l..;t-n.r- FHaohaed dosviean

Numerical ryggrhqgs

5 |

Product Description

This book emphasizes the intelligent application of approximation
techniques to the type of problems that commonly occur in
engineering and the physical sciences. Readers learn why the
numerical methods work, what type of errors to expect, and when an
application might lead to difficulties. The authors also provide
information about the availability of high-quality software for
numerical approximation routines. In this book, full mathematical
justifications are provided only if they are concise and add to the
understanding of the methods. The emphasis is placed on describing
each technique from an implementation standpoint, and on convincing
the reader that the method is reasonable both mathematically and
computationally.

About the Author

J. Douglas Faires is a Professor of Mathematics at Youngstown State
University. His research interests include analysis, numerical analysis,
and mathematics history. Dr. Faires has won many awards, including
Outstanding College-University Teacher of Mathematics, Ohio Section
of MAA (1996) and Youngstown State University, Distinguished
Professor for Teaching (1995-1996).

Richard L. Burden is a Professor of Mathematics at Youngstown State
University. His research interests include numerical linear algebra and
numerical solution of partial differential equations.

Hardcover: 640 pages

Publisher: Brooks Cole; 3 edition (June 18, 2002)
Language: English

ISBN-10: 0534407617

ISBN-13: 978-0534407612

Numerical Methods
Third Edition

Faires & Burden

In s directory are the fles for the third edition of Numerical Methods with the changes from the
second edition shown n .

Endpage 1, Endpage 2. Table of Contents, Preface, Text, Bibliography. Answers, Endpage

R, Y T, T P, L A TR

I you have any questions, please contact us at burden(@math ysu.edu o af fares({math.ysu.edu

Notiee: Al the matenal hsted on this page 1 under copynght and is posted hete for the exchusive use of 1.0 Faires, R.L Burden and
those mvolved wih poblishing this manuserp.

Contents

Preface ix

1 Mathematical Preliminaries and Error Analysis 1
1.1 Imtroduction L 1
1.2 Review of Calculus Lo 1
1.3 Round-off Error and Computer Arithmetic 17
1.4 Errors in Scientific Computation 25
1.5 Computer Software 34

2 Solutions of Equations of One Variable 39
2.1 Imtroduction L 39
2.2 The Bisection Method 39
2.3 The Secant Method 47
2.4 Newton’s Method 55
2.5 Error Analysis and Accelerating Convergence 64
2.6 Miller’s Method 70
2.7 Survey of Methods and Software 7

3 Interpolation and Polynomial Approximation 79
3.1 Imtroduction 79
3.2 Lagrange Polynomials 81
3.3 Divided Differences 95
3.4 Hermite Interpolation oL 104
3.5 Spline Interpolation 111
3.6 Parametric Curves 124
3.7 Survey of Methods and Software 131

4 Numerical Integration and Differentiation 133
4.1 Inmtroduction L 133
4.2 Basic Quadrature Rules 134
4.3 Composite Quadrature Rules 144
4.4 Romberg Integration oL 155
4.5 Gaussian Quadrature Lo 164
4.6 Adaptive Quadratureo 170

CONTENTS

4.7 Multiple Integrals oL o o 178
4.8 TImproper Integrals 191
4.9 Numerical Differentiation 198
4.10 Survey of Methods and Software 210
Numerical Solution of Initial-Value Problems 213
5.1 Imtroduction. 213
5.2 Taylor Methods 216
5.3 Runge-Kutta Methods, 229
5.4 Predictor-Corrector Methods 239
5.5 Extrapolation Methods oL 248
5.6 Adaptive Techniqueso 255
5.7 Methods for Systems of Equations 265
5.8 Stiff Differential Equations L. 277
5.9 Survey of Methods and Software 283
Direct Methods for Solving Linear Systems 285
6.1 Introduction 285
6.2 Gaussian Elimination. L o oL 285
6.3 Pivoting Strategies oL 298
6.4 Linear Algebra and Matrix Inversion 307
6.5 Matrix Factorizationo oL 320
6.6 Techniques for Special Matrices 327
6.7 Survey of Methods and Software 337
Iterative Methods for Solving Linear Systems 339
7.1 Introduction. 339
7.2 Convergence of Vectors oL 340
7.3 Eigenvalues and Eigenvectors 350
7.4 The Jacobi and Gauss-Seidel Methods 358
7.5 The SOR Method 365
7.6 Error Bounds and Iterative Refinement 371
7.7 The Conjugate Gradient Method 379
7.8 Survey of Methods and Software 394
Approximation Theory 397
8.1 Introduction. 397
8.2 Discrete Least Squares Approximation 397
8.3 Continuous Least Squares Approximation 408
8.4 Chebyshev Polynomials 417
8.5 Rational Function Approximation 424
8.6 Trigonometric Polynomial Approximation 431
8.7 Fast Fourier Transforms 438

8.8 Survey of Methods and Software 444

CONTENTS

9 Approximating Eigenvalues

9.1 Imtroduction
9.2 Isolating Eigenvalues o
9.3 The Power Method
9.4 Householder’s Method
9.5 The QR Method
9.6 Survey of Methods and Software

10 Solutions of Systems of Nonlinear Equations

10.1 Introduction Lo
10.2 Newton’s Method for Systems
10.3 Quasi-Newton Methods
10.4 The Steepest Descent Method
10.5 Homotopy and Continuation Methods
10.6 Survey of Methods and Software

11 Boundary-Value Problems for Ordinary Differential Equations

11.1 Introduction L L
11.2 The Linear Shooting Method
11.3 Linear Finite Difference Methods
11.4 The Nonlinear Shooting Method
11.5 Nonlinear Finite-Difference Methods
11.6 Variational Techniques
11.7 Survey of Methods and Software

12 Numerical Methods for Partial-Differential Equations

12.1 Introduction L
12.2 Finite-Difference Methods for Elliptic Problems
12.3 Finite-Difference Methods for Parabolic Problems
12.4 Finite-Difference Methods for Hyperbolic Problems
12.5 Introduction to the Finite-Element Method
12.6 Survey of Methods and Software

Bibliography
Answers for Numerical Methods

Index

iii

NUMERICAL METHODS
THIRD EDITION

Doug Faires and Dick Burden

PREFACE

The teaching of numerical approximation techniques to undergraduates is done in a
variety of ways. The traditional Numerical Analysis course emphasizes both the approxi-
mation methods and the mathematical analysis that produces them. A Numerical Methods
course is more concerned with the choice and application of techniques to solve problems
in engineering and the physical sciences than with the derivation of the methods.

The books used in the Numerical Methods courses differ widely in both intent and
content. Sometimes a book written for Numerical Analysis is adapted for a Numerical
Methods course by deleting the more theoretical topics and derivations. The advantage
of this approach is that the leading Numerical Analysis books are mature; they have been
through a number of editions, and they have a wealth of proven examples and exercises.
They are also written for a full year coverage of the subject, so they have methods that
can be used for reference, even when there is not sufficient time for discussing them in
the course. The weakness of using a Numerical Analysis book for a Numerical Methods
course is that material will need to be omitted, and students might then have difficulty
distinguishing what is important from what is tangential.

The second type of book used for a Numerical Methods course is one that is specifi-
cally written for a service course. These books follow the established line of service-oriented
mathematics books, similar to the technical calculus books written for students in busi-
ness and the life sciences, and the statistics books designed for students in economics,
psychology, and business. However, the engineering and science students for whom the
Numerical Methods course is designed have a much stronger mathematical background
than students in other disciplines. They are quite capable of mastering the material in a

Numerical Analysis course, but they do not have the time for, nor, often, the interest in,

the theoretical aspects of such a course. What they need is a sophisticated introduction
to the approximation techniques that are used to solve the problems that arise in science
and engineering. They also need to know why the methods work, what type of error to
expect, and when a method might lead to difficulties. Finally, they need information,
with recommendations, regarding the availability of high quality software for numerical
approximation routines. In such a course the mathematical analysis is reduced due to a
lack of time, not because of the mathematical abilities of the students.

The emphasis in this Numerical Methods book is on the intelligent application of ap-
proximation techniques to the type of problems that commonly occur in engineering and
the physical sciences. The book is designed for a one semester course, but contains at
least 50% additional material, so instructors have flexibility in topic coverage and students
have a reference for future work. The techniques covered are essentially the same as those
included in our book designed for the Numerical Analysis course (See [BF], Burden and
Faires, Numerical Analysis, Seventh Edition, 2001, Brooks/Cole Publishing.) However,
the emphasis in the two books is quite different. In Numerical Analysis, a book with
about 800 text pages, each technique is given a mathematical justification before the im-
plementation of the method is discussed. If some portion of the justification is beyond
the mathematical level of the book, then it is referenced, but the book is, for the most
part, mathematically self-contained. In this Numerical Methods book, each technique is
motivated and described from an implementation standpoint. The aim of the motivation
is to convince the student that the method is reasonable both mathematically and com-
putationally. A full mathematical justification is included only if it is concise and adds to
the understanding of the method.

In the past decade a number of software packages have been developed to produce
symbolic mathematical computations. Predominant among them are DERIVE, Maple,
Mathematica and MATLAB. There are versions of the software packages for most common
computer systems and student versions are available at reasonable prices. Although there
are significant differences among the packages, both in performance and price, they all can
perform standard algebra and calculus operations. Having a symbolic computation package

available can be very useful in the study of approximation techniques. The results in most

ii

of our examples and exercises have been generated using problems for which exact values
can be determined, since this permits the performance of the approximation method to be

monitored. Exact solutions can often be obtained quite easily using symbolic computation.

We have chosen Maple as our standard package, and have added examples and ex-
ercises whenever we felt that a computer algebra system would be of significant benefit.
In addition, we have discussed the approximation methods that Maple employs when it is
unable to solve a problem exactly. The Maple approximation methods generally parallel
the methods that are described in the text.

Software is included with and is an integral part of this Numerical Methods book, and
a program disk is included with the book. For each method discussed in the text the disk
contains a program in C, FORTRAN, and Pascal, and a worksheet in Maple, Mathematica,
and MATLAB. The programs permit students to generate all the results that are included
in the examples and to modify the programs to generate solutions to problems of their
choice. The intent of the software is to provide students with programs that will solve
most of the problems that they are likely to encounter in their studies.

Occasionally, exercises in the text contain problems for which the programs do not
give satisfactory solutions. These are included to illustrate the difficulties that can arise
in the application of approximation techniques and to show the need for the flexibility
provided by the standard general purpose software packages that are available for sci-
entific computation. Information about the standard general purpose software packages
is discussed in the text. Included are those in packages distributed by the International
Mathematical and Statistical Library (IMSL), those produced by the National Algorithms
Group (NAG), the specialized techniques in EISPACK and LINPACK, and the routines

in MATLAB.

New for this Edition
This edition includes two new major additions. The Preconditioned Conjugate Gra-

dient method has been added to Chapter 7 to provide a more complete treatment of the

iii

numerical solution to linear systems of equations. It is presented as an iterative approxi-
mation technique for solving positive definite linear systems. In this form, it is particularly
useful for approximating the solution to large sparse linear systems.

In Chapter 10 we have added a section on Homotopy and Continuation methods.
These methods provide a distinctly different technique for approximating the solutions to
nonlinear systems of equations, one that has attracted a great deal of recent attention.

We have also added extensive listings of Maple code throughout the book, since re-
viewers found this feature useful in the second edition. We have updated all the Maple
code to Release 8, the current version. Since versions of the symbolic computation software
are commonly released between editions of the book, we will post updated versions of the

Maple, Mathematica, and MATLAB worksheets at the book website:
http://www.as.ysu.edu/~faires/NumericalMethods3

when material in new versions of any the symbolic computation systems needs to be
modified. We will post additional information concerning the book at that site as well,
based on requests from those using the book.

Although the major changes in this edition may seem quite small, those familiar with
our past editions will find that virtually every page has been modified in some way. All
the references have been updated and revised, and new exercises have been added where
appropriate. We hope you will find these changes beneficial to the teaching and study
of Numerical Methods. These changes have been motivated by the presentation of the
material to our students and by comments from users of previous editions of the book.

A Student Solutions Manual is available with this edition. It includes solutions to
representative exercises, particularly those that extend the theory in the text. We have
included the first chapter of the Student Solutions Manual in Adobe Reader (PDF) format
at the book website so that students can determine if the Manual is likely to be sufficiently
useful to them to justify purchasing a copy.

The publisher can also provide instructors with a complete Instructor’s Manual that

provides solutions to all the exercises in the book. All the results in this Instructor’s

iv

Manual were regenerated for this edition using the programs on the disk. To further as-
sist instructors using the book, we plan to use the book website to prepare supplemental
material for the text, Student Solutions Manual, and Instructor’s Manual based on user re-
quests. Let us know how we can help you improve your course, we will try to accommodate
youL.

The following chart shows the chapter dependencies in the book. We have tried to

keep the prerequisite material to a minimum to allow greater flexibility.

J—{ Cha:::terz ‘ ’ Chagtere ‘ ’ Cha:)te'3 ‘
v

| l
v v v v

’Chwterlo‘ ’ Chapter 7 ‘ ’ Chapter 8 ‘ ’ Chapter4‘ ’ Chapter 5 ‘

Note: All the pages numbers need to be revised.

Glossary of Notation

C(X) Set of all functions continuous on X 2
C™(X) Set of all functions having n continuous derivatives on X &
C*(X) Set of all functions having derivatives of all orders on X &

0.3 A decimal in which the numeral 3 repeats indefinitely 3
R Set of real numbers 9
fl(y) Floating-point form of the real number y 16

o(+) Order of convergence 23

A Forward difference 51

£ Divided difference of the function f 74
(Z) The kth binomial coefficient of order n 76

\Y% Backward difference 77

— Equation replacement 238

> Equation interchange 2358

(@ij) Matrix with a;; as the entry in the ith row and jth column 239
X Column vector or element of R™ 240

[A, b] Augmented matrix 240

i Kronecker delta, 1ifi =3, 0if i £ j 258
I, n X n identity matrix 258

A1 Inverse matrix of the matrix A 258

At Transpose matrix of the matrix A 261

M;; Minor of a matrix 261

det A Determinant of the matrix A 261

0 Vector with all zero entries 26/

R" Set of ordered n-tuples of real numbers 288
Y] Arbitrary norm of the vector x 288

[|1%/]2 The I norm of the vector x 288

[1%]] 0o The lo norm of the vector x 288

I Al Arbitrary norm of the matrix A 292

|Allcc The lo norm of the matrix A 292

| All2 The [; norm of the matrix A 293

p(A) The spectral radius of the matrix A 300
K(A) The condition number of the matrix A 316

1L, Set of all polynomials of degree n or less 334

11, Set of all monic polynomials of degree n 343

7, Set of all trigonometric polynomials of degree n or less 352
C Set of complex numbers 370

F Function mapping R" into R"™ 400

J(x) Jacobian matrix 403

Vg Gradient of the function g 418

C2[0,1] Set of functions f in C2[0,1] with f(0) = f(1) =0 000

0.1

P

y
t (V)

(sint)? + (cost)? =1
sin(t; + t3) = sinty costy + costy sinty

cos(t1 £ ta) = costy costy F sinty sinty

B a
= Y
b
] _ oo (_1)nt2n+1 B t3 t5
sint =Y e St tE

— (—1 2t
cost = Z(()iz]_——ﬁ——_...

Trigonometry

sint =y cost = =
sint cost
tant = cott = —
cost sint
1 1
sect = —— csct = —
cost sint

sint;sinty, =

costy costo

sintq costy

1
i[cos(tl —t2) — cos(t1 + t2)]
%[cos(tl — t2) + cos(t1 + t2)]

1
§[Sin(t1 —ta) + sin(ty + t2)]

Common Series

The Greek Alphabet

Alpha A « Eta H
Beta B g Theta (C]
Gamma I' ~ Tota I
Delta A) Kappa K
Epsilon E ¢ Lambda A
Zeta Z (Mu M

T >XI s 3

Law of Sines: e _ ﬂ _ sy
« ﬂ ¥
Law of Cosines: 2 = a®>+0b®>—2abcosy
o~ 1" 2
t == — = — J— e
o= DTttty gt
n=0
L it”:1+t+t2+-~- It < 1
1=t n=0 7
Nu N v Tau T 7
Xi = ¢ Upsilon T v
Omicron O o Phi ® o
Pi I = Chi X x
Rho P »p Psi v o
Sigma > o Omega) w

BISECT?21
SECANT22
FALPOS23
NEWTON24
MULLER25
NEVLLE31
DIVDIF32

HERMIT33
NCUBSP34
CCUBSP35
BEZIER36
CSIMPR41
ROMBRG42
ADAPQR43
DINTGL44
DGQINT45
TINTGLA46
EULERM51
RKOR4M52
PRCORM53

EXTRAP54
RKFVSM55
VPRCOR56
RKO45Y57

TRAPNT58
GAUSEL61

GAUMPP62

GAUSPP63

LUFACT64

Note: All the pages numbers need to be revised.

Index of Programs

Bisection 33

Secant 38

Method of False Position 40
Newton-Raphson /4

Miiller 55

Neville’s Iterated Interpolation 69

Newton’s Interpolatory
Divided-Difference 75
Hermite Interpolation 85

Natural Cubic Spline 91
Clamped Cubic Spline 91
Bézier Curve 104
Composite Simpson’s Rule
Romberg 131
Adaptive Quadrature 143
Simpson’s Double Integral
Gaussian Double Integral
Gaussian Triple Integral
Euler 180
Runge-Kutta Order 4 194
Adams Fourth-Order
Predictor-Corrector
Extrapolation 208
Runge-Kutta-Fehlberg 215
Adams Variable Step-Size
Predictor-Corrector 219
Runge-Kutta for Systems of
Differential Equations 222
Trapezoidal with Newton
Iteration 233
Gaussian Elimination with
Backward Substitution 245
Gaussian Elimination with
Partial Pivoting 251
Gaussian Elimination with
Scaled Partial Pivoting 252
LU Factorization 271

119

152
152
153

203

CHOLFC65
LDLFCT66
CRTRLS67

JACITRT71
GSEITR72
SORITR73

ITREF74
PCCGRD75
PADEMDS1
FFTRNSS2
POWERMO91
SYMPWR92
INVPWRO3
WIEDEF94
HSEHLD95
QRSYMTY96
NWTSY101
BROYM102
STPDC103
CONT104
LINST111
LINFD112
NLINS113
NLFDM114
PLRRG115
CSRRG116
POIFD121

HEBDM122

HECNM123
WVFDM124

LINFE125

Choleski 277

LDL! Factorization 277

Crout Reduction for Tridiagonal
Linear Systems 281

Jacobi Iterative 306

Gauss-Seidel Iterative 308

Successive-Order-Relaxation
(SOR) 310

Iterative Refinement 317

Preconditioned Conjugate Gradient
Padé Rational Approximation 348

Fast Fourier Transform 3862
Power Method 374
Symmetric Power Method 376
Inverse Power Method 380
Wielandt Deflation 381
Householder 388
QR 394
Newton’s Method for Systems
Broyden 4183
Steepest Descent
Continuation 000
Linear Shooting 427
Linear Finite-Difference
Nonlinear Shooting 442
Nonlinear Finite-Difference 446
Piecewise Linear Rayleigh-Ritz
Cubic Spline Rayleigh-Ritz 460
Poisson Equation
Finite-Difference
Heat Equation
Backward-Difference
Crank-Nicolson 488
Wave Equation
Finite-Difference
Finite-Element 509

419

434

475

484

496

404

455

000

Chapter 1

Mathematical Preliminaries
and Error Analysis

1.1 Introduction

This book examines problems that can be solved by methods of approximation,
techniques we call numerical methods. We begin by considering some of the math-
ematical and computational topics that arise when approximating a solution to a
problem.

Nearly all the problems whose solutions can be approximated involve continuous
functions, so calculus is the principal tool to use for deriving numerical methods
and verifying that they solve the problems. The calculus definitions and results
included in the next section provide a handy reference when these concepts are
needed later in the book.

There are two things to consider when applying a numerical technique to solve
a problem. The first and most obvious is to obtain the approximation. The equally
important second objective is to determine a safety factor for the approximation:
some assurance, or at least a sense, of the accuracy of the approximation. Sections
1.3 and 1.4 deal with a standard difficulty that occurs when applying techniques
to approximate the solution to a problem: Where and why is computational error
produced and how can it be controlled?

The final section in this chapter describes various types and sources of mathe-
matical software for implementing numerical methods.

1.2 Review of Calculus

The limit of a function at a specific number tells, in essence, what the function
values approach as the numbers in the domain approach the specific number. This
is a difficult concept to state precisely. The limit concept is basic to calculus, and the
major developments of calculus were discovered in the latter part of the seventeenth
century, primarily by Isaac Newton and Gottfried Leibnitz. However, it was not

2CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

until 200 years later that Augustus Cauchy, based on work of Karl Weierstrass,
first expressed the limit concept in the form we now use.

We say that a function f defined on a set X of real numbers has the limit L at
xo, written lim,_,,, f(z) = L, if, given any real number £ > 0, there exists a real
number ¢ > 0 such that |f(z) — L| < & whenever 0 < |x — 29| < J. This definition
ensures that values of the function will be close to L whenever x is sufficiently close
to xg. (See Figure 1.1.)

Figure 1.1
f(x) &

Xo— 0 X9 X+ 0 X

A function is said to be continuous at a number in its domain when the limit
at the number agrees with the value of the function at the number. So, a function
f is continuous at zg if lim,_,, f(z) = f(x0), and f is continuous on the set
X if it is continuous at each number in X. We use C'(X) to denote the set of all
functions that are continuous on X. When X is an interval of the real line, the
parentheses in this notation are omitted. For example, the set of all functions that
are continuous on the closed interval [a, b] is denoted C|a, b].

The limit of a sequence of real or complex numbers is defined in a similar manner.
An infinite sequence {z,}52,; converges to a number z if, given any £ > 0, there
exists a positive integer N(e) such that |z, — 2| < & whenever n > N(g). The
notation lim, . x, = z, or z,, — x as n — 0o, means that the sequence {x,}°2
converges to x.

[Continuity and Sequence Convergence] If f is a function defined on a set X
of real numbers and z¢ € X, then the following are equivalent:

a. f is continuous at xg;

b. If {x,,}22, is any sequence in X converging to xg, then

lim f(x,) = f(zo).

n—00

1.2. REVIEW OF CALCULUS 3

All the functions we will consider when discussing numerical methods will be
continuous since this is a minimal requirement for predictable behavior. Functions
that are not continuous can skip over points of interest, which can cause difficul-
ties when we attempt to approximate a solution to a problem. More sophisticated
assumptions about a function generally lead to better approximation results.For
example, a function with a smooth graph would normally behave more predictably
than one with numerous jagged features. Smoothness relies on the concept of the
derivative.

If f is a function defined in an open interval containing xq, then f is differen-

tiable at 2y when
T—T0 r — X
exists. The number f’(x() is called the derivative of f at xy. The derivative of f

at xg is the slope of the tangent line to the graph of f at (zq, f(xo)), as shown in
Figure 1.2.

Figure 1.2
Ya
Tangent line, slope f’(xy)
f(xo) T
(%o, f(X0)) y=f(x)
Xo X

A function that has a derivative at each number in a set X is differentiable
on X. Differentiability is a stronger condition on a function than continuity in the
following sense.

[Differentiability Implies Continuity] If the function f is differentiable at x,
then f is continuous at xg.

The set of all functions that have n continuous derivatives on X is denoted
C™(X), and the set of functions that have derivatives of all orders on X is de-
noted C*°(X). Polynomial, rational, trigonometric, exponential, and logarithmic

4CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

functions are in C°°(X), where X consists of all numbers at which the function is

defined.

The next results are of fundamental importance in deriving methods for error
estimation. The proofs of most of these can be found in any standard calculus text.

[Mean Value Theorem] If f € Cla,b] and f is differentiable on (a,b), then a
number ¢ in (a, b) exists such that (see Figure 1.3)

Figure 1.3

Parallel lines

Slopef'(c) =

f(b) —f(@
b—-a

Slope

The following result is frequently used to determine bounds for error formulas.

/' is zero.

[Extreme Value Theorem] If f € C[a,b], then ¢; and ¢ in [a,b] exist with
fler) < f(x) < f(eg) for all z in [a,b]. If, in addition, f is differentiable on
(a,b), then the numbers ¢; and ¢y occur either at endpoints of [a, b] or where

As mentioned in the preface, we will use the computer algebra system Maple
whenever appropriate. We have found this package to be particularly useful for
symbolic differentiation and plotting graphs. Both techniques are illustrated in Ex-

ample 1.

EXAMPLE 1

1.2. REVIEW OF CALCULUS 5

Use Maple to find max,<a<yp | f(2)| for
f(x) = 5cos 2z — 2z sin 2z,

on the intervals [1, 2] and [0.5, 1].
We will first illustrate the graphing capabilities of Maple. To access the graphing
package, enter the command

>with(plots);

A list of the commands within the package are then displayed. We define f by
entering

>f:= bxcos(2*x)-2*x*sin(2*x) ;

The response from Maple is
f :=5cos(2z) — 2xsin(2x)

To graph f on the interval [0.5,2], use the command

>plot(f,x=0.5..2);

We can determine the coordinates of a point of the graph by moving the mouse
cursor to the point and clicking the left mouse button. The coordinates of the point
to which the cursor is pointing appear in the white box at the upper left corner of
the Maple screen, as shown in Figure 1.4. This technique is useful for estimating
the axis intercepts and extrema of functions.

Figure 1.4

6CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

r » Maple ¥ Release 5.1 - [Untltled (§3]] ;lﬂlﬁl

Hemmmiybnxmﬁum,nmmat.mw&ﬂmrw &=l

== [<[=][©] (1] [=]
1% 30 L
> uith(plots) ﬂ
[animate, animateld, animatecurve, changecoords, complexplot, complexplot3d, conformal, % 3d, d

Dlﬁj%lé]] [=l=] [Z]T]=]

coardplot3d, cylinderpiot, densityplot, display, display3d, fieldpiot, fieldplot3d, gradplot, gradplot3d, imphicitplot, zmpficiipfat.?d
inegual, listcontplot, lisiconipiot3d, listdensityplot, histplot, listplot 3d, loglogplot, logpiot, matrizplot, odeplot, pareto, pointplot,
pointplotid, polarploi, polygonplot, polygonplot3d, polyvhedra_supported, polyhedrapiot, replot, roctlocus, semilogpiot, seioptions,

seloptionsid, ve, sparsematrixplot, sphereplot, surfdata, texiplot, textplot3d, tubepiot |
> f:=5%*cos(2*x)-2*x*sin(2*x)
J=5cos(2x)—2xsm{2x)
> plot(f,x=0.5..2);

-
2
\
1]\
N X
08 08 1 12 14 1,8 1,8 2
-1 \
l-!_‘) L
3
a

= v
A3 [T Time: 00: | Bytes OOK | Availsble: 887M

We complete the example using the Extreme Value Theorem. First, consider
the interval [1,2]. To obtain the first derivative, g = f’, we enter

>gi=diff (f,x);

Maple returns
g := —12sin(2x) — 4x cos(2x)

We can then solve g(z) = 0 for 1 < 2z < 2 with the statement
>fsolve(g,x,1..2);

obtaining 1.358229874, and compute f(1.358229874) = —5.675301338 using
>evalf (subs(x=1.358229874,f)) ;

This implies that we have a minimum of approximately f(1.358229874) = —5.675301338.
What we will frequently need is the maximum magnitude that a function can
attain on an interval. This maximum magnitude will occur at a critical point or at

1.2. REVIEW OF CALCULUS 7

an endpoint. Since f(1) = —3.899329037 and f(2) = —0.241008124, the maximum
magnitude occurs at the critical point and

max |f(x)] = max |5cos2z — 2z sin2z| ~ |f(1.358229874)| = 5.675301338.
1<z<2

1<x<2

If we try to solve g(z) =0 for 0.5 <z < 1, we find that when we enter
>fsolve(g,x,0.5..1);

Maple responds with
fsolve(—12sin(2z) — 4a cos(2z), z, .5..1)

This indicates that Maple could not find a solution in [0.5,1], for the very good
reason that there is no solution in this interval. As a consequence, the maximum
occurs at an endpoint on the interval [0.5,1]. Since f(0.5) = 1.860040545 and
(1) = —3.899329037, we have

_ 5 _ ; — —
o max |f(x)] = o max |5 cos 2z — 2z sin2z| = | f(1)] = 3.899329037.

O

The integral is the other basic concept of calculus that is used extensively. The
Riemann integral of the function f on the interval [a,b] is the following limit,
provided it exists.

b n
[@ de= tm S f) A
a i=1

max Ax; —0

where the numbers xg, z1,...,x, satisfy a = zg < 21 < -+ < z, = b and where
Ax; =x; — w1, foreach 1 = 1,2,...,n, and z; is arbitrarily chosen in the interval
[Ti—1, 7]

A function f that is continuous on an interval [a, b] is also Riemann integrable
on [a,b]. This permits us to choose, for computational convenience, the points x;
to be equally spaced in [a, b] and for each i = 1,2,...,n, to choose z; = x;. In this
case

b b—a
[#@) do= lim P Y p(e),

n—oo N
i=1

where the numbers shown in Figure 1.5 as x; are z; = a + (i(b — a)/n).

