created. An external script (or another frame) can now set values, such
as other frame instances. For example, the NumberElements from above can be set.

.Frame GenNumberElement(Name, MaxValue)
 .Dim vIntQual = (MaxValue > 32767) ? "long" : "short"
 .Dim sNumbersInitVal
 <!vIntQual!> int <!Name!> <? = <!sNumbersInitVal!>?>;
.End Frame

.myNumbElm = CreateFrame("GenNumberElement","aShortNumber",100)

.Export(myNumbElm)

.Frame ClassGenerator(fvClassName)
 .Dim fvMembers = CreateCollection()
 public class <!fvClassName!> {
 <!fvMembers!>
 }
.End Frame

.Static myGeneratedClass As ClassGenerator

.Function Main(className)
 .myGeneratedClass =

c09.fm Page 191 Tuesday, February 28, 2006 5:29 PM

192 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

During the export of myGeneratedClass, a simple Java class is generated that contains the two
members i and j.

9.3.4 API-based Generators

Probably the most popular type of code generators are the API-based ones. These simply provide
an API with which the elements of the target platform or language can be generated. Conceptu-
ally, these generators are based on the abstract syntax (the metamodel) of the target language,
and are therefore always specific to one language, or more precisely to the target language’s
abstract syntax.

For a change, the following example is taken from the .NET world. The following code should
be generated:

 CreateFrame("ClassGenerator",className)
 .Add(myGeneratedClass.fvMembers,
 CreateFrame("GenNumberElement","i", 1000))
 .Add(myGeneratedClass.fvMembers,
 CreateFrame("GenNumberElement","j", 1000000))

.End Function

Figure 9.5 Functional principle of API-based generators

public class Vehicle : object {
}

Client Program API Code
uses

Grammar
AST/CST

instanceof,

corresponds

based on

creates or
modifies

c09.fm Page 192 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 193

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

The following fragment of C# code generates it:

The code shown above builds an internal representation of the code, typically in the shape of an
abstract syntax tree (AST). A call to a helper function initiates the actual code generation, which
is not shown here.

This kind of generator is fairly intuitive and easy to use. Furthermore, it is also easy to enforce
that only syntactically correct code can be generated, guaranteed by the compiler of the genera-
tor code in combination with the API. However, the problem with this kind of generator is that
the potentially large amounts of constant code – the code that does not depend on the model –
must be programmed instead of simply being copied into the templates.

The use of such generators becomes efficient when you build domain-specific generator
classes by using well-known OO concepts on the generator level. In the following example, a
Java class as well as an (empty) main method are defined using the tool Jenerator:

This program is very long. A useful refactoring would consist of a generator class MainMethod –
Java’s main methods by definition always have the same signature:

CodeNamespace n = ...
CodeTypeDeclaration c = new CodeTypeDeclaration ("Vehicle");
c.IsClass = true;
c.BaseTypes.Add (typeof (System.Object));
c.TypeAttributes = TypeAttributes.Public;
n.Types.Add(c);

public class HelloJenerator {
 public static void main(String[] args) {
 CClass createdClass =
 new CClass("demo", "HelloWorld");
 CMethod mainMethod =
 new CMethod(CVisibility.PUBLIC,
 CType.VOID, "main");
 mainMethod.addParameter(
 new CParameter(CType.user("String[]"), "args")
);
 mainMethod.setOwnership(Cownership.STATIC);
 createdClass.addMethod(mainMethod);
 }
}

public class MainMethod extends CMethod {
 public MainMethod() {
 super(CVisibility.PUBLIC, CType.VOID, "main");
 setOwnership(Cownership.STATIC);
 addParameter(
 new CParameter(CType.user("String[]"),
 "args"));
 }
}

c09.fm Page 193 Tuesday, February 28, 2006 5:29 PM

194 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

As you can see, the HelloJenerator example from above is simplified considerably:

You can imagine that efficient, domain-specific generators can be built with these generator
classes. Flexibility is achieved through suitable parametrization of the generator classes.

Such generators are clearly specific to the abstract syntax of the target language, not necessar-
ily to their concrete syntax. If one had different languages with the same abstract syntax, one
could generate different target languages simply by exchanging the code generator backend.
This is possible, for example in the context of the .NET framework. Using CodeDM, one defines
an abstract syntax tree based on the abstract syntax that is predefined for .NET languages in the
context of the common-language runtime (CLS). One can generate the concrete syntax for any
.NET language (C#, VB, C++) by selecting a suitable implementation of ICodeGenerator.

Byte code modifiers, a type of tool that is especially popular in the Java universe, are usually
also API-based generators. They usually operate on the abstraction level of the JVM byte code,
although some provide higher-level abstractions while technically still manipulating the byte
code. .NET IL code can also be generated directly with .NET’s CodeDOM.

9.3.5 In-line Generation

In-line generation refers to the case in which ‘regular’ source code contains constructs that gen-
erate more source code or byte/machine code during compilation or some kind of preprocessing.
Examples are C++ preprocessor instructions or C++ templates.

public class HelloJenerator {
 public static void main(String[] args) {
 CClass createdClass =
 new CClass("demo", "HelloWorld");
 createdClass.addMethod(new MainMethod());
 }
}

Figure 9.6 In-line generation

Integrated Compiler

op code
or byte code

preprocess
Source code

contains
specification of

variants

Source code
some variants

resolved

compilationSource code
all variants resolved

preprocess

[all resolved]

[else]

Configuration

{o
p

ti
o

n
al

} {optional}

c09.fm Page 194 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 195

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

A trivial example based on the C++ preprocessor could look as follows:

Here, the code between the #if and the #endif is only compiled if the flag ACE_HAS_TLI has
been defined. More complex expressions with parameter passing are also possible:

If application code contains the statement MAX (v1, v2), this is textually replaced according to
the rule defined before. Thus, MAX (v1, v2) is replaced with (v1<v2 ? v1 : v2) by the preproces-
sor. All of this is purely based on text substitution and no type constraints or precedence rules
are observed. As a consequence, this approach is only useful for simple cases.

In comparison, template metaprogramming allows a more structured approach, because the
processing of templates by the compiler provide a Turing-complete functional programming lan-
guage that operates on C++ types and literals. One can therefore write entire programs that run
during the compilation process. The following calculates the factorial of an integer at compile
time:

#if defined (ACE_HAS_TLI)
static ssize_t t_snd_n (ACE_HANDLE handle,
 const void *buf, size_t len, int flags,
 const ACE_Time_Value *timeout = 0,
 size_t *bytes_transferred = 0);
#endif /* ACE_HAS_TLI */

#define MAX(x,y) (x<y ? y : x)
#define square(x) x*x

#include <iostream>
using namespace std;

#include "../meta/meta.h"
using namespace meta;

struct Stop
{ enum { RET = 1 };
};

template<int n>
struct Factorial
{ typedef IF<n==0, Stop, Factorial<n-1> >::RET
 PreviousFactorial;
 enum { RET = (n==0) ? PreviousFactorial::RET :
 PreviousFactorial::RET * n };
};

void main()
{ cout << Factorial<3>::RET << endl;
}

c09.fm Page 195 Tuesday, February 28, 2006 5:29 PM

196 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

To find out how this works is an exercise we leave to our readers – if you want to cheat, you can
look it up in [EC00]. Due to the clumsy syntax and the occasionally very strange error messages,
using this approach is only advisable in exceptional cases, and is not suitable for more complex
model-driven projects. This is mainly because the compilers that actually run the metaprograms
were neither created nor optimized for these purposes.

9.3.6 Code Attributes

We continue with another mechanism that is very popular in the Java field: code attributes. In
the Java world these were first used by JavaDoc, where special comments were used to enable
automatic generation of HTML documentation. The extensible architecture of JavaDoc, makes
it possible to plug in custom tags and code generators. Probably the most popular example is
XDoclet [XDOC]. XDoclet serves, among other purposes, to generate EJB Remote/Local Inter-
faces as well as deployment descriptors. The developer writes the implementation class manu-
ally and adds the required XDoclet comments to the class, which are then read by the XDoclet
code generator. Furthermore, the generator has access to the source code’s syntax tree, to which
the comments are added. In this way, the generator can derive information from the comments as
well as from the code itself.

The following is an example of a Java class that has been supplemented with XDoclet com-
ments.

The central idea behind this method is that much of the information needed by the generator is
already present in the code. The developer only has to add a few special comments. The genera-
tor has the AST of the code as well as the additional comments at its disposal.

An often-heard criticism in this context is that such tools are necessary only because J2EE
(and primarily EJB) require so much redundancy in the code that it can no longer be handled
manually. This is certainly true – nevertheless, generation via code attributes is not restricted to
the generation of EJB infrastructure code. One can quite elegantly create persistence mappings
for Hibernate [HIBE], or similar frameworks with XDoclet.

/**
 * @ejb:bean type="Stateless"
 * name="vvm/VVMQuery"
 * local-jndi-name="/ejb/vvm/VVMQueryLocal"
 * jndi-name="/ejb/vvm/VVMQueryRemote"
 * view-type="both"
 */
public abstract class VVMQueryBean
 /**
 * @ejb:interface-method view-type="both"
 */
 public List getPartsForVehicle(VIN theVehicle) {
 return super.getPartsForVehicle(theVehicle);
 }
}

c09.fm Page 196 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 197

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

.NET offers the attribute mechanism as an integral concept of the .NET platform. Various
source code elements – methods, attributes, classes – can be assigned attributes, as shown in the
following example:

Here we specify in a purely declarative way that the instances of this class have a service priority
HIGH and that the execution of the operation processRequest() may take a maximum of 100 ms.
The idea behind this is that the service is executed in a framework that measures parameters such
as the execution time of the service operation. It can then make, for example, a log entry if the
limits set by the attributes are exceeded, or alternatively stop accepting client requests, to lower
the system load, and throw an exception to the client.

The framework’s access to the attribute (and thus to the defined time limit) is achieved using
reflection. Technically this is realized as follows: attributes are simply serializable .NET classes
that are instantiated by the compiler during compilation and serialized into the respective Assem-
bly. These objects can then be accessed via reflection. Code generators can read this information
from the compiled .NET Assembly and – as with XDoclet – use it as a basis for generation.

Note that such features are also available in Java, starting with Version 5. Annotations can be
added to many source elements, such as classes, attributes, or operations. Technically, this works
the same way as in .NET, in that the compiler instantiates data that is stored with the byte code
and can subsequently be queried using reflection.

9.3.7 Code Weaving

Code weaving describes the intermixing of separate but syntactically complete, and therefore
independent, pieces of code. To this end, one must define how these various parts can be put
together: such locations are called join points or hooks. AspectJ [ASPJ] is a well-known
example of this kind of generator: regular OO program code and aspect code are interwoven,
either on the source code or byte code level. Aspects describe cross-cutting concerns – that is,
functionality that cannot be adequately described and localized using the available constructs
of object-oriented programming.

The following example illustrates an aspect that inserts log statements at all code locations at
which methods on instances of the Account class are invoked For each method call, the log states
from which method the respective Account method has been called3:

[QoSServicePriority(Prio.HIGH)]
class SomeService : ServiceBase {
 [QoSTimeLimit(100, Quantity.MS)]
 public void processRequest(Request r) {
 ….
 }
}

3 The syntax of AspectJ is evolving constantly. It is therefore quite likely that the syntax shown here will not work with
the latest version.

aspect Logger {
 public void log(String className, String methodName) {

c09.fm Page 197 Tuesday, February 28, 2006 5:29 PM

198 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

After this aspect has been applied to a system – that is, interwoven with the regular code via the
weaver – code along the following lines is created, assuming the weaving happens on source
level:

Another example of this invasive composition of source code is the Compost Library [COMP].
This ultimately provides an API to change the structure of programs based on their AST. Com-
post is implemented in Java and also operates on Java source code. An additional library, the
Boxology Framework, allows systematic modification of source code via hooks. We have to dis-
tinguish here between explicit hooks declared by the original developer of the source code to be
modified, and implicit hooks. Implicit hooks are specific, well-defined locations in the AST of a
program, such as the implements hook. Through the extension of that hook, further interfaces
can be implemented. This framework can therefore serve as a basis for a wide variety of source
code modification tools.

9.3.8 Combining Different Techniques

Combinations of the different code generation techniques are also possible. The Open Source
tool AndroMDA [ANDR] creates source code via templates. This source code again contains
code attributes. The template-based generation of this code takes place using Velocity [VELO],

 System.out.println(className+"."+methodName);
 }
 pointcut accountCall(): call(* Account.*(*));
 before() calling: accountCall() {
 log(thisClass.getName(), thisMethod.getName());
 }
}

public class SomeClass {
 private Account someAccount = ...;
 public someMethod(Account account2, int d) {
 // aspect Logger
 System.out.println("SomeClass.someMethod");
 someAccount.add(d);
 // aspect Logger
 System.out.println("SomeClass.someMethod");
 account2.subtract(d);
 }
 public void anotherMethod() {
 //aspect Logger
 System.out.println("SomeClass.anotherMethod");
 int bal = someAccount.getBalance();
 }
}

c09.fm Page 198 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 199

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

and further processing with XDoclet. The following is an example of a Velocity template with
XDoc comments:

Another popular combination are API-based generators that can optionally read templates to
simplify handling of the API.

9.3.9 Commonalities and Differences Between
the Different Approaches

First, we classify the different approaches based on the criteria listed in Section 9.2:

// --------------- attributes ---------------------
#foreach ($att in $class.attributes)
#set ($atttypename = transform.findFullyQualifiedName($att.type))
 private $atttypename ${att.name};

 /**
#generateDocumentation ($att " ")
 *
#set ($attcolname = $str.toDatabaseAttriName(${att.name}, "_"))
#set ($attsqltype = $transform.findAttributeSQLType($att))
#if ($transform.getStereotype($att.id) == "PrimaryKey")
 * @hibernate.id
 * generator-class="uuid.string"
#else
 * @hibernate.property
#end
 * column="$attcolname"
 *
 * @hibernate.column
 * sql-type="$attsqltype"

Time of Compilation Program/Metaprogram Generated/Manually-
created code

Templates and filtering before separate separate

Template and metamodel before separate separate

Frame processors before separate separate

API-based generators before/during/after separate separate

In-line generation before/during mixed integrated

Code attributes before/during separate/mixed separate

Code weaving before/during/after separate integrated

c09.fm Page 199 Tuesday, February 28, 2006 5:29 PM

200 Code Generation Techniques

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

This table needs to be explained, particularly those parts where more than one option is listed:

• API-based generation can occur either prior to actual compilation via an integrated pre-
processor, or during compilation using compile-time meta object protocols, as well as at
runtime using runtime meta object protocols.

• In-line generation can take place either before actual compilation via an integrated pre-
processor, or during compilation, for example via Lisp’s quoting mechanisms, C++ tem-
plates and so on.

• Code attributes are either evaluated during compilation, as for example in .NET, or before-
hand using a preprocessor such as XDoclet. Depending on the generator, the generated
code can be embedded directly in the source code or written to separate artifacts.

• Code weaving can also take place during a separate run prior to compilation, during com-
pilation (with fully aspect-oriented languages) and at runtime (with dynamic aspect-
weaving). In Java, interweaving at load time via special class loaders is common.

At this point we need to address a number of additional characteristics, differences, and commo-
nalities. In principle, frame processors and API-based generators build an AST of the system to
be created. For both approaches, the alignment with the problem domain – and thus the abstrac-
tion level and efficiency – can be increased by inserting domain-specific generator constructs,
for example a frame that generates a JavaBeans property. As a rule, one always starts with the
AST of the target language/platform.

If the ‘templates and metamodel’ approach is used, the generator builds an AST of the model
at runtime – a representation of the problem space, depending on the metamodel, thus starting
on a higher abstraction level. The templates do the translation work toward the target platform.
This kind of generator is particularly suited for application in cases where the problem space’s
metamodel is already complex.

A question that often comes up is whether API- or template-based generators are better in this
context. In our opinion, template-based systems are better suited when large amounts of identi-
cal code are created. API-based generators are more efficient when finely granular code is to be
created, for example state machines or algorithms. In the context of architecture-centric MDSD,
template-based generators are preferable.

Code attributes can be considered as a form of in-line generation. The code can be generated
directly into the location where the specification (the attribute) in the base program source code
is located. However, in almost all cases this does not happen: the code generated from the base
program and the attributes is in most case external and complete and does not have to be inte-
grated with handwritten code, because it usually covers technical aspects such as persistence or
EJB ‘glue’ code. Code attributes are recommended if you do not work completely model-driven,
but you still want to generate specific artifacts. The approach is limited in that it only works if
the necessary input for the generator can be reasonably specified using source code structures
plus the additional information in the attributes.

The main difference between in-line generation and code weaving is that the latter approach
can be used to localize cross-cutting concerns in a non-invasive way: the code to be modified
need not be changed manually: it is modified from the outside by the weaver instead. Both
approaches are specifically useful if you work exclusively with code and not with models.

c09.fm Page 200 Tuesday, February 28, 2006 5:29 PM

9.3 Generation Techniques 201

 c09.fm Version 0.3 (final) February 28, 2006 5:29 pm

9.3.10 Other Systems

A number of other systems exist in the field of code generation. However, they are not very rele-
vant for MDSD. A short overview of such systems can be found in [Voe03]. We will list only two
examples here:

• Meta object protocols (MOPs) allow access to compiler structures – compile-time MOPs
such as OpenC++ [OC++] change the compiled program, while runtime system MOPs
such as CLOS [KRB91] change the running program.

• A number of tools exist primarily in the context of Java that allow the modification of gen-
erated byte code. For example, transparent accesses to an OO database can be generated
into the relevant locations in the byte code. Examples of this include BCEL [BCEL] and
Javassist [JASS].

c09.fm Page 201 Tuesday, February 28, 2006 5:29 PM

c09.fm Page 202 Tuesday, February 28, 2006 5:29 PM

203

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

10 Model Transformation Techniques

by Simon Helsen

Model-to-model transformations are a contentious topic, partly because they are not very well
understood, and partly because their merit in practical model-driven development scenarios is
not very clear. This is something of a ‘chicken and egg’ problem, of course, because the lack of
understanding of the underlying problems and mechanisms to solve them is feeding the lack of
understanding about where and how to apply these kinds of transformations.

Nevertheless, model-to-model transformations – referred to as M2M transformations – could
become an important mechanism to bridge some of the abstraction gaps that occur in MSDS.
Not surprisingly, countless attempts to develop M2M transformation languages have been made
in academia, Open Source communities, and commercial companies.

In this chapter we focus on model-to-model transformations with the Query / View / Transfor-
mations standard of the OMG, also known as QVT. However, since the QVT standard has turned
out to be a rather voluminous and complex specification, we only give a high-level overview of
its architecture and features. An elaborated example is used to give you a sense of what QVT
transformations look like. We also give a brief overview of its history and future, as well as a
critical assessment.

A more comprehensive account is outside the scope of this book, but the adopted QVT speci-
fication document [QVT] is now publicly available from the OMG [OMG] Web site1. A very
good discussion of the various model transformation techniques (beyond QVT) can be found in
a paper by Czarnecki and Helsen [CH05].

10.1 History

The MDA guide as it is defined by the OMG [MDAG] often talks about transformations
between different models at different levels of abstraction. For example, it assumes that a typical
MDA-based development scenario entails the transformation of a platform-independent model
(PIM) to a platform-specific model (PSM) before generating code from the latter. The MDA
guide intentionally does not say how this is supposed to happen, and this is where QVT comes
into play.

1 The adopted specification is not yet finalized, which means minor changes may be made to it. See also Section 10.5.

c10.fm Page 203 Tuesday, February 28, 2006 4:47 PM

204 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

The OMG originally issued a Request for Proposal (usually referred to as an RFP) for model-
to-model transformations in April 2002 [QVTR]. It took until November 2005 before the
adopted specification was eventually released. The time required to come up with the QVT spec-
ification is relatively long even by OMG standards, and the standardization process is still not
entirely finished (see Section 10.5). To address code generation from MOF models, the OMG
issued an RFP in April 2004 [M2T], but that standardization process is currently on-going and
outside the scope of this book.

The rather long standardization time can partly be explained by the intrinsic complexity of the
problem. Although lots of people had good ideas on how to write programmatic model-to-model
transformations in, say Java, it quickly became clear that realistic M2M scenarios required more
sophisticated techniques. The QVT RFP nevertheless explicitly asked for proposals that
addressed this level of sophistication, even though such requirements were largely unexplored
and not understood at the time.

Another problem was that no or little prior experience existed with model-to-model transfor-
mations in the first place. This was not a very good starting position from which to come up with
a standard, which ideally is a consolidation of existing technology. The situation was worsened
by the fact that eight different groups submitted initial responses. Most of these RFP responses
were so different that there was no clear basis for consolidation. As a result, it took a considera-
ble amount of time to find common ground, and the result today still specifies three different
QVT languages that are only loosely connected.

10.2 M2M Language Requirements

Before we delve into the details of QVT itself, it is helpful to discuss some of the more impor-
tant and perhaps less obvious requirements for model-to-model transformation languages and
their implementations:

• Most realistic model-to-model transformation scenarios require transformation rules to
have the ability to look up what other transformation rules have calculated, because each
rule usually addresses only one small aspect of the entire transformation. A look-up is
only possible if the engine has the ability to do some book-keeping of the transformation
trace. A transformation trace can be understood as a runtime footprint of a transformation
execution. The exact form and user visibility of such a trace is widely different between
different M2M languages. Usually, imperative transformation languages have a more
explicit look-up procedure, while declarative languages have an implicit way of exploiting
the trace.

Even the three QVT languages expose the trace in very different ways. Transformation
traces are also required to implement all sorts of optimization and debugging scenarios.
As with any practical programming language, the ability to debug is of critical importance
to uncover difficult and subtle bugs. This is no different for model transformations. For
example, sophisticated model-to-model transformations may behave subtly differently
depending on the values of one small property in the source model. If the resulting target
model shows anomalies, it is extremely helpful for a transformation writer to follow the
execution trace and discover which rules are making the wrong decisions.

c10.fm Page 204 Tuesday, February 28, 2006 4:47 PM

10.2 M2M Language Requirements 205

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

• Apart from when M2M transformations are first run, users rarely generate models on a
clean sheet. If a transformation is run again, it is important that it only makes required
changes to the existing target model, and does not simply keep adding model elements for
every transformation run. This kind of target model understanding is only possible if there
is an identification mechanism on the target model. This can be achieved by intrinsic tar-
get metamodel properties, such as the name of a model element or even the MOF id, or,
alternatively, by encoding the identification in the actual relationship between a target
model and its source model. Usually, the transformation trace contains this information.
The requirement to have repeated transformation runs correctly update the target model is
sometimes known as change propagation.

• A transformation implicitly or explicitly defines a relationship between its source and tar-
get models. In some scenarios, both the source and target models exist before a transfor-
mation is executed and therefore, before their relationship was established. In this case, a
transformation may be asked to verify if the relationship exists and optionally change the
target model just enough to make the relationship happen. This problem is different from
the change propagation scenario, because for the former one can assume the existence of a
transformation trace, whereas in the latter scenario the transformation may not have ever
run.

• Generally, the source model of a transformation may be extremely large. After the first
transformation execution, only comparatively small changes are usually made to the
source model. In this case it should be possible to approximate which transformation
rules have to be executed again and on what subset of the source model elements. An
impact analysis on the transformation rules, as well as the availability of trace infor-
mation, may be required to implement this. The need for such an optimization cannot
be underestimated, as transformation users will expect reasonably fast turn-around
cycles during development. This is comparable with non-MDSD development scenar-
ios today in which entire builds of large projects are rare and usually happen overnight
on a build server. This optimization requirement is sometimes referred to as incremen-
tal update.

• There are many use scenarios in which the target models, which are often platform-
specific, may require manual changes by modelers. Such changes can often be avoided,
as they might merely indicate a problem with the more abstract platform-independent
model, or even with the transformation itself. Nevertheless, the PIM sometimes does
not fix specific platform details on purpose and expects the platform modeler or
developer to make controlled changes before another model transformation or code
generation is applied. For this to be possible, the model transformation writer needs
the ability to define where in the target model such changes are permitted. The trans-
formation engine can then avoid overwriting these – and only these – manual changes.
This is reminiscent of the protected area problem for code generation discussed in
Section 8.3.1. The ability for a transformation writer to define how target models can
be changed manually is sometimes known as the retainment policy.

• Model-to-model transformations often make substantial structural changes to the source
model when they map it to a target model. Usually, this structures the transformation
into multiple phases. In a typical M2M scenario, some of the classes in the source meta-
model are mapped onto classes in the target metamodel in an initial phase. In a second

c10.fm Page 205 Tuesday, February 28, 2006 4:47 PM

206 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

phase, some of the source metamodel associations are mapped onto target metamodel
associations. However, since the latter are usually encoded as properties, it might not be
possible to construct one target model element in one operation. More generally, it is
important that target model elements can be constructed incrementally. When this is the
case, it is said that the language allows the definition of M x N transformations.

• It is contentious whether support for bidirectional transformations is a requirement. This
can be achieved by writing two or more unidirectional transformations, or one transforma-
tion, which can be executed in both directions. The latter would only be possible in a
declarative scenario. However, we question the usefulness of this requirement in practice.
A bidirectional transformation can only be defined meaningfully when it describes an iso-
morphic relationship. In practice, this is almost never the case, as different metamodels
usually describe aspects at different levels of abstraction with different completeness.

Even if a bidirectional transformation for a non-isomorphic problem is given
(whether by two unidirectional transformations, or in one transformation that can be
executed in two directions), it would be difficult to use in practice, as changes in both
source and target model can easily oscillate in an unexpected and uncontrolled manner.
In the worst case, changes in source and target models by different parties will render
both models useless, as the transformation by necessity has to make defaulting assump-
tions because problem is not isomorphic. Such transformations would invalidate the
architectural approach advocated in this book that architectural decisions should be
made at the PIM level only.

The above are some of the more important reasons why it may not be sufficient to write model-
to-model transformations in a general-purpose programming language like Java. If one does
decide to write transformations in Java, a sophisticated framework would be required to support
the transformation writer in managing the input and output models and the transformation trace:
without the availability of an implicit or explicit trace, no useful transformations can be written.
However, this would make the use of the Java debugger very hard, because users would have to
deal with the internals of the framework. The ability to debug a transformation is however man-
datory in practice.

One of the design goals of QVT was to either support, or at least not to prohibit, an implemen-
tation from fulfilling at least some of the requirements listed above. QVT ended up providing
three domain-specific languages, each of which addresses model-to-model transformations in its
own way. In Section 10.6 we give an assessment of whether QVT has lived up to its expectations
and achieved its design goals.

You may wonder why QVT stands for ‘Queries, Views, and Transformations’, as it really only
deals with model-to-model transformations. Queries are an intrinsic part of any model-to-model
transformation, as they are used to gather model elements from the source model. In QVT, this is
achieved with OCL [OCL]. The idea of a View, meanwhile, is to provide a means of looking at a
specific aspect of a metamodel. It is thought that model transformations provide a mechanism to
do so, although the currently-adopted specification explicitly avoids addressing the view prob-
lem. If the view needs to be editable, we bump into the bidirectional transformation requirement
and its problematic consequences again. QVT claims to support bidirectional transformations
because two of the three QVT languages have the ability to specify bidirectional rules, but it
does not indicate how views could be defined with it.

c10.fm Page 206 Tuesday, February 28, 2006 4:47 PM

10.3 Overall Architecture 207

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

10.3 Overall Architecture

The QVT specification comprises three different model-to-model transformation languages:
two, the Relations language and the Core language are declarative, one, the Operational Map-
pings language, is imperative. The hybrid nature of QVT was introduced to accommodate differ-
ent types of users who have different needs, requirements, and habits. This strategy may not
come as a surprise if you consider the numerous initial submitters to the RFP, each with different
expectations on the use and functionality of QVT:

• The Relations language is a declarative user-friendly transformation language that is pri-
marily built around the concept of object patterns. The user is not responsible for the crea-
tion and deletion of objects, nor for the management of transformation traces. The
language expects a user to describe the relationships between parts of the source and target
metamodels by means of object patterns and OCL expressions. It provides a mechanism to
identify target model elements, which is required to support change propagation. The
QVT Relations language also defines a simple graphical syntax. We discuss the Relations
language by means of an example in Section 10.4.1.

• The Core language is defined as an absolutely minimal extension to EMOF2 and OCL.
Here too the user is not responsible for object creation and deletion, but traces are not
automatically generated. The user is instead expected to define transformation rules and
trace information as a MOF metamodel. The Core language does not provide patterns, nor
any direct mechanism for the identification of target model elements.

This absolutely minimal approach makes the Core language beautiful in its simplicity,
but almost impossible to use in practice. This is partly caused by the absence of automatic
trace management, as well as the difficulty of dealing with target model element identifi-
cation. The latter has to be explicitly encoded in rules and subrules, requiring a complex
transformation specification for relatively simple transformation problems. Because of
this, we do not elaborate the Core language any further.

• The Operational Mappings language is the imperative cornerstone of QVT. It provides a
domain-specific imperative language for describing transformations. OCL is used as its
query language, but extended with imperative features to describe computations. The
Operational Mappings language can be used in two different ways. First, it is possible to
specify a transformation purely in the operational mappings language. We illustrate this
possibility by means of our example in Section 10.4.2.

Alternatively, it is possible to work in a hybrid mode. The user then has to specify some
aspects of the transformation in the Relations (or Core) language, and implement individ-
ual rules in the Operational Mappings language as black-box mappings.

Although the QVT standard specifies three transformation languages, they are not entirely dis-
connected. Figure 10.1 illustrates the relationships between the different QVT languages.

2 EMOF is a minimal subset of MOF 2.0 akin but not identical to EMF, the meta meta model defined as part of
Eclipse.

c10.fm Page 207 Tuesday, February 28, 2006 4:47 PM

208 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

The Relations language is semantically defined in terms of the Core language. In the specifica-
tion, this is modeled by a model-to-model transformation from the MOF metamodel of the
Relations language to the MOF metamodel of the Core language. This semantic transformation
is itself specified in the Relations language. A discussion of this mapping would be beyond the
scope of this book, but if you’re interested, you can find this transformation in the QVT speci-
fication document, where it is also extensively commented [QVT].

This explicit transformation between the Relations and Core languages suggests that a Relations
language could be implemented on top of a Core language engine by translating a Relations trans-
formation with the above transformation. Although this is possible in theory, it seems hardly a
practical approach. It is clearly more viable to develop an optimized QVT engine for the Relations
language, which better supports the different requirements for model-to-model transformations,
than taking a detour via the Core language.

In connection with this relationship between the Relations and Core languages, the QVT doc-
ument makes an analogy to the JVM and the Java programming language: the Core language is
more like Java byte code, whereas the Relations language is a little like the Java language itself.
You must judge the value of this analogy for yourself.

In practice it may not always be possible to specify all aspects of a transformation in the Rela-
tions (or Core) language because the user has only OCL to express computational problems. For
example, it is possible that model-to-model transformations are required to use complex or
legacy libraries that it would not be economical to re-implement in pure QVT. To accommodate
this, the QVT specification explicitly allows for black-box mappings. As Figure 10.1 suggests,
these black-box mappings may be written in the Operational Mappings language, which is then
used in hybrid mode. As an alternative, it is also possible to use external programming lan-
guages such as Java.

In the sections that follow we investigate a concrete transformation problem and discuss its
implementation in both the Relations and Operational Mappings languages. However, since it is
not possible to discuss all the features and intricacies of these two M2M transformation lan-
guages, we recommend that interested readers work with the prototypes of these languages as
soon as they are available (see Section 10.5).

Figure 10.1 QVT language architecture

Relations
Language

Core
Language

defined
In terms of

Black-Box
Mappings

Operation
Mappings
Language

Java

.NET

c10.fm Page 208 Tuesday, February 28, 2006 4:47 PM

10.4 An Example Transformation 209

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

10.4 An Example Transformation

In Section 6.11 we discussed the ALMA metamodel example, which can be used to model
astronomic observational data. It provides a platform-independent abstraction over all the pos-
sible artifacts required for the ALMA software infrastructure. One possible platform-specific
incarnation of ALMA data could be a relational database. In this section, we discuss a trans-
formation from the ALMA metamodel to a simple relational database metamodel, referred to
as DB.

Before discussing the actual transformation, we have to specify the input (or source) and
output (or target) metamodels of the QVT transformation accurately. Since QVT assumes
MOF-based metamodels for its input and output, we show a MOF rendition of the ALMA
metamodel. Note that it is in theory possible to specify a QVT transformation directly on the
UML profile, where the source metamodel would then have to be UML itself. However,
because the UML metamodel as an instance of MOF is extremely large and complex, such
transformation are often difficult to understand, let alone write. The QVT transformation
writer is then required to understand the UML metamodel as an instance of MOF, which may
not be straightforward and, more importantly, may distract from the domain-specific inten-
tions of the metamodel.

A UML Profile is in many ways a concrete syntax model. From practical experience, we have
observed that well-structured and adaptable transformations3 written directly against a UML
profile tend to first transform the profile into an implicit MOF-like metamodel before imple-
menting the actual transformation logic. This is particularly important when the transformation
is the basis for reuse and adaptation4.

Figure 10.2 shows the ALMA metamodel as an instance of MOF.
The main differences with the UML profile are that we introduce the abstract class Record

and the concrete class Field, instead of hanging on to UML’s Class and Attribute metaclass. We
also introduce specific metaclasses for the PhysicalQuantityType and its different incarnations
for each primitive type. This reduces a large number of constraints on the metamodel that were
required in the definition of the UML profile.

Figure 10.3 shows the example of Figure 6.28 with some slight adaptations to show the use of
a physical quantity type. Note that this example is not quite an instance of the UML profile of
Section 6.11, which illustrates that there is some freedom in how to map a metamodel onto a
profile.

3 These observations stem primarily from model-to-text transformations: however, we believe that they equally apply
to M2M transformations.

4 The attentive reader might wonder how we relate a UML profile with a MOF metamodel. In theory, this could also
be achieved with an M2M transformation, but in practice, it is more likely the job of the hosting MDA tool because
to be practical, the connection between the profile and metamodel has to be live and bidirectional. More importantly,
the tool may want to put restrictions on the permitted mappings from the metamodel to the profile, and thus might
have to provide its own mechanism or language to express this relationship.

c10.fm Page 209 Tuesday, February 28, 2006 4:47 PM

210 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

Our target DB metamodel is a simple rendition of relational database tables. Figure 10.4 shows
its MOF instance.

A DB model may contain any number of tables, each having one primary key, any number of
columns, and any number of possible foreign keys. The key refers to one or more columns,
where a constraint requires those columns to be owned by the table of the key. Each foreign key

Figure 10.2 ALMA metamodel as an instance of MOF

Figure 10.3 An example ALMA model instance

Record

name: String

Field

name: String

FieldType
* 1*

typerecord fields

Entity

Dependent
Part

Value
Type

1 key

0.
.1

ke
y_

o
f_

en
ti

ty

*

parts

*

parts

PhysicalQuantityType

Primitive
Type

name: String

name: String
units: String [1..*]

IntPQType

min: int
max: int

FloatPQType

min: float
max: float

LongPQType

min: long
max: long

DoublePQType

min: double
max: double

name = ‚int’ or name = ‚float’ or
name = ‚long’ or name = ‚double

<<entity>>
FeedData

<<do>>
Pointing

position: Position<<key>> timestamp: Time

<<valuetype>>
Time

day: int
month: int
year: int
hour: int
minutes: int
seconds: int
millis: int

<<valuetype>>
Position

azimuth: Angle
altitude: Angle

<<enumeration>>
AngleUnits

deg
arcsec

<<floatPhysicalQuantityType>>
Angle

value: float {min=-1000, max=1000}
unit: AngleUnits

c10.fm Page 210 Tuesday, February 28, 2006 4:47 PM

10.4 An Example Transformation 211

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

of a specific table refers to the primary key of another table, and we disallow a foreign key to
refer to its own table. Finally, both tables and columns have names and each column has a primi-
tive type, for which we only allow numeral types.

The example transformation from the ALMA metamodel to DB metamodel can be described
informally as follows:

• All fields of a record are mapped to one ore more columns depending on the field type:
– If the type is primitive, we construct one primitive typed column.
– If the type is a value type, we recursively construct columns for each of its fields,

where the name of the encompassing field is propagated to disambiguate the names of
the nested fields.

– If the type is a physical quantity, we construct one column for each unit, where the
name of the column incorporates the unit name and its type is that of the concrete
physical quantity.

• Each ALMA entity is mapped to a DB table:
– All its fields lead to columns, as described before.
– Its key leads to the table key.

• Each ALMA-dependent part that is owned by an entity is mapped to a DB table as well,
where its name is a concatenation of the entity name and the dependent part name:
– All its fields lead to columns, as described before.
– Its key is artificially constructed and of type INTEGER.
– The containing table for the entity obtains a foreign key pointing to this artificial key.

Figure 10.4 Simple DB metamodel as an instance of MOF

NamedElement

name: String

Table Column

type: String

table

*

columns

Key

table

key *

0..1

key

1..*columns

ForeignKey
*

foreign
Keys

1key *

type = ‚INTEGER’ or type = ‚REAL’ or
type = ‚BIGINT’ or type = ‚DOUBLE’

key.table <> table

columns.includsAll
(key.columns)

c10.fm Page 211 Tuesday, February 28, 2006 4:47 PM

212 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

• All ALMA-dependent parts that h are parts of other dependent parts have all their columns
(for each of their fields) expanded into the table of the topmost dependent part. This hap-
pens recursively as well.

The simple example of Figure 10.3, transformed with the above transformation description,
would lead to the following two tables5:

1. Table FeedData:
– key timestamp_day : INTEGER
– key timestamp_month : INTEGER
– key timestamp_year : INTEGER
– key timestamp_hours : INTEGER
– key timestamp_minutes : INTEGER
– key timestamp_seconds : INTEGER
– key timestamp_millis : INTEGER
– fk key_FeedData_Pointing : INTEGER

2. Table FeedData_Pointing:
– key key_FeedData_Pointing : INTEGER
– position_azimuth_as_Angle_in_deg : REAL
– position_azimuth_as_Angle_in_arcsec : REAL
– position_altitude_as_Angle_in_deg : REAL
– position_altitude_as_Angle_in_arcsec : REAL

10.4.1 The Example in the QVT Relations language

The QVT Relations language is a declarative member of the QVT trio. A user of QVT Relations
has to describe the transformation of a source metamodel to a target metamodel6 as a set of rela-
tions. A transformation execution means that these relations are verified and then, if necessary,
enforced by manipulating the target model.

For our example, we describe how an instance of ALMA relates to an instance of DB. A trans-
formation declaration looks like this:

The direction of an execution is not fixed when the transformation is defined, which means that
in theory both alma and db can be the source and target model and vice versa. Only when
invoking the transformation must the user specify in which direction the transformation has to

5 One might define a UML profile as a concrete syntax for DB models, but since this is not relevant for the transfor-
mation we do not discuss it further.

6 All QVT languages allow for multiple input and output models.

transformation alma2db(alma : AlmaMM, db : DbMM) {
...
}

c10.fm Page 212 Tuesday, February 28, 2006 4:47 PM

10.4 An Example Transformation 213

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

be executed. This direction alters the interpretation of the individual relations, as we explain
below.

Here is the relation rule that maps an entity to a table:

A relation rule always has as many domain declarations as there are models involved in the
transformation. A domain is bound to a model (for example alma) and declares a pattern
that will be matched with elements from the model to which the domain is bound. Such pat-
terns consist of a variable and a type declaration, which in itself may specify some of the
properties of that type, and recursively so for the types of those properties. Such patterns
simply constrain the model elements and properties in which we are interested for this rela-
tion rule.

For example, in the relation EntityToTable, the domain binding the alma model will match all
elements of type Entity in the alma model to the variable entity, provided they at least define a
property name, which has to be bound to the string variable eName. Similarly, in the domain for
db, the pattern binds the variable table of type Table, while property name is bound to the varia-
ble eName. Observe that both patterns refer to the same variable eName, which implicitly is a
cross-domain constraint. Additional cross-domain constraints can be specified in the where
clause of a relation rule.

Before discussing the contents of the where clause, we want to draw your attention to the
domain qualifiers checkonly and enforce. These qualifiers constrain how a relation can be exe-
cuted for a given direction. For example, if the alma2db transformation is executed in the direc-
tion of db, the QVT engine will try to match all domain patterns of a rule that are not part of the
direction (conveniently called source domains). For each source domain match, the engine will
search for matches in the domains of the direction (called target domains). If there is no or only
a partial match and the target domain is qualified with enforce, the engine will alter or create the
model elements of the target domain to (re-)enforce the relation. If, on the other hand, the target
domain is qualified with checkonly, the engine will notify the user of an inconsistency, but will
not try to correct the model in the target domain.

In our example, when alma2db is executed in the direction of db, the entityToTable rule
will match elements in alma of type Entity and check if a corresponding element of type
Table with the same name exists in db. If not, the QVT engine will change or create a table
in db.

top relation EntityToTable {
 prefix, eName : String;

 checkonly domain alma entity:Entity {
 name = eName
 };
 enforce domain db table:Table {
 name = eName
 };
 where {
 prefix = '';
 RecordToColumns(entity, table, prefix);
 }
}

c10.fm Page 213 Tuesday, February 28, 2006 4:47 PM

214 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

The QVT Relations engine will also delete any tables that have no corresponding entity in
the alma model. The other way around, whenever we execute alma2db in the direction of
alma, the entityToTable rule will match elements in db of type Table and check if a corre-
sponding element of type Entity exists in alma. If this is not the case, the user will be notified,
but no changes will be made in the alma model.

In theory it is possible to qualify all domains of a relation with enforce, which amounts to
a bidirectional or even multidirectional transformation rule. However, as we pointed out in
Section 10.2, this does not work well in practice. Moreover, the QVT relation language con-
strains the format of expressions involved in the enforced domain to guarantee executability.
It is considerably more difficult to express all the required computations when all domains
are enforced.

After a successful match of the source domain pattern, the target domain pattern is checked
and enforced with the constraints of the where clause. In the example, the entityToTable rule
demands that the variable prefix is bound to the empty string and demands that the relation
RecordToColumns, with the given arguments exists or is constructed. In a way, the predicate
RecordToColumns(entity, table, prefix) can be interpreted as a rule call.

Relation rules can either be top-level or non-top-level. The former are qualified with the
keyword top and are executed automatically as soon as a match exists for the source domain
patterns. In contrast, non-top-level relation rules are only executed when explicitly called from
the where clause of another relation. The above entityToTable rule is an example top-level
relation, whereas the RecordToColumns rule, which is called from the where clause of entity-
ToTable, is non-top-level:

This relation rule matches records and their fields in alma and tables in db. It also defines a spe-
cial primitive domain. This mechanism allows non-top level relations to specify parameters of
primitive type. They can only meaningfully occur in non-top-level relations, because primitive
domains have an infinite number of instances.

You may have wondered how the QVT engine repairs broken elements in an in an
enforced target domain. A simple answer could be that for each failing target domain pattern
match, the engine simply deletes the entire match and replaces it with a correctly-calculated
match. Although semantically correct, this strategy would be very inefficient and, worse,
would destroy the underlying identities in the target model, which is very problematic in
practice.

relation RecordToColumns {
 checkonly domain alma record:Record {
 fields = field:Field {}
 };
 enforce domain db table:Table {};
 primitive domain prefix:String;
 where {
 FieldToColumns(field, table);
 }
}

c10.fm Page 214 Tuesday, February 28, 2006 4:47 PM

10.4 An Example Transformation 215

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

For example, consider the following relation rule of the alma2db example:

In the alma domain, this rule matches a Field of type PhysicialQuantityType with the properties
name and units bound to the variables pqName and pqUnit respectively. In the db model, the
engine would therefore want to match or repair a column of a table with a name based on
pqName and a type calculated from the fieldType.

Suppose now that for a match in alma, a corresponding column is found in db, but with a non-
matching name: hopefully only the name property of Column is recalculated and not the entire
Column object. In QVT Relations, this is achieved with key definitions, which a transformation
writer has to provide at the beginning of a transformation. As an example, consider:

This key definition says that columns are uniquely defined by their name and the table to which
they belong. If in the above example both the table and the name property of the column had
changed in the enforced target domain, a new column object would have been created.

Top-level relations may need additional cross-domain constraints before a successful source
domain pattern match is allowed to happen. This is illustrated in the following rule:

relation PhysicalQuantityTypeToColumn {
 pqName, pqUnit, fieldName : String;

 checkonly domain alma field:Field {
 name = fieldName,
 type = pq:PhysicalQuantityType {
 name = pqName,
 units = pqUnit
 }
 };
 enforce domain db table:Table {
 columns = column:Column {
 name = prefix + fieldName + '_as_' +
 pqName + '_in_' + pqUnit,
 type = AlmaPhysicalQuantityTypeToDbType(pq)
 }
 };
 primitive domain prefix:String;
}

key Column {table, name};

top relation EntityKeyToTableKey {

 checkonly domain alma entity:Entity {
 key = entityKeyField:Field {}
 };
 enforce domain db table:Table {
 key = tableKey:Key {}
 };

c10.fm Page 215 Tuesday, February 28, 2006 4:47 PM

216 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

This top-level relation specifies a when clause. It requires that the pattern bound to entity in the
alma domain is only considered successful whenever there exists an instance of EntityToTable
with entity and table as arguments. Only then do we match or construct a Key object in the
enforced target domain with a link to the Column object that was previously calculated and call
the non-top-level relation KeyRecordToKeyColumns.

Sometimes, it is also useful to write auxiliary functions that do simple calculations. Consider
the function AlmaTypeToDbType from the alma2db example:

This calculates the correct string name for the primitive types in db for each primitive type of
alma. This type of function should be understood as a macro: that is, it does not contribute to the
transformation trace, and behaves as if it was in-lined.

The QVT Relations language also provides a graphical notation, which extends UML object
diagrams. As an example, Figure 10.5 shows the EntityKeyToTableKey relation rule in the
graphical notation.

The notation is relatively straightforward. Each rule has its own frame with the name at the
top-left corner. The two patterns are drawn as object graphs in which the domain variable and
type are given the stereotype «domain». The domain bindings and their qualifications are drawn
in the middle with a new symbol, where C indicates checkonly and E means enforce. Both the
when and where clauses are drawn as compartments of the rule frame. Their contents is then
inserted as text.

Unfortunately, the current-adopted QVT specification is not complete with regard to the
graphical notation of all possible QVT relation rules. For example, it does not define how primi-
tive domains are to be specified. More generally, it is not clear how much of an advantage the
graphical notation gives over the textual representation. Graphical rules are comparatively large
and require a lot of work to specify. Moreover, unlike UML or MOF, which are languages for
defining structural information, it is not clear how much more readable rules of a behavioral lan-
guage such QVT become in a graphical form.

You can find the entire alma2db example in its QVT-relational textual form in Appendix A.1.

 when {
 EntityToTable(entity, table);
 }
 where {
 KeyRecordToKeyColumns(entityKeyField, table);
 }
}

function AlmaTypeToDbType(almaType : String) : String {
 if (almaType = 'int') then 'INTEGER'
 else if (almaType = 'float') then 'REAL'
 else if (almaType = 'long') then 'BIGINT'
 else 'DOUBLE'
}

c10.fm Page 216 Tuesday, February 28, 2006 4:47 PM

10.4 An Example Transformation 217

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

10.4.2 The Example in the QVT Operational Mappings language

The Operational Mappings language (OM) is the imperative member of the QVT language spec-
ification. It can be used in conjunction with QVT Relations in a hybrid manner, or stand-alone.
For the sake of the example, we only consider the stand-alone method.

An Operational Mappings transformation starts with the transformation header, which speci-
fies the input and output models of the transformation. An OM transformation can only be exe-
cuted in the statically-declared direction, as it generally does not address multidirectional
transformations. For the alma2db example, we have:

OM transformations consist primarily of mapping operations, which are attached to source
metamodel classes. For example, consider the following mapping example from the alma2db
example:

Figure 10.5 Graphical notation of a QVT rule

transformation alma2db(in alma : AlmaMM, out db : DbMM);

mapping DependentPart::part2table(in prefix : String) : Table
inherits fieldColumns {
 var dpTableName := prefix + recordName;
 name := dpTableName;

<<domain>>
entity: Entity

entityKeyField: Field

 <<domain>>
table:Table

tableKey: Key

keyColumn: Column

db: DbMMalma: AlmaMM

C E

EntityKeyToTableKey

when
EntityToTable(entity, table)

where
KeyRecordToKeyColumns(entityKeyField, table);

c10.fm Page 217 Tuesday, February 28, 2006 4:47 PM

218 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

The mapping part2table is attached to the DependentPart metaclass. It has one input parameter
prefix of type String and, when invoked, either leads to a new Table instance or, if the rule is
called with a table binding already, updates that table.

The body of the mapping contains property assignments as well as temporary variables (qual-
ified with the keyword var). Additionally, mappings may declare an init- and end-clause. These
contain statements that have to be executed before and after the instantiation of the metaclass
respectively.

All statements in the body and its clauses are specified in an imperative extension of OCL. We
don’t discuss this extension in any detail, as it is mostly self-explanatory. Within expressions of
mapping statements, one commonly has to refer to the containing object, as an instance of a
source metaclass. This object can be referenced with the self keyword.

Expressions may also contain in-lined mappings, which are qualified with the object keyword.
In the example, the columns property assignment contains such an in-lined mapping. It con-
structs a Column instance, which in its turn is assigned some properties7.