Figure 1.5

S8CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Ya
y=1f(x

\

a=Xx X X ... Xi_1 X .. Xpo1 b=x, X

Two more basic results are needed in our study of numerical methods. The first
is a generalization of the usual Mean Value Theorem for Integrals.

[Mean Value Theorem for Integrals] If f € Cla, b], g is integrable on [a, b] and
g(x) does not change sign on [a, b], then there exists a number ¢ in (a, b) with

jibf<x>g<a» da ==f(c)/£b9(10 dz.

When g(z) = 1, this result reduces to the usual Mean Value Theorem for Inte-
grals. It gives the average value of the function f over the interval [a,b] as

b
10 = s [@ do

(See Figure 1.6.)
Figure 1.6

7 /\\/

|

|

|

|

|

L >
a c b X

The next theorem presented is the Intermediate Value Theorem. Although its
statement is not difficult, the proof is beyond the scope of the usual calculus course.

EXAMPLE 2

1.2. REVIEW OF CALCULUS 9

[Intermediate Value Theorem] If f € Cla,b] and K is any number between
f(a) and f(b), then there exists a number ¢ in (a,b) for which f(c¢) = K.
(Figure 1.7 shows one of the three possibilities for this function and interval.)

Figure 1.7

Y
I (a f(a)

|
|
| (b, (b))
|

a ¢ b X

To show that 2% — 22% + 322 — 1 = 0 has a solution in the interval [0, 1], consider
f(x) = 25 — 223 + 322 — 1. We have

f(0)=-1<0 and 0<1=f(1),

and f is continuous. Hence, the Intermediate Value Theorem implies a number z
exists, with 0 < o < 1, for which 2° — 223 4+ 322 — 1 = 0. O

As seen in Example 2, the Intermediate Value Theorem is used to help determine
when solutions to certain problems exist. It does not, however, give an efficient
means for finding these solutions. This topic is considered in Chapter 2.

The final theorem in this review from calculus describes the development of
the Taylor polynomials. The importance of the Taylor polynomials to the study
of numerical analysis cannot be overemphasized, and the following result is used
repeatedly.

EXAMPLE 3

10CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

[Taylor’s Theorem] Suppose f € C"[a,b] and f("*+1) exists on [a, b]. Let 2o be
a number in [a,b]. For every x in [a,b], there exists a number {(z) between
xo and x with
where
" (n)
Pu(z) = flzo)+ f'(zo)(x — x0) + ;3’50> (2 —mo)’ +- 4 f n('aco) (z — o)
n
f(k)(mo)
= Z T — x0)
pors k!
and (1)
_ () n+1
R, (z) = CES] (x —xp)" .

Here P, (z) is called the nth Taylor polynomial for f about z(, and R, (x)
is called the truncation error (or remainder term) associated with P, (x). Since
the number {(x) in the truncation error R, (z) depends on the value of x at which
the polynomial P,(x) is being evaluated, it is actually a function of the variable z.
However, we should not expect to be able to explicitly determine the function £(x).
Taylor’s Theorem simply ensures that such a function exists, and that its value lies
between x and x(. In fact, one of the common problems in numerical methods is
to try to determine a realistic bound for the value of f("*1)(¢(x)) for values of =
within some specified interval.

The infinite series obtained by taking the limit of P,(z) as n — oo is called
the Taylor series for f about xy. In the case xy = 0, the Taylor polynomial is
often called a Maclaurin polynomial, and the Taylor series is called a Maclaurin
series.

The term truncation error in the Taylor polynomial refers to the error involved
in using a truncated (that is, finite) summation to approximate the sum of an
infinite series.

Determine (a) the second and (b) the third Taylor polynomials for f(z) = cosx
about zp = 0, and use these polynomials to approximate cos(0.01). (c) Use the
third Taylor polynomial and its remainder term to approximate foo'l cosx dx.
Since f € C°°(IR), Taylor’s Theorem can be applied for any n > 0. Also,
f'(x) = —sinz, f"(x) =—cosz, f"(z)=sinz, and f%(z)=_cosz,
S0

f(0)=1, f(0)=0, f"(0)=-1, and f"(0)=0.

1.2. REVIEW OF CALCULUS

a.For n = 2 and ¢ = 0, we have

cosz = f(0)+ f'(0)x + f/;O) z? + fm(;(w))x?’
1 1 .
= 1- 5302 + 6:53 siné(x),

where £(x) is some (unknown) number between 0 and z. (See Figure 1.8.)

Figure 1.8

y = COSX

|
I
SIE}

1
y =P =15

When z = 0.01, this becomes

—6

1 1 f 10
cos0.01 = 1 — 2 (0.01)* + £(0.01)° sin£(0.01) = 0.99995 + sin £(0.01).

The approximation to cos0.01 given by the Taylor polynomial is therefore
0.99995. The truncation error, or remainder term, associated with this ap-

proximation is

-6
sin £(0.01) = 0.16 x 10~ %sin £(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats
indefinitely. Although we have no way of determining sin£(0.01), we know
that all values of the sine lic in the interval [—1, 1], so the error occurring if

we use the approximation 0.99995 for the value of cos0.01 is bounded by

| cos(0.01) — 0.99995| = 0.16 x 10~®sin £(0.01) < 0.16 x 107°.

Hence the approximation 0.99995 matches at least the first five digits of
cos 0.01. Using standard tables we find that cos0.01 = 0.99995000042, so the

approximation actually gives agreement through the first nine digits.

The error bound is much larger than the actual error. This is due in part to

the poor bound we used for [sin{(z)].

12CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

It can be shown that or all values of z, we have |sin x| < |z|. Since 0 < £(7) <
0.01, we could have used the fact that |[sin&(z)| < 0.01 in the error formula,
producing the bound 0.16 x 1078,

b.Since f”’(0) = 0, the third Taylor polynomial and remainder term about
zo =0 are

1 1
—1-= il
cos T 2:5 +24x cos &(z),

where £ (x) is some number between 0 and z, and likely distinct from the
value of £(x) that is associated with the remainder term of the second Taylor
polynomial.

Notice that the second and third Taylor polynomials are the same, so the
approximation to cos 0.01 is still 0.99995. However, we now have a much better
accuracy assurance. Since |cos &(z)| < 1 for all z, when z = 0.01 we have

—4(0 OD4(1) ~ 4.2 x 10710,

‘—m cos§

The first two parts of the example illustrate the two objectives of numerical
analysis:

(i)Find an approximation to the solution of a given problem.
(ii)Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the
third Taylor polynomial gave a much better answer to (ii) than the second
Taylor polynomial.

c.Using the third Taylor polynomial gives

0.1 0.1 1 1 01 _
/ cosx dr = / 1——2?) do+ — ztcosé(x) da
0 0 2 24

1 0.1 1 0.1 5
_ _ 1.3 1 4
= [x 633}0 +24 x* cos&(x) dx
= 0.1 1(01)3+1/014 (z) d
= 50 5/, x* cosé(x) du.

Therefore,

0.1
1 _
/ cosz dr ~ 0.1 — 6(0'1)3 = 0.09983.
0

A bound for the error in this approximation is determined from the integral
of the Taylor remainder term and the fact that |cos&(x)| < 1 for all a:

0.1

! 2t cos E(x) dx

1 o1 R 1 o1 B
Y < —/0 z*|cosé(z)| do < ﬂ/o ot dr = 8.3x1078.

24

The true value of this integral can be easily determined as

0.1
. 0.1 .
/ cosx dr = sin ;L']O =sin0.1.
0

1.2. REVIEW OF CALCULUS 13

The true value of sin 0.1 to nine decimal places is 0.099833417, so the approx-
imation derived from the Taylor polynomial is in error by

10099833417 — 0.09983| ~ 8.4 x 108,

which is essentially the same as the error bound derived from the Taylor poly-
nomial. O

We can use a computer algebra system to simplify the calculations in Example
3. In the system Maple, we define f by

>f:=cos(x);

Maple allows us to place multiple statements on a line, and to use a colon to suppress
Maple responses. For example, we obtain the third Taylor polynomial with

>s3:=taylor(f,x=0,4): p3:=convert(s3, polynom);

The statement s3:=taylor(f,x=0,4) determines the Taylor polynomial about
xo = 0 with four terms (degree 3) and its remainder. The statement p3:=convert (s3,
polynom) converts the series s3 to the polynomial p3 by dropping the remainder.
To obtain 11 decimal digits of display, we enter

>Digits:=11;
and evaluate f(0.01), P5(0.01), and |f(0.01) — P5(0.01)| with

>yl:=evalf (subs(x=0.01,f));
>y2:=evalf (subs(x=0.01,p3));
>err:=abs(yl-y2);

This produces y; = f(0.01) = 0.99995000042, y» = P5(0.01) = 0.99995000000, and
|£(0.01) — P3(0.01)| = .42 x 107Y.
To obtain a graph similar to Figure 1.8, enter

>plot ({f,p3},x=-Pi..Pi);
The commands for the integrals are

>ql:=int(f,x=0..0.1);
>q2:=int (p3,x=0..0.1);
>err:=abs(ql-q2);

which give the values

0.1 0.1
Q= (z) de = 0.099833416647 and g2 = Ps(z) doz = 0.099833333333,
0 0
with error 0.83314 x 1077 = 8.3314 x 1078.

Parts (a) and (b) of Example 3 show how two techniques can produce the same
approximation but have differing accuracy assurances. Remember that determining
approximations is only part of our objective. The equally important other part is
to determine at least a bound for the accuracy of the approximation.

14CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

EXERCISE SET 1.2

1. Show that the following equations have at least one solution in the given

intervals.

(a) zcosz —222 +3x—1=0, [0.2,0.3] and [1.2,1.3]
(b) (z —2)2 —Inz =0, [1,2]and [e,4]

(c) 2zcos(2x) — (x —2)> =0, [2,3] and [3,4]

(d) (ln :L')w =0, [4a 5]

2. Find intervals containing solutions to the following equations.

(a) 2 —37" =

(b) 422 —e® =0

(c) 23 —22%2 —4x+3 =0

(d) 2® +4.00122 4 4.002z + 1.101 = 0

3. Show that the first derivatives of the following functions are zero at least once
in the given intervals.

(a) f(z) =1—e"+(e—1)sin((r/2)z), [0,1]
(b) f(z) =(xr—1)tanz + zsinmz, [0,1]

(¢) flz) =zsinmzx — (x —2)Inz, [1,2]

(d) f(z) =(x—2)sinzln(x +2), [-1,3]

4. Find max,<y<p | f(z)| for the following functions and intervals.

(a) f(z)=(2—e"+22)/3, 0,1]

(b) f(x) = (4x — 3)/(2* — 2x), [0.5,1]
(c) f(x) =2xcos(2x) — (x —2)%, [2,4]
(d) flz)=1+ecos==D " [1,9]

(a) Find the second Taylor polynomial Ps(z) about ag = 0.

(b) Find R2(0.5) and the actual error when using P5(0.5) to approximate
£(0.5).

(¢) Repeat part (a) with 29 = 1.

(d) Repeat part (b) for the polynomial found in part (c).

6. Let f(z) = vz + 1.
(a) Find the third Taylor polynomial Ps(x) about 29 = 0.

(b) Use Ps(z) to approximate /0.5 , v/0.75, /1.25, and v/1.5.

1.2. REVIEW OF CALCULUS 15

(¢) Determine the actual error of the approximations in part (b).

7. Find the second Taylor polynomial Py(x) for the function f(z) = e”cosz
about xg = 0.

(a) Use P»(0.5) to approximate f(0.5). Find an upper bound for error | f(0.5)—
P5(0.5)| using the error formula, and compare it to the actual error.

(b) Find a bound for the error |f(x) — Py(2)| in using P (z) to approximate
f(x) on the interval [0, 1].

(¢) Approximate fo) dx using fo Py (z) dx.

(d) Find an upper bound for the error in (¢) using fo |R2(x) dx|, and com-
pare the bound to the actual error.

8. Find the third Taylor polynomial Ps(x) for the function f(z) = (z — 1)Inz
about xg = 1.

(a) Use P3(0.5) to approximate f(0.5). Find an upper bound for error | f(0.5)—
P5(0.5)| using the error formula, and compare it to the actual error.

(b) Find a bound for the error |f(x) — Ps(z)| in using Ps(z) to approximate
f(z) on the interval [0 5,1.5].

(¢) Approximate fo 5 f(x) dx using fo 5 P3(x) du.

(d) Find an upper bound for the error in (c¢) using fol_'; |R3(x) dz|, and
compare the bound to the actual error.

9. Use the error term of a Taylor polynomial to estimate the error involved in
using sinx ~ x to approximate sin 1°.

10. Use a Taylor polynomial about /4 to approximate cos42° to an accuracy of
1076.

11. Let f(x) = e*/?sin(x/3). Use Maple to determine the following.
(a) The third Maclaurin polynomial Ps(x).
(b) fW(z) and a bound for the error |f(z) — Ps(z)| on [0, 1].
12. Let f(z) = In(2? + 2). Use Maple to determine the following.

(a) The Taylor polynomial Ps(x) for f expanded about 2o = 1.
(b) The maximum error |f(z) — P3(x)| for 0 <z < 1.

)

)
(¢) The Maclaurin polynomial Ps(z) for f.
(d) The maximum error |f(z) — Ps(z)| for 0 < z < 1.
)

(e) Does P5(0) approximate f(0) better than Ps(1) approximates f(1)?

13. The polynomial Ps(z) = 1 — 22 is to be used to approximate f(z) = cosx

in [~2, 1]. Find a bound for the maximum error.

16CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

14. The nth Taylor polynomial for a function f at xg is sometimes referred to as
the polynomial of degree at most n that “best” approximates f near x.
(a) Explain why this description is accurate.

(b) Find the quadratic polynomial that best approximates a function f near
xg = 1 if the tangent line at xyp = 1 has equation y = 4z — 1, and if

7"(1) = 6.
15. The error function defined by

ez f/

gives the probability that any one of a series of trials will lie within = units
of the mean, assuming that the trials have a normal distribution with mean
0 and standard deviation y/2/2. This integral cannot be evaluated in terms
of elementary functions, so an approximating technique must be used.

(a) Integrate the Maclaurin series for e~ to show that

k 2k+1

\/_Z 2k+1k"

erf(x

(b) The error function can also be expressed in the form

o0 2k 2k+1

2
f() = e
erf(z) = e 2}1 2k+1)

Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the
Maclaurin series for e~]

(c) Use the series in part (a) to approximate erf(1) to within 10~".

(d) Use the same number of terms used in part (c) to approximate erf(1)
with the series in part (b).

(e) Explain why difficulties occur using the series in part (b) to approximate
erf(z).

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 17

1.3 Round-off Error and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arith-
metic that we use in our algebra and calculus courses. From your past experience
you might expect that we always have as true statements such things as 2+ 2 = 4,
4-8 = 32, and (v/3)? = 3. In standard computational arithmetic we expect exact
results for 2 +2 = 4 and 4 - 8 = 32, but we will not have precisely (v/3)? = 3. To
understand why this is true we must explore the world of finite-digit arithmetic.

In our traditional mathematical world we permit numbers with an infinite num-
ber of digits. The arithmetic we use in this world defines /3 as that unique positive
number that when multiplied by itself produces the integer 3. In the computational
world, however, each representable number has only a fixed and finite number of
digits. This means, for example, that only rational numbers—and not even all of
these—can be represented exactly. Since v/3 is not rational, it is given an approx-
imate representation within the machine, a representation whose square will not
be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in
most situations. In most cases, then, this machine representation and arithmetic
is satisfactory and passes without notice or concern, but at times problems arise
because of this discrepancy.

The error that is produced when a calculator or computer is used to perform
real-number calculations is called round-off error. It occurs because the arithmetic
performed in a machine involves numbers with only a finite number of digits, with
the result that calculations are performed with only approximate representations
of the actual numbers. In a typical computer, only a relatively small subset of the
real number system is used for the representation of all the real numbers. This
subset contains only rational numbers, both positive and negative, and stores the
fractional part, together with an exponential part.

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published
a report called Binary Floating Point Arithmetic Standard 754—1985. Formats were
specified for single, double, and extended precisions. These standards are generally
followed by all microcomputer manufacturers using hardware that performs real-
number, or floating point, arithmetic operations. For example, the double precision
real numbers require a 64-bit (binary digit) representation.

The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent,
¢, and a 52-bit binary fraction, f, called the mantissa. The base for the exponent
is 2.

The normalized form for the nonzero double precision numbers have 0 < ¢ <
211 — 1 = 2047. Since c is positive, a bias of 1023 is subtracted from c to give an
actual exponent in the interval (—1023, 1024). This permits adequate representation
of numbers with both large and small magnitude.The first bit of the fractional part
of a number is assumed to be 1 and is not stored in order to give one additional bit
of precision to the representation, Since 53 binary digits correspond to between 15
and 16 decimal digits, we can assume that a number represented using this system
has at least 15 decimal digits of precision. Thus, numbers represented in normalized

18CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

double precision have the form

(_1)5 >k2(:—1023 " (1+f)

Consider for example, the machine number
0 10000000011 10111001000100.

The leftmost bit is zero, which indicates that the number is positive. The next 11
bits, 10000000011, giving the exponent, are equivalent to the decimal number

c=1-2940-224+...40-224+1-2V4+1.29=1024 + 2+ 1 = 1027.

The exponential part of the number is, therefore, 2102771023 — 94 The final 52 bits
specify that the mantissa is

! 1\? 14 \? 1\® 1\ 12
—1-(= 1.(= 1.(2= 1.(= 1.(= 1.(=)
=) e () e G)) e G))
As a consequence, this machine number precisely represents the decimal number

(—l)s " 20—1023 " (1 + f)

111 11 1
— (_1)0.91027-1023 (| L T T
(=1) Tl2Ts 16 32 256 " 1006

= 27.56640625.
However, the next smallest machine number is
0 10000000011 10111001000011
and the next largest machine number is
0 10000000011 1011100100010000000000000000000000000000000000000001.

This means that our original machine number represents not only 27.56640625, but
also half of all the real numbers that are between 27.56640625 and its two nearest
machine-number neighbors. To be precise, it represents any real number in the
interval

[27.56640624999999988897769753748434595763683319091 796875,
27.56640625000000011102230246251565404236316680908203125).

The smallest normalized positive number that can be represented has s =0, ¢ = 1,
and f = 0, and is equivalent to the decimal number

271022 (1 4 0) ~ 0.225 x 107307,

The largest normalized positive number that can be represented has s = 0, ¢ = 2046,
and f =1 —27°2 and is equivalent to the decimal number

21928 (14 (1-27%%)) ~ 0.17977 x 10°%7.

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 19

Numbers occurring in calculations that have too small a magnitude to be repre-
sented result in underflow, and are generally set to 0 with computations contin-
uing. However, numbers occurring in calculations that have too large a magnitude
to be represented result in overflow and typically cause the computations to stop
(unless the program has been designed to detect this occurrence). Note that there
are two representations for the number zero; a positive 0 when s = 0, ¢ = 0 and
f = 0 and a negative 0 when s = 1, ¢ = 0 and f = 0. The use of binary digits
tends to complicate the computational problems that occur when a finite collection
of machine numbers is used to represent all the real numbers. To examine these
problems, we now assume, for simplicity, that machine numbers are represented in
the normalized decimal form

io.dldg...de].On, 1§d1§9, 0§dzg9

for each ¢ = 2,... k. Numbers of this form are called k-digit decimal machine
numbers.

Any positive real number within numerical range of the machine can be nor-
malized to achieve the form

Yy = O.d1d2 . dkdk+1dk+2 L.ox 10™.

The floating-point form of y, denoted by fI(y), is obtained by terminating the
mantissa of y at k£ decimal digits. There are two ways of performing the termination.
One method, called chopping, is to simply chop off the digits di41dj+2 . . . to obtain

The other method of terminating the mantissa of y at k£ decimal points is called
rounding. If the £ + 1st digit is smaller than 5, then the result is the same as
chopping. If the k + 1st digit is 5 or greater, then 1 is added to the kth digit and
the resulting number is chopped. As a consequence, rounding can be accomplished
by simply adding 5 x 10"~*+1 to y and then chopping the result to obtain fl(y).
Note that when rounding up the exponent n could increase by 1. In summary, when
rounding we add one to dj to obtain fi(y) whenever diy; > 5, that is, we round
up; when di1 < 5, we chop off all but the first k£ digits, so we round down.

The next examples illustrate floating-point arithmetic when the number of digits
being retained is quite small. Although the floating-point arithmetic that is per-
formed on a calculator or computer will retain many more digits, the problems this
arithmetic can cause are essentially the same regardless of the number of digits.
Retaining more digits simply postpones the awareness of the situation.

EXAMPLE 1 The irrational number 7 has an infinite decimal expansion of the form 7w = 3.14159265. . . .
Written in normalized decimal form, we have

7 = 0.314159265. .. x 10"
The five-digit floating-point form of 7 using chopping is
fl(r) = 0.31415 x 10" = 3.1415.

EXAMPLE 2

EXAMPLE 3

20CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Since the sixth digit of the decimal expansion of 7 is a 9, the five-digit floating-point
form of 7 using rounding is

fl(7) = (0.31415 + 0.00001) x 10" = 0.31416 x 10" = 3.1416. O

The error that results from replacing a number with its floating-point form is
called round-off error (regardless of whether the rounding or chopping method is
used). There are two common methods for measuring approximation errors.

The approximation p* to p has absolute error |p — p*| and relative error
|p — p*|/|p|, provided that p # 0.

a.If p = 0.3000 x 10" and p* = 0.3100 x 10!, the absolute error is 0.1 and the relative
error is 0.3333 x 1071,

b.If p = 0.3000 x 1072 and p* = 0.3100 x 1073, the absolute error is 0.1 x 104,
but the relative error is again 0.3333 x 10~!.

c.If p = 0.3000 x 10* and p* = 0.3100 x 10%, the absolute error is 0.1 x 102, but the
relative error is still 0.3333 x 1071,

This example shows that the same relative error can occur for widely varying
absolute errors. As a measure of accuracy, the absolute error can be misleading and
the relative error is more meaningful, since the relative error takes into consideration
the size of the true value. O

The arithmetic operations of addition, subtraction, multiplication, and division
performed by a computer on floating-point numbers also introduce error. These
arithmetic operations involve manipulating binary digits by various shifting and
logical operations, but the actual mechanics of the arithmetic are not pertinent to
our discussion. To illustrate the problems that can occur, we simulate this finite-
digit arithmetic by first performing, at each stage in a calculation, the appropriate
operation using exact arithmetic on the floating-point representations of the num-
bers. We then convert the result to decimal machine-number representation. The
most common round-off error producing arithmetic operation involves the subtrac-
tion of nearly equal numbers.

Suppose we use four-digit decimal chopping arithmetic to simulate the problem of

performing the computer operation m — 2—72 The floating-point representations of
these numbers are

22
fl(r) =0.3141 x 10" and fI <7> = 0.3142 x 10",
Performing the exact arithmetic on the floating-point numbers gives

Fl(m) = fI (?) — -0.0001 x 10",

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 21

which converts to the floating-point approximation of this calculation:
. 22 L,
pt = JU{flm) = fI{ =) | = —0.1000 x 107,

Although the relative errors using the floating-point representations for 7 and %

are small,
— fl 22 _ f1(22
”Tf(”) <0.0002 and %2(7) < 0.0003,
T

the relative error produced by subtracting the nearly equal numbers 7 and % is
about 700 times as large:

~ 0.2092. O

Rounding arithmetic is easily implemented in Maple. The statement
>Digits:=t;

causes all arithmetic to be rounded to ¢ digits. For example, fI(fl(z) + fi(y)) is
performed using t-digit rounding arithmetic by

>evalf (evalf (x)+evalf (y));

Implementing ¢-digit chopping arithmetic in Maple is more difficult and requires
a sequence of steps or a procedure. Exercise 12 explores this problem.

22CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

EXERCISE SET 1.3

1. Compute the absolute error and relative error in approximations of p by p*.

(a) p=r, p* = % (b) p=m, p* =3.1416
(c) p=e, p* =2.7T18 (d) p=+2, p* =1.414
(e) p=el0 p* = 22000 (f) p=107, p* = 1400
(g) p =38!, p* =39900 (h) p=9!, p* = V187 (9/¢)’

2. Perform the following computations (i) exactly, (ii) using three-digit chopping
arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the
relative errors in parts (ii) and (iii).

[SAR I
W =

(@) £+3)

o (3-2)+3 o (e8)-3

3. Use three-digit rounding arithmetic to perform the following calculations.
Compute the absolute error and relative error with the exact value determined
to at least five digits.

(a) 133+ 0.921 (b) 133 —0.499
(c) (121 -0.327) — 119 (d) (121 —119) —0.327
ek (f) —107 + 6e — -
S —10m + 6e — —
(©) 5051 2
2 9 o 22
0 ()-)
17

4. Repeat Exercise 3 using three-digit chopping arithmetic.
5. Repeat Exercise 3 using four-digit rounding arithmetic.

6. Repeat Exercise 3 using four-digit chopping arithmetic.

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 23

7. The first three nonzero terms of the Maclaurin series for the arctanx are
T — %x3 + %m5. Compute the absolute error and relative error in the following
approximations of 7 using the polynomial in place of the arctan x:

0 4t (3) v (2]) 1600t (5) = dcon (5)

8. The two-by-two linear system

ar+by = e,
cc+dy = f,

where a, b, c,d, e, f are given, can be solved for z and y as follows:

set m = g, provided a # 0;
dy = d—mb;
i = f—meg
_ I
Y dy
. - le—by)
a

Solve the following linear systems using four-digit rounding arithmetic.

(b) 1013z — 6.099y = 14.22

(2) 1130z — 6.990y —18.11z + 112.2y —0.1376

8.110x + 12.20y

14.20
—0.1370

9. Suppose the points (xg,y0) and (z1,y1) are on a straight line with y; # yo.
Two formulas are available to find the z-intercept of the line:
=TIl = Ty — Ll — Io)yo.
Y1 — Yo Y1 — Yo

(a) Show that both formulas are algebraically correct.

(b) Use the data (zg,yo) = (1.31,3.24) and (x1,y1) = (1.93,4.76) and three-
digit rounding arithmetic to compute the z-intercept both ways. Which
method is better, and why?

10. The Taylor polynomial of degree n for f(z) = e” is y . ,z'/il. Use the
Taylor polynomial of degree nine and three-digit chopping arithmetic to find
an approximation to e~° by each of the following methods.

24CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

11.

12.

s 1 1
s (-B) (-5 (e =FR s
S SR

9
i=0 =0

An approximate value of e™® correct to three digits is 6.74 x 1073. Which
formula, (a) or (b), gives the most accuracy, and why?

A rectangular parallelepiped has sides 3 cm, 4 cm, and 5 cm, measured to the
nearest centimeter.

(a) What are the best upper and lower bounds for the volume of this par-
allelepiped?

(b) What are the best upper and lower bounds for the surface area?
The following Maple procedure chops a floating-point number x to ¢ digits.

chop:=proc(x,t);

if x=0 then O

else

e:=trunc(evalf (loglO(abs(x))));

if e>0 then e:=e+l1 fi;

x2:=evalf (trunc(x*10~ (t-e))*10" (e-t));
fi

end;

Verify that the procedure works for the following values.

(a) © = 124.031, £ =5 (b) »=124.036, ¢ =5

(c) &= —0.00653, t =2 (d) = = —0.00656, t = 2

EXAMPLE 1

1.4. ERRORS IN SCIENTIFIC COMPUTATION 25

1.4 Errors in Scientific Computation

In the previous section we saw how computational devices represent and manipulate
numbers using finite-digit arithmetic. We now examine how the problems with this
arithmetic can compound and look at ways to arrange arithmetic calculations to
reduce this inaccuracy.

The loss of accuracy due to round-off error can often be avoided by a careful
sequencing of operations or a reformulation of the problem. This is most easily
described by considering a common computational problem.