You may wonder where the property inKey came from. In OM transformations, it is possible
to extend metaclasses with auxiliary properties. For the example it is sufficient to add the fol-
lowing statement:

The end- clause of the part2table mapping example exploits two features that deserve explana-
tion. The parts property of the self object is fed to the map operation. This operation simply
applies its argument mapping to each element in the collection assigned to the property. More-
over, the mapping part2columns, which results in a table, is passed, next to a normal String
argument, the special variable result. As a consequence, mapping part2columns will not create
a new table, but merely use the result of the part2table mapping and update properties as spec-
ified in the part2columns mapping. The special variable result stores the result of the mapping
implicitly8.

 columns := mainColumns +
 object Column {
 name := 'key_' + dpTableName;

type := 'INTEGER';
 inKey := true;
 }

 end { self.parts->map part2columns(result, dpTableName + '_'); }
}

7 In fact, a mapping body that directly assigns properties is merely a syntactic simplification of an in-lined mapping,
bound to the result of the mapping. For details, we advise you to consult the specification.

intermediate property Column::inKey : Boolean;

8 This is again a syntactic convenience. The assignment to result can be explicit whenever the mapping defines an
explicit object creation. Consult the specification for details on this.

c10.fm Page 218 Tuesday, February 28, 2006 4:47 PM

10.4 An Example Transformation 219

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

The part2table mapping has expressions that refer to the variables recordName and mainCol-
umns, which don’t seem to be declared anywhere. These variables were in fact inherited from the
abstract mapping fieldColumns:

The inheritance semantics of mappings implies that the sub-mapping implicitly calls the super-
mapping, passing its own result. The call happens before the body of the sub-mapping is exe-
cuted. In the example, some intermediate results only are calculated. The fact that fieldColumns
is abstract merely implies that it cannot be called explicitly.

The result of a mapping cannot always be implicitly assigned, as has been the case with our
previous sample mappings. This is typically the case when the result of a mapping is a collec-
tion. Consider the following example from alma2db:

The pqType2Columns mapping results in a sequence of Column objects and the result variable is
explicitly assigned in the init- clause. Also notice that the map operation can bind each of the
collection elements to a parameter. In the example, each unit from self.units is bound to the
parameter u.

OM transformations also have a means of specifying functions, which do not contribute to the
runtime footprint of a transformation. Consider the example:

Operational Mappings queries are comparable with functions in QVT relations.

abstract mapping Record::fieldColumns(in prefix : String) : Table {
 init {
 var mainColumns := self.fields->map(f)
 field2Columns(prefix, self.key = f);
 var recordName := self.name;
 }
}

mapping PhysicalQuantityType::pqType2Columns (in prefix : String,
 in iskey : Boolean)
: Sequence(Column) {
 init {
 result := self.units->map(u)
 object Column {
 name := prefix + '_as_' + self.name + '_in_' + u;
 type := self->convertPQType();
 inKey := iskey;
 };
 }
}

query PrimitiveType::convertPrimitiveType() : String =
 if self.name = "int" then 'INTEGER'
 else if self.name = "float" then 'FLOAT'
 else if self.name = "long" then 'BIGINT'
 else 'DOUBLE'
 endif endif endif;

c10.fm Page 219 Tuesday, February 28, 2006 4:47 PM

220 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

Finally, we have to tell the transformation where and how to start transforming. This is
achieved with the main declaration, which in the case of alma2db looks like this:

The operation objectsOfType(Entity) simply returns all model elements of metaclass Entity from
the alma input model. The entity2table mapping is called on each of these with the prefix bound
to the empty string.

This exposition only covered some of the very basic OM language aspects, which are a small
(but useful) subset of entire OM language feature collection. It is beyond the scope of this book
to delve into the details of OM’s numerous possibilities. Some language features are purely for
convenience or address scalability issues (for example library usage). Others allow the user to
inspect the transformation trace.

One of the more curious OM language properties is the support for integrating it more tightly
with a QVT Relations engine. For example, it is possible to include when and where clauses
within mapping definitions. In this case, a transformation writer has to be aware that a mapping
invocation may fail and return the null value when the when clause evaluates to false. Such when
and where clauses function as pre- and post-conditions respectively.

The entire alma2db OM language example is given in Appendix A.2.

10.5 The OMG Standardization Process and Tool Availability

As we mentioned at the beginning of this chapter, the QVT specification as it is currently
adopted by the OMG Architecture Board is not yet finalized. This means that the current speci-
fication is open to the public for issue reporting to allow participants from inside and outside the
OMG to point out potential problems and errors, or suggest small improvements. The deadline
for issue reporting is 20th March 2006.

Subsequently, a small group of OMG members involved in the QVT language definition will
process all the reported issues and either change the adopted specification, or explain why spe-
cific issues do not have to be addressed. This process leads to a finalization report, which is then
presented to the Architecture Board. In the case of QVT, this report is due by 7th July 2006.

If the Architecture Board is happy with the finalization report, they will issue a recommenda-
tion to the OMG Board of Directors, which usually follows the Architecture Board’s recommen-
dation to publish the specification. In the case of QVT, this may happen by the end of 2006.

In the meantime, however, tool developers are free to use the adopted specification and provide
the MDA community with prototype implementations. Unfortunately, at the time of writing,
hardly any prototypes for a QVT language are publicly available. TCS9 has promised a public
non-open-source prototype for QVT Relations by early 2006. France Telecom10 expects a proto-
type for the QVT Operational Mappings language by April 2006. Borland has already announced
a QVT-based model-to-model language prototype implementation in its Together Architect 2006

main() {
 alma.objectsOfType(Entity)->map entity2table('');
}

9 TCS (Tata Consulting Services) is one of the main QVT Relations language contributors.
10 France Telecom leads a group of companies committed to the QVT Operational Mappings language.

c10.fm Page 220 Tuesday, February 28, 2006 4:47 PM

10.6 Assessment 221

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

product. This QVT prototype is essentially a small subset of the QVT Operational Mappings lan-
guage with small deviations from the adopted standard.

In the near future we expect an increased number of available QVT tools, both commercial
and Open Source. However, you should be aware that the OMG is not very strict about standards
compliance. In fact, the OMG has no official way of verifying the level of compliance for a
tool11. In the case of QVT, this will almost certainly lead to a large number of vendors claiming
support for QVT without really being standards-compliant.

It is also interesting to consider what it means to be QVT-compliant. According to the specifi-
cation, a tool ought to indicate which of the three QVT languages it supports. For each supported
language, a tool has to indicate whether it can import or export a specification either in its
abstract syntax (for example via XMI) or its concrete syntax. Moreover, the ability to use black-
box rules has to be explicitly stated as well. Clearly, this leads to a large number of possible ways
of being QVT-compliant.

10.6 Assessment

Whether the QVT standard as it stands today will survive the turbulent and fast evolution of
new techniques and methodologies within MDSD, only time will tell. The fact that the stand-
ard specifies three different languages indicates that model-to-model transformations remain
an ill-understood domain. There is also a multitude of non-QVT model-to-model transforma-
tion languages and tools available, some proprietary, some Open Source, but all tackling the
problem in their own way.

Obviously, the intentions of the QVT standard were to avoid wild growth of such systems, but
the problem is that nobody knows today what is really required to make M2M work in practice.
This is partly because few projects have used M2M on a large scale in industrial project settings,
and partly because model-driven development is an ‘early’ market.

The M2M requirements in Section 10.2 only scratch the surface of what is really required for
an M2M transformation language to become practical and usable. The difficulty of developing a
new M2M language is to find the balance between a usable language for the transformation
writer and the possibility of properly implementing the language reasonably efficiently and well-
integrated in an MDA tool landscape. While a standard should not specify how to build tools for
the language, it should define a language that can be reasonably implemented. In the case of
QVT, it should not be forgotten that a transformation works on models that ‘live’ in some kind of
MDSD repository environment. Users of the transformation expect smooth integration of a QVT
engine into such an environment, as the transformation is only a means, not an end, after all.

But even with the most basic requirements from Section 10.2, it is not clear how the current
QVT languages address them all. For example, QVT Relations has no way of specifying a
retainment policy: as QVT Operational Mappings is an imperative language, it is not clear at all
how an incremental update mechanism can be supported, as its impact analysis would be horren-
dously complex.

In terms of language use, it seems that both QVT Relations and QVT Core have paid a high
price for wanting to support bidirectional mappings, something that we believe has no practical

11 Standard compliance could be verified with a test suite or a reference implementation, or, as is the case with J2EE,
with both.

c10.fm Page 221 Tuesday, February 28, 2006 4:47 PM

222 Model Transformation Techniques

 c10.fm Version 0.3 (final) February 28, 2006 4:46 pm

value. Moreover, these two declarative languages do not have mechanisms for working with
exception conditions, which is an important omission. The QVT Operational Mappings lan-
guage was only touched on in this chapter, but the full language is fantastically complex: it
almost seems that object orientation here has been driven too far to remain usable. An M2M
transformation is an intrinsically functional problem that does not seem to integrate easily into
the object-oriented paradigm.

We also believe that M2M transformation development will only be able to take off when
M2M development environments have become available and are as good as modern program-
ming language IDEs. However, this requires sophisticated tools with intelligent editors and
advanced debugging facilities. Considering the fact that at the time of writing hardly any QVT
tools are on the market in the first place, we are not anticipating QVT transformation writing to
become a mainstream activity in the near future. Moreover, the lack of one standardized QVT
language is a further hindrance for the acceptance and usage of QVT-style M2M transformation
writing.

Finally, it should be mentioned that the QVT specification is a complex document that under-
went countless revisions. It is difficult, if not impossible, to verify whether the language stand-
ard is consistent and sound. This can partly be explained by the fact that the OMG has little
experience in language definitions with a behavioral bias. Another reason is probably that too
many people were involved in its specification over a long period of time. However, a sound lan-
guage standard is a must for widespread acceptance and easy implementation. We anticipate that
revisions and follow-up versions of QVT will appear in the near future, provided the standard is
not bypassed by the possible emergence of a defacto model-to-model transformation standard.

c10.fm Page 222 Tuesday, February 28, 2006 4:47 PM

223

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

11 MDSD Tools: Roles, Architecture,
Selection Criteria, and Pointers

In this chapter we want to address important properties of generic MDSD and MDA tools more
closely1. Such properties can be used as selection criteria for tools. However, for obvious rea-
sons, we cannot recommend any commercial tools. The OMG offers a list of MDA tools
[OMGT], but not all of the tools listed there meet the requirements we discuss in this chapter.
One reason is that the tools on the list are merely registered by the manufacturers and not certi-
fied by any kind of authority such as the OMG.

This chapter is divided into three parts. Section 11.1 describes the kinds of tools that play a
role in MDSD, while Section 11.2 describes some MDSD tool foundations. The characteristics
described there should be considered when selecting and implementing MDSD tools, or when
building tool chains. Section 11.3 finally points to a number of specific tools, concepts, and
ideas that might be interesting starting points in the context of MDSD tool selection.

11.1 The Role of Tools in the Development Process

Model-Driven Software Development doesn’t make sense without tool support. This section
provides a brief overview of the typical tool categories that should be used in the context of an
MDSD project or a domain architecture.

11.1.1 Modeling

The central tool is the modeling tool. Depending on the DSL, different concrete tools can be used
in this category. Nevertheless, one should try to provide a suitable editor for a specific DSL – an
editor that ‘knows’ the DSL and effectively supports it during modeling. For example, you can
use text editors that support a textual DSL through syntax highlighting and code completion.
Form-based editors are often useful too. For graphical DSLs, graphical editors are the tool of
choice, yet the effort required to create them can be considerable.

1 ‘Real’ MDA tools are also MDSD tools, but not every MDSD tool is also an MDA tool. This is due to the MDA’s
focus on UML or MOF. This distinction is not essential to our examination. however.

c11.fm Page 223 Tuesday, February 28, 2006 6:00 PM

224 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

If the models are created using UML profiles, a suitable UML tool is needed. In principle, you
can work with any UML tool, but there are some recommendations you should observe. The fol-
lowing list begins with the highest priority argument and moves to the lowest.

• XMI export. First and foremost, the tool must be able to export the model in XMI format.
Most MDA/MDSD generators can accept XMI as an input format, amongst others. XMI
still offers many degrees of freedom, and thus possesses a certain level of ambiguity. How-
ever, a model represented as an XMI file is a good starting point for the further processing
of models.

• Stereotypes and tagged values. The annotation of stereotypes on model elements is feasi-
ble in practice with every modeling tool and cannot therefore be used as a basis for com-
parison. When dealing with tagged values, this cannot be taken for granted. Good UML
tools treat stereotypes as model elements, not just as ‘strings on a class«. You need to be
able to define to which modeling elements (that is, elements of the UML metamodel) a
certain stereotype should be assigned. Moreover, it should be possible to ensure that a spe-
cific stereotype also requires or allows specific tagged values. The tool should force the
developer to provide consistent input during modeling.

• Metamodeling/profiles. A tool should ideally supports real metamodeling and the creation
of UML profiles. This includes the definition of individual metatypes as well as the defi-
nition of constraints in the metamodel. Ideally, the graphical rendering of the new model
elements (that is, their concrete syntax) and the tool’s GUI should also be adaptable. For
example, a button for inserting a custom model element type should be configurable. Such
tools are rare at present, but they do exist [GME], [MC04].

• OCL. It is useful if the tool not only allows OCL expressions at the M1 level (see Chapter 6)
as comments, but also checks the constraints syntactically regarding the model. In conse-
quence, a constraint is only allowed if it constitutes a valid expression in terms of the current
model.

11.1.2 Model Validation and Code Generation

The vast majority of UML tools currently available are unable to check a model for correctness
with a domain-specific metamodel. Yet code generation can only function if the model is cor-
rect with respect to the metamodel. Also, in the case where a model is not modeled with UML
(+ profiles), a check of the model must take place prior to code generation.

In most cases, this check of the model is conducted with a separate tool – the generator. It is
important that the validation phase in this tool is separate from the code generation phase. The
transformations should not have to deal with the validation of the model, but assume correctness
of the model regarding the metamodel, otherwise the transformations will become unnecessarily
complicated. Moreover, the validation of a model is completely independent of the question of
what is generated from it — that is, of the transformations. Validation is exclusively a question
of the domain for which the model was built. If various transformations are executed on the
same model, one would need to integrate the problem-domain-related correctness constraints
with each transformation, which is not very feasible.

c11.fm Page 224 Tuesday, February 28, 2006 6:00 PM

11.1 The Role of Tools in the Development Process 225

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

Several aspects are essential to the validation and transformation phase of the generator, here
listed in descending priority:

• Abstraction from the concrete syntax. The validation of the models should always take
place independently of the concrete syntax in which the model is represented. Such an
approach allows changes to the concrete syntax without having to adapt the validation
rules. A new parser that is able to read the altered, concrete syntax must be provided. We
explain this point in more detail later. The abstraction from the DSL’s concrete syntax ide-
ally takes place via an explicit representation of the metamodel.

• Explicit representation of the metamodel. It is essential for both validation as well as for
transformation of models that the metamodel underlying the model that is currently proc-
essed has an explicit representation in the generator. This requirement implies that the
developer can adapt the metamodel used by the generator. A tried and trusted solution of
this problem is for example that the metamodel elements are represented as classes of a
programming language. The model then consists of objects, that is, instances of the
respective metamodel elements (see Section 9.3.2). We address this point later as well.

• Declarative constraints. The metamodel constraints that verify a model’s correctness
should ideally be definable in a declarative manner. OCL is one example of such a declar-
ative constraint language, but it is not as yet fully supported by most tools. Even if this
ideal cannot be achieved, one should try to formulate constraints as declaratively as possi-
ble. We explain such a pragmatic approach in detail in the context of this book’s second
comprehensive case study in Chapter 16.

• Workflow control. Developers should be able to control the sequence of steps – instantiation,
validation, transformation, code generation – for building non-trivial scenarios.

Based on the Open Source generator openArchitectureWare [OAW], all these properties can be
studied. Figure 11.1 shows the workflow of a non-trivial example, including two cascaded
domain architectures. Initially, the application model is loaded. It is built based on the first
domain architecture’s DSL. The parser builds the AST representation, the instantiated meta-
model, which is an instance of the metaclasses that represent the first domain architecture’s
metamodel. Next, the constraints of this metamodel are checked. If violations – failed con-
straints – are detected, the workflow ends here and the errors are reported. If everything is ok,
the model-to-model transformations included in the first domain architecture are executed, cre-
ating an instance of the second domain architecture’s metamodel. Again, constraints are
checked. If this check succeeds, the model-to-code transformations of the second domain
architecture are executed, resulting in generated code that now has to be integrated with hand-
written code snippets.

11.1.3 Build Tool

In many cases a large number of different artifacts are created by the generator. In the next step,
these must be suitably compiled, packed, and processed. A suitable build tool is required for this.
In principle any scripting language can serve this purpose: Ant has become widely accepted in
the Java world.

c11.fm Page 225 Tuesday, February 28, 2006 6:00 PM

226 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

In many cases, one would generate the build script as part of the generator run, then execute it
directly.

11.1.4 Recipe Frameworks

If you require your developers to write specific aspects of the system manually, and if specific
rules must be follows when doing so (such as ‘you have to extend from the generated base class
and implement the abstract methods’) then it is useful to guide the developer. The generator
can’t really help, since it will just generate the base classes and then terminate, hoping that the
developer ‘does the right thing’ and writes the subclass.

Recipe frameworks manage a developer’s implementation tasks after running the code genera-
tor. Typically, the generator, in addition to generating the code, also instantiates a number of
checks that are subsequently checked by the IDE against the generated code to verify that the
handwritten code is complete and correct. Such a tool can make development using the genera-
tor significantly simpler. For an example of this approach, see Section 17.4.3.

Figure 11.1 Internal workings of openArchitectureWare

Domain Architecture 1 ApplicationoAW - Workflow and Information Flow

Model

Handwritten
Code

Generated Code

Metamodel
Implementation

M2M-
Transformation-
Implementation

Domain Architecture n

DSL

DSL

Instantiated
Metamodel (1)

<<instanceof>>
Constraints

Metamodel
Implementation

Constraints

Instantiated
Metamodel (n)

<<instanceof>>

<<relies on>>

<<integra tes into>>

Platform n
Platform n

<<uses>>

[error]

[error]

M2C Transformation
(Template-Engine)

Constraint Check

Constraint Check

Model Reader /
Parser

M2M-Transformation

M2C-
Transformation-
Implementation

c11.fm Page 226 Tuesday, February 28, 2006 6:00 PM

11.2 Tool Architecture and Selection Criteria 227

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

11.1.5 IDE Toolkit

An ‘IDE toolkit’ is not mandatory, but can be very useful if available The idea is that the models,
the different process steps, and the generated artifacts can be manipulated and managed by the
application developer in a single, customized IDE. Adapted editors for configuration files,
access to the model, as well as access to generated artifacts, should all be available. In particular,
the domain-specific IDE should only display those artifacts or aspects that are relevant to the
developer. Irrelevant intermediate results should only be shown if needed.

The Eclipse platform is an example of one such IDE toolkit. It allows the creation of project-
or domain-specific IDEs with acceptable effort – see for example [RV05].

11.2 Tool Architecture and Selection Criteria

11.2.1 Implement the Metamodel

A formally-defined metamodel for a domain is a good starting point, but to be really useful, it
must be actually used during application development. As long as the metamodel is only docu-
mented on paper or in a modeling tool, without further tools using it, it has no productive value.

Manual checking of models for consistency with the underlying metamodel is time-consum-
ing and error-prone. Standard modeling tools such as current UML tools are usually of no use
here, because they do not ‘understand’ the rules of the domain-specific metamodel, and there-
fore cannot use them for checking the models. The only rules applied by a typical UML tool are
the rules checking the well-formedness of UML models in general – that is, a check against the
UML metamodel. In this regard we can only hope that UML tools will offer improved support
for profiles in the near future.

You should therefore implement the metamodel in a tool that can read models and check them
for correctness against the metamodel. The correctness checks must cover all rules and con-
straints that the metamodel prescribes – this is the only way to ensure sensible subsequent model
transformations and code generation.

Checking a generator’s input data is one practical application of the metamodel. This added
value is an essential part of both the MDSD process and the domain architecture. The implemen-
tation of the metamodel itself can of course be achieved using model-driven techniques, such as
using a corresponding meta-domain architecture.

11.2.2 Ignore the Concrete Syntax

Each model must inevitably be rendered in a concrete syntax, for example UML XMI for MOF-
based models, and XML for textual models. Nevertheless, transformations that are defined
based on the concrete syntax are rather unyielding, because they must consider the concrete syn-
tax, whereas the transformation of instances of the metamodel elements should be their priority.
This makes transformations unnecessarily complicated. Furthermore, the transformations can no

c11.fm Page 227 Tuesday, February 28, 2006 6:00 PM

228 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

longer be used if the concrete syntax of the models is changed – which does indeed happen from
time to time in the course of a project. How can one ensure that the transformations and the
model’s validation do not depend on the concrete syntax?

The definition of transformations on the basis of concrete syntax is typically error-prone and
inefficient. XMI, for example, has a very complicated syntax. To define transformations via
XSLT on this basis is practicable only for trivial cases. In many cases, it is also useful to have
several concrete syntaxes for the same metamodel, for example if different DSLs are used for the
description of various technical subdomains or if the concrete syntax is changed in the course of
a project. Definitions of transformations and model validations based on concrete syntax unnec-
essarily bind the transformation to a specific concrete syntax.

The transformation definitions should thus be based on the source metamodel (and the target
metamodel for model-to-model transformations). For this purpose, implement a three-step approach
in the transformation tool:

• First, the source model is parsed and an abstract representation of the model is created in
the generator, typically in the form of an object structure, for example through instantia-
tion of the metamodel classes.

• This model is then transformed into the target model, working only on the abstract object-
graph representations.

• Finally, the target model is rendered into the concrete syntax of the target DSL.

This approach allows a significantly more efficient and productive method of specifying trans-
formations. It also makes the transformer considerably more flexible, because it can now work
with any concrete syntax. This is especially important for XMI-based concrete syntaxes, because
different UML tools export different XMI dialects. You should avoid binding your transforma-
tions to a certain tool or even to a certain tool version.

The approach described in this section has been practiced in compiler construction for some
time. Compilers always work in several phases, and the implementations of these phases are
often exchangeable. Compilers can therefore be adapted with relative ease to different target
platforms, or to ‘understand’ different source languages. Figure 11.2 explains the principle for
code generators.

Figure 11.2 A typical AST-based generator’s mode of operation

Concrete
Syntax
Parser

Application
Model

(Concrete Syntax)

Source Model AST
(Instance of Source

MetaModel)
Transformer

Target Model AST
(Instance of Target

MetaModel)

Unparser/
PrettyPrinter

Target
Model

(Concrete Syntax)

c11.fm Page 228 Tuesday, February 28, 2006 6:00 PM

11.2 Tool Architecture and Selection Criteria 229

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

MDSD code generators often don’t use the complete three-step approach, but generate textual
output directly based on the original model instance. It would be too complicated to create an
abstract syntax tree of the target model, which would be the target language’s abstract syntax in
this case. Instead, template languages are used to navigate over the source model. However, the
source model should be represented as an object graph, an instantiated metamodel.

This approach is well-suited for implementing the metamodel. Ideally, the same implementa-
tion is used for both purposes. The templates can the work directly with the meta-objects, and
the meta-objects’ properties can be used to provide information for template evaluation, as is
shown in Figure 11.3. (See also Chapters 3 and 16.)

11.2.3 Modular Transformations

We have already described the usefulness of modular transformations from the domain architec-
ture’s perspective. From the MDSD tools’ perspective, the support of this concept constitutes a
construction feature or a selection criterion.

11.2.4 Model Transformations are ‘First-Class Citizens’

As we have seen, model transformations are not a minor matter in domain architectures, but
fully-fledged, essential artifacts, exactly like models and manually-created source code. This
affects how developers deal with the transformations, as well as on how the tools do:

• Developers should structure sensibly, modularize, and refactor frequently.
• The transformation languages must provide sufficient means for structuring the transfor-

mations, for example by using modularization, delegation, inheritance and polymorphism,
as well as aspect-orientation.

• Tools must store the transformations in such a way that they can be versioned and managed
with the tools used for those purposes in the project, if applicable in distributed teams.

Figure 11.3 Access to a model AST from the templates according to [OAW]

Name() : String

<<metaclass>>
UML::Class

public class <<Name>>
 implements <<Name>>Interface {
 // more
}

MetaModel Template

c11.fm Page 229 Tuesday, February 28, 2006 6:00 PM

230 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

Some of today’s tools still treat transformations as being ‘secondary’ compared to models
and traditional source code. Fortunately, template-based generators usually store code gener-
ation templates as separate (text) files that can be versioned easily, for example with CVS,
and if necessary merged. It should be mentioned, however, that there is no such thing as a
proven and generally-accepted paradigm or syntax for the representation and handling of
transformations.

11.3 Pointers

In this section we want to point to a number of interesting tools and frameworks, most of them
Open Source. Some of these tools are available today, others will become available in the near
future.

11.3.1 The Eclipse World

Many interesting MDSD-related technologies are emerging in the context of the Eclipse plat-
form. This section points out some of the most important.

Eclipse Modelling Framework (EMF)

EMF is a framework for MDSD based on Eclipse, and serves as the basis for a great number of
interesting tools. Its primary building block is eCore, a meta meta model implementation that is
aligned closely with the eMOF (essential MOF, see Section 12.2.2). EMF allows the definition
of metamodels using various techniques such as tree-based editors, programming, and so on.
You can then generate implementation classes from these metamodels that provide a concrete
API for building instances of the metamodel. These generated classes also provide runtime
access to the metadata that cannot be represented directly with Java classes.

EMF also comes with a couple of additional generators that generate editors and a generic
editing framework for editing the models.

The importance of EMF comes from that fact that it is quickly evolving into the de-facto
industry standard onto which MDSD tools are built. A rich and vibrant community of experi-
mental tools has developed around it.

The most important parts of the eCore meta meta model are shown in Figure 11.4. In addition
to the aspects rendered in that diagram, eCore contains the following elements:

• A number of additional (derived) associations
• Operations and exceptions
• Enumerations
• The usual primitive data types
• Packages and factories (required to instantiate the model elements)

c11.fm Page 230 Tuesday, February 28, 2006 6:00 PM

11.3 Pointers 231

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

Graphical Modelling Framework (GMF)

GMF is one of the frameworks based on EMF. It supports the automatic generation of graphical
editors for EMF meta models. To get a graphical editor for your modeling language, you:

• Define the metamodel using EMF.
• Define an additional model that describes to the GMF generator how you want the gener-

ated editor to look like and behave.
• Generate your editor.
• Possibly add some specific behavior or graphics using manual coding.

The process is illustrated in Figure 11.5. The generated editors are based on GEF, the Eclipse
Graphical Editing Framework. As such, the generated editors integrate nicely with the
Eclipse platform.

Figure 11.4 The essential parts of eCore

EStucturalFeature

EClass

EAttribute

EReference

0..*

eAttributes

eReferences

0..*

0..*

eS
u

p
erT

yp
es

EDataType
1

eAttribute
Type

containment: Boolean
lowerBound: int
upperBound: int

0..1eOpposite

1 eReferencedType

EClassifier

ENamedElement

name: String

ETypedElement

0..1

eType

EModelElement

EObject

c11.fm Page 231 Tuesday, February 28, 2006 6:00 PM

232 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

This approach to generating editors is not new – it has been used before, albeit with other spe-
cific technologies, for example in [RV05]. Again, the significance of GMF is due to the fact that
it is based on EMF, which itself has a large group of followers, and that it is strongly supported
by industry.

Generative Model Transformer (GMT)

The GMT subproject serves as a container for a number of subprojects that each explore differ-
ent aspects of MDSD. The projects have different levels of maturity.To briefly point out some of
the GMT subprojects:

• ATL is a model-to-model transformation engine that has matured over the past few years
and is in widespread use. ATL is tightly integrated into Eclipse: for example, syntax high-
lighting editors are available. While it provides its own meta meta model (KM3) there is
integration with EMF. The following is a simple transformation taken from the ATL docu-
mentation to give you a feeling of ATL:

Figure 11.5 Generating an editor using GMF

module Author2Person;
create OUT: Person from IN: Author; -- Person and Author are metamodels

rule Author {
 from
 a: Author!Author
 to
 p: Person!Person(name <- a.name, surname <- a.surname)
}

eCore

Your
Metamodel

Editor Specification
Metamodel

Editor Specification
Model

GMF
Generator

<<instanceof>>

<<insta nceof>>

<<instanceof>>

specifies
editor for

Generated
Editor

A Model

<<insta nceof>>

readsreads

generates

reads

c11.fm Page 232 Tuesday, February 28, 2006 6:00 PM

11.3 Pointers 233

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

• AMW is a tool for representing correspondence between a number of models. These cor-
respondences are stored in a separate model, the weaving model.

• AM3 is aimed at supporting modeling-in-the-large (‘megamodeling’). This involves meta
model and meta meta model independent cross-model references.

Model-Driven Development Integration (MDDi)

The MDDi project aims at providing what is called a ‘model bus’, a facility for inter-tool model
interchange. Contrary to file-based interchange, as provided for example by XMI, the primary
goal of MDDi is to provide real-time model synchronization. The project is supported by the
European Union’s ModelWare project. As of December 2005, the public CVS is still empty – the
project does not seem to be very active.

11.3.2 Trends in UML tools

UML tools have traditionally been used as the ‘entry-level’ drawing tool for many MDSD projects.
You use class diagrams for basically everything, then use stereotypes and tagged values to add
semantics. A more or less standards-compliant XMI export serves as the import format for the
generator. However, a couple of interesting improvements have occurred in this area.

For example, EMF is being used as the foundation for Eclipse-based UML tools such as
IBM’s Rational Software Modeller or Omondo’s EclipseUML. If your generator tool is also
EMF-based, you can work directly from the live models and don’t need to use a file-based means
of moving the model into the generator. This is a big improvement, for two reasons: first, annoy-
ing XMI incompatibility issues are solved, and second, performance is improved because serial-
ization and deserialization (instantiation) of the model is no longer necessary. Using EMF as a
basis for UML tools – with the UML metamodel implemented as an instance in eCore – also
allows you to extend the UML metamodel with your own metaclasses, rather than just to use the
rather awkward profiling mechanism. We have not yet come across a tool that actually supports
this approach, however.

Another interesting development is that more and more UML tools have open APIs that are
becoming increasingly powerful. This allows the automation and customization of domain-spe-
cific workflows. For example, in MagicDraw you can even define your own custom diagram
types.

11.3.3 UML 2 Composite Structure Diagrams

It is worth pointing out a specific new feature of UML 2 that is being adopted in most UML
tools: composite structure diagrams. In UML 1.x it was not possible to decompose structures
into smaller structures hierarchically – that is, it was not possible to have ‘boxes within boxes’.
This was a big shortcoming: considering that UML class diagrams have always been (mis-)used
as a generic graph-drawing tool – classes were nodes, associations and dependencies were the
edges – the ability to ‘zoom into’ nodes has been missing. This has changed with UML 2. Using
composite structures in combination with ports and connectors is powerful, as the following
example shows.

c11.fm Page 233 Tuesday, February 28, 2006 6:00 PM

234 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

The example maps the concepts of a functional domain (power grids) to a UML 2 model, to
calculate the cost of transporting electricity from the power generators to energy distribution
companies. The DSL is used by engineers to model power grids. Figure 11.6 shows the core
metamodel on which the power grid models are based.

The resulting DSL is ideally suited for mapping to UML component structure diagrams:

• All subclasses of MacroNode are mapped to instances.

• EndPoints are mapped to ports.

• All other subclasses of MicroNode are mapped as parts of instances (parts).

• Links and TransmissionLines are mapped to connectors.

Using this notation, standard UML 2 tools can be used to model power grids graphically. Figures
11.7 and 11.8 show some examples.

To understand why ports are required, it is worth looking at the example from a greater dis-
tance, on an abstraction level where the content of MacroNodes is irrelevant.

Without ports, the diagram in Figure 11.8 would be imprecise and not a clear abstraction from
the diagram in Figure 11.7. Ports offer the option of modeling complex (component) systems in
a top-down process and refining them later. As our example shows, this is useful not only for the
modeling of software, but also in other domains.

Figure 11.6 Power grid metamodel

Generation
Element

MicroNode Link
1 targetNode sources 0..*

1 sourceNode targets 0..*

Transformer Bus Endpoint

MacroNode
Transmission

Line

1 targetNode sources 0..*

1 sourceNode targets 0..*

0..*parts

Generator BranchPoint Switching
Station

sourceEndPoint 1 1 targetEndPoint

targetTransmissionLine 0..1 0..1 sourceTransmissionLine

c11.fm Page 234 Tuesday, February 28, 2006 6:00 PM

11.3 Pointers 235

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

11.3.4 Other Kinds of Editors

There are some tools that can be used as modeling frontends that would not occur to one
immediately. A good example is Microsoft Visio. Visio can be considered an ‘object-oriented’
drawing tool. If you build a drawing using Shapes, the elements of the drawing reference the
‘shape type’ with what can be considered an instanceof relationship. A Visio drawing is not
just a collection of graphical elements, therefore, but a collection of typed graphical elements
and their typed connections. Visio also comes with an editing tool to build you own shape
types, effectively defining the metamodel and concrete syntax. Because Visio has been able to
store drawings in XML since Version 2002, access to the drawings as well as to the instanti-
ated shapes is simple. It is therefore easy to build, for example, an instantiator frontend for
openArchitectureWare that reads Visio models and further processes them.

Feature modeling tools are another interesting alternative for modeling systems, especially if
the modelled system is a product (variant) in the context of a software system family. The feature

Figure 11.7 Excerpt of a power grid – micro scale

Figure 11.8 Power grid – macro scale

SomePlace: Generator

G11: GenerationElement

20KV: Bus

link11

T11: Transformer

link12

220KV: Bus
link13

end11
link14

SomeOtherPlace: SwitchingStation

end21

transmissionLine1

B21-220KV: Bus

link21

B22-10KV: Bus

T21: Transformer

link22

link23

link24

end22

SomePlace:
Generator

SomeOtherPlace:
SwitchingStation

end11 end21 end22

transmissionLine1

c11.fm Page 235 Tuesday, February 28, 2006 6:00 PM

236 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

modeling plug-in developed by Krzysztof Czarnecki’s team at the University of Waterloo
[FMP], or pure-systems’ commercial pure::variants [PV] product can be used for this purpose.

11.3.5 Integrated Metamodeling IDEs

Integrated Metamodeling IDEs are tools that support two distinct tasks:

• They support the definition of metamodels, constraints, concrete syntax, and editors for
user-defined DSLs.

• In a second phase, they make the newly-defined DSLs available in the tool, to allow appli-
cation developers to use the user-defined DSLs2.

We want to introduce the two most widely-used members of this family of tools briefly. The first
is GME [M. Völter, A. Schmid, E. Wolff, Server Component Patterns, John Wiley & Sons,
2002], the Generic Modeling Environment. This is an Open Source tool developed by Vander-
bilt University’s Institute for Software Integrated Systems (ISIS). The tool has been developed
and is used mostly in the context of Model-Integrated Computing (MIC) projects in the indus-
trial and defense worlds. It provides access to models via COM and Java interfaces. Figure 11.9
shows the metamodeling facilities of GME, while Figure 11.10 shows an editor based on the
previously-defined metamodel.

The other example is a commercial tool built by MetaCase called MetaEdit+ [MC04]. It uses
the following five concepts as its meta meta model: graph, object, relationship, role, and prop-
erty. It provides graphical as well as table-based editors. MetaEdit+ also comes with a code-
generation facility. As can be seen from MetaCase’s reference page, the tool is in relatively
widespread use. Figure 11.11 shows how meta model elements. as well as their graphical repre-
sentation. are defined. Figure 11.12 shows a state-machine-based definition of the behavior of a
stop watch.

2 Technically, these tools usually consider the metamodeling and editor-construction part as ‘just another DSL’ – the
tools are usually self-bootstrapping.

c11.fm Page 236 Tuesday, February 28, 2006 6:00 PM

11.3 Pointers 237

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

Figure 11.9 Screenshot of GME, during metamodeling

Figure 11.10 Another screenshot of GME, now modeling based on the metamodel
defined before

c11.fm Page 237 Tuesday, February 28, 2006 6:00 PM

238 MDSD Tools: Roles, Architecture, Selection Criteria, and Pointers

 c11.fm Version 0.3 (final) February 28, 2006 6:00 pm

Figure 11.11 Defining a metamodel element and its associated symbol

Figure 11.12 Another screenshot of MetaEdit+, modeling the behavior of a stop watch

c11.fm Page 238 Tuesday, February 28, 2006 6:00 PM

239

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

12 The MDA Standard

This chapter describes important aspects of MDA, although we do not address all details here,
because external literature [Fra02], as well as other resources and the standard itself are available.

12.1 Goals

Model Driven Architecture (MDA) is a term with several different meanings. In the context of
this chapter, when we speak of MDA we mean the standardization initiative of the OMG in
respect to MDSD. Since MDA does not yet cover the whole MDSD spectrum, one can also think
of it as a specific flavor of MDSD.

MDA is a young standard established by the Object Management Group [OMG]. The OMG was
founded in 1989 and is an open consortium currently of about 800 companies worldwide. The
OMG creates manufacturer-independent specifications to improve the interoperability and portabil-
ity of software systems. Traditionally the OMG is a platform for middleware and tool manufactur-
ers, serving the synchronization and standardization of their fields of activity. CORBA (Common
Object Request Broker Architecture) and IDL, UML (Unified Modeling Language), MOF (Meta
Object Facility), and XMI are popular results of this process. MDA is the OMG's new flagship.

According to the OMG's directive, the two primary motivations for MDA are the interoper-
ability (independence from manufacturers through standardization) and portability (platform
independence) of software systems – the same motivations that resulted in the development of
CORBA. In addition, the OMG postulates that the system functionality specification should
be separated from the implementation of its functionality on any given platform. From this
perspective, the MDA pursues the goal of providing guidelines and standards that will lead to
a respective structuring of specifications in the form of models. Last but not least, this
approach promises improved maintainability of software systems through a separation of
concerns as well as manageability of technological changes.

12.2 Core Concepts

This section looks at the core building blocks of MDA. These are UML 2.0, the Meta Object Facil-
ity, XML Metadata Interchange, the three kinds of models (PIM/PSM/PDM), Multi-Stage Trans-
formations, Action Languages, the various core models, model marking, and Executable UML.

c12.fm Page 239 Tuesday, February 28, 2006 4:51 PM

240 The MDA Standard

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

12.2.1 UML 2.0

From the MDA perspective UML is central, because many tools are or will be based on UML
and profiles. To ensure that this will actually work, the OMG has recently made a few adapta-
tions in the context of UML 2.0 that we introduce briefly here1.

• Infrastructure. Internally, the UML is no longer loosely based on the MOF: the complete
UML standards document contains definitions of UML language constructs (that is, of the
metamodel) via MOF models. UML is defined formally. This is – as should be clear now –
a prerequisite for MDSD, particularly for model transformation and code generation. The
OCL also now uses the MOF as its meta meta model: it was necessary to extend the MOF
to this end. UML and OCL are now based on the same meta meta model. This makes them
conceptually compatible at their cores.

• Extension, profiles, stereotypes. The definition and in part also the notation of profiles and
stereotypes – that is, the UML's native extension mechanism – have been reworked. We
will not address this issue here, since it has already been explained in Chapter 6.

Even though formally all MOF-based models can be used in the context of MDA, the UML and
corresponding profiles for modeling in the MDA field primarily will prevail, as can be seen
from the core models mentioned below. In [Fra02] David Frankel discusses the advantages and
disadvantages of the UML in this context. Let’s first look at the advantages:

• Separation of concrete and abstract syntax
• Extensible (via profiles)
• Platform-independent
• Standardized
• Pre- and post-conditions and invariants are possible via OCL (design by contract2)

On the other hand, numerous disadvantages still exist that mainly apply to UML 1.x. Much has
been improved with the introduction of UML 2:

• UML is big and badly partitioned
• There is no conceptual support of viewpoints
• Components and patterns receive only little support (improved in UML 2)
• The Relationship model is vague
• It suffers from limited expressiveness of profiles, or generally limited means of adaptation

of the metamodel
• UML and MOF are not (yet) correctly fine-tuned to each other (improved in UML 2)
• Diagram interoperability is missing (improved in UML 2)
• There is no abstract syntax for OCL (improved in UML 2)

1 Much more than we describe here has actually been added. Here we only focus on those aspects that are directly rel-
evant to MDA.

2 Design by contract is well-known term in computer science that describes the idea that operations define what they
expect to be true when called, and that they define what they guarantee to be true after their execution.

c12.fm Page 240 Tuesday, February 28, 2006 4:51 PM

12.2 Core Concepts 241

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

12.2.2 MOF – The Meta Object Facility

The Meta Object Facility (MOF, see Chapter 6) constitutes the core of the MDA. It describes
the meta meta model on which MDA-conformant tools are based – or should be based. The
definition of custom DSLs or metamodels should use the mechanisms of the MOF, or extend
UML via profiles, which in effect constitutes a ‘lightweight’ metamodel extension. As we have
already pointed out, UML is defined via the MOF. The MOF itself uses UML's concrete syn-
tax, which can cause confusion3. We have implicitly used the MOF's mechanisms many times
in this book. Whenever we extended the UML metamodel, we automatically used the MOF.

The MOF is not only important as a formal basis of metamodels, it is also of concrete rele-
vance for the construction of MDA tools such as repositories, modeling tools, code generators,
and so on. Generic tools need a solid basis: this can only be the meta meta model. Similarly, to
guarantee the portability of data used in tools, one must agree on a meta meta model. Thus it is
essential for the OMG's standardization efforts and the tool market to define the meta meta
model completely, formally, and inherently correctly.

Figure 12.1 shows a part of the MOF.

The MOF also has a few disadvantages. One can argue about whether the following aspects
should be part of the MOF or not. For example, the MOF does not offer any help in defining a

3 More precisely, the core of UML (that is, the classifier package) can be applied on all metalevels since the introduc-
tion of UML 2.0. Thus it also constitutes the core of the MOF.

Figure 12.1 A part of the MOF

Model
Element

Import Namespace Constraint FeatureTag

Generalizable
Element

Behavioral
Feature

ClassifierPackage

ClassAssociation

ExceptionOperation

can throw

generalizes

imports

c12.fm Page 241 Tuesday, February 28, 2006 4:51 PM

242 The MDA Standard

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

concrete syntax for DSLs or for versioning issues, and the composition of metamodels from par-
tial metamodels is not addressed.

Essential MOF and Complete MOF

Several implementations of the MOF have been created. However, they all only implemented a
relevant practical subset of the MOF. Perhaps the most influential implementation was EMF, the
Eclipse Modelling Framework [EMF] and it’s eCore meta meta model. Implementation of EMF
in turn had an influence on the standardization of MOF 2.0. As a consequence of that influence,
the OMG identified a subset of MOF called the essential MOF (eMOF) during the standardiza-
tion of MOF 2.0 in 2003 that would be sufficient for most meta meta model implementations.
Consequently, EMF’s eCore is now compliant with the OMG EMOF standard. You can find a
more thorough discussion of eCore (and thus EMOF) in the tools chapter (Section 11.3.1).

Consequently the counterpart of the eMOF is the CMOF. It is used for more complex meta-
models such as UML. For example, it combines mechanisms to extend packages by importing,
merging, or combining them. It also combines more powerful reflective features.

12.2.3 XMI

XMI stands for XML Metadata Interchange and is an XML mapping for MOF – not just a
DTD/schema for UML, as it is often incorrectly stated4. Currently, XMI is the basis for inter-
operability between different MDA tools because (real, database-based) MOF repositories are
yet not widely in use. Since the release of version 2.0, XMI also allows the serialization of
diagram layout information, which is mandatory for a practical and useful model exchange
between modeling tools, not only for code generation, if you don't want to rely on the auto-
layout mechanisms of the established tools, which are usually poor.

At present there are still many incompatibilities between the XMI formats of different tools,
which complicates diagram exchange between modeling tools. However, the use of XMI as a
basis for code generators is not a serious problem in practice, since all popular generators sup-
port parsers for the various XMI dialects.

There are two flavors of XMI. The first is a completely generic one that can store all MOF-
based models via a generic DTD. The document structure is defined at the MOF level, causing
the XMI documents to become rather verbose. A positive fact is that it can be generically
applied to all MOF-based models. However, its ability to be read by humans or its suitability for
XSLT-based transformations is rather limited.

The XMI standard, however, encompasses the option of generating a DTD or a schema specif-
ically for a given metamodel based on the MOF. As a consequence, documents are only able to
store instances of this particular metamodel, but the resulting file is more compact and concrete,
because the structures are mapped at the metamodel level and not at that of the meta meta
model. For obvious reasons, most tools use the first approach for exchange.

Note that a simplified XMI mapping (XMI 2.1) was defined as part of the MOF 2.0 EMOF
definition. This should provide better interoperability between tools in future.

4 Typically XMI is specifically used for the serialization of UML models.

c12.fm Page 242 Tuesday, February 28, 2006 4:51 PM

12.2 Core Concepts 243

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

12.2.4 PIM/PSM/PDM

The OMG has a concrete concept of what the MDA should represent. The OMG is not con-
cerned with software system families, the involvement of domain experts, or increased agility in
software development, but mainly with platform independence of the application logic. Due to
the fact that technological solutions – as well as the business logic – continue to develop quickly
yet independently of each other, it is pivotal for reasons of longevity to be able to specify the
application logic independently of an implementation platform: in other words, to be able to
specify its essence. For this purpose, the OMG considers MOF- or UML-based modeling to be
the best solution, because it allows the fully-automated generation of implementations for differ-
ent platforms via transformers. The platform-independent model (PIM) plays a central role here
in describing the business logic undiluted by technical concerns.

A platform-specific model (PSM) is created from the PIM via model transformation. The
PSM is, as its name indicates, platform-specific for J2EE, .NET, or other implementation
platforms. Further transformations can create increasingly specific models, until eventually
the source code for a platform is generated, which is turned into an executable artifact via
compilation and packaging.

This discussion emphasizes that both PIM and PSM are relative concepts. A PSM may be spe-
cific for J2EE, but still independent of a specific application server. It thus constitutes a PIM in
respect to the concrete application server platform.

Figure 12.2 shows a taxonomy of the models that play a central role in MDA. (See also [Fra02]).

A further important type of model exists in the MDA, the platform description model (PDM).
This is the metamodel of the target platform. Due to the fact that model transformations are

Figure 12.2 Classification of models in the context of the MDA

Model

System
Model

Business Model
(Domain Model)

Logical
Model

Physical Model
(Deployment)

Requirements
Model

Computational
Model

PIM PSM

c12.fm Page 243 Tuesday, February 28, 2006 4:51 PM

244 The MDA Standard

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

always defined as transformation rules between metamodels, it is essential to define the target
platform via a metamodel as well. The source models use a domain-specific metamodel anyway –
possibly a standardized core model (see below). In the context of architecture-centric MDSD,
modeling builds directly on the PDM, the architecture metamodel of the target platform.

12.2.5 Multi-stage Transformations

In the examples and best practices described in this book, we have in most cases generated the
source code for a certain platform from (PIM) models. We did this mainly for pragmatic rea-
sons: model transformation tools that support multi-stage transformations for large systems in a
manner that is suitable for everyday use do not yet exist.

The MDA pursues the goal of obtaining source code via several subsequent model-to-
model transformations. This clearly has advantages given that the right tools are available.
The example in Section 11.2.3 shows why, and also clarifies why one tries to do as much as
possible at the model level in MDA and to leave the information in model form as long as
possible. The transformation engines are defined based on the MOF. As long as we deal with
MOF-based metamodels such tools can be used, but as soon as we enter the ‘lowlands’ of pro-
gramming, they aren’t much use. One would have to define classical programming languages
via the MOF, with the result that the transformations would become very complex compared
to simple templates.

In some cases it is necessary to configure the intermediate products manually to control their
further transformation stages. The OMG calls such a configuration model markings. Model
markings cannot be annotated directly in the PIM, because this would involve the risk of losing
platform independence. For consistency reasons, it is also critical not to modify the intermediate
models. We suggest the use of external model markings, as explained in Section 8.3.5.

12.2.6 Action Languages

At some point the justifiable objection that today you cannot model a complete software system
via UML (or other MOF-based languages) may have come to mind while reading this book. This
is partially true. Yet we have already shown that you can model domains to a large extent if you
limit the domain sufficiently, strongly standardize its concepts, and define a suitable DSL. Many
aspects will of course remain unresolved or impracticable: specifically, a way of specifying algo-
rithmic behavior is still missing.

To address this problem, the OMG defines the action semantics with UML 2.0, which also be
used with other MOF-based languages. Action semantics allow the modeling of procedural
behavior. Note that the OMG only defines only the abstract syntax, not a concrete syntax. The
semantics are described verbally. It is therefore up to the tool manufacturers to define their own
textual or graphical notations for standardized semantics. It is thus possible to represent the
same behavior both textually and graphically.

The action semantics comprise the following elements:

• Variables (instance handles): assigning, reading, also for sets of variables (sets, bags,
sequences)

c12.fm Page 244 Tuesday, February 28, 2006 4:51 PM

12.2 Core Concepts 245

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

• The usual arithmetic and logical operations
• Typical features of sequential programming languages such as switch, if, for, statements,

the block concept
• Instance creation, destruction of instances
• Class extents that can be prompted with SQL-like queries
• Navigation across associations
• Creation of links (instantiation of associations) and the deletion of links
• Generation of signals, including parameters
• Definition of functions with input and output parameters, and ways of calling them
• Timers

Action semantics do not contain structural constructs such as classes, attributes, and relation-
ships. These are already defined in the structural part of the model. Action semantics merely
define ‘behavioral building blocks’ that only make sense in connection with other (partial)
models. As a consequence, action semantics segments are always associated with elements of
the regular UML model, for example with the operations of classes, or onEntry actions in state
machines.

Here is a simple example of the use of action languages. Figure 12.3 shows the class diagram,
which serves as a basis for the example. We use the syntax that is also used in the tool iUML by
Kennedy Carter [IUML] for the concrete syntax for the action semantics.

First, we implement a ‘main program’ that works with instances of classes from Figure 12.3 and
creates an instance of the class Vehicle. Then we assign a value to the make and the model.

The with clause assigns values to the identifying attributes (see the «id» stereotype) as early as
during object creation, similar to passing constructor parameters in OO languages. Then we can
define an instance of Person that will subsequently become the driver.
We can now call the operation drive() to let the driver drive the vehicle.

Figure 12.3 A simple model to illustrate action semantics

myVWBus = create Vehicle with plate = "HDH-GS 142"
myVWBus.make = "Volkswagen"
myVWBus.model = "Transporter T4 TDI"

[actualDriver] = drive[aVehicle] on john

drive(v : Vehicle): Person

<<id>> name : String
age : int

Person

driver() : Person

<<id>> plate : String
make : String
model : String

Vehicle
11

vehicledriver

R1

name : String

Company1*

ownercompanyCar

R2

c12.fm Page 245 Tuesday, February 28, 2006 4:51 PM

246 The MDA Standard

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

What is still missing, of course, is the implementation of the operation drive(). The least it must
do is to instantiate the association R1 – that is, to create a link between the two relevant objects.