The quadratic formula states that the roots of ax? + bz 4+ ¢ = 0, when a # 0, are

—b+ Vb% — dac and —b—Vb% — dac
— — 2:— .

e 2a 2a

Consider this formula applied, using four-digit rounding arithmetic, to the equation
22 4+ 62.10x + 1 = 0, whose roots are approximately xz; = —0.01610723 and zy =
—62.08390. In this equation, b? is much larger than 4ac, so the numerator in the
calculation for z; involves the subtraction of nearly equal numbers. Since

V% — dac = 1/(62.10)2 — (4.000)(1.000)(1.000) = /3856 — 4.000 = 62.06,

we have 62.10 + 62.06 —0.04000
(1) = — — = = —0.02000
fll@) 2.000 2.000 ’
a poor approximation to 1 = —0.01611 with the large relative error

|—0.01611 -+ 0.02000|

=24 x 10" L
|—0.01611]

On the other hand, the calculation for x5 involves the addition of the nearly equal
numbers —b and —+/b% — 4ac. This presents no problem since

—62.10 — 62.06 —124.2

fllws) 2.000 2.000
has the small relative error
|—62.08 + 62.10] 39 10-4,
|—62.08]

To obtain a more accurate four-digit rounding approximation for x;, we can change
the form of the quadratic formula by rationalizing the numerator:

I —b+ Vb? — dac —b— Vb —dac) b — (b* —4dac)
b 2a —b— V02 —dac) 2a(—b—b? —dac)’

which simplifies to
—2c

b+ Vb2 — dac

Tr, =

EXAMPLE 2

26CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Table 1.1:
T z? x? 6.122 3.2z
Exact 4.71 22.1841 104.487111 135.32301 15.072
Three-digit (chopping) 4.71 22.1 104. 134. 15.0
Three-digit (rounding) 4.71 22.2 105. 135. 15.1

Using this form of the equation gives

—2.000 —2.000
= = = —0.0161
@) = 5370 1 62.06 ~ 1212 01610,
which has the small relative error 6.2 x 10~%. O

The rationalization technique in Example 1 can also be applied to give an al-

ternative formula for xs:
—2c

b= Vb2 — dac’
This is the form to use if b is negative. In Example 1, however, the use of this

formula results in the subtraction of nearly equal numbers, which produces the
result

T2

~2.000 ~92.000
- - — —50.00
FU2) = o 0 62,06 — 0.04000 ’

with the large relative error 1.9 x 107!,

Evaluate f(x) = 23 — 6.122 + 3.2z + 1.5 at 2 = 4.71 using three-digit arithmetic.

Table 1.1 gives the intermediate results in the calculations. Carefully verify these
results to be sure that your notion of finite-digit arithmetic is correct. Note that the
three-digit chopping values simply retain the leading three digits, with no rounding
involved, and differ significantly from the three-digit rounding values.

Exact: f(4.71) = 104.487111 — 135.32301 + 15.072+ 1.5
— _14.263899;
Three-digit (chopping): f(4.71) = ((104. —134.) +15.0) + 1.5 = —13.5;
Three-digit (rounding): f(4.71) = ((105. —135.) +15.1) + 1.5 = —13.4.

The relative errors for the three-digit methods are

—14.263899 + 13.5
~0.05 for choppi
~14.263899 0 or Chopping

1.4. ERRORS IN SCIENTIFIC COMPUTATION 27

and

—14.263899 + 13.4
—14.263899

~ 0.06 for rounding.

As an alternative approach, f(z) can be written in a nested manner as
f(z) =2 6122 +322+ 1.5 = ((x — 6.1)x +3.2)x + 1.5.
This gives
Three-digit (chopping): f(4.71) = ((4.71 — 6.1)4.71 + 3.2)4.71 + 1.5 = —14.2

and a three-digit rounding answer of —14.3. The new relative errors are

—14.263899 + 14.2

Three-digit (chopping): ’ 1963 8; 5 ‘ 0.0045;
—14.2 14.

Three-digit (rounding): ‘ 1i322§8;9 3‘ 0.0025.

Nesting has reduced the relative error for the chopping approximation to less than
one-tenth that obtained initially. For the rounding approximation the improvement
has been even more dramatic: the error has been reduced by more than 95%. Nested
multiplication should be performed whenever a polynomial is evaluated since it
minimizes the number of error producing computations. O

We will be considering a variety of approximation problems throughout the text,
and in each case we need to determine approximation methods that produce de-
pendably accurate results for a wide class of problems. Because of the differing ways
in which the approximation methods are derived, we need a variety of conditions
to categorize their accuracy. Not all of these conditions will be appropriate for any
particular problem.

One criterion we will impose, whenever possible, is that of stability. A method
is called stable if small changes in the initial data produce correspondingly small
changes in the final results. When it is possible to have small changes in the initial
date producing large changes in the final results, the method is unstable. Some
methods are stable only for certain choices of initial data. These methods are called
conditionally stable. We attempt to characterize stability properties whenever pos-
sible.

One of the most important topics effecting the stability of a method is the way
in which the round-off error grows as the method is successively applied. Suppose
an error with magnitude Ey > 0 is introduced at some stage in the calculations
and that the magnitude of the error after n subsequent operations is F,,. There are
two distinct cases that often arise in practice. If a constant C' exists independent
of n, with E, ~ CnEy, the growth of error is linear. If a constant C' > 1 exists
independent of n, with E,, &~ C"Ey, the growth of error is exponential. (It would

28CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

be unlikely to have E,, =~ C"FEy, with C' < 1, since this implies that the error tends
to zero.)

Linear growth of error is usually unavoidable and, when C' and Ej, are small,
the results are generally acceptable. Methods having exponential growth of error
should be avoided, since the term C™ becomes large for even relatively small values
of n and Ejy. As a consequence, a method that exhibits linear error growth is stable,
while one exhibiting exponential error growth is unstable. (See Figure 1.9 .)

Figure 1.9

E, 4

[]

Exponential growth

« E,=C"E,
[]
[]
o . © Lineargrowth
o« .00 " E, = CnE,
'] []
Eot °
1 2 3 45 6 7 8 n

Since iterative techniques involving sequences are often used, the section con-
cludes with a brief discussion of some terminology used to describe the rate at
which convergence occurs when employing a numerical technique. In general, we
would like to choose techniques that converge as rapidly as possible. The following
definition is used to compare the convergence rates of various methods.

Suppose that {o, }72 is a sequence that converges to a number « as n becomes
large. If positive constants p and K exist with

K :
| — ay| < —, for all large values of n
nP '

then we say that {ay} converges to a with rate, or order, of convergence
O(1/nP) (read “big oh of 1/nP”). This is indicated by writing o, = o + O(1/n?)
and stated as “a;,, — « with rate of convergence 1/nP.” We are generally interested
in the largest value of p for which o, = o + O(1/nP).

We also use the “big oh” notation to describe how some divergent sequences
grow as n becomes large. If positive constants p and K exist with

la,| < KnP, for all large values of n,

EXAMPLE 3

1.4. ERRORS IN SCIENTIFIC COMPUTATION 29

Table 1.2:
n 1 2 3 4 5 6 7

o, 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327
&, 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

then we say that {a,} goes to oo with rate, or order, O(nP). In the case of
a sequence that becomes infinite, we are interested in the smallest value of p for
which «,, is O(nP).

The “big oh” definition for sequences can be extended to incorporate more
general sequences, but the definition as presented here is sufficient for our purposes.

Suppose that the sequences {a;,} and {&,,} are described by

n—+1 . n-+3
o, = 5 and G, = T
n n

Although both lim,, o o, = 0 and lim,, o &y, = 0, the sequence {&;, } converges to
this limit much faster than does {cv, }. This can be seen from the five-digit rounding
entries for the sequences shown in Table 1.2.

Since . .
|an_0|:n; Sn;n:la
and +3 3 1
an =0 = L2 < I g

we have

1 1
an:0+0<—> and dn=O—|—O<—2>.
n n

This result implies that the convergence of the sequence {a,,} is similar to the
convergence of {1/n} to zero. The sequence {&,,} converges in a manner similar to
the faster-converging sequence {1/n?}. O

We also use the “big oh” concept to describe the rate of convergence of functions,
particularly when the independent variable approaches zero.

Suppose that F' is a function that converges to a number L as h goes to zero. If
positive constants p and K exist with

|F(h) — L| < Kh?, as h — 0,

30CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

then F(h) converges to L with rate, or order, of convergence O(hP). This
is written as F'(h) = L 4+ O(h?) and stated as “F(h) — L with rate of convergence
hp'”
We are generally interested in the largest value of p for which F(h) = L+O(h?).
The “big oh” definition for functions can also be extended to incorporate more
general zero-converging functions in place of h?.

1.4. ERRORS IN SCIENTIFIC COMPUTATION 31

EXERCISE SET 1.4

1. (i) Use four-digit rounding arithmetic and the formulas of Example 1 to find
the most accurate approximations to the roots of the following quadratic
equations. (ii) Compute the absolute errors and relative errors for these ap-

proximations.
1 123 1
1 123 1 2 0.

(¢) 1.00222 — 11.01z + 0.01265 = 0 (d) 1.00222 4 11.01z + 0.01265 = 0

2. Repeat Exercise 1 using four-digit chopping arithmetic.

3. Let f(z) = 1.0132° — 5.2622° — 0.0173222 + 0.83892 — 1.912.

(a) Evaluate f(2.279) by first calculating (2.279)%, (2.279)3, (2.279)*, and
(2.279)° using four-digit rounding arithmetic.

(b) Evaluate f(2.279) using the formula

f(z) = (((1.01322 — 5.262)z — 0.01732)z + 0.8389)z — 1.912
and four-digit rounding arithmetic.
(¢) Compute the absolute and relative errors in parts (a) and (b).

4. Repeat Exercise 3 using four-digit chopping arithmetic.

5. The fifth Maclaurin polynomials for e2* and e~2% are

o= (e 2) o)2 s2) o
Py(z) = ((((éx+§>x§)x+2>x2>x+l

(a) Approximate e~%98 using Ps(0.49) and four-digit rounding arithmetic.

(b) Compute the absolute and relative error for the approximation in part
(a).
(c) Approximate e~ %% using 1/P5(0.49) and four-digit rounding arith-

metic.

(d) Compute the absolute and relative errors for the approximation in part

(c).

32CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

6. (a) Show that the polynomial nesting technique described in Example 2 can
also be applied to the evaluation of

f(x) = 1.01e*™ — 4.62¢3" — 3.11e2* + 12.2¢" — 1.99.

(b) Use three-digit rounding arithmetic, the assumption that e!-* = 4.62,
and the fact that e"(13) = (¢193)" to evaluate f(1.53) as given in part

(a)-
(¢) Redo the calculation in part (b) by first nesting the calculations.

(d) Compare the approximations in parts (b) and (c) to the true three-digit
result f(1.53) = —7.61.

7. Use three-digit chopping arithmetic to compute the sum Zgil 1/i? first by
%—i— % 4+ 4 ﬁ and then by ﬁ + 8—11 + o+ % Which method is more
accurate, and why?

8. The Maclaurin series for the arctangent function converges for —1 < = <1
and is given by

arctanz = lim P,(z) = lim Z(—l)”lx—

n—o0 n—o0 4

(a) Use the fact that tan7/4 = 1 to determine the number of terms of the
series that need to be summed to ensure that [4P, (1) — 7| < 1073.

(b) The C programming language requires the value of 7 to be within 10719,
How many terms of the series would we need to sum to obtain this degree
of accuracy?

9. The number e is defined by e = >~ (1/n!, where n! =n(n —1)---2-1, for
n # 0 and 0! = 1. (i) Use four-digit chopping arithmetic to compute the
following approximations to e. (ii) Compute absolute and relative errors for
these approximations.

5 > 1
@ > ® 2 5=

n! 7=0

1.4. ERRORS IN SCIENTIFIC COMPUTATION 33

10. Find the rates of convergence of the following sequences as n — oc.

n—oo

©) (<%>) =0 (@ Jim ln(n +1) —In(n)] = 0

A A S
(a) lim sin (1> =0 (b) nILH;o s <n2> =0
n

n—oo

11. Find the rates of convergence of the following functions as h — 0.

: 1—eh
. sinh — hcosh - _
@ fimy = =0 R 1
. sinh . 1fcosh7
(0) Jim == =1 (@) Jim —5— =

12. (a) How many multiplications and additions are required to determine a

sum of the form _
Z Z CLibj?

i=1 j=1

(b) Modify the sum in part (a) to an equivalent form that reduces the
number of computations.

13. The sequence {F,,} described by Fy = 1,F; = 1, and Fyq0 = F + Fry1,
if n > 0, is called a Fibonacci sequence. Its terms occur naturally in many
botanical species, particularly those with petals or scales arranged in the form
of a logarithmic spiral. Consider the sequence {z,}, where z,, = F,,11/F,.
Assuming that lim, . x, = x exists, show that x is the golden ratio (1 +

V5) /2.

14. The Fibonacci sequence also satisfies the equation
1+v5\" (1-vB\"
2 2 '

(a) Write a Maple procedure to calculate Fygq.

- 1
F,=F, =

G

(b) Use Maple with the default value of Digits followed by evalf to calcu-
late
Figo.

34CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

(¢) Why is the result from part (a) more accurate than the result from part
(b)?
(d) Why is the result from part (b) obtained more rapidly than the result

from part (a)?

e) What results when you use the command simplify instead of evalf to
L Y plily
compute Figg?

15. The harmonic series 1 + % + % + % + --- diverges, but the sequence v, =
1+%+. . ~+% —Inn converges, since {~,,} is a bounded, nonincreasing sequence.
The limit v ~ 0.5772156649 . . . of the sequence {7, } is called Fuler’s constant.

(a) Use the default value of Digits in Maple to determine the value of n
for 7y, to be within 1072 of .

(b) Use the default value of Digits in Maple to determine the value of n
for 7y, to be within 1073 of .

(c) What happens if you use the default value of Digits in Maple to de-
termine the value of n for 7, to be within 10=* of ~4?

1.5. COMPUTER SOFTWARE 35

1.5 Computer Software

Computer software packages for approximating the numerical solutions to problems
are available in many forms. With this book, we have provided programs written
in C, Fortran 77, Maple, Mathematica, MATLAB, and Pascal that can be used to
solve the problems given in the examples and exercises. These programs will give
satisfactory results for most problems that a student might need to solve, but they
are what we call special-purpose programs. We use this term to distinguish these
programs from those available in the standard mathematical subroutine libraries.
The programs in these packages will be called general purpose.

The programs in general-purpose software packages differ in their intent from
the programs provided with this book. General-purpose software packages consider
ways to reduce errors due to machine rounding, underflow, and overflow. They also
describe the range of input that will lead to results of a certain specified accuracy.
Since these are machine-dependent characteristics, general-purpose software pack-
ages use parameters that describe the floating-point characteristics of the machine
being used for computations.

There are many forms of general-purpose numerical software available com-
mercially and in the public domain. Most of the early software was written for
mainframe computers, and a good reference for this is Sources and Development of
Mathematical Software, edited by Wayne Crowell [Cr]. Now that the desktop com-
puter has become sufficiently powerful, standard numerical software is available for
personal computers and workstations. Most of this numerical software is written in
Fortran 77, although some packages are written in C, C+4, and Fortran 90.

ALGOL procedures were presented for matrix computations in 1971 in [WR].
A package of FORTRAN subroutines based mainly on the ALGOL procedures
was then developed into the EISPACK routines. These routines are documented
in the manuals published by Springer-Verlag as part of their Lecture Notes in
Computer Science series [SBIKM] and [GBDM]. The FORTRAN subroutines are
used to compute eigenvalues and eigenvectors for a variety of different types of
matrices. The EISPACK project was the first large-scale numerical software package
to be made available in the public domain and led the way for many packages to
follow. EISPACK is mantained by netlib and can be found on the Internet at
http://www.netlib.org/eispack.

LINPACK is a package of Fortran 77 subroutines for analyzing and solving
systems of linear equations and solving linear least squares problems. The docu-
mentation for this package is contained in [DBMS] and located on the Internet
at http://www.netlib.org/linpack. A step-by-step introduction to LINPACK, EIS-
PACK, and BLAS (Basic Linear Algebra Subprograms) is given in [CV].

The LAPACK package, first available in 1992, is a library of Fortran 77 sub-
routines that supersedes LINPACK and EISPACK by integrating these two sets
of algorithms into a unified and updated package. The software has been restruc-
tured to achieve greater efficiency on vector processors and other high-performance
or shared-memory multiprocessors. LAPACK is expanded in depth and breadth in
version 3.0, which is available in Fortran 77, Fortran 90, C, C++, and JAVA. For-
tran 90, C, and JAVA are only available as language interfaces or translations of the

36CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

FORTRAN libraries of LAPACK. The package BLAS is not a part of LAPACK,

but the code for BLAS is distributed with LAPACK. The LAPACK User’s Guide,

3rd ed. [An] is available from STAM or on the Internet at
http://www.netlib.org/lapack/lug/lapack _lug.html.

The complete LAPACK or individual routines from LAPACK can be obtained
through netlib at netlibornl.gov, netlibresearch.att.com, or http://www.netlib.org/lapack.

Other packages for solving specific types of problems are available in the pub-
lic domain. Information about these programs can be obtained through electronic
mail by sending the line “help” to one of the following Internet addresses: netlibre-
search.att.com, netlibornl.gov, netlibnac.no, or netlibdraci.cs.uow.edu.au or to the
uucp address uunet!research!netlib.

These software packages are highly efficient, accurate, and reliable. They are
thoroughly tested, and documentation is readily available. Although the packages
are portable, it is a good idea to investigate the machine dependence and read the
documentation thoroughly. The programs test for almost all special contingencies
that might result in error and failures. At the end of each chapter we will discuss
some of the appropriate general-purpose packages.

Commercially available packages also represent the state of the art in numerical
methods. Their contents are often based on the public-domain packages but include
methods in libraries for almost every type of problem.

IMSL (International Mathematical and Statistical Libraries) consists of the li-
braries MATH, STAT, and SFUN for numerical mathematics, statistics, and special
functions, respectively. These libraries contain more than 900 subroutines originally
available in Fortran 77 and now available in C, Fortran 90, and JAVA. These sub-
routines solve the most common numerical analysis problems. In 1970 IMSL became
the first large-scale scientific library for mainframes. Since that time, the libraries
have been made available for computer systems ranging from supercomputers to
personal computers. The libraries are available commercially from Visual Numer-
ics, 9990 Richmond Ave S400, Houston, TX 77042-4548, with Internet address
http://www.vni.com. The packages are delivered in compiled form with extensive
documentation. There is an example program for each routine as well as background
reference information. IMSL contains methods for linear systems, eigensystem anal-
ysis, interpolation and approximation, integration and differentiation, differential
equations, transforms, nonlinear equations, optimization, and basic matrix/vector
operations. The library also contains extensive statistical routines.

The Numerical Algorithms Group (NAG) has been in existence in the United
Kingdom since 1970. NAG offers more than 1000 subroutines in a Fortran 77 library,
about 400 subroutines in a C library, over 200 subroutines in a Fortran 90 library,
and an MPI FORTRAN numerical library for parallel machines and clusters of
workstations or personal computers. A subset of their Fortran 77 library (the NAG
Foundation Library) is available for personal computers and workstations where
work space is limited. The NAG C Library, the Fortran 90 library, and the MPI
FORTRAN library offer many of the same routines as the FORTRAN Library.
The NAG user’s manual includes instructions and examples, along with sample
output for each of the routines. A useful introduction to the NAG routines is [Ph].
The NAG library contains routines to perform most standard numerical analysis

1.5. COMPUTER SOFTWARE 37

tasks in a manner similar to those in the IMSL. It also includes some statistical
routines and a set of graphic routines. The library is commercially available from
Numerical Algorithms Group, Inc., 1400 Opus Place, Suite 200, Downers Grove, IL
60515-5702, with Internet address http://www.nag.com.

The IMSL and NAG packages are designed for the mathematician, scientist,
or engineer who wishes to call high-quality FORTRAN subroutines from within
a program. The documentation available with the commercial packages illustrates
the typical driver program required to use the library routines. The next three
software packages are stand-alone environments. When activated, the user enters
commands to cause the package to solve a problem. However, each package allows
programming within the command language.

MATLAB is a matrix laboratory that was originally a FORTRAN program pub-
lished by Cleve Moler [Mo]. The laboratory is based mainly on the EISPACK and
LINPACK subroutines, although functions such as nonlinear systems, numerical in-
tegration, cubic splines, curve fitting, optimization, ordinary differential equations,
and graphical tools have been incorporated. MATLAB is currently written in C and
assembler, and the PC version of this package requires a numeric coprocessor. The
basic structure is to perform matrix operations, such as finding the eigenvalues of
a matrix entered from the command line or from an external file via function calls.
This is a powerful self-contained system that is especially useful for instruction in
an applied linear algebra course. MATLAB has been available since 1985 and can be
purchased from The MathWorks Inc., Cochituate Place, 24 Prime Park Way, Natick,
MA 01760. The electronic mail address of The Mathworks is infomathworks.com,
and the Internet address is http://www.mathworks.com. MATLAB software is de-
signed to run on many computers, including IBM PC compatibles, APPLE Mac-
intosh, and SUN workstations. A student version of MATLAB does not require a
coprocessor but will use one if it is available.

The second package is GAUSS, a mathematical and statistical system produced
by Lee E. Ediefson and Samuel D. Jones in 1985. It is coded mainly in assembler
and based primarily on EISPACK and LINPACK. As in the case of MATLAB,
integration/differentiation, nonlinear systems, fast Fourier transforms, and graphics
are available. GAUSS is oriented less toward instruction in linear algebra and more
toward statistical analysis of data. This package also uses a numeric coprocessor if
one is available. It can be purchased from Aptech Systems, Inc., 23804 S.E. Kent-
Kangley Road, Maple Valley, WA 98038 (infoaptech.com).

The third package is Maple, a computer algebra system developed in 1980 by the
Symbolic Computational Group at the University of Waterloo. The design for the
original Maple system is presented in the paper by B.W. Char, K.O. Geddes, W.M.
Gentlemen, and G.H. Gonnet [CGGG]. Maple has been available since 1985 and can
be purchased from Waterloo Maple Inc., 57 Erb Street, Waterloo, ON N2L 6C2. The
electronic mail address of Waterloo Maple is infomaplesoft.com, and the Internet
address is http://www.maplesoft.com. Maple, which is written in C, has the ability
to manipulate information in a symbolic manner. This symbolic manipulation allows
the user to obtain exact answers instead of numerical values. Maple can give exact
answers to mathematical problems such as integrals, differential equations, and
linear systems. Maple has the additional property of allowing worksheets, which

38CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

contain written text and Maple commands. These worksheets can then be loaded
into Maple and the commands executed. Because of the properties of symbolic
computation, numerical computation, and worksheets, Maple is the language of
choice for this text. Throughout the book Maple commands will be embedded into
the text.

Numerous packages are available that can be classified as supercalculator pack-
ages for the PC. These should not be confused, however, with the general-purpose
software listed here. If you have an interest in one of these packages, you should
read Supercalculators on the PC' by B. Simon and R. M. Wilson [SW].

Additional information about software and software libraries can be found in
the books by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by
Dongarra and Walker [DW]. More information about floating-point computation
can be found in the book by Chaitini-Chatelin and Frayse [CF] and the article by
Goldberg [Go.

Books that address the application of numerical techniques on parallel comput-
ers include those by Schendell [Sche], Phillips and Freeman [PF], and Golub and
Ortega [GO].

Chapter 2

Solutions of Equations of
One Variable

2.1 Introduction

In this chapter we consider one of the most basic problems of numerical approxima-
tion, the root-finding problem. This process involves finding a root, or solution, of
an equation of the form f(z) = 0. A root of this equation is also called a zero of the
function f. This is one of the oldest known approximation problems, yet research
continues in this area at the present time.

The problem of finding an approximation to the root of an equation can be
traced at least as far back as 1700 B.C. A cuneiform table in the Yale Babylonian
Collection dating from that period gives a sexagesimal (base-60) number equivalent
to 1.414222 as an approximation to v/2, a result that is accurate to within 10~°.
This approximation can be found by applying a technique given in Section 2.4.

2.2 The Bisection Method

The first and most elementary technique we consider is the Bisection, or Binary-
Search, method. The Bisection method is used to determine, to any specified ac-
curacy that your computer will permit, a solution to f(z) = 0 on an interval [a, b],
provided that f is continuous on the interval and that f(a) and f(b) are of oppo-
site sign. Although the method will work for the case when more than one root is
contained in the interval [a, b], we assume for simplicity of our discussion that the
root in this interval is unique.

To begin the Bisection method, set a; = a and b; = b, as shown in Figure 2.1,
and let p; be the midpoint of the interval [a, b]:

b1 —a
p1=a1+ 12 L

39

40 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

If f(p1) = 0, then the root p is given by p = py; if f(p1) # 0, then f(p1) has the
same sign as either f(a1) or f(b1).
Figure 2.1

Y
f(o) +

y="f(x)

A .
a=a, p, /"o b-b, X
f(a) +
. P b
a P2 b,
ag p3 bs

If f(p1) and f(aq) have the same sign, then p is in the interval (p1,b;1), and we

set
az=p1 and by =by.

If, on the other hand, f(p1) and f(a;) have opposite signs, then p is in the interval

(a1,p1), and we set
a2 = a1 and bg = P1-

We reapply the process to the interval [as, bs], and continue forming [ag, b3],
[aq,b4], Each new interval will contain p and have length one half of the length
of the preceding interval.

[Bisection Method] An interval [a,+1,b,+1] containing an approximation to
a root of f(x) = 0 is constructed from an interval [a,, b,] containing the root

by first letting .
n — Un

2

Pn = ap +
Then set
Ap41 = Anp and bn+1 = Pn if f(an)f(pn) <0,

and

Gn+1 =pn, and b,y =0, otherwise.

EXAMPLE 1

2.2. THE BISECTION METHOD 41

There are three stopping criteria commonly incorporated in the Bisection method.
First, the method stops if one of the midpoints happens to coincide with the root.
It also stops when the length of the search interval is less than some prescribed tol-
erance we call TOL. The procedure also stops if the number of iterations exceeds
a preset bound Nj.

To start the Bisection method, an interval [a, b] must be found with f(a)- f(b) <
0. At each step, the length of the interval known to contain a zero of f is reduced
by a factor of 2. Since the midpoint p; must be within (b — a)/2 of the root p, and
each succeeding iteration divides the interval under consideration by 2, we have

b—a
As a consequence, it is easy to determine a bound for the number of iterations
needed to ensure a given tolerance. If the root needs to be determined within the
tolerance T'OL, we need to determine the number of iterations, n, so that

b—a

TOL.
271 <

Solving for n in this inequality gives

b—a
TOL

, b—
< 2", which implies that log, (ﬁ) < n.

Since the number of required iterations to guarantee a given accuracy depends
on the length of the initial interval [a,b], we want to choose this interval as small
as possible. For example, if f(z) = 223 — 22 + x — 1, we have both

f(=4)-f(4) <0 and f(0)- f(1) <0,

so the Bisection method could be used on either [—4,4] or [0, 1]. Starting the Bi-
section method on [0,1] instead of [—4,4] reduces by 3 the number of iterations
required to achieve a specified accuracy.

The equation f(x) = 2® + 422 — 10 = 0 has a root in [1,2] since f(1) = —5 and
f(2) = 14. Tt is easily seen from a sketch of the graph of f in Figure 2.2 that there
is only one root in [1,2].

Figure 2.2

42 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Ya

14-

y=1f(x) =x3+ 4x>— 10

To use Maple to approximate the root, we define the function f by the command

>f:=x->x"3+4%x"2-10;

The values of a; and by are given by

>al:=1; bl:=2;

We next compute f(a1) = —5 and f(by) = 14 by

>fal:=f(al); fbl:=f(bl);

and the midpoint p; = 1.5 and f(p1) = 2.375 by

>pl:=al+0.5%(bl-al);
>pfl:=f(pl);

Since f(a1) and f(p1) have opposite signs, we reject by and let as = a1 and
bo = p1. This process is continued to find ps, p3, and so on.

As discussed in the Preface, each of the methods we consider in the book has
an accompanying set of programs contained on the CD that is in the back of the
book. The programs are given for the programming languages C, FORTRAN, and
Pascal, and also in Maple V, Mathematica, and MATLAB. The program BISECT?21,
provided with the inputs a = 1, b = 2, TOL = 0.0005, and Ny = 20, gives the values
in Table 2.1. The actual root p, to 10 decimal places, is p = 1.3652300134, and
|[p—p11| < 0.0005. Since the expected number of iterations is log, ((2—1)/0.0005) =~
10.96, the bound Ny was certainly sufficient. O

2.2. THE BISECTION METHOD 43

Table 2.1

n an bn Dn f(pn)

1 1.0000000000 2.0000000000 1.5000000000 2.3750000000
2 1.0000000000 1.5000000000 1.2500000000 —1.7968750000
3 1.2500000000 1.5000000000 1.3750000000 0.1621093750
4 1.2500000000 1.3750000000 1.3125000000 —(0.8483886719
5 1.3125000000 1.3750000000 1.3437500000 —0.3509826660
6 1.3437500000 1.3750000000 1.3593750000 —0.0964088440
7 1.3593750000 1.3750000000 1.3671875000 0.0323557854
8 1.3593750000 1.3671875000 1.3632812500 —0.0321499705
9 1.3632812500 1.3671875000 1.3652343750 0.0000720248
10 1.3632812500 1.3652343750 1.3642578125 —0.0160466908
11 1.3642578125 1.3652343750 1.3647460938 —0.0079892628

The Bisection method, though conceptually clear, has serious drawbacks. It
is slow to converge relative to the other techniques we will discuss, and a good
intermediate approximation may be inadvertently discarded. This happened, for
example, with pg in Example 1. However, the method has the important property
that it always converges to a solution and it is easy to determine a bound for
the number of iterations needed to ensure a given accuracy. For these reasons, the
Bisection method is frequently used as a dependable starting procedure for the
more efficient methods presented later in this chapter.