This establishes the bidirectional association between the Vehicle and a driver. Now you can ask
the car who is currently driving it. This corresponds with the implementation of the drive() oper-
ation of the class Vehicle.

Now we briefly introduce the query operations. Let’s assume that we want to find all the individ-
uals in the system:

The braces state that allPersons is a set of objects instead of just one. It’s also possible to limit
such a search. For example, all vehicles of the brand Audi can be looked for.

One could criticize the fact that action semantics are just another programming language. In
principle, this is correct, but it misses the point:

• One doesn't have to deal with platform specifics such as memory management, the defini-
tion of a link between two EntityBean instances, or the use of relational keys.

• We are dealing with ‘semantic building blocks’ here. The concrete syntax can look differ-
ent. In principle, the same could be accomplished with traditional languages, but this is not
common.

• Action semantics are totally integrated in the model: the concluding example clarifies this.

Let’s assume we are dealing with the trivial model in Figure 12.4. To the right we can see a few
lines of action language.

link this R1 aVehicle

theCurrentDriver = this.R1."driver"

{allPersons} = find-all Person

{audis} = find Vehicle where make = "Audi"

Figure 12.4 Another example of a model

R1
A B

11

theBtheA

1 a = create A
2 b = create B
3 link a R1 b
4 delete a;

c12.fm Page 246 Tuesday, February 28, 2006 4:51 PM

12.2 Core Concepts 247

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

During the mapping to a programming language – that is, during implementation code generation
– the following approximate code is generated:

The information for code generation is also taken from the structure diagram. The developer
only has to write the link... statement in ASL: the – potentially significantly more complex –
implementation code is generated automatically.

Let’s once more address the abstraction effect of action semantics. This textual representation
says nothing about its realization, of course. If the respective system is implemented with EJB,
for example, you would generate different code than you would were you generating the imple-
mentation for some embedded system.

12.2.7 Core Models

To be able to benefit as much as possible from the MDA, as many aspects as possible must be
standardized. This includes platforms — already done via J2EE, .NET, CORBA or Web Serv-
ices, at least on the technical level — and transformation languages, which happens in the con-
text of QVT (see Chapter 10). To allow users to model the application logic independently of the
platform, it is also necessary to standardize the metamodel for specific domains. Thus it not only
becomes possible to standardize the transformation languages, but also to capture reusable trans-
formation rules in transformation libraries. The developer models their application via the
standardized UML profile or metamodel for the respective domain, and commercial or Open
Source transformation modules generate the platform-specific code from it.

These standardized metamodels are called core models by the OMG in the context of the
MDA. Various core models are being developed5 currently that are at present all defined as
UML profiles. Among these are:

• UML profile for CORBA, which defines the mapping of PIMs to CORBA.
• UML profile for CCM, which defines the mapping to CCM, the CORBA component

model.
• UML profile for EDOC, which defines the metamodel for the definition of PIMs for dis-

tributed enterprise systems.

Line 1 Creation of a new instance of A, creation of variable a.

Line 2 Creation of a new instance of B, creation of variable b.

Line 3 Now things become more interesting: the attribute theB is assigned a pointer to b by a. Since
the association is bidirectional, b.theA will also automatically point to a. This is something
the programmer need not explicitly program – the generator can do this automatically using
the information in the class diagram.

Line 4 Due to the fact that B is compositionally associated with A, the generator can create code that
will delete instance b when a is deleted.

5 If this looks familiar to you it is probably because, prior to the introduction of MDA, attempts were made to stan-
dardize profiles for certain domains.

c12.fm Page 247 Tuesday, February 28, 2006 4:51 PM

248 The MDA Standard

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

• UML profile for EAI, which defines the metamodel for PIMs for EAI applications and
other loosely-coupled systems.

• UML profile for Quality of Service (QoS) and Fault Tolerance, for real-time and safety-
critical systems.

• UML profile for Schedulability, Performance and Time, which defines a metamodel for
PIMs whose real-time properties can be analyzed quantitatively.

• UML Testing Profile, which supports automated testing in MDA-based systems.

The current status of the various profiles can be looked up at [OMGP].

12.2.8 Controlling the PIM to PSM Transformation

In some cases the transformer cannot transform a model because the information in the source
model is not specific enough. For example, the target metamodel can offer different ways of
realizing a construct of the source metamodel. In [Fra02] David Frankel describes four alterna-
tives way of proceeding in such a case:

• You can encode into the transformation the fact that a particular alternative shall always be
used.

• The developer can define which of the alternatives shall be used manually.
• Developers can state directly in the PIM which alternatives should be used in the PSM as

model markings – see below.
• The decision criteria that let the transformer decide which alternative should be used can

be abstracted into the PIM (more about this later).

Model Markings

The MDA proposes the concept of model markings. Model markings are additional information
in a transformation's source model that control the transformation. These annotations depend
typically on the target metamodel. Figure 12.5 illustrates the principle.

Figure 12.5 An example of model markings

Source Model Target Model

Source
Meta Model

Target
Meta Model

Transformation

Mapping
Transformation Rules

Annotated
Source ModelAnnotations

<<instanceof>><<instanceof>>

c12.fm Page 248 Tuesday, February 28, 2006 4:51 PM

12.2 Core Concepts 249

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

J2EE again serves as an example here. In the PIM we define a BusinessEntity called Account. In
J2EE, BusinessEntities can be represented in two different ways: either as EntityBeans, or as
Stateless Session Beans that process data transfer objects. One could mark the source model as
shown in Figure 12.6.

It is important to ensure that the source model itself is not changed: instead, a ‘reference copy’ is
defined that contains additional information. Figure 12.7 illustrates this idea.

The marked PIM only contains model elements of the original PIMs that should be marked, or
rather, only the additional markings themselves. This means that the marked PIM does not need
to be adapted manually if the PIM is changed6.

Decision Criteria in the PIM

There is another option that allows you to work mostly without markings if you are prepared to
accept other consequences. This mechanism requires you to extend the source metamodel in
such a way that enough information is present in the model for the generator to choose between
the different alternatives. Figure 12.8 shows how this could appear:

Figure 12.6 An example of an entity with EJB-specific markings

Figure 12.7 The relationship between PIM and marked PIM

6 This clarifies how important it is for MDA that the modeling tools provide the according powerful repositories and
functionalities. Most of today's modeling tools have not reached this level yet.

{kind=EntityBean}

<<uniqueID>> number : int
balance : float

<<BusinessEntity>>
Account

PIM

<<uniqueID>> number : int
balance : float

<<BusinessEntity>>
Account

<<marks>>

....

Transaction
Processor

...

PIM with Markup

<<ref>>
Account

{kind=EntityBean}

c12.fm Page 249 Tuesday, February 28, 2006 4:51 PM

250 The MDA Standard

 c12.fm Version 0.3 (final) February 28, 2006 4:50 pm

The decision about which implementation alternative to use in which case in J2EE can now be
delegated to the J2EE transformations. Of course, the metamodel must be extended, and this is
not always possible. However, the metamodel is not extended using the concepts of the target
metamodel, but with general information that can be used by the transformer. This constitutes
an enrichment of the source metamodel, rather than a ‘pollution’ of it with target metamodel-
specific constructs.

12.2.9 Executable UML

The term executable UML is often heard in the context of MDA. This is not a formal standard,
but a collective term for various endeavors that all pursue the goal of establishing UML as a
fully-fledged programming language. To this end, UML must be purged of all redundancy and
ambiguities, resulting in executability of UML diagrams: the smaller the metamodel of the mod-
eling language (here UML), the easier it is to implement a compiler or an interpreter for it.
Another necessary ingredient of executable UML is an action language (see Section 12.2.6),
which is necessary to define complete implementations of software systems.

It is important to understand that – contrary to the MDSD approach – executable UML is
not a domain-specific profile of UML7. The idea is rather to define a universal, UML-based
programming language.

Further information about executable UML can be found in Steve Mellor's book [Mel02] or in
the documentation section of Kennedy Carter's iUML [IUML].

Figure 12.8 Entity with target-platform-independent markings

7 Unless you consider Turing-calculable functions a domain.

{concurrentWriteAccess=true,
bulkRead=false,

batchAccess=false}

<<uniqueID>> number : int
balance : float

<<BusinessEntity>>
Account

c12.fm Page 250 Tuesday, February 28, 2006 4:51 PM

251

 p03.fm Version 0.3 (final) February 28, 2006 6:11 pm

Part III
Processes and Engineering

After approaching the constructive and technical aspects of domain architectures in the Part II,
we now want to demonstrate how the domain architecture is created in the course of a project,
and how its creation can be synchronized with actual application development. A suitable proc-
ess is pivotal for the success of MDSD projects. This part of the book therefore examines MDSD
from the perspective of correct project execution, and introduces relevant process building
blocks, as well as engineering methods.

We start with a number of best practices that can be combined into a practical and pragmatic
development process. These include architecture elaboration/definition and an introduction to
product-line engineering. Next, we tackle testing and versioning in the context of MDSD. The
part concludes with two case studies: one looks at component-based development for distributed
embedded systems, the other one comes from the world of enterprise systems.

p03.fm Page 251 Tuesday, February 28, 2006 6:11 PM

p03.fm Page 252 Tuesday, February 28, 2006 6:11 PM

253

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

13 MDSD Process Building Blocks
and Best Practices

with Jorn Bettin

13.1 Introduction

This chapter introduces important proven process building blocks that enable and support the
successful use of Model-Driven Software Development in projects. We abstract from the archi-
tecture-centric case outlined in Chapters 2 and 3. The techniques that were used partly intuitively
in those chapters are explicitly elaborated, generalized, and detailed in this chapter.

Most processes and practices can quite easily be transferred to general – that is, non architec-
ture-centric – MDSD. Techniques that only make sense in architecture-centric cases, or that
require a specific interpretation, are explicitly marked as such. We are going to build on the
MDSD terminology defined in Chapter 4, so we recommend that you read that chapter first.

We do not intend to introduce a self-contained and complete development process – enough
literature is already available, ranging from agile to heavyweight. Instead, we are going to focus
on those process-related aspects that are specifically relevant in the context of MDSD. This also
means that there is a certain degree of freedom over how formally these best practices are
applied concrete projects.

We recommend that the best practices are embedded into an iterative-incremental, and in par-
ticular, agile development method. MDSD does not conflict with the latter, but is in fact well
suited to enhance its advantages. Theoretically, MDSD can even be combined with a waterfall
development process. However, the well-known risks of waterfall approaches remain, which is
why we – quite independently of MDSD – regard them critically.

13.2 Separation Between Application and Domain
Architecture Development

13.2.1 The Basic Principle

In the case study in Chapter 3 we saw the advantages that are gained from the separation of
domain-related application development and technical infrastructure. We are able to formalize
and generatively support the software architecture completely independent of the concrete

c13.fm Page 253 Tuesday, February 28, 2006 5:08 PM

254 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

application. In our example, we obviously dealt with the architecture-centric case: the domain
was software infrastructure for e-business applications. A domain architecture with a corre-
spondingly architecture-centric DSL (UML profile), a corresponding platform (J2EE and
Struts), and suitable generator templates were developed. If we now generalize the principle,
we get Figure 13.1.

One of the most important basic ideas behind MDSD is the realization that the formal modeling
step implies two prerequisites that are not without reciprocity, but which can for the most part be
developed in parallel:

• The functional/professional requirements for an iteration or an increment of the concrete
application must be known.

• The formal language to be used for modeling (the DSL) must be defined. In addition, for
automatic further processing, the language must be bound to the concrete MDSD platform
in the shape of transformation rules. This is what the term domain architecture sums up
(Chapter 4).

As its name indicates, the domain architecture formalizes and supports a domain. In principle,
this domain is independent of a single application (unique product), or in other words, it covers a
software system family.

The activity diagram in Figure 13.1 should not be misunderstood as a waterfall process. It pri-
marily shows the basic principle on which each iteration is based, independently of its weighting.

Formal modeling serves to connect the concrete application’s concepts with the concepts pro-
vided by the domain architecture – more precisely, the functionality is expressed in the language
(DSL) provided by the domain architecture. The formal model is then transformed with the gen-
erator’s support and mapped to the platform. We have already seen how this can look in an archi-
tecture-centric case, and an example from the embedded systems domain is given in Chapter 16.
In the case of the insurance domain, the DSL could contain constructs relevant for the insurance

Figure 13.1 Domain-related analysis and domain architecture as a basis for formal
modeling

Application
Analysis

Domain Architecture
Development

Formal Modeling /
Design

c13.fm Page 254 Tuesday, February 28, 2006 5:08 PM

13.2 Separation Between Application & Domain Architecture Development 255

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

domain, for example by supporting effective modeling of insurance products. In consequence,
the platform would consist of prefabricated domain-specific components such as tariff calculator
or contract data entry, and the transformations would for example generate configurations for the
domain-specific components from the insurance product model, which would then be evaluated
at runtime. An insurance application could thus be created 100% automatically from the model.
In contrast to the architecture-centric case, this use case does not require any manual coding.

The basic principle introduced above suggests that one should also apply the separation
between application and domain architecture development for the process and organizational
level, as well to maximize the positive effects. Accordingly, we suggest a separation of the
(domain) architecture development thread and the application development thread.

13.2.2 Domain Architecture Development Thread

There are several artifacts and activities that are necessary or helpful for the creation of a domain
architecture. The MDSD architecture development thread aims at reusability as well as at quality
and efficiency enhancement. From a process perspective, it is the central aspect of MDSD.
Figure 13.2 therefore first zooms in on the creation of a domain architecture activity, as dis-
cussed in the previous section.

The partitions displayed in the diagram divide the activities into the categories domain, trans-
formation, and platform. In each category, artifacts of the domain architecture are produced
(shown in light gray). Only the normal case scenario with the most important dependencies is
shown here, because – in our experience – including everything else would obscure the essential
issues. In particular, no iteration cycles are shown.

Figure 13.2 Creation of a domain architecture

Platffrom
(initial)

Platform

Domain Analysis/
Design

DSL/
Metamodel

Develop DSL
Editor

Develop Reference
Model

Prototyping

Develop Reference
Implementation

Derive
Transformations

Transfor-
mations

Document
Programming Model

Programming
Model

Develop Platform

MDSD
Plattform

Domain Transformations

Platform
(initial)

Reference
Implementation

Reference
Model

c13.fm Page 255 Tuesday, February 28, 2006 5:08 PM

256 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

At the beginning of a project, a complete iteration though the stages shown in Figure 13.2 can
take several weeks, compared to a couple of hours or even minutes in the course of the project,
depending on the scope of the extensions or modifications. Parts of the domain architecture
might already be present at project start-up (for example re-use), or a derivative of an existing
domain architecture might be created.

At the beginning of a project we recommend an elaboration phase in which the architecture
development thread is initially run completely, as a kind of bootstrapping activity for the project.
This can be omitted if the project is conducted on familiar territory, for example if it is part of an
existing software system family.

The following sections list the most important steps (actions/activities) and result types in detail.

Prototyping

A platform that is supposed to be used is often already in existence at the beginning of a
project, such as J2EE or specific frameworks. One goal of the MDSD architecture development
thread is to merge these artifacts with a semantically-rich and domain-specific MDSD platform
(Section 7.6). To this end, it always makes sense first to gather experience with a prototype in
terms of a proof of concept. Among other things, this prototype can also be considered a first
step towards the MDSD platform.

Developing the Platform

We defined the term MDSD platform in Chapter 4 and explained its constructive aspects in
Chapter 7. The term runtime system is used synonymously. Runtime system components are
ideal candidates for re-use, even across the boundaries of software system families.

As we have seen, the platform constitutes the foundation on which to base generated and non-
generated code, and for keeping transformations simple. The generative portion of the domain
architecture possesses a dependency on the runtime system components (platform) used, but the
opposite is not true.

Development of the platform should also progress iteratively. Refactoring techniques (see
[Fow99]) can be applied beneficially in this context.

It should also be observed that the border between platform and generated code can change in
the course of the domain architecture’s evolution, in either direction. Chapter 7 elaborated the
criteria for this.

Creating a Reference Implementation

The reference implementation is merely an intermediate result of the MDSD architecture devel-
opment thread, but a very important one when it comes to the creation of a domain architecture.

The reference implementation should not be misinterpreted as a simple, isolated example
from which one can derive suggestions for implementation if necessary. It can be created from a
prototype, but serves a more significant purpose: together with the reference model/design, it
demonstrates the application and realization of the DSL belonging to the domain. This two-part

c13.fm Page 256 Tuesday, February 28, 2006 5:08 PM

13.2 Separation Between Application & Domain Architecture Development 257

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

reference exemplifies the transition from model to implementation on the respective platform.
For a new software system family, the reference implementation is first created by hand. Later,
the transformations are derived from it. The generative implementation of the reference model,
possibly plus the manually programmed domain logic, must then result in a runnable reference
implementation.

The full added value of a reference implementation will only be obtained from the interplay
between the reference implementation and a reference model (and thus a DSL – see below).
The concrete functional content of a reference implementation per se is irrelevant – only the
domain matters. Yet as a rule a more or less sensible use case is implemented, if only in a mini-
malistic form. Sufficient coverage of the DSL’s constructs and their combinations is much more
important. At the same time, the reference implementation demonstrates the use of the MDSD
platform and its API.

For a new software system family, the reference implementation is first created completely by
hand, but as soon as automatic transformations are available, the reference implementation is
reduced to manually-programmed domain logic, if it exists. The rest of the application can then
be generated from the reference model.

If you already have a number of applications in a specific domain and want to switch to a
model-driven development process, the domain architecture can also be extracted from the exist-
ing applications, as long as the implementations are well-structured. This is often not the case
with typical legacy applications, however.

It is also important to note that the domain architecture’s evolution, and particularly the early
stage of bootstrapping (such as DSL definition and stabilization), will usually have repercus-
sions for the reference implementation, and maybe also for the platform. This is completely nor-
mal in the context of iterative-incremental software development: a strict waterfall model would
most likely be counterproductive here.

Domain Analysis/Design

This activity primarily serves to find the domain’s metamodel and a suitable, concrete DSL.
Here we only list the best practices for constructing a DSL.

An architecture-centric DSL is also called a design language. The use of UML as its basis
is typical (but not mandatory) for such a design language, as the case study in Chapter 3
shows in depth. UML is completely unusable for some aspects, however, such as for example
the modeling of a GUI layout, so that one may have to use another notation. Ultimately the
concrete syntax always assumes a less important role than the abstract one (see Chapter 4 and
Section 11.2.2).

The following rules should be observed when designing any DSL:

• The DSL should be as abstract and as free of any technical terms that constitute an imple-
mentation detail of the MDSD platform as possible, for example the use of EntityObject
instead of EntityBean as a stereotype. This measure leads to models whose technical reali-
zation will only be recognized in the context of a platform binding. This makes later
migration or architectural changes, for example, easier. Such DSLs are also reusable for
various software system families. We have sometimes intuitively labeled such models plat-
form-independent (PIM), but this expression is relative (see Chapter 4): typically, models

c13.fm Page 257 Tuesday, February 28, 2006 5:08 PM

258 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

are independent of an industry standard platform such as J2EE, but dependent on the con-
cepts of the MDSD platform of the domain architecture, because the DSL precisely serves
the purpose of enabling the use of these concepts on the model level.

• If possible, the DSL should cover all relevant concepts of the domain with language ele-
ments. Ideally, all schematically-implementable code fragments of the reference imple-
mentation should be covered by constructs of the DSL. Our case study exemplifies this:
The stereotypes «Entity», «ProcessObject», «Presentation», «SystemUseCase», «Activity
Controller», «ControllerState» and so on name and cover precisely the architectural con-
cepts of our example domain architecture.

• The DSL should be as compact as possible and not have any redundancy. It can also pos-
sess dynamic constructs, for example to map business processes and controller logic in the
shape of activity or state diagrams.

• The DSL must make the well-formedness of models verifiable. It must be guaranteed that
all modeling notations offered by the base language are excluded, in case they are not legal
for the DSL, especially if the DSL is a specialization of a more general language, such as a
UML profile as a specialization of the UML.

With the conception of the DSL, the architect inevitably also draws the dividing line between
generated code and domain logic – and thus the degree of freedom of the developers. One
extreme is the attempt to expand the DSL to such an extent that manual programming is no
longer needed (see Chapters 4 and 7). These days, this approach – if applied in the extreme – is
neither practicable nor useful for typical business applications in the context of architecture-
centric development.

The pivotal question here is which implementation aspects should be covered by an architecture-
centric DSL and which should not. The following questions can serve as a guideline:

• Does the reference implementation feature code fragments with copy-paste characteristics
that have not been generated yet?

• Would modeling of these aspects be simple and compact, or would it in contrast require
even more effort and be more comprehensive than manual coding?

This important assessment requires some experience and sensitivity toward the subject matter.
The DSL must be documented in order to be usable. This includes the following aspects:

• The concrete syntax, for example a UML profile or an XML schema.
• The abstract syntax, for example as a MOF diagram – see Chapter 6.
• The static semantic — that is, constraints or modeling rules: which constructs are not

allowed, which are mandatory. In the case of a UML-based modeling language, this is a
part of the profile (see Chapter 3).

• The semantics — the meaning of the language constructs in textual form. The semantics
are formally defined by the reference implementation and the transformation rules, so
their definition is geared to a concrete platform. To avoid this, and to increase its reusabil-
ity level, the semantics should be described in as general form as possible, using the archi-
tectural concepts rather than the platform itself.

• An example model, for example, the reference design (see the next section)

c13.fm Page 258 Tuesday, February 28, 2006 5:08 PM

13.2 Separation Between Application & Domain Architecture Development 259

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

The definition of an adequate modeling language is certainly one of the greatest challenges in
MDSD. Section 13.5 offers a couple of concrete tips. Some practical experience, or an existing
basis such as the UML profile from this book’s first case study, are required. From that point the
modeling language can undergo evolutionary development. For example, it is typical for it to
take a while before one notices that the original design of specific modeling constructs is not
sufficiently abstract and needs to be generalized. Refactoring is therefore a strong ally at this
metalevel. Admittedly, fundamental changes in the abstract syntax – of the actual language
structure – and the semantics can bring about extensive changes of existing transformation rules.
In contrast, language extensions are uncritical. During the elaboration phase an adequate empha-
sis should be put on the DSL, so that the transformation rules are only derived when reference
implementation and reference design are coherent.

As a rule, modeling languages are not created in a vacuum. To get a feel for whether the cho-
sen constructs are adequate and ergonomic, you have to use the language in practice. This pur-
pose is being served by the reference design.

Creating the Reference Model/Design

The reference model is an instance of the DSL, in that it expresses a domain example via the
means of the DSL.

The interplay with the reference implementation is important: the reference model and the
reference implementation together exemplify the syntax and semantics of the DSL, and thus
make concrete the concept of the domain architecture in detail.

Documenting the Programming Model

The definition of a programming model is only relevant if the domain architecture contains
‘semantic gaps«, meaning that a code framework emerges via the model transformation that
must be supplemented by the application developer in a programming language to enable the
creation of a runnable application.

We established the term programming model in Chapter 7. CORBA, for example, defines an
abstract interface definition language (IDL) with mappings to various programming languages
such as C++ and Java. The programming model of the respective language mapping then defines
naming conventions for the mapping of IDL constructs to language constructs such as classes,
attributes, and methods. These conventions are obeyed by the IDL compiler (generator), which
generates the respective signatures and skeletons. Generation from the IDL definition creates a
defined API that allows application developers to program the application logic. The programming
model defines specific idioms and patterns that describe how to treat the respective architecture
correctly – not all rules can be automatically checked by the compiler or the runtime system.

Transferred to MDSD, the programming model describes the application developer’s view of
the domain architecture, or more precisely, transformations or generated code and platform, as
well as rules for how to handle it correctly. The goal is among others to make it transparent to the
developer which programming language-related artifacts are created from the DSL’s constructs
that are relevant to them. An association present in the model, for example, can mean a set of
access operations, such as getElementAt(), addElement(), removeElement() and so on, on the

c13.fm Page 259 Tuesday, February 28, 2006 5:08 PM

260 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

implementation level. From the developer’s viewpoint, the implementation is irrelevant: they
only needs the signatures. These will then constitute the programming model of the DSL associ-
ation thus denoted.

The programming model is quite easily to document in table form. The table contains –
besides the respective construct of the DSL – a reference to an adequate excerpt of the reference
model and the reference implementation. Opinions over the need for explicit documentation of
the programming model vary, but the deliberate definition in the form of MDSD transformation
and platform API is necessary. The reference implementation constitutes an implicit documenta-
tion. However, if the programming model contains ‘do’s’ and ‘don’ts’ that cannot be enforced or
controlled via tools, explicit documentation is mandatory.

It turns out that a tutorial in the form of a walkthrough that explains to developers how to
develop concrete applications using the DSL is most appropriate. Such a tutorial should cover
the DSL as well as other aspects of the programming model, including the code that needs to be
written manually, or how to operate/integrate the generator tool.

The initial programming model and its documentation are typically constructed in the course of
the elaboration phase. The programming model is also subject to iterative improvements, of course.

Deriving Transformations

This activity formalizes the mapping of a DSL to a platform and programming model, to the
extent that an automatic transformation can transform a given application model into an imple-
mentation or a skeleton.

In our case study a set of generator templates was created in this step. The templates were
derived from the reference implementation with the help of the reference model. The generator
framework used in the case study in Chapter 3 relocates part of the metaprogramming to the cre-
ation of a DSL’s metamodel, implemented in Java. From the process viewpoint, this separation is
merely an implementation detail and thus irrelevant.

If the domain logic of an application cannot entirely be expressed by the DSL, techniques for
the integration of generated and non-generated code are needed (see Chapter 7).

Creating a DSL Editor

Not all DSLs are UML profiles, so that a standard tool can be applied, with varying degrees of
effectiveness. In the case of highly-specialized domains it is common practice and advisable to
create a specific tool for defining DSL-conforming models, for example to further increase the
ergonomics and therefore the efficiency of the MDSD approach. It comes down to a question of
the cost-value ratio, which can only be answered for each individual case. This topic is consid-
ered further in Section 13.5.

13.2.3 Application Development Thread

This section deals with the viewpoint of the application developer’s who works with a given
domain architecture (see Figure 13.3). (We see this as a role.)

c13.fm Page 260 Tuesday, February 28, 2006 5:08 PM

13.2 Separation Between Application & Domain Architecture Development 261

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

Here too the simple, normal case without iteration cycles is displayed. One cycle can take any-
thing from a couple of days to only minutes, depending on the intensity of the single steps.

Formal Modeling/Design

The analysis and architectural threads meet in this step: the functional requirements are now
expressed in the domain architecture’s language – the DSL. The reference model serves as an
orientation guide in this context. This step constitutes a real gain of information and insight and
therefore cannot be automated.

A working feedback loop to the architecture development thread should be established here,
because deficiencies or errors in the DSL are regularly discovered, especially in the early stages
of a domain architecture. It is also typical for the potential for further automation to be discov-
ered during application development, which leads to extension or even generalization of the DSL.

Generation

This step can be executed purely mechanically. No information gain occurs when compared to
the formal model: it is transformed automatically into a form suitable for the MDSD platform via
the domain architecture’s transformations. During this process integration points for manually-
programmed domain logic can emerge in defined locations. These can be protected regions,
whose content remains intact during iterative regeneration, or implementation classes to which
the implementation framework delegates (Section 8.2.6).

Manual Implementation

Domain logic that cannot be expressed in the DSL must be added manually after generation has
taken place. In our case study, these are exactly the contents of the protected regions in the
implementation skeleton.

Repercussions for the domain architecture can occur even during implementation. The project’s
organization must allow for the necessary feedback loops.

Figure 13.3 Activities in the application development thread

Application
Analysis

Formal Modeling/
Design

Transformation/
Generation

Manual
Implementation

Domain
Architecture

c13.fm Page 261 Tuesday, February 28, 2006 5:08 PM

262 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

Organizational Aspects

The separation between application development and domain architecture development should
ideally be supported not only by a suitable process structure, but also by adapting the organiza-
tional structure of a team, project, or company. These are treated in Chapters 19 and 15.

13.3 Two-Track Iterative Development

We have now discussed the separation of roles and artifacts between application development
and domain architecture development. This section is about the synchronization of both threads.
There is obviously a dependency from application development to domain architecture develop-
ment – in the same way that you might depend on the development of a framework that you use.
From a requirement management viewpoint, this means that the application development team
assumes the customer’s role for domain architecture development.

When developing the domain architecture, you should simultaneously also develop at least
one application based on that domain architecture as if it were a separate project. In practice,
this means that in one iteration the application developers always use the domain architecture
developed in the last iteration, so that they are always one iteration step ahead of the application
developers. Make sure that the application developers always provide feedback to the domain
architecture developers.

New versions of the domain architecture are always integrated at the beginning of an iteration.
To reach a sufficient level of agility during the development process, iterations should not take
longer than a maximum of four to six weeks. Ideally and to simplify matters, we recommend that
a fixed timeframe is set for all iterations (timeboxing). This leads to a regular development
rhythm that the teams will get used to.

Note that the incremental, iterative process based on synchronized timeboxes does not exclude a
domain analysis prior to entering the iterative cycle. On the contrary, a good understanding of
the basic concepts of the domain is actually needed. As soon as application development is
under way, further domain analysis takes place iteratively – as part of the architecture develop-
ment thread that is now delegated to a project of its own.

Figure 13.4 Iterative two-track development

Application
Development
(Iteration n)

Infrastructure
Development
(Iteration n+1)

Integration
and

Feedback
Feedback

c13.fm Page 262 Tuesday, February 28, 2006 5:08 PM

13.4 Target Architecture Development Process 263

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

Infrastructure teams (the domain architecture developers) sometimes show a tendency to jump
at interesting technologies to impress the world – of course with the best intentions – with some
new ‘silver bullet’. This risk is alleviated most efficiently by the formation of an architecture
group that consists of representatives from the application development team (see Chapter 19).
Such a group is entitled to determine the functionality and features of infrastructure develop-
ment via scope trading from iteration to iteration, and decides over the acceptance of infrastruc-
ture functionality via the validation of (domain architecture) iterations. This guarantees that the
developed domain architecture constitutes real added value for application development and
actually supports application developers in their everyday work.

Timeboxing with a fixed budget, scope trading, and validation of iterations are agile tech-
niques that support iterative requirements management and can be particularly helpful in combi-
nation with two-track, iterative development for MDSD. Here, we only want to sum up the basic
ideas in a few sentences, because these topics are in principle independent of MDSD.

A fixed budget is available for each timebox. At the beginning of each iteration, the features
and priorities for the iteration are negotiated with stakeholders, for example customers and end
users, in a scope-trading workshop. For reasons of risk minimization, architectural aspects must
be considered as well. The timebox budget must not be exceeded. Within the timebox, the fea-
ture set remains constant, so that developers can pursue their goal of delivering software that can
be validated at the end of the timebox. The validation at the end of an iteration conducted by the
stakeholders decides which features meet the requirements and which features must be reengi-
neered. New requirements that have been recognized in the meantime are reprioritized on an
equal footing with unfulfilled requirements.

Further sources dealing with these topics can be found on the Web at http://www.mdsd.info.
In the context of MDSD these practices can be especially helpful for establishing a working

feedback loop between application development and domain architecture development. In this
context the application developers serve as a representative team of scope trading stakeholders
in domain architecture development.

13.4 Target Architecture Development Process

Best practices for the domain architecture development process are one thing. Other important
concerns are:

• How do you come up with a reasonable target architecture?
• How do you make it ‘ready for MDSD’?
• How do you implement it in non-trivial projects?

The following sections provide some help in this area: they deal with process best practices,
with a focus on the target architecture – which of course is reflected by the domain architecture
at the metalevel too. In other words, it’s a relevant perspective for all activities in the architec-
ture development thread introduced above. Many of the following statements and suggestions
concerning target architecture development are independent of MDSD, but some of them are
MDSD-aware, as we will see.

Software architecture is generally too technology-driven. You hear statements such as “We have
a Web Service architecture”. This statement is not very informative, because it describes only one

c13.fm Page 263 Tuesday, February 28, 2006 5:08 PM

264 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

aspect of the overall system (its communication), and because Web Services are a particular
implementation technology for that aspect. There is much more to say about the architecture, even
about its communication aspects, than just a realization technology. The same is true of ‘EJB
architectures’ or a ‘thin-client architecture’. Too early a commitment to a specific technology usu-
ally results in blindness to the concepts and too tight a binding to the particular technology. The
latter in turn results in a complicated programming model, bad testability, and no flexibility to
change the technology as QoS requirements evolve. It obscures really important issues.

Another problem is the ‘hype factor’. While it is good practice to characterize an architecture
as implementing a certain architectural style or pattern [POSA1], some of the buzzwords used
today are not even clearly defined. A ‘service-based architecture’ is a classic. Nobody knows
what this really is, and how it is different from well-designed component-based systems. There
are many such misunderstandings. People say ‘SOA’, and others understand ‘Web Service’!
Also, since technologies are often hyped, a hype-based architecture often leads to too early – and
wrong – technology decisions.

Another problem is what we usually call industry standards. A long time ago, the process of
coming up with a standard was basically as follows: try a couple of alternatives, see which one is
best, set up a committee that defines the standard based on previous experiences. The standard is
therefore usually close to the solution that worked best. Today this is different. Standards are
often defined by a group of (future) vendors. Either they already have tools, and the standard
must accommodate all the solutions of all the tools of all the vendors in the group, or, there is no
practical previous experience and the standard is defined from scratch. As a consequence of this
approach, standards are often unusable because there was no previous experience, or overly
complicated (because it must satisfy all the vendors). Thus, if you use standards for too many
aspects of your system, your system will be complicated!

Finally, there’s politics.
All these factors, taken together, prevent people from thinking about the really relevant

aspects of an architecture. In our opinion these include architectural patterns, logical structures
(architectural metamodels), programming models for developers, testability, and the ability to
realize key QoS concerns.

The following sections sketch what we consider a reasonable approach to software architec-
ture – that is, MDSD-target-architecture. It also paves the way for automation of many aspects of
software development, a key ingredient to MDSD and product-line engineering.

We are not the only ones seeing this problem in current software architecture, of course. There
are good architectural resources that you should definitely read, such as [POSA1], [POSA2], and
[POSA3], as well as [JB00], [VSW02] and [VKZ04].

13.4.1 Three Phases

The development of a software architecture, especially one that can be used in the context of
MDSD, should be executed in three phases. In each of these phases certain core artifacts are cre-
ated – these are highlighted in smallcaps in the following:

• Elaboration. In the first phase, the elaboration, you define a TECHNOLOGY-INDEPENDENT

ARCHITECTURE. Based on it, you define a workable PROGRAMMING MODEL for the devel-
opers that work with the architecture. To let developers run their applications locally, a

c13.fm Page 264 Tuesday, February 28, 2006 5:08 PM

13.4 Target Architecture Development Process 265

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

MOCK PLATFORM is essential. Finally in this phase, you define one or more TECHNOLOGY

MAPPINGS that project the TECHNOLOGY-INDEPENDENT ARCHITECTURE on a particular
platform that provides the required/desired QoS features. A VERTICAL PROTOTYPE verifies
that the system performs as desired – here is where you run the first load tests and opti-
mize for performance – and that developers can work efficiently with the PROGRAMMING

MODEL.
• Iteration. The second phase iterates over the steps in the first phase. While we generally

recommend an agile approach, we emphasize the fact that you typically don’t get it right
first time. You usually have to perform some of the steps several times, especially the
TECHNOLOGY MAPPING and the resulting VERTICAL PROTOTYPE. It is important that you do
this before you dive into Phase 3, automation.

• Automation. The third phase aims at automating some of the steps defined in the first
phase and refined in the second phase, making the architecture useful for larger projects
and teams. First, you will typically want to GENERATE GLUE CODE to automate the TECH-
NOLOGY MAPPING. Also, you might often notice that even the PROGRAMMING MODEL

involves some tedious repetitive implementation steps that could be expressed more
briefly with a DSL-BASED PROGRAMMING MODEL. Finally, MODEL-BASED ARCHITECTURE

VERIFICATION helps to ensure that the architecture is used correctly even in large teams.

In the following sections we outline each of these steps, while an example of this approach is
given in the case study in Chapter 17.

13.4.2 Phase 1: Elaborate

The best practices of this phase are relevant for the activities of prototyping, document program-
ming model and platform development of our domain architecture development thread.

Technology-Independent Architecture

How do you define a software architecture that is well-defined, long-lived and feasible for use in
practice? The architecture has to be reasonably simple and explainable on a beer mat. You want
to make sure that the architectural concepts can be communicated to stakeholders and develop-
ers. Implementation of functional requirements should be as efficient as possible. The architec-
ture must survive a long time, longer than typical hype or technology cycles. The architecture
might also have to evolve with respect to QoS levels such as performance, resource consump-
tion, or scalability.

To achieve these goals, define the architectural concepts independently of specific technolo-
gies and implementation strategies. Clearly define concepts, constraints, and relationships of
the architectural building blocks – a glossary or an ARCHITECTURAL METAMODEL can help here.
Define a TECHNOLOGY MAPPING in a later phase to map the artifacts defined here to a particular
implementation platform. Use well-known architectural styles and patterns here. Typically
these are best practices for architecting certain kinds of systems independently of a particular
technology. They provide a reasonable starting point for defining (aspects of) your system’s
architecture.

c13.fm Page 265 Tuesday, February 28, 2006 5:08 PM

266 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

If you use less complicated technology, you can focus more on the structure, responsibilities,
and collaborations among the parts of your systems. Implementation of functionality becomes
more efficient, and you don’t have to educate all developers with all the details of the various
technologies that you’ll eventually use.

However, the interesting question is: how much technology is in a technology-independent
architecture? For example, is AOP1 ok? In our opinion, all technologies or approaches that pro-
vide additional expressive concepts are useful in a TECHNOLOGY-INDEPENDENT ARCHITECTURE.
AOP is such a candidate. The notion of components is also one such concept. Message queues,
pipes and filters, and, in general, architectural patterns are also useful.

When documenting and communicating your TECHNOLOGY-INDEPENDENT ARCHITECTURE mod-
els are useful. We are not talking about formal models as they’re used in MDSD – we’ll take a look
at these later. Simple box and line diagrams, layer diagrams, sequence, state or activity charts can
help to describe what the architecture is about. They are used for illustrative purposes, to help rea-
son about the system, or to communicate the architecture. For this very reason, they are often
drawn on beer mats, flip charts, or with the help of Visio or PowerPoint. While these are not for-
mal, you should still make sure that you define what a particular visual element means intuitively –
boxes and lines with no defined meaning are not very useful, even for informal diagrams.

Programming Model

Once you have defined a TECHNOLOGY-INDEPENDENT ARCHITECTURE and your architecture is
rolled out, developers have to implement functionality against it.The architecture is a conse-
quence of many non-functional requirements and the basic functional application structure,
which might make the architecture non-trivial and hard to comprehend for developers. How can
you make the architecture accessible to (large numbers of) developers?

To make sure that it’s benefits can actually materialize, you want to make sure the architecture
is used correctly. You have developers of differing qualifications in the project team. All of them
have to work with the architecture. You want to be able to review application code easily and
effectively. Your applications must remain testable.

To achieve all this, define a simple and consistent programming model. A programming
model describes how an architecture is used from a developer’s perspective. It is the ‘architecture
API’. The programming model must be optimized for typical tasks, but allow for more advanced
applications if necessary. Note that a ‘how to’ guide that walks developers through the process of
building an application is a main constituent of a programming model.

The most important guideline when defining a programming model is usability and under-
standability for the developer. This is the reason why the documentation for the programming
model should always be in the form of tutorials or walkthroughs, not as a reference manual!
Frameworks, libraries, and – as we’ll see in DSL-BASED PROGRAMMING model on page 270 –
domain-specific languages are useful here.

Sometimes it is not possible to define a programming model completely independently of the
platform on which it will run (see the next section, TECHNOLOGY MAPPING). Sometimes the plat-
form has consequences for the programming model. For example, if you want to be able to
deploy something as an Enterprise Bean, you should not create objects yourself, since this will

1 Aspect-Oriented Programming [Lad03].

c13.fm Page 266 Tuesday, February 28, 2006 5:08 PM

13.4 Target Architecture Development Process 267

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

be done later by the application server. There are a couple of simple guidelines that can help you
to come up with a programming model that stands a good chance of being mapped to various
execution platforms:

• Always develop against interfaces, not implementations
• Never create objects yourself, always use factories
• Use factories to access resources (such as database connections)
• Stateless design is a good idea in enterprise systems
• Separate concerns: make sure a particular artifact does one thing, not five.

A good way to learn more about good PROGRAMMING MODELS and TECHNOLOGY-INDEPENDENT

ARCHITECTURE can be found in Eric Evans wonderful book on domain-driven design [Eva03].
One of the reasons why a technology decision is made early in the project is political pressure

to use a specific technology. For example, your customer’s company might already have a global
lifetime license for IBM’s Websphere and DB2: you therefore have no option but to use those.
You might wonder whether the approach based on a TECHNOLOGY-INDEPENDENT ARCHITECTURE

and explicit TECHNOLOGY MAPPINGS can still work. If the imposed technology is a good choice,
the benefits of the approach described here still apply. If the technology is not suitable (because
it is overly complicated or unnecessarily powerful), life with the technology will be easier if you
isolate it in the TECHNOLOGY MAPPING.

Technology Mapping

Your software has to deliver certain quality of service (QoS) levels. Implementing QoS as part of
the project is costly. You might not even have the appropriate skills in the team. Also, your sys-
tem might have to run with different levels of QoS, depending on the deployment scenario.You
don’t want to implement the advanced features that enable all the non-functional requirements
yourself. You want to keep the conceptual discussions, as well as the PROGRAMMING MODEL,
free from such technical issues.

Therefore, map the TECHNOLOGY-INDEPENDENT ARCHITECTURE to a specific platform that
provides the required QoS. Make the mapping to the technology explicit. Define rules about how
the conceptual structure of your system (the metamodel) can be mapped to the technology at
hand. Define those rules clearly to make them amenable for GLUE CODE GENERATION.

Decide about standards usage here, not before. As mentioned, standards can be a problem, but
they can also be a huge benefit. For issues that are not related to your core business, using stand-
ards is often useful. But keep in mind: first solve the problem, then look for a standard, not the
other way around. Make sure PROGRAMMING MODEL hides the complexity too.

Use technology-specific design patterns here. Once you decided on a specific platform, you
have to make sure you use it correctly. A platform is often not easy to use. If it is a commonly-
used platform, though, platform-specific best practices and patterns should be documented.
Now is the time to look at these and use them as the basis for the TECHNOLOGY MAPPING.

Let’s recap: the TECHNOLOGY-INDEPENDENT ARCHITECTURE defines the concepts that are
available to build systems. The PROGRAMMING MODEL defines how these concepts are used from
a developer’s perspective. The TECHNOLOGY MAPPING defines rules about how the PROGRAM-
MING MODEL artifacts are mapped to a particular technology.

c13.fm Page 267 Tuesday, February 28, 2006 5:08 PM

268 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

The question is now, which technology should you chose? In general this is determined by the
QoS requirements you have to fulfill. Platforms are good at handling technical concerns such as
transactions, distribution, threading, load-balancing, failover, or persistence – you don’t want to
have to implement these yourself. So always use the platform that provides the services you
need, in the QoS level you are required to deliver. Often this is deployment-specific.

Sometimes you have to decide on your platform based on politics, of course. If a company
builds everything on Oracle and Websphere, you’ll have a hard time arguing against these.
However, the process based on this and the two aforementioned best practices, TECHNOLOGY-
INDEPENDENT ARCHITECTURE and PROGRAMMING MODEL, IS still useful, because it allows you
to understand the consequences of not using the ideal platform. You might have to use a com-
promise, but at least you will know that it is one!

Mock Platform

Based on the PROGRAMMING MODEL, developers now know how to build applications. In addi-
tion to that, developers have to be able to run (parts of) the system locally, at least to run unit
tests. How can you ensure that developers can run ‘their stuff’ locally without caring about the
TECHNOLOGY MAPPING and its potentially non-trivial consequences for debugging and test
setup? You also want to ensure that developers can run their code as early as possible. You want
to minimize dependencies of a particular developer on other project members, specifically those
caring about non-functional requirements and the TECHNOLOGY MAPPING. You have to make
sure developers can efficiently run unit tests.

Define the simplest TECHNOLOGY MAPPING that could possibly work. Provide a framework
that mocks or stubs the architecture as far as possible. Make sure that developers can test their
application code without caring about QoS and technical infrastructure.

This mock platform is essential in larger and potentially distributed teams to allow developers
to run their own code without caring too much about other people or infrastructure. This is
essential for unit testing! Testing one’s business logic is simple if your system is well modular-
ized. If you stick to the guidelines given in the PROGRAMMING MODEL (interfaces, factories, sep-
aration of concerns) it is easy to mock technical infrastructure and other artifacts developed by
other people.

Note that it’s essential that you have a clearly-defined programming model, otherwise your
TECHNOLOGY MAPPING will not work reliably. Also, the tests you run on the MOCK PLATFORM

will not find QoS problems – QoS is provided by the execution platform.

Vertical Prototype

Many of the non-functional requirements your architecture has to realize depend on the technol-
ogy platform, which you selected only recently in the TECHNOLOGY MAPPING. This aspect cannot
be verified using the MOCK PLATFORM, since it ignores most of these aspects. The mapping
mechanism might even be inefficient. How do you make sure you don’t run into dead-ends? You
want to keep your architecture as free of technology-specific concerns as possible. However, you
want to be sure that you can address all the non-functional requirements. You want to make sure
you don’t invest into unworkable technology mappings.

c13.fm Page 268 Tuesday, February 28, 2006 5:08 PM

13.4 Target Architecture Development Process 269

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

Thus, as soon as you have a reasonable understanding of the TECHNOLOGY-INDEPENDENT

ARCHITECTURE and the TECHNOLOGY MAPPING, make sure you test the non-functional require-
ments. Build a vertical prototype: an application that uses all of the above and implements it
only for a very small subset of the functional requirements. This specifically includes perform-
ance and load tests.

Vertical prototypes are a well-known approach to risk reduction. In the approach to architecture
suggested here, the vertical prototype is even more critical than in other approaches, since you
have to verify that the programming model does not result in problems with regard to QoS later.
You have to make sure the various aspects you define in your architecture really work together.

13.4.3 Phase 2: Iterate

Now that you have the basic mechanisms in place, you should ensure that they actually work for
your project. Therefore, iterate over the steps given above until they are reasonable stable and
useful.

Then, roll out the architecture to the overall team if you have larger project teams. If you want
to start a model-driven development process, continue with Phase 3.

13.4.4 Phase 3: Automate

The best practices of this phase are relevant for the activities derive reference implementation/
model, derive transformations and domain analysis/design of the domain architecture develop-
ment thread.

You have a TECHNOLOGY-INDEPENDENT ARCHITECTURE. You want to automate various tasks
of the software development process. To be able to automate, you have to codify the rules of the
TECHNOLOGY MAPPING and define a DSL-BASED PROGRAMMING MODEL. For both aspects, you
have to be very clear and precise about the artifacts defined in your TECHNOLOGY-INDEPENDENT

ARCHITECTURE. Automation cannot happen if you can’t formalize translation rules. An architec-
tural definition based on prose is not formal enough: you want to be able to check models for
architectural consistency.

Therefore, define a formal architectural metamodel. An architectural metamodel formally
defines the concepts of the TECHNOLOGY-INDEPENDENT ARCHITECTURE. Ideally this metamodel
is also useful in the transformers/generators that are used to automate development.

Formalization is a double-edged sword. While it has some obvious benefits, it also requires a
lot more work than informal models. The only way to justify the extra effort is by gaining addi-
tional benefits. The most useful benefit is for the metamodel not to just collect dust in a drawer,
but really to be used by tools in the development process. It is therefore essential that the meta-
model is used, for example as part of the code generation in DSL-BASED PROGRAMMING MODELS

and ARCHITECTURE-BASED MODEL VERIFICATION.

Glue Code Generation

The TECHNOLOGY MAPPING – if sufficiently stable – is typically repetitive and thus tedious and
error-prone to implement. Also, often information that is already defined in the artifacts of the

c13.fm Page 269 Tuesday, February 28, 2006 5:08 PM

270 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

PROGRAMMING MODEL have to be repeated in the TECHNOLOGY MAPPING code (method signa-
tures are typical examples). A repetitive, standardized technology mapping is good, since it is a
sign of a well-though-out architecture. Repetitive implementations always tend to lead to errors
and frustration.

To take care of these issues, use code generation based on the specifications of the TECH-
NOLOGY MAPPING to generate a glue code layer, and other adaptation artifacts such as descrip-
tors, configuration files, and so on. To make that feasible you might have to formalize your
TECHNOLOGY-INDEPENDENT ARCHITECTURE into an ARCHITECTURAL METAMODEL. To be able to
get access to the necessary information for code generation, you might have to use a DSL-BASED

PROGRAMMING MODEL.
Build and test automation is an established best practice in current software development. The

natural next step is to automate programming – at least those issues that are repetitive and gov-
erned by clearly-defined rules. The code and configuration files that are necessary for the TECH-
NOLOGY MAPPING are a classic candidate. Generating these artifacts has several advantages. First
of all, it’s simply more efficient. Second, the requirement to ‘implement’ the TECHNOLOGY MAP-
PING in the form of a generator helps to refine the TECHNOLOGY MAPPING rules. Code quality
will typically improve, since a code generator doesn’t make any accidental errors – it may well
be wrong, but then the generated code is typically always wrong, making errors easier to find.
Finally, developers are relieved from having to implement tedious glue code over and over again,
a boring, frustrating, and thus error-prone task.

DSL-based Programming Model

You have defined a PROGRAMMING MODEL. However, your PROGRAMMING MODEL is still too
complicated, with a lot of domain-specific algorithms implemented over and over again. It is
hard for your domain experts to use the PROGRAMMING MODEL in their everyday work. The
GLUE CODE GENERATION needs information about the program structure that is hard or impossi-
ble to derive from the code written as part of the PROGRAMMING MODEL. The PROGRAMMING

MODEL is still on the abstraction level of a programming language. Domain-specific language
features cannot be realized. Parsing code to gain information about what kind of glue code to
generate is tedious, and the code also does not have the necessary semantic richness.