The bound for the number of iterations for the Bisection method assumes that
the calculations are performed using infinite-digit arithmetic. When implementing
the method on a computer, consideration must be given to the effects of round-off
error. For example, the computation of the midpoint of the interval [a,, b,] should
be found from the equation

b, — an,
2

Pn = ap +
instead of from the algebraically equivalent equation

_ap +by
pn—72 .

The first equation adds a small correction, (b, — a,,)/2, to the known value a,.
When b,, — a,, is near the maximum precision of the machine, this correction might
be in error, but the error would not significantly affect the computed value of p,,.
However, in the second equation, if b,, — a,, is near the maximum precision of the
machine, it is possible for p, to return a midpoint that is not even in the interval
[, bp].

A number of tests can be used to see if a root has been found. We would normally
use a test of the form

|f(pa)| <,

44 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

where € > 0 would be a small number related in some way to the tolerance. However,
it is also possible for the value f(p,) to be small when p,, is not near the root p.

As a final remark, to determine which subinterval of [a,, b,] contains a root of
f, it is better to make use of signum function, which is defined as

-1, ifxz <0,
sgn(z) =40, ifz=0,
1, ifx > 0.

The test

sgn(f(an))sgn(f(pn)) <0 instead of f(an)f(pn) <0

gives the same result but avoids the possibility of overflow or underflow in the
multiplication of f(ay) and f(py).

2.2. THE BISECTION METHOD 45

EXERCISE SET 2.2

1.
2.

Use the Bisection method to find p3 for f(z) = /& — cosz on [0, 1].

Let f(z) = 3(z+1)(z —)(z — 1). Use the Bisection method on the following
intervals to find p3 .

(a) [~2,1.5] (b) [~1.25,2.5]

. Use the Bisection method to find solutions accurate to within 10~2 for =3 —

722 + 142 — 6 = 0 on each interval.

(a) [0,1] (b) [1,3.2] () [3.2,4]

Use the Bisection method to find solutions accurate to within 10~2 for z* —
223 — 422 + 4z + 4 = 0 on each interval.

(a) [-2,-1] (b) [0,2]
(c) [2,3] (d) [=1,0]
(a) Sketch the graphs of y = x and y = 2sin .

)

(b) Use the Bisection method to find an approximation to within 10=2 to
the first positive value of x with x = 2sin x.

(a) Sketch the graphs of y = x and y = tanx.

(b) Use the Bisection method to find an approximation to within 1072 to
the first positive value of z with x = tanx.

Let f(x) = (z+2)(x+1)z(z—1)3(z—2). To which zero of f does the Bisection
method converge for the following intervals?

(a) [—3,2.5] (b) [2.5,3]
(c) [~1.75,1.5] (d) [~1.5,1.75]

. Let f(x) = (z + 2)(x + 1)%x(x — 1)3(z — 2). To which zero of f does the

Bisection method converge for the following intervals?

(a) [~1.5,2.5] (b) [~0.5,2.4]
(c) [-0.5,3] (d) [-3,-0.5]

. Use the Bisection method to find an approximation to v/3 correct to within

10~%. [Hint: Consider f(z) = 22 — 3.]

46

10.

11.

12.

13.

CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Use the Bisection method to find an approximation to v/25 correct to within
1074

Find a bound for the number of Bisection method iterations needed to achieve
an approximation with accuracy 1073 to the solution of 2% 4+ — 4 = 0 lying
in the interval [1,4]. Find an approximation to the root with this degree of
accuracy.

Find a bound for the number of Bisection method iterations needed to achieve
an approximation with accuracy 10™# to the solution of 2* —x — 1 = 0 lying
in the interval [1,2]. Find an approximation to the root with this degree of
accuracy.

The function defined by f(z) = sin7a has zeros at every integer. Show that
when —1 < a <0 and 2 < b < 3, the Bisection method converges to

(a) 0, if a+b<2
(b) 2, if a+b>2
(¢) 1, if a+b=2

2.3. THE SECANT METHOD 47

2.3 The Secant Method

Although the Bisection method always converges, the speed of convergence is usu-
ally too slow for general use. Figure 2.3 gives a graphical interpretation of the
Bisection method that can be used to discover how improvements on this technique
can be derived. It shows the graph of a continuous function that is negative at aq
and positive at by. The first approximation p; to the root p is found by drawing
the line joining the points (a1,sgn(f(a1))) = (a1, —1) and (by,sgn(f(b1))) = (b1,1)
and letting p; be the point where this line intersects the z-axis. In essence, the line
joining (a1, —1) and (b1,1) has been used to approximate the graph of f on the
interval [ay, b1]. Successive approximations apply this same process on subintervals
of [a1,b1], [az,bs], and so on. Notice that the Bisection method uses no information
about the function f except the fact that f(x) is positive and negative at certain
values of x.

Figure 2.3

y=1(X

(b, 1) = (b3, 1)

(az —1)

— 1 - .
(alv _1) = (a21 _1)

Suppose that in the initial step we know that |f(a1)| < |f(b1)]. Then we would
expect the root p to be closer to a; than to by. Alternatively, if |f(b1)| < |f(a1)],
p is likely to be closer to b; than to a;. Instead of choosing the intersection of
the line through (a,sgn(f(a1))) = (a1, —1) and (by,sgn(f(b1))) = (b1,1) as the
approximation to the root p, the Secant method chooses the x-intercept of the
secant line to the curve, the line through (ai, f(a1)) and (b1, f(b1)). This places
the approximation closer to the endpoint of the interval for which f has smaller
absolute value, as shown in Figure 2.4.

48 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Figure 2.4

0, § =1
Po P2 P

W Ps P

The sequence of approximations generated by the Secant method is started by
setting po = a and p; = b. The equation of the secant line through (pg, f(po)) and

(p1, f(p1)) is
f(Pl) - f(po)

<V

= + T — .
y=f(p1) a— (@ —p1)

The a-intercept (p2,0) of this line satisfies
0= flpo) + LT

P1—Po

and solving for py gives
f(p1)(p1 — po)

P2 =P) = Flpo)

[Secant Method] The approximation p, 1, for n > 1, to a root of f(z) =0 is
computed from the approximations p,, and p,_; using the equation

N _ J(Pn) (P — Pn—1)
Pt = e) = (o)

The Secant method does not have the root-bracketing property of the Bisection
method. As a consequence, the method does not always converge, but when it does
converge, it generally does so much faster than the Bisection method.

We use two stopping conditions in the Secant method. First, we assume that
pr, is sufficiently accurate when |p, — p,_1| is within a given tolerance. Also, a
safeguard exit based upon a maximum number of iterations is given in case the
method fails to converge as expected.

EXAMPLE 1

2.3. THE SECANT METHOD 49

The iteration equation should not be simplified algebraically to

f(pn)(pn - pnfl) _ f(pnfl)pn B f(pn)pnfl)

Pt = Pn f(pn) = f(pn-1) f(pn-1) = f(pn)
Although this is algebraically equivalent to the iteration equation, it could in-
crease the significance of rounding error if the nearly equal numbers f(p,—1)pn
and f(pn)pn—1 are subtracted.

In this example we will approximate a root of the equation =3 + 42 — 10 = 0. To
use Maple we first define the function f(z) and the numbers py and p; with the
commands

>fi=x->x"3+4%xx"2-10;
>p0:=1; pl:=2;

The values of f(pg) = —5 and f(p1) = 14 are computed by
>fp0:=£f(p0); fpl:=f(pl);

and the first secant approximation, ps = %,

by
>p2:=pl-fpl*(p1-p0)/(fp1-£p0);

The next command forces a floating-point representation for py instead of an exact
rational representation.

>p2:=evalf (p2);
We compute f(p2) = —1.602274379 and continue to compute ps = 1.338827839 by

>fp2:=£f(p2);
>p3:=p2-fp2* (p2-pl) / (fp2-£fpl);

The program SECANT22 with inputs pg = 1, p1 = 2, TOL = 0.0005, and
Ny = 20 produces the results in Table 2.2. About half the number of iterations are
needed, compared to the Bisection method in Example 1 of Section 2.2. Further,
Ip — ps| = |1.3652300134 — 1.3652300011| < 1.3 x 1078 is much smaller than the
tolerance 0.0005. O

Table 2.2

n Pn f(pn)

1.2631578947 —1.6022743840
1.3388278388 —0.4303647480
1.3666163947 0.0229094308

1.3652119026 —0.0002990679
1.3652300011 —0.0000002032

O UL W N

50 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

There are other reasonable choices for generating a sequence of approximations
based on the intersection of an approximating line and the z-axis. The method of
False Position (or Regula Falst)is a hybrid bisection-secant method that constructs
approximating lines similar to those of the Secant method but always brackets the
root in the manner of the Bisection method. As with the Bisection method, the
method of False Position requires that an initial interval [a, b] first be found, with
f(a) and f(b) of opposite sign. With a; = a and by = b, the approximation, ps, is

given by
fla1) (b1 — a1)

f(b1) — flar)

If f(p2) and f(a1) have the same sign, then set as = py and by = by. Alternatively,
if f(p2) and f(b1) have the same sign, set as = a; and by = pa. (See Figure 2.5.)

P2 = a1 —

[Method of False Position] An interval [ap41,bn41], for m > 1, containing
an approximation to a root of f(x) = 0 is found from an interval [ay, by]
containing the root by first computing

Dl = Gy — f(an)(bn_an)'
" " f(bn) — flan)

Then set
Ap41 = Anp and bn+l = Pn+1 if f(an)f(pn+l> < Oa

and
Gn+1 = Pnt1 and b,y =0, otherwise.

Figure 2.5

Secant method Method of False Position

y="1f() y=1f()

>
2
o+
e
<V

2.3. THE SECANT METHOD 51

Although the method of False Position may appear superior to the Secant
method, it generally converges more slowly, as the results in Table 2.3 indicate
for the problem we considered in Example 1. In fact, the method of False Position
can converge even more slowly than the Bisection method (as the problem given in
Exercise 14 shows), although this is not usually the case. The program FALPOS23
implements the method of False Position.

Table 2.3

n Qp by Pn+1 f(pn+1)

1.00000000 2.00000000 1.26315789 —1.60227438
1.26315789 2.00000000 1.33882784 —0.43036475
1.33882784 2.00000000 1.35854634 —0.11000879
1.35854634 2.00000000 1.36354744 —0.02776209
1.36354744 2.00000000 1.36480703 —0.00698342
1.36480703 2.00000000 1.36512372 —0.00175521
1.36512372 2.00000000 1.36520330 —0.00044106

N OO WD

52 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.3

1. Let f(z) = 22 — 6, pp = 3, and p; = 2. Find p3 using each method.

(a) Secant method (b) method of False Position

2. Let f(x) = —a% — cosx, po = —1, and p; = 0. Find p3 using each method.

(a) Secant method (b) method of False Position

3. Use the Secant method to find solutions accurate to within 10™* for the
following problems.

(a) 23— 222 —5=0, on [1,4] (b) 2> +322-1=0, on [-3,-2]
(¢) z—cosz=0, on[0,7/2] (d) —-0.8=0.2sinz =0, on[0,7/2]

4. Use the Secant method to find solutions accurate to within 1072 for the
following problems.

(a) 2zcos2z — (z—2)2=0 on [2,3] and on [3,4]
(b) (x—2)>—Inz=0 on [1,2] and on [e, 4]
(c) e —322=0 on [0,1] and on [3,5]

(d) sinz—e =0 on [0,1], on [3,4] and on [6, 7]
5. Repeat Exercise 3 using the method of False Position.
6. Repeat Exercise 4 using the method of False Position.

7. Use the Secant method to find all four solutions of 4z cos(2x) — (z — 2)? =0
in [0, 8] accurate to within 1075.

8. Use the Secant method to find all solutions of 2 + 10cosx = 0 accurate to
within 1072.

9. Use the Secant method to find an approximation to v/3 correct to within
10~%, and compare the results to those obtained in Exercise 9 of Section 2.2.

10. Use the Secant method to find an approximation to v/25 correct to within
1079, and compare the results to those obtained in Exercise 10 of Section 2.2.

11. Approximate, to within 10~%, the value of & that produces the point on the
graph of y = 22 that is closest to (1, 0). [Hint: Minimize [d(z)]?, where d(z)
represents the distance from (z,z?) to (1, 0).]

2.3.

12.

13.

14.

15.

16.

17.

18.

THE SECANT METHOD 53

Approximate, to within 10™%, the value of = that produces the point on the
graph of y = 1/x that is closest to (2, 1).
The fourth-degree polynomial

f(z) =230z* + 1823 + 922 — 2212 — 9

has two real zeros, one in [—1,0] and the other in [0, 1]. Attempt to approxi-
mate these zeros to within 10~¢ using each method.

(a) method of False Position (b) Secant method

The function f(z) = tan wz—6 has a zero at (1/7) arctan 6 ~ 0.447431543. Let
po = 0 and p; = 0.48 and use 10 iterations of each of the following methods
to approximate this root. Which method is most successful and why?

(a) Bisection method
(b) method of False Position

(¢) Secant method

Use Maple to determine how many iterations of the Secant method with
Po :mé and p; = w/4 are needed to find a root of f(z) = cosz — x to within
10—,

The sum of two numbers is 20. If each number is added to its square root,
the product of the two sums is 155.55. Determine the two numbers to within
1074

A trough of length L has a cross section in the shape of a semicircle with
radius r. (See the accompanying figure.) When filled with water to within a
distance h of the top, the volume, V', of water is

V=1L 0.57T7’2 — 2 arcsin <ﬁ> _ h(,r.2 _ h2)1/2:|
T

Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft3. Find the depth of water in the
trough to within 0.01 ft.

A particle starts at rest on a smooth inclined plane whose angle 6 is changing
at a constant rate

— = 0.
I w <

54 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

)h Lo [h
/f\ /

/\Z(&

o(t)

At the end of ¢t seconds, the position of the object is given by

wt _ —wt
x(t) J (L - sinwt> .

= 22 2

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 107°, the rate w
at which 6 changes. Assume that g = —32.17 ft/s%.

2.4. NEWTON’S METHOD 55

2.4 Newton’s Method

The Bisection and Secant methods both have geometric representations that use
the zero of an approximating line to the graph of a function f to approximate
the solution to f(z) = 0. The increase in accuracy of the Secant method over the
Bisection method is a consequence of the fact that the secant line to the curve better
approximates the graph of f than does the line used to generate the approximations
in the Bisection method.

The line that best approximates the graph of the function at a point on its graph
is the tangent line to the graph at that point. Using this line instead of the secant
line produces Newton’s method (also called the Newton—Raphson method), the
technique we consider in this section.

Suppose that pg is an initial approximation to the root p of the equation f(x) =0
and that f’ exists in an interval containing all the approximations to p. The slope of
the tangent line to the graph of f at the point (py, f(po)) is f'(po), so the equation
of this tangent line is

y = f(po) = f'(po)(x — po).

Since this line crosses the xz-axis when the y-coordinate of the point on the line

is zero, the next approximation, pi, to p satisfies

0— f(po) = f'(po)(p1 — Po).

which implies that

f(po)

f'(po)’

provided that f’(pg) # 0. Subsequent approximations are found for p in a similar
manner, as shown in Figure 2.6.

P1 = Do —

Figure 2.6

Slopef’(py) y = f(x)

(Pw f(PY)

Slopef’(po)

X

(Po: F(P0))

EXAMPLE 1

56 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

[Newton’s Method] The approximation p,, 1 to a root of f(2) = 0 is computed
from the approximation p, using the equation

_ o f(pn)
Pn+1 = Pn f/(pn)

In this example we use Newton’s method to approximate the root of the equation
23+ 422 — 10 = 0. Maple is used to find the first iteration of Newton’s method with
po = 1. We define f(x) and compute f'(x) by

>f=x->x"3+4xx72-10;

>fp:=x->D(f) (x);

>p0:=1;

The first iteration of Newton’s method gives p; = }—(13, which is obtained with
>pl:=p0-£f (p0) /£p(pO) ;

A decimal representation of 1.454545455 for p; is given by

>pl:=evalf (pl);

The process can be continued to generate the entries in Table 2.4.

Table 2.4
n Dn f(pn)
1 1.4545454545 1.5401953418
2 1.3689004011 0.0607196886
3 1.3652366002 0.0001087706
4 1.3652300134 0.0000000004

We use pg = 1, TOL = 0.0005, and Ny = 20 in the program NEWTON24
to compare the convergence of this method with those applied to this problem
previously. The number of iterations needed to solve the problem by Newton’s
method is less than the number needed for the Secant method, which, in turn,
required less than half the iterations needed for the Bisection method. In addition,
for Newton’s method we have |p — py| =~ 10710, O

EXAMPLE 2

2.4. NEWTON’S METHOD 57

Newton’s method generally produces accurate results in just a few iterations.
With the aid of Taylor polynomials we can see why this is true. Suppose p is the
solution to f(z) = 0 and that f” exists on an interval containing both p and the
approximation p,. Expanding f in the first Taylor polynomial at p,, and evaluating
at x = p gives

/()

0= f(p) = f(pn) + f'(Pn)(p = pn) + =520 — Pn)*,

where ¢ lies between p,, and p. Consequently, if f'(p,) # 0, we have
f(pn) ()

P) T 2 T
Since
P f (pn)
f'(pn)
this implies that
P Pni1= —%(p —pn)?.

If a positive constant M exists with |f”(z)| < M on an interval about p, and if

Py, is within this interval, then

Ip=pnal < grar—ilp —pul?

P—Pnt1|l = D —pnl|”-

S G PP

The important feature of this inequality is that the error |p — p,41| of the (n +
1)st approximation is bounded by approximately the square of the error of the
nth approximation, |p — p,|. This implies that Newton’s method has the tendency
to approximately double the number of digits of accuracy with each successive
approximation. Newton’s method is not, however, infallible, as the equation in
Exercise 12 shows.

Find an approximation to the solution of the equation x = 37% that is accurate to
within 1078,
A solution of this equation corresponds to a solution of

0=f(x)=a—-3""

Since f is continuous with f(0) = —1 and f(1) = 2, a solution of the equation lies
in the interval (0, 1). We have chosen the initial approximation to be the midpoint
of this interval, pg = 0.5. Succeeding approximations are generated by applying the

formula
PR (5 B T w
n+1 n f'(pn) n 1_|_3—I)n 1113

EXAMPLE 3

58 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

These approximations are listed in Table 2.5, together with differences between
successive approximations. Since Newton’s method tends to double the number of
decimal places of accuracy with each iteration, it is reasonable to suspect that ps

is correct at least to the places listed. O
Table 2.5
n Pn |pn - pn—1|
0 0.500000000
1 0.547329757 0.047329757
2 0.547808574 0.000478817
3 0.547808622 0.000000048

The success of Newton’s method is predicated on the assumption that the deriva-
tive of f is nonzero at the approximations to the root p. If f’ is continuous, this
means that the technique will be satisfactory provided that f’(p) # 0 and that a
sufficiently accurate initial approximation is used. The condition f’(p) # 0 is not
trivial; it is true precisely when p is a simple root. A simple root of a function f
occurs at p if a function ¢ exists with the property that, for x # p,

f(z)=(z-plg(x), where lim g(z) # 0.

When the root is not simple, Newton’s method may converge, but not with the
speed we have seen in our previous examples.

The root p = 0 of the equation f(z) = e* —x — 1 = 0 is not simple, since both
f(0)=€e"—0—-1=0and f/(0) = e’ —1 = 0. The terms generated by Newton’s
method with py = 0 are shown in Table 2.6 and converge slowly to zero. The graph
of f is shown in Figure 2.7. O

Table 2.6

n Pn n Pn

0 1.0 9 27750 x 1073
1 058198 10 1.3881 x 1073
2 0.31906 11 6.9411 x 10~*
3 0.16800 12 3.4703 x 1074
4 0.08635 13 1.7416 x 1074
5 0.04380 14 8.8041 x 10~°
6 0.02206
7 0.01107
8 0.005545

Figure 2.7

2.4. NEWTON’S METHOD 59

f(3) 4
l <4
ool 1,e-2
(-Le? o
fx)=er—x-1
_1 1 X

60 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.4
1. Let f(z) = 2% — 6 and pg = 1. Use Newton’s method to find ps.

2. Let f(z) = —2® — cosz and pp = —1. Use Newton’s method to find p>. Could
po = 0 be used for this problem?

3. Use Newton’s method to find solutions accurate to within 10~% for the fol-
lowing problems.

(d) x—0.8-02sinz=0, on [0,7/2]

4. Use Newton’s method to find solutions accurate to within 10~° for the fol-
lowing problems.

(a) 2wcos2z — (x —2)2 =0, on [2,3] and [3,4]
(b) (x —2)2 —lnz =0, on [1,2] and e, 4]

(c) e =322 =0, on|[0,1] and [3,5]

(d) sinx —e =0, on[0,1], [3,4], and [6,7]

5. Use Newton’s method to find all four solutions of 4z cos(2x) — (x — 2)% = 0
in [0, 8] accurate to within 1075.

6. Use Newton’s method to find all solutions of 22 4+ 10cosx = 0 accurate to
within 107°.

7. Use Newton’s method to approximate the solutions of the following equations
to within 107° in the given intervals. In these problems the convergence will
be slower than normal since the roots are not simple roots.

(a) 2% —2re ™ * 4+ e 22 =0, on [0,1]

(b) cos(z +V2) +z (2/2++2) =0, on [-2,—1]
(c) x® —32%(27%) +32(47 %) +8¢ =0, on [0,1]
(d) €% + 3(In2)%e?® — (In8)e*® — (In2)%, on [-1,0]
8. The numerical method defined by

f(pn—l)f,(pn—l)
F'n-0)> = f(Pn-1)f" (pn-1)’

forn =1,2,..., can be used instead of Newton’s method for equations having
multiple roots. Repeat Exercise 7 using this method.

Pn = Pn—1 — [

2.4.

10.

11.

12.

13.

14.

15.

16.

NEWTON’S METHOD 61

. Use Newton’s method to find an approximation to v/3 correct to within 104,

and compare the results to those obtained in Exercise 9 of Sections 2.2 and
2.3.

Use Newton’s method to find an approximation to v/25 correct to within
1079, and compare the results to those obtained in Exercise 10 of Section 2.2
and 2.3.

In Exercise 14 of Section 2.3 we found that for f(z) = tanma — 6, the Bi-
section method on [0, 0.48] converges more quickly than the method of False
Position with pg = 0 and p; = 0.48. Also, the Secant method with these val-
ues of pg and p; does not give convergence. Apply Newton’s method to this
problem with (a) pg = 0, and (b) po = 0.48. (¢) Explain the reason for any
discrepancies.

Use Newton’s method to determine the first positive solution to the equation
tanz = z, and explain why this problem can give difficulties.

Use Newton’s method to solve the equation

1 1 1
0= 3 + Zmz —xsinx — 500523:, with pg = %
Iterate using Newton’s method until an accuracy of 107° is obtained. Explain
why the result seems unusual for Newton’s method. Also, solve the equation
with pg = 57 and pg = 107.

Use Maple to determine how many iterations of Newton’s method with pg =
7/4 are needed to find a root of f(z) = cosz — x to within 107109,

Player A will shut out (win by a score of 21-0) player B in a game of rac-
quetball with probability

1+p p 21
P= :
2 \1-p+p?

where p denotes the probability A will win any specific rally (independent of
the server). (See [K,J], p. 267.) Determine, to within 1073, the minimal value
of p that will ensure that A will shut out B in at least half the matches they

play.

The function described by f(z) = In(z? + 1) — €%** cos mx has an infinite
number of zeros.

(a) Determine, within 1075, the only negative zero.
(b) Determine, within 10~°, the four smallest positive zeros.

(¢) Determine a reasonable initial approximation to find the nth smallest
positive zero of f. [Hint: Sketch an approximate graph of f.]

62

17.

18.

19.

20.

CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

(d) Use part (c) to determine, within 1075, the 25th smallest positive zero
of f.

The accumulated value of a savings account based on regular periodic pay-
ments can be determined from the annuity due equation,

A= ?[(1 +i)m—1).

In this equation A is the amount in the account, P is the amount regularly
deposited, and 7 is the rate of interest per period for the n deposit periods.
An engineer would like to have a savings account valued at $750,000 upon
retirement in 20 years and can afford to put $1500 per month toward this
goal. What is the minimal interest rate at which this amount can be invested,
assuming that the interest is compounded monthly?

Problems involving the amount of money required to pay off a mortgage over
a fixed period of time involve the formula

A=,

known as an ordinary annuity equation. In this equation A is the amount of
the mortgage, P is the amount of each payment, and i is the interest rate
per period for the n payment periods. Suppose that a 30-year home mortgage
in the amount of $135,000 is needed and that the borrower can afford house
payments of at most $1000 per month. What is the maximal interest rate the
borrower can afford to pay?

A drug administered to a patient produces a concentration in the blood stream
given by c(t) = Ate~'/? milligrams per milliliter ¢ hours after A units have
been injected. The maximum safe concentration is 1 mg/ml.

(a) What amount should be injected to reach this maximum safe concen-
tration and when does this maximum occur?

(b) An additional amount of this drug is to be administered to the patient
after the concentration falls to 0.25 mg/ml. Determine, to the nearest
minute, when this second injection should be given.

(c¢) Assuming that the concentration from consecutive injections is additive
and that 75% of the amount originally injected is administered in the
second injection, when is it time for the third injection?

Let f(x) = 33¢+t1 —7.5%

(a) Use the Maple commands solve and fsolve to try to find all roots of

I
(b) Plot f(x) to find initial approximations to roots of f.

2.4. NEWTON’S METHOD

(c) Use Newton’s method to find roots of f to within 10716.

(d) Find the exact solutions of f(z) = 0 algebraically.

63

EXAMPLE 1

64 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

2.5 Error Analysis and Accelerating Convergence

In the previous section we found that Newton’s method generally converges very
rapidly if a sufficiently accurate initial approximation has been found. This rapid
speed of convergence is due to the fact that Newton’s method produces quadratically
convergent approximations.

A method that produces a sequence {p, } of approximations that converge to a
number p converges linearly if, for large values of n, a constant 0 < M < 1 exists
with

[P = Pn1] < Mlp — pal.
The sequence converges quadratically if, for large values of n, a constant 0 < M
exists with

[P — Pyl < Mlp— pnl®.

The following example illustrates the advantage of quadratic over linear conver-
gence.

Suppose that {p,} converges linearly to p = 0, {p,} converges quadratically to
p =0, and the constant M = 0.5 is the same in each case. Then

Ip1| < Mlpo| < (0.5)-|po] and [p1| < Mpo|* < (0.5) - [pol>.

Similarly,
[p2] < Mlp1| < 0.5(0.5) - [po| = (0.5)*|po]

and

2] < M|p1|* < 0.5(0.5[po|?)* = (0.5)|qo|*.
Continuing,

[ps| < M|p2| < 0.5((0.5)%|pol) = (0.5)° |po
and

3] < Mlp2l* < 0.5((0.5)%|pol*)* = (0.5)"|qol".
In general,
lpn] < 0.5"|po|, whereas [p,| < (0.5)%" 7!|po|*"

for each n = 1,2,.... Table 2.7 illustrates the relative speed of convergence of these

error bounds to zero, assuming that |pg| = |po| = 1.

2.5. ERROR ANALYSIS AND ACCELERATING CONVERGENCE 65

Table 2.7

Linear Convergence Quadratic Convergence

Sequence Bound Sequence Bound
n pn =(0.5)" Pn =(0.5)2"1
1 5.0000 x 10~! 5.0000 x 10!
2 2.5000 x 10! 1.2500 x 10!
3 1.2500 x 10! 7.8125 x 1073
4 6.2500 x 10~2 3.0518 x 1075
5 3.1250 x 102 4.6566 x 10710
6 1.5625 x 102 1.0842 x 10~
7 7.8125 x 1073 5.8775 x 10739

The quadratically convergent sequence is within 10738 of zero by the seventh
term. At least 126 terms are needed to ensure this accuracy for the linearly conver-
gent sequence. If || < 1, the bound on the sequence {p,} will decrease even more
rapidly. No significant change will occur, however, if [pg| < 1. O

As illustrated in Example 1, quadratically convergent sequences generally con-
verge much more quickly than those that converge only linearly. However, linearly
convergent methods are much more common than those that converge quadrat-
ically. Aitken’s A% method is a technique that can be used to accelerate the
convergence of a sequence that is linearly convergent, regardless of its origin or
application.

Suppose {p, 52, is a linearly convergent sequence with limit p. To motivate the
construction of a sequence {¢, } that converges more rapidly to p than does {p,},
let us first assume that the signs of p,, — p, pn+1 — p, and p,12 — p agree and that
n is sufficiently large that

Pnt1 =P Pnt2 —P
Pn—DP Pn+1 — P

Then
(Prt1 — P)* = (Pnt2 — p)(pn — D),
SO
2 2 2
pn+1 - 2pn+1p + P = Pn42Pn — (pn + pn+2)p + P
and

(Prt2 + Pn — 2Pnt1)P & DntoPn — Poyi-

Solving for p gives
Pn+42Pn — p?]r‘rl
pn+2 - 2pn+1 +pn

66 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Adding and subtracting the terms p? and 2p,p,41 in the numerator and grouping
terms appropriately gives

PuPrt2 = 2PnPnt1 + P — Phi1 + 2PnPnt1 — P
Pn+2 — 2Pnt1 + Pn
pn(pn+2 = 2ppy1 + pn) - (p%-o—l = 2pnPni1 + p%)
Pn+2 = 2Pn41 + Pn
o (Pny1 — pn)2
Pn+2 — 2Pn+1 + Pn .

= Pn

Aitken’s A? method uses the sequence {g, }°, defined by this approximation to p.

[Aitken’s A% Method] If {p,}52, is a sequence that converges linearly to p,
and if

(pn-‘rl - pn)z
Pn+2 — 2pn+1 + pn’

then {g,}5°, also converges to p, and, in general, more rapidly.

qn = Pn —

EXAMPLE 2 The sequence {p, }°2 ,, where p,, = cos(1/n), converges linearly to p = 1. The first
few terms of the sequences {p, }>2; and {¢, }>2; are given in Table 2.8. It certainly

appears that {¢,}>2; converges more rapidly to p = 1 than does {p, }5° ;. O
Table 2.8

n Pn dn

1 0.54030 0.96178

2 0.87758 0.98213

3 0.94496 0.98979

4 0.96891 0.99342

5 0.98007 0.99541

6 0.98614

7 0.98981

For a given sequence {p, }52, the forward difference, Ap,, (read "delta p,,”),
is defined as
Apn = Pn+1 — Pn, for n > 0.

Higher powers of the operator A are defined recursively by

AFp, = A(A*1p,), for k> 2.

2.5. ERROR ANALYSIS AND ACCELERATING CONVERGENCE 67

The definition implies that

A2pn = A(pn-l-l - pn) = Apn—i-l - Apn = (pn+2 - pn-i-l) - (pn+1 _pn)v

SO
AQpn = Pn+42 — 2pn+1 + Dn-
Thus, the formula for g, given in Aitken’s A% method can be written as

Gn = Pn — (Apn)”
n n A2pn)

for all n > 0.

The sequence {g,}52; converges to p more rapidly than does the original se-
quence {p,}>2 in the following sense:

[Aitken’s A? Convergence] If {p, } is a sequence that converges linearly to the
limit p and (pn, — p)(Pr+1 — p) > 0 for large values of n, and

(Apn)2 . gn — P
Gn = Pn — AZp, then lim ——

n—00 Pp — P

=0.

We will find occasion to apply this acceleration technique at various times in
our study of approximation methods.

68 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.5

1. The following sequences are linearly convergent. Generate the first five terms
of the sequence {g,} using Aitken’s A? method.

po=0.5, p,=(2—ePr-14p2 1)/3, for n>1
po=0.75, p, = (ePr-1/3)Y/2 forn>1
(¢) po=05, p,=3Pr-1 forn>1
(d) po=0.5, p,=cosp,—1, forn>1
2. Newton’s method does not converge quadratically for the following problems.

Accelerate the convergence using the Aitken’s A% method. Iterate until |g,, —
qn,1| <1074,

(a) 22 —2ze " +e2* =0, [0,1]

(b) cos(z 4+ V2) +z(z/2+V2) =0, [-2,—1]
)
)

(c) 2% —32%(27%) +32(47%) =87 =0, [0,1]

(d) €57 + 3(In2)2e2* — (In8)e** — (In2)3 =0, [—1,0]

3. Consider the function f(z) = € + 3(In2)%e?* — (In8)e?® — (In2)3. Use New-
ton’s method with pg = 0 to approximate a zero of f. Generate terms until
|Pns1 — pn| < 0.0002. Construct the Aitken’s A% sequence {g,}. Is the con-
vergence improved?

4. Repeat Exercise 3 with the constants in f(x) replaced by their four-digit
approximations, that is, with f(z) = €% + 1.441e%** — 2.079¢** — 0.3330, and
compare the solutions to the results in Exercise 3.

5. (i) Show that the following sequences {p,, } converge linearly top = 0. (ii) How
large must n be before |p, —p| < 5 x 107227 (iii) Use Aitken’s A% method
to generate a sequence {q,} until |¢, — p| <5 x 1072

1 1
(a)pnzﬁ,fornzl (b)pn:ﬁ,fornzl

6. (a) Show that for any positive integer k, the sequence defined by p,, = 1/n*
converges linearly to p = 0.

(b) For each pair of integers k£ and m, determine a number N for which
1/Nk < 107™.

7. (a) Show that the sequence p,, = 10~2" converges quadratically to zero.

2.5. ERROR ANALYSIS AND ACCELERATING CONVERGENCE 69
(b) Show that the sequence p,, = 10~"" does not converge to zero quadrat-
ically, regardless of the size of the exponent k > 1.

8. A sequence {p,} is said to be superlinearly convergent to p if a sequence
{¢n} converging to zero exists with

|pn+1 _p| S Cn|pn _p|~

(a) Show that if {p,} is superlinearly convergent to p, then {p,} is linearly
convergent to p.

(b) Show that p, = 1/n™ is superlinearly convergent to zero but is not
quadratically convergent to zero.

70 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

2.6 Muller’s Method

There are a number of root-finding problems for which the Secant, False Position,
and Newton’s methods will not give satisfactory results. They will not give rapid
convergence, for example, when the function and its derivative are simultaneously
close to zero. In addition, these methods cannot be used to approximate complex
roots unless the initial approximation is a complex number whose imaginary part
is nonzero. This often makes them a poor choice for use in approximating the roots
of polynomials, which, even with real coeflicients, commonly have complex roots
occuring in conjugate pairs.

In this section we consider Miiller’s method, which is a generalization of the
Secant method. The Secant method finds the zero of the line passing through points
on the graph of the function that corresponds to the two immediately previous
approximations, as shown in Figure 2.8(a). Miiller’s method uses the zero of the
parabola through the three immediately previous points on the graph as the new
approximation, as shown in part (b) of Figure 2.8.

Figure 2.8

Ya Ya

@ (b)

Suppose that three initial approximations, pg,p1, and ps, are given for a so-
lution of f(x) = 0. The derivation of Miiller’'s method for determining the next
approximation ps begins by considering the quadratic polynomial

P(z) = a(z —p2)? + blx — p2) + ¢

that passes through (po, £(po)). (p1, £(p1)), and (pz, f(pz). The constants a,b, and
¢ can be determined from the conditions

fpo) = alpo—p2)® +blpo — p2) + ¢,
a(py —p2)? +b(p1 — p2) + ¢,

~
—
s
=
S~—
Il

EXAMPLE 1

2.6. MULLER’S METHOD 71

and
flp2)=a-0*+b-0+c

To determine p3, the root of P(x) = 0, we apply the quadratic formula to
P(z). Because of round-off error problems caused by the subtraction of nearly equal
numbers, however, we apply the formula in the manner prescribed in Example 1 of
Section 1.4:

—2c
Psm P2 = S VP dae

This gives two possibilities for p3, depending on the sign preceding the radical
term. In Miiller’s method, the sign is chosen to agree with the sign of b. Chosen in
this manner, the denominator will be the largest in magnitude, which avoids the
possibility of subtracting nearly equal numbers and results in p3 being selected as
the closest root of P(z) = 0 to pa.

[Miiller’s Method] Given initial approximations pg, p1, and po, generate

2c

bs=py + sgn(b)v/b? — dac’

where

c = flp2),
p — (2o =p2)?’[f(p1) = f(p2)] = (p1 = p2)*[f (p0) = [(p2)]
(Po — p2)(P1 — p2)(po — p1)
and o — (p1 — p2)[f(po) — f(p2)] — (o — p2)[f (P1) — f(p2)]
(po — p2)(p1 — p2)(po — p1) '
Then continue the iteration, with p1, ps, and ps replacing pg, p1, and ps.

i

The method continues until a satisfactory approximation is obtained. Since the
method involves the radical v/b2 — 4ac at each step, the method approximates com-
plex roots when b? — 4ac < 0, provided, of course, that complex arithmetic is used.

Consider the polynomial f(z) = 162* — 4023 + 522 + 20z + 6. Using the program
MULLER25 with accuracy tolerance 10~° and various inputs for pg,p;, and po
produces the results in Tables 2.9, 2.10, and 2.11. O

Table 2.9
po = 0.5, p1 = —0.5, po =0

72 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

n Pn f(pn)
3 —0.555556 + 0.598352i —29.4007 — 3.89872i
4 —0.435450 + 0.102101¢ 1.33223 — 1.19309¢
5 —0.390631 + 0.1418527 0.375057 — 0.6701644
6 —0.357699 + 0.1699264 —0.146746 — 0.007446297
7 —0.356051 + 0.162856: —0.183868 x 1072 4+ 0.539780 x 10~3;
8 —0.356062 + 0.162758i 0.286102 x 107° + 0.953674 x 10764
Table 2.10
Po = 05, P1 = 1.0, P2 = 1.5
n Pn f(pn)
3 1.28785 —1.37624
4 1.23746 0.126941
5 1.24160 0.219440 x 102
6 1.24168 0.257492 x 10~*
7 1.24168 0.257492 x 10~*
Table 2.11

po = 2.5, p1 = 2.0, p2 =2.25

n Pn f(pn)

3 1.96059 —0.611255

4 1.97056 0.748825 x 102
5 197044 —0.295639 x 10~*
6 197044 —0.295639 x 10~*

To use Maple to generate the first entry in Table 2.9 we define f(x) and the
initial approximations with the Maple statements

>f:=x->16%x"4-40%x"3+5%x"2+20%x+6;
>p0:=0.5; pl:=-0.5; p2:=0.0;

We evaluate the polynomial at the initial values
>£0:=f(p0); f1:=f(pl); £2:=£(p2);

and we compute ¢ = 6, b = 10, a = 9, and p3 = —0.5555555558 + 0.59835164521
using the Miiller’s method formulas:

2.6. MULLER’S METHOD 73

>c:=f2;

>b:=((p0-p2) "2 (f1-£2) - (p1-p2) "2* (£0-£2)) / ((p0-p2) * (p1-p2) * (p0-p1)) ;
>a:=((p1-p2) *(£0-£2) - (p0-p2) * (f1-£2)) / ((p0-p2) * (p1-p2) * (p0-p1)) ;
>p3:=p2-(2*c) / (b+(b/abs (b)) *sqrt (b~ 2-4*axc)) ;

The value p3 was generated using complex arithmetic, as is the calculation
>£3:=f (p3);

which gives f3 = —29.40070112 — 3.898724738i.

The actual values for the roots of the equation are —0.356062 + 0.1627581,
1.241677, and 1.970446, which demonstrate the accuracy of the approximations
from Miiller’s method.

Example 1 illustrates that Miiller’s method can approximate the roots of poly-
nomials with a variety of starting values. In fact, the technique generally converges
to the root of a polynomial for any initial approximation choice. General-purpose
software packages using Miiller’s method request only one initial approximation per
root and, as an option, may even supply this approximation.

Although Miiller’s method is not quite as efficient as Newton’s method, it is
generally better than the Secant method. The relative efficiency, however, is not
as important as the ease of implementation and the likelihood that a root will be
found. Any of these methods will converge quite rapidly once a reasonable initial
approximation is determined.

When a sufficiently accurate approximation p* to a root has been found, f(x)
is divided by x — p* to produce what is called a deflated equation. If f(x) is a
polynomial of degree n, the deflated polynomial will be of degree n — 1, so the
computations are simplified. After an approximation to the root of the deflated
equation has been determined, either Miiller’s method or Newton’s method can be
used in the original function with this root as the initial approximation. This will
ensure that the root being approximated is a solution to the true equation, not to
the less accurate deflated equation.

74 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.6

1. Find the approximations to within 10~ to all the real zeros of the following
polynomials using Newton’s method.

(a) P(x) = 2* — 222 — 5

(b) P(x) =%+ 322 -1

(¢) P(x)=a'+222 —2 -3

(d) P(z) =2 —a* +22% — 322 + 2 — 4

2. Find approximations to within 107° to all the zeros of each of the following
polynomials by first finding the real zeros using Newton’s method and then
reducing to polynomials of lower degree to determine any complex zeros.

(a) P(z) = a* + 523 — 922 — 852 — 136

(b) P(z) = 2* — 223 — 122% + 162 — 40

(c) P(x) =a* 4+ 23 + 32? 4+ 22 + 2

(d) P(z) =+ 11z* — 212® — 1022 — 212 — 5

3. Repeat Exercise 1 using Miiller’s method.
4. Repeat Exercise 2 using Miiller’s method.

5. Find, to within 1072, the zeros and critical points of the following functions.
Use this information to sketch the graphs of P.

(a) P(x) =23 —92% +12 (b) P(z) = a* — 223 — 522 + 122 — 5
6. P(z) = 102 — 8.322 + 2.295x — 0.21141 = 0 has a root at x = 0.29.

(a) Use Newton’s method with py = 0.28 to attempt to find this root.

(b) Use Miiller’'s method with py = 0.275, p; = 0.28, and ps = 0.285 to
attempt to find this root.

(¢) Explain any discrepancies in parts (a) and (b).

7. Use Maple to find the exact roots of the polynomial P(z) = 2 + 42 — 4.
8. Use Maple to find the exact roots of the polynomial P(z) = 2% — 2z — 5.

9. Use each of the following methods to find a solution accurate to within 10~*
for the problem

6002* — 55022 + 20022 — 202 — 1 =0, for 0.1 <z <1.

2.6. MULLER’S METHOD 75

X2

H

|
e—w—

Bisection method

(a
(b

Newton’s method

d

)
)
(¢) Secant method
(d) method of False Position
)

(e) Miiller’s method

10. Two ladders crisscross an alley of width 1. Each ladder reaches from the
base of one wall to some point on the opposite wall. The ladders cross at a
height H above the pavement. Find W given that the lengths of the ladders
are x1 = 20 ft and x5 = 30 ft and that H = 8 ft. (See the figure on page 58.)

11. A can in the shape of a right circular cylinder is to be constructed to contain
1000 cm?. The circular top and bottom of the can must have a radius of 0.25
cm more than the radius of the can so that the excess can be used to form a
seal with the side. The sheet of material being formed into the side of the can
must also be 0.25 cm longer than the circumference of the can so that a seal
can be formed. Find, to within 10~%, the minimal amount of material needed
to construct the can.

12. In 1224 Leonardo of Pisa, better known as Fibonacci, answered a mathemat-
ical challenge of John of Palermo in the presence of Emperor Frederick II.
His challenge was to find a root of the equation x® + 222 + 10z = 20. He
first showed that the equation had no rational roots and no Euclidean irra-
tional root—that is, no root in one of the forms a + v/b, Va + Vb,V a+ Vb,

or \/\/a=+ Vb, where a and b are rational numbers. He then approximated
the only real root, probably using an algebraic technique of Omar Khayyam

76 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

involving the intersection of a circle and a parabola. His answer was given in
the base-60 number system as

1 1\? 1\? 1* 1\° 1\¢
1+22<@)+7<@> +42<@> +33(@) +4(@> +40<@) .

How accurate was his approximation?

2.7. SURVEY OF METHODS AND SOFTWARE 7

2.7 Survey of Methods and Software

In this chapter we have considered the problem of solving the equation f(z) =
0, where f is a given continuous function. All the methods begin with an initial
approximation and generate a sequence that converges to a root of the equation, if
the method is successful. If [a, b] is an interval on which f(a) and f(b) are of opposite
sign, then the Bisection method and the method of False Position will converge.
However, the convergence of these methods may be slow. Faster convergence is
generally obtained using the Secant method or Newton’s method. Good initial
approximations are required for these methods, two for the Secant method and
one for Newton’s method, so the Bisection or the False Position method can be
used as starter methods for the Secant or Newton’s method.

Miiller’s method will give rapid convergence without a particularly good initial
approximation. It is not quite as efficient as Newton’s method, but it is better than
the Secant method, and it has the added advantage of being able to approximate
complex roots.

Deflation is generally used with Miiller’s method once an approximate root of a
polynomial has been determined. After an approximation to the root of the deflated
equation has been determined, use either Miiller’s method or Newton’s method in
the original polynomial with this root as the initial approximation. This procedure
will ensure that the root being approximated is a solution to the true equation, not
to the deflated equation. We recommended Miiller’s method for finding all the zeros
of polynomials, real or complex. Miiller’s method can also be used for an arbitrary
continuous function.

Other high-order methods are available for determining the roots of polynomials.
If this topic is of particular interest, we recommend that consideration be given to
Laguerre’s method, which gives cubic convergence and also approximates complex
roots (see [Ho, pp. 176-179] for a complete discussion), the Jenkins-Traub method
(see [JT]), and Brent’s method. (see [Bre]), Both IMSL and NAG supply subroutines
based on Brent’s method. This technique uses a combination of linear interpolation,
an inverse quadratic interpolation similar to Miiller’s method, and the bisection
method.

The netlib FORTRAN subroutine fzero.f uses a combination of the Bisection and
Secant method developed by T. J. Dekker to approximate a real zero of f(z) =0
in the interval [a, b]. It requires specifying an interval [a, b] that contains a root and
returns an interval with a width that is within a specified tolerance. The FOR-
TRAN subroutine sdzro.f uses a combination of the bisection method, interpola-
tion, and extrapolation to find a real zero of f(z) = 0 in a given interval [a, b]. The
routines rpzero and cpzero can be used to approximate all zeros of a real polyno-
mial or complex polynomial, respectively. Both methods use Newton’s method for
systems, which will be considered in Chapter 10. All routines are given in single
and double precision. These methods are available on the Internet from netlib at
http://www.netlib.org/slatec/src.

Within MATLAB, the function ROOTS is used to compute all the roots, both
real and complex, of a polynomial. For an arbitrary function, FZERO computes a
root near a specified initial approximation to within a specified tolerance.

78 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Maple has the procedure fsolve to find roots of equations. For example,
>fsolve(x™2 - x - 1, x);
returns the numbers —.6180339887 and 1.618033989. You can also specify a partic-
ular variable and interval to search. For example,
>fsolve(x"2 - x - 1,x,1..2);
returns only the number 1.618033989. The command fsolve uses a variety of spe-
cialized techniques that depend on the particular form of the equation or system of
equations.

Notice that in spite of the diversity of methods, the professionally written pack-
ages are based primarily on the methods and principles discussed in this chapter.
You should be able to use these packages by reading the manuals accompanying the
packages to better understand the parameters and the specifications of the results
that are obtained.

There are three books that we consider to be classics on the solution of nonlinear
equations, those by Traub [Tr], by Ostrowski [Os], and by Householder [Hol. In
addition, the book by Brent [Bre] served as the basis for many of the currently
used root-finding methods.

Chapter 3

Interpolation and Polynomial
Approximation

3.1 Introduction

Engineers and scientists commonly assume that relationships between variables in a
physical problem can be approximately reproduced from data given by the problem.
The ultimate goal might be to determine the values at intermediate points, to
approximate the integral or derivative of the underlying function, or to simply give
a smooth or continuous representation of the variables in the problem.

Interpolation refers to determining a function that exactly represents a collection
of data. The most elementary type of interpolation consists of fitting a polynomial
to a collection of data points. Polynomials have derivatives and integrals that are
themselves polynomials, so they are a natural choice for approximating derivatives
and integrals. We will see in this chapter that polynomials to approximate contin-
uous functions are easily constructed. The following result implies that there are
polynomials that are arbitrarily close to any continuous function.

[Weierstrass Approximation Theorem] Suppose that f is defined and contin-
uous on [a, b]. For each £ > 0, there exists a polynomial P(x) defined on [a, b],
with the property that

|f(z) — P(x)] < e, for all z € [a, b].

The Taylor polynomials were introduced in Section 1.2, where they were de-
scribed as one of the fundamental building blocks of numerical analysis. Given
this prominence, you might assume that polynomial interpolation makes heavy use
of these functions. However, this is not the case. The Taylor polynomials agree

79

S80CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

as closely as possible with a given function at a specific point, but they concen-
trate their accuracy only near that point. A good interpolation polynomial needs
to provide a relatively accurate approximation over an entire interval, and Taylor
polynomials do not do that. For example, suppose we calculate the first six Taylor
polynomials about o = 0 for f(x) = e®. Since the derivatives of f are all e*, which
evaluated at xg = 0 gives 1, the Taylor polynomials are

z? 2?2t

Po(x) = 1, P(r)=1+uw, PZ(fU):l‘f‘x‘F?a Ps(ff):l—kx—i—?—i—zy
2 2t e e

Py(z) = l+z+ o+ +55, and P5($)_l+x+?+F+ﬂ+ﬁ'

The graphs of these Taylor polynomials are shown in Figure 3.1. Notice that the
error becomes progressively worse as we move away from zero.

Figure 3.1
Ya
20+ y = e
.Y =Ps(x)
:/ y = Py(¥)
15“ //
[0 Y = Pa(X)
[/
... /
10+ £
£’ y = PaX)
5__
________ y =Pi(X)
e , Y =Pox)
-1 1 2 3 X

Although better approximations are obtained for this problem if higher-degree
Taylor polynomials are used, this situation is not always true. Consider, as an
extreme example, using Taylor polynomials of various degrees for f(z) = 1/x ex-
panded about z¢g = 1 to approximate f(3) = % Since

f@)y=a=t fl(z) = —272 f"(x) = (-1)*2- 27,

and, in general,

F™(@) = (1) k™",

3.2. LAGRANGE POLYNOMIALS 81

the Taylor polynomials for n > 0 are

) =3 TP 1 = S r e - 1)
k=0 :

k=0

When we approximate f(3) = % by P, (3) for larger values of n, the approximations
become increasingly inaccurate, as shown Table 3.1.

Table 3.1

Since the Taylor polynomials have the property that all the information used in
the approximation is concentrated at the single point xg, it is not uncommon for
these polynomials to give inaccurate approximations as we move away from . This
limits Taylor polynomial approximation to the situation in which approximations
are needed only at points close to xg. For ordinary computational purposes it is more
efficient to use methods that include information at various points, which we will
consider in the remainder of this chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes; instead it is for the derivation
of numerical techniques.

3.2 Lagrange Polynomials

In the previous section we discussed the general unsuitability of Taylor polynomi-
als for approximation. These polynomials are useful only over small intervals for
functions whose derivatives exist and are easily evaluated. In this section we find
approximating polynomials that can be determined simply by specifying certain
points on the plane through which they must pass.

Determining a polynomial of degree 1 that passes through the distinct points
(z0,y0) and (z1,y1) is the same as approximating a function f for which f(zo) = yo
and f(z1) = y1 by means of a first-degree polynomial interpolating, or agreeing
with,the values of f at the given points. We first define the functions

r — I

LO(IL) = m and Ll(fL) = T — 3‘;07

€T — o

and note that these definitions imply that
o — X1 1 — I1

Lo(zo) = ——— =1, Lo(z1) =
xro — I Ty — T

- 07 Ll(fL.O) - O, and Ll((L'l) =1.

82CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

We then define

P() = Lo(@) (wo) + La(@)f () = =" flwo) + 1 f(an).
This gives
P(xo) =1- f(zo) +0- f(z1) = f(zo) =10
and

P(z1) =0 f(zo) +1- f(z1) = fz1) = 1.
So, P is the unique linear function passing through (z,yo) and (x1,y1). (See Figure
3.2))

Figure 3.2
Ya
y=1f()
yi="1fx)
Yo=Tf(x) T y=P®X
X XX

To generalize the concept of linear interpolation to higher-degree polynomials,
consider the construction of a polynomial of degree at most n that passes through
the n + 1 points

(wo, (o)), (w1, f(xl))7 s (xm f(xn))
(See Figure 3.3.)
Figure 3.3

Y

X
o
x
2
x
N
X
=}
<V

3.2. LAGRANGE POLYNOMIALS 83

In this case, we need to construct, for each & = 0,1,...,n, a polynomial of
degree n, which we will denote by L, r(z), with the property that L, j(z;) = 0
when ¢ # k and L, (x) = 1.

To satisty L, x(x;) = 0 for each i # k, the numerator of L,, ;(z) must contain
the term

(@ —zo)(x — 1)+ (T = Tp—1) (@ — Tps1) -+ (T — Tn)

To satisfy L, r(zx) = 1, the denominator of L,, (z) must be this term evaluated
at x = xp. Thus,

(x—w0)--- (& —wp1)(@ = 2pp1) - (2 — @)

Lnk(z) = (% — 20) - (X% — To—1)(Th — Ths1) - (Th — Tn)

A sketch of the graph of a typical L, j is shown in Figure 3.4.

Figure 3.4
Lni¥) &
1 .

N AM/\VA N,

) X Xy-1 X X1 Xn-1 Xy X

The interpolating polynomial is easily described now that the form of L,, 1 (z)
is known. This polynomial is called the nth Lagrange interpolating polynomial.

[nth Lagrange Interpolating Polynomial]

Po(x) = f(x0)Luno(x) + -+ f(@n) Lnn (@) = Y (@) Lok (),

k=0

n

where

(@ —xo)(@ — 1) (& — 2p—1) (T — Tpy1) - (¥ — @)

Ln,k(aj) = (xk — xO)(xk; — 1‘1) ce (xk _ $k71)($k — $k+1) ce (-'L'k; - xn)

for each £ =0,1,...,n.

If 9, 21,...,2, are (n + 1) distinct numbers and f is a function whose values
are given at these numbers, then P, (x) is the unique polynomial of degree at most

EXAMPLE 1

84CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

n that agrees with f(x) at xg,x1, ..., x,. The notation for describing the Lagrange
interpolating polynomial P, (z) is rather complicated since P, (x) is sum of the n+1
polynomials f(zy)Ly, x(x), for k= 0,1,...,n, each of which is of degree n, provided
f(zk) # 0. To reduce the notational complication, we will write L,, ;(z) simply as
L. (z) when there should be no confusion that its degree is n.

Using the numbers, or nodes, xg = 2,21 = 2.5, and x5 = 4 to find the second inter-
polating polynomial for f(z) = 1/x requires that we first determine the coefficient
polynomials Lg(x), Li(z), and Lo(z).

In the nested form described in Section 1.4 they are

Lo(z) = (é_;gg_j)) =z 76.f:z:+ 0 (x —6.5)x + 10,
I (x—2)(x—4) 2?—6x+8 (—4dx+24)z—32
@)= es—n - 34 3 ’
and
z—2)(z—25 x? — 4.5z r —4.5)x
Ly(r) = E=D@=25) o7 -dbe+5 (2-dba+5

(4—2)(4—2.5) 3 3
Since f(xzo) = f(2) = 0.5, f(z1) = f(2.5) = 0.4, and f(x2) = f(4) = 0.25, we have

2

Py(x) = Y flax)L(z)
k=0
—4 24)x — 32 — 4.5 5

— 05((z — 6.5)2 + 10) + 0.4 2 . Jz =32 0.25%

= (0.05z — 0.425)z + 1.15.
An approximation to f(3) = % is

f(3) = P(3) = 0.325.

Compare this to Table 3.1, where no Taylor polynomial expanded about zy = 1
can be used to reasonably approximate f(3) = % (See Figure 3.5.) O

Figure 3.5

3.2. LAGRANGE POLYNOMIALS 85

<V

Maple constructs an interpolating polynomial with the command
>interp(X,Y,x);

where X is the list [zo, ..., z,], Y is the list [f(z0), ..., f(zn)], and z is the variable
to be used. In this example we can generate the interpolating polynomial p =
.050000000002% — 4250000000 + 1.150000000 with the command

>p:=interp([2,2.5,4],[0.5,0.4,0.25],%);
To evaluate p(x) as an approximation to f(3) = %, enter
>subs (x=3,p) ;

which gives .3250000000.

The Lagrange polynomials have remainder terms that are reminiscent of those
for the Taylor polynomials. The nth Taylor polynomial about xy concentrates all
the known information at xy and has an error term of the form

FrD ()

(n+1)! A

(x — x

where £(x) is between x and xg. The nth Lagrange polynomial uses information
at the distinct numbers g, 1, ..., 7,. In place of (z — x¢)" ™!, its error formula
uses a product of the n 4+ 1 terms (z — x¢), (z — x1),..., (¢ — x,), and the number
&(x) can lie anywhere in the interval that contains the points g, 21, ..., Z,, and z.
Otherwise it has the same form as the error formula for the Taylor polynomials.

86CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

[Lagrange Polynomial Error Formula]

(n+1) (¢ (g
f@V‘&@9+fJQ%;»@—$®@—$H~%I—%%

for some (unknown) number £(z) that lies in the smallest interval that con-
tains xq, x1,...,2T, and x.

This error formula is an important theoretical result, because Lagrange poly-
nomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange er-
ror formula. The specific use of this error formula, however, is restricted to those
functions whose derivatives have known bounds. The next example illustrates in-
terpolation techniques for a situation in which the Lagrange error formula cannot
be used. This example shows that we should look for a more efficient way to obtain
approximations via interpolation.