Define domain-specific languages that developers use to describe application structure and
behavior in a brief and concise manner. Generate the lower-level implementation code from
these models. Generate a skeleton against which developers can code those aspects that cannot
be completely generated from the models.

A DSL-based programming model marks the entrance into the Model-Driven Software Devel-
opment arena. Defining DSLs for various aspects of a system and then generating the imple-
mentation code – fitting into the PROGRAMMING MODEL defined above – is a very powerful
approach. On the other hand, defining useful DSLs, providing a suitable editor, and implement-
ing a generator that creates efficient code is a non-trivial task. So this step only makes sense if
the generator is reused often, and the ‘normal’ PROGRAMMING MODEL is so intricate, that a DSL
boosts productivity, or if you want to do complex MODEL-BASED ARCHITECTURE VALIDATION.

The deeper your understanding of the domain becomes, the more expressive your DSL can
become (and the more powerful your generators need to be). To manage the complexity you

c13.fm Page 270 Tuesday, February 28, 2006 5:08 PM

13.5 Product-Line Engineering 271

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

should build cascades of DSL/generator pairs. The lowest layer is basically the GLUE CODE GEN-
ERATOR: higher layers provide more and more powerful DSL-BASED PROGRAMMING MODELS.

Model-based Architecture Validation

You now have all the artifact in place and you roll out your architecture to a larger number of
developers. You have to make sure that the PROGRAMMING MODEL is used as intended. Different
people might have different qualifications. Using the programming model correctly is also cru-
cial for the architecture to deliver its QoS promises. Checking a system for architectural compli-
ance is critical. However, using only manual reviews for this activity does not scale to large and
potentially distributed teams. Since a lot technical complexity is taken away from developers (it
is in the GENERATED GLUE CODE) these issues need not be checked. Checking the use of the PRO-
GRAMMING MODEL on the source-code level is complicated, mostly as a consequence of the intri-
cate details of the programming language used.

Make sure critical architectural issues are either specified as part of the DSL-BASED PROGRAM-
MING MODEL, or the developers are restricted in what they can do by the generated skeleton into
which they add their 3GL code. Architectural verifications can then be done at the model level,
which is quite simple: it can be specified against the constraints defined in the ARCHITECTURE

METAMODEL.
This is where you want to arrive. In larger projects you have to be able to verify the proper-

ties of your system, from an architectural point of view, via automated checks. Some of them
can be done at the code level, by using metrics and so on. However, if the system’s critical
aspects are described in models, you have much more powerful verification and validation tools
at hand.

It is essential that you can use the ARCHITECTURE METAMODEL to verify models/specifica-
tions. Good tools for Model-Driven Software Development such as the openArchitectureWare
generator [OAW] can read (architecture) metamodels and use them to validate input models. In
this way a metamodel is not ‘just documentation’, it is an artifact used by development tools.
The following illustration shows how this tool works.

13.5 Product-Line Engineering

Product-line engineering (PLE) deals with the systematic analysis of domains and covers the
design of software production lines. Its goal is to fully leverage the potential for automation and
reusability during the development of software systems. Product-line engineering thus seam-
lessly integrates into the MDSD context as a method for analysis.

In other words, it provides a solid background for all activities in the domain part of the
domain architecture development thread, as introduced in Figure 13.2.

A comprehensive discussion of PLE would exceed the scope of this book, so we content our-
selves with introducing the basic principles and explaining how they tie into MDSD. At the end
of this chapter a comprehensive list of further reading is provided. We address the economic and
organizational aspects of product-line engineering in Part 4 of this book.

c13.fm Page 271 Tuesday, February 28, 2006 5:08 PM

272 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

13.5.1 Software System Families and Product Lines

Two key terms, software system family and product line, were briefly defined in Chapter 4.
The original definition of a software system family is as follows:

We consider a set of programs to constitute a family whenever it is worthwhile to study pro-
grams from the set by first studying the common properties of the set and then determining the
special properties of the individual family members. [Par76]

We are faced with a software system family whenever a series of systems is developed – in this
context, often referred to as products – that have relevant properties in common. In the context
of MDSD, these properties are consolidated in the domain architecture. This implies these com-
monalities can be of an infrastructural, architectural, or functional/professional nature, depend-
ing on the nature of the domain.

A product line, on the other hand, consists of a set of functionally-related products with a
common target market: its organization is customer group-specific. Ideally, a product line is
realized with the help of a software system family.

13.5.2 Integration into the MDSD Process

Let’s look at the development process described above. Analytical activities emerge in various
places, which we have constructively systematized. These are:

• The definition and boundaries of the domain for which software is to be developed.
• The definition of the most important core concepts of the domain.
• Analysis of the commonalities and differences between software systems of the domain –

and thus…
• The separation between application and domain architecture.
• The definition of the most important basic components of the MDSD platform (its solu-

tion space).
• The definition of the production process for the software system family.

Product-line engineering provides a methodical basis for systematic reuse in the context of soft-
ware system families.

MDSD can either be considered an implementation technology for product-line engineering.
Similarly, product-line engineering can be seen as an analysis method for MDSD. Product-line
engineering practices can and should be used iteratively and incrementally: PLE should not be
seen as a separate pre-stage of MDSD, but rather as an accompanying method, even though it is
certainly prominent during early phases of an MDSD project.

13.5.3 Methodology

The product-line engineering process consists of three phases – see Figure 13.5. We explain
these below.

c13.fm Page 272 Tuesday, February 28, 2006 5:08 PM

13.5 Product-Line Engineering 273

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

Domain Analysis

The first step in domain analysis is domain scoping. Here, the boundaries of the domain are
determined. If for example, we consider the domain of automotive engine controllers, it is
important to define whether this domain includes only gasoline engines or is also suitable for
diesel engines, and whether they are used only for personal vehicles or also for trucks. This is
important for two reasons:

• Things that are so different that they cannot be reasonably mapped into the context of a
family must be excluded to allow a consistent realization. This is a risk minimization
strategy.

• Unclear requirements result in on-going discussions during the project. This does not
mean that iterative requirements management is prohibited, but merely that the require-
ments (in this case the scope) should be clearly defined at any given time.

This also explains why it makes sense to use this approach primarily in mature domains: if you
don’t yet know the differences between the domain products, you cannot make the necessary
decisions2.

Let’s return to the first case study of Chapter 3. The domain there was ‘application architec-
ture for e-business software’. The car-sharing application is a product of that domain. If you now
start with architecture bootstrapping via a reference implementation, you will without doubt
only succeed if the architects already have some knowledge about layering, typical J2EE pat-
terns, MVC structures, declarative flow control, and so on. Since this is fairly common knowl-
edge among developers, one can speak of a ‘mature’ domain here. However, it is not necessary
to know the concrete implementation of the architecture’s patterns at the beginning of the
project. The design language (UML profile) can to a certain extent evolve further in the course
of the project (see Chapter 3). Most notably, it can be extended easily.

There are various ways of learning about the differences between the discrete products of the
family and documenting them systematically. One powerful method is derived from the FODA
method [FODA] and goes under the name of feature modeling [EC00].

Figure 13.5 The phases of product-line engineering

2 This may first sound like ‘big design up front’, but that is not what we mean: we don’t say that one analyzes an
unknown domain beforehand, but that one knows the domain and its peculiarities from experience. This is compara-
ble to industrial mass production: no-one constructs a production line for products that re not yet properly known.

Domain Analysis Domain Design Domain Implementation

Domain Scoping
Variability Analysis
Domain Structuring

Definition
 Base Architecture
Definition Production Plan
Definition Building Blocks

Components
DSLs & Generators
Production Process

c13.fm Page 273 Tuesday, February 28, 2006 5:08 PM

274 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

A feature model is graphically expressed by a feature diagram, and shows which features
the constituent products of a software system family can or must have. A feature model is a
hierarchical structure in which each feature can contain subfeatures. These can be mandatory
for a specific product, optional, alternative, or n-of-m. Figure 13.6 clarifies these terms, show-
ing a (very simplified) feature diagram for the system family stack.

The diagram describes the fact that each stack must have an element type: ‘must’ is expressed by
the filled-in circle denoting a mandatory feature. This can be of the type int, float. or string. This
1-of-n relationship, also called alternative, is recognizable by the open arc between the associa-
tions ElementType-int, ElementType-float and ElementType-string. The size of the stack can
either be fixed (which means you have to assign a size) or be dynamically adaptable. The stack
can optionally have a static counter, shown by an empty circle. If it doesn’t, the size is recalcu-
lated each time size() is invoked. Further features are thread safety, bounds checking, and type
safety. One or more of these features can be contained in one product (an n-of-m relationship,
shown by the filled arc). Moreover, the implementation can either be optimized for speed or
memory consumption.

The diagram in Figure 13.6 therefore describes the ‘configuration space’ for members of the
system family stack. Discrete members must be built from valid combinations of the features,
for example:

• Dynamic size, ElementType: int, counter, thread-safe
• Static size with the value 20, ElementType: string
• Dynamic size, optimized for speed, bounds check

Apart from the specifications that are visible from the graphical notation, a feature model can
contain even more information, such as names for specific combinations of features (macros),
the multiplicity of subfeatures, the priority of a feature in the implementation, stakeholders

Figure 13.6 Example feature diagram

Stack

ElementType
[open]

int Stringfloat

Optimization

Speed
Memory
Usage

Additional
Features

Thread
Safety

Bounds
Check

Counter

Type
Check

Size

Fixed Dynamic

value

c13.fm Page 274 Tuesday, February 28, 2006 5:08 PM

13.5 Product-Line Engineering 275

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

affected by a feature, and so on. Additional constraints that cannot be expressed with the visual
notation alone can also be defined. Practice shows that it is possible to go quite a long way in
specifying the following additional constraints:

• Requires. A specific feature inevitably requires another.
• Excludes. The presence of one feature prohibits the simultaneous existence of another.
• Recommends. A milder variant of requires. A specific feature makes the use of another

advisable.
• Discourages. A milder variant of excludes. One should not use two such features simulta-

neously.

As an example, here are the two optimization features:

• Optimization for speed: requires counter, requires fixed size, discourages thread safety,
discourages bounds check.

• Optimization for memory usage: requires dynamic size, discourages counter.

What is interesting about this method and notation is that they say absolutely nothing about the
subsequent implementation of the features. If a system family has already been modelled using
UML in this phase, decisions would have to be made regarding inheritance, type genericity,
associations, and so on this early in the development. However, this is neither necessary nor
helpful during domain analysis. At this point, we are only interested in an analysis of the concep-
tual commonalities and differences between the products of a software system family. How these
variabilities are implemented later is determined during the design phase.

The features shown in Figure 13.6 can even belong to two fundamentally different categories
that are not distinguished by the feature model:

• Classic component features define the existence of modular features – that is, whether a
product possesses a certain subsystem/module or not.

• In contrast, aspect features are those that cannot be realized as components, for example
the features ‘optimized for performance’ or ‘optimized for code size’. Such features may
later affect various points in the system and cause different components to be implemented
in another way.

Feature diagrams can have both types of features side by side, whereas aspect features especially
are very difficult to express with UML.

It is important in this phase to define dependencies between features. A product can maybe
only have certain features when it also has certain other features as well. The opposite is also
possible, of course – certain features exclude each other. This results in an ordered sequence of
decisions that need to be made when building the product. This is essential for defining the pro-
duction process in the next step. The definition of meaningful defaults in case specific features
are not explicitly specified is of equal importance.

You can find further examples of feature models in the second case study, in Chapter 16.

c13.fm Page 275 Tuesday, February 28, 2006 5:08 PM

276 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

Domain Design and Implementation

The definition of the software structure is one aspect of domain design. One starts by imple-
menting the common features of a domain’s products in the form of a platform. Because these
common features are identical for all products, it is not necessary to implement them genera-
tively in any way: they constitute the basis of the common target architecture.

For the variable features – those in which the various products differ – one must decide when
a feature must be bound – that is, the point at which one decides for or against a certain feature
for a product. A variety of alternatives exists:

• At the source code level. Here, the decision for or against a feature is made during pro-
gramming – that is, it is hard-wired into the source code.

• At compile time. Some decisions can be left to the compiler, such as overloaded functions,
preprocessors, code/aspect weaver.

• At link time. The linker can be used to configure a product by binding one or another
library, for example a makefile that does or does not statically bind specific libraries.

• At installation time. For products that contain an explicit deployment step, one can typi-
cally still carry out specific configurations. For example, J2EE offers the option of adapt-
ing configurations during installation via deployment descriptors.

• At load time. You can also intervene while the application is loading. DLLs are one exam-
ple of this for example optional loading of different DLLs that implement the same func-
tions in different ways.

• At runtime. Finally, you can also make decisions at runtime, for example polymorphism,
dynamic class-loading in Java, interpreted configuration parameters.

All these options have their advantages and disadvantages:

• Performance. Typically the performance of features implemented directly in code is sig-
nificantly better than decisions made dynamically at runtime. Decisions at compile time
usually possess the same level of performance: decisions that are made by the linker or
loader are in most cases not much slower.

• Code size. If behavior must be changeable at load time or runtime, the code for all alter-
natives must be present in the program image. The size of the image therefore grows. In
this context we have to differentiate between the code size of the image and that of the
running program. Decisions made by the compiler are usually quite close to the optimum.
However, one must ensure that the compiler does not produce overhead through expan-
sion (a potential risk when working with C++ templates, for example).

• Flexibility. Features that are hard-coded cannot be changed unless they are reprogrammed.
Flexibility generally increases the later a decision for or against the feature is made – the
later it is bound

• Complexity. Specific features can easily be removed or reintegrated into the system quite
late, such as the dynamic loading of a component. Aspect-like features are more problem-
atic, because they cut across the entire system, or large parts of it. The earlier they are
defined, the easier they can be realized.

c13.fm Page 276 Tuesday, February 28, 2006 5:08 PM

13.5 Product-Line Engineering 277

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

The production process now describes how an executable product is created from a product
specification (the model). MDSD offers one alternative for efficiently and consistently realizing
the alternatives just listed.

A generator is the ideal tool for this purpose. At the source code level, this is obvious: the
generation of source code is its original task. Aspect features can also be implemented – see
Chapter 9 and [Voe04]. Features that are decided at link time can be realized via a generator that
creates the respective libraries or a makefile. Deployment can be carried out by the generator by
generating a deployment script. The load process can also be influenced generatively. Last but
not least, a generator can create (default) configuration files that are interpreted at runtime. The
generator can therefore become an integration tool for the software system family.

The generator is configured via the domain architecture (including the DSL). The latter can
be divided into subdomains or be partitioned, as shown in Sections 8.3.3 and 15.5. The generator
must be able to read the partial models of a system that were modeled with various DSLs and
generate a homogenous, consistent system from them. One example of this is provided by the
case study in Chapter 16.

13.5.4 Domain Modeling

The domain consists of domain-specific abstractions, concepts, and rules. How can you ensure that
the defined DSLs, and thus the modeled applications, constitute a correct subset of the domain?

The key to solving this problem is metamodeling, as described in Chapter 6. The metamodel
of the DSL must be restrictive and as close to the domain as possible. Feature models can be
very helpful in this regard. The metamodel must, if applicable, ignore unwanted or unnecessary
properties of the basic metamodel – for example, that of the UML. Constraints offer a powerful
mechanism in this context.

A glossary or an ontology of the domain can be a useful first step towards a suitable meta-
model, which is then refined during iterative development (see Section 13.3).

13.5.5 Further Reading

We cannot deal with product-line engineering in sufficient depth in this chapter, so we recom-
mend more comprehensive further reading here.

• P. Clements, L. Northrop, Software Product Lines – Practices and Patterns [CN01]. This
book, published by the Software Engineering Institute of the Carnegie Mellon University,
is a good reference for product-line engineering terminology. The book also provides an
overview of classic, not necessarily model-driven product-line engineering processes.

• D. M. Weiss, C. T. R. Lai, Software Product-line Engineering – A Family-based Software
Development Process [WL99]. This book offers a systematic overview of FAST (Family-
oriented Abstraction, Specification, and Translation), a tried and tested product-line engi-
neering method that has been in use for several years now.

• J. Bosch, Design & Use of Software Architecture – Adopting a Product-line Approach
[Bos00]. This book offers interesting case studies and describes an approach for the
architecture development of product lines. The book’s strength lies in the comparison

c13.fm Page 277 Tuesday, February 28, 2006 5:08 PM

278 MDSD Process Building Blocks and Best Practices

 c13.fm Version 0.3 (final) February 28, 2006 5:08 pm

and evaluation of a number of organizational forms that are considered for product-line
engineering.

• C. Atkinson et al., Component-based Product-line Engineering with UML [ABB+01]. The
book describes the KobrA-approach to product-line engineering as defined by the Fraun-
hofer Institute for Experimental Software Engineering (IESE). The book focuses on prac-
tical standards for component-based development.

• K. Czarnecki, U. Eisenecke, Generative Programming [EC00]. Among other topics, this
book also contains a good introduction to the product-line engineering topic and offers
quite comprehensive information about feature modeling.

• J. Greenfield et al., Software Factories [GS04]. Software factories (see also Section 4.5)
are Microsoft’s approach to product-line engineering. The approach is described exten-
sively in this book. It provides a good introduction to the ideas and concepts, among them
also DSLs.

c13.fm Page 278 Tuesday, February 28, 2006 5:08 PM

279

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

14 Testing

Only in very few cases can software be verified completely based on specifications. Because of
this, testing is extremely important in software development.

Up to this point we have not explicitly addressed the role of testing in the software develop-
ment process. This is not because we believe that testing is unimportant or secondary, but
because it (should) essentially play the same role in MDSD as in other methods. Agile processes
[Coc01] [Bec02] can serve as role models in this case: testing constitutes a sort of safety net for
the modifiability and extensibility of software. This is why tests should not be run at the end of a
project, but frequently during the project.

Test automation [HT04] [Cla04] is a key element for enabling continuos and reproducible val-
idation of the software during its construction. We don’t want to begin with Adam and Eve in
regard to testing, but rather to concentrate on specifics in the context of MDSD in general and
architecture-centric MDSD in particular.

We mentioned in the previous chapter that we divide a project into an architecture develop-
ment thread and an application development thread. Both threads are synchronized via mile-
stones; yet they produce different artifacts: The application development thread yields an
application, the architecture development thread a domain architecture. We begin with the afore-
mentioned, but before we get started, we wish to give a brief general introduction to the different
types of tests.0.3 (final)

14.1 Test Types

The discussion of which aspects of a software system are to be tested, when, and to what end,
leads us to test types:

• Component tests (also called unit tests) are created by the developer in the course of their
every-day work and serve to ensure the correct functioning of system parts (classes, mod-
ules, subsystems and so on).

• Integration tests ensure the correct interplay of existing parts of the system.
• Acceptance tests show whether the system makes sense from the customer’s viewpoint and

meets their requirements.

c14.fm Page 279 Tuesday, February 28, 2006 4:55 PM

280 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

• GUI tests1 can either take on the role of acceptance tests (ergonomics) or of integration tests.
• Non-functional tests validate requirements with the target architecture, such as security,

correct transaction management in multi-user environments, or robustness towards hard-
ware failure.

• Load tests are a special subset of non-functional tests. They serve to measure performance
(response times, data throughput) and scalability. Load tests are often quite sophisticated
and thus only carried out at specific times in the course of a project.

• Regression tests are used to detect whether unwanted side-effects have emerged due to
changes to the source code (additions or corrections). Regression tests are usually realized
through repeated execution of other test types.

Test automation is a very important means for increasing the efficiency and effectiveness of
tests. Only reproducible, automated tests can form the ‘safety net’ that allows software to stay
changeable. Test automation helps to implement regression tests and is applicable for all test
types except for tests of ergonomics. The most sophisticated kind of test automation is continu-
ous integration [Cla04] [CRUI]. Here automated tests are carried out almost continuously in par-
allel to development on special test machines that inform the developer asynchronously about
test failures, for example by e-mail.

In the context of MDSD, the domain architecture – due to its generative aspect – plays a simi-
lar role to a compiler. However, its correctness cannot always be taken for granted: more about
this issue later. On the other hand, however, MDSD offers good opportunities for simplification
of the test types listed above for the application development thread. This is what we will address
in the following section.

14.2 Tests in Model-Driven Application Development

In the application development thread the same test types as in non-model-driven processes are
relevant. The models are part of the code because they are formal and automatically transformed
into 3GL code via transformations. From this perspective, the DSL is a programming language
(with affinity to the domain) that can have semantic gaps. After generation, you will have exactly
the same code as you would have had if you had not used MSDS, and so the code can be tested in
the same manner. Even a test-first approach does not constitute a contradiction here: nobody
keeps the developer from writing test code prior to modeling if this is considered sensible.

The model-driven approach has a lot of potential that can also simplify the creation of test
code. A black-box test is always a comparison between an is-state and a desired state: we do not
differentiate between return values of methods and side-effects such as database changes. Thus a
test secures the semantics behind a syntactically-defined interface2. In other words, the test
‘knows’ the signature and the semantics of the system to be tested – this can justifiably be called
a design. In effect, a developer who writes test code specifies design information in doing so.
Equally, no developer can write test code without having at least a rough idea of the design of the
system to be tested.

1 Tests of graphical user interfaces (GUIs).
2 This can either be a Java interface or a GUI, depending on the test type.

c14.fm Page 280 Tuesday, February 28, 2006 4:55 PM

14.2 Tests in Model-Driven Application Development 281

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

In the context of MDSD, we now possess a more valuable means than a 3GL language to
express designs: the DSL. Depending on the semantic depth of the DSL, it can be much more
effective to specify design information first in the model rather than right away in the form of
3GL test code, in order to generate exactly that code or parts of it. The advantage of this
approach lies in the abstraction and the easier changeability of the test code: a part of it is moved
into the domain architecture and can now be centrally maintained and modified. The domain
architecture is thus extended to include the generation of testware. Whether this procedure is
efficient (and if so, to what extent) depends very much on the expected degree of reusability.

14.2.1 Unit Tests

In the context of conventional software development, small but useful frameworks such as
JUnit (or C#Unit, CppUnit, and so on) are available. We want to continue to use these tools in
model-driven development, and support the creation of tests as efficiently as possible with
MDSD techniques.

Separation of Test Cases and Test Data

Unfortunately, unit tests are in most cases programmed in such a way that test cases and test data
are mixed in the code. At first glance this seems to simplify matters, but in fact it harbors serious
disadvantages for the further progress of the project:

• Test cases are not reusable for different test data.
• Test cases and test data lose their maintainability.
• Test data can only be modified or provided by the developers.
• The actual structure of test cases is obscured, which impairs readability.

It is therefore a good idea to separate test cases and test data when implementing component
tests. This can be done for example by rendering the test data in the form of XML documents or
Excel files, from which they can be read by the actual test case – for example a JUnit test
method – at runtime. This not only works for the test input (the test stimuli), but also for the ref-
erence input.

In the context of MDSD, this separation also allows for dealing separately with test case gen-
eration. For example, you can only support the test cases generatively and solve the integration
of the test data generically using a suitable framework.

The external format for formulating the test data becomes a part of the DSL’s test partition –
or in other words, test data can be MDSD models, regardless of whether they are transformed or
directly interpreted by the (test) platform.

Test Infrastructure Generation

The simplest and most obvious support that MDSD offers for component tests is the generation
of test infrastructure from the models. This can for example include (empty) test methods for all
business operations of the application, as well as their compositions for test suites. One can also

c14.fm Page 281 Tuesday, February 28, 2006 4:55 PM

282 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

generate a default implementation into the test methods that causes the tests fail, thereby enforc-
ing a real implementation by the developer.

Constraints Checking

The generation of test cases based on constraints in the models is a very powerful technique3.
These declaratively specify properties of the system, but do not yield any information on how these
properties are realized. Typically for such constraints one distinguishes between preconditions to
describe the prerequisites for invoking an operation, post-conditions to describe the state of the
system after the operation has been executed, and invariants to describe such constraints that must
always hold during system execution. If you have a suitable model, you can generate a unit test that
creates the required test setup, provides valid test data (precondition), invokes the operation to be
tested, and afterwards checks the postcondition. In this context, the following questions arise:

• How can the set-up be created?
• How should the test data be composed?
• What environment must be present to enable the test to pass?

Since this is not always easy to define and implement, it often makes sense not to check the con-
straints using a special unit test, but simply to generate the constraint checks directly into the sys-
tem, and also check the constraints during the integration tests. Figure 14.1 shows an example:

It is actually possible to generate code from these constraints:

3 These should not be mistaken for modeling constraints at the metalevel (see Chapter 6) which define valid models in
terms of the DSL.

Figure 14.1 An example of a class diagram with constraints

class Vehicle {
 ...
 public void setDriver(Person p) {
 if (p.getAge() < 18)
 throw new ConstraintViolated();
 // ... implementation code ...
 }
}

setDriver(Person p)

Vehicle

age : int

Person
driver

Vehicle.setDriver(p):
pre: p.age >= 18

Person:
inv: age > 0 &&
age <= 100

0..1

c14.fm Page 282 Tuesday, February 28, 2006 4:55 PM

14.2 Tests in Model-Driven Application Development 283

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

Two things need to be explained. First, the question arises of how one generates code from OCL
constraints: suitable tools are available, for example [EMPO], [DRES]. Then there is the ques-
tion of where and how the constraints can be integrated into the model and whether they would
be available for subsequent tools, for example in the XMI export. A trick that works with all
UML tools is to abuse the model elements’ documentation: for example, you can insert the fol-
lowing text for the setDriver() operation here:

In the MDSD transformation the documentation text can simply be searched for the <Constraints>
tag. The XML can be parsed, and thus the constraints are ready for further processing. To simplify
matters, we assume that the text inside <expr>…</expr> is a valid Boolean expression in the tar-
get language. This limits portability, but it is feasible if you need a pragmatic approach.

Another interesting question is how you realize this approach if the implementation of the
actual method is done manually. How can you make sure that the constraint is nevertheless
always checked? Here, the use of the Template Method pattern is advisable [GHJ+94]. An
abstract class VehicleBase is generated that implements the operation setDriver() as follows:

This operation invokes an abstract operation setDriverImpl(). The developer now writes the class
Vehicle manually and implements only the abstract operations defined by the superclass:

The purpose of this operation is to assign a driver to a vehicle. Drivers are
always Persons aged 18 or older.
<Constraints>
 <pre id="driverAge">
 <expr>p.getAge() >= 18</expr>
 <error>Driver must be 18 or older.<error>
 </pre>
</Constraints>

abstract class VehicleBase {
 ...
 public void setDriver(Person p) {
 // generated from precondition constraint
 if (driver.getAge() < 18)
 throw new ConstraintViolated();
 setDriverImpl(p);
 // generated from postcondition constraint
 if (driver == null) throw new ConstraintViolated();
 }

 protected abstract void setDriverImpl(Person p);

}

class Vehicle extends VehicleBase{

 protected abstract void setDriverImpl(Person p) {
 driver = p;
 }

}

c14.fm Page 283 Tuesday, February 28, 2006 4:55 PM

284 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

One can define the constraints with any required degree of complexity, for example via a proto-
col state machine that can be assigned to an interface. It is possible to generate code from it that
will check the constraints expressed with the protocol state machine.

The state machine in Figure 14.2 states, for example, that you can only start to drive (drive()) if a
driver is seated in the car. The generated code can automatically track these states. Should the
drive() operation be invoked while the vehicle is empty, a ConstraintViolation exception can be
thrown.

Generation of Extreme Value Tests

If no constraints are given for an operation, of course no functionally useful tests can be gener-
ated automatically: they must be implemented by hand. However, you can see this situation dif-
ferently: if no constraints are stated, this means that any input parameter (combination) is valid
for the operation. This means that you can generate test cases that use arbitrary test data. You
cannot verify the result of the operation (since you don’t know what it does) but you can check
that it does not fail fatally, for example with a null pointer exception. This is a practicable
approach, especially for operations with primitive types. Common values for int parameters are
for example 0, -1, 87684335: for object parameters, null is recommended. Note that this
approach does not replace real tests that check that the operation performs its task correctly, but
the approach does hint at typical programming bugs such as not checking for null values or neg-
ative numbers.

Mock Objects

Mock objects are a useful instrument for software testing. They serve to decouple test code and
application infrastructure that is relevant from a testing perspective. To this end, the correspond-
ing interfaces are implemented by mock objects that behave as required for a test scenario, even

Figure 14.2 An example of a protocol state machine

Empty Full
setDriver()

exitDriver()

Driving
drive()

stop()
<<destroy>>

<<create>>

c14.fm Page 284 Tuesday, February 28, 2006 4:55 PM

14.2 Tests in Model-Driven Application Development 285

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

without a complex infrastructure. Let’s assume we want to check whether a client treats the
exceptions thrown by a remote object correctly:

How can we now make sure that the RemoteObject really throws an exception for test purposes
when the client invokes the operation anOperation()? Of course, we can implement the interface
RemoteObject manually and throw a corresponding exception – but for other test scenarios, we have
to implement the same thing again and again.

In addition to generic approaches, such as EasyMock [EASY], code generation can also help
here. For one thing, you can very easily generate implementation classes with it that demonstrate
a specific behavior. As a specification, you can use the following XML code:

This specifies that a class RemoteObjectTestImpl should be generated that implements the exam-
plepackage.RemoteObject interface. The operation anotherOperation and thirdOperation are
implemented in such a way that null is returned. For anOperation it is defined that a RemoteEx-
ception is thrown. This class can now be used in a test.

You can also define such mock objects implicitly, which requires even less effort – see
Figure 14.3):

Here a RemoteObject is created. We specify that null is returned on the next method call (the
implementation code for the method is simply placed in braces). We check if the doSomething()
method returns this correctly, then we define on RemoteObject that it throws an exception when
the next invocation occurs. Next, we invoke doSomethingElse() on the client and expect it to
throw a SomeEx exception.

To implement this scenario, the code generator can simply generate a matching implementa-
tion of the RemoteObject interface that behaves as specified in the diagram.

public Object doSomething(RemoteObject o) throws SomeEx {
 try {
 return o.anOperation();
 } catch (RemoteException ex) {
 log(ex);
 throw new SomeEx();
 }
}

<MockConfig type="examplepackage.RemoteObject"
 name="RemoteObjectTestImpl">
 <operation names="anotherOperation, thirdOperation">
 <return value="null” occurrence="1"/>
 </operation>
 <operation names="anOperation">
 <throw type="RemoteException” occurrence="all"/>
 </operation>
</MockConfig>

c14.fm Page 285 Tuesday, February 28, 2006 4:55 PM

286 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

14.2.2 Acceptance Tests

These tests must be defined independently of the application model. It would be useless to gen-
erate acceptance tests from the same model from which the application is generated, because in
that case it would never fail, as long as the domain architecture is correct. This leads us to the
two-channel principle: one needs a second, independent ‘channel’ to specify tests that are inde-
pendent of the original specification. However, the second channel can also be supported by
MDSD – see Figure 14.4.

Figure 14.3 An example for the use of mock objects

Figure 14.4 An examples of the two-channel principle

r: Remote
Object

Client

nextinv: { return null; }

nextinv: { throw new RemoteException() }

expect(SomeEx)

Test

doSomething(r)

doSomethingElse(r)

assert(lastResult == null)

Channel 2Channel 1

Model
(Specification)

Generated
Application

Generator

Test Model
(Test Definition)

Generated Test
Scenarios

tests

c14.fm Page 286 Tuesday, February 28, 2006 4:55 PM

14.2 Tests in Model-Driven Application Development 287

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

As you can see, it is possible to model test scenarios in the same manner as the application itself,
but in a separate acceptance test model. Constraints on operations of the test scripts provide the
validation rules that are needed in the tests.

When a suitable DSL is used, a domain expert can understand the test cases much better and
work more productively on their definition compared to programming the integration tests.
Figure 14.5 is an example of this that uses a sequence diagram. First, the test client creates a new
Vehicle and a new Person. It then sets the person’s age to twenty and defines the person as the
driver of the car. An Assertion follows that ensures that the driver of the car is exactly the one
that has just been set. Then a new person is created who is ten years old. If this new person is set
as a driver, a ConstraintViolated exception must be thrown that is evaluated with expect(). This
guarantees that the implementation code actually checks the respective constraint. Finally, we
verify that the driver is still the original driver.

Of course one would separate the test data from the test code, as mentioned above. We omitted
this here to keep our example simple.

14.2.3 Load Tests

In principle load tests follow this schema: a set of clients that usually run on a number of com-
puters are simulated. These clients run test scripts. The clients’ timing behavior is measured rel-
ative to the load – that is, the number of clients and their call frequency. The server’s resource
consumption is also logged.

The environment’s setup (for example, server, network, databases) must be created manually.
The following aspects must be defined:

• The test script(s)

Figure 14.5 An example for the definition of a test scenario using a UML sequence
diagram

v: Vehicle p: PersonTestclient

setAge(20)

setDriver(p)

p2: Person

setAge(10)

 setDriver(p2)

assert(v.getDriver() = = p)

expect(ConstraintViolated)

assert(v.getDriver() = = p)

c14.fm Page 287 Tuesday, February 28, 2006 4:55 PM

288 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

• The number of clients
• Their internal parallelism, that is, the number of processes and threads

In most cases the last two aspects are handled by tools that also measure the timing behavior and
monitor the application(s). The test scripts are well-suited for generation. A sequence diagram or
a state chart constitute a good basis, as can be seen in Figure 14.6.

14.2.4 Non-functional Tests

Testing non-functional requirements such as reliability, transactional consistency, or deadlock
freedom cannot be done in a simple environment, such as in JUnit. Realistic scenarios are needed
here. Failures of networks or databases must be simulated, or forced to actually occur. Similarly,
security tests can only be conducted manually. Model-driven development does not offer any spe-
cific help here.

14.2.5 Model Validation

Model validation is a type of test that is possible only when using MDSD. It offers totally new
options for testing. We must distinguish between three different subtypes:

• Acceptance tests on the model level to validate the model semantics
• Well-formedness tests to check whether the modeling rules are observed (DSL constraints)
• Simulation of models

Acceptance Tests on the Model Level

MDSD models have the potential to be validated in direct communication with customers or
experts (unless they create the tests themselves), particularly if the MDSD domain and its DSL
are business-oriented. This approach can provide additional certainty, especially when code or

Figure 14.6 State diagram with timeouts for load test definition

login()

doSearch(...) buyItem() buyItem(...)

[tm(5000)]

[tm(2000)]

Error

checkOut()

[tm(5000)]

[tm(4000)]

c14.fm Page 288 Tuesday, February 28, 2006 4:55 PM

14.2 Tests in Model-Driven Application Development 289

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

configuration files are created from the model. The meaning of this code or configuration can
thus be checked beforehand on a more abstract level.

Well-Formedness Tests

We have already studied the importance of modeling rules in the context of MDSD from the
example of the first case study in Chapter 3. We also saw that such rules take on the role of the
DSL’s static semantics (Chapter 4) and showed how they are defined in the context of metamod-
eling (Chapter 6).

From the test perspective, such modeling rules are invariants that are valid for all instances of a
DSL – that is, for all models. They must be checked before the actual MDSD transformations can
take place, otherwise the transformation result is undefined. The well-formedness test can be car-
ried out by the modeling tool (if it is able to) or a by subsequent MDSD tool – see Sections 3.2
and 11.1.2. From a technical standpoint, these tests are nothing more than a check of the static
semantics of a classic programming language by the respective compiler. However, from the
developer’s point of view, they are far more effective: the compiler of a classic programming lan-
guage doesn’t know anything about the domain, so it can only issue error messages about the
solution space – the programming language. In contrast, modeling rules are specifically created
for the domain and can therefore report error messages using the terminology of the problem
space.

A specific class of errors that in conventional development are typically not detected even by
the compiler, but only show up at runtime, can be detected very early with the MDSD approach –
during modeling or prior to code generation. Here is a simple example: the metamodel in
Figure 14.7 defines that a configuration parameter (a special type of attribute) that must always
have the type String.

For all models that are specified using this DSL, the given constraint must hold. If a configura-
tion parameter is not of type String, a corresponding and meaningful error message can be

Figure 14.7 An example of constraints in the metamodel

Application
Model

UML Meta Model

UML::Class

CM::Component

UML::Attribute
/attribute

CM::
ConfigParam

{subsets attribute}

context CM::ConfigParam
inv: type == "String"

c14.fm Page 289 Tuesday, February 28, 2006 4:55 PM

290 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

issued, such as ‘ConfigParam must be of type String’, instead of getting an exception at runtime
because somewhere somebody tried to assign an Integer to a String.

Simulation of the Model

If the dynamic aspects of a system are thoroughly described in a model, they can be validated by
simulation of the model – that is, by execution of the model in a test bed. This approach is quite
popular for embedded systems, but only for rather specific types of behavior definition, specifi-
cally finite state automata. The UML 2.0 and action semantics are also a step in that direction –
see Chapter 12. In general practice, the model simulation approach is either not economical or
not possible because the dynamic system behavior is not specified in the model.

14.3 Testing the Domain Architecture

The domain architecture is software, too, and thus must be tested adequately. Fortunately, one
can break down this problem into single aspects for which well-known testing solutions are
available.

14.3.1 Testing the Reference Implementation and the MDSD Platform

The reference implementation plays a central role – at least during the bootstrapping phase of
the domain architecture. Since one typically uses a small expert team for this purpose, agile,
test-driven methods are quite useful here. The same is true for the MDSD platform.

All the test types introduced in Section 14.1 can be applied here – of course first without
model-driven, generative support. Nevertheless, the reference implementation can contain a par-
tition for prototype testware to discover its potential for generation.

14.3.2 Acceptance Test of the DSL

The validation of the modeling language (DSL) is also very important. This happens through its
use in the reference model (see Section 13.2.2). The latter is primarily an (acceptance) test of the
DSL in terms of its manageability and ergonomics. Since the reference implementation and the
reference model try to cover all of the DSL’s constructs as minimalistically as possible – the min-
imum of testing that completely test every feature once – the reference model should be consid-
ered a rather significant test. After bootstrapping, the application model from the development
thread is the next DSL test – you can use the ‘real’ application models as a test case for the suit-
ability of the DSL.

14.3.3 Test of the MDSD Transformations

In the architecture development thread, the formalization of the reference implementation’s aspects
and its casting in a computer-processable form – mostly generator templates or similar transformation

c14.fm Page 290 Tuesday, February 28, 2006 4:55 PM

14.3 Testing the Domain Architecture 291

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

rules that are bound to the DSL’s metamodel – is accomplished. As a rule, the transformation rules
build on a generic MDSD tool whose correctness we assume for our purposes4. This leaves us only
with the test of the domain- and platform-specific transformations. How can this be carried out in a
sensible manner?

A fairly obvious test method is a by-product of bootstrapping the domain architecture: since
the transformation rules were derived from both reference implementation and reference model,
they should be able to reproduce exactly that part of the reference implementation that is covered
by the DSL. In other words, if you apply the newly-created transformations to the reference
model, you get – depending on the scope of the architecture – either the complete reference
implementation or just its implementation skeleton. If you complement this skeleton with code
fragments from the original reference implementation, a complete and testable application
should be the result. All the tests that were created during the reference implementation’s con-
struction should still work successfully! As a side-effect, one gets a generative reference imple-
mentation, and the bootstrapping of the domain architecture is finished.

In the further course of the project, this initial test of the domain architecture is extended for
testing the actual application. The architecture is thus implicitly validated by the applications
created – that is, by their tests. This is extremely effective and totally sufficient in practice.

What would an explicit test of the transformation rules look like? After all, a generator is a
metaprogram – a program that generates programs from models. Its inputs are models, its out-
puts are programs or program parts (source code fragments). Thus an explicit test of for example
a single transformation rule would use a relevant piece of a model as the test set-up, apply the
rule to it, and finally compare the result to a specification: that is, to the corresponding desired
generated code or source code fragment. Figure 14.8 explains this principle.

When the generators are constructed from modules, such an approach, and the construction of
respective test suites is entirely possible. Let’s consider the consequences.

A (black-box) test supplies the system under test with specific stimuli (set-up and parameters)
and compares the output or side-effects of the executing system with a specification. Abstraction
takes place from the implementation of the system to be tested. How does abstraction work in the
case of the explicit transformation tests described in this section? Is it helpful to commit to a spe-
cific and textually fixed version of the generated code, or aren’t the semantics of the generated

4 Our scenario would look different if the generator needed to be certified, for example for a security-critical system.
However, we do not address such a scenario.

Figure 14.8 An explicit transformation test

Model
Generator

Configuration Generated
Code

Unit
Tests

c14.fm Page 291 Tuesday, February 28, 2006 4:55 PM

292 Testing

 c14.fm Version 0.3 (final) February 28, 2006 4:54 pm

code more relevant? Imagine a test suite with explicit transformation tests for a domain architec-
ture in practice: what happens if the architects realize that another implementation is much better
suited for a generative software architecture aspect than the existing one? The test suite would not
allow the change – even though it would perhaps be totally transparent from the client applica-
tions’ perspective! Equally, this means that explicit transformation tests constitute a counterpro-
ductive over-specification. Transformation tests should not take place on the metalevel (testing of
the generator), but on the concrete level (testing of the generated code).

What about modularization of transformation tests? The reference implementation (including
its concrete test suite) and the reference model provide one rather powerful test case for genera-
tive software architecture, while each client application provides another. Depending on the
combinatorics of the modeling constructs, it can make sense to generate a test suite from a
number of smaller test cases for the domain architecture. This can work as follows: a transfor-
mation test case focuses on a specific construct of the DSL (for example, associations between
persistent entities) – that is, the set-up consists of a model that is minimal in this respect and if
necessary also contains pre-implemented domain logic. The test run includes running the trans-
formations, resulting in code generated from the model that embeds the existing domain logic, if
applicable. The runnable generated code is then validated on the concrete level via test cases. A
test suite from such transformation tests that covers the DSL validates the generative part of the
domain architecture.

c14.fm Page 292 Tuesday, February 28, 2006 4:55 PM

293

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

15 Versioning

Efficient versioning and configuration management are always important in software develop-
ment projects. In this chapter we discuss only those MDSD-specific characteristics of this topic.

15.1 What Is Versioned?

In an MDSD project, the following aspects must be managed or versioned:

• The (generic) generation tools. Currently, these tools are often still in development them-
selves – because of this, it makes sense to have them under version control.

• The generator configuration, the generative part of the domain architecture. This includes
the DSL/profile definition, metamodel, templates, and transformations.

• The non-generative part of the domain architecture, the MDSD platform.
• The application itself: models, specifications, and (in most cases) manually-developed

code.

The generated code ideally is not versioned, because it is reproducable from the model at any
given time, and thus does not constitute a real program source. Of course, this idea can be
applied sensibly only if the manually-created and the generated code are separated structurally in
the file system. This is one reason why we value this separation (see Section 8.2.6). In practice,
it is not always 100% possible or useful, so we sometimes need a more complex procedure for
such cases. We discuss this later in this chapter.

One of the goals of model-driven development is the development of several applications
based on the same domain architecture. It is therefore essential to separate the platform and the
generator configurations from the applications completely.

15.2 Projects and Dependencies

Figure 15.1 provides an overview of a tried and tested project structure. The dashed-lined arrows
indicate the dependencies. The main goal is that the domain architecture must be kept clear of
application-specific artifacts.

c15.fm Page 293 Tuesday, February 28, 2006 4:56 PM

294 Versioning

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

All the projects shown in Figure 15.1 are managed in the version management system. The tools
and the domain architecture are checked in completely, but not the applications: the generated
code that is created as the result of running the generator should not be checked in.

It is important to manage the dependencies of the various projects, including their versions.
For an application project, it is essential to specify on which version of the domain architecture
the project depends. If the underlying platform evolves, you might have to co-evolve the domain
architecture, and maybe even the application projects. A framework metaphor is useful to clarify
this: imagine the domain architecture as a framework. If you evolve the framework you have to
adapt its client applications. These are the same dependencies, so the same methods are applied
in the evolution of a domain architecture.

It is worth mentioning that this view can also cascade. For example, it makes sense to ver-
sion the MDSD platform and the generator configuration in a domain architecture separately,
especially when the platform is reused in other domain architectures. On top of this, one will
want to version reusable transformation modules (cartridges) separately, and a powerful plat-
form may decompose into a number of decoupled frameworks. In an even more advanced sce-
nario, a functional/professional MDSD platform might have been created with the aid of an
architecture-centric domain architecture. These dependencies must be recognized and consid-
ered, both in versioning and in the context of architectural dependency management.

15.3 The Structure of Application Projects

Figure 15.2 shows how an application project can be structured at the highest level and how the
generator and compiler work on it.

The models of the application, as well as the manually-created code, are located in the appli-
cation repository. The generator creates the generated code, including configuration files and so
on, supported by the generator configuration. The latter is located in the domain architecture
repository. The application is next generated with the help of the build script (in most cases this
is also generated). This step uses the manually-created code of the application and the platform,
the latter taken from the domain architecture repository.

Figure 15.1 Projects and their dependencies

Generator

Platform Generator Configuration

Application 1 Application 2 Application n

Tools

Domain
Architecture

Applications

c15.fm Page 294 Tuesday, February 28, 2006 4:56 PM

15.4 Version Management and Build Process for Mixed Files 295

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

15.4 Version Management and Build Process for Mixed Files

A complete separation of generated and non-generated code is not always possible or sensible.
Examples of this are:

• Custom code in J2EE deployment descriptors.
• Custom code in JSP files.
• Custom code in property files or other configuration files.

In general, these are locations where the target language does not provide sufficient delegation
mechanisms.

In these cases one would as a rule work with mechanisms outlined in the case study in
Chapter 3: protected regions that can be defined in the generator templates. As a consequence,
markings are created in the generated code that are used by the generator during iterative
regeneration, to find and preserve the manually-created code contained in it. These markings
are hidden syntactically from the compiler or interpreter of the target language by labeling
them as comments.

Obviously the use of such protected regions leads to files in which generated and non-generated
code is mixed. The problem here is that these files can usually only be versioned as a whole. This
results in redundant code being checked in, because the generated code (without the contents of
the protected regions) is, after all, not source – the source would be the (partial) model from which
the code was generated.

These redundancies can lead to inconsistencies during development in a team. The inconsist-
encies will become increasingly problematical as the team grows larger: for example, assume

Figure 15.2 Projects, artifacts, and repositories

Application Project

Manually-implemented
Code

Models

Application
Repository

Generator
Configuration

Generated Code

Generator

Complete Application

Platform

Build Tool

Domain
Architecture
Repository

c15.fm Page 295 Tuesday, February 28, 2006 4:56 PM

296 Versioning

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

that developer A changes something in the model or the architecture while developer B is pro-
gramming domain logic contained in a file whose generated portion is affected by A’s changes.
This situation can cause a problem or conflict when checking in either A or B, because the data
is no longer up-to-date. The reason for this is a redundancy in the repository. The objective must
be to avoid this redundancy and for example to manage the contents of the protected regions in
isolation: the generator must allow this. On the other hand, an isolated protected region is usually
of little help to the application developer, because they need the context of the generated code as
guidance and to execute the compile-run cycle.

In this situation we need a procedure that avoids redundancy in the repository and offers the
developer their familiar, file-oriented view. Figure 15.3 shows such an approach.

The real (that is, non-generated) application sources are managed in the application reposi-
tory. Manually-created, application-specific source code that is not organized in protected
regions is labeled separate code here. In addition, one can automatically – and frequently –
create an application image, for example via CruiseControl [CRUI], that contains the gener-
ated as well as the manually-created code. Automated tests can then also be initiated on the
server.

The developers can now use the well-known check in and check out processes of version man-
agement to achieve synchronization with the repositories or modules. The actual application
development takes place in a separate work directory. The synchronization between this work

Figure 15.3 Version management and build process for mixed files

Domain Architecture
Repository

Platform

Meta Model/DSL

Transformations

Application Repository

Application Source

Models

Separate Code

Protected Regions

Application Image

Generator Output
& Protected Rg.

Separate Code

Cruise
Control

Version Control System Developer Workstation

Application
Source

check in

check out
Domain

Architecture

check in
check out

Application
Image

check out

Generate-
Work

Working Directory
Application Developer

Models

Application Image
Update-

Work

WorkTo-
Source

ImageTo-
Work

Developer

c15.fm Page 296 Tuesday, February 28, 2006 4:56 PM

15.5 Modeling in a Team and Versioning of Partial Models 297

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

directory and the (local) directories that are also controlled during versioning takes place for
example via the following scripts or Ant tasks:

• GenerateWork. This script applies the domain architecture on the application model and
integrates the checked-out handwritten code from separate files and protected regions with
generated code through a generator run. In other words, it produces a complete source
code image of the application in the developer’s working directory from scratch.

• UpdateWork. Other than with GenerateWork, no generation takes place here. Only the
handwritten code is updated

• WorkToSource. Changes to the working directory are reduced to changes of real sources
(generated code is not source) and made available to the version management system, so
that check-in can take place in a way that is compatible with the structures in the version
control system.

• ImageToWork. The result of this script is not very different from GenerateWork. It refreshes
the complete source code image in the working directory from the version control system,
where it was previously built by a continuous integration server such as CruiseControl.
This saves local processing power by delegating a complete build to the server side. Obvi-
ously only checked-in content is involved here, in contrast to GenerateWork.

Merge conflicts between developers are exclusively detected using application sources in the
repository.

It should be emphasized again that a separation between generated and non-generated code is
preferable, in our opinion, and should in any case be attempted.

15.5 Modeling in a Team and Versioning of Partial Models

Big systems must be partitioned. Their constituent parts or subsystems are developed more or
less independently of each other. Interfaces define how the systems will interact. Regular inte-
gration steps bring the parts together. Such an approach is especially useful if the parts are devel-
oped in different locations or by different teams. Of course this primarily affects the development
process and communication in the team, possibly also the system architecture. This section casts
light on various aspects of this process in the context of versioning.

15.5.1 Partitioning vs. Subdomains

First it is important to point out the difference between partitioning and the use of subdomains
(see Figure 15.4):

• (Technical) subdomains isolate various aspects of the whole system. Each subdomain has
its own metamodel and a DSL. The different metamodels are conceptually unified via
gateway metaclasses. In the context of an enterprise system, these could be, for example,
the subdomains business processes, persistence and GUIs.

c15.fm Page 297 Tuesday, February 28, 2006 4:56 PM

298 Versioning

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

• In contrast, partitioning describes the definition of partial systems. For reasons of efficient
project organization or complexity, a large number of technically-similar requirements is
broken down into separate parts that can be integrated with interfaces.