EXAMPLE 2 Table 3.2 lists values of a function at various points. The approximations to f(1.5)
obtained by various Lagrange polynomials will be compared.

Table 3.2

x f()

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Since 1.5 is between 1.3 and 1.6, the most appropriate linear polynomial uses
xg = 1.3 and x1 = 1.6. The value of the interpolating polynomial at 1.5 is

POD) = (5T 09+ (o1 /09
~ (1.5-16) (1.5 —1.3) L
= (3-10) (0.6200860) + m(0.4554022) = 0.5102968.

Two polynomials of degree 2, which we denote Py(x) and Pg(x), could reasonably
be used. To obtain Py(x), we let g = 1.3,21 = 1.6, and x2 = 1.9, which gives the

3.2. LAGRANGE POLYNOMIALS 87

following approximation to f(1.5).

(1.5— 1.6)(1.5 — 1.9)
(13- 1.6)(1.3—1.9)
(15— 1.3)(1.5 — 1.6)
(1.9 —1.3)(1.9 — 1.6)

= 0.5112857,

(1.5 —1.3)(1.5 — 1.9)
(1.6 — 1.3)(1.6 — 1.9)

Py(1.5) (0.6200860) + (0.4554022)

(0.2818186)

To obtain 152(7‘) we let zg = 1.0,21 = 1.3, and x5 = 1.6, which results in the
approximation f(1.5) ~ Py(1.5) = 0.5124715.

In the third-degree case there are also two reasonable choices for the polynomial.
One uses zg = 1.3,z1 = 1.6,z2 = 1.9, and x5 = 2.2, which gives P3(1.5) =
0.5118302. The other is obtained by letting o = 1.0,z = 1.3,z = 1.6, and
r3 = 1.9, giving]53(1.5) =0.5118127.

The fourth Lagrange polynomial uses all the entries in the table. With xg
1.0,z1 = 1.3,2z0 = 1.6,23 = 1.9, and x4 = 2.2, the approximation is P;(1.5)
0.5118200.

Since P3(1.5), P5(1.5), and Py(1.5) all agree to within 2x 1073, we expect P;(1.5)
to be the most accurate approximation and to be correct to within 2 x 107°. The
actual value of f(1.5) is known to be 0.5118277, so the true accuracies of the
approximations are as follows:

|P1(1.5) — f(1.5)] =~ 1.53x1073, |P(1.5) — f(1.5)] =~ 5.42x 1074,
|Py(1.5) — f(1.5)] =~ 6.44x107%, |P3(1.5) — f(1.5)] ~ 25x1076,
|P3(1.5) — f(1.5)] =~ 1.50 x 1075, |Py(1.5) — f(1.5)] =~ 7.7x1076.

Although P;3(1.5) is the most accurate approximation, if we had no knowledge
of the actual value of f(1.5), we would accept P4(1.5) as the best approximation,
since it includes the most data about the function. The Lagrange error term can-
not be applied here, since no knowledge of the fourth derivative of f is available.
Unfortunately, this is generally the case. O

A practical difficulty with Lagrange interpolation is that since the error term is
difficult to apply, the degree of the polynomial needed for the desired accuracy is
generally not known until the computations are determined. The usual practice is to
compute the results given from various polynomials until appropriate agreement is
obtained, as was done in the previous example. However, the work done in calculat-
ing the approximation by the second polynomial does not lessen the work needed to
calculate the third approximation; nor is the fourth approximation easier to obtain
once the third approximation is known, and so on. To derive these approximating
polynomials in a manner that uses the previous calculations to advantage, we need
some new notation.

Let f be a function defined at xq, x1, x2, . . ., x, and suppose that my,ms, ..., my
are k distinct integers with 0 < m; < n for each i. The Lagrange polynomial that
agrees with f(x) at the k points xp,,, pmy, ..., T, 1S denoted Py, iy, my ().

EXAMPLE 3

88CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

fag=1 21 =2, 20 =3, 23 =4, x4 = 6, and f(z) = €%, then P s 4(x) is the
polynomial that agrees with f(x) at x; = 2, 29 = 3, and x4 = 6; that is,
PR =6) , (-6, @-E-3) ;

(@ x (z
Praal®) = 526" T 3-26-6° " 6-2)6-9°"

The next result describes a method for recursively generating Lagrange polyno-
mial approximations.

[Recursively Generated Lagrange Polynomials] Let f be defined at
20,%1,-..,2; and x;, x; be two numbers in this set. If

(x—2)Por,. j-1jr1,..k®) = (@—2)Po1,. i-vit1,.. k(2)
(z; —)

P(z) =

)

then P(z) is the kth Lagrange polynomial that interpolates, or agrees with,
f(x) at the k + 1 points xg, x1, ..., Tk.

To see why this recursive formula is true, first let Q = FPy1,.. i—1,i+1,..,k and
Q = Poa,. j—1,+1,.k Since Q(x) and Q(z) are polynomials of degree at most
k-1,
(z —2j)Q(z) — (z — 2:)Q(z)
(zi — ;)
must be of degree at most k. If 0 < r < k with r # ¢ and r # j, then Q(z,) =

Q(z,) = f(xr), so
(@, — 2,)Q(x,) = (xr —2)Qwr) _ (i — ;)

P(x) =

P(z,) = a— = (z; — z])f(xr) = f(x’l")
Moreover,
Pay) = (Em DR 0 Z20QU8) B2) g,

Ti — T (i —xj)

and similarly, P(x;) = f(z;). But there is only one polynomial of degree at most
k that agrees with f(x) at xg,x1,...,2k, and this polynomial by definition is
Py.1... k(x). Hence,

P PP

(x—x)Pon,. j-1 41, k() = (@ —2)Po, i-1it1,.. k(T)

(zi — xj)

Poq,.k(z)=Plx)=

This result implies that the approximations from the interpolating polynomials
can be generated recursively in the manner shown in Table 3.3. The row-by-row

3.2. LAGRANGE POLYNOMIALS 89

generation is performed to move across the rows as rapidly as possible, since these
entries are given by successively higher-degree interpolating polynomials.

Table 3.3

zg Po=Qopo

z1 Pi=0Qio FPoi=Qi

x2 Py = Q20 P1,2 = Q2,1 P0,1,2 = Q2,2

3 P3=Q30 TF3=Q31 Pioz=Q32 Foi23=@Q33

s Pi=Quo P3a=Qu1 Poza=0Qu2 Piosa=0Qu3z Pyi1234=C0Qs4

This procedure is called Neville’s method and is implemented with the pro-
gram NEVLLE31.

The P notation used in Table 3.3 is cumbersome because of the number of
subscripts used to represent the entries. Note, however, that as an array is being
constructed, only two subscripts are needed. Proceeding down the table corresponds
to using consecutive points x; with larger ¢, and proceeding to the right corresponds
to increasing the degree of the interpolating polynomial. Since the points appear
consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation. To avoid the
cumbersome subscripts we let @; ;(x), for 0 < j < 4, denote the jth interpolating
polynomial on the j + 1 numbers x;_;, x;—j11,...,2%—1, %5, that is,

Using this notation for Neville’s method provides the @) notation in Table 3.3.

EXAMPLE 4 In Example 2, values of various interpolating polynomials at = = 1.5 were obtained
using the data shown in the first two columns of Table 3.4. Suppose that we want to
use Neville’s method to calculate the approximation to f(1.5). If zg = 1.0, 21 = 1.3,
Ty = 16, Tr3 = 19, and Ty = 22, then f(lO) = Q070, f(13) = QLQ, f(16) = Q270,
f(1.9) = Qs,0, and f(2.2) = Qu4,0; so these are the five polynomials of degree zero
(constants) that approximate f(1.5). Calculating the approximation @1 1(1.5) gives

(15— 1.0)Q10 — (1.5 — 1.3)Qo.0

1.5) =
Q1.1(15) (1.3—1.0)
_ 0.5(0.6200860) — 0.2(0.7651977) _ a1
0.3
Similarly,
1.5 — 1.3)(0.4554022) — (1.5 — 1.6)(0.6200860
Q21(15) = (I)= I) 0.5102968,

(1.6 — 1.3)
Q31(1.5) = 05132634, and Qu1(1.5) = 0.5104270.

EXAMPLE 5

90CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

The best linear approximation is expected to be @2 1, since 1.5 is between ; = 1.3
and x9 = 1.6.

In a similar manner, the approximations using quadratic polynomials are given
by

(1.5 — 1.0)(0.5102968) — (1.5 — 1.6)(0.5233449)

1.5) = = 0.5124715
@22(15) (1.6 — 1.0) ’
Q32(1.5) = 0.5112857, and Q42(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown
in Table 3.4. O
Table 3.4

1.0 0.7651977

1.3 0.6200860 0.5233449

1.6 0.4554022 0.5102968 0.5124715

1.9 0.2818186 0.5132634 0.5112857 0.5118127

2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, ()4 4, is not as accurate as desired, another node,
x5, can be selected and another row can be added to the table:

€5 Q5,0 Q5,1 Qs,z Q5,3 Q5,4 Q5,5~

Then Q4.4, @54, and Q5 5 can be compared to determine further accuracy.
The function in Example 4 is the Bessel function of the first kind of order zero,
whose value at 2.5 is —0.0483838, and a new row of approximations to f(1.5) is

2.5 —0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry is correct to seven decimal places.

Table 3.5 lists the values of f(z) = Inx accurate to the places given.

Table 3.5
7 T; Inx;
0 2.0 0.6931
1 22 0.7885
2 23 0.8329

3.2. LAGRANGE POLYNOMIALS 91

We use Neville’s method to approximate f(2.1) = In2.1. Completing the table
gives the entries in Table 3.6.

Table 3.6

T T —@ Qio Qi Qi2
2.0 0.1 0.6931

2.2 —0.1 0.7885 0.7410
2.3 —-0.2 0.8329 0.7441 0.7420

N = O

Thus, P3(2.1) = Q22 = 0.7420. Since f(2.1) = In2.1 = 0.7419 to four decimal
places, the absolute error is

|£(2.1) — Py(2.1)| = [0.7419 — 0.7420| = 10~*.

However, f'(z) = 1/x, f"(z) = —1/22, and f"'(x) = 2/x3, so the Lagrange error
formula gives an error bound of

1f(2.1) - Py(2.1)] = ‘W(w—xo)(l’—ml)@—xz)
1 0.002 . .
= |anr @O0 < Gar =83 x 10

Notice that the actual error, 10~4, exceeds the error bound, 8.3 x 10~°. This appar-
ent contradiction is a consequence of finite-digit computations.We used four-digit
approximations, and the Lagrange error formula assumes infinite-digit arithmetic.
This is what caused our actual errors to exceed the theoretical error estimate. [

92CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.2

1. For the given functions f(x), let o = 0, x; = 0.6, and xo = 0.9. Construct
the Lagrange interpolating polynomials of degree (i) at most 1 and (ii) at
most 2 to approximate f(0.45), and find the actual error.

(a) f(z) =coszx (b) f(z)=+V1+=x
(©) f(z) = In(x+1) @) (@) = tana

2. Use the Lagrange polynomial error formula to find an error bound for the
approximations in Exercise 1.

3. Use appropriate Lagrange interpolating polynomials of degrees 1, 2, and 3 to
approximate each of the following:

(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515,
(8.7) = 18.82091

(—1)if £(—0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) =
33493750, £(0) = 1.10100000

5) if £(0.1) = 0.62049958, £(0.2) = —0.28398668, f(0.3) = 0.00660095,
4) = 0.24842440
0.9)
1.0) =

if £(0.6) = —0.17694460, £(0.7) = 0.01375227, f(0.8) = 0.22363362,
= 0.65809197

4. Use Neville’s method to obtain the approximations for Exercise 3.

5. Use Neville’s method to approximate v/3 with the function f(z) = 3% and the
values g = =2, x1 = —1, 20 =0, z3 = 1, and x4 = 2.

6. Use Neville’s method to approximate v/3 with the function f(z) = \/ and
the values g = 0, x1 = 1, 2 = 2, x3 = 4, and x4 = 5. Compare the accuracy
with that of Exercise 5.

7. The data for Exercise 3 were generated using the following functions. Use the
error formula to find a bound for the error and compare the bound to the
actual error for the cases n =1 and n = 2.

(a) f(z)=xlnx

(b) f(z) = 2 +4.00122 + 4.002z + 1.101
(c) f(z)=xcosx — 222+ 3z —1

(d) f(z) = sin(e” —2)

3.2.

10.

11.

12.

13.

14.

15.

LAGRANGE POLYNOMIALS 93

. Use the Lagrange interpolating polynomial of degree 3 or less and four-digit

chopping arithmetic to approximate cos 0.750 using the following values. Find
an error bound for the approximation.

c0s0.698 = 0.7661 cos0.733 = 0.7432
c0s0.768 = 0.7193 cos0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the
discrepancy between the actual error and the error bound.

. Use the following values and four-digit rounding arithmetic to construct a

third Lagrange polynomial approximation to f(1.09). The function being ap-
proximated is f(z) = log;(tan). Use this knowledge to find a bound for the
error in the approximation.

F(1.00) = 0.1924 f£(1.05) = 0.2414 f(1.10) = 0.2933 f(1.15) = 0.3492

Repeat Exercise 9 using Maple with Digits set to 10.

Let Ps(x) be the interpolating polynomial for the data (0,0), (0.5,y), (1,3),
and (2,2). Find y if the coefficient of 23 in P3(z) is 6.

Neville’s method is used to approximate f(0.5), giving the following table.

330:0 POZO
I1:04 P1:28 P01:35

20=07 P P Poi2= 2—77

Determine P, = f(0.7).

Suppose you need to construct eight-decimal-place tables for the common, or
base-10, logarithm function from z = 1 to # = 10 in such a way that linear
interpolation is accurate to within 1075, Determine a bound for the step size
for this table. What choice of step size would you make to ensure that z = 10
is included in the table?

Suppose z; = j for j =0, 1, 2, 3 and it is known that
Poa(z)=2x+1, Pya(x)=x+1, and P;235(2.5)=3.
Find Py1.5(2.5).
Neville’s method is used to approximate f(0) using f(—2), f(—1), f(1), and
f(2). Suppose f(—1) was overstated by 2 and f(1) was understated by 3.

Determine the error in the original calculation of the value of the interpolating
polynomial to approximate f(0).

94CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

16. The following table lists the population of the United States from 1940 to

1990.
Year ‘ 1940 ‘ 1950 ‘ 1960 | 1970 ‘ 1980 ‘ 1990
Population 132,165 ‘ 151,326 ‘ 179,323 ’ 203, 302 ‘ 226, 542 ‘ 249,633

(in thousands)

Find the Lagrange polynomial of degree 5 fitting this data, and use this
polynomial to estimate the population in the years 1930, 1965, and 2010.
The population in 1930 was approximately 123,203,000. How accurate do you
think your 1965 and 2010 figures are?

17. In Exercise 15 of Section 1.2 a Maclaurin series was integrated to approximate
erf(1), where erf(x) is the normal distribution error function defined by

erf(z) = %/0 et dt.

(a) Use the Maclaurin series to construct a table for erf(z) that is accurate
to within 10™* for erf(x;), where x; = 0.2i, for i = 0,1,...,5.

(b) Use both linear interpolation and quadratic interpolation to obtain an
approximation to erf(%). Which approach seems more feasible?

3.3. DIVIDED DIFFERENCES 95

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively
higher degree polynomial approximations at a specific point. Divided-difference
methods introduced in this section are used to successively generate the polynomials
themselves.

We first need to introduce the divided-difference notation, which should remind
you of the Aitken’s A2 notation used in Section 2.5. Suppose we are given the n+ 1
points (xo, f(x0)), (z1, f(z1)), ... (2n, f(x,)). There are n + 1 zeroth divided
differences of the function f. For each i = 0,1,...,n we define f[z;] simply as the
value of f at x;:

fli] = f(zi).
The remaining divided differences are defined inductively. There are n first divided
differences of f, one for each ¢ = 0,1,...,n—1. The first divided difference relative

to x; and x;41 is denoted f[z;,x;11] and is defined by

€y — J|%i
Floi wia] = flwin] = flzi]

Tip1 — T
After the (k — 1)st divided differences,

flei, @ig1, Tivo, o, Tivk—1] and flTip1, Tiga, ooy Tigh—1, Titk],

have been determined, the kth divided difference relative to x;, €41, Tit2,. .., Titk
is defined by

flrict, ®ivo, - s xink] — flois i, oy Tirp—1
T i1, Tigh—1, Tign] = @i, Tivay - Tit] 20, i, Tiy]
Titk — T;

The process ends with the single nth divided difference,

flz1, @2, .. 20] — flwo, @1,y Tn1
flro, @1,y xn] = [#1, 22, ’”in_g[coa 15T].

With this notation, it can be shown that the nth Lagrange interpolation polynomial

for f with respect to xg,x1,...,2, can be expressed as
Po(z) = flzo] + flwo, z1](z — 20)
+ flwo, w1, @] (z — @o)(x — 21) + - -~
+ flzo, 1,y xp)(@ —xo) (@ — 1) - (T — 2p—1)

which is called Newton’s divided-difference formula.
In compressed form we have the following.

[Newton’s Interpolatory Divided-Difference Formula]

n

P(x) = flxo] —|—Zf[xo,x1,...,xk](z —xg) - (x — zp_1).

k=1

EXAMPLE 1

96 CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

The generation of the divided differences is outlined in Table 3.7. Two fourth
differences and one fifth difference could also be determined from these data, but
they have not been recorded in the table.

Table 3.7
First Second Third
x f(z) Divided Differences Divided Differences Divided Differences
zo f[zo]
flwo, 21] = LSl
ry flr] el flxo, 1, x2) = W . » |
f[xlyirz] = % f[xo,xl,xz,ifg] _ w17:v27w;3:m0:c07:v17w2_
z2 flro] flay, xa, 23] = W |
f[xz’[],‘g] = % f[xla $27$3,$4] — f[3327$3,$;j:££3:‘1,£2,$3_
3 f[ﬂfg] f[xg,x3,1'4] = W
f[$3,$4] = % f[l‘27$3,$4,$5] — f[I3,I4,z;£:££r2,xg,z4r
T4 f[1'4] f[x37m4,x5] = W
floa,as] = HEllml
x5 flzs] |

Divided-difference tables are easily constructed by hand calculation. Alterna-
tively, the program DIVDIF32 computes the interpolating polynomial for f at
o, T1,-..,Tn. The form of the output can be modified to produce all the divided
differences, as is done in the following example.

In the previous section we approximated the value at 1.5 given the data shown
in the second and third columns of Table 3.8. The remaining entries of this table
contain the divided differences computed using the program DIVDIF32.

The coefficients of the Newton forward divided-difference form of the interpola-
tory polynomial are along the upper diagonal in the table. The polynomial is

Py(z) = 0.7651977 — 0.4837057(x — 1.0) — 0.1087339(z — 1.0)(z — 1.3)
+0.0658784(z — 1.0)(z — 1.3)(z — 1.6)
+0.0018251(x — 1.0)(z — 1.3)(x — 1.6)(x — 1.9).

3.3. DIVIDED DIFFERENCES 97

Table 3.8

) Z; f[a:,] f[l‘i_l, xl} f[xi_2, Ti—1, xl} f[xi_;;, ey Z‘i] f[a:i_4, e ,jS]

0 1.0 0.7651977

—0.4837057
1 1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
2 1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
3 1.9 0.2818186 0.0118183
—0.5715210

4 2.2 0.1103623

It is easily verified that P4(1.5) = 0.5118200, which agrees with the result deter-
mined in Example 4 of Section 3.2. O

Newton’s interpolatory divided-difference formula has a simpler form when
To,T1,...,T, are arranged consecutively with equal spacing. In this case, we first
introduce the notation h = x;41 —x; for each i = 0,1,...,n— 1. Then we let a new
variable s be defined by the equation x = xy + sh. The difference x — x; can then
be written as x — z; = (s — i)h, and the divided-difference formula becomes

Po(x) = Pu(xo+sh) = flzo] + shflzo, x1] + s(s — 1)1 f[zo, w1, 2] + - --
—|—s(s—1)--~(s—n—!—l)h"f[xo,xl,...,mn]

= flxo —|—Z s—1) s—k—l—l)h flzo,x1, ..., zx].

Using a generalization of the binomial-coefficient notation,

(1) ===

where s need not be an integer, we can express P, (x) compactly as follows.

[Newton Forward Divided-Difference Formulal

P,(x) = Py(x0 + sh) = flxo +Z()k'h flwo 21, ...,k

Another form is constructed by making use of the forward difference notation

98CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

introduced in Section 2.5. With this notation

floosn) = LELZIE0 L gy,
Flio, 2, 5] % Af(zy) ; Af(xo)| _ %Azf(zo),
and, in general,
f[x()vxh e 71']@‘} - k']f-Lk Akf(xﬂ)

This gives the following.

[Newton Forward-Difference Formula]

P = flal + 3 () o).

k=1

If the interpolating nodes are reordered from last to first as x,, xp—1, ..., 2o, we
can write the interpolatory formula as

Pn(x) = f[xn} + f[xnaxn—l](x - Jjn) + f[xna xn—hxn—Q](‘r - xn)(x - xn—l)
+ ot flen, . zol(r —ap) (@ —xp—q) - (@ —).

If the nodes are equally spaced with @ = x,, + sh and © = 2; + (s + n —)h, then

P,(x) = Pu(xn+sh)
= f[xn] + S}Lf[.’bn,xn,ﬂ + 5(3 + 1)h2f[1'n, xn71>$n72] + -
+s(s+1)--(s+n—1h"flxn,. .., xol
This form is called the Newton backward divided-difference formula. It is used
to derive a formula known as the Newton backward-difference formula. To discuss
this formula, we first need to introduce some notation.
Given the sequence {p,, }52, the backward difference Vp,, (read “nabla p,”)

is defined by
vp‘n =Pn — Pn—1, fOI' n Z 1

and higher powers are defined recursively by
VFp, =V (V¥ 1p,), fork>2.

This implies that

1 1
f[xwuxn—l] = Evf(xn)v f[a:na xn—laxn—Z] = WVQf(xn)a

EXAMPLE 2

3.3. DIVIDED DIFFERENCES 99

and, in general,
1

= ka(.r,,,).

f[zna Tp—1ye-- 7'1:71,—](7]

Consequently,

s(s+1)
2

s(s+1)---(s+n—1)
n!

Po(z) = flzn]+sV f(za)+ V2 f () + -+ V" f ().

Extending the binomial-coefficient notation to include all real values of s, we let

(—s> _ —s(=s—1)(=s—k+1) :(,1)ks(5+1)"-(s+k_1)

k J! i
and
Pa@) = f(zn)+(-D)' (1) V() + (-1 (2> V) oo
w1 (7))

which gives the following result.

[Newton Backward-Difference Formula]

n

Pate) = flan] + o104 () 1)

k=1

Consider the table of data given in Example 1 and reproduced in the first two
columns of Table 3.9.

Table 3.9
First Second Third Fourth
Divided Divided Divided Divided
Differences Differences Differences Differences
1.0 0.7651977
—0.4837057
1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
1.9 0.2818186 0.0118183
—0.5715210
2.2 0.1103623

100CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

There is only one interpolating polynomial of degree at most 4 using these five
data points, but we will organize the data points to obtain the best interpolation
approximations of degrees 1, 2, and 3. This will give us a sense of the accuracy of
the fourth-degree approximation for the given value of x.

If an approximation to f(1.1) is required, the reasonable choice for zq, z1, ..., 24
would be g = 1.0, 1 = 1.3, 2o = 1.6, x3 = 1.9, and x4 = 2.2, since this choice
makes the earliest possible use of the data points closest to x = 1.1 and also makes
use of the fourth divided difference. These values imply that h = 0.3 and s = %, SO
the Newton forward divided-difference formula is used with the divided differences
that are underlined in Table 3.9.

Py(1.1)

p(10+ 503

1 1/ 2
= 07651997 + £(0.3)(~0.4837057) + 5 (_g) (0.3)2(—0.1087339)

+% (%) (—g) (0.3)3(0.0658784)

+% (‘%) (_g) (—2) (0.3)*(0.0018251)

0.7196480.

To approximate a value when x is close to the end of the tabulated values, say,
x = 2.0, we would again like to make earliest use of the data points closest to z. To
do so requires using the Newton backward divided-difference formula with z4 = 2.2,
r3 =19, 20 =1.6,21 =13, 20 =1.0, s = —% and the divided differences in Table
3.9 that are underlined with a dashed line:

Py(2.0) = P, <2.2 - 2(0.3))

2 2 (1
= 0.1103623 — £ (0.3)(~0.5715210) — (§> (0.3)2(0.0118183)

- ; (é) (g) (0.3)3(0.0680685) — % (%) (g) (g) (0.3)*(0.0018251)

=0.2238754. O

The Newton formulas are not appropriate for approximating f(z) when x lies
near the center of the table, since employing either the backward or forward method
in such a way that the highest-order difference is involved will not allow xy to be
close to . A number of divided-difference formulas are available for this situation,
each of which has situations when it can be used to maximum advantage. These
methods are known as centered-difference formulas. There are a number of such
methods, but we do not discuss any of these techniques. They can be found in
many classical numerical analysis books, including the book by Hildebrand [Hi]
that is listed in the bibliography.

3.3. DIVIDED DIFFERENCES 101

EXERCISE SET 3.3

1. Use Newton’s interpolatory divided-difference formula to construct interpo-
lating polynomials of degrees 1, 2, and 3 for the following data. Approximate
the specified value using each of the polynomials.

8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515,
8.7) = 18.82091

0.9) if £(0.6) = —0.17694460, £(0.7) = 0.01375227, £(0.8) = 0.22363362,
1.0) = 0.65809197

2. Use Newton’s forward-difference formula to construct interpolating polyno-
mials of degrees 1, 2, and 3 for the following data. Approximate the specified
value using each of the polynomials.

(a) f(—3)if f(—0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) =
0.33493750, f(0) = 1.10100000

(b) £(0.25) if £(0.1) = —0.62049958, f(0.2) = —0.28398668,
£(0.3) = 0.00660095, f(0.4) = 0.24842440

3. Use Newton’s backward-difference formula to construct interpolating polyno-
mials of degrees 1, 2, and 3 for the following data. Approximate the specified
value using each of the polynomials.

(a) f(—1)if f(—0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) =
0.33493750, £(0) = 1.10100000

(b) £(0.25) if £(0.1) = —0.62049958, f(0.2) = —0.28398668,
£(0.3) = 0.00660095, f(0.4) = 0.24842440

4. (a) Construct the fourth interpolating polynomial for the unequally spaced
points given in the following table:

z ‘ 0.0 | 0.1 ‘ 0.3 ‘ 0.6 ‘ 1.0
) ‘ —6.00000 | —5.80483 ‘ _5.65014 ‘ _5.17788 ‘ 428172

(b) Suppose f(1.1) = —3.99583 is added to the table. Construct the fifth
interpolating polynomial.

5. (a) Use the following data and the Newton forward divided-difference for-
mula to approximate f(0.05).

z ‘ 0.0 ‘ 0.2 ‘ 0.4 ‘ 0.6 ‘ 0.8
() ‘ 1.00000 ‘ 1.22140 ‘ 1.49182 ‘ 1.82212 ‘ 2.22554

102CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

(b) Use the Newton backward divided-difference formula to approximate

£(0.65).

6. The following population table was given in Exercise 16 of Section 3.2.

Year ‘ 1940 ‘ 1950 ‘ 1960 | 1970 ‘ 1980 ‘ 1990

Population 132,165 ‘ 151,326 ‘ 179,323 ’ 203, 302 ‘ 926, 542 ‘ 249,633

(in thousands)

Use an appropriate divided difference method to approximate each value.

(a) The population in the year 1930.

(b) The population in the year 2010.

7. Show that the polynomial interpolating the following data has degree 3.

8. (a) Show that the Newton forward divided-difference polynomials
P(z)=3-2(z+1)+0(x+1)(x)+ (z+ 1)(x)(z — 1)
and

Qx)=-14+4x+2)-3@x+2)(z+1)+ (x+2)(x+ 1)(x)

both interpolate the data

(b) Why does part (a) not violate the uniqueness property of interpolating
polynomials?

9. A fourth-degree polynomial P(z) satisfies A*P(0) = 24, A*P(0) = 6, and
A?P(0) = 0, where AP(z) = P(z + 1) — P(x). Compute A?P(10).

3.3. DIVIDED DIFFERENCES 103

10.

11.

12.

13.

The following data are given for a polynomial P(x) of unknown degree.

2
P(x) ‘ 2 ‘ 1 ‘ 4
Determine the coefficient of 22 in P(z) if all third-order forward differences
are 1.

The Newton forward divided-difference formula is used to approximate f(0.3)
given the following data.

. ‘ 0.0 ‘ 0.2 ‘ 0.4 ‘ 0.6
o) ‘ 15.0 ‘ 21.0 ‘ 30.0 ‘ 51.0

Suppose it is discovered that f(0.4) was understated by 10 and f(0.6) was
overstated by 5. By what amount should the approximation to f(0.3) be
changed?

For a function f, the Newton’s interpolatory divided-difference formula gives
the interpolating polynomial

1
Ps(z) =1+ 4z + 4z(x — 0.25) + ;w(x —0.25)(z — 0.5)

on the nodes ¢ = 0, 1 = 0.25, z2 = 0.5 and xz3 = 0.75. Find f(0.75).

For a function f, the forward divided differences are given by

g =0 flao]
f[x(hxl]

T = 0.4 f[l‘l] f[l?o,itl,{EQ] = 5—70
flzr,x2] =10

Ty = 0.7 f[.’l?g] =6

Determine the missing entries in the table.

104CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

3.4 Hermite Interpolation

The Lagrange polynomials agree with a function f at specified points. The values
of f are often determined from observation, and in some situations it is possible
to determine the derivative of f as well. This is likely to be the case, for example,
if the independent variable is time and the function describes the position of an
object. The derivative of the function in this case is the velocity, which might be
available.

In this section we will consider Hermite interpolation, which determines a poly-
nomial that agrees with the function and its first derivative at specified points.
Suppose that n + 1 data points and values of the function, (xq, f(z0)), (z1, f(z1)),

.oy (Tp, f(x,)), are given, and that f has a continuous first derivative on an inter-
val [a,b] that contains xg, 1, ..., &,. (Recall from Section 1.2 that this is denoted
f € C'a,b].) The Lagrange polynomial agreeing with f at these points will gen-
erally have degree n. If we require, in addition, that the derivative of the Hermite
polynomial agree with the derivative of f at xg,z1,...,x,, then the additional n+1
conditions raise the expected degree of the Hermite polynomial to 2n + 1.

[Hermite Polynomial] Suppose that f € C'[a,b] and that o, ...,z, in [a,b]
are distinct. The unique polynomial of least degree agreeing with f and f’ at

g, ..., T, is the polynomial of degree at most 2n + 1 given by
n n
Hopia(x) =Y f(a;) Hoj(x) + Y f' () Ha (),
j=0 j=0
where
Hyj(z) = [1 = 2(z — 2;)L;, ;(z;)]L7, (=)
and

Hyj(2) = (x —)L} 5(2).

Here, L,, j(x) denotes the jth Lagrange coefficient polynomial of degree n.

The error term for the Hermite polynomial is similar to that of the Lagrange
polynomial, with the only modifications being those needed to accommodate the
increased amount of data used in the Hermite polynomial.

[Hermite Polynomial Error Formula] If f € C?""2[a,b], then

FE D (E(2))

(x—20)? - (—2,)?

for some &(x) (unknown) in the interval (a,b).

3.4. HERMITE INTERPOLATION 105

Although the Hermite formula provides a complete description of the Hermite
polynomials, the need to determine and evaluate the Lagrange polynomials and
their derivatives makes the procedure tedious even for small values of n. An alter-
native method for generating Hermite approximations is based on the connection
between the nth divided difference and the nth derivative of f.

[Divided-Difference Relationship to the Derivative] If f € C™[a,b] and

2o, &1, ..., T, are distinet in [a, b], then some number & in (a,b) exists with
TARI(S
f[x()vl’la"'axn}: TL'()

To use this result to generate the Hermite polynomial, first suppose the distinct

numbers zg,1,...,T, are given together with the values of f and f’ at these
numbers. Define a new sequence zg, 21, . .., 22p+1 Dy

Zok = Zop+1 = ¥, foreach k=0,1,...,n.
Now construct the divided-difference table using the variables zg, 21, ..., 22n4+1-

Since zor = zop+1 = xp for each k, we cannot define f[zox, 2ok11] by the basic
divided-difference relation:
flz2k41] — fleon]

flear, zok41] = .
[’] 22k+1 — 22k

But, for each k we have f[xg, xp1] = f/(&x) for some number & in (g, zx41), and
limg, | —e, fl2r, Zrs1] = f'(2x). So a reasonable substitution in this situation is
flzak, zak+1] = f'(z1), and we use the entries

f/(x())a f/(xl)a cey f/(xn)
in place of the first divided differences

flzo0, 21], flz2, 23] - - -, fl22n, Z2n+41]-

The remaining divided differences are produced as usual, and the appropriate di-
vided differences are employed in Newton’s interpolatory divided-difference formula.
This provides us with an alternative, and more easily evaluated, method for deter-
mining coefficients of the Hermite polynomial.

[Divided-Difference Form of the Hermite Polynomial] If f € C'[a,b] and
20, &1, .., T, are distinct in [a, b], then

2n+1
Happ1(z) = fl20] + Z flzo, 21,y 2] (x — 20), ..o, (0 — 2321),
k=1

where zop = 2zor11 = z) and f[zak, 2ok+1] = f'(z)) for each £k =0,1,...,n.

106CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 3.10 shows the entries that are used for the first three divided-difference
columns when determining the Hermite polynomial Hs(z) for xo,z1, and z9. The
remaining entries are generated in the usual divided-difference manner.

Table 3.10

First Divided Second Divided

z f(2) Differences Differences

flz0, 21] = f'(w0)

z=z0 fla] = f(zo) flz0, 21, 22] = _f[zl’zjlzgzom]
flz1, 22) = flz2]—flz1]
’ Zo—21
m=x1 flz]=f(2) flet, 22, 2] = Llzzslotlznzal
flz2, 23] = f'(21)
z=x1 fl2s] = f(z1) flz2, 23, 24] = _f[ZB’Z;j:QszZS]
flzs, 2a] = flza]—f[2s]

Z4—23
z=xy flz] = f(22) Fles, 24, 25] = Lznzsl=tlzs.zal

flzas z5] = f'(w2)

EXAMPLE 1 The entries in Table 3.11 use the data in the examples we have previously consid-
ered, together with known values of the derivative. The underlined entries are the
given data; the remainder are generated by the standard divided-difference method.
They produce the following approximation to f(1.5).

H;(1.5) = 0.6200860 — 0.5220232(1.5 — 1.3) — 0.0897427(1.5 — 1.3)*
+0.0663657(1.5 — 1.3)*(1.5 — 1.6) + 0.0026663(1.5 — 1.3)*(1.5 — 1.6)*
—0.0027738(1.5 — 1.3)*(1.5 — 1.6)%(1.5 — 1.9)
=0.5118277. O

3.4. HERMITE INTERPOLATION 107

Table 3.11

1.3 0.6200860

~0.5220232
1.3 0.6200860 —0.0897427

—0.5489460 0.0663657
1.6 0.4554022 —0.0698330 0.0026663

—0.5698959 0.0679655 —0.0027738
1.6 0.4554022 —0.0290537 0.0010020

—0.5786120 0.0685667
1.9 0.2818186 —0.0084837

—0.5811571

1.9 0.2818186

The program HERMIT33 generates the coefficients for the Hermite polynomials
using this modified Newton interpolatory divided-difference formula. The program
is structured slightly differently from the discussion to take advantage of efficiency
of computation.

108CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.4

1. Use Hermite interpolation to construct an approximating polynomial for the
following data.

(a) (b)
T T "z
2-2 ‘ g'?gﬁfi ‘ g}é‘ﬁgg 0.8 | 0.22363362 | 2.1691753
: : : 1.0 | 0.65809197 | 2.0466965
(c) (d)
v | e | rw c | @ | fw
—0.5 | —0.0247500 | 0.7510000 0.1 | —0.62049958 | 3.58502082
—0.25 | 0.3349375 | 2.1890000 0.2 | —0.28398668 | 3.14033271
0 1.1010000 | 4.0020000 0.3 | 0.00660095 | 2.66668043

0.4 0.24842440 2.16529366

2. The data in Exercise 1 were generated using the following functions. For the
given value of x, use the polynomials constructed in Exercise 1 to approximate
f(x), and calculate the actual error.

(a) f(x) =xzlnx; approximate f(8.4).

(b) f(z) =sin(e” —2); approximate f(0.9).

(c) f(z) =2+ 4.0012% 4+ 4.002z + 1.101; approximate f(—3).
(d) f(z) =2xcosz —2x?+ 3z —1; approximate f(0.25).

3. (a) Use the following values and five-digit rounding arithmetic to construct
the Hermite interpolating polynomial to approximate sin 0.34.

T sinx D, sinx = cosx
0.30 | 0.29552 0.95534
0.32 | 0.31457 0.94924
0.35 | 0.34290 0.93937

(b) Determine an error bound for the approximation in part (a) and com-
pare to the actual error.

3.4. HERMITE INTERPOLATION 109

(¢) Add sin0.33 = 0.32404 and cos 0.33 = 0.94604 to the data and redo the
calculations.

4. Let f(x) = 3ze® — e%*.

(a) Approximate f(1.03) by the Hermite interpolating polynomial of degree
at most 3 using x¢p = 1 and x; = 1.05. Compare the actual error to the
error bound.

(b) Repeat (a) with the Hermite interpolating polynomial of degree at most
5, using zg = 1,21 = 1.05, and x5 = 1.07.

5. Use the error formula and Maple to find a bound for the errors in the approx-
imations of f(x) in parts (a) and (c¢) of Exercise 2.

6. The following table lists data for the function described by f(z) = e0-12%,
Approximate f(1.25) by using Hs5(1.25) and H3(1.25), where Hs uses the
nodes xg = 1,21 = 2, and x5 = 3 and Hj3 uses the nodes 7o = 1 and 7, = 1.5.
Find error bounds for these approximations.

x flz) =" () = 0.2pe01”
o =70 =1 1.105170918 0.2210341836
r1 =15 1.252322716 0.3756968148
] =2 1.491824698 0.5967298792
Ty = 2.459603111 1.475761867

7. A car traveling along a straight road is clocked at a number of points. The
data from the observations are given in the following table, where the time is
in seconds, the distance is in feet, and the speed is in feet per second.

Time 0 3 5 8 13

Distance 0 | 225 | 383 | 623 | 993

Speed 75 7 80 74 72

(a) Use a Hermite polynomial to predict the position of the car and its
speed when ¢t = 10 s.

(b) Use the derivative of the Hermite polynomial to determine whether the
car ever exceeds a 55-mi/h speed limit on the road. If so, what is the
first time the car exceeds this speed?

(¢) What is the predicted maximum speed for the car?

110CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

8. Let z9p = xg, 21 = g, 22 = x1, and z3 = x1. Form the following divided-
difference table.

20 = X0 flzo] = f(z0)
flz0, z1] = f'(20)
Z1 = X0 flz1] = f(xo) flz0, 21, 22]
flz1, 22] flz0, 21, 22, 23]
Z2 = T1 flze] = f(z1) flz1, 22, 23]
flz2, 23] = f'(21)
z=x1 flz]= f(x1)

Show if

P(z) = flzo] + flzo0, 21)(x — o) + fl20, 21, 22) (x — x0)?

+ flz0, 21, 22, 23] (x — m0)*(x — 21),
then
P(xo) = f(x0), P(x1) = f(z1), P'(x0) = f'(x0), and P'(z1) = f'(21),

which implies that P(z) = Hs(x).

3.5. SPLINE INTERPOLATION 111

3.5 Spline Interpolation

The previous sections use polynomials to approximate arbitrary functions. How-
ever, we have seen that relatively high-degree polynomials are needed for accurate
approximation and that these have some serious disadvantages. They all have an
oscillatory nature, and a fluctuation over a small portion of the interval can induce
large fluctuations over the entire range.

An alternative approach is to divide the interval into a collection of subintervals
and construct a different approximating polynomial on each subinterval. This is
called piecewise polynomial approximation.

The simplest piecewise polynomial approximation consists of joining a set of
data points (xg, f(x0)), (x1, f(x1)), ..., (zn, f(x,)) by a series of straight lines, such
as those shown in Figure 3.6.

A disadvantage of linear approximation is that the approximation is generally

not differentiable at the endpoints of the subintervals, so the interpolating func-
Figure 3.6

Ya

y=1(x)

Xj+1 Xj+2 e Xp-1 X X

tion is not “smooth” at these points. It is often clear from physical conditions
that smoothness is required, and the approximating function must be continuously
differentiable.

One remedy for this problem is to use a piecewise polynomial of Hermite
type. For example, if the values of f and f’ are known at each of the points
ro < xp < -+ < Ty, a cubic Hermite polynomial can be used on each of the subin-
tervals [xg, 1], [x1, 22], . - ., [€n—1,Zn] to obtain an approximating function that has
a continuous derivative on the interval [zg, z,]. To determine the appropriate cubic
Hermite polynomial on a given interval, we simply compute the function Hs(zx) for
that interval.

The Hermite polynomials are commonly used in application problems to study
the motion of particles in space. The difficulty with using Hermite piecewise polyno-
mials for general interpolation problems concerns the need to know the derivative

112CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

of the function being approximated. The remainder of this section considers ap-
proximation using piecewise polynomials that require no derivative information,
except perhaps at the endpoints of the interval on which the function is being
approximated.

The most common piecewise polynomial approximation uses cubic polynomials
between pairs of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants; so there is sufficient flexibility in the cubic
spline procedure to ensure that the interpolant has two continuous derivatives on
the interval. The derivatives of the cubic spline do not, in general, however, agree
with the derivatives of the function, even at the nodes. (See Figure 3.7.)

Figure 3.7

SX) 4

a(xj-ﬂ) = f(xj+1) = §+1(Xj+1)
S’(Xjﬁ—l) = §,+1(Xj+1)
§'(%+0 = §41(X42)

3.5. SPLINE INTERPOLATION 113

[Cubic Spline Interpolation] Given a function f defined on [a,b] and a set of
nodes, a = xg < x1 < --- < T, = b, a cubic spline interpolant, S, for f is a
function that satisfies the following conditions:

(a) Foreach j=0,1,...,n—1, S(z) is a cubic polynomial, denoted by S;(x),
on the subinterval [z;,2;41) .

J

= 8/ (xj41) for each j =0,1,...,n —2.

))= 1(
(c) (%41)
(d) S%, 1 (wj41) = Si(wj41) for each j =0,1,...,n — 2.
) (1)
) One of the following sets of boundary conditions is satisfied:

(i) S"(xg) = S"(xy) =0 (natural or free boundary);
(ii) S"(xo) = f'(xo) and S’ (x,) = f'(x,) (clamped boundary).

Although cubic splines are defined with other boundary conditions, the con-
ditions given in (f) are sufficient for our purposes. When the natural boundary
conditions are used, the spline assumes the shape that a long flexible rod would
take if forced to go through the points {(xo, f(z0)), (z1, f(21)), ..., (@n, f(zn))}.
This spline continues linearly when x < xg and when = > x,,.

In general, clamped boundary conditions lead to more accurate approximations
since they include more information about the function. However, for this type of
boundary condition, we need values of the derivative at the endpoints or an accurate
approximation to those values.

To construct the cubic spline interpolant for a given function f, the conditions
in the definition are applied to the cubic polynomials

Sj(x) = aj + bj(x — z;) + ¢j(x — 2;)* + dj(x — z;)°

foreach 7 =0,1,...,n— 1.
Since
Sj(x;) = a; = f(x;),
condition (c) can be applied to obtain

ajr1 = Sit1(wj1) = Sj(@j41) = aj+bj (w1 —x;) +¢j (w01 — ;) +dj (241 —x;)°

for each 7 =0,1,...,n — 2.
Since the term x ;41 — 2 is used repeatedly in this development, it is convenient
to introduce the simpler notation

hj = $j+1 — (Ej,

114CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

for each j =0,1,...,n — 1. If we also define a,, = f(x,), then the equation
aj41 = aj +bjh; + th? + djh? (3.1)

holds for each j =0,1,...,n— 1.
In a similar manner, define b, = S’(z,,) and observe that

Si(x) = by + 2¢;(x — x5) + 3d;(x — x5)* (3.2)
implies that SJ/» (x;) = b; for each j =0,1,...,n — 1. Applying condition (d) gives

bjt1 = bj + 2c;h; + 3d;h3, (3.3)
foreach 7 =0,1,...,n— 1.

Another relation between the coefficients of S; is obtained by defining ¢, =
S"(xy,)/2 and applying condition (e). In this case,

Cj+1 = ¢j +3djhy, (3.4)

foreach 7 =0,1,...,n— 1.
Solving for d; in Eq. (3.4) and substituting this value into Egs. (3.1) and (3.3)
gives the new equations

2

ajp1 = a; +bshy + 2 (205 + ¢511) (3.5)

and
bjy1 = b+ hi(ej +¢jp1) (3.6)
for each j =0,1,...,n — 1.
The final relationship involving the coefficients is obtained by solving the ap-
propriate equation in the form of Eq. (3.5) for b;,

1 h;
bj = ;-(aj41 — a5) = ?J(ch +¢jt1), (3.7)
J

and then, with a reduction of the index, for b;_;, which gives

1 hi_
bj1 = —(a; —a;-1) — = :
j—1

(2¢j-1 +¢5)-

Substituting these values into the equation derived from Eq. (3.6), when the index
is reduced by 1, gives the linear system of equations

3 3
hj—16j-1+ 2(hj—1 + hy)ej + hjcjer = 7 (a41 = a5) — 7——(a; —a;—1) (3.8)
J j—1
for each j = 1,2,...,n — 1. This system involves only {c; j—o as unknowns since

the values of {h; }?:_01 and {a;}’_, are given by the spacing of the nodes {z;}7_,
and the values {f(x;)}]_.

EXAMPLE 1

3.5. SPLINE INTERPOLATION 115

Once the values of {c;}]_, are determined, it is a simple matter to find the
remainder of the constants {b; }?;01 from Eq. (3.7) and {d, }?;01 from Eq. (3.4) and
to construct the cubic polynomials {Sj(x)}?;ol. In the case of the clamped spline,
we also need equations involving the {c¢;} that ensure that S’(z¢) = f'(x¢) and
S'(zn) = f'(xn). In Eq. (3.2) we have S}(z) in terms of bj, ¢;, and d;. Since we now
know b; and d; in terms of ¢;, we can use this equation to show that the appropriate
equations are

3
2h000 -+ h001 = h—o(al — ao) — 3f/(560) (39)

and
3

hnfl
The solution to the cubic spline problem with the natural boundary conditions
S"(x9) = S"(x,) = 0 can be obtained by applying the program NCUBSP34. The

program CCUBSP35 determines the cubic spline with the clamped boundary con-
ditions S"(xo) = f'(xo) and S"(xy,) = f'(xn).

hp_1¢n_1+ 2hn_1¢n = 3f (25) — (an — an_1). (3.10)

Determine the clamped cubic spline for f(z) = xsin4z using the nodes zy = 0,
r1 = 0.25, x5 = 0.4, and z3 = 0.6.
We first define the function in Maple by
>f:=y->y*sin(4*y);
To use Maple to do the calculations, we first define the nodes and step sizes as
>x[0]:=0; x[1]:=0.25; x[2]:=0.4; x[3]:=0.6;
and
>h[0] :=x[1]1-x[0]; nh[1]:=x[2]-x[1]; h[2]:=x[3]-x[2];
The function is evaluated at the nodes with the commands
>a[0] :=£(x[0]1); al1l:=f(x[11); al[2]:=f(x[2]); al3]:=£(x[31);
Eq. (3.8) with j =1 and j = 2 gives us the following:
>eql:=h[0]*c[0]+2*(h[0]+h[1])*c[1]+h[1]*c[2]
=3*(a[2]-al1])/h[1]1-3*(a[1]-a[0])/h[0];
>eq2:=h[1]*c[1]+2x (h[1]+h[2])*c[2]+h[2] *c[3]

=3*(a[3]-a[2])/h[2]-3*(a[2]-al1]/h[1];

Since we are constructing a clamped spline, we need the derivative f'(x) = fp(z)
at the endpoints 0 and 0.6, so we also define

>fp:=y->D(£) (y);

116CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

and the fact that f'(xg) = s'(z¢) and f'(x3) = s'(x3) to obtain two equations

>eq0:=2xh [0]*c[0]+h[0]*c[1]=3*(a[1]-a[0]) /h[0]-3*fp(x[0]);
>eq3:=h[2]*c[2] +2xh [2] *c [3]=3*fp(x[3])-3*(a[3]-a[2])/h[2];

The Maple function solve is used to obtain values for ¢y = ¢[0], ¢1 = ¢[1], ca = ¢[2],
and ¢z = ¢[3].

>g:=solve({eq0,eql,eq2,eq3},{c[0],c[1],c[2],c[3]1});
The values produced by this Maple command are then assigned to be

>c[0] :=4.649673229; c[1]:=.7983053588; c[2]:=-3.574944315;
c[3]:=-6.623958383;

Then we use equations (3.7) and (3.4) to obtain

>b[0] :=evalf ((a[1]-a[0])/h[0]-h[0]*(2%c[0]+c[1])/3);
>b[1]:=(al[2]-a[1])/h[1]1-h[1]*(2*c[1]+c[2])/3;
>b[2]:=(al[3]-a[2])/h[2]-h[2]*(2*c[2]+c[3])/3;
>d[0]:=(c[1]1-c[0]1)/(3*h[0]);
>d[1]:=(c[2]-c[1]1)/(3*h[1]);
>d[2]:=(c[3]-c[2])/(3*n[2]);

The three pieces of the spline are now defined by

>s1:=y->a[0]+b[0]* (y-x[0])+c[0]*(y-x[0]) "2+d[0]* (y-x[0])"3;
>s2:=y->a[1]+b[1]*(y-x[1]1)+c[1]*(y-x[1]1) "2+d[1]1*(y-x[1])"3;
>s3:=y->a[2]+b[2] * (y-x[2])+c[2] *(y-x[2]) "2+d [2] * (y-x [2]) "3;

The values of the coefficients to three decimal places are listed in Table 3.12. [

Table 3.12
J Ly aj b, Cj d;
0 0 0 —0.2 x107? 4.650 —5.135
1 025 0.210 1.362 0.798 —9.718
2 0.4 0.400 0.945 —3.575 —5.082
3 0.6 0.405 - —6.624 -

3.5. SPLINE INTERPOLATION 117
EXAMPLE 2 Figure 3.8 shows a ruddy duck in flight.

Figure 3.8

n»»;)

S SPIIIIY) >

V’!}J;.!Lﬁ
7z—

l))))))‘

We have chosen points along the top profile of the duck through which we want
an approximating curve to pass. Table 3.13 lists the coordinates of 21 data points
relative to the superimposed coordinate system shown in Figure 3.9.

Table 3.13

z [0.9]1.3 1.9 2.1|2.6/3.0|3.9| 4.4 | 4.7 |5.0[6.0 [7.0] 8.0 | 9.2 [10.5[11.3]11.6]12.0|12.6|13.0[13.3]
f(z)|1.3]1.5[1.85|2.1]2.6]2.7|2.4]2.15]2.05|2.1|2.25|2.3]2.25[1.95| 1.4 [0.9 [0.7 | 0.6 | 0.5 | 0.4 0.25|

Notice that more points are used when the curve is changing rapidly than when
it is changing more slowly.

Figure 3.9
f(x) 4
4
3
2 i
|
1 < \\
I~ >,
1234‘3()78,f~9—10111213 X

¢
W e
}
=<

118CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

Using NCUBSP34 to generate the natural cubic spline for this data produces
the coefficients shown in Table 3.14. This spline curve is nearly identical to the
profile, as shown in Figure 3.10.

Table 3.14
j €54 Qg bj Cj dj
0 0.9 1.3 5.40 0.00 —0.25
1 1.3 1.5 0.42 —0.30 0.95
2 1.9 1.85 1.09 1.41 —2.96
3 2.1 2.1 1.29 —0.37 —0.45
4 2.6 2.6 0.59 —1.04 0.45
5 3.0 2.7 —0.02 —0.50 0.17
6 3.9 2.4 —0.50 —0.03 0.08
7 4.4 2.15 —0.48 0.08 1.31
8 4.7 2.05 —0.07 1.27 —1.58
9 5.0 2.1 0.26 —0.16 0.04
10 6.0 2.25 0.08 —0.03 0.00
11 7.0 2.3 0.01 —0.04 —0.02
12 8.0 2.25 —0.14 —0.11 0.02
13 9.2 1.95 —0.34 —0.05 —0.01
14 10.5 14 —0.53 —0.10 —0.02
15 11.3 0.9 —-0.73 —0.15 1.21
16 11.6 0.7 —0.49 0.94 —-0.84
17 12.0 0.6 —0.14 —0.06 0.03
18 12.6 0.5 —0.18 0.00 —-0.43
19 13.0 0.4 —0.39 —0.52 0.49
20 13.3 0.25
Figure 3.10
f() 4

4

3

2 ©,

Z
1 ™
N = |
1 23 4 5|6 7 8,/9-1011 1213 X

i e

3.5. SPLINE INTERPOLATION 119

For comparison purposes, Figure 3.11 gives an illustration of the curve generated
using a Lagrange interpolating polynomial to fit these same data. Since there are
21 data points, the Lagrange polynomial is of degree 20 and oscillates wildly. This
produces a very strange illustration of the back of a duck, in flight or otherwise.

O

Figure 3.11

f() a

/
L—1
Vs
il
174
<V

1 2 3 4 5’6 7 8),»9——101112

\\\-

To use a clamped spline to approximate the curve in Example 2, we would need
derivative approximations for the endpoints. Even if these approximations were
available, we could expect little improvement because of the close agreement of the
natural cubic spline to the curve of the top profile.

Cubic splines generally agree quite well with the function being approximated,
provided that the points are not too far apart and the fourth derivative of the
function is well behaved. For example, suppose that f has four continuous deriva-
tives on [a,b] and that the fourth derivative on this interval has a magnitude
bounded by M. Then the clamped cubic spline S(x) agreeing with f(z) at the
points @ = g < x1 < -+ < x, = b has the property that for all = in [a, b],

SM
() = Sl < 355 o Zm (s = o)

A similar—but more complicated—result holds for the free cubic splines.

120CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.5

1. Determine the free cubic spline S that interpolates the data f(0) =0, f(1) =
1, and f(2) = 2.

2. Determine the clamped cubic spline s that interpolates the data f(0) = 0,
f(1) =1, f(2) = 2 and satisfies s'(0) = §/(2) = 1.

3. Construct the free cubic spline for the following data.

il I 0.8 | 0.22363362
8.3 | 17.56492 1.0 | 0.65809197
8.6 | 18.50515
(c) (d)
x \ f(z) x] f(z)
—0.5 | —0.0247500 0.1 | —0.62049958
~0.25 | 0.3349375 0.2 | —0.28398668
0 1.1010000 0.3 | 0.00660095

0.4 0.24842440

4. The data in Exercise 3 were generated using the following functions. Use the
cubic splines constructed in Exercise 3 for the given value of = to approximate
f(x) and f'(x), and calculate the actual error.

=xInz; approximate f(8.4) and f/(8.4).

= sin(e” — 2); approximate f(0.9) and f'(0.9).

5. Construct the clamped cubic spline using the data of Exercise 3 and the given

information.
(a) f'(8.3) =3.116256 and f'(8.6) = 3.151762
(b) f7(0.8) =2.1691753 and f/(1.0) = 2.0466965
(¢) f'(—0.5) = 0.7510000 and f(0) = 4.0020000
(d) f7(0.1) = 3.58502082 and f’(0.4) = 2.16529366

6. Repeat Exercise 4 using the cubic splines constructed in Exercise 5.

3.5. SPLINE INTERPOLATION 121

7. (a) Construct a free cubic spline to approximate f(z) = coswx by using the
values given by f(x) at = 0,0.25,0.5,0.75, and 1.0.

(b) Integrate the spline over [0, 1], and compare the result to fol cosmr dr =
0.

(c) Use the derivatives of the spline to approximate f’(0.5) and f”(0.5),
and compare these approximations to the actual values.

8. (a) Construct a free cubic spline to approximate f(z) = e~* by using the
values given by f(z) at 2 =0, 0.25, 0.75, and 1.0.

3 1 —x —
(b) inte%;ate the spline over [0,1], and compare the result to [j e da =
—1/e.

(¢) Use the derivatives of the spline to approximate f’(0.5) and f”(0.5),
and compare the approximations to the actual values.

9. Repeat Exercise 7, constructing instead the clamped cubic spline with f'(0) =
7(1) = 0.
10. Repeat Exercise 8, constructing instead the clamped cubic spline with f/(0) =
—1,f'(1) = —e L.

11. A natural cubic spline S on [0,2] is defined by

S(z) = So(x) =1+ 2z — 23, if 0<z<1,
| Si@) =a+blez—1)4e(z—1)2+dz—1)3 if 1<z<2

Find a, b, ¢, and d.

12. A clamped cubic spline s for a function f is defined on [1, 3] by

s(z) = so(x) =3(x — 1)+ 2(x —1)% — (x — 1)3, if 1<x<2,
] si(@) =a+blz—2) + el —2)2 +d(x—2)3, if 2<2<3.

Given f/(1) = f'(3), find a, b, ¢, and d.
13. A natural cubic spline S is defined by

S(z) = So(z) =1+ B(z — 1) — D(z — 1)3, if 1<z<2,
(@) = Si(@)=1+bzx—2)—3(x -2 +d(x—-2)3 if 2<z<3.