15.5.2 Various Generative Software Architectures

If different (versions of) generative architectures are used in different partitions of a project, the
question arises of whether the generated artifacts will work together. In general, this means that
an integration should take place at the level of the generated code. As an example, assume we
work with different versions of generative infrastructures that all create parts of a comprehensive
J2EE application. Since all generated artifacts must be J2EE-compliant in such a scenario, inte-
gration can take place at the level of the finished applications: it is not mandatory that all parts
work with the same domain architecture. Such an approach is not ideal, of course, since overall
system-wide constraints checking is not possible.

15.5.3 Evolution of the DSL

The DSL typically continues to be developed in the course of one (or more) projects. The knowl-
edge and understanding of the domain grows and deepens, so the DSL will thus be extended. To
make life simpler, one must make sure that the DSL remains backwards-compatible during its
evolution.

The approach to versioning in Section 15.5.2 is one way of accomplishing that. Another
option is to modify the generator configuration in such a way that it supports different ver-
sions of the DSL and metamodel. This should be considered particularly if you work with different

Figure 15.4 Technical subdomains contrasted with partitioning in a financial example

GUI

Persistence

Processes

F
in

an
ci

al

A
cc

o
u

n
ti

n
g

R
es

o
u

rc
e

M
an

ag
em

en
t

C
R

M

Partitions
S

u
b

d
o

m
ai

n
s

SYSTEM

c15.fm Page 298 Tuesday, February 28, 2006 4:56 PM

15.5 Modeling in a Team and Versioning of Partial Models 299

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

versions of the DSL in parallel, for example when application developers switch to a new ver-
sion of the domain architecture at the end of an iteration. Now a newer – in most cases more
powerful – version of the domain architecture is offered, while the application models are still
using the previous version. In this case, you must provide a migration path that requires as lit-
tle change as possible on the model from the application developer’s viewpoint. The new fea-
tures of the DSL should be offered to the developers, not forced on them. Older features might
also become deprecated: the generator could issue warnings when such features are used.

In practice, the support of domain architecture versions using generator configurations is not
as complicated as it may sound at first. After all, the generator configuration is implemented
by the developers of the domain architecture. They define the metamodel and the concrete syn-
tax, as well as the code to be generated. They can, for example, place a version number in the
models1 that determines how the generator interprets the model or what code it generates. You
can also implement implicit rules: if a certain attribute in the model does not exist, a specific
default value is then used. Another example is the validation of attributes of entities. Let’s
assume you have a metamodel that contains the concept of an entity. An entity owns a number
of attributes. The following listing shows an example model rendered in XML:

Typically you want to check the attributes for correctness. For this purpose, you can state various
constraints. Initially, you might implement this as follows, by simply annotating a named con-
straint:

This asserts that the attribute cannot be left empty. In the course of the project, you next learn
that you need more than one constraint, which cannot be expressed adequately with XML
attributes. Instead of changing everything, you can now allow the additional constraints as addi-
tional XML elements – the old attribute variant can remain:

1 A portable, tool-independent option of placing versioning information in the UML model allows the model elements
to be enriched with the respective tagged values.

<Entity name="Person">
 <Attribute name="name" type="String" label="Name"/>
 <Attribute name="firstname" type="String"
 label="Firstname"/>
</Entity>

<Attribute name="name" type="String" label="Name"
 constraint="notNull"/>

<Attribute name="name" type="String" label="Name"
 constraint="notNull">
 <Constraint name="startsWithLetter"/>
</Attribute>

c15.fm Page 299 Tuesday, February 28, 2006 4:56 PM

300 Versioning

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

Now you may find out that you need an optional Boolean expression. This can for example be
formulated using the target language:

If this flexibility is still not enough, you can also state a class name in the target language while
the respective class implements a validator interface defined by the platform:

If you continue to develop your DSL in such a way that you keep the old features and add new
ones, an evolution of the DSL is easily accomplished in everyday project work. Such mecha-
nisms let you cover an astonishingly large number of cases. Of course this approach increases
the complexity of the generator configuration. You should also make sure that outdated features
are removed over time. A controlled use of deprecated lets you sort out old features as the
project progresses. The generator can easily create a file that logs which features are still in use.
This will help you to remove features from the generator configuration that are no longer used –
a kind of garbage collection.

15.5.4 Partitioning and Integration

Assume that different teams need the same interfaces, perhaps because one team implements a
component that uses code from another team. Figure 15.5 illustrates this:

<Attribute name="age" type="int" label="Age"
 constraint="notNull">
 <Constraint>
 1 <= age <= 110
 </Constraint>
</Attribute>

<Attribute name="age" type="int" label="Age"
 constraintChecker="person.AgeChecker"/>

Figure 15.5 Access to shared model elements

Component A Component B

<<interface>>
AnInterface

c15.fm Page 300 Tuesday, February 28, 2006 4:56 PM

15.5 Modeling in a Team and Versioning of Partial Models 301

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

When your work is model-driven, it is mandatory that at least the model of the interface is available
in both models, as shown in Figure 15.6. However, this approach is not ideal, because information
is duplicated in the two models, leading to consistency concerns. Depending on the tools, other
options exist.

Integration in the Model

If the modeling tools support it, you should make sure that the interface only exists in one place
and is referenced from both models. From the generator’s view, this results in one consistent
model – see Figure 15.7:

Whether this approach can be realized or not depends on the modeling tools. Among UML
tools, repository-based tools that support distributed modeling are ideal.

Figure 15.6 Duplication of shared model elements

Figure 15.7 Sharing of the interface

Model A

Component A Component B

<<interface>>
AnInterface

<<interface>>
AnInterface

Model B

Model A

Component A Component B

<<interface>>
AnInterface

Model B

Model I

Composite Model

c15.fm Page 301 Tuesday, February 28, 2006 4:56 PM

302 Versioning

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

Integration in the Generator via Model Synchronization

If the modeling tool does not offer adequate integration options, integration can also take place
at the generator level. The generator reads several input models that each contain specific model
elements, as can be seen in Figure 15.8.

In this case, it is the generator’s task to solve the possible consistency problem:

• The mapping can either be carried out explicitly via a mapping specification, or simply
based on identical names.

• Should both model elements (defined by the mapping as identical) differ content-wise,
either an error can be reported or an adaption take place. Again, this can be automated to a
certain extent.

Integration in the Generator via References (Proxy Elements)

A further integration alternative is the use of references, as explained in Section 8.3.4. Figure 15.9
once more illustrates the principle: the interface AnInterface is only present in one model. The
other models merely contain interface references to the interface. Dereferencing can take place
via names and is done automatically by the generator.

Figure 15.8 Duplication of shared model elements and resolution by the generator

Model A

Component A Component B

<<interface>>
AnInterface

<<interface>>
AnInterface

Model B

Generator

<<interface>>
B::AnInterface

<<interface>>
A::AnInterface

<<map>>

Mapping
Specification

c15.fm Page 302 Tuesday, February 28, 2006 4:56 PM

15.5 Modeling in a Team and Versioning of Partial Models 303

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

Figure 15.9 Application of reference model elements to realize commonly used model
elements

Model A

Component A Component B

<<interfaceref>>

AnInterface

<<interface>>

AnInterface

Model B

Generator

<<interface>>

B::AnInterface
<<interfaceref>>

A::AnInterface

<<map>>

operationA(): int
operationB(int):void

c15.fm Page 303 Tuesday, February 28, 2006 4:56 PM

 c15.fm Version 0.3 (final) February 28, 2006 4:55 pm

c15.fm Page 304 Tuesday, February 28, 2006 4:56 PM

305

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

16 Case Study: Embedded Component
Infrastructures

16.1 Overview

This chapter contains a second, comprehensive case study, an example from the world of embed-
ded systems. The chapter is also about the model-driven development of component infrastruc-
tures. It illustrates the following topics:

• Modeling via textual DSLs
• Use of different models for different subdomains
• Generation of infrastructure, not applications
• Product lines and feature models
• Use and adaptation of the openArchitectureWare generator
• ‘Pseudo-declarative’ programming of metamodel constraints
• Interceptors in the generator to separate various aspects in the metamodel
• Generation of build files
• Cascading domain architectures

The case study is based on our experience from various real-life projects.
Note that the explanations in this chapter presuppose that in principle you understand how

the openArchitectureWare generator [OAW] works1. The case study in the first part of this
book conveys important basics. Therefore, you should read it first. Also, since openArchitec-
tureWare changes faster than this book, the examples shown here might not use the most up-to-
date APIs.

1 In the interim development of the concrete API of the generator has progressed. Details, as well as a tutorial, can be
found at http://www.openarchitectureware.org

c16.fm Page 305 Tuesday, February 28, 2006 5:23 PM

306 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

16.1.1 Introduction and Motivation

Embedded systems have rapidly increased in complexity in recent years:

• You can take photographs with cell phones, surf the Internet with them, as well as display
video streams: it sometimes comes as a surprise to find that you can still use them to make
telephone calls.

• Cars contain up to seventy small computers (ECUs – electronic control units) that control a
large variety of the vehicle’s technical aspects. These computers are connected to different
bus systems and contain a lot of software.

• More and more appliances contain an increasing amount of software.

For a long time it was common practice in the world of embedded systems to adapt the software
to the hardware platform manually – with obvious consequences for time-to-market and effort in
general. This is becoming more and more difficult – a month scarcely passes without new cell
phones entering the market. Similarly, the lifecycles of modern car models are growing shorter
and shorter.

Because electronics and software pervade our everyday life, the quality and reliability of soft-
ware must be maintained, if not improved. In the recent past, massive product quality problems
for automobile and cell phone manufacturers have been reported in the press due to software and
electronics.

The manual production of discrete embedded systems must therefore be replaced by the
development of product lines and software systems families. The meaning of software archi-
tecture as a central building block in software development is assuming increasing signifi-
cance in this context. Model-Driven Software Development as an implementation paradigm
plays a pivotal role here.

Code generation per se is already widespread in the world of embedded system development.
However, it is primarily used to generate application logic from models that are usually state charts
(for discrete systems) or signal flow diagrams (for continuous systems). Yet the development of
the technical infrastructure in which these functionalities are executed is increasingly often devel-
oped using MDSD. Attempts have been made to establish standards for this kind of middleware in
various industries, for example [ASAR] in the field of automotive manufacture. A particularly
promising approach is the combination of component infrastructures [Voe02] and MDSD.

16.1.2 Component Infrastructures

Component infrastructures as described in [VSW02] build on two central aspects:

• Components encapsulate a self-contained piece of application functionality. They pro-
vide this functionality via well-defined interfaces. In addition, the component describes
which resources are needed for the execution of its functionality, such as other compo-
nent interfaces.

• A container provides basic technical services to the component instances running in it.
What these services are exactly depends on the domain. It is described further below for
embedded systems.

c16.fm Page 306 Tuesday, February 28, 2006 5:23 PM

16.2 Product-Line Engineering 307

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

An application thus consists of a number of component instances that are run in containers. The
advantages are clear: foremost is the fact that the developer can concentrate on the implementa-
tion of the application logic while the container delivers the basic technical functionality.
Depending on its degree of standardization, the container can be reused or purchased from third
parties2.

As we will see, the concrete requirements for containers depend strongly on the domain and
environment. In the world of embedded systems, typical examples for container services are
remote communication using various bus systems, dependency management, start-up coordina-
tion and lifecycle management, tasking and scheduling. These are realized together with the
(real-time) operating system.

16.1.3 Component Infrastructure Requirements for Embedded Systems

A special challenge exists in the world of embedded systems: the scarceness of resources such as
memory or electricity, processing power, and – of extreme importance – the unit price of the
complete system. It is absolutely mandatory that such component infrastructures do not induce
additional requirements relating to the scarce resources or reduced runtime performance. We are
faced with interesting challenges here that can be tackled well with the help of MDSD.

Note that there are also embedded systems that are much bigger in nature, highly distributed,
and much more complex, such as the DRE systems found in avionics. In this kind of system the
generation of tailored infrastructures is not that critical. However, other aspects of system design –
namely, distribution, configuration and distributed QoS – can be solved using model-driven tech-
niques. However, this class of systems is not part of the discussion in this chapter

16.1.4 The Basic Approach

The basic approach is that the component container is generated. This allows containers to be
specifically adapted and optimized for the target system. Via several models that describe
different technical subdomains, the generator creates a container that precisely matches the
platform and meets the requirements of both, components and hardware.

16.2 Product-Line Engineering

Before we actually show how the various artifacts are built, we want to use this case study to
illustrate the basics of product-line engineering as described in Chapter 13.

The containers represent a software system family. The containers that are used with various
systems have several commonalities, but also differ in specific respects. For example, they will
only contain code for communication via a particular bus if the respective ECU is actually attached
to this bus. The same is true for the communication paradigms. If communication takes place only
via asynchronous events, the container doesn’t need to contain code that brokers synchronous
operation calls between different component instances via the bus.

2 J2EE, COM+, or CCM are examples.

c16.fm Page 307 Tuesday, February 28, 2006 5:23 PM

308 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

It makes sense to view this from the product-line engineering perspective. The argumentation
is simple. If we only had a single container that could be used in all scenarios and systems, it
would constitute a framework. As explained in Section 16.1.4, this approach is not practicable
for performance and code size reasons.

If each container was a complete, unique entity, the concept of the container would be rendered
absurd. For economic reasons, certain aspects must be similar between containers for different
systems.

16.2.1 Domain Scoping

First, we must define for which scenarios the containers should be suitable. To approach this
question systematically, we could use feature modeling for the entire domain of the embedded
systems to determine which part of the whole domain we wish to address.

In this phase, this procedure often involves too much effort, which is why we use a more
pragmatic approach here. The following aspects can be considered to help in defining the scope
of the domain:

• Operating system. In the realm of embedded systems, it is not unusual to program directly
to the hardware and not use an operating system. The features that an operating system
offers for embedded systems (as well as their performance) vary considerably for each
operating system. For our container, we assume that an operating system is available that at
least handles scheduling. We consider memory protection, as well as other more complex
features, to be optional.

• Real-time capability. The question of whether a system is able to perform in real-time3

depends on various factors: in the case of distributed systems, it depends mostly on the
underlying bus (FlexRay, for example, has real-time capability), on the operating system’s
scheduler, and the on application’s functionality. We limit our examples to systems that
must not meet any hard real-time requirements.

• Safety concerns. For many fields of application in a safety-critical environment, a large
variety of certifications is required. In addition to certifying the software itself, the tools for
building the software and the development process itself are often subject to certification.
We also exclude such systems.

• Dynamic vs. static configuration. Component instances, their communication relation-
ships, and various other aspects of the whole system can either be defined dynamically at
runtime or statically at configuration time. For performance reasons, we only address the
static case here, whereas only the lifecycle states are managed dynamically.

We therefore deliberately exclude certain scenarios from our domain. This helps us to keep focus
during development of the system family. We focus the software system family on component
containers with the following characteristics:

• No (hard) real-time capability
• Not safety-critical

3 In this context, we understand the term real-time capability to imply that a deadline that is not met constitutes a
system error (this is also called hard real-time).

c16.fm Page 308 Tuesday, February 28, 2006 5:23 PM

16.2 Product-Line Engineering 309

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

• Statically configured
• Working on an operating system that at least handles scheduling

16.2.2 Variability Analysis and Domain Structuring

Since we are now familiar with the domain’s boundaries, we must analyze the features of these
systems to determine which of them are shared by all members of the system family, and which
are variable. As a first step it is useful to divide the domain into subdomains, as described in
Section 13.5:

• Communication via different bus systems and their high-performance implementation,
and how to map those to the abstractions and mechanisms defined by the component
model.

• Container services – additional services that the container can provide for the components
at runtime.

• Deployment and consistency checks – to achieve optimal and consistent distribution of the
components over the system nodes.

• Integration of scheduling with the operating system.

For each of these subdomains, one should perform a variability analysis. As examples, we will
focus on two subdomains here: communication mechanisms and cross-cutting services of the
container.

Communication Paradigms

Connectors serve to describe the communication relationship between two ports of components,
as shown in Figure 16.1.

The paradigm that should be used for communication (operation call, message-oriented) is
defined by the interface of both ports, and particularly by the connector. The feature model

Figure 16.1 Component instances, ports and connectors

Connector

instance1:
ComponentA

instance2:
ComponentB

Component Instance

Provided Port Required Port

c16.fm Page 309 Tuesday, February 28, 2006 5:23 PM

310 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

(see Section 13.5.3) in Figure 16.2 shows which communication options exist. You can see
from this that two features must be determined first of all: technology and the paradigm.

Of course the technology depends on the constraints: one can only communicate via those bus
systems that are connected to the respective hardware node. Moreover, one can only communicate
locally if both instances are located in the same container (a container defines an address space).

The paradigm is somewhat more difficult. In principle, one can either communicate using a
client/server or message-based method. In the case of client/server communication, one must
decide whether one wishes to communicate synchronously or asynchronously. In the case of
asynchronous communication, one must decide how one wishes to be informed about the call’s
result.

These and other decisions must also be made in the case of message-based communication.
It is important to determine when the developer defines each feature. This can, for example,

be done using an annotation of the feature diagram, as shown in Figure 16.3.

Figure 16.2 Feature model of the communication options

Figure 16.3 Binding times for different features

Client/Server Message-based

Synchronous Asynchronous

Polling CallbackTimeout

Blocking Non-blocking

CAN Local

Technology

Receiver

PushPull

Queued Non-queued

Sender
[incomplete]

[incomplete] [incomplete]

[incomplete]

[incomplete]
Paradigm

Connector

Client/Server
Message-based

Statically:
At Interface Model

Synchronous
Asynchronous

Statically:
At Connector Model

Runtime: via APITimeout

Polling
Callback

Statically:
At Connector Model

Blocking
Non-blocking

Runtime:
via API

Pull
Push

Statically:
At Connector Model

Queued Statically:
At Connector Model

CAN

Local

... Statically:
At Deployment

Non-queued

c16.fm Page 310 Tuesday, February 28, 2006 5:23 PM

16.2 Product-Line Engineering 311

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The reasons why a number of features must be defined statically are code size, memory con-
sumption, deterministic timing characteristics, and performance.

The question of whether polling should be blocking or non-blocking must be decided stati-
cally on some operating systems, such as Osek, to configure the operating system in such a way
that blocking is actually possible4.

Container Services

The services offered by the container constitute a further important aspect of the software sys-
tem family component containers – see Figure 16.4.

First, containers always offer communication services. The container can also take care of the
component instances’ lifecycle by controlling their activation and deactivation. We distinguish
three modes:

• Simple only knows the events Start and Stop.
• Init also knows an initialization phase, that is Start, Init, Deinit, Stop.
• Pause knows a pause mode, for example for energy-saving.

4 BCC versus ECC, for the Osek insiders among our readers.

Figure 16.4 Feature model for the container's services

ContainerServices

Communication

see
"Connector"

Protocol-SMLifecycle Mgt

Simple (SS)

Init (SIDS)

Pause (SIPDS)

Timing

StopInst

Reaction

StopSys

Reportrequires

ErrorStorage
re

q
u

ir
es

StatePersistence

re
q

u
ir

es

DistLifecycle

re
q

u
ir

es

Automatic

Mode

Manual

c16.fm Page 311 Tuesday, February 28, 2006 5:23 PM

312 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The container can monitor protocol state machines. In this context, two aspects must be defined:
first, should timing constraints also be monitored, and second, how should one respond to
errors?

• StopInst stops the respective instance (for this purpose, lifecycle management is needed).
• StopSys stops the entire container.
• Report merely reports the error to a central error storage.

The container must have the error storage feature for the latter.
The container can also manage the state of the component instances. If this feature is acti-

vated, the container can store the component’s state persistently either automatically or after
the developer invokes a specific API operation. Lifecycle management must be activated for
this.

Finally, the container can be involved in distributed – system-wide – lifecycle management.
This requires lifecycle management in the container.

As a rule the respective features are bound statically, but there are differences in the details:

• The lifecycle mode must be known when the component implementation is developed,
because one might want to react to lifecycle events in the implementation code.

• The question of whether protocol state machines should be monitored at runtime can be
decided at the generation time of the container.

We address this issue again when we discuss the definition of the production plan.

16.2.3 Domain Design

During the domain design process, the target architecture is defined – that is, the common basic
architecture of the different software system family’s members is determined, as well as how the
optional features integrate. The production process is also defined: this prescribes the route from
the model to the final product.

Target Architecture

We cannot dwell on all the details of the target architecture here, as this would exceed the scope
of our case study. Figure 16.5, however, provides an overview. The shaded items constitute the
MDSD platform. The items in gray are generated, and the white parts represent the components’
manual implementations.

We want to reinvent as little as possible, which is why we make extensive use of the operating
system facilities. The lower dashed box comprises the operating system and some basic libraries
and drivers. The upper dashed box makes up the container.

Note that the items displayed here do not represent all artifacts that are required or generated.
For example, we need generated makefiles and generated configuration files, but these are not
relevant for the target architecture of the completed system.

c16.fm Page 312 Tuesday, February 28, 2006 5:23 PM

16.2 Product-Line Engineering 313

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The Production Process

The production process describes how one builds complete, executable systems, starting from the
models. Figure 16.6 shows a simplified version of this process for the case study example. The
steps are explained below, but we do not address the roles – the vertical divisions in the diagram –
in this process in detail. In the illustration, the solid arrows denote a chronological order and the
dashed arrows mark a dependency or a uses relationship.

Let’s look at some specifics regarding this process: we’ll clarify the details in the course of the
case study:

1. In the first step the interfaces are modeled. Interfaces provide the basis for communication
between the component instances.

2. In the second step the components and their ports are defined with the help of the interfaces.
3. From these two models, the generator can create the skeleton component code, such as for

example C header files.
4. Based on the generated skeleton code, the developer can now develop the actual compo-

nent implementation.
5. The developer is now able to define the complete system, that is, component instances, the

connectors between them, as well as the distribution of instances to the hardware nodes
(which must also be described here). The container service configuration model can now
be established. This defines which of the additional services in Figure 16.4 the container
must actually provide for the respective system.

6. This is the actual generation step. The generator creates the code that is needed to implement
the required container functionality. To do this it needs access to all models that have been

Figure 16.5 Family architecture of the example component infrastructure

Operating System

Component 1

Implementation

Marshaller

Bus Adapter

Component 2

Implementation

Marshaller

Bus Adapter

Other LibraryIO DriverBus Driver

Scheduler

Life-
cycle
Stub

Life-
cycle
Stub

Port
Impl

Port
ImplPort

Impl

Port
Impl

PSM PSM

L
if

ec
yc

le
 M

an
ag

er

D
is

t.
 L

if
ec

yc
le

 M
an

ag
er

E
rr

o
r

S
to

ra
g

e

S
ta

te
 P

er
si

st
en

ce

c16.fm Page 313 Tuesday, February 28, 2006 5:23 PM

314 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

defined up to this point. The generator also creates a configuration file for the respective
operating system, as well as a makefile for building the image.

7. In this step, compiler, linker and make can create the program’s image. This image consists
of the container, the (generated) component skeleton code, the manually-created component
implementation, and the libraries required from the platform.

8. In the last step, the operating system instance is created from the respective configuration
file. This is done by a tool that is part of the operating system.

We can now transfer both operating system and application – that is, the container and components –
to the target hardware and run them.

Figure 16.6 Production process of the middleware system family

Developer

<<model>>
Interfaces

<<model>>
Components

<<code>>
Component

Implementations

<<code>>
Component Base

Code

Generator

<<model>>
Deployment /

System

<<model>>
Container

Service Config

<<code>>
Container Code

<<utility>>
OS Config

File

<<utiliy>>
Make File

Compiler/Link/
Make

<<image>>
Executable

OS Configuration
Tool

<<image>>
OS

<<code>>
Platform

(Marshallers,
Drivers,...)

1

2

3

4

5

6

7 8

c16.fm Page 314 Tuesday, February 28, 2006 5:23 PM

16.3 Modeling 315

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

16.2.4 Domain Implementation

The last phase of product-line engineering is the implementation of the concepts we have
already introduced. This phase constitutes the major part of our case study and is explained in
the remainder of this chapter.

16.3 Modeling

This section describes what the models look like in the system’s various subdomains. For this
purpose, a custom DSL is used for each of the three subdomains. Like all DSLs, these too
consist of:

• A metamodel that defines the abstract syntax and the static semantics.
• The concrete syntax, which defines the notation to render the models.
• The (dynamic) semantics, which define the meaning of the metamodel elements.

The metamodels are implemented in Java, as prescribed by the openArchitectureWare generator.
They are coupled via gateway and proxy metaclasses. The concrete syntax of the DSL varies in
all three cases. A UML profile is used here as well as a textual notation (inspired by CORBA
IDL) and a special XML-DTD. In all three cases, the DSL’s semantics are enforced via the trans-
formations used by the generator to generate the implementation code.

16.3.1 Definition of Interfaces

How do we define a component? A component consists of a series of ports that either provide or
use the services of an interface. Figure 16.7 shows the metamodel for interfaces.

Figure 16.7 The metamodel for interfaces

*

{ordered}
Interface

name : String
type : String

Operation

name : String
type : String

Parameter

type : String

Exception**

c16.fm Page 315 Tuesday, February 28, 2006 5:23 PM

316 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The concrete syntax will be textual, as graphical notations are no more productive for this pur-
pose. Let’s begin with the definition of an interface:

In addition to this syntactic definition of interfaces, protocol state machines can also be mod-
eled, for example by using UML. These define in which order the operations of an interface may
be invoked. From this state machine, code can be generated that monitors at runtime whether the
constraints defined by the state machine are observed by clients. If this is not the case, an error
can be stored in an error store that can be used subsequently for diagnostics. Figure 16.8 shows
an example of a protocol state machine.

The metamodel for this purpose corresponds with the well-known metamodel for state machines,
consisting of states, transitions, guards, and events. The events in this case are operations that can
be invoked on the interface. We address the question of how the interface finds its protocol state
machine and how runtime monitoring code is generated later.

16.3.2 Definition of Components and Ports

Next we model components and their ports. The metamodel used here is shown in Figure 16.9.

Since the concrete syntax is going to be a UML profile, we use the UML metamodel as a
basis. The metamodel element InterfaceRef is particularly interesting – it serves as a reference to
interfaces defined in other models. Assignment of the reference to the model that defines it is
based on name equivalence. Figure 16.10 represents the concrete syntax of an example compo-
nent model based on UML.

interface Sensor {
 operation start():void;
 operation stop():void;
 operation measure():float;
}
interface Controller {
 operation reportProblem(Sensor s,
 String errorDesc):void;
}

Figure 16.8 An example of a protocol state machine

Created Ready

Measuring

measure

start

stop

stop

c16.fm Page 316 Tuesday, February 28, 2006 5:23 PM

16.3 Modeling 317

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

Figure 16.9 Metamodel for components, ports and interfaces as an extension of the UML
metamodel

Figure 16.10 An example component model of a weather station

Component Port
*1

RequiredPort ProvidedPort

InterfaceRef
* 1

Application

ports

context Application
inv: ports->collect(p | p oclIsKindOf ProvidedPort)->isEmpty

Port
Dependency

tofrom

context PortDependency
inv: to.Interface = = from.Interface

ConfigParam
*

UML::Class
name : String
type : String

UML::
Attribute

{subsets Features}

* Attributes

{subsets
Attributes}

context ConfigParam
inv: type = = "String"

UML Metamodel

UML::
Association

unit: String

<<component>>
Temperature-

Sensor

<<interfaceref>>
Controller

controllerPort

<<requiredport>>

<<interfaceref>>
Sensor

measurementPort

<<providedport>>

<<component>>
Control

<<component>>
Humidity
Sensor

<<requiredport>>
sensorsPort

<<providedport>>
controllerPort

measurementPort

<<providedport>>

controllerPort

<<requiredport>>

c16.fm Page 317 Tuesday, February 28, 2006 5:23 PM

318 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

16.3.3 Definition of a System

A system consists of a number of nodes. One or more containers are deployed on each node. A
container hosts one or more component instances. The ports of component instances are linked
using connectors. As can be seen from the metamodel, there are different kinds of connectors.
Figure 16.11 shows this metamodel.

Here, too, we work with metamodel references to reference elements that are defined in other
models.

For the system model, the concrete syntax is an XML schema that has been designed explicitly
for this purpose. First we define the component instances, system nodes and containers.

Figure 16.11 Metamodels for systems, containers and connectors.

<system name="weatherStation">
 <node name="main">
 <container name="main">
 <instance name="controller"
 type="Control"/>
 </container>
 </node>
 <node name="inside">
 <container name="sensorInside">
 <instance name="tempInside"
 type="TemperatureSensor">´
 <param name="unit" value="centigrade"/>
 </instance>
 </container>
 </node>

ComponentRef

name : String

Component
Instance

*

1

System Node
* *Connector

Type

1 type

DirectCall
Connector

SharedMemory
Connector

CORBA
Connector

{open}

Provided
PortRef

Required
PortRef

id : String

Connector

1 1source target

*

context Connector
inv: source.interface = = target.interface

Container
*

c16.fm Page 318 Tuesday, February 28, 2006 5:23 PM

16.3 Modeling 319

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

Next, we describe the connections between the component instances in the form of connectors.

 <node name="outside">
<container name="sensorsOutside">

 <instance name="tempOutside"
 type="TemperatureSensor">´
 <param name="unit" value="centigrade"/>
 </instance>
 <instance name="humOutside"
 type="HumiditySensor"/>
 </container>
 </node>

 <!-- temperature sensor outside -->
 <connector name="toSensorTempOutside">
 <providedPort instance="tempOutside"
 port="measurementPort">
 <requiredPort instance="controller"
 port="sensorsPort">
 </connector>
 <connector name="fromSensorTempOutside">
 <providedPort instance="controller"
 port="controllerPort">
 <requiredPort instance="tempOutside"
 port="controllerPort>
 </connector>

 <!-- humidity sensor outside -->
 <connector name="toSensorHumOutside">
 <providedPort instance="humOutside"
 port="measurementPort">
 <requiredPort instance="controller"
 port="sensorsPort">
 </connector>
 <connector name="fromSensorHumOutside">
 <providedPort instance="controller"
 port="controllerPort">
 <requiredPort instance="humOutside"
 port="controllerPort>
 </connector>

 <!-- temperature sensor inside -->
 <connector name="toSensorTempInside">
 <providedPort instance="tempInside"
 port="measurementPort">
 <requiredPort instance="controller"
 port="sensorsPort">
 </connector>
 <connector name="fromSensorTempInside">
 <providedPort instance="controller"
 port="controllerPort">

c16.fm Page 319 Tuesday, February 28, 2006 5:23 PM

320 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

This defines the logical structure of the system. What is missing so far is the precise characteri-
zation of the connectors’ features. Now the feature model defined in Section 16.2.2 comes into
play. The following two configurations would be valid with regard to the feature model:

Such configuration settings must be stated additionally for the connector definition mentioned
above. In this context, a constraint emerges: a local connector can only be defined between two
instances if these instances are active in the same container. The generator must check this and,
if necessary, issue the respective error messages.

16.3.4 The Complete Model

The complete metamodel consists of a superset of metamodels from the various subdomains.
Figure 16.12 shows the reference classes (proxy elements) that establish relationships between
the different subdomains.

16.3.5 Processing

Figure 16.13 shows how the different artifacts are processed by the generator.

 <requiredPort instance="tempInside"
 port="controllerPort>
 </connector>
</system>

connector.technology=CAN
connector.paradigm=async-cs,polling,blocking

connector.technology=local
connector.paradigm=sync

Figure 16.12 Relationships among the metamodels

name
InterfaceRef

type

name
Interface

instance.
type

name
Component

Interfaces

name

name

Components

PortRef

Systems

Port

c16.fm Page 320 Tuesday, February 28, 2006 5:23 PM

16.4 Implementation of Components 321

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

16.4 Implementation of Components

This section shows how the concept of the component is mapped to programming languages and
how the container interacts with the components. To simplify matters, we exclusively use Java.
as an example implementation language. We are aware of course that for ‘real’ embedded sys-
tems a mapping to C would be more relevant. Mapping to Java is nevertheless easier to under-
stand and is applied in practice, for example for cell phones.

Mapping to Java

A fairly direct mapping of the component is possible due to the fact that Java is an object-oriented
language. Figure 16.4 gives an example:

• A (client/server) component interface is mapped to a Java interface.
• For each component, an abstract base class is generated from which the developer derives

custom classes that implement operations offered by the components.

Figure 16.13 Overview of the generation process

Application

Domain Architecture Generator

Meta Model

DSL
(Interfaces)

Inter-
faces

Comp-
onents

Sys-
tem

Model

<<instanceof>>

ASCII

konrete
Syntax

Meta
Model

DSL
(Components)

Meta Model

UML Profile

Concrete
Syntax

DSL
(Systems)

Meta Model

XML

Concrete
Syntax

Inter-
faces

Comp-
onents

Sys-
tem

Generator
Backend

S
em

an
ti

cs

XML
Instantiator

Textual
Instantiator

XMI
Instantiator

Instantiated
Metamodel

<<instanceof>>

Transformations

Meta Meta Model
(Java)

<<in
stan

ceo
f>>

Manually
Implemented

Application Logic
Platform

Generated Code

c16.fm Page 321 Tuesday, February 28, 2006 5:23 PM

322 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The container is responsible for setting the ports’ references correctly at system start-up. The devel-
oper can then access these ports from within the implementation code during implementation.

Generated and non-generated code are completely separated. The example given above works if
both components are instantiated in the same container – that is, in the same process, the same
JVM. In the case of distributed components, proxies must be generated automatically, as shown
in Figure 16.15.

These proxies are only generated if distributed communication actually takes place. The prox-
ies then contain the code necessary to realize the selected communication paradigm: marshaling,

Figure 16.14 The class model of an implementation in Java (local)

public class TemperatureSensorImpl
 extends TemperatureSensor {
 public void start() { … }
 public void stop() { … }
 public float measure() {
 float value = // use driver to measure
 if (/* there is a problem */) {
 getControllerPort().reportProblem(this,
 "cannot measure….");
 }
 }
}

manually
implemented

+ setControllerPort(Controller c)
getControllerPort() : Controller

Temperature
Sensor

<<interface>>
Measurement

Port

+ addSensortPort(MeasurementPort p)
getMesaurementPorts() : List

Control

<<interface>>
Controller

sensorsPort

controllerPort

*

generated

start():void
stop():void
measure():float

TemperatureSensorImpl

reportProblem(Sensor s, String
errorDesc) : void

ControlImpl

c16.fm Page 322 Tuesday, February 28, 2006 5:23 PM

16.5 Generator Adaptation 323

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

connection management, and so on. As much of this functionality as possible is implemented as
part of the platform in the form of libraries.

Since the proxies implement the same interface as the component that provides the respective
service, the component implementation does not change in the case of distributed communication –
the container simply wires the proxy instead of the component.

16.5 Generator Adaptation

The generator must be adapted to be able to fulfill the following tasks:

• Parsing of the textual syntax
• Parsing of the XML configuration
• Merging of the different partial models and resolution of the references
• Validation of the complete model
• Generation of the different implementations

We discuss each of these requirements briefly in the following sections.

16.5.1 Parsing of the Textual Syntax

We use the parser generator JavaCC [JCC] to generate the parser. We don’t go into details of this
step here, just deal with integration into the generator. Another parser generator could also be
used instead of JavaCC.

Figure 16.15 The class model of an implementation in Java (remote)

manually
implemented

+ setControllerPort(Controller c)
getControllerPort() : Controller

Temperature
Sensor

<<interface>>
Measurement

Port

+ addSensortPort(MeasurementPort p)
getMesaurementPorts() : List

Control

<<interface>>
Controller

sensorsPort

controllerPort

*

generated

start():void;
stop():void;
measure():float;

TemperatureSensorImpl

reportProblem(Sensor s, String
errorDesc) : void

ControlImpl

start():void
stop():void
measure():float

Temperature
RequiredPort

reportProblem(Sensor s,
String errorDesc) : void

ControlRequiredPort

c16.fm Page 323 Tuesday, February 28, 2006 5:23 PM

324 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

We begin with the parsing of interface definitions of the following type:

The task of JavaCC is to parse the text and create the abstract syntax tree (AST). Ultimately
this is simply an object tree, whereas for each syntax node a corresponding object is used. Dif-
ferent AST classes are used to represent the different syntax elements. These correspond with
metaclasses in the context of the openArchitectureWare generator. Since the latter expects all
metaclasses to inherit from the class ModelElement, we must make sure that the base class of
the AST nodes used by JavaCC also inherits from ModelElement. All AST classes are there-
fore model elements.

We modify the class SimpleNode, which is provided with JavaCC and constitutes the base
class for all AST nodes, as follows:

SimpleNode extends the class ModelElement that is provided by the openArchitectureWare gen-
erator. The constructor adds the current element to the generator’s MetaEnvironment. Without
this line, the whole system couldn’t work, because the generator wouldn’t ‘know’ the object.

Let’s assume that we have generated the parser (InterfaceParser.java) from a suitable JavaCC
syntax definition file. We then have to implement a corresponding frontend for the generator.
Generator frontends are used to read the concrete syntax of models and provide a set of Model
Elements that are available in the generator at runtime and serve as the basis for generation.
Frontends must implement the InstantiatorInterface. The frontend’s implementation delegates
the parsing to the parser generated by JavaCC. As a result, our frontend looks like this:

 interface Sensor {
 operation start():void;
 operation stop():void;
 operation measure(): float;
}

public class SimpleNode
 extends ModelElement implements Node {

 public SimpleNode(int i) {
 id = i;
 JCCHelper.getMetaEnvironment().
 addElement(this);
 setName("");
 }

 // rest as before…

}

public class JCCInstantiator
 implements InstantiatorInterface {

 public ElementSet loadDesign(
 InstantiatorEnvironment env)
 throws ConfigurationException,

c16.fm Page 324 Tuesday, February 28, 2006 5:23 PM

16.5 Generator Adaptation 325

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

Two points should be observed from this:

• The current MetaEnvironment is saved to the JCCHelper in the first line of the operation –
as shown above, the AST classes retrieve it from there in their constructor.

• Inside the try block, the ASTClass instance is retrieved. This is the only element that is
written into the operation’s result. In effect, the instantiator returns the interface declaration
as the top-level element of the model.

The integration into the generator is now almost complete. We must merely tell the generator to
use the instantiator instead of the standard XMI frontend. To do that, we write a generator plug-in
that contributes the instantiator shown above. You can find full details of how to do that in the
openArchitectureWare documentation.

16.5.2 Parsing the System Definition XML

To parse the XML configurations, we use a generic XML parser that creates openArchitecture-
Ware models from any XML document. The idea behind this is to render the AST – the model
structure – directly using the XML document. The parser then only has to create a Java object
graph representing the same structure.

The parser expects metaclasses with same name as the respective XML elements to exist in a spe-
cific package (which can be freely chosen by the developer). Let’s look at the following example:

 InstantiatorException {
JCCHelper.setMetaEnvironment(

 env.getMetaEnvironment());
 ElementSet result = new ElementSet();
 String spec = // read specification from somewhere…
 StringBufferInputStream s =
 new StringBufferInputStream(spec);
 InterfaceParser p = new InterfaceParser(s);
 try {
 ASTStart start = p.Start();
 ASTClass cls = (ASTClass)start.Child().get(0);
 result.add(cls);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return result;
 }
}

<system name="weatherStation">
 <node name="main">
 <container name="main">
 <instance name="controller"
 type="Control"/>
 </container>
 </node>
</system>

c16.fm Page 325 Tuesday, February 28, 2006 5:23 PM

326 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

On reading this XML file, the generator first tries to instantiate a class System. It then calls a
method setName() on the respective object and supplies it with the argument «weatherStation». The
parser then instantiates a class Node, sets its name and tries to call the method addNode() on the
previously generated system object. The newly-created Node object serves as an argument here.

With this mechanism, the parser can instantiate any XML structure, but only if metaclasses
that match the XML structure are available. The openArchitectureWare generator already offers
a suitable frontend that fulfills the tasks described here.

16.5.3 Parsing and Merging the Complete Model

The complete model only makes sense when the models of all three subdomains are considered
together. The generator must parse all three models and merge them. The reference objects – for
example the InterfaceRefs – must be linked to the referenced objects, the interface of the same
name. Figure 16.12 illustrates these relationships.

Parsing the Various Models

To parse the different models, we have to contribute all the instantiators to the generator. To
achieve this, we create a plug-in the contributes these instantiators.

package util;

public class ECModelReaderPlugin extends GeneratorPlugin {

 private String systemConfFile;
 private String interfaceFile;
 private String componentsFile;

 public void init() {
 systemConfFile = getProperty("EC.SYSTEM");
 interfaceFile = getProperty("EC.INTERFACE");
 componentsFile = getProperty("EC.COMPONENTS");
 }

 public List contributeInstantiators() {
 return makeList(
 // a frontend that reads the UML model
 new XMIInstantiator(componentsFile),
 // a frontend that reads the XML system spec
 // use ecMetamodel as package prefix when
 // attempting to load metamodel classes
 new XMLInstantiator(systemFile, "ecMetamodel"),
 // a frontend that reads the textual spec
 // for the interfaces
 new JCCInstantiator(interfaceFile)
);
 }
}

c16.fm Page 326 Tuesday, February 28, 2006 5:23 PM

16.5 Generator Adaptation 327

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

To get the generator to use the plug-in we have to configure it in the Ant file that actually starts
the generator.

Merging of the Models

openArchitectureWare automatically ensures that the model elements from the various parsed
models are available in a single model as instances of the respective Java metaclasses. After the
models have been parsed, we have different instances of the class Interface and the class Inter-
faceRef. The following example shows an excerpt of the definition of InterfaceRef that makes
sure that InterfaceRefs find the corresponding Interface:

This code needs to be explained. The operation Interface() returns the interface that the corre-
sponding InterfaceRef references. As we have already explained, the connection is established
via the name. The operation MMUtil.findByName() does all the work for us: it searches for all
instances of the class Interface in the model to which the current object (this) also belongs. If
exactly one is found, it is returned. If none is found, an error with the specified error message is
generated.

Note that InterfaceRef is a model element that is originally defined in the UML-based compo-
nent model, whereas the interface is defined in the textual interface model. In the generator’s
model representation, these differences are no longer relevant, because it exclusively operates on
the instantiated metamodel (the abstract syntax).

With the help of this approach, all references are resolved – including the connection between
an interface and its optional protocol state machine.

Partitioning of Models

We have now answered the question of how different subdomains (interfaces, components, deploy-
ment) of the system can be represented as separated models using different concrete syntax, and

package cmMetamodel;

public class InterfaceRef extends Class {

 private Interface referencedInterface = null;

 public Interface Interface() {
 if (referencedInterface == null) {
 String myName = Name().toString();
 referencedInterface =
 (Interface)MMUtil.findByName(this,
 Interface.class, myName,
 "Cannot find interface named "+myName);
 }
 return referencedInterface;
 }
}

c16.fm Page 327 Tuesday, February 28, 2006 5:23 PM

328 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

later be merged in the generator. The partitioning of DSLs and models is a related topic, which was
addressed in Chapter 15. For this purpose, the same referencing and integration mechanisms can
be used at the generator level if the modeling tool does not offer sufficient support for distributed
modeling.

16.5.4 Pseudo-declarative Metamodel Implementation

Constraint Checks

Resolving references is only one of many validation steps. If the referenced model element is
not available, an error message must be issued. In the context of non-trivial MDSD systems, a
wide variety of such constraints exist that must be checked by the generator.

openArchitectureWare offers a separate step in the generator workflow to cope with this.
After the complete model has been parsed and before code generation begins, the operation
CheckConstraint is called on all model elements. The developer can place the metaclass-specific
constraints (model invariants) inside this operation.

In our view it is essential that we are able to formulate these constraints as expressively and
briefly as possible. A syntax based on declarative languages such as OCL is a great help here.
openArchitectureWare includes a number of helper functions in the form of the classes
Checks, Filters, and MMUtil.We show a few examples below.

One model constraint states that components are not allowed to define their own operations.
Also, superclasses or implemented interfaces are not allowed:

A further requirement is that the ports of a component must have unique names.

Note that the Port() operation returns the set of all defined ports of a component.

public class Component extends Class {

 public String CheckConstraints() {
 Checks.assertEmpty(this, Operation(),
 "must not have attributes.");
 Checks.assertEmpty(this, Generalization(),
 "must not have superclasses or subclasses.");
 Checks.assertEmpty(this, Realization(),
 "must not implement any interface.");

 Checks.assertUniqueNames(this, Port(),
 "a component's ports must have unique names.");
 }
 // more …
}

c16.fm Page 328 Tuesday, February 28, 2006 5:23 PM

16.5 Generator Adaptation 329

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

Now consider the constraint validation of interfaces. Let’s suppose we only support the primi-
tive types int and long. In this case we would need to check whether the parameter’s type is in
fact only one of those two values:

As this example shows, the differences in the concrete syntax (UML, textual, XML) are com-
pletely neutralized – we can check constraints in the same way for textual models.

Filtering

On the metamodel level, a port is a UML association that points to an InterfaceRef. The set of all
ports can be created via respective filtering of all associations of the component5. Here is the
implementation of the operation Port():

public class ASTParameter
 extends SimpleNode { // SimpleNode extends
 // ModelElement
 private String type;
 private String name;
 private static String[] types = new String[]
 {"int", "long"};

 public void CheckConstraints() {
 Checks.assertOneOf(this, type, types,
 "Type must be one of int, long");
 }

 public ASTParameter(int id) {
 super(id);
 }

 public void setType(String type) {
 this.type = type;
 }

 // set name implemented in ModelElement
}

5 A component can also have other kinds of associations, but we don’t go into that here.

public class Component extends Class {

 // as before

 public ElementSet Port() {
 return Filters.filter(this, AssociationEnd(),
 new AssocEndOppositeClassTypeFilter(
 InterfaceRef.class),
 new AssocEndAssocMapper());
 }
}

c16.fm Page 329 Tuesday, February 28, 2006 5:23 PM

330 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

To understand what happens here, it is helpful to examine the structure of the relevant part of the
metamodel. Since we realize the metamodel as an extension of the UML metamodel, we can also
find constructs of the UML metamodel in it. Specifically, an association in the model is repre-
sented as an instance of an AssociationEnd, an Association, and another AssociationEnd. We real-
ize the ports as subclasses of Association. Figure 16.16 shows the relevant part of the metamodel.

Based on this metamodel, the code should become understandable: the filter() operation is
invoked, which expects four arguments:

• As for all helper functions, the current model element is supplied. This is important to
enable the correct context to be reported in error messages.

• The set (more precisely: the ElementSet) of the model elements that is to be filtered is pro-
vided. These are the corresponding AssociationEnds, that is, the association ends that end
at the current element (here the component).

• The filter object. In our example, this is an AssocEndAssocTypeFilter. It assumes that an
AssociationEnd is provided as the input to its filter() operation, then it gets the association
and filters it based on the specified type.

• A mapper is supplied that maps each association end to its corresponding association
object, since we wish to get the ports (as subclass of Association) as the result of the oper-
ation, not the association ends.

You can implement powerful filters ‘pseudo-declaratively’ with quite little effort if you use the
constructs introduced here. The alternative would be nested for loops.

16.6 Code Generation

Code generation uses the template language Xpand, which is part of the openArchitectureWare
described in earlier chapters. In this section we avoid details of the template language’s syntax,
but point out important characteristics and introduce some useful techniques for metamodel
implementation that significantly simplify template programming.

16.6.1 References

Merging the different models is accomplished via references. After the model has been merged,
a component, a port, and the corresponding interface look for example like Figure 16.17:

Figure 16.16 Metamodel for ports as an extension of associations

Component
UML::

Association
End

UML::
Association

ProvidedPort RequiredPort

Port

UML::
Association

End
InterfaceRef

*

Opposite

Class

c16.fm Page 330 Tuesday, February 28, 2006 5:23 PM

16.6 Code Generation 331

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

From the templates’ perspective, however, it is irrelevant that the interface is integrated via a
reference – the conceptual metamodel says that a port is associated with an interface. To allow
this abstraction from the template’s perspective, we simply introduce an operation Interface() to
the class Port that implicitly de-references the reference:

Thus an Xpand template can be written as follows:

In distributed application development it often happens that specific model constructs either
describe an element directly, or a reference to it. In the former case, one could imagine the fol-
lowing: assume interfaces could also be defined in the UML model. It is then possible that a spe-
cific interface is either defined in the same model as the component that uses it, or that it is
located in a different model. In the first case, one can work entirely without references and let the
Port point directly to the Interface. In the second case, one would have to work with a reference

i

Figure 16.17 A merged model (InterfaceRef references Interface)

public abstract class Port extends Association {

 public IntefaceRef InterfaceRef() {
 // return the model element on the ‘target’ side
 // of this association; remember ports are modeled
 // as associations that point from component to
 // interface reference.
 }

 public Interface Interface() {
 return InterfaceRef().Interface();
 }
}

«DEFINE Something FOR Component»
 public class «Name» implements
 «FOREACH ProvidedPort AS pp EXPAND»
 «Interface.Name»
 «ENDFOREACH»
 {
 // more stuff to come
 }
«ENDDEFINE»

Temperature
Controller:
Component

measurementPort:
ProvidedPort

Sensor:
InterfaceRef

Sensor:
Interface

c16.fm Page 331 Tuesday, February 28, 2006 5:23 PM

332 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

of the same name, as shown above. As a consequence, a port can either point directly to an inter-
face, or to a reference that itself points to an interface. Figure 16.18 illustrates this:

Thus a port is either associated with an Interface, or with an InterfaceRef. To solve this problem
elegantly, we can build on the tried and tested principles of object-orientation and implement the
Proxy pattern on the metalevel, as shown in Figure 16.19.

Figure 16.18 An example component model with InterfaceRefs

Figure 16.19 The Proxy pattern as basis for implementation of the InterfaceRefs

unit: String

<<component>>
Temperature-

Controller

<<interfaceref>>
Controller

controllerPort

<<requiredport>>

<<interfaceref>>
Sensor

measurementPort

<<providedport>>

<<component>>
Control

<<requiredport>>
sensorsPort

<<providedport>>
controllerPort

<<interface>>
Temperature

Source

<<providedport>>
temperatureSource

UML::Class

Abstract
Interface

Interface(): Interface

InterfaceRef
Interface

UML::
Association

Interface(): AbstractInterface

Port
interface

ProvidedPort RequiredPort

ModelElement

interface

c16.fm Page 332 Tuesday, February 28, 2006 5:23 PM

16.6 Code Generation 333

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The operation Interface() of the port is interesting. Here we distinguish between a reference and
an interface.

The Xpand template from our previous example can be used ‘as is’. The Interface() operation of
the port always returns the interface and – if necessary – de-references the reference internally.

A further option for implementing reference proxys is to let the reference object (the
proxy) implement all operations in such a way that they are delegated to the referenced
object. If this is the case, a proxy can be used exactly like the object referenced by it. An
explicit distinction – the class Port() in the operation Interface() – is then obsolete. However,
when using this approach, you must make sure that all (metamodel-relevant) operations are
actually delegated. If the referenced metaclass evolves, adaptation of the proxys can easily be
forgotten. To address this problem, you can generate the reference proxys and the metamodel
implementation automatically. The openArchitectureWare framework already includes such
a meta-cartridge.

16.6.2 Polymorphism

The generator supports polymorphism at the template level: if several template definitions
that are valid for different metaclasses exist in a template file, the generator always expands
exactly that template with the type declaration that best matches the dynamic type of the
model element. We can illustrate this with a simple example: in addition to configuration
parameters, components can also have normal attributes that describe the component’s state.
Figure 16.20 shows an example and its representation in the metamodel.

public abstract class Port extends Association {

 protected AbstractInterface AbstractInterface() {
 // return the "other" end’s class of the
 // association
 }

 public Inteface Interface () {
 AbstractInterface f = AbstractInterface();
 if (f instanceof InterfaceRef) {
 return ((InterfaceRef)f).Interface();
 }
 return (Interface)f;
 }

}

c16.fm Page 333 Tuesday, February 28, 2006 5:23 PM

334 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

Thus the set of all attributes contains normal attributes as well as the ConfigParams. The following
Xpand template can thus be written:

In the third line this template iterates over all attributes and expands the template AttrDef for
each attribute. If the current attribute is indeed a ConfigParam, the specific template is run. In
this manner one can avoid the typical if-isInstanceOf cascades: the templates become easier to
maintain as a result.

Figure 16.20 Configuration parameter: model and metamodel

«DEFINE Something FOR Component»
 public class «Name» {
 «EXPAND AttrDef FOREACH Attribute»
 }
«ENDDEFINE»

«DEFINE AttrDef FOR Attribute»
 private «Type» «Name»;
«ENDDEFINE»

«DEFINE AttrDef FOR ConfigParam»
 private String «Name»; // config param
 public void configure«UpperCaseName»(String value) {
 this.«Name» = value;
 }
«ENDDEFINE»

{subsets
Attribute}

/ConfigParam

driverAdress: int
lastMeasuredValue: float
<<configparam>> unit : String

<<component>>
Temperature

Sensor
UML::Attribute

ConfigParam

UML::Class
/Attribute

Component

ModelElement

Example Meta Model

c16.fm Page 334 Tuesday, February 28, 2006 5:23 PM

16.6 Code Generation 335

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

16.6.3 Separation of Concerns in the Metamodel

Utilities

The metamodel represents concepts of the problem space – so far, so good. However, often
aspects that have nothing to do with the problem space that shows up in the metaclasses.
Above, we used the property UpperCaseName from a template, for example. This means that
the following operation must be present in the metaclass we are currently dealing with (in the
example given above, ConfigParam):

We want to use this UpperCaseName property not only for ConfigParams, but for all model
elements that have names. Further useful utilities also exist, for example the current date, the
value of an incremental counter, and so on. It is not particularly elegant to implement all these
operations in the metamodel, so that it is available everywhere – that is, in ModelElement. It
would be better if one could ‘patch in’ these utilities on demand.

Precisely this is possible using invokers. If an non-existent property is called from a template,
a previously-registered invoker – an implementation of the Interceptor pattern from [POSA2] –
is called. The invoker now has the chance of returning a value for the respective property. The
following invoker provides the UpperCaseName:

The generator calls the operation handleInvocation() on the invoker. This operation has various
parameters, including the current model element (element) on which the property (property-
Name) is to be called. If a property is required that cannot be provided by the invoker, it throws a
DesignError.

public String UpperCaseName() {
 String n = // format Name().toString() appropriately
 return n;
}

package genfwutil.mmutil.invoker;

public class UtilInvoker
 implements PropertyInvoker {

 public Object handleInvocation(Element element,
 Syntax syntax, Element name, String propertyName)
 throws EvaluationException {
 if (propertyName.equals("UpperCaseName")) {
 String n = element.getNameProperty();
 return n.substring(0,1).toUpperCase()+
 n.substring(1);
 }
 throw new DesignError("Property "+propertyName+
 " not found on "+element);
 }
}

c16.fm Page 335 Tuesday, February 28, 2006 5:23 PM

336 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

To get this invoker to work we must make it known to the generation process. We do that – as
always – by contributing it as part of a plug-in, together with the CounterInvoker, which provides
a counter in the templates using the properties CounterReset, CounterInc, and CounterValue:

Different Target Languages

A similar problem occurs if one needs to generate code for several target languages, as in the
example here. We need utility functions in the metamodel for each of the target languages. In the
case of Java, for example, PackageDirectory, which returns the relative directory for the Package
of the current model element.

One can easily imagine that the metamodel implementation is quickly ‘polluted’ by all kinds of
utility properties for the different target languages. A better structured solution must therefore be
found. This solution is available in the form of a special invoker, the SubpackageInvoker. This
invoker tries to instantiate another class and invoke the respective property via reflection. Let’s
assume we have the following metaclass:

If we now wish to implement operations that are specific to the Java platform, we can implement
these in another class:

package util;

public class ECCodeGenPlugin extends GeneratorPlugin {

 public List contributeInvokers() {
 return makeList(
 new UtilInvoker(),
 new CounterInvoker()
);
 }
}

«DEFINE JavaImpl FOR Component»
 «FILE PackageDirectory"/"Name".java"»
 package «JavaPackage»
 public class «Name» {
 …
 }
«ENDDEFINE»

package ecMetamodel;
public class Component extends Class {
 // some Operations
}

c16.fm Page 336 Tuesday, February 28, 2006 5:23 PM

16.6 Code Generation 337

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

Since these operations are not implemented in the context of the metaclass, this does not point to
the current model element, but to the helper object instead. The current model element is therefore
provided to the helper object through the setModelElement() operation. The developer can now
implement properties as if they were defined directly in the metaclass, but they must (explicitly)
access the model element via component instead of this.

To actually use these helper classes, the SubpackageInvoker needs to be contributed in the
same way as the CounterInvoker and UtilInvoker were registered in the examples on page 335.

The SubpackageInvoker configured above tries to instantiate the helper class p.q.java.C_Java
for a metaclass p.q.C and invoke the property operation on it. This makes it possible to delegate
various aspects in the metamodel to separate classes and explicitly ‘contribute’ them to the
model using the invoker.

16.6.4 Generation of Build Files

In the context of code generation, not only Java, C or C++ source code is created. The configu-
ration files that configure the operating system platform must also be created. In most cases,

package ecMetamodel.java;
public class Component_Java implements StatefulDelegate {

 private Component component;

 public void setModelElement(ModelElement me) {
 this.component = (Component)me;
 }

 public String JavaPackage() {
 …
 }

 public String PackageDirectory() {
 …
 }
}

public class ECCodeGenPlugin extends GeneratorPlugin {

 public List contributeInvokers() {
 return makeList(
 new UtilInvoker(),
 new CounterInvoker(),
 new SubpackageInvoker("java", "Java")
);
 }
}

c16.fm Page 337 Tuesday, February 28, 2006 5:23 PM

338 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

real-time operating systems offer a large variety of configuration options to make the system as
small and specific as possible for its respective application. Furthermore, makefiles and Ant
files are created that compile, link, and package the generated code with the handwritten code,
depending on the respective platform’s requirements.

The following example shows the creation of Jar files. A custom Jar file is created for each
container defined in the system, provided that we are dealing with a Java container:

As you can see in the template excerpt, all interfaces that are used by the respective components
are included as well.

16.6.5 Use of AspectJ

This section illustrates a possible integration of AspectJ in the MDSD production process,
addressing the relationship between MDSD and AOP.

We use tracing as an example here. This is actually the standard example for AOP, yet its use
in the world of embedded systems is quite realistic, because debugging on the target platform is
often not easy. It is also important for us to be able to switch off any overhead created by tracing,
if necessary, to save resources in real-life applications.

The idea is to define for which container tracing code shall be generated during system
configuration:

«DEFINE BuildFile FOR System»
 ...
 «FOREACH Container AS c EXPAND»
 «IF c.LanguageID == "java"»
 <jar jarfile="«c.Name».jar">
 <fileset dir="${APP.BUILD}">
 «FOREACH c.UsedComponent AS comp EXPAND»
 <include name="generated.comp.«comp.Name»/**/*.class"/>
 <include name="manual.comp.«comp.Name»/**/*.class"/>
 «FOREACH comp.UsedInterface AS i EXPAND»
 <include name="generated.interfaces.«i.Name»/**/*.class"/>
 «ENDFOREACH»
 «ENDFOREACH»
 </fileset>
 </jar>
 «ENDIF»
 «ENDFOREACH»
 ...
«ENDDEFINE»

<node name="outside">
 <container name="sensorsOutside" tracing="app">
 …
 </container>
</node>

c16.fm Page 338 Tuesday, February 28, 2006 5:23 PM

16.6 Code Generation 339

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

The XML attribute can have the following values:

• no: tracing is switched off.
• app: only the application logic operations of the components are traced.
• all: all operations in the container are traced.

We also assume that only such code is generated that cannot be written more sensibly manu-
ally. We define an abstract aspect that contains the trace functionality as part of the platform.
This aspect contains an abstract pointcut that we will concretize subsequently using code
generation.

This aspect creates trace information in all locations that are identified by the pointcut relevant-
OperationExecution. It is still defined as being abstract. During generation, we will inherit from
it and define the pointcut. The following template shows how this could be done:

package aspects;

public abstract aspect TracingAspect {

 abstract pointcut relevantOperationExecution();

 before(): relevantOperationExecution() {
 // use some more sophisticated logging,
 // in practice
 System.out.println(thisJointPoint.toString());
 }

}

«DEFINE LoggingAspect FOR System»
 ...
 «FOREACH Container AS c EXPAND»
 «IF c.Tracing == "app"»
 «FILE "aspects/"c.Name"Tracing"»
 package aspects;
 public aspect «c.Name»Trace extends TracingAspect {
 pointcut relevantOperationExecution() :
 «FOREACH c.UsedComponent AS comp
 EXPAND USING SEPARATOR "||"»
 execution(* manual.comp.«comp.Name»..*.*(..))
 «ENDFOREACH»
 ;
 }
 «ENDFILE»
 «ENDIF»
 «ENDFOREACH»
 ...
«ENDDEFINE»

c16.fm Page 339 Tuesday, February 28, 2006 5:23 PM

340 Case Study: Embedded Component Infrastructures

 c16.fm Version 0.3 (final) February 28, 2006 5:23 pm

In consequence, the following code would be generated for the outer container:

If we now use the AspectJ compiler instead of javac, this aspect is added automatically. It generates
trace outputs before executing all operations of the code in the implementation package. AspectJ
also allows for more expressive tracing, for example logging of the calling location.

The connection of MDSD generators and AOP can – as this example indicates – yield powerful
solutions. Details about the interaction of MDSD and AOP can also be found in [Voe04].

package aspects;
public aspect sensorsOutsideTrace extends TracingAspect {
 pointcut relevantOperationExecution() :
 execution(* manual.comp.temperatureSensor..*.*(..))
 ||
 execution(* manual.comp.humiditySensor..*.*(..))
 ;
}

c16.fm Page 340 Tuesday, February 28, 2006 5:23 PM

341

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

17 Case Study: An Enterprise System

17.1 Overview

This chapter serves as an extended example for some of the advanced ideas in MDSD. This
includes cascaded MDSD (Section 8.2.8), the integration of MDSD and CBD as explained
Section 7.8, as well as the architectural process described in Section 13.4. This chapter is struc-
tured along the lines of that architectural process.

The example describes a fairly typical enterprise system that contains various subsystems
such as customer management, billing, and catalogs. In addition to managing the data using a
database, input forms and the like, we also have to manage the associated long-running business
processes.

17.2 Phase 1: Elaboration

17.2.1 Technology-Independent Architecture

We decide that our example system will be built from components. Each component can provide
a number of interfaces. It can also use a number of interfaces provided by other components.
Communication is synchronous and is also restricted to be local: no remoting is supported on
this level. We design components to be stateless.

Data types can either be simple types (string, int, Boolean) or complex. A complex data type
is basically like a struct, in that it has named and typed attributes. There are two kinds of com-
plex data types:

• Persistent entities that have a well-defined identity and can thus be searched and have rela-
tionships to other entities.

• Data transfer objects that have no identity and are not persistent.

In addition to components we also explicitly support business processes. These are considered to
be expressible as state machines. Components can trigger the state machine by supplying events to
them. In turn, other components can be triggered by the state machine, resulting in the invocation

c17.fm Page 341 Tuesday, February 28, 2006 5:03 PM

342 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

of specific operations defined by one of their interfaces. Communication between processes is
asynchronous. Remote communication is supported.

17.2.2 Programming Model

The programming model uses a simple dependency injection approach, as exemplified by the
Spring framework, to define component dependencies. An external XML file takes care of the
configuration of the instances. The following fragment of code shows the implementation of a
simple component. Note how we use Java 5 annotations. Component implementation classes are
marked up with the @component annotation, whereas the setters for the resources use the
@resource tag. The setters and annotations together make dependencies explicitly visible as part
of the class signature, and don’t hide them in implementation code.

Processes described by state machines are implemented within a special kind of components, the
process components. The state machine itself is implemented using the State pattern [GHJ+94].
To make the state machine triggers accessible for external clients, process components provide
an interface that contains a void operations for each of the state machine’s triggers (which can
easily be sent asynchronously). They also define interfaces with the actions that those compo-
nents can implement that want to be notified of state changes. These are also implemented as
void methods, for the same reason. The following code shows the skeleton of a component that
hosts a state machine. It has two triggers T1 and T2 and calls a single action on a resource com-
ponent. It also has one guard that needs to be evaluated.

public @component class ExampleComponent
 implements HelloWorld { // provides HelloWorld

 private IConsole console;

 public @resource void setConsole(IConsole c) {
 this.console = c; // setter for console
 } // component

 public void sayHello(String s) {
 console.write(s);
 }
}

public @process class SomeProcess
 implements ISomeProcessTrigger {

 private IHelloWorld resource;

 public @resource void setResource(IHelloWorld w) {
 this.resource = w;
 }

c17.fm Page 342 Tuesday, February 28, 2006 5:03 PM

17.2 Phase 1: Elaboration 343

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

Since components are stateless, the process component shown above does not actually represent
a specific instance of the state machine. Rather, it is an engine that can ‘advance’ any of the
process instances. The actual process instance is loaded by the process component when a trig-
ger is received. To identify the process instance on which we want to apply the trigger, the trig-
ger operations contain a unique process id.

17.2.3 Technology Mapping

We want to keep the infrastructure for running the application itself as simple as possible. The
Spring framework will be used as long as no advanced load balancing, management, or transac-
tion policies are required. We will try to keep the technology mapping well separated from the
application logic, so that we can easily move to a different technology platform should the need
arise.

The following is the Spring configuration file for this simple example. It instantiates three
Beans and ‘wires’ their resources accordingly.

Once a more sophisticated platform becomes necessary, we will implement stateless session
EJBs to run the components inside a J2EE application server. The necessary code to wrap our

 public @trigger void T1(int procID) {
 SomeProcessInstance i = loadProcess(procID);
 if (guardG1()) {
 // advance to another state…
 }
 }

 public @trigger void T2(int procID) {
 SomeProcessInstance i = loadProcess(procID);
 // …
 resource.sayHello("hello");
 }
}

<beans>
 <bean id="proc" class="somePackage.SomeProcess">
 <property name="resource">
 <ref bean="hello"/>
 </property>
 </bean>
 <bean id="hello"
 class="somePackage.ExampleComponent">
 <property name="console">
 <ref bean="cons"/>
 </property>
 </bean>
 <bean id="cons" class="someframework.StdOutConsole">
</beans>

c17.fm Page 343 Tuesday, February 28, 2006 5:03 PM

344 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

components inside EJBs is easy to write: for each Bean, we write a remote/local interface, an
implementation class that wraps our own implementation, and a deployment descriptor.

Persistence for the data entities is implemented using Hibernate. Persistent long-duration
business processes are implemented along the same lines: for each process we implement an
entity that contains all the data that represents the current state of the respective process: the id
of the process instance, the identifier of it’s current state, as well as the values of the context
attributes.

We will use Web Services for remote communication between business processes. Since we
transport rather simple trigger events implemented as asynchronous oneway methods, the map-
ping to the technology is trivial. We generate a WSDL file from business interfaces such as IHel-
loWorld, as well as the necessary endpoint implementation. We don't implement all the
technology ourselves, of course, we use one of the many available Web Service frameworks.

17.2.4 Mock Platform

Since we are already using Spring as the technology mapping, we use that same platform to run
the application components locally for test purposes. Stubbing out parts is easy based on
Spring’s XML configuration file. To make testing as easy and fast as possible, we use the Hyper-
sonic in-memory database. Whenever we run a test, the schema is created anew – Hibernate can
do this for us with one line of code. We discuss the mock platform further later in this chapter.

17.2.5 Vertical Prototype

The vertical prototype includes parts of the customer and billing systems. These parts of the sys-
tem require both kinds of interactions: for creating an invoice, the billing system uses normal
interfaces to query the customer subsystem for customer details. The invoicing process, includ-
ing payment receipt and optional reminder management, is based on a long-duration process.

After implementing the vertical prototype, we execute a load test. This unearths two problems:

• For short-duration processes, the repeated loading and saving of persistent process state is
a problem, so we add a caching layer.

• Second, Web Service-based communication with process components is a problem. We
change communication to CORBA for remote cases that are inside the company – the
external processes remain based on Web Services.

Note that for both changes, the application code does not have to be changed. We only need to
change the adapters that map the logical communication to Web Services to be able to use
CORBA.

17.3 Phase 2: Iterate

Spring is not just used as the MOCK PLATFORM, but also as the production environment. How-
ever, as a consequence of some new requirements, this has become infeasible. Spring does not

c17.fm Page 344 Tuesday, February 28, 2006 5:03 PM

17.4 Phase 3: Automate 345

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

easily support two important features: dynamic installation/de-installation of components, and
isolations of components from each other, specifically with regard to using different classload-
ers. Both of these problems arise as a consequence the additional non-functional requirement
that several versions of the same component have to run in one system to allow the evolution of
the system over time.

As a consequence, the Eclipse platform is chosen as the new execution framework. The PRO-
GRAMMING MODEL does not change, but the TECHNOLOGY MAPPING, however, has to be adapted.

17.4 Phase 3: Automate

17.4.1 Architecture Metamodel

A simplified metamodel for the system is shown below, which is rendered as a MOF model.

Figure 17.1 The metamodel of our example system rendered in MOF

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic
0..n

Container
Service0..n

Operation
1..n

Parameter

0..n

Type

re
tu

rn
Ty

p
e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

If a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

In the case of a new version of an
interface, all operations have to
have the same return type and the
same parameters; additional
operations are allowed

Process
Component

State
Machine State

1..n

Transition

fromto
0..n 0..n

Trigger
Operation0..1

c17.fm Page 345 Tuesday, February 28, 2006 5:03 PM

346 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

It is interesting to see that even the component container that hosts the components is modular
with respect to its services. Characteristics (special kinds of interfaces) are used to mark up
components with respect to the services they require. A container service such as persistence or
lifecycle will take care of components that provide the respective characteristics interface. An
example is shown in the following fragment of source code:

17.4.2 Glue Code Generation

Our scenario has several useful locations for glue code generation:

• We generate the Hibernate mapping files from the entities.
• We generate the Web Service and CORBA adapters based on the interfaces and data types

that are used for communication. The generator uses reflection to obtain the necessary
type information.

• Finally, we generate the process interfaces from the state machine implementations.

In the PROGRAMMING MODEL we use Java 5 annotations to mark up those aspects that cannot be
derived by using reflection alone. Annotations can help a code generator to know what to gener-
ate without making the programming model overly ugly.

17.4.3 DSL-based Programming Model

Components and Interfaces

There are several places where using a DSL makes a lot of sense, such as components, interfaces,
and dependencies. Describing this aspect in a model has two benefits: first, the GLUE CODE GEN-
ERATION can use a more semantically rich model as its input, and second, the model allows for
very powerful MODEL-BASED ARCHITECTURE VALIDATION, as described in Section 17.4.4.

public @component class ComponentWithState
 implements IPersistentCharacteristics {

 private ComponentWithState_State state;

 // required by IPersistentCharacteristics
 public IEntity getPersistentState() {
 return state;
 }

 // required by IPersistentCharacteristics
 public void setPersistentState(IEntity state) {
 this.state = state;
 }
}

c17.fm Page 346 Tuesday, February 28, 2006 5:03 PM

17.4 Phase 3: Automate 347

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

Figure 17.2 contains a logical model of two components, a shared interface as well as two data
structures. From these diagrams, we can generate various things. From the components and their
interfaces, we can generate a skeleton component implementation class, as well as all the neces-
sary Java interfaces. Developers simply inherit from the generated skeleton and implement the
operations defined by the provided interfaces. The following illustration shows this.

The programming model we describe requires developers to write implementation classes that
extend the generated base classes. The problem is that this approach lays the burden on develop-
ers to do the right thing: if they forget to provide an implementation class, the system will not
compile, or will fail strangely at runtime. To minimize these problems, we used a recipe frame-
work (see Section 11.1.4) to further guide the developers after the code generator has done its
work:

• We instantiate two checks for each component in the model. One checks the existence of a
class that fits the required naming pattern: for a component X in the model, there has to be
a class called X in the code, in the correct package. The other check verifies that this class
actually extends the correct (generated) base class: for a component X in the model, the
implementation class X has to extend XBase.

• These checks are stored in a file that accompanies the generated code.

Figure 17.2 A very simple example component model

Figure 17.3 Code generated from interfaces and components

<<component>>
AddressManager

<<interface>>
AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

<<entity>>
Person

name: String
firstName: String

<<valuetype>>
Address

street: String
zip: String
City: String

0..n

<<component>>
CustomerManager

address-
Store

person

<<component>>
SomeComponent

<<generate>>
<<manually written>>

SomeCompo-
nent.java

<<interface>>
SomeInterface

<<generated>>
Some-

Interface.java

<<generate>>

<<manually written>>
Some

Component
Base.java

c17.fm Page 347 Tuesday, February 28, 2006 5:03 PM

348 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

• In the IDE, the IDE part of the recipe framework loads this file and evaluates the
checks against the code base. Whenever the workspace contents change, the checks are
re-evaluated. The view provides developers with an elegant way of viewing outstanding
tasks that are required to make the software structurally complete.

Figure 17.4 shows how the IDE – in this case Eclipse with the openArchitectureWare Recipe
Framework – renders the checks. The bottom-center pane shows three checks that have passed,
because the component implementation class is available, and one check, for the Decider com-
ponent, that has failed.

Entities

Handling entities is a bit more interesting, as Figure 17.5 shows. First we generate the respective
Java Bean (SomeEntity.java), including its Hibernate mapping file SomeEntity.xbm.xml. In addi-
tion to that, we want to have data access object (DAO) components for each of the entities. The
DAO components provide operations to create, read, update, and delete instances of the respec-
tive entity. Instead of directly generating the code for these components from the entity, we use a
model-to-model transformation to create model elements that resemble the DAO component and

Figure 17.4 The user interface of the openArchitectureWare Recipe Framework in Eclipse

c17.fm Page 348 Tuesday, February 28, 2006 5:03 PM

17.4 Phase 3: Automate 349

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

its interface. After that transformation, the model contains an additional interface and an addi-
tional component. These are treated just as any other interface/component – that is, the existing
code generation template generates the Java interface as well as the implementation skeleton
class from them. We don’t have to write new templates!

What is still missing, however, is the implementation for the DAO components. Implementa-
tion code generally is written manually by developers into an implementation class that extends
the generated implementation skeleton class. In the case of DAOs, however, we can also gener-
ate the implementation for their operations – these simply create, read, update, and delete
instances of the respective entity – a couple of lines of (Hibernate) code.

So we now create an additional template that generates the implementation for the DAO com-
ponents following the same rule as do the developers when they create their implementation
class: the implementation class extends the generated implementation skeleton.

This approach has a number of advantages: we have to write fewer templates, we can reuse
already-tested templates, and the DAOs and their interfaces show up as model elements in the
model, not just as ‘dumb’ code files. This is important for the next aspect of the programming
model, system modeling.

System Modeling

We now create our own models of how the system is composed and how it is deployed. This
allows us to generate many more useful artifacts. Let’s start with the composition model. We
define various named configurations in this model. Each of these configurations, customerStuff
and addressStuff, contains a number of component instances and their wiring. The test configu-
ration is special, in that it does not define its own instances, but rather combines the two other

Figure 17.5 Handling entities

<<generated>>
SomeEntity.java

<<entity>>
SomeEntity

<<generate>>

<<interface>>
ISomeEntityDAO

<<transform>>
<<generate>> <<generated>>

SomeEntity-
DAO.java

<<component>>

SomeEntityDAO

<<transform>>
<<generate>> <<generated>>

SomeEntity-
DAOBase

.java

<<generated>>
SomeEntity-

DAO.java

<<generate>>

<<generated>>
SomeEntity
.hbm.xml

<<generate>>

c17.fm Page 349 Tuesday, February 28, 2006 5:03 PM

350 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

configurations into a single one for testing. It is also interesting to note that we can create
instances of the DAO components that we created from the entities. As we didn’t merely create
code for these components, but instead created real model elements by using a model-to-model
transformation, we can now ‘grab’ this component and define instances of it. We couldn’t have
done that if we’d generated code directly from the entities.

The third model describes the system(s) onto which we deploy the configurations defined in the
composition model.

Here we define a system called production that consists of two nodes: one plays the role of the
server, the other plays the role of the client. The server hosts the addressStuff configuration, the
client hosts the customerStuff. Note that we also define the types of the respective nodes (spring
for the server, eclipse for the client). From these two models, we can generate:

• A Spring configuration file for the server.
• The plug-ins needed for the client.
• The build files that create the necessary deployment artifacts.

<configurations>

 <configuration name="addressStuff">
 <instance name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </instance>
 <instance name="personDAO" type="PersonDAO"/>
 </configuration>

 <configuration name="customerStuff">
 <instance name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </instance>
 </configuration>

 <configuration name="test" includes="addressStuff, customerStuff"/>

</configurations>

<systems>

 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>

 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>

</systems>

c17.fm Page 350 Tuesday, February 28, 2006 5:03 PM

17.4 Phase 3: Automate 351

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

• The remote communication infrastructure (CORBA, Web Services).
• Build files that assemble the necessary deployment artifacts.

If we actually generate the test system, then we get only a single Spring node onto which all
component instances are deployed for unit testing. No remoting infrastructure will be generated.
This is because we deploy the test configuration (which contains all instances) onto the single
node in the system model.

Test Support

In the real-life case, we provided much more support for testing. For example, for each configu-
ration, we generated a test case base class that would include all the set-up information to build
the system as specified in the composition and system models. Developers could extend from
these generated skeleton tests to implement test functionality.

Another really interesting way to support testing in this context is the use of mock objects. We
integrated the EasyMock framework [EASY] in a very gentle way: the only thing we had to do
to get a mock object for a specific component instance, instead of an instance of the implemen-
tation class, was to add the mock="true" attribute in the composition file:

As a consequence of the mock tag being set to true for the am instance, the context for the gener-
ated test now contains an EasyMock mock control object that can be used for testing. The fol-
lowing code fragment shows, in a simple test, case how these mocks can be used:

<configurations>

 <configuration name="addressStuff">
 <instance name="am" type="AddressManager" mock="true">
 <wire name="personDAO" target="personDAO"/>
 </instance>
 </configuration>

 <!-- rest as before -->

</configurations>

public class AddressManagerTest extends TestSystemTest {
 public void testAddressManager() {

 Address a = new Address("Ziegelaecker 11", "89520", "Heidenheim");
 setupMock(a);
 Person p = new Person();
 Address[] addresses = context().getAm().getAddresses(p);
 assertEquals(1, addresses.length);
 assertEquals(a, addresses[0]);

 }

 private void setupMock(Address a) {
 context().getMockControlAm().reset();

c17.fm Page 351 Tuesday, February 28, 2006 5:03 PM

352 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

We also provided specific test support for the process components. For example, you could write
assertions that checked that, after triggering the process component in a particular way, a spe-
cific action was called.

As a consequence of these test support features, it was possible to combine MDSD with test-
driven development. Typically, developers would model components and interfaces, as well as a
simple test configuration and system. From that, everything was generated except for the busi-
ness logic and the test methods. Developers would then continue to implement the tests, often
using the mock facilities. Finally, the implementation code was added until the tests were satis-
fied. Processes were developed in a similar way, building on the specific test support provided
for process components.

Process Components

To complete the picture of model-to-model transformations and cascaded MDSD, let’s look at
how we work with process components and their machines.

 context().getAm().getAddresses(null);
 context().getAm().setReturnValue(new Address[]{a});
 context().getMockControlAm().replay();

 }
}

Figure 17.6 Handling process components

<<generate>>

<<generated>>
AProcess-
Data.java

<<proc-component>>
AProcess

<<generated>>
AProcessBase

.java

<<generated>>
AProcessProcBase.java

<<trigger-interface>>
IAProcess

*

1

sm AProcess

<<entity>>
AProcessData

<
<

tr
an

sf
or

m
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
an

sf
or

m
>

>

guard operations... (abstract)
action methods... (abstract)

<<manually written>>
AProcess.java

c17.fm Page 352 Tuesday, February 28, 2006 5:03 PM

17.4 Phase 3: Automate 353

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

In this model we will create a process component called AProcess. This component provides an
interface IAProcess. We will not model any operations in the interface – it’s empty. We also asso-
ciate the process component’s state machine (smAProcess) with the component. Its state chart
contains states, transitions, triggers, actions, and guards, just like any other state chart. The fol-
lowing process starts when the generator is run:

• From the triggers in the state chart, we add the necessary trigger operations into the empty
interface using a model-to-model transformation.

• Using another model-to-model transformation, we create an entity that contains all the
data necessary to describe the process instance described by the respective state chart.

• The mechanics that handle entities now ‘grab’ the entity and create the DAO component,
its interface, the Java Bean, and the Hibernate mapping file. This is the identical process
that was defined in the section on handling entities (page 348). No specific transformation
or template has to be written.

• The interface for the process component is handled just as any other interface: a Java inter-
face is generated from it.

• The component is handled like any other component: an implementation skeleton class is
generated.

• We now need to provide an additional template that is specific to process components. Just
as the implementation for the DAO components can be generated automatically, we can
now generate an implementation of the process component (AProcessProcBase.java) that
executes the process’ state machine: we use a big switch statement for this. As the rules
prescribe, this class extends the generated implementation skeleton class. However, since
we have to add business logic to the action methods as well as to the guard operation, this
generated class is still not complete: developers have to extend it and overwrite the guard
and action methods. Again, the recipe framework is used to guide developers.

Again we have made heavy use of model-to-model transformations. While this approach might
initially seem quite intricate and complex, it proved to be very useful in real life, because very lit-
tle transformation code has to be developed. If we change the persistence mechanism from Hiber-
nate to something else, the persistent process implementations are changed automatically, too.

The cascading of several levels of model-to-model transformations on top of each other
allowed us to end up with a DSL for modeling business processes that was quite appealing to the
business analysts that had to define the processes. The mechanics of integrating these project
team members was as follows:

• The analysts initially created a state chart that described the business process intuitively,
just as they were used to doing using state charts.

• The analysts were then joined by a developer. Together they marked up the intuitive state
chart into one that was formal enough to serve as an input for code completion. This
involved the application of stereotypes, formulating guards in a structured manner, as well
as checking the chart for completeness. The code generator’s verification facilities were
used to check the state chart for completeness with respect to code generation.

• Further changes to the state chart were made mostly by the analysts by working directly on
the formalized version. In some cases a developer was also involved.

c17.fm Page 353 Tuesday, February 28, 2006 5:03 PM

354 Case Study: An Enterprise System

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

This approach resulted in a much improved integration of analysts and developers, making the
process of analysis a great deal more ‘tangible’ than before.

17.4.4 Model-Based Architecture Validation

Since the system will be built by a large number of developers, architectural constraint check-
ing is essential. A number of basic model checks are done, to check for example that for all trig-
gers in processes there is a component that calls the trigger. Other checks include dependency
management. It is easy to detect circular dependencies among components. Components are
assigned to layers (app, service, base) and dependencies are only allowed in certain directions.
The programming model, based on dependency injection and inversion of control, combined
with the fact that the component signature is generated from the model, prevents developers
from creating dependencies to components that are not described in the model. Invalid depend-
encies in the model can also be detected easily.

Another really important aspect in our example system is evolution of interfaces. Consider the
following diagram:

Note how this diagram makes new versions of things explicit. This is essential to check and
enforce compatibility rules that make sure that a client that expects SomeInterface can also deal
with a new version, for example SomeInterfaceV3. The generated implementation of
SomeInterfaceV3 inherits from SomeInterface. This makes the interface types compatible. The
generator also makes sure that a new version of an interface has the same operations (possibly
plus additional ones). An interface can refine an operation by using a new version of a value
object, the new version of which inherits from the old version. The verification phase of the gen-
erator therefore enforces rules that make sure that new versions of components and interfaces
are always compatible with previous versions.

Figure 17.7 Component versioning example

<<component>>
SomeCompV1

<<interface>>
SomeInterface

soSomething(int, ValueObject)

<<component>>
SomeCompV2

<<newVersionOf>>
<<interface>>

AnotherInterface

<<vo>>
ValueObject

<<component>>
SomeCompV3

<<newVersionOf>>

<<interface>>
SomeInterfaceV3

soSomething(int, ValueObjectV2)
anAdditionalOperation()

<<newVersionOf>>

<<vo>>
ValueObjectV3

<<newVersionOf>>

c17.fm Page 354 Tuesday, February 28, 2006 5:03 PM

17.5 Discussion 355

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

17.5 Discussion

This chapter illustrates a number of important concepts in the context of MDSD: we want to
reemphasize some of them in this section. First of all, we show how cascading MDSD (see
Section 8.2.8) can be used to cascade more abstract DSLs onto foundations laid by lower
levels – in our case we cascade entities onto the basic components, and state machines onto
components and entities. We also illustrate the role of model-to-model transformations in this
context:

• The transformations in the actual project were implemented using ‘plain old Java code’,
rather than some new ‘fancy’ model-to-model transformation language. We found that,
while better languages might make the transformations more concise, the available tooling
actually worked acceptably well. We see no pressing need for improvement in that area.

• Second, the transformation happened internally to the generator: the input model, which
was based on UML and XML, was not changed to reflect the result of the transformation.
We used generator-internal JUnit tests to verify that the transformations worked as they
were expected to.

Finally, we hope that our explanations about testing support convince you that MDSD and agile
software development – and test-driven development in general – are compatible and can be
used together well.

c17.fm Page 355 Tuesday, February 28, 2006 5:03 PM

 c17.fm Version 0.3 (final) February 28, 2006 5:03 pm

c17.fm Page 356 Tuesday, February 28, 2006 5:03 PM

357

 p04.fm Version 0.3 (final) February 28, 2006 6:11 pm

Part IV
Management

This part of the book examines Model-Driven Software Development from the perspective of
management. We understand management in general as the definition and adherence to strate-
gies, goals, and measures in specific areas (besides the communicative aspects of management).
We especially want to reach IT, architecture, and project managers.

Our elaborations cover economical aspects in the context of MDSD, as well as organizational
constraints. We will also address outsourcing and offshoring. This part of the book concludes
with a discussion of adoption strategies for MDSD that support the introduction of this paradigm
into projects or companies.

p04.fm Page 357 Tuesday, February 28, 2006 6:11 PM

p04.fm Page 358 Tuesday, February 28, 2006 6:11 PM

359

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

18 Decision Support

With Jorn Bettin

This chapter explains the economic advantages and the investments that come with Model-
Driven Software Development (MDSD) in general and architecture-centric MDSD in particular.
It also attempts to answer both typical and critical questions.

You can find an overview of the motivation for, and basic principles of, MDSD in Chapter 2,
Sections 2.1 to 2.3. We recommend you read those sections before this chapter.

18.1 Business Potential

MDSD combines the scalable aspects of agile approaches with other techniques to prevent
quality and maintainability problems in large systems, as well as with techniques for the auto-
mation of recurring development steps in software development.

The potential of MDSD is based on a few basic principles:

• Formalization and condensation of software designs via the creation of modeling languages
that are oriented more towards the problem space than the solution space.

• Abstraction from the level of expressiveness of today’s programming languages and
platforms.

• Use of generators to automate repetitive activities.
• Separation of concerns, which to a large extent enables separate processing and evolution

of functional and technical code.
• Reusability across project boundaries through the formation of software system families

and product lines (see Section 4.1.4).

Based on these basic principles, a considerable number of features of the software systems devel-
oped in this manner can be derived and mapped to economic benefits as the following table
demonstrates.

c18.fm Page 359 Tuesday, February 28, 2006 5:31 PM

360 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

Economic Benefits

MDSD
properties

Faster implemen-
tation of new
business
requirements.

Lower introduc-
tory costs of new
technologies.

Reduced costs dur-
ing the entire prod-
uct lifecycle.

Strategic business
advantage.

Use of
expert
knowledge

To realize new
business require-
ments, domain
knowledge rather
than technical
knowledge is
needed.

Technology
experts embed
their knowledge
into MDSD plat-
forms and trans-
formations so that
it is available for
application
development.

In application
development, fewer
technology experts
are needed.

Business knowl-
edge is largely
described in con-
sistent models and
thus rendered
machine-readable.
Technology knowl-
edge is captured in
the platforms and
the transformations.

Automation
in
application
development

Software produc-
tion lines shorten
the development
time.

Implementation
technologies can
be adapted via
automation at
lower cost.

Less time and staff
are needed overall.

Shorter time-to-
market.

Securing
application
quality

Clear and formal
separation of
infrastructure
code and func-
tional code makes
a technology
change easier.

Significantly
improved maintain-
ability of architec-
ture and technology
aspects – beyond
the boundaries of
single software sys-
tems. Automation
reduces potential
for errors.

Reduction of main-
tenance cost,
improvement of
customer
satisfaction

Extensive
decoupling
of
technologies

Technology
changes are
largely limited to
the platform and
transformations.
They do not
affect the appli-
cation models.

Each new technol-
ogy mapping is
only imple-
mented once and
centrally.

Less time and staff
are needed overall.

New technologies
that are relevant for
the business sector
can be used early
on.

Use of
formal
application
models

Changes and
extensions are
realized via the
model. The exist-
ing production
line is used with-
out changes.

Application mod-
els are usually
technology-inde-
pendent and thus
quite robust
regarding technol-
ogy changes.

Isolation of technol-
ogy drift. The appli-
cation's lifecycle is
better decoupled
from the technol-
ogy's lifecycle.

A consistent and
largely technology-
independent soft-
ware specification
reduces the depend-
ence on technologies
and manufacturers.

Table 18-1 The economic benefits of MDSD

c18.fm Page 360 Tuesday, February 28, 2006 5:31 PM

18.2 Automation and Reuse 361

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

We now take a detailed look at the positive effects that MDSD can have on software projects.

18.2 Automation and Reuse

In a classical OO development process [JBR99] a design model is created incrementally and
iteratively via a step-wise refinement of a part of the model that is established by projection to a
few use cases. This model is refined to the point that it can more or less be transformed directly
into an implementation.

Such a model can also be extracted automatically from an implementation by reverse engi-
neering. We call this abstraction level an implementation model, because it contains all signature
details of the implementation (but usually no more than this).

The diagram in Figure 18.1 shows the idealized development process of a development incre-
ment1 from its analysis to its implementation. In time, both the level of understanding and the
level of detail of the increment increase. At the start, more understanding is gained: towards the
end, more details are worked out. A GUI design in the form of a sketch or a slide contains almost
the same information as a completed implementation of the GUI using a JSP page or something
similar. This means that the process of implementing the increment is primarily a task that
requires tedious work and increases the increment’s level of detail, yet it hardly improves the
level of understanding. Nevertheless, the work is necessary in order to convert the essential
information into a computer-readable form.

Whether this happens iteratively or not is of little relevance in this context. The overall effort
basically consists of the progress in both previously-mentioned dimensions – that is, it corresponds
to the area underneath the curve.

The disadvantages of an implementation model can be summarized as follows:

• The implementation model provides a poor overview, because essential information gets
lost among the wealth of details.

• Such a model is relatively poorly suited when new team members need to be trained.
• The route from the results of the analysis to the implementation model is very long and

there are no defined waypoints. Intermediate results yielded by different developers tend
to be diverse. In their entirety, they hardly ever constitute a usable, complete model.

• Design changes are preferably carried out in the source code. Afterwards, the static imple-
mentation model is made consistent using reverse engineering. More abstract intermediate
results are seldom maintained, particularly because it often unclear which effects a change
of the implementation model may or should have on an intermediate result. The conse-
quence is that only the static implementation model is up-to-date – if that. The dynamic
aspects are neglected or even removed from the model because they no longer fit in. In
most cases no consistent documentation exists at the end of the project that is any more
abstract than the source code itself.

Figure 18.1 can be transferred to agile processes if a sufficiently abstract viewpoint is taken. The
implementation model exists typically only in a virtual form – that is, in the form of source code.
This avoids some disadvantages, of course, partly because specific artifacts are intentionally

1 In the special case of a waterfall model, only one global ‘increment’ exists.

c18.fm Page 361 Tuesday, February 28, 2006 5:31 PM

362 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

omitted. However, as in a heavyweight process, the necessary level of understanding must be
gained during development. The same is true for the functional requirements (analysis results)
that are contained in the software or an increment. In other words: depending on the process, the
milestones in the diagram may have other names or may not exist explicitly, yet the shape of the
curve is basically the same.

For the sake of this discussion, we reduce the overall effort of software development to the
factors of information gain and level of detail, and consciously ignore setbacks in the level of
understanding that are brought about by changing requirements or new insights. We don’t do this
because these effects are irrelevant, but because they can be examined separately and independ-
ently of the issues described here.

We now introduce the essential potentials of MDSD, automation and reuse, to this discussion.

Here we clearly see the effects of abstraction, the modeling language’s shift towards the problem
space:

• Very compact models are created with a unified and formally-defined abstraction level
that is much higher than that of an implementation model. For example, point A' is clearly
to the left of the implementation model A, meaning that it is less cluttered with details.

• Those formal, MDSD models described here (at point A') contain significantly more infor-
mation than the corresponding implementation models, due to the formalized semantics,
particularly since not only signatures, but also partial implementations, are defined. For
example, point A' is above implementation model A, meaning that its information content
is greater.

• This is exactly where the potential for automation lies: a generator cannot obtain any infor-
mation, but it can easily improve the level of detail. Thus the effect of automation in the

Figure 18.1 The effort required in traditional software development

Level
of Detail

Analysis Result "Virtual" or Real
Design Model

Implementation

In
fo

rm
at

io
n

 C
o

n
te

n
t

Start

Target
Implementation

Analy
sis

Design

Total
Effort

c18.fm Page 362 Tuesday, February 28, 2006 5:31 PM

18.2 Automation and Reuse 363

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

diagram is strictly horizontal and leads to point B without further effort2. Depending on
the domain and the concrete approach (see Chapter 4), point B is closer to, or further from,
the target, determining the effort for the remaining (manual) coding.

In an extreme case, the model specifies the complete semantics of the (partial) application, so
that no manual coding is necessary at all (see Figure 18.3). The circumstances in which this is
possible or useful are discussed later, in Section 18.6.2.

A generator cannot help in increasing the level of understanding. All information must there-
fore already be present in the model, expressed using the domain-specific modeling language
(DSL) – see Sections 2.3 and 4.1.1. Referring to Figure 18.2, the curve rises more steeply close
to point A' than to point A. This means you have to put more work into understanding the
domain - which has the positive side effect that it forces you to actually think about the domain.

Here, too, we are confronted with an extreme case: if the modeling language is very close to
the problem space, the analysis result can be cast directly into a formal model – that is, point A'
moves closer to the analysis result while containing the same amount of information, or it
assumes the same position, thus proportionally increasing the automation potential. On the other
hand, this also means that the analysis will have to be more formal (see Figure 18.3).

Taking an automotive engineering metaphor as an example: at your local car dealership,
you fill in an order form that lists the vehicle type and any special features you want. The
characteristics on the order form constitute the domain-specific language. You don’t have to
worry about implementation details, such as engine construction, when you order your car.
The factory produces the desired product (your car) based on the domain model (your order
form), using prefabricated components. Obviously, the engineering achievement lies in the

Figure 18.2 The effort in MDSD with partial manual coding

2 We don’t take the effort required for the creation of a generator into account here.

Target

M
od

el
in

g

Automation

Potential Savings by
Code Generation

A

A' B

In
fo

rm
at

io
n

 C
o

n
te

n
t

Start

Level
of Detail

Analysis Result "Virtual" or Real
Design Model

Implementation

Implementation

Total
Effort

Potential Savings by Re-use of
Rich Domain-specific Platform

c18.fm Page 363 Tuesday, February 28, 2006 5:31 PM

364 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

effort of building the production line and the mapping of your functional order onto this pro-
duction line. The production of the item itself is automated.

The second important aspect about increased efficiency is reusability in the form of a domain-
specific platform consisting of components, frameworks and so on. Here the effort is simply
shifted from application development to the creation of the platform (see Figures 18.2 and 18.3),
which is reusable. Such reusable artifacts can be used beneficially in almost all other develop-
ment processes. However, their creation is usually not explicitly included in the methodology: in
MDSD the platform complements both the generator and the DSL.

Now we can clearly see the potential for savings that is gained by automation in combination
with a domain-specific platform. Figure 18.3 shows the extreme case. From the application devel-
opment perspective it obviously offers maximum efficiency, but on the other hand a powerful
domain-specific software production line must be established. However, to be able to leverage the
advantages of MDSD to the full, some investments are necessary that must be weighed against the
advantages. We discuss this topic later.

In general the following advantages are gained compared to a standard development process:

• The modeling (design) phase ends much earlier.
• Only a fraction of the effort needed for creating an implementation model is required: the

key to this is the domain-specific modeling language.

The implementation effort can be reduced considerably by using a generator that ‘understands’ the
domain-specific modeling language. In the case of an architecture-centric approach (Section 2.5),
a considerable amount of ‘classical’ programming remains, yet developers can focus on coding the
functional requirements. The architectural infrastructure code is generated (Chapter 3) and also

Figure 18.3 The effort in MDSD without any manual coding

Target

An
al

ys
is

M
od

el
in

g

Automation

A

BA'

In
fo

rm
at

io
n

 C
o

n
te

n
t

Start

Level of
Detail

Analysis Result "Virtual" or Real
Design Model

Implementation

Total
Effort

Potential Savings by Re-use of
Rich Domain-specific Platform

Potential Savings by
Code Generation

c18.fm Page 364 Tuesday, February 28, 2006 5:31 PM

18.3 Quality 365

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

serves as an implementation guideline. A formalized, generative software architecture that includes
a programming model emerges.

18.3 Quality

Until now we have focused entirely on how to increase efficiency in software development, but
quality plays an equally important role, particularly because of its long-term effect. This section
examines some of the factors that affect software quality and their connection with MDSD.

18.3.1 Well-defined Architecture

Code generation can only be used sensibly if the mapping of specific concepts in the model to
the implementation code is defined in a systematic manner –that is, based on clearly-defined
rules. It is mandatory to define these rules first. To reduce the demand for code generation, we
recommend working with a set of rules that is as small and well-defined as possible. A small set
of well-defined concepts and implementation idioms are the hallmark of a good architecture. We
conclude that – in the context of MDSD – both the platform architecture and the realization of
the application functionality on the platform must be well planned. MDSD demands a concise,
well-defined architecture. This results in permanent consistency between model and implemen-
tation in spite of the model’s high abstraction level. Suitable generation techniques guarantee this
consistency in strongly iterative development (see Chapter 3).

18.3.2 Preserved Expert Knowledge

Modeling language, generator, and platform constitute a reusable software production line for a
specific domain. Today’s technical platforms, such as J2EE, .NET, or CORBA, offer a large
number of basic services for their respective application fields – J2EE, for example, for big
enterprise applications. Yet using these services – and hence the platform itself – efficiently is not
easy. One must adhere to specific patterns or idioms to exploit the full potential of the platform:
the platform must be used ‘correctly«. All the patterns and idioms are documented and well-
known in principle, of course, yet it is a big problem in larger projects to ensure that the team
members, whose qualifications typically vary considerably, consequently apply the right patterns.
MDSD can help here, because defined domain concepts are automatically implemented on the
platform in always the same manner. Ergo, the transformations are design knowledge that has
been rendered machine-processable. They constitute an inherent value, as they preserve the
knowledge of how to use the platform effectively in the context of the respective domain.

18.3.3 A Stringent Programming Model

In today’s practice it is not reasonable to generate 100% of the application code. As a rule, a skel-
eton is generated into which the developer adds handwritten application code. The platform archi-
tecture as well as the generated application skeleton determine where and how manually-created

c18.fm Page 365 Tuesday, February 28, 2006 5:31 PM

366 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

code has to be integrated and the manner in which this code is structured. This equips developers
with a safeguard that makes it unlikely that they will create ‘big ball of mud’ systems.

18.3.4 Up-to-date and Usable Documentation

In the context of ‘classical’ software development, the application logic, mixed with technical
code, is typically programmed against a specific platform in a 3GL language. This is also done,
although to a lesser extent, when dealing with technologies such as EJB, where the application
server takes over specific technical services such as transactions or security. Since many concepts
are not visible at this abstraction level, the software must be documented using various means. In
time-critical projects it is often impossible to keep this documentation synchronized with the
code, and it is therefore usually the first victim if time starts to run out.

In the context of MDSD, the situation is altogether different: the various artifacts constitute a
formal documentation of specific aspects of the system:

• The domain-specific model offers a superb overview, because recurring implementation
schemas and details are factored from the model. It is therefore much more compact than
an implementation model.

• The DSL and the transformations document the use of the platform and the models’
semantics.

• The models document the application structure and logic in a form that can be understood
by domain experts. Besides the model itself, user manuals and other documentation can be
generated from the application models and their descriptions. Generative creation guaran-
tees that the documentation stays consistent with the code base beyond the first release.

These artifacts are always synchronized with the actual application, because they serve as the
source for the application’s generation.

Of course MDSD also has a need for informal documentation. The DSL and its semantics
must be documented to allow its efficient use in projects. However, this kind of documentation is
only required once for each DSL, not for each application (see Section 18.4.).

18.3.5 The Quality of Generated Code

In general, generated code has a rather dubious reputation: barely readable, not documented, and
with poor performance. However, this is an unfounded prejudice in the context of MDSD, because
the quality of the generated code depends directly on the transformations (for example the tem-
plates). The latter are typically derived from a reference implementation (see Section 13.2.2). This
means that the properties mentioned above, such as readability and performance, are propagated
from the reference implementation into the generated applications.

This is also the reason why the reference implementation specifically should be developed and
maintained with care. As long as transformations are created with sufficient care, the generated
code’s quality will be no worse than that of manually-created code. On the contrary, generated
code is usually more systematic and consistent than manually-created code, because repetitive
aspects are always generated by the same generator, so they always look and work the same way.

c18.fm Page 366 Tuesday, February 28, 2006 5:31 PM

18.4 Reuse 367

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

For example, with today’s generators it is no problem to indent the code sensibly. Comments can
also be generated easily. One should pay attention to these things – the developers will be grateful.

18.3.6 Test Effort and Possible Sources of Errors

When MDSD is used a number of aspects have positive effects on the error rate of the software
produced. This can be seen as early as your first MDSD project, but you will feel the effects
mostly in subsequent projects and during maintenance:

• MDSD helps to automate tests via the use of generative methods for test script and test
data generation (see Chapter 14).

• The generalization of schematic code in the form of transformations (or templates) enables
a new approach to validation of the application architecture for to scalability, performance,
and coverage of unusual application constructs. With little effort, a test application can be
generated that is much more versatile than the manually-developed reference implementa-
tion, and which covers the extreme cases of the architecture’s applicability. Thus weak-
nesses in the architecture can be detected early and can be cured by refining the reference
implementation, followed by refining the templates. This positively affects the risk profile
of projects and demonstrates that MDSD can sensibly be used in risky projects.

• Extensive tests with the generative test application eliminate an entire class of tests that
would otherwise have needed to be tested with every single generated application.

• Since the code that can be generated typically makes up more than 50% of the whole code
volume, potential error sources are significantly reduced through consequent automation. In
the long run, the qualitative advantages of MDSD are as important as increased productivity.

• The generation of user manuals and other documentation based on descriptions and char-
acteristics of application model elements is possible. Generative creation guarantees that
the documentation stays consistent with the code base beyond the first release.

18.4 Reuse

Besides the potential for automation and quality improvement, a domain architecture also has
a very high potential for reuse. Keep in mind that it is a software production line consisting of
a domain-specific modeling language3 (the DSL), a domain-specific platform, as well as a set
of transformations that enable the step from model to runnable software, either completely or
partially automated (see Section 4.1.4).

Such a production line is then reusable in similar software systems (applications) with the
same properties. The definition of ‘similarity’ and its related potential for reusability is derived
from these decisions:

• Definition of the domain
• Definition of the domain’s implementation platform

3 Compare for example the architecture-centric UML profile in Chapter 3’s case study.

c18.fm Page 367 Tuesday, February 28, 2006 5:31 PM

368 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

This makes MDSD interesting primarily in the world of software system families. In this con-
text, a software system family is a set of applications based on the same domain architecture.
This means that:

• They run on the same platform.
• They use the same DSL for specification of the applications – that is, of the ‘family

member«.
• A common set of transformations exists that transfers the models into executable code

based on the platform.

As an example, our first case study (see Chapter 3) covers the domain of architecture for busi-
ness software with the MDSD platform J2EE/Struts. The modeling language described there
is reusable for all software systems that use the features provided by this language, such as
layering. The generative software architecture of the case study maps the modeling language
to the platform. The transformations are therefore reusable for all software systems that have
the same architectural features and will be implemented on the same platform.

Due to its level of abstraction, the reusability of DSLs typically is even greater than that of
transformations and platforms. In the context of a business, it can for example be sensible to
describe the business architecture via respective high-quality DSLs and map them to relevant
platforms using transformations (generators).

In the case of a clearly-defined functional/professional domain such as software for insurance
applications, a functional/professional DSL can be even more effective, for example to support
the model-driven, software-technical realization of insurance products or tariffs.

A combination – or more precisely, a cascade – of functional/professional and technical
MDSD domains is particularly effective: in most cases, the platform of a functional domain
architecture can be very well realized with the help of an architecture-centric domain architec-
ture (see Section 7.6). In this way the advantages of MDSD can be leveraged in both functional
and technical dimensions.

Either way, the more applications or parts of applications that are created in such software
production lines, the faster one will profit from their creation, and the greater will be the benefit.

18.5 Portability, Changeability

Fan-out is an important benefit of MDSD. This term describes the fact that a number of less
abstract artifacts can be generated from a single model. The fan-out has two dimensions:

• On one hand, several artifacts can be generated from a single model in the course of a
project. For example, relational database schemas, XML schemas, as well as serializers, can
all be generated from a UML-based data model. In projects in which all of these different
artifacts must be kept mutually consistent, this is a considerable advantage.

• On the other hand, different implementations can be generated from a single application
model over time, making migration to newer versions of the technical platform, or to a
totally new platform, easier.

c18.fm Page 368 Tuesday, February 28, 2006 5:31 PM

18.6 Investment and Possible Benefits 369

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

An MDSD approach generally allows fast modification of the developed application(s). Since
many artifacts are automatically created from one specification, changes to the specification
will of course affect the whole system. In this way, the agility of project management increases.

18.6 Investment and Possible Benefits

We have seen the potential and usefulness of MSDS. Unfortunately, even in IT, there is no
such thing as free lunch: to be able to enjoy the advantages, one must invest in training and
infrastructure – of a technical as well as an organizational nature, depending on the desired
degree of sophistication. This section introduces some experiences and conveys some con-
densed information from real-life projects to give you a clearer idea of the costs, the useful-
ness, and the break-even points in MDSD.

18.6.1 Architecture-centric MDSD

We recommend you first approach MDSD via architecture-centric MDSD, since this requires
the smallest investment, while the effort of its introduction can pay off in the course of even a
six-month project. Architecture-centric MDSD does not presuppose a functional/professional
domain-specific platform, and is basically limited to the generation of repetitive code that is
typically needed for use in commercial and Open Source frameworks or infrastructures.

The investment consists primarily of the training needed for handling an MDSD generator and
its respective template language, as well as for the definition of a suitable DSL for modeling.

Effects on the Code Volume

To conduct a quantitative analysis, we took sample data from a real-life MDSD project at the
time of its acceptance. This project was a strategic, Web-based back-office application for a big
financial service provider. Table 18-2 shows in round numbers the effects of architecture-centric
MDSD on the source code volume.

Amount of source code [kB] Traditional development MDSD

Source code reference implementation 1.000 1.000

handwritten code 18.800 2.200

Models 3.400

Transformations 200

Total 19.800 7.800

Table 18-2 Code-volume ratio in architecture-centric MDSD

c18.fm Page 369 Tuesday, February 28, 2006 5:31 PM

370 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

To represent the influence of models on code volume, we selected the number of kilobytes
required to store the all required UML files. We also assumed that a manually-created reference
implementation would be developed to validate the application architecture.

Our concrete example for architecture-centric MDSD shows that the volume of code that
needs to be maintained manually is reduced to 34% of the code volume that would have to be
maintained in non-model driven development scenarios, including transformation sources! This
number may appear to be very low, but in our experience it has proven to be representative. Tool
manufacturers quite often publish data reflecting the percentage of generated code. However,
these numbers are meaningless if it is unclear whether the necessary model and transformation
sources, as shown in Table 18-2, have been included in the calculation. In our example, model
and transformation sources make up more than 50% of the source code that needs to be main-
tained. Figure 18.4 provides a graphical view of the data from our example.

Of course, other than in manual implementation, the volume of sources to be compiled remains
unchanged if MDSD is used, as shown in Figure 18.5. The difference between traditional devel-
opment and MDSD is that generated code doesn’t constitute a source, but an effort-neutral
intermediate result.
a

If we ignore model and transformation sources, as well as the reference implementation, we
get a ratio of 88% generated code and 12% manually-created code. In our view, however, such
figures are ‘window dressing’. In MDSD, the models have the same value as normal source
code, and the reference implementation should always be maintained in MDSD, because it is the
basis of all refinements and extensions of the architecture.

Viewed from this perspective, the ratio of generated code and manually-created code is 72%
to 28%. These figures are still impressive enough to make it clear that architecture-centric
MDSD can pay off even if only a single application is developed with a given infrastructure –
particularly if one takes into account medium-term maintenance requirements. To prove that

Figure 18.4 Code-volume distribution

5.000

10.000

15.000

20.000

A
rt

if
ac

t
V

o
lu

m
e

[k
B

yt
e]

Traditional
Development MDSD

Reference
Implementation

Manually-implemented
source code

Models

Transformations

c18.fm Page 370 Tuesday, February 28, 2006 5:31 PM

18.6 Investment and Possible Benefits 371

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

our statement is true, we must consider the entire effort for the project’s realization, not just the
programming effort.

Effects on Project Time and Effort

Besides implementation, the project time and effort consist of:

• Analysis and documentation of the requirements.
• Architecture and design work, definition of the modeling language (for example UML pro-

file), if applicable.
• Test generation and execution.
• Project management.

In addition, business process analysis preceding the project, required project documentation (user
manuals, help menu texts), as well as production costs must be considered. MDSD has a positive
influence on some of these activities, yet it is difficult to document this influence in general
numbers. We therefore only examine in which respects MDSD affects the implementation effort,
and how this again affects the total core activity efforts.

The figures given in the previous section are only useful for an assessment of the total work
effort, because they do not reflect how much time – and thus money – is spent on the creation of
models and transformations, as well as for the manual programming of reference implementa-
tions and application-specific source code. Likewise, the brainwork involved in creating the
DSL is not considered here.

Figure 18.5 Ratio of generated ‘sources’ and manually created sources

5.000

10.000

15.000

20.000

A
rt

if
ac

t
V

o
lu

m
e

[k
B

yt
e]

A
rt

if
ac

t
V

o
lu

m
e

[k
B

yt
e]

Traditional
Development MDSD

Reference
Implementation

Manually-implemented
source code

Models

Transformations

Generated source code

25.000

c18.fm Page 371 Tuesday, February 28, 2006 5:31 PM

372 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

In a little practical experiment [Bet02] we examined how much time the creation and mainte-
nance of models takes, based on data entry and mouse clicks. We then converted this information
into the equivalent of source code lines using an approximate formula:

• If we define the total programming effort as being equivalent to the sum of all remaining
manually-created source code lines, we get an interesting picture. In our experiment,
MDSD causes a reduction of the programming effort to 48% of that of completely manual
programming.

• If MDSD is not used and typical UML tools are applied instead to generate skeleton
source code from the models, the programming effort increases to between 105% and
149% of that of manual programming completely without UML, depending on how
many interaction diagrams the models contain (other than class diagrams, which don’t
contribute to skeleton generation).

These figures clearly demonstrate that MDSD is not the same as UML round-trip engineering.
They also show why many software developers are skeptical regarding the use of UML tools.

In architecture-centric MDSD, the platform almost exclusively consists of external commercial
and Open Source frameworks. The domain architecture that needs to be created consists primarily
of a reference implementation and transformations derived from it (code generation templates).

The figures from Table 18-2’s example (reference implementation circa 1,000 kB source
code, transformation source code circa 200 kB) support our thesis that the derivation of transfor-
mations from a reference implementation takes only between 20% and 25% of the effort
required for creating the actual reference implementation – especially if you keep in mind that
most of the mental work has already been done for the reference implementation.

The effort required to create a reference implementation is not influenced by MDSD. For
further discussions, we assume that the programming effort for the reference implementation
constitutes 15% of a project’s total programming effort. In the Table 18-2’s example, the size of
the reference implementation was only 5% of the entire application (measured in kB), so that
even if one takes into account that the reference implementation is more difficult to program,
15% is a fairly conservative estimate.

Table 18-3 shows that architecture-centric MDSD can lower the programming effort by 40%,
given the conditions described above. This figure confirms our practical experience as well, and is
a good reference for calculating the costs of introducing MDSD. It is best however to use metrics
from your own team to calculate how much programming effort is needed compared to the total
project time and effort, and thus to calculate the potential of MDSD.

Development effort [%] Traditional development MDSD

Transformations – 4 (0,15*25)

Reference Implementation 15 15

Application models and code 85 41 (0,48*85)

Total 100 60

Table 18-3 Comparison of modeling and programming effort

c18.fm Page 372 Tuesday, February 28, 2006 5:31 PM

18.6 Investment and Possible Benefits 373

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

• If we assume that programming makes up 40% of the project activities, the potential for
saving money can be up to 16%.

• The effort for the reference implementation and transformation development is not neces-
sary for subsequent projects, so that the programming effort is reduced by 59% and
potentially up to 24% of the costs can be avoided.

• A mature domain architecture increases the maintainability and changeability of all
projects using MSDS, so that the maintenance cost is significantly reduced4.

In real life, of course, the teams’ learning effort, as well as the hiring of an MDSD expert as a
coach for the first project, must also be considered.

We can make an empirical assessment: if an MDSD pilot project runs for six months or longer
and the team consists of more than five people, the introduction of MDSD can pay off as early as
during this first project, even if the whole production line must be built from scratch. Chapter 20
describes the adaptation strategies and prerequisites that should be observed.

18.6.2 Functional/Professional MDSD Domains

As you may already have inferred from the previous section, architecture-centric MDSD offers a
simple and low-risk adoption path for MDSD. As the figures in our examples show, roughly half
of the sources to be maintained consist of models and transformations: the other half consist of
‘traditional’ source code for the reference implementation and handwritten application logic.

If a mature implementation of architecture-centric MDSD is available, the remaining tradi-
tional source code cannot be reduced any further. Efficiency can only be increased by applying
the MDSD paradigm not just to the architectural/technical domain, but also to functional/pro-
fessional domains. This allows us to uncover functional domain-specific commonalities and
variabilities of applications via domain analysis or product-line engineering (Section 13.5) and
to increase the abstraction level of the application models even further: the models then
describe domain-related problems and configurations, instead of architectural aspects, effecting
a further reduction of the modeling effort and particularly the effort for manual coding.

To exemplify this it helps to look at the code volume distribution during development of a
number of applications in the same domain. Figure 18.6 sketches the reduction of code volume
via introduction of a functional domain architecture during the development of three applica-
tions, while assuming that the application models and application-specific, handwritten source
code can be reduced by 50%. Note that Figure 18.6 is of a purely illustrative nature: the real-
life facts very much depend on the domain and its complexity. The clearer can the domain’s
boundaries be defined, the more functionality can be integrated into the functional MDSD
platform in a reusable form.

In practice, the development of a functional domain architecture is an incremental process
based on architecture-centric MDSD.

The development effort for functional domain-specific languages (DSLs) and the correspond-
ing frameworks should not be underestimated. The successful development of such languages

4 It is difficult to express this effect in figures.

c18.fm Page 373 Tuesday, February 28, 2006 5:31 PM

374 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

requires significant experience in the respective domain and should not be attempted in your
first MDSD project.

 There are also scenarios in which functional frameworks already exist that can be used
without the help of model-driven generators, of course. In this case, MDSD can build on them
as in the architecture-centric case – that is, the existing frameworks are regarded as the MDSD
platform that defines the target architecture (see Chapter 7). A DSL is then derived from the
configuration options. As in the architecture-centric case, productivity can be improved
remarkably for relatively little investment.

18.7 Critical Questions

We have addressed some of the prejudices against MDSD in the preceding sections, as well as in
Chapter 5. Some of these prejudices date back to the 1980s and 90s and stem from negative
experiences with CASE tools, and are now projected onto model-driven approaches in general.
Serious and important questions emerge: the answers to such questions are neither trivial nor
easily found. Below we discuss answers to some of these questions:

• What is new about MDSD?

Naturally, its individual concepts, for example the generation of source code from higher-
level descriptions/models, are nothing new. Nevertheless, the simple code generators that
every developer uses or writes at some point in their career are not comparable with the
highly flexible MDA/MDSD tools of the latest generation, which allow you to define mod-
eling languages and modular transformations both freely and in a relatively simple manner.
MDSD is more than just a technique – it is mainly about the engineering principle.

Figure 18.6 Code-volume distribution during introduction of a functional domain
architecture

5.000

10.000

15.000

20.000

25.000
A

rt
if

ac
tV

o
lu

m
e[

kB
yt

e]

Architecture-
centric MDSD MDSD

Reference
Implementation

Manually-implemented
source code

Models

Transformations

Platform Sourcecode

c18.fm Page 374 Tuesday, February 28, 2006 5:31 PM

18.7 Critical Questions 375

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

• If the approach is that brilliant, why isn’t it more popular?

The required prerequisites, such as flexible tools and – most of all – a more comprehensive
knowledge about the approach are not yet available. In the field of tools, the growing pop-
ularity of MDSD certainly plays a driving role. On the other hand, the integral architec-
ture-centric MDSD view – and particularly its generative use – are already established
among early adopters. The same is true for central, process-related MDSD concepts.

• Does MDSD have negative effects on the performance or the readability of application
source code?

In the model-driven approach, the necessary infrastructure and the corresponding design
patterns are developed initially in the form of a small, manually-created reference imple-
mentation. This reference implementation may be small, but it is deep. It covers all the
architecture’s layers and is established in the first phases of a project by experienced team
members. In the course of the project, the reference implementation is refined and opti-
mized, so that its properties and improvements can be transferred to the entire source code
via generative techniques. On average, the model-driven approach leads to a performance
that is at least as high as if a traditional development approach is used. The same is true for
source code readability (see Section 8.2.4).

• Aren’t today’s UML-based IDEs with round-trip support much more mature than MDA/
MDSD tools?

This may be correct to a certain extent, yet it is irrelevant, because these tools constitute a
different class of tools. Due to their missing abstraction level, they do not offer the advan-
tages of MDSD described above (see Section 18.2 and Chapter 5).

• Doesn’t MDSD create an unreasonably strong dependency on a specific tool or a certain
technology combination?

Modular, automated transformations and the treatment of model transformations as first-
class artifacts guarantee that tool dependencies remain local (see Section 11.2). Since
MDA has not yet established a standard for transformation languages, one is bound to a
specific transformation language by choosing an MDA/MDSD tool. However, MDSD
tools can more and more be considered as everyday tools, especially if they are available as
Open Source software. Since modern template-based generators have no restrictions over
target languages, there is no limit to specific technology combinations for the application
to be created.

• Doesn’t the model-driven approach imply a waterfall model, and doesn’t it particularly
conflict with agility? What distinguishes it from CASE?

The iterative, dual-track process of MDSD (see Section 13.2), in which the infrastructure
is developed in parallel to the application(s), must be clearly distinguished from traditional
waterfall methods that are based on a ‘big design up-front’ philosophy. MDSD is based on
domain-specific platforms and is in strong opposition to the CASE approach that tries to
anticipate all situations by using a universal language. Agile methods are particularly well-
suited for the creation of MDSD reference implementations. MDSD also helps to scale
agile methods, because the experience and expert knowledge gained can be made available
to all developers in software form. MDSD fosters test-driven approaches (see Chapter 14).

c18.fm Page 375 Tuesday, February 28, 2006 5:31 PM

376 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

• How can one ensure that model and code do not diverge at some point?

In MDSD generation is based on the model, and generated code is consequently separated
from non-generated code. Handwritten code is not obsolete. On the contrary, MDSD con-
siders developers and generators to be complementary partners that must work together
efficiently. The rules for this collaboration between developers and generators are not
rigid, but are defined based on the actual requirements. The same applies to the rules for
the developers’ interaction in a team. However, the MDSD generator ensures that the
developer does not cross the boundary set by the domain architecture, especially since
manipulations of the generated code are undone during iterative regeneration.

• How much time and effort is required for generator or transformation development? Is is
worth the time and money?

Well-focused, yet mature generic tools are available, particularly in the Open Source field.
These tools possess simple yet powerful template languages. Some also define powerful
model-to-model transformation languages. One should build on these generators during
transformation development.

Modern template languages allow a very intuitive generalization of complex, hand-
written code. The effort for the generalization or ‘templating’ of the source code is only
20% to 25% of the effort needed to code manually the reference implementation from
which the templates are extracted. From a certain project size upward, and especially
when similar subsequent projects are to be expected, the MDSD approach is much more
efficient than traditional software development (see Section 18.6).

• Doesn’t it take longer to change an attribute type in the model, followed by regeneration,
than to change the declaration in the code in a certain place manually?

If we have rich semantics, for example persistence of the attribute, changing one occur-
rence in the code is not enough; all occurrences in interfaces (getters/setters), serializers,
and DDL scripts must be adapted consistently.

• Isn’t it faster to adapt changes due to maintenance by adapting the generated code manu-
ally instead of adapting the MDSD transformations (the generation rules)?

If the guidelines for MDSD are obeyed and generated code is kept strictly separate from
non-generated code, changes to code templates are always faster than manual changes to
numerous source files.

• In time-critical phases of application development, one cannot always wait for the next
release of the domain architecture. Manual interventions into the generated code are the
consequence, and the MDSD approach fails because the generator can no longer be used.
How can this be avoided?

For smaller patches it can make sense to create a specific, temporary branch of the domain
architecture that is decommissioned during the domain architecture’s next release. Should
severe insufficiencies of the domain architecture emerge, one must fall back on manual
programming, either temporarily or permanently. This is not accomplished by manipulat-
ing the generated code, but by opening the domain architecture in the relevant place: the
transformations are changed in such a way that they generate only a (modifiable) default

c18.fm Page 376 Tuesday, February 28, 2006 5:31 PM

18.7 Critical Questions 377

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

implementation. The opening-up of the domain architecture can – if applicable – also be
made available as a temporary, project-specific branch.

• Isn’t it better to implement an object-oriented framework instead of using a generator? Do
object-oriented generators and high-quality, object-oriented generated code exist?

Object-oriented frameworks and generators are an ideal match (see Chapter 3). The com-
bination of both approaches is a real step forward.

In MDSD, frameworks and generators complement each other in a similar way to the
dynamic and structural aspects of an object-oriented model. Modern generators are typi-
cally realized in object-oriented languages and are in no way comparable to the simple
utilities that every programmer has written at some point.

• Model-Driven Software Development in larger teams inevitably means distributed mode-
ling. Aren’t the currently-available (UML) modeling tools a problem rather than a help?

Of course choosing the right modeling tool is essential to the success of MDSD in big
projects. Yet there are also mature (UML) tools that support distributed modeling even in
large teams. Independently of this approach, the simple partitioning of the application
model into several loosely-coupled partial models can be helpful. Partitioning can take
place either horizontally – alongside the architectural layers – or vertically – alongside
loosely-coupled use case implementations. Partitioning must be allowed and supported by
the DSL and the generator (see Chapter 15).

• Isn’t it much more time-consuming to work out an architecture explicitly?

Each application has an architecture, whether formally defined or not, but only if it is
explicitly worked out (in whatever form) does it becomes a ‘good’ architecture. Quality
attributes such as maintainability, scalability and so on can be created iteratively, but not
accidentally.

• Isn’t handwritten code more reliable than generated code? Can one trust a generator in all
situations, or won’t there always be situations in which manual interventions are required?

It is wrong to assume that a couple of unpredictable exceptions of a design pattern render the
use of generators impractical or uneconomic. It is not the goal of MDSD to eliminate the
manual creation of source code altogether. On the contrary, MDSD offers pragmatic tech-
niques for supplementing generated code with non-generated code in well-defined locations.

As proof of the higher efficiency and lower error rates of handwritten code, strange
compiler or assembler errors are sometimes quoted. The fact is overlooked here that this
supposed weakness of generator technology would have prevented the development and
usage of today’s programming languages a long time ago. The opposite is true: practice
shows that typically many errors are discovered during the derivation of templates from
the reference implementation, due to the intense attention paid to implemented design
patterns. Such errors would otherwise remain unnoticed and spread further via traditional
copy and paste techniques.

We admit that the borderline between generated code and manual implementation must
be drawn with great care. It is a balancing act between automation and necessary degrees
of freedom. Often it is the limited number of solution alternatives that will let you achieve
your goal (see Chapter 7).

c18.fm Page 377 Tuesday, February 28, 2006 5:31 PM

378 Decision Support

 c18.fm Version 0.3 (final) February 28, 2006 5:31 pm

18.8 Conclusion

MDSD enables productivity and quality gains as soon as during your first model-driven
project. Specifically, the implementation effort can be reduced by half compared to traditional
manual programming. Considering the necessary training effort for the introduction of
MDSD, real savings are to be expected from the second project onwards once the team is
familiar with the MDSD paradigm, a concrete set of tools, and the methodology. The use of
MDSD with functional/professional MDSD platforms should be the second step (cascaded
MDSD, see Section 8.2.8), which is recommended particularly for the development of product
lines (see Section 13.5).

18.9 Recommended Reading

Unfortunately the amount of publicly-accessible data on the efficiency of Model-Driven Soft-
ware Development and product line development is rather small. This has several causes: on one
hand, no-one will come up with the idea of executing a real-life project twice in parallel just to
collect comparative metrics – and even this would be only of limited value, due to the dissimilar
boundary conditions. Furthermore, positive effects on time and quality are obvious to everyone
involved in the project, while interesting metrics relate more to the incremental refinement of the
approaches than to a comparison with completely manual approaches. Last but not least, not all
companies mention the option of using generative techniques and the resulting savings if the
customer is only interested in the delivered, traditional source code or the finished application.

The sources [PLP], [Bet02] and [Bet04c] contain further data and economically-relevant
statements regarding the MDSD development process.

c18.fm Page 378 Tuesday, February 28, 2006 5:31 PM

379

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

19 Organizational Aspects

with Jorn Bettin

To use Model-Driven Software Development, it is necessary to distinguish between the develop-
ment of concrete applications and the development of the domain architecture. The reasons for
this distinction are practical: first, concrete projects must be finished at a certain point to meet
deadlines, so possible technical problems in domain architecture development cannot be consid-
ered. Second, the domain architecture’s quality is decisive for the success of MDSD. We advise
against forcing compromises on the domain architecture’s design when under pressure. Third, the
knowledge needed for developing the domain architecture differs from the knowledge needed for
application development. Thus the two aspects are separated. The goal of organizational best
practices for MDSD is to create an environment that supports a useful assignment of tasks.

MDSD is scalable and well-suited for use in larger, distributed project environments. Distrib-
uted software development is not only an issue in very large projects, but increasingly also in the
context of offshoring.

19.1 Assignment of Roles

This section addresses the MDSD-specific assignment of roles. The development process sketched
in Chapter 13 serves as our guideline here.

19.1.1 Domain Architecture Development

For successful domain architecture development, both profound knowledge and experience of
the domain are required. These are usually dispersed through a group of people. Some of the
required roles do not differ from those in traditional software development projects, while other
roles take on a special meaning in the context of MDSD. We will primarily discuss the latter, not
to offer a kind of job description, but rather a representation of various activities that must be
carried out in a real-world project. One person can assume more than one role in a project, of
course, and similarly one role can be taken on by a number of people.

c19.fm Page 379 Tuesday, February 28, 2006 5:21 PM

380 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

Domain Experts

Expert knowledge about the MDSD domain is needed for the development of a good domain
architecture (see Section 4.1.1) – that is, knowledge about the area that is to be supported by
MDSD. We consider such people to be either domain experts who in the past have realized at
least two applications in the domain, or potential users who are experts on parts of the domain.
For example, for the development of an insurance application, jurists specializing in damage
claims, actuaries, direct marketing experts, and so on can be consulted as domain experts. (Note
that in architecture-centric MDSD, the domain experts are software architects who are experi-
enced in the target architecture’s technology – see Chapter 7).

Expert knowledge is relevant for traditional application development, but it is essential for
developing a domain architecture. This is one reason why domain architecture development is
rather badly suited for offshoring, at least during project bootstrapping.

Domain Analysts

In the section on product-line engineering (Section 13.5) we discussed the various aspects of
domain analysis. The analysis of commonalities and variations within a domain are best worked
out iteratively via a number of workshops with domain experts, product managers (if applica-
ble), customers, requirements analysts, and domain architects.

Figure 19.1 MDSD-specific roles in domain architecture development

Customer

Domain
Analyst

Domain
Expert

Domain Architect

DSL Designer
Reference

Implementation
Developer

Prototype
Developer

Platform
Developer

Transformation
Developer

c19.fm Page 380 Tuesday, February 28, 2006 5:21 PM

19.1 Assignment of Roles 381

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

The Language Designer

The language designer is a special type of domain analyst. On one hand they are responsible for
the development of metamodels and UML profiles: on the other, for the development of other
concrete kinds of syntax (see Section 4.1.1). In other words, they define domain-specific lan-
guages (DSLs). To this end, the language designer works closely with domain experts and other
domain analysts. On the implementation side, the language designer is the decisive link with the
domain architects, especially because the language designer also creates the reference models
that match the reference implementation (see Section 13.2.2).

Domain Architects

Domain architects are responsible for the realization of domain architectures (see Part II and
Chapter 13). This especially includes the definition of the target architecture (see Chapter 7) and
the development of subsystem structures within the domain architecture. The latter is done in
cooperation with the language designer. Specific flavors of domain architects can be distin-
guished, analogous to the various parts of a domain architecture:

• Prototype developers. Prototype developers create technology prototypes. In most cases,
they are technology experts or work closely with such. Other than traditional development,
MDSD allows for a very economic use of technology expertise – it can be transferred to
application development via the generative approach, leading to a reduced need for coach-
ing there.

• Reference implementers. Reference implementers map the DSL’s constructs to the target
architecture based on the prototypes. They use the reference models from domain analysis
(see above) as their specification for this purpose.

Prototypes have a rather experimental character, whereas reference implementations have
a very formal character. This is because the transformations must be derived from them.

• The platform developer. We discussed the significance of domain-specific MDSD plat-
forms in Sections 4.1.2 and 7.6. People with experience in framework development are
particularly well-suited the role of platform developer. Platform developers must collabo-
rate closely with reference implementers because the MDSD platform constitutes an
important partition of the reference implementation. In other words, the reference imple-
mentation builds on the domain-specific MDSD platform and exemplifies its use.

• Transformation developers. Transformation developers must be able to work efficiently
with generation or transformation tools. They derive code templates, for example, for the
generation of source code from the reference implementation, or define model-to-model
transformations. Template development is also closely linked to the development of the
domain-specific platform. Its goal is to tune transformation and platform development in
such a way that neither the internal complexity of the platform nor the transformations’
complexity gets out of hand.

c19.fm Page 381 Tuesday, February 28, 2006 5:21 PM

382 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

Coordinators

Domain analysis and domain architecture teams each need a coordinator who is responsible for
the result. Depending on the abilities and the size of the team, these two roles can be taken on by
the same person. The role of domain analysis coordinator is compatible with that of language
designer.

Other Roles

Besides those already mentioned, the following roles are relevant for domain architecture
development:

• Customers. Customers should be involved in the development of GUIs and application pro-
totypes as much as possible. To make sure that practical usability criteria are not ignored,
potential end users should also be available. Customers can also be domain experts in the
sense explained above.

• Product managers. For the development of products and product lines, it is not only
important to consider the wishes of single customers, but also the strategic focus of the
product or the product lines. The product manager should have a good idea of the prod-
uct’s use by existing customers. Similarly, they should know the requirements of further
potential customers in the target market.

• Project manager. As in traditional software development, a project manager is required in
MDSD. In this context experience in iterative software development is pivotal.

• Requirements analyst. Like in traditional software development, analysts are needed to
analyze and define customer requirements in the form of use cases and similar artifacts.

• Test engineers. Test engineers are responsible for developing test strategies that take into
account the special potential of MDSD in this context (see Chapter 14).

19.1.2 Application Development

The roles in MDSD application development are identical to those in traditional software devel-
opment if you ignore the following aspects, because these are delegated to the domain architec-
ture development thread in MDSD:

• The development of frameworks – that is, the development of the MDSD platform.
• The development of application prototypes and reference implementations as well as exper-

iments with new implementation technologies.
• Analysis of requirements that are relevant for the entire target market.

It is obvious that precisely those critical activities that often cause delays or loss of quality are
delegated to domain architecture development, hence they are better decoupled from the time
pressure of day-to-day development (see Section 13.3).

In addition to knowledge about traditional software development, the application developer
needs a basic understanding of MDSD in general and the DSL of the domain architecture in
particular.

c19.fm Page 382 Tuesday, February 28, 2006 5:21 PM

19.2 Team Structure 383

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

19.2 Team Structure

Nothing would be gained by trying to impose a universal team structure. After all, different
teams develop their own working style, which is customized to meet the individual team mem-
bers’ knowledge and temperament. Morale can be damaged if one tries to superimpose rigid
(new) roles on people. The assignment of tasks should take place based on available knowledge
and individual preferences. We value a suitable macrostructure of the team much more, for
example the separation of domain architecture development and application development.

Figure 19.2 sums up the roles that are important in application development and in domain
architecture development.

As you can see, there are roles that can be found in both development threads. If domain
architecture development and application development take place in different physical locations,
representatives of these roles must be present in both locations. The experts working in domain
architecture development must convey their knowledge to application developers via workshops
and training.

Moreover, the team structure should be aligned with the domain architecture’s component
structure, to support the scalability of domain architecture development. For example, if you have
three important sections in the domain architecture, then you should probably have three groups of
knowledge/experience in the team. A suitable distribution of responsibilities enables a top-down

Figure 19.2 MDSD project team macrostructure

Application Engineering

Application
Developer

Application
Architect

Project
Manager

Customer

Requirements
Engineer

Tester

Domain Engineering

Product
Manager

Domain
Analyst

Domain
Architect

Test
Engineer

Domain
Expert

c19.fm Page 383 Tuesday, February 28, 2006 5:21 PM

384 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

approach when outlining the domain architecture’s design pattern. First, the interfaces are defined,
so that subsequently the work on different subsystems and frameworks can be better parallelized.

19.2.1 Definition of Roles and Staffing Requirements

Filling actual roles depends on the project size, distribution of abilities in the team, and the
focus of the MDSD domain. In architecture-centric MDSD, for example, the roles of domain
analyst and domain architect can be taken on by the same people, because in this case the
knowledge required for the MDSD domain is the domain architect’s knowledge. In a very small,
architecture-centric MDSD project, all the roles shown in Figure 19.1 can be filled by a single
person, possibly even including the actual application development (thus a one-person project).
In the context of a more comprehensive product family, the roles of domain analyst and domain
architect particularly should be assumed by different people.

The scaling of the role assignment for domain architecture development compared to applica-
tion development is of extreme importance: an MDSD project with, for example, more than a
hundred application developers but only one transformation developer is bound to fail unless the
domain architecture is already mature. Keep in mind that the domain architects have to coach
the application developers, especially at the beginning of the project, and that feedback on the
domain architecture is the consequence.

Of course we can’t provide a simple rule of thumb, particularly since the bootstrapping phase of
a domain architecture typically requires more staff than its iterative evolution. The number of
application developers should increase proportionately, and only fan out after the bootstrapping
phase. Figure 19.3 shows an idealized version of our experiences of role-oriented scaling over time.

Figure 19.3 Temporal development of MDSD roles (idealized)

M
an

p
o

w
er

R
eq

u
ir

em
en

ts

Time
Bootstrapping

Stabilization and Rollout of
Domain Architecture Routine

Domain Architects
and Analysts

Application
Developer

c19.fm Page 384 Tuesday, February 28, 2006 5:21 PM

19.2 Team Structure 385

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

19.2.2 Cross-Cutting Teams

The same rules for effective communication between teams apply as for traditional software
development on a larger scale: as soon as several developer teams work in parallel, compliance
with standards and continuous improvement should be supported by establishing ‘horizontal’
groups to supplement the roles defined during the development process. As a guideline, we rec-
ommend that the following horizontal groups are created. (In this context, only the architecture
group is mandatory. The other groups only become relevant if the teams consist of about fifteen
or more.).

• The architecture group is responsible for the specifications of, and the priorities in, the
domain architecture. This group typically consists of software architects from the applica-
tion or product development teams and at least the coordinators of domain architecture
development.

• The quality assurance group is responsible for the definition of and adherence to quality
standards.

• The product management group is responsible for the quality of use cases and other
requirements definitions, as well as for the priorities in product development. This group
should include, for each product family: the product manager, domain experts, and the
requirements analysts.

• The project management group is responsible for meeting deadlines and staying within the
budget limits, for controlling, and for the definition of necessary project management
standards.

19.2.3 Tasks of the Architecture Group

A cross-cutting architecture team is especially important if more than one application is being
developed based on a single domain architecture. We cannot emphasize enough that the architec-
ture group must see its role as that of a service provider and ‘keeper of the software production
line’ to be successful. It is pivotal to avoid an ‘ivory tower’ architecture. The group’s primary
task is to control the evolution of the domain architecture(s) according to the project or product
development requirements. The priorities are therefore not set by the domain architect, but by
the architecture group. The domain architects must also make sure that their architecture will
succeed in practice. It can be very useful to have them temporarily work as application develop-
ers or project architects.

The secondary task of the architecture group is to preserve the quality attributes of the domain
architecture(s) – that is, to monitor performance, scalability, reusability, and maintainability. The
architecture group must merge both objectives into a practicable synthesis.

We do not recommend that the architecture group be burdened with the operational develop-
ment and evolution of domain architectures: the group usually won’t have the time to do this. For
this purpose, the organizational structure of a (partial) project with its own planning, iterations,
and release cycles – similar to framework development – is much better suited. The architecture
group should merely control the evolution of the domain architectures in terms of a cross-cutting

c19.fm Page 385 Tuesday, February 28, 2006 5:21 PM

386 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

representation of interests – that is, architectural features that are common to multiple products
in the same domain.

This evolution typically has two dimensions – variant definition, and improvement:

• Variants emerge when a platform component is exchanged, such as for example the
exchange of a data access layer from technology X to technology Y. If the domain archi-
tecture is well modularized, the transformations responsible for generating the data access
layer will create a loosely-coupled module – often called a cartridge – within the domain
architecture. You can now replace the X cartridge with a Y cartridge (which you may need
to build first) without changing the interfaces to the business logic or the modeling lan-
guage (DSL). What you get is a derivative of the domain architecture. To pursue this idea
further, your main objective will be building blocks of cartridges that offer the maximum
combinations while being minimally redundant. However, this goal will not be met by the-
orizing, but only through evolution.

• Improvements are brought about by feedback loops from the projects. For example, the
correction of deficiencies such as too low an abstraction level in the DSL, or additional
generative support for application fields that have been neglected or whose potential for
automation has not been previously recognized. In most cases, improvements will result in
new versions of existing cartridges. A transparent version and release management proc-
ess should enable projects to decide for themselves whether they want to switch to a newer
version or keep the old one (see Chapter 15 and Section 13.3).

In principle both dimensions of evolution (variant definition and improvement) can have neg-
ative effects on the concrete reuse of domain architectures: for example, one variant must be
created first, or perhaps an improvement isn’t backward-compatible. Yet it would be counter-
productive to prevent evolution for this very reason, because it constitutes the ultimate source
of innovation and added value. However, timely modularization on this level is important to
the creation of building blocks for domain architectures. A production line for software sys-
tems based on modules is an investment that should be protected. These values, which extend
well beyond the scope of individual projects, should be represented by the architecture group,
and that group should control the evolution of domain architectures in the organization’s best
interest.

Our reflections are made, of course, from our perspective: they are certainly not relevant for
your first MDSD project. Depending on the size of your organization, they are relevant for a
planning interval of between two and five years. They are not hypothetical or purely theoretical,
however, but are all based on actual experience.

19.3 Software Product Development Models

In the following sections we examine software development models from the perspective of a
company that manufactures and distributes software products. We analyze the application field
with a specific focus on MDSD. The same models can be used for the development of applica-
tions, but to keep things simple, we use product-oriented terminology.

c19.fm Page 386 Tuesday, February 28, 2006 5:21 PM

19.3 Software Product Development Models 387

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

19.3.1 Terminology

Several organizations can be involved in the development of a software product with respective
customer-supplier relationships between the various parties – often referred to as supply chains.
The term ‘customer’ is usually also used to describe the target market of the product. To avoid
potential misunderstandings, we use the following terminology here:

• Your company is the software manufacturer who sells products to a certain marketplace.
• Software service providers are businesses whose services your company uses during prod-

uct development. If necessary, we use the term ‘software service provider’ with a corre-
sponding prefix, such as on-shore, off-shore, external, and so on.

• Customers are companies belonging to your products’ target market.

In relation to assets, it is not enough to speak of ‘software components«:

• Software assets are all value-added artifacts that play a role in software development:
models, components, generators, languages, techniques, and process building blocks. Your
organization can only develop one product, an entire product family, or a product line. A
single product consists of a code base that is delivered to customers with a standard con-
figuration. This configuration is either changed at installation time or later at the cus-
tomer’s site.

• A product family consists of a number of products that were developed on the same base –
that is, they share at least one software asset, usually more. In the case of MDSD, this
commonality is typically the domain architecture, so that the product family becomes a
software system family (see Section 4.1.4). The elements of a product family are referred
to as family members.

• A product line consists of a number of products with a common target market – that is,
their arrangement is customer group-specific. An economically maintainable product line
ideally consists of one product family. In practice, however, product structures often
diverge from this ideal because software companies often grow through acquisition of
other software manufacturers. The elements of a product line are product line members.

• Product rationalization is the consolidation and refactoring process in a product family.
• We speak of software mass production if product family members can be derived from

customer specifications via a largely automated process and the efficiency of this proce-
dure takes on the dimensions of mass production – this is the goal of MDSD in the context
of functional domain-specific platforms.

19.3.2 In-house Development

The advantage of this model is the consolidation of domain knowledge and technical know-how –
an ideal prerequisite for a good position in the market. Moreover, it can help to meet critical time-
to-market requirements.

In-house development is without doubt ideally suited to the use of agile software development
methods and the involvement of on-site customers in the development process. However, during

c19.fm Page 387 Tuesday, February 28, 2006 5:21 PM

388 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

the last few years this model has become less attractive due to economic pressure and competi-
tion from big manufacturers.

• Use of MDSD. With this development model, your organization can apply MDSD and ben-
efit from the resulting cost advantages.

• Risks. The risk is high staff costs.
• Applicability. This approach can primarily be applied in scenarios in which the target mar-

ket is local relative to your business, and where this proximity to the market can constitute
a significant advantage for time-to-market.

This approach is not well-suited for a global target market, where proximity to the market cannot
be achieved for all locations.

19.3.3 Classical Outsourcing

This model, in which software development is delegated to an external service provider, has
been popular for a long time. It is attractive for businesses such as telecommunications service
providers who need complex software to support their services.

It is interesting to examine what this development model, which is widespread in the produc-
tion of custom-made software, looks like in the product development phase. It is an incentive for
the external software service provider to develop a product (or a product family) that is univer-
sally applicable and thus provides a further source of income due to multiple sales. The external
software service provider can either participate as early as during building of the prototype, or
later in the product’s evolution.

Typical service providers in this field are big multinational companies such as IBM, EDS,
CSC, and others. These service providers market the development of products or product fami-
lies under the label of strategic outsourcing.

• Costs and advantages. Your company can benefit from agreed cost limits for the develop-
ment of certain software products, and the staff costs for your company’s internal software
development are reduced. Since the software service providers in this field are mostly big
financially-strong companies, your company can use this model as a safeguard. Due to the
physical proximity between your company and the software service provider, who is usu-
ally at least located in the same country, tried and trusted risk minimization strategies such
as on-site customer [Bec00] can be applied without a problem.

• Use of MDSD. With this development model, the outsourcing service provider might ben-
efit from MDSD.

• Risks. The software service provider often adopts staff (typically entire departments) from
your company to obtain the necessary expertise. This means that a lot of knowledge leaves
your company permanently. To counteract this risk, the outsourcing contract is usually
limited to a period of five years or more.

• Applicability. If you use software yourself and at the same time wish to sell the software as
a product, this model should only be considered if the software doesn’t constitute the core
of your business. You must take into consideration that your competition may buy and use
your product.

c19.fm Page 388 Tuesday, February 28, 2006 5:21 PM

19.3 Software Product Development Models 389

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

19.3.4 Offshoring

In a world in which high software development costs are becoming a limiting factor to growth,
offshoring approaches – the outsourcing of software development activities to low-cost locations –
become increasingly attractive. Distributed software development becomes the rule. Those who
have worked in software projects across time zones and cultural and language boundaries know
that offshoring is not without risk. Even though one can save money for software development,
time-to-market goals and a product that meets the market’s requirements cannot always be guaran-
teed. To minimize the greatest risks, some offshore software service providers make offshore
teams available with supportive resources at their customer’s (onshore) location. This can help to
overcome fundamental communication problems, but the efficiency of the whole product develop-
ment process is nevertheless determined by the quality of the software development methodology
that is used.

The software industry has learned the hard way that big design up front doesn’t work –
especially not if high quality is required and milestones are set. A team in one location that
involves end users takes full advantages of the customer’s presence on site.

So which risk reduction strategies are needed to compensate for a lack of communication with
the customer in distributed software development? Your offshoring partner may have provided a
variety of onshore resources on site to establish a connection with your product management,
domain experts, and the offshore development center. To ensure the desired product quality, at
least a few onshore team members must travel between the onshore and offshore locations. What
effects does this therefore have on costs and time-to-market? We address these questions for
MDSD in the sections that follow, and show that MDSD plays an important role in minimizing
the risks in distributed software development.

19.3.5 Radical Offshoring

In radical offshoring software development is delegated as much as possible to low-cost loca-
tions. In the ideal case your company should own significant shares in the offshore software
service provider, to ensure continuity of support.

This model is either implemented by establishing an offshore software company, or by search-
ing for a suitable company that can perhaps even be acquired. The start small rule applies: first,
one should conduct a small, non-critical project with an offshore service provider, followed by
an evaluation of the project. Only then can a structure for future projects be established.

To successfully apply this model, a vast amount of expertise must be conveyed to the offshore
software company.

• Costs and advantages. This approach requires an extensive exchange of staff and thus much
traveling. Your domain experts and product manager must appoint the members of the off-
shore team and pass on the necessary knowledge. This model tries to maximize the advan-
tages of low-cost locations, but these advantages must be weighed against high travel
expenses and delayed time-to-market.

• Use of MDSD. If this development model is used, only your offshore partner will benefit
from MDSD.

c19.fm Page 389 Tuesday, February 28, 2006 5:21 PM

390 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

• Risks. The main risk of radical offshoring is the necessity to transfer considerable knowl-
edge. Language barriers, particularly in the sector of industry-specific terminology, can be
a further obstacle. Other than in normal outsourcing, radical offshoring does not offer the
option of permanently relocating whole teams and their respective expertise to the off-
shore software company. The offshore team must be built from scratch, or it has to be
assembled from an unknown pool of the offshore software company’s resources.

As soon as the necessary expertise has been conveyed, your business will depend heav-
ily on the offshore software company. It can therefore make sense to secure ownership
rights with regards to the offshore software company.

Depending on where your target market is, time-to-market can become a problem. Fur-
thermore, the implementation of risk minimization strategies like on-site customer [Bec00]
can be difficult.

The idea behind radical offshoring is the attempt to copy the simple structure of classi-
cal outsourcing. The problems caused by the physical distance between product manage-
ment and software development can easily become a pitfall. All in all, this model is
extremely risky.

• Applicability. This model can be applied if time-to-market is not critical, and particularly
if your company already owns an experienced offshore software company. Nevertheless,
the lack of technical expertise in the parent company – which might increase over time –
means that the requirement for travel between locations will remain during the entire prod-
uct lifecycle.

19.3.6 Controlled Offshoring

This approach means that only a part of the development process is outsourced to low-cost loca-
tions. We speak of controlled offshoring, not because other variants of offshoring are uncontrollabe,
but because in controlled offshoring considerable domain expertise, technical expert knowledge
and control regarding the company’s intellectual property stay mostly in your business. This model
offers the option of involving offshore software service providers without risking a monopoly-like
dependency.

• Costs and advantages. In this model your company cooperates closely with customers to
specify products, to develop product prototypes, reference implementations, and to design
software architectures. This model requires technically well-versed onshore resources that
should be available anyway if you have practiced in-house software development until
now. At first glance, it may seem that this will lead to high costs, yet experience shows that
the theoretical financial advantages of offshore prototype development are foiled by fail-
ure to communicate efficiently. The physical proximity of product management, custom-
ers, and important members of the software development team is maintained, which
reduces the total risk compared to radical offshoring. If the relevant methods and tools are
used, this model lowers the risk of critical dependency on a specific offshore software
service provider.

• Use of MDSD. From your company’s perspective, the advantages of MDSD can be fully
leveraged when this offshore variant is used: since the domain architecture development –
including domain analysis and language design – stays within your organization, MDSD

c19.fm Page 390 Tuesday, February 28, 2006 5:21 PM

19.3 Software Product Development Models 391

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

offers not only formally-defined (and hence comprehensible) software requirements in the
form of models, but also a complete architectural framework for the product which the off-
shore software service provider can use. First, this guarantees that important architectural
standards are adhered to. Second, the formal specifications allow use of a test-driven
approach (see Chapters 13 and 14). MDSD allows a high degree of control regarding the
product’s technical quality, thus reducing both the offshoring risks and the need to travel.
MDSD is thus sufficient – and probably even necessary– to realize controlled offshoring.

• Risks. Compared to radical offshoring, this approach leads to higher onshore costs – at
least the ratio of onshore compared to offshore costs is better. The total costs can actually
be lowered by using MDSD. As soon as a business has decided which type of offshoring
strategy it wants to use, it runs the danger of overestimating the advantages of offshoring.
The remaining manual development work should be reassessed to ensure that offshoring is
indeed the best option, particularly if a high level of automation can be reached via
MDSD.

• Applicability. This approach is particularly well-suited if your company is located in the
same region as your target market. The staff savings when applying MDSD are especially
positive if this means that the offshore team’s size can be reduced, allowing the project
management overhead to becomes less. The MDSD approach is easily scalable and suita-
ble for the development of entire product families and product lines. However, domain
architecture development should not be outsourced – this would mark the transition to rad-
ical offshoring, with an correspondingly high risk.

19.3.7 Component-wise Decision

Products or product families with a good design consist of relatively loosely-coupled components.
The development of a new product, or the streamlining of existing products (see Section 19.3), are
excellent opportunities for realizing a good component architecture [Bet04b].

Why is a clear-cut component architecture so important? First, such an architecture allows the
application of a divide and conquer technique to break down the work on large systems into tan-
gible and parallelized parts. Second, it supports strategic build/buy/open source decisions at the
component level.

When designing a product family, it is important to decide on the software development model
(in-house, classical outsourcing, radical offshoring, controlled offshoring) on a per-component
basis, instead of globally. The same should be observed for the relevant supply chains.

In fact, most of today’s software products aren’t structurally designed particularly cleanly. They
consist of closely-coupled components that are difficult to disentangle. The consequence is that
most products are closely bound to a specific combination of implementation technologies.
Changes to one of these technologies can result in a considerable maintenance effort. The con-
cept of replaceable components therefore is fiction in the majority of today’s products. The
implementation of a clear-cut component architecture becomes appealing only when a business
has recognized the full potential of the product family concept.

The sources [Bos00], [Coc01] and [Bet04b] contain further material regarding organizational
topics in relation to MDSD.

c19.fm Page 391 Tuesday, February 28, 2006 5:21 PM

392 Organizational Aspects

 c19.fm Version 0.3 (final) February 28, 2006 5:20 pm

Figure 19.4 Potential software suppliers

Supplier

Infrastructure
Supplier

Your Organization's
Offshore Development

Center

External
Service Provider

Open Source
Project

Infrastructure
Producer

Offshore
Service
Provider

Onshore
Service
Provider

c19.fm Page 392 Tuesday, February 28, 2006 5:21 PM

393

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

20 Adoption Strategies for MDSD

with Jorn Bettin

We hope we have made it clear the potential that Model-Driven Software Development has and
which investments or organizational measures are useful or required in principle. We also hope
that at this point you are wondering how and under what circumstances you can take steps
towards MDSD in your own project or business, and how your adoption of MDSD might look.
This chapter tried to answers these questions.

20.1 Prerequisites

Model-Driven Software Development in the context of this book can certainly be considered
quite advanced in relation to software engineering. You may have to face much more profound
changes that must be addressed before optimization in the form of MDSD will become useful:

• Has an iterative-incremental approach been established for the execution of the project –
particularly in the field of requirements management? The required separation of domain
architecture development and application development on the introduction of MDSD
requires a functioning coordination of two partial projects: if you separate domain archi-
tecture development from application development, as we recommend, you need to coordi-
nate these two aspects of development.

• Does the team have practical and useful architectural knowledge?

If the answer to either of these questions is ‘no«, we recommend that you address these issues
prior to defining an MDSD pilot project, or at least while defining it – with external support if
necessary.This should allow you to reduce avoidable friction, risks, and costs in project execution.

20.2 Getting Started – MDSD Piloting

An initial step in the direction of MDSD often consists of ‘proof of concept’ for the technical
aspects of MDSD in the relevant context – for example the choice of tools (see Chapter 11). If
this is successful, a pilot project can follow.

c20.fm Page 393 Tuesday, February 28, 2006 5:10 PM

394 Adoption Strategies for MDSD

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

When we are asked to advise on the choice of a suitable pilot project, we are often confronted
with statements such as “Project X would be well-suited, but our schedule is so tight that we
don’t want to risk trying something new.” We can only respond that almost all projects run on a
tight schedule and that MDSD is actually meant to alleviate exactly this situation. In other
words, precisely these projects are ideal candidates, at least if the following conditions are met,
or can be met:

• Ideally, the project is attractive enough to serve as a ‘seed’ for the use of MDSD.

• The project has sufficient versatility, duration, and enough schematic aspects to make
automation worthwhile.

• The start small principle can be applied. Given the right conditions, even a technically
complex and risky project can be tackled, as long as no more than about ten people overall
participate in its development. The project shouldn’t be a one-man project, of course. A
manageable team offers the best basis for successful knowledge transfer.

• MDSD must be accepted by the team, at least as an experiment. It is normal for a project
team to require some convincing about its introduction. Developers especially must realize
that they won’t lose anything by applying the method, but instead win something by getting
rid of a lot of tedious copy and paste programming.

• Sufficient MDSD skill is available in the team, if necessary supplemented by external
coaching.

• The software development environment should not be counterproductive for MDSD.
This includes closed CASE tools, (UML) tools that require round-trip engineering (see
Chapter 5), closed development environments with a source code repository of their own
without an interface, as well as generative IDEs with proprietary models that can only be
created interactively and thus cannot be generated via an MDSD transformation. Ideally,
you should select suitable MDSD tools beforehand.

20.2.1 Risk Analysis

The additional risk that MDSD adds to a pilot project is small, because at any given time it is
possible to give up formal modeling and code generation if you find that for any reason that it
does not work for the project. The work that will have been invested in the architecture and sys-
tematics at that point will not have been in vain and is a benefit for the project.

As the MDA has not established a standardized transformation language at the time of writing,
an MDSD project must use a proprietary approach/tool to create its transformations/generators.
(There is QVT, but it is not yet generally adopted.) However, the code volume of these metapro-
grams is extremely small compared to the volume of generated code – see the evaluation in
Chapter 18. Whether a tool is suboptimal or fundamentally unsuitable for MDSD will be realized
relatively early in a pilot project, so that a possible migration of the transformation to another tool
should not constitute a significant overhead.

You can achieve investment protection and independence of manufacturer if you use Open
Source tools that have reached a high degree of maturity (see Chapter 11).

c20.fm Page 394 Tuesday, February 28, 2006 5:10 PM

20.2 Getting Started – MDSD Piloting 395

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

20.2.2 Project Initialization

The initialization of a pilot project should include the following:

• The team must familiarize itself with the basics of MDSD. This especially includes the
process aspects described in Chapter 13, such as the separation of application and domain
architecture development, as well as two-track iterative synchronization (Section 13.3). If
necessary, get an MDSD coach.

• Start out with architecture-centric MDSD and let your team gain some experience with
this MDSD variant first.

• The team should take on the roles described in Chapter 19 in a way suitable to the project’s
size. Pay special attention to dynamic balancing of staffing, as explained in Section 19.2.1 –
plan the bootstrapping phase of the domain architecture and the accompanying work load
for the respective roles. The team’s technology experts should be able to make an assess-
ment based on the concrete facts.

If a test run of the domain architecture’s bootstrapping is not feasible, introduction can take place
via a separate partial project. In this context, we can recommend the following for enterprise
software development:

• Establish a small but powerful partial team for the creation of a reference implementation.
• At the same time, start to develop the actual application with a strong focus on the GUI,

with the goal of providing your customer with a reasonable prototype (a first functional
increment) to give a first impression of the actual application. Implement the required
minimum of business logic first, and encapsulate it as well as possible in separate classes/
modules. Replace the still-unavailable architectural infrastructure, such as database inte-
gration, with simple mock objects (see Chapter 14).

• The reference implementation should also cover architectural aspects such as integration
with existing legacy applications (see Section 8.2.5).

• A continuous exchange of information in both directions between the reference and the
application teams must be guaranteed: the reference implementation team must know
the requirements and ideas of application development and respond to them, whereas the
application developers must know the concepts and ideas embodied in the reference
implementation.

• Synchronize application development as soon as an initial version of the architectural
reference implementation is available. From this point onward, the construction and
programming paradigms of the reference implementation are integrated into applica-
tion development. Depending on the schedule and available capacities, a small subteam
can apply refactorings to existing application parts, replacing the mock objects with the
reference implementation’s concepts. The feedback loop between the application devel-
opment team and the smaller reference implementation team is still pivotal.

• At this point, the domain architects can begin to extract the formal aspects and start to
build the domain architecture.

c20.fm Page 395 Tuesday, February 28, 2006 5:10 PM

396 Adoption Strategies for MDSD

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

• As soon as an initial release of the domain architecture is available, application develop-
ment is switched to MDSD and existing application parts – if applicable – are remodeled
so that they are also ready for the transition.

20.3 MDSD Adaptation of Existing Systems

Often one not only wants to develop new systems using MDSD, but also to apply the advantages
of MDSD to existing systems, maybe even modernize them by outfitting them with a new tech-
nological basis.

The procedures and best practices described in this book are also valid for this type of project,
yet with a different focus and direction for specific steps during bootstrapping of the domain
architecture:

• The existing application largely assumes the role of the prototype and the reference imple-
mentation. In the case of a modernization, the reference implementation shows the new
target architecture.

• It is possible that the (MDSD) platform is not clearly recognizable or separated from the
application. If necessary, a refactoring must take place.

• Additional (infrastructure) code may be created in the reference implementation to provide
the legacy application generatively with standard interfaces or adapters later. It may be the
case that only such adapters need to be supplemented generatively, while at the core the
legacy application is not switched to MDSD.

• In most cases the legacy applications will not possess the clear structures that are neces-
sary for a reference implementation, for example the derivation of transformation rules in
the form of generation templates. It is necessary to analyze which building principles are
valid and which are not. If necessary, some parts of the application must be altered into an
ideal state via refactoring, as examples.

• Domain analysis and DSL construction must be adapted to match the valid structures of
the legacy application or the newly introduced infrastructure code.

• To create a reference design/model, the legacy application or a part of it is remodeled
using the DSL. It is then used to verify code generation.

• The partial aspects of the legacy application are remodeled via the DSL in the application
development thread, followed by generation of the new implementation skeleton. If appli-
cable, remaining code from the legacy application is integrated into this framework. In the
case of a modernization, it is migrated.

As can be clearly seen from this list, severe restructuring efforts might be required, depending
on how deeply the MDSD approach impacts the legacy application. The actual situation, and
particularly the cost/benefit ratio, can only be determined for each scenario via careful analy-
sis. Likewise, when legacy applications are adapted, the right balance between DSL, platform,
generated code, and non-generated code is essential.

We need to warn explicitly against the idea that simple reverse engineering of a legacy appli-
cation, although it without doubt also results in a model, could be an alternative to MDSD: you
would get a partial code visualization of your former application, nothing more. The advantages
of Model-Driven Software Development cannot be obtained in this way (see Section 18.1).

c20.fm Page 396 Tuesday, February 28, 2006 5:10 PM

20.4 Classification of the Software Inventory 397

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

20.4 Classification of the Software Inventory

As soon as the first MDSD projects have been completed successfully, the sphere of MDSD can
be extended from a single project to a group of projects/product developments. MDSD can thus
become part of a company’s IT strategy. This will lead to the concepts of product-line engineer-
ing (Section 13.5), software system families (Section 4.1.4), product families, and product lines
(Section 19.3.1).

To adapt these concepts, it makes sense to classify the software inventory for their usability
and the maintenance costs for each of the constituent parts. This step can be taken prior, during,
or after MDSD piloting, but it should be considered a prerequisite for business-wide MDSD use.

If priorities in software maintenance and evolution are only determined by short-term goals,
the intention of the original design can get lost over time. Apart from the project’s actual time-
pressure, an exclusive view of software from an accounting perspective favors neglect of soft-
ware maintenance. This view can hardly be reconciled with the idea of building and maintaining
a domain architecture incrementally, or with that of the targeted reuse of software assets within a
product family.

Due to the application of domain-specific knowledge and a disciplined approach to the develop-
ment of strategic software assets (models, components, frameworks, generators, languages, and
building blocks) from parts of existing software, the software's value increases, contrary to con-
ventional software maintenance. The value of strategic software assets is best used if a long-term
investment strategy is pursued. This is necessary to avoid fatal compromises over the software
architecture’s quality. From this perspective, too, a conscious separation of domain architecture
development and application development is advantageous: in application development, short-
term, tactical decisions can help to reach time-to-market goals. In the context of domain architec-
ture development, one can work on more general, longer-term solutions in parallel. These solutions
will then be available from a specific release onwards. The MDSD approach offers significant
advantages here, because later changes to the architecture can be integrated much more easily into
the entire code base.

It doesn’t make sense to consider all software components used in an application as strategic
software assets of course. For investment planning in software, the following classification
scheme is well-suited:

• Strategic software assets constitute the heart of your business. These are assets that are
further developed to become both a human and machine readable knowledge base of your
products and business processes.

• Non-strategic software assets are necessary infrastructures that are affected by changes in
implementation technologies and which should take two to three years to depreciate.

• Legacies are software components or systems with maintenance costs too high to be fur-
ther maintained.

The identification of strategic software assets is only possible if a clear business strategy exists,
if profitable business processes are known within the company, and the company is able to artic-
ulate the software requirements. The strategic software assets of a company define its competi-
tive edge. The functionality of non-strategic software assets is not unique and can be acquired
from a number of manufacturers. Examples include operating systems, relational databases, and

c20.fm Page 397 Tuesday, February 28, 2006 5:10 PM

398 Adoption Strategies for MDSD

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

application servers. Strategic software assets typically build on non-strategic (infrastructure)
assets. The latter must be identified and treated as such.

Model-Driven Software Development provides tools for the management of strategic software
assets. Model-driven integration allows the use of commercial third-party tools to provide non-
strategic software assets economically. The use of Open Source infrastructure as a public asset
reduces the cost of creation and maintenance of strategic software assets.

20.5 Build, Buy, or Open Source

Software manufacturers are notorious for suffering from the not-invented-here syndrome. The
choice of whether to build, buy, or use Open Source software should be based on economic long-
term considerations:

• Don’t just compare the short-term costs, but also the total cost of ownership, including
maintenance and cost of capital.

• Will the development of an infrastructure pay if you consider the maintenance costs? Will
you gain a competitive advantage – and if so, for how long?

• As soon as an infrastructure developed in-house is superseded by industry standards, the
consequences of further maintenance should be compared to those of adopting the standard.

Nevertheless, you should not replace hard-earned, domain-specific platforms or MDSD transfor-
mations – which are strategic software assets – by less well thought-out standard tools without
first pondering the consequences.

Commercial standard software from third-party manufacturers can largely be considered a non-
strategic software asset. Commercial standard software typically is only partially based on open
standards, and you cannot assume that the software product will be supported over an extended
period of time. If you invest in third-party products, these should be seen as depreciating assets.

Be honest and don’t declare all your legacy components to be strategic software assets. Iden-
tify your legacies and plan their replacement with a combination of strategic and non-strategic

Figure 20.1 Classification of a software inventory

Strategic Assets

Non-strategic Assets

Legacies

c20.fm Page 398 Tuesday, February 28, 2006 5:10 PM

20.6 The Design of a Supply Chain 399

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

software assets. If you don’t pay enough attention to the quality of strategic software assets, they
will soon become legacies. You must therefore observe the Extreme Programming rule refactor
mercilessly in regard to your domain architecture.

A sound mixture of strategic and non-strategic software assets might contain only a small core
of strategic assets. The smaller this core is, the easier it is to evolve with the necessary care. Non-
strategic software assets play an important role and can be seen as necessary ‘consumer goods«.

Proven standard software components and robust Open Source infrastructure components that
are used by thousands of organizations should not be disregarded in software development. Solid
Open Source software can even be considered a strategic (public) software asset. If applicable,
use an Open Source infrastructure to avoid the risks that are inherent in dependencies on manu-
facturers. But do take a close look at the licensing model when evaluating Open Source software.
Some licenses allow unproblematic use in terms of commercial product development, whereas
other licenses only allow use if the end product is also subject to the same Open Source license.

20.6 The Design of a Supply Chain

When you have classified your software and know which software assets are strategic or non-
strategic, you can start to design a supply chain for future product families.

To this end, we have applied the classification listed above – strategic, non-strategic, legacy –
to the most important MDSD artifacts (Section 4.1.4):

Figure 20.2 Classification of MDSD artifacts for supply chains

Domain Architecture

DSL

Transformations

Platform

Generic
Modeling Tool

MDA/MDSD Tool
(Generator)

Infrastructure

Application/
Product

Strategic Assets Non-strategic Assets

DSL-specific
Modeling Tool

c20.fm Page 399 Tuesday, February 28, 2006 5:10 PM

400 Adoption Strategies for MDSD

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

The application receives its structure from the domain architecture. The application encom-
passes the MDSD platform, and this again includes the infrastructure. The term ‘infrastructure’
summarizes all the non-strategic assets that have been subsumed during classification of the
software inventory. Thus we get a very pragmatic definition of the boundary between platform
and infrastructure.

Generic modeling tools such as UML tools are not strategic, while specific editors that were
created and optimized for a concrete DSL are considered to be strategic – they hold relevant
domain knowledge. For non-strategic software assets, the elaborations made in Section 20.5 are
valid: for example, Open Source tools, frameworks or commercial products can be used here.

As a rule, applications and software products are strategic, of course. We can recommend in-
house development, or possibly controlled offshoring, as explained in Chapter 19. In this case, it
is important to design the software development process in such a way that the cost of a potential
switch between offshore software service providers is not exorbitant. In this respect MDSD
offers considerable advantages, because it decouples an application/product from the domain
architecture. This is why development of the domain architecture, and hence of the platform,
should not be outsourced (see Section 19.3.6).

It’s important to emphasize that offshoring should take place only after successful introduc-
tion of MDSD. This guarantees that at the point of offshoring a well-defined development
process and a defined software architecture exist that are supported by the according tools.

20.7 Incremental Evolution of Domain Architectures

As soon as some experience with architecture-centric MDSD has been obtained with an initial appli-
cation, a functional/professional MDSD platform can be built incrementally (Section 18.6). Once in
place, highly automated product families or product lines can be created based on the platform.

Domain architecture development is a continuous process that takes place during a product
family’s entire lifecycle. The distribution of costs between domain architecture development and
application development depends on the platform’s maturity and on the product family’s versatility
(see Section 18.6).

20.8 Risk Management

The adoption of a new method or technique should also be considered in the light of risk manage-
ment of the projects involved. In this section we address typical risks that can endanger successful
use of MDSD or product developments. For each risk we describe the potential damage, as well as
mitigation strategies.

20.8.1 Risk: Tool-centeredness

Description

The management or the project team focus their attention on a specific tool (EAI, IDE, or MDA)
in hopes that it can solve even the hardest problems. Both the software architecture and develop-
ment process are neglected.

c20.fm Page 400 Tuesday, February 28, 2006 5:10 PM

20.8 Risk Management 401

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

Damage

This procedure causes the actual requirements to be neglected as well. Here are a few exam-
ples: a portal is decided on, but the actual requirement is ‘process integration«, or a CASE tool
is purchased whose code generation does not meet the software architecture’s requirements.
The consequence is either that the tool is forced into the development, or that an unsustainable
software architecture or development process is created. In both cases, extremely high conse-
quential costs must often be faced. The project may even fail.

Mitigation

First define an outline of the software architecture and the development process, followed by a
tool projection – that is, select the suitable tools to cover single aspects. In the context of MDSD,
the reference implementation can be used for validation.

20.8.2 Risk: A Development Tool Chain Counterproductive to MDSD

Description

This point has already been discussed in Section 20.2: closed, integrated development environ-
ments can hamper the use of generators outside this environment considerably. Another stumbling
block is created by modeling tools that do not support multiuser modeling, and thus impede or
prevent model-driven teamwork.

Damage

Either much more effort is needed to establish a working development and build process, or the
additional effort is delegated to application development and multiplied in this manner.

Mitigation

Select the tool in the MDSD tool chain according to your requirements (see Chapter 11).

20.8.3 Risk: An Overburdened Domain Architecture Team

Description

The role-related staff requirements or the necessary preparation time for the domain architec-
ture’s bootstrapping are not sufficiently considered, or the ratio of domain architects to appli-
cation developers is critical.

Damage

The application development is thwarted by missing features or late deliveries. In the worst case,
this can result in failure.

c20.fm Page 401 Tuesday, February 28, 2006 5:10 PM

402 Adoption Strategies for MDSD

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

Mitigation

Observe the role dynamics for staff requirements described in Section 19.2.1.

20.8.4 Risk: Waterfall Process Model, Database-centered Development

Description

At the start of the project, approved and ‘ready’ IT concepts, GUI designs, or database designs
are present that are seen as written in stone, while they are actually incomplete and maybe even
inconsistent. Database development takes place outside the MDSD project.

Damage

In general the project-related risks increase compared to an iterative-incremental process. In an
MDSD project, two-track, iterative development (see Section 13.3) is required. In the case of
separate database development, the potential of the holistic, generative MDSD approach may not
be optimally realized.

Mitigation

Establish an incremental-iterative development process.

20.8.5 Risk: The Ivory Tower

Description

The domain architectures work without sufficient project coupling and feedback loops.

Damage

Frameworks are created that either don’t meet the actual requirements of the project, or that are
not usable in real-world scenarios. They often contain superfluous ‘technology gadgets’ instead.
The application developers must compensate for this, which means that they enter the architects’
sphere, so that disputes and mutual accusations are inevitable. The economic damage to the
project can be severe.

Mitigation

Establish frequent feedback loops and make sure that communication channels are as direct as
possible. Foster understanding between team members. If applicable, change the assignment of
roles between application developers and domain architects.

c20.fm Page 402 Tuesday, February 28, 2006 5:10 PM

20.8 Risk Management 403

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

20.8.6 Risk: No Separation of Application and Domain Architecture

Description

The MDSD roles (Section 19.1) don’t necessarily imply a staff-wise separation of application
development and domain architecture development. However, the separation of activities and arti-
facts is essential (Chapter 13). If this is not done, application and domain architecture will merge.

Damage

The domain architecture is not at all – or only poorly – reusable in further projects. Evolution
might still take place in the projects, but differently and with many derivatives. This leads to a
strong demand for refactoring, or the idea of the software system family (Section 4.1.4) is dis-
carded altogether. In the first case, more effort and time will be required: in the second, the
potential of MDSD is not fully utilized.

Mitigation

Make sure that the domain architecture is decoupled from the applications, particularly at the
packaging and repository level. No dependency of the domain architecture artifacts’ on an appli-
cation can be allowed occur: if necessary, refactor. Regardless of the assignment of roles, the
team must realize that the domain architecture is an independent (sub)project (Section 13.3).

c20.fm Page 403 Tuesday, February 28, 2006 5:10 PM

 c20.fm Version 0.3 (final) February 28, 2006 5:10 pm

c20.fm Page 404 Tuesday, February 28, 2006 5:10 PM

405

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

A Model Transformation Code

A.1 Complete QVT Relations alma2db Example

transformation alma2db(alma : AlmaMM, db : DbMM) {

 /* keys are required to avoid duplication in the target
 repository on iterative runs. */

 /* tables are solely identified by their names. */
 key Table {name};
 /* for a column, its name as well as its container, i.e. a table,
 uniquely identify a column. */
 key Column {table, name};
 /* a key is uniquely determined by its owner, which is the table.*/
 key Key {table}
 /* a foreign key is identified by its owner (the table), as well as
 the primary key it is referring to. */
 key ForeignKey{table, key}

 /******************************/
 /* Mapping entities to tables */
 /******************************/

 /* Each entity has a corresponding db table with the same name */
 top relation EntityToTable {
 prefix, eName : String;

 checkonly domain alma entity:Entity {
 name = eName
 };
 enforce domain db table:Table {
 name = eName
 };
 where {
 /* For each entity and associated table, we calculate
 all columns that correspond to the different fields of
 the entity. Since we flatten out all nested fields, we
 need to make sure all created columns get a unique name.
 This is achieved by the prefix. */
 prefix = '';
 RecordToColumns(entity, table, prefix);
 }
 }

bapp01.fm Page 405 Tuesday, February 28, 2006 5:56 PM

406 Model Transformation Code

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 /* For each field of a record, several columns may be created
 depending on the type. */
 relation RecordToColumns {
 checkonly domain alma record:Record {
 fields = field:Field {}
 };
 enforce domain db table:Table {};
 primitive domain prefix:String;
 where {
 /* we have an explicit relation between each field and its
 associated columns. This is required to construct the key
 of the table as is shown below. */
 FieldToColumns(field, table);
 }
 }

 /* for each field, several columns may be created depending
 on the type. */
 relation FieldToColumns {
 checkonly domain alma field:Field {};
 enforce domain db table:Table{};
 primitive domain prefix:String;
 where {
 /* Because we have three types of fields, we have to
 split up the expansion in columns accordingly. */
 PrimitiveFieldToColumn(field, table, prefix);
 PhysicalQuantityTypeToColumn(field, table, prefix);
 valueTypeToColumn(field, table, prefix);
 }
 }

 /* Primitive fields immediately lead to one column of
 primitive type. */
 relation PrimitiveFieldToColumn {
 fieldName, almaPrimitiveType : String;

 checkonly domain alma field:Field {
 name = fieldName,
 type = pt:PrimitiveType {
 name = almaPrimitiveType
 }
 };
 enforce domain db table:Table {
 key = tableKey:Key{}
 columns = column:Column {
 name = prefix + fieldName,
 type = AlmaTypeToDbType(almaPrimitiveType)
 }
 };
 primitive domain prefix:String;
 }

 /* A PhysicalQuantityType is very much like a primitive type,
 except that it is 'annotated' with its unit. To accommodate
 this, we simply create a column for each possibly unit. */
 relation PhysicalQuantityTypeToColumn {
 pqName, pqUnit, fieldName : String;

bapp01.fm Page 406 Tuesday, February 28, 2006 5:56 PM

A.1 Complete QVT Relations alma2db Example 407

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 checkonly domain alma field:Field {
 name = fieldName,
 type = pq:PhysicalQuantityType {
 name = pqName,
 /* Note that since each unit is taken separately and leads
 to one column in the db domain. */
 units = pqUnit
 }
 };
 enforce domain db table:Table {
 columns = column:Column {
 name = prefix + fieldName + '_as_' +
 pqName + '_in_' + pqUnit,
 type = AlmaPhysicalQuantityTypeToDbType(pq)
 }
 };
 primitive domain prefix:String;
 }

 /* value types are simple aggregations and are recursively
 mapped via its containing parts. To do this, it recursively
 calls FieldToColumns with a new extended prefix for column
 names. */
 relation ValueTypeToColumn {
 fieldName, newPrefix : String;

 checkonly domain alma field:Field {
 name = fieldName,
 type = valueType:ValueType {
 fields = field:Field {}
 }
 };
 enforce domain db table:Table{};
 primitive domain prefix:String;
 where {
 newPrefix = prefix + fieldName + '_';
 FieldToColumns(field, table, newPrefix);
 }
 }

 /*************************************/
 /* Mapping Entity Keys to Table Keys */
 /*************************************/

 /* For each entity key, we construct a table key */
 top relation EntityKeyToTableKey {

 checkonly domain alma entity:Entity {
 key = entityKeyField:Field {}
 };
 enforce domain db table:Table {
 key = tableKey:Key {}
 };

 when {
 /* This relation only makes sense whenever we have a relation
 between an entity and its table. */
 EntityToTable(entity, table);
 }

bapp01.fm Page 407 Tuesday, February 28, 2006 5:56 PM

408 Model Transformation Code

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 where {
 /* Go and look up the columns constructed for a key. */
 KeyRecordToKeyColumns(entityKeyField, table);
 }
 }

 /* first generalize the problem for records since we have to
 recursively go down */
 relation KeyRecordToKeyColumns {

 checkonly domain alma record:Record {
 fields = field:Field {}
 };
 enforce domain db table:Table {};

 where { KeyFieldToKeyColumn(field, table); }
 }

 relation KeyFieldToKeyColumn {

 checkonly domain alma field:Field {};
 enforce domain db table:Table {};

 where {
 KeyPrimitiveFieldToKeyColumn(field, table);
 KeyPhysicalQuantityTypeToKeyColumn(field, table);
 KeyValueTypeToKeyColumn(field, table);
 }
 }

 relation KeyPrimitiveFieldToKeyColumn {

 checkonly domain alma field:Field {
 type = pt:PrimitiveType {}
 };
 enforce domain db table:Table {
 key = tableKey:Key {columns = column:Column {}}
 };

 when {
 /* notice that this functions as a lookup */
 PrimitiveFieldToColumn(field, table:Table{columns =
 column:Column {}});
 }
 }

 relation KeyPhysicalQuantityTypeToKeyColumn {

 checkonly domain alma field:Field {
 type = pq:PhysicalQuantityType {}
 };
 enforce domain db table:Table {
 key = tableKey:Key {columns = column:Column {}}
 };

bapp01.fm Page 408 Tuesday, February 28, 2006 5:56 PM

A.1 Complete QVT Relations alma2db Example 409

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 when {
 /* analogous */
 PhysicalQuantityTypeToColumn(field,
 table:Table{columns =
 column:Column {}});
 }
 }

 relation KeyValueTypeToKeyColumn {

 checkonly domain alma field:Field {
 type = valueType:ValueType {}
 };
 enforce domain db table:Table{};

 where { KeyRecordToKeyColumns(valueType, table); }
 }

 /***/
 /* We map each dependent part of an entity to its own table */
 /* with a connection to the table of the entity. The remaining */
 /* nested dependent parts are expanded into the table for the */
 /* top-level dependent part. */
 /***/

 top relation DependentPartOfEntityToTable {
 eName, dpName, prefix, dpTableName : String;

 checkonly domain alma entity:Entity {
 name = eName,
 parts = dp : DependentPart {
 name = dpName
 }
 };
 enforce domain db entityTable:Table {
 /* we first construct the foreign key ... */
 foreignKeys = foreignKey:ForeignKey {
 /* ... which in its turn constructs a key ...*/
 key = dpKey:Key {
 /* ... with one column for the index ... */
 columns = keyColumn:Column {
 name = 'key_' + dpTableName,
 type = 'INTEGER'
 }
 /* ... and a table for the dependent part. */
 table = db dpTable:Table {
 name = dpTableName,
 /* The table for this dependent part is set up
 with a key column. The other columns are
 calculated below. */
 columns = keyColumn:Column {}
 }
 }
 }
 };
 when {
 EntityToTable(entity, entityTable);
 }

bapp01.fm Page 409 Tuesday, February 28, 2006 5:56 PM

410 Model Transformation Code

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 where {
 /* we set the name for dependent part's table, which
 is composed of the entity name and the dependent part
 name. */
 dpTableName = eName + dpName;
 /* we calculate all columns for a dependent part and add
 them to the newly created table. */
 RecordToColumns(dp, dpTable, '');
 /* we construct also columns for each nested dependent part.
 To avoid ambiguity, we manage a prefix based on the
 dp's name. */
 prefix = dp.name + '_';
 DependentPartOfDependentpartToColumns(dp, dpTable, prefix);
 }
 }

 /* This relation is a recursion and only applies if a dependent
 part has more dependent parts on its own. */
 relation DependentPartOfDependentpartToColumns {
 dpName : String;

 checkonly domain alma dp:DependentPart {
 name = dpName,
 parts = depSubpart:DependentPart{}
 };
 enforce domain db dpTable:Table {};
 primitive domain prefix:String;
 where {
 RecordToColumns(depSubPart, dpTable, prefix);
 newPrefix = prefix + dpName + '_';
 DependentPartOfDependentpartToColumns(depSubPart,
 dpTable, newPrefix);
 }
 }

 /**/
 /* The following two functions deal with the conversion of */
 /* primitive types */
 /**/

 function AlmaPhysicalQuantityTypeToDbType
 (pq : PhysicalQuantityType) : String {
 if (pq.oclIsTypeOf(IntPQType)) then 'INTEGER'
 else if (pq.oclIsTypeOf(FloatPQType)) then 'REAL'
 else if (pq.oclIsTypeOf(LongPQType)) then 'BIGINT'
 else 'DOUBLE'
 }

 function AlmaTypeToDbType(almaType : String) : String {
 if (almaType = 'int') then 'INTEGER'
 else if (almaType = 'float') then 'REAL'
 else if (almaType = 'long') then 'BIGINT'
 else 'DOUBLE'
 }
}

bapp01.fm Page 410 Tuesday, February 28, 2006 5:56 PM

A.2 Complete QVT Operational Mappings alma2db Example 411

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

A.2 Complete QVT Operational Mappings alma2db Example

transformation alma2db(in alma:AlmaMM,out db:DbMM);

-- auxiliary property to register whether a column
-- originates from a 'key' field
intermediate property Column::inKey : Boolean;

-- entry point of the transformation -------------------

main() {
 -- we start the transformation by transforming all entities
 -- to tables where we start with the empty prefix for table
 -- and column names
 alma.objectsOfType(Entity)->map entity2table('');
}

-- Mapping operations ---------------------

-- Abstract mapping used for records, which simply populates
-- a table with columns by flattening the fields of the record. This
-- rule is invoked implicitly through inheritance declarations
abstract mapping Record::fieldColumns(in prefix : String) : Table {
 init {
 -- Calculate the columns for the leaf fields of this record.
 -- Observe that the predicate self.key = f exploits that if
 -- self does not have the property key, it is null and
 -- thus the predicate would return false
 var mainColumns := self.fields->map(f)
 field2Columns(prefix, self.key = f);

 var recordName := self.name;
 }
}

-- An alma entity maps onto a Table
mapping Entity::entity2table(in prefix : String) : Table
inherits fieldColumns {
 -- inheritance actually means an invocation of
 -- self.initializeTable(result, prefix) where 'result' is a Table
 -- instance created before the call (unless the table was passed
 -- to the mapping in the mapping invocation itself)

 name := recordName;

 -- We build the primary key for the table
 key := object Key {
 -- Note that Column::inKey is temporary data,
 -- which simply reports if the column takes part in a key.
 -- The part [inKey=true] is a filter on columns
 column := result.columns[inKey=true];
 };

 -- We actively construct the tables for top-level dependent parts
 var dependentTables := parts->map
 part2table(prefix + recordName + '_');

 -- we construct the foreign key columns by fetching the column
 -- of each constructed table for the dependent part, which was

bapp01.fm Page 411 Tuesday, February 28, 2006 5:56 PM

412 Model Transformation Code

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 -- designated to be a primary key
 var foreignKeyColumns := dependentTables->columns[inKey=true];

 -- the actual columns are the ones originating from fields as
 -- well as the foreign key columns
 columns := mainColumns + foreignKeyColumns;

 -- finally, we construct the foreign key objects as well, one
 -- for each dependent table
 foreignKeys := dependentTables->object(t) ForeignKey
 {key := t.key;};
}

-- A root dependent part is mapped to a table as well
mapping DependentPart::part2table(in prefix : String) : Table
inherits fieldColumns {
 -- the name of a dependent part table is prefixed to
 -- avoid name confusion
 var dpTableName := prefix + recordName;
 name := dpTableName;

 -- we assign the columns for the top-level dependent part
 -- This includes the definition of a primary key
 columns := mainColumns +
 object Column {
 name := 'key_' + dpTableName;
 type := 'INTEGER';
 -- observe that we set the auxiliary property on true
 inKey
 };

 -- We calculate the columns of the sub parts by passing the
 -- result table of this mapping explicitly to the mapping
 -- part2columns. This means that part2columns will not construct
 -- a new table, but only update the existing one.
 -- We also pass it the new prefix.
 end { self.parts->map part2columns(result, dpTableName + '_'); }
}

-- the following mapping is recursive over the 'parts' property
-- of DependentPart
mapping DependentPart::part2columns(in prefix : String) : Table
inherits fieldColumns {
 -- for each nested dependent part, we simply add the newly
 -- resulting columns to those of the result table
 columns += mainColumns;

 -- we now recursively call the part2columns again with the
 -- result of this mapping
 var newPrefix := prefix + recordName + '_';
 end { self.parts->map part2columns(result, newPrefix); }
}

-- This mapping flattens a field to multiple columns
mapping Field::field2Columns (in prefix:String, in iskey:Boolean)
: Sequence(Column) {
 init {
 result :=
 if self.type.isTypeOf(PrimitiveType)
 then -- creates a sequence with a unique leaf field instance

bapp01.fm Page 412 Tuesday, February 28, 2006 5:56 PM

A.2 Complete QVT Operational Mappings alma2db Example 413

 bapp01.fm Version 0.3 (final) February 28, 2006 5:56 pm

 Sequence {
 object Column {
 type := self.type.asType(PrimitiveType)->
 convertPrimitiveType();
 name := prefix + self.name;
 inKey := iskey;
 }
 }
 else if self.type.isTypeOf(PhysicalQuantityType) then
 self.type.asType(PhysicalQuantityType}->
 pqType2Columns(prefix, iskey);
 }
 else –- the case for value types is purely recursive
 self.type.asType(ValueType).fields->map
 field2Columns(prefix + self.name + '_', iskey);
 endif
 endif;
 }
}

-- We have one mapping which maps each unit of physical quantity
-- to a column.
mapping PhysicalQuantityType::pqType2Columns (in prefix : String,
 in iskey : Boolean)
: Sequence(Column) {
 init {
 result := self.units->map(u)
 object Column {
 name := prefix + '_as_' + self.name + '_in_' + u;
 type := self->convertPQType();
 inKey := iskey;
 };
 }
}

-- Auxiliary functions for converting primitive types------------
query PrimitiveType::convertPrimitiveType() : String =
 if self.name = "int" then 'INTEGER'
 else if self.name = "float" then 'FLOAT'
 else if self.name = "long" then 'BIGINT'
 else 'DOUBLE'
 endif endif endif;

query PhysicalQuantityType::convertPQType() : String =
 if self.isTypeOf(IntPQType) then 'INTEGER'
 else if self.isTypeOf(FloatPQType) then 'FLOAT'
 else if self.isTypeOf(LongPQType) then 'BIGINT'
 else 'Double'
 endif endif endif;

bapp01.fm Page 413 Tuesday, February 28, 2006 5:56 PM

bapp01.fm Page 414 Tuesday, February 28, 2006 5:56 PM

415

 bref.fm Version 0.3 (final) February 28, 2006 6:20 pm

References

ABB+01 C. Atkinson et al., Component-based Product Line Engineering with UML,
Addison-Wesley Professional, 2001

ALMA ESO, ALMA – Atacama Large Millimeter Array,
http://www.eso.org/projects/alma/

ANDR M. Bohlen, androMDA, http://www.andromda.org/

ANT Apache Software Foundation, http://ant.apache.org/

AOSD Aspect-Oriented Software Association, aosd.net, http://aosd.net

ARIS IDS Scheer, Aris, http://www.aris.com/

ASAR The Autosar Consortium, Automotive Open System Architecture,
http://www.autosar.org

ASPJ Eclipse.org, Aspect J, http://www.aspectj.org

Ale01 A. Alexandrescu, Modern C++ Design, Addison-Wesley, 2001

BPEL Oasis, Business Process Execution Language, http://www.oasis-open.org/

BCEL Apache Group, The Byte Code Engineering Library,
http://jakarta.apache.org/bcel/index.html

BCK98 L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Addison-Wesley, Second Edition, 2003

Bec00 K. Beck, Extreme Programming Explained – Embrace Change,
Addison-Wesley, 2000

Bec02 K. Beck, Test-Driven Development: by Example, Addison-Wesley, 2002

Bet02 J. Bettin, Model-Driven Architecture – Implementation & Metrics, 2002,
http://www.softmetaware.com/mda-implementationandmetrics.pdf

Bet04c J. Bettin, Prozessauswirkungen von MDSD – Model-Driven Development,
special edition of OBJEKTspektrum 2004,
http://www.sigs.de/publications/os/2004/MDD/bettin_MDD_2004.pdf

bref.fm Page 415 Tuesday, February 28, 2006 6:20 PM

416 References

 bref.fm Version 0.3 (final) February 28, 2006 6:20 pm

Bet04b J. Bettin, Complexity & Dependency Management: Creating an Environment
for Software Asset Evolution and Software Mass Customization, 2004,
http://www.softmetaware.com/complexity-and-dependency-management.pdf

Bos00 J. Bosch, Design and Use of Software Architectures – Adopting and Evolving
a Product-Line Approach, Addison-Wesley Professional, 2000

BPML Business Process Modeling Language, http://www.bpmi.org

BPMN Business Process Modeling Notation, http://www.bpmi.org

CG01 J. C. Cleaveland, Program Generators with XML and Java, Prentice Hall PTR,
2001

CH05 K. Czarnecki, S. Helsen, A Taxonomy and Categorization of Model
Transformation Approaches, http://www.swen.uwaterloo.ca/~kczarnec/

Cla04 M. Clark, Pragmatic Project Automation, The Pragmatic Programmers, 2004

Cle01 J. C. Cleaveland, Program Generators with XML and Java, Prentice Hall, 2001

CN01 P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley Professional, 2001

COMP University of Karlsruhe, The COMPOST Composition System,
http://www.info.uni-karlsruhe.de/~compost/

Coc01 A. Cockburn, Agile Software Development, Addison-Wesley Professional,
2001

CRUI Sourceforge.net, CruiseControl – Continuous Integration Toolkit,
http://cruisecontrol.sourceforge.net/developers.html

DRES Sourceforge.net, Dresden OCL Toolkit, http://dresden-ocl.sourceforge.net/

DSTG Delta Software Technology GmbH, ANGIE,
http://www.d-s-t-g.com/neu/pages/pageseng/common/
prod_et_et04_frmset.htm

EASY easymock.org, EasyMock Mock Object Framework, http://www.easymock.org

EC00 K. Czarnecki, U. Eisenecker, Generative Programming, Addison-Wesley
Professional, 2000

ECLI Eclipse.org, Eclipse, http://www.eclipse.org

EMF Eclipse.org, Eclipse Modeling Framework, http://www.eclipse.org/emf/

EMPO Empowertec AG, OCL Toolkit, http://www.empowertec.de/

Eva03 E. Evans, Domain-Driven Design – Tackling Complexity in the Heart of
Software, Addison-Wesley Professional, 2003

FMP University of Waterloo, Feature Modelling Plugin,
http://gp.uwaterloo.ca/fmp/

bref.fm Page 416 Tuesday, February 28, 2006 6:20 PM

References 417

 bref.fm Version 0.3 (final) February 28, 2006 6:20 pm

FODA Carnegie Mellon Software Engineering Institute, Feature-Oriented Domain
Analysis, http://www.sei.cmu.edu/domain-engineering/FODA.html

Fow99 M. Fowler, Refactoring – Improving the Design of Existing Code, Addison-
Wesley Professional, 1999

Fow04 M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley
Professional, 2002

Fow05 M. Fowler, Language Workbenches: The Killer-App for Domain Specific
Languages?, http://www.martinfowler.com/articles/languageWorkbench.html

Fra02 D. S. Frankel, Model-Driven Architecture, Wiley Publishing Inc., 2003

GME Institute for Software Integrated Systems, GME – The Generic Modeling
Environment, http://www.isis.vanderbilt.edu/Projects/gme/

GHJ+94 E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, 1995

GS04 J. Greenfield et al., Software Factories – Assembling Applications with
Patterns, Models, Frameworks, and Tools, Wiley Publishing Inc., 2004

HIBE jboss.org, Hibernate – Relational Persistence for Java and .NET,
http://www.hibernate.org

Hor04 G. Hohpe, B. Woolf, Enterprise Integration Patterns – Designing, Building,
and Deploying Messaging Solutions, Addison-Wesley Professional, 2003

HSQL HSQL Database Engine, http://sourceforge.net/projects/hsqldb/

HT04 A. Hunt, D. Thomas, Pragmatic Unit Testing in Java with JUnit, The
Pragmatic Programmers, 2003

IUML Kennedy Carter, iUML, http://www.kc.com/products/iuml.php

JASS S. Chiba, Javassist, http://www.csg.is.titech.ac.jp/~chiba/

JB00 J. Bosch, Design and Use of Software Architectures, Addison-Wesley
Professional, 2000

JBOS jboss.org, JBoss Application Server, http://www.jboss.org

JBR99 I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development
Process, Addison-Wesley Professional, 1999

JCC java.net, JavaCC – The Java Parser Generator, http://javacc.dev.java.net/

JMI Sun, The Java Metadata Interface, http://java.sun.com/products/jmi/index.jsp

KRB91 G. Kiczales, J. des Rivieres, D. G. Bobrow, The Art of the Metaobject
Protocol, MIT Press, 1991

Kos90 T. D. Koschmann, The Common Lisp Companion, John Wiley & Sons, 1990

bref.fm Page 417 Tuesday, February 28, 2006 6:20 PM

418 References

 bref.fm Version 0.3 (final) February 28, 2006 6:20 pm

Lad03 R. Laddad, AspectJ in Action – Practical Aspect-Oriented Programming,
Manning Publications, 2003

M2T OMG, MOF Model to Text Transformation Language RFP,
OMG document number ad/04-04-07, April 2004,
http://www.omg.org/docs/ad/04-04-07.pdf

MC04 Metacase Consulting, MetaEdit+, http://www.metacase.com

MDAG MDA™ Guide, OMG document number omg/03-06-01, June 2003,
http://www.omg.org/docs/omg/03-06-01.pdf

Mel02 S. Mellor, Executable UML: A Foundation for Model-Driven Architecture,
Addison-Wesley Professional, 2002

MPS JetBrains, Meta Programming System, http://www.jetbrains.com/mps/

OASIS Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org

OAW openArchitectureWare Group, openArchitectureWare Generator,
http://www.openarchitectureware.org

OC++ S. Chiba, OpenC++, http://www.csg.is.titech.ac.jp/~chiba/openc++.html

OCL OMG, Object Constraint Language 2.0 Specification, OMG document
number ptc/05-06-06, June 2005, http://www.omg.org/docs/ptc/05-06-06.pdf

Oes01 B. Oestereich et al., Erfolgreich mit Objektorientierung, Second Edition,
Oldenbourg Wissenschaftsverlag, 2001

OMG Object Management Group, http://www.omg.org

OMGM Object Management Group, MDA, http://www.omg.org/mda

OMGP Object Management Group, MDA UML Profile,
http://www.omg.org/mda/specs.htm#Profiles

OMGT Object Management Group, MDA Committed Companies and their Products,
http://www.omg.org/mda/committed-products.htm

OWS+03 B. Oestereich et al., Objektorientierte Geschäftsprozessmodellierung mit der
UML, Dpunkt Verlag, 2003

Par76 D. L. Parnas, On the Design and Development of Program Families, IEEE
Transactions on Software Engineering, Vol. SE-2, No. 1, March 1976,
pp. 1–9.

PBG04 T. Posch, K. Birken, M. Gerdom, Basiswissen Softwarearchitektur, Dpunkt
Verlag, 2004

PLP Carnegie Mellon Software Engineering Institute, Product Line Practice,
http://www.sei.cmu.edu/plp/

bref.fm Page 418 Tuesday, February 28, 2006 6:20 PM

References 419

 bref.fm Version 0.3 (final) February 28, 2006 6:20 pm

POSA1 F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture – A System of Patterns, John Wiley & Sons,
1996.

POSA2 D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects, John
Wiley & Sons, 2000

POSA3 M. Kircher, P. Jain, Pattern-Oriented Software Architecture, Volume 3:
Patterns for Resource Management, John Wiley & Sons, 2004

POSE Gentleware AG, Poseidon for UML, http://www.gentleware.com/products

PV pure-systems GmbH, pure::variants,
http://www.pure-systems.com/Variant_Management.49.0.html

QVT OMG, MOF 2.0 Query/View/Transformation Final Adopted Specification,
OMG document number ptc/05-11-01, November 2005,
http://www.omg.org/docs/ptc/05-11-01.pdf

QVTP QVT Partners, QVTP Home Page, http://www.qvtp.org/

QVTR MOF 2.0 Query / Views / Transformations RFP, OMG document number ad/
02-04-10, April 2002, http://www.omg.org/docs/ad/02-04-10.pdf

RV05 M. Rudorfer, M. Völter, Domain-specific IDEs in Embedded Automotive
Software, EclipseCon 2005,
http://www.voelter.de/data/presentations/EclipseCon.pdf

SCA IBM, Service Component Architecture,
http://www.ibm.com/developerworks/library/specification/ws-sca/

SFW05 International Workshop on Software Factories at OOPSLA 2005,
http://softwarefactories.com/workshops/OOPSLA-2005/
SoftwareFactoryWorkshopAnnouncement.htm

STRT Apache Software Foundation, The Apache Struts Application Framework,
http://struts.apache.org/

TOMC Apache Software Foundation, Apache Tomcat,
http://tomcat.apache.org/

UMLX E. D. Willink, UMLX: A Graphical Transformation Language for MDA,
http://www.softmetaware.com/oopsla2003/willink.ppt

VELO The Apache Jakarta Project, Velocity, http://jakarta.apache.org/velocity/

VKZ04 M. Völter, M. Kircher, U. Zdun, Remoting Patterns: Foundations of
Enterprise, Internet and Realtime Distributed Object Middleware, John Wiley
& Sons, 2005

Voe02 M. Völter, A Generative Component Infrastructure for Embedded Systems,
http://www.voelter.de/data/pub/SmallComponents.pdf

bref.fm Page 419 Tuesday, February 28, 2006 6:20 PM

420 References

 bref.fm Version 0.3 (final) February 28, 2006 6:20 pm

Voe03 M. Völter, Program Generation – A Survey of Techniques and Tools,
http://www.voelter.de/data/presentations/ProgramGeneration.zip

Voe04 M. Völter, Models and Aspects – Patterns for Handling Cross-Cutting
Concerns in Model-Driver Software Development,
http://www.voelter.de/data/pub/ModelsAndAspects.pdf

VSW02 M. Völter, A. Schmid, E. Wolff, Server Component Patterns, John Wiley &
Sons, 2002

WfMC The Workflow Management Coalition, http://www.wfmc.org

WL99 D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering: A Family-
Based Software Development Process, Addison-Wesley Professional, 1999

XDOC XDoclet Team, XDoclet – Attribute-Oriented Programming,
http://xdoclet.sourceforge.netxdoclet/index.html

XMF Xactium, XMF Mosaic, http://albini.xactium.com/content/

XPDL XML Process Definition Language,
http://www.wfmc.org/standards/XPDL.htm

bref.fm Page 420 Tuesday, February 28, 2006 6:20 PM