If S interpolates the data (1,1), (2,1), and (3,0), find B, D, b, and d.

14. A clamped cubic spline s for a function f is defined by

s(x) = so(z) =1+ Bz + 22% — 223, it 0<z <1,
si(@)=1+blz—1)—4(z—1)?>+7(x—1)3, if 1<z<2

Find f/(0) and f'(2).

122CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

15. Suppose that f(z) is a polynomial of degree 3. Show that f(z) is its own
clamped cubic spline but that it cannot be its own free cubic spline.

16. Suppose the data {z;, f(z;))}7; liec on a straight line. What can be said about
the free and clamped cubic splines for the function f? [Hint: Take a cue from
the results of Exercises 1 and 2.]

17. The data in the following table give the population of the United States for
the years 1940 to 1990 and were considered in Exercise 16 of Section 3.2.

Year ‘ 1940 ‘ 1950 ‘ 1960 | 1970 ‘ 1980 ‘ 1990

Population 132,165 ‘ 151,326 ‘ 179,323 ’ 203,302 ‘ 926, 542 ‘ 249,633

(in thousands)

Find a free cubic spline agreeing with these data, and use the spline to predict
the population in the years 1930, 1965, and 2010. Compare your approxima-
tions with those previously obtained. If you had to make a choice, which
interpolation procedure would you choose?

18. A car traveling along a straight road is clocked at a number of points. The
data from the observations are given in the following table, where the time is
in seconds, the distance is in feet, and the speed is in feet per second.

Time 0 3 5 8 13

Distance 0 | 225 | 383 | 623 | 993

Speed 75 7 80 74 72

(a) Use a clamped cubic spline to predict the position of the car and its
speed when ¢t = 10 s.

(b) Use the derivative of the spline to determine whether the car ever ex-
ceeds a 55-mi/h speed limit on the road; if so, what is the first time the
car exceeds this speed?

(c) What is the predicted maximum speed for the car?

19. The 1995 Kentucky Derby was won by a horse named Thunder Gulch in a
time of 2:01% (2 min 1% s) for the 1%-mi race. Times at the quarter-mile,
half-mile, and mile poles were 22%7 45z, and 1:35%.

(a) Use these values together with the starting time to construct a free cubic
spline for Thunder Gulch’s race.

(b) Use the spline to predict the time at the three-quarter-mile pole, and
compare this to the actual time of 1:10%.

3.5. SPLINE INTERPOLATION

123

(¢) Use the spline to approximate Thunder Gulch’s starting speed and speed

at the finish line.

20. It is suspected that the high amounts of tannin in mature oak leaves inhibit
the growth of the winter moth (Operophtera bromata L., Geometridae) larvae
that extensively damage these trees in certain years. The following table lists
the average weight of two samples of larvae at times in the first 28 days after
birth. The first sample was reared on young oak leaves, whereas the second

sample was reared on mature leaves from the same tree.

(a) Use a free cubic spline to approximate the average weight curve for each

sample.

(b) Find an approximate maximum average weight for each sample by de-
termining the maximum of the spline.

Day 0 6 10 13 17 20 28
Sample 1 average | 6.67 | 17.33 | 42.67 | 37.33 | 30.10 | 29.31 | 28.74
weight (mg.)

Sample 2 average | 6.67 | 16.11 | 18.89 | 15.00 | 10.56 9.44 8.89

weight (mg.)

EXAMPLE 1

124CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

3.6 Parametric Curves

None of the techniques we have developed can be used to generate curves of the
form shown in Figure 3.12, since this curve cannot be expressed as a function
of one coordinate variable in terms of the other. In this section we will see how
to represent general curves by using a parameter to express both the z- and y-
coordinate variables. This technique can be extended to represent general curves
and surfaces in space.

Figure 3.12

Ya

A straightforward parametric technique for determining a polynomial or piece-
wise polynomial to connect the points (o, yo), (1,Y1), .-, (Tn,yn) is to use a pa-
rameter ¢ on an interval [tg, t,], with tg <1 <--- < t,, and construct approxima-
tion functions with

x; =x(t;) and y; =y(t;) foreachi=0,1,...,n.

The following example demonstrates the technique when both approximating
functions are Lagrange interpolating polynomials.

Construct a pair of Lagrange polynomials to approximate the curve shown in Figure
3.12, using the data points shown on the curve.

There is flexibility in choosing the parameter, and we will choose the points {¢;}
equally spaced in [0, 1]. In this case, we have the data in Table 3.15.

Table 3.15

3.6. PARAMETRIC CURVES 125

~
5
o
o
DO
ot
o
ot
o
\]
ot

= = s

z, | =1 0 1 0
i | O 1 05 0 -1

Using the data (0, —1), (0.25,0), (0.5,1), (0.75,0), and (1,1) for ¢ and = produces
the Lagrange polynomial

o= (o022 v)= e

and using (0,0), (0.25,1), (0.5,0.5), (0.75,0), and (1, —1) for ¢ and y gives

o= (- B as)e- 0)

Plotting this parametric system produces the graph in Figure 3.13. Although it
passes through the required points and has the same basic shape, it is quite a crude
approximation to the original curve. A more accurate approximation would require
additional nodes, with the accompanying increase in computation. O

Figure 3.13

126CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

Hermite and spline curves can be generated in a similar manner, but these also
require extensive computation.

Applications in computer graphics require the rapid generation of smooth curves
that can be easily and quickly modified. Also, for both aesthetic and computational
reasons, changing one portion of the curves should have little or no effect on other
portions. This eliminates the use of interpolating polynomials and splines, since
changing one portion of these curves affects the whole curve.

The choice of curve for use in computer graphics is generally a form of the
piecewise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial
is completely determined by specifying its endpoints and the derivatives at these
endpoints. As a consequence, one portion of the curve can be changed while leaving
most of the curve the same. Only the adjacent portions need to be modified if we
want to ensure smoothness at the endpoints. The computations can be performed
quickly, and the curve can be modified a section at a time.

The problem with Hermite interpolation is the need to specify the derivatives
at the endpoints of each section of the curve. Suppose the curve has n + 1 data
points (2o, 40), - - -, (Zn, Yn), and we wish to parameterize the cubic to allow complex
features. Then if (z;,vy;) = (x(t;),y(t;)) for each ¢ = 0,1,...,n, we must specify
2'(t;) and y'(¢;). This is not as difficult as it would first appear, however, since
each portion of the curve is generated independently. Essentially, then, we can
simplify the process to one of determining a pair of cubic Hermite polynomials in
the parameter ¢, where to = 0, t; = 1, given the endpoint data (2(0),y(0)), and
(z(1),y(1)) and the derivatives dy/dx (at t = 0) and dy/dx (at t = 1).

Notice that we are specifying only six conditions, and each cubic polynomial has
four parameters, for a total of eight. This provides considerable flexibility in choos-
ing the pair of cubic Hermite polynomials to satisfy these conditions, because the
natural form for determining z(t) and y(t) requires that we specify x’(0), 2'(1),y’(0),
and y'(1). The explicit Hermite curve in x and y requires specifying only the quo-

dy

ne v () v
E(at t=0)= 2(0) and %(at t=1)= ()

By multiplying 2’(0) and 3’(0) by a common scaling factor, the tangent line to
the curve at (z(0),y(0)) remains the same, but the shape of the curve varies. The
larger the scaling factor, the closer the curve comes to approximating the tangent
line near (x(0),y(0)). A similar situation exists at the other endpoint (z(1),y(1)).

To further simplify the process, the derivative at an endpoint is specified graph-
ically by describing a second point, called a guidepoint, on the desired tangent
line.The farther the guidepoint is from the node, the larger the scaling factor and
the more closely the curve approximates the tangent line near the node.

In Figure 3.14, the nodes occur at (g, yo) and (z1, y1), the guidepoint for (zg, yo)
is (o + ao, yo + Bo), and the guidepoint for (z1,y1) is (z1 — a1,y1 — B1). The cubic
Hermite polynomial x(¢) on [0, 1] must satisfy

dy

x(0) = o, x(1) = 21, 2'(0) = ag, and /(1) = a.

3.6. PARAMETRIC CURVES 127

Figure 3.14

(X0 + g, Yo + Bo)

(. —ap,y1— BY)

(%o Yo)
(Xli yl)

<V

The unique cubic polynomial satisfying these conditions is
x(t) = [2(zg — 1) + (o +)]t + [3(z1 — z0) — (a1 + 200)]t? + ot + 0.

In a similar manner, the unique cubic polynomial for y satisfying y(0) = yo, y(1) =
y1, ¥'(0) = Bo, and y'(1) = By is

y(t) = [2(yo — y1) + (Bo + Bu)]t* + [B(yr — yo) — (B1 + 280)]t* + Bot + yo.

EXAMPLE 2 The graphs in Figure 3.15 show some possibilities that occur when the nodes are
(0,0) and (1,0), and the slopes at these nodes are 1 and —1, respectively. The

specification of the slope at the endpoints requires only that ag = 5y and oy = — 1,
since the ratios ag/fBy = 1 and ay/8; = —1 give the slopes at the left and right
endpoints, respectively. O

Figure 3.15

128CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

/

/

Ya
14+
(0.25, 0.25)
° ¢ (0.75, 0.25)
// \\\
1 2 X
@
Ya
(2.2
2T »
//
Ve
//
Ve
//
Ve
L7 /<\
/7 /
// 1
4 7/ H
' N
AN
/// \ AN y
e \ AN
// d
Ve
7/
Ve
7
4
AN 2 X
AN
AN
AN
AN
AN
AN
AN
AN
AN
\\
e
-1+
(2 -1
(c)

Ya

1 2 X
(b)
Ya
2 4
1 4
(05,0.5)
/’
Ve
1
\>\\ |2 'X
\\\
AN
\\
17 2%

(d)

The standard procedure for determining curves in an interactive graphics mode
is to first use an input device, such as a mouse or trackball, to set the nodes
and guidepoints to generate a first approximation to the curve. These can be set
manually, but most graphics systems permit you to use your input device to draw
the curve on the screen freehand and will select appropriate nodes and guidepoints

for your freehand curve.

3.6. PARAMETRIC CURVES 129

The nodes and guidepoints can then be manipulated into a position that pro-
duces an aesthetically satisfying curve. Since the computation is minimal, the curve
is determined so quickly that the resulting change can be seen almost immediately.
Moreover, all the data needed to compute the curves are imbedded in coordinates
of the nodes and guidepoints, so no analytical knowledge is required of the user of
the system.

Popular graphics programs use this type of system for their freehand graphic
representations in a slightly modified form. The Hermite cubics are described as
Bézier polynomials, which incorporate a scaling factor of 3 when computing the
derivatives at the endpoints. This modifies the parametric equations to

z(t) = [2(xo— 1)+ 3(ao +)|t + [3(x1 — x0) — 3(a1 + 2a0)]t* + 3agt + w0,
y(t) [2(yo — y1) + 3(Bo + B)]E* + [3(y1 — yo) — 3(B1 + 2B0)]t* + 3Bot + yo,

for 0 <t <1, but this change is transparent to the user of the system.

Three-dimensional curves can be generated in a similar manner by additionally
specifying third components zg and z; for the nodes and zg + 79 and z; — y; for
the guidepoints. The more difficult problem involving the representation of three-
dimensional curves concerns the loss of the third dimension when the curve is
projected onto a two-dimensional medium such as a computer screen or printer
paper. Various projection techniques are used, but this topic lies within the realm
of computer graphics. For an introduction to this topic and ways that the technique
can be modified for surface representations, see one of the many books on computer
graphics methods. The program BEZIER36 will generate Bézier curves from input
data.

130CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.6

1. Let (zg,y0) = (0,0) and (x1,y1) = (5,2) be the endpoints of a curve. Use
the given guidepoints to construct parametric cubic Hermite approximations
(z(t),y(t)) to the curve and graph the approximations.

(a) (1,1) and (6,1) (b) (0.5,0.5) and (5.5,1.5)
(¢) (1,1) and (6,3) (d) (2,2) and (7,0)

2. Repeat Exercise 1 using cubic Bézier polynomials.

3. Construct and graph the cubic Bézier polynomials given the following points
and guidepoints.

(a) Point (1,1) with guidepoint (1.5,1.25) to point (6,2) with guidepoint
(7,3)

(b) Point (1,1) with guidepoint (1.25,1.5) to point (6,2) with guidepoint
(5,3)

(c) Point (0,0) with guidepoint (0.5, 0.5) to point (4, 6) with entering guide-
point (3.5,7) and exiting guidepoint (4.5,5) to point (6,1) with guide-
point (7,2)

(d) Point (0,0) with guidepoint (0.5,0.25) to point (2,1) with entering
guidepoint (3,1) and exiting guidepoint (3,1) to point (4,0) with en-
tering guidepoint (5,1) and exiting guidepoint (3, —1) to point (6,—1)
with guidepoint (6.5, —0.25)

4. Use the data in the following table to approximate the letter A.

toom | Y | oy Bi a; B;
0 3 6 3.3 6.5

1 2 2 2.8 3.0 2.5 2.5
2 6 6 5.8 5.0 5.0 5.8
3 5 2 5.5 2.2 4.5 2.5
4 6.5 3 6.4 2.8

3.7. SURVEY OF METHODS AND SOFTWARE 131

3.7 Survey of Methods and Software

In this chapter we have considered approximating a function using polynomials and
piecewise polynomials. The function can be specified by a given defining equation
or by providing points in the plane through which the graph of the function passes.
A set of nodes xg, x1, ..., T, is given in each case, and more information, such as the
value of various derivatives, may also be required. We need to find an approximating
function that satisfies the conditions specified by these data.

The interpolating polynomial P(z) is the polynomial of least degree that satis-
fies, for a function f,

P(z;) = f(z;) foreachi=0,1,...,n.

Although there is a unique interpolating polynomial, it can take many different
forms. The Lagrange form is most often used for interpolating tables when 7 is small
and for deriving formulas for approximating derivatives and integrals. Neville’s
method is used for evaluating several interpolating polynomials at the same value
of x. Newton’s forms of the polynomial are more appropriate for computation and
are also used extensively for deriving formulas for solving differential equations.
However, polynomial interpolation has the inherent weaknesses of oscillation, par-
ticularly if the number of nodes is large. In this case there are other methods that
can be better applied.

The Hermite polynomials interpolate a function and its derivative at the nodes.
They can be very accurate but require more information about the function being
approximated. When you have a large number of nodes, the Hermite polynomials
also exhibit oscillation weaknesses.

The most commonly used form of interpolation is piecewise polynomial inter-
polation. If function and derivative values are available, piecewise cubic Hermite
interpolation is recommended. This is preferred method for interpolating values of
a function that is the solution to a differential equation. When only the function
values are available, free cubic spline interpolation could be used. This spline forces
the second derivative of the spline to be zero at the endpoints. Some of the other
cubic splines require additional data. For example, the clamped cubic spline needs
values of the derivative of the function at the endpoints of the interval.

Other methods of interpolation are commonly used. Trigonometric interpola-
tion, in particular, the Fast Fourier Transform discussed in Chapter 8, is used with
large amounts of data when the function has a periodic nature. Interpolation by ra-
tional functions is also used. If the data are suspected to be inaccurate, smoothing
techniques can be applied, and some form of least squares fit of data is recom-
mended. Polynomials, trigonometric functions, rational functions, and splines can
be used in least squares fitting of data. We consider these topics in Chapter 8.

Interpolation routines included in the IMSL and the NAG Library are based on
the book A Practical Guide to Splines by de Boor [De]and use interpolation by cubic
splines. The libraries contain subroutines for spline interpolation with user supplied
end conditions, periodic end conditions, and the not-a-knot condition. There are
also cubic splines to minimize oscillations or to preserve concavity. Methods for
two-dimensional interpolation by bicubic splines are also included.

132CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

The netlib library contains the subroutines cubspl.f under the package pppack
to compute the cubic spline with various endpoint conditions. Under the package
slatec, polint.f produces the Newton’s divided difference coeflicients for a discrete
set of data points, and under the package slatec/pchip are various routines for
evaluating Hermite piecewise polynomials.

The MATLAB function INTERP1 can be used to interpolate a discrete set of
data points using either the nearest neighbor interpolation, linear interpolation, cu-
bic spline interpolation, or cubic interpolation. INTERP1 outputs the polynomial
evaluated at a discrete set of points. POLYFIT, based on a least squares approxi-
mation (see Section 8.2) can be used to find an interpolating function of degree at
most n that passes through n + 1 specified points. Cubic splines can be produced
with the function SPLINE.

Maple is used to construct an interpolating polynomial using the command
>interp(X,Y,x);
where X is the list [x[0], x[1],...,x[n]], Yisthelist [f(x[0]), f(x[11),...,f(x[n])],
and x is the variable to be used.

The natural cubic spline can also be constructed with Maple. First enter
>readlib(spline);
to make the package available. With X and Y as in the preceding paragraph the
command
>spline(X,Y,x,3);
constructs the natural cubic spline interpolating X = [x[0], ..., x[n]] and Y = [y[0], ..., y[n]],
where x is the variable and 3 refers to the degree of the cubic spline. Linear and
quadratic splines can also be created.

General references to the methods in this chapter are the books by Powell [Po]
and by Davis [Da2]. The seminal paper on splines is due to Schoenberg [Scho].
Important books on splines are by Schultz [Schul], De Boor [Deb], and Schumaker
[Schum)]. A recent book by Diercx [Di] is also recommended for those needing more
information about splines.

Chapter 4

Numerical Integration and
Differentiation

4.1 Introduction

Many techniques are described in calculus courses for the exact evaluation of inte-
grals, but seldom can these techniques be used to evaluate the integrals that occur
in real-life problems. Exact techniques fail to solve many problems that arise in the
physical world; for these we need approximation methods of the type we consider
in this chapter. The basic techniques are discussed in Section 4.2, and refinements
and special applications of these procedures are given in the next six sections. The
final section in the chapter considers approximating the derivatives of functions.
Methods of this type will be needed in Chapters 11 and 12 for approximating the
solutions to ordinary and partial differential equations.

You might wonder why there is so much more emphasis on approximating inte-
grals than on approximating derivatives. This is because determining the derivative
of a function is a constructive process that leads to straightforward rules for eval-
uation. Although the definition of the integral is also constructive, the principal
tool for evaluating a definite integral is the Fundamental Theorem of Calculus. To
apply this theorem we must determine the antiderivative of the function we wish
to evaluate. This is not generally a constructive process, and it leads to the need
for accurate approximation procedures.

In this chapter we will also discover one of the more interesting facts in the study
of numerical methods. The approximation of integrals—a task that is frequently
needed—can usually be accomplished very accurately and often with little effort.
The accurate approximation of derivatives—which is needed far less frequently—
is a more difficult problem. We think that there is something satisfying about a
subject that provides good approximation methods for problems that need them
but is less successful for problems that don’t.

133

134 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.2 Basic Quadrature Rules

The basic procedure for approximating the definite integral of a function f on the
interval [a,] is to determine an interpolating polynomial that approximates f and
then integrate this polynomial.In this section we determine approximations that
arise when some basic polynomials are used for the approximation and determine
error bounds for these approximations.

The approximations we consider use interpolating polynomials at equally spaced
points in the interval [a,b]. The first of these is the Midpoint rule, which uses
the midpoint of [a,b], (a + b)/2, as its only interpolation point. The Midpoint
rule approximation is easy to generate geometrically, as shown in Figure 4.1, but
to establish the pattern for the higher-order methods and to determine an error
formula for the technique, we will use a basic tool for these derivations, the Newton
interpolatory divided-difference formula we discussed in Section 3.3.

NOTE from Author: Change made in Figure 4.1.

Figure 4.1
Y

y="1(

f(a - b) 1 y = Po(¥)

Suppose that f € C™*[a,b], where [a,b] is an interval that contains all the
nodes xg,x1,...,x,. The Newton interpolatory divided-difference formula states
that the interpolating polynomial for the function f using the nodes xg,x1, ..., %,
can be expressed in the form

Poa,..n(@) = flwo]+ flzo, z1](z — 20) + flzo, 21, 22)(2 — 20) (2 — 1) + -
+ flro, @1,y xp (@ —xo) (@ — 1) - (8 — Tpo1)-

Since this is equivalent to the nth Lagrange polynomial, the error formula has the

form
FO(E(x))

fx) = Poq,.n(x) = (n+1)!

(—zo)(x —21) (T —),

4.2. BASIC QUADRATURE RULES 135

where £(z) is a number, depending on x, that lies in the smallest interval that
contains all of x, xg, x1,...,2,.

To derive the Midpoint rule we could use the constant interpolating polynomial
with ¢ = (a + b)/2 to produce

/abf(x) dx%/abf[xo] d:vzf[sco](b—a):f<a—2H)>(b_a)7

but we could also use a linear interpolating polynomial with this value of zy and
an arbitrary value of x;. This is due to the fact that the integral of the second
term in the Newton interpolatory divided-difference formula is zero for our choice
of g, independent of the value of z1, and as such does not contribute to the
approximation:

b
/f[xo,xl](:c—mo) dr = f[$()2’x1](— 20)?
flzo, 2] (_a+b>2 b
2 \" 2

Il
=
8
|2
8
P
| — |
/N
>
I
IS
| +
o>
~
[\
|
S
|
IS
| 4
o>
~__
[\v]

We would like to derive approximation methods that have high powers of b — a in
the error term. In general, the higher the degree of the approximation, the higher
the power of b—a in the error term, so we will integrate the error for Py ;(z) instead
of Py(x) to determine an error formula for the Midpoint rule.

Suppose that the arbitrary x; was chosen to be the same value as z¢. (In fact,
this is the only value that we cannot have for x;, but we will ignore this problem for
the moment.) Then the integral of the error formula for the interpolating polynomial
Py(x) has the form

br—a T —T1) .y ’ "
[et e o= [ESE e a,

where, for each x, the number £(x) lies in the interval (a,b).

Since the term (z — x¢)? does not change sign on the interval (a,b), the Mean
Value Theorem for Integrals implies that a number £, independent of z, exists in

136 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

(a,b) with

b (;13—.%'0)2 1" o 17" b(x_x0)2 o f”(f) . 3 '
[e @y ar = 119 [do =18 ay)

2

_ f”é&) Kbb;ﬂz)g(ab;a)?:
[b—a)® &), s
e = - a)

As a consequence, the Midpoint rule with its error formula has the following
form:

[Midpoint Rule] If f € C?[a,b], then a number £ in (a,b) exists with

b "
f(z) de=(b— a)f(%”) + fQ—Ef)(b—a)?’.

a

The invalid assumption, x; = xg, that leads to this result can be avoided by
taking x1 close, but not equal, to o and using limits to show that the error formula
is valid.

The Midpoint rule uses a constant interpolating polynomial disguised as a linear
interpolating polynomial. The next method we consider uses a true linear interpo-
lating polynomial, one with the distinct nodes o = a and x; = b. This approxima-
tion is also easy to generate geometrically, as is shown in Figure 4.2, and is aptly
called the Trapezoidal, or Trapezium, rule. If we integrate the linear interpolating
polynomial with xg = a and 1 = b we also produce this formula:

b (r —a)? b
[tSteol + lzo,mila)} de = f[a}m+f[a,b]]

2

_ £0) ~ £(a) [(b-) (a—a)?
— @ -a+ OS]

)

- UJ_G)M

Figure 4.2

4.2. BASIC QUADRATURE RULES 137

Ya

The error for the Trapezoidal rule follows from integrating the error term for
Py1(z) when g = a and z1 = b. Since (v — x¢)(z — x1) = (x — a)(x — b) does not
change sign in the interval (a,b), we can again apply the Mean Value Theorem for
Integrals. In this case it implies that a number & in (a,b) exists with

b (2 —a)(x — " b
[=@ e = 59 [e-ale-a+ @)

- L [t o)

" _a3 _a2
_ f;&)[(bg) +<’)2><a_b>].

Simplifying this equation gives the Trapezoidal rule with its error formula.

b

a

[Trapezoidal Rule] If f € C?[a,b], then a number ¢ in (a,b) exists with

b "

We cannot improve on the power of b—a in the error formula for the Trapezoidal
rule, as we did in the case of the Midpoint rule, because the integral of the next
higher term in the Newton interpolatory divided-difference formula is

b b
/ flzo, x1, z2)(xz — o) (x — 21) dx:f[xo,mhxg]/ (x —a)(x —b) du.

Since (x — a)(z —b) < 0 for all = in (a,b), this term will not be zero unless
flxo,z1,x2] = 0. As a consequence, the error formulas for the Midpoint and the

138 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Trapezoidal rules both involve (b—a)?3, even though they are derived from interpo-
lation formulas with error formulas that involve b — a and (b — a)?, respectively.

Next in line is an integration formula based on approximating the function f
by a quadratic polynomial that agrees with f at the equally spaced points zg = a,
x1 = (a4 b)/2, and x5 = b. This formula is not easy to generate geometrically,
although the approximation is illustrated in Figure 4.3.

Figure 4.3
Ya
y=1()
y =Py
a= Xg x'1 X, =b X

To derive the formula we integrate Py 1 2(x).

b
/ P07172(IL’) dx

oo o 222 5]

=(b—a) [f(a)+f<“;b —f(a)}
" (bia> f(b) —b%{(aTb) B f(aTbb;; f(a) [(b —3@)3 - (b—4a)3}

EXAMPLE 1

4.2. BASIC QUADRATURE RULES 139

Simplifying this equation gives the approximation method known as Simpson’s rule:

/abf(:v) ar~ 020 [f(a) y (a;b) +f] .

An error formula for Simpson’s rule involving (b — a)* can be derived by using
the error formula for the interpolating polynomial Py 1 2(x). However, similar to the
case of the Midpoint rule, the integral of the next term in the Newton interpolatory
divided-difference formula is zero. This implies that the error formula for Py 1 2 3(x)
can be used to produce an error formula that involves (b — a)5. When simplified,
Simpson’s rule with this error formula is as follows:

[Simpson’s Rule] If f € C*[a,b], then a number ¢ in (a,b) exists with

/abf(w) dr = (- a) {f(a) +4f (a;—b) —&—f(b)} — fQ(:S(S) (b—a)®.

6

This higher power of b — a in the error term makes Simpson’s rule significantly
superior to the Midpoint and Trapezoidal rules in almost all situations, provided
that b — a is small. This is illustrated in the following example.

Tables 4.1 and 4.2 show results of the Midpoint, Trapezoidal, and Simpson’s rules
applied to a variety of functions integrated over the intervals [1,1.2] and [0,2]. All
the methods give useful results for the function on [1,1.2], but only Simpson’s rule
gives reasonable accuracy on [0, 2]. O

Table 4.1 INTEGRALS ON THE INTERVAL [1,1.2]
f(x) x? rt 1/(x+1) V1422 sin x e’
Exact value 0.24267 0.29766 0.09531 0.29742 0.17794 0.60184
Midpoint 0.24200 0.29282 0.09524 0.29732 0.17824 0.60083
Trapezoidal — 0.24400 0.30736 0.09545 0.29626 0.17735 0.60384
Simpson’s 0.24267 0.29767 0.09531 0.29742 0.17794 0.60184

140 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 4.2 INTEGRALS ON THE INTERVAL [0, 2]

fx) z? x? 1/(x+1) V1422 sinzx e*

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Midpoint 2.000 2.000 1.000 2.818 1.682 5.436
Trapezoidal ~ 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

To demonstrate the error terms for the Midpoint, Trapezoidal, and Simpson’s
methods, we will find bounds for the errors in approximating f02 V1 + 22 dx. With
f(z) = (14 2%)'/2, we have

) T . 1 " —3
F'@ = 'O = grgpr =4 1@ =

To bound the error of the Midpoint method, we need to determine maxo<,<2 | f” ().
This maximum will occur at either the maximum or the minimum value of f” on
[0,2]. Maximum and minimum values for f” on [0,2] can occur only when xz = 0,
x =2, or when f"”'(z) = 0. Since f"(x) = 0 only when x = 0, we have

jax |f"(z)] = max{|f"(0)], |f"(2)} = max {1, 5—3/2} ~ 1.

So a bound for the error in the Midpoint method is

3]
T(b — (1)3

1 1 -
<—2— 3:—: L.
S50 =35=03

The actual error is within this bound, since |2.958 — 2.818| = 0.14. For the Trape-
zoidal method we have the error bound

7€)
TR

1 2 -
<—=(2-0P7=2=06
< S(2-0° =2 =05,
and the actual error is |2.958 — 3.326| = 0.368. We need more derivatives for Simp-

son’s rule:

1222 — 3
(1+22)7/2

452 — 602>
5 _
and fO)(z) = 22

fO (@) =
Since f®)(x) = 0 implies
0 = 452 — 602° = 152(3 — 42?),

f®(z) has critical points 0, +£+/3/2. Thus,
W (V3

1F @)l

IN

max |f(4)(x)| = max{f(4)(0)|,

0<z<2

maxd |3 68T 9VE | _
72401 7125 [7

,If(“)(?)l}

4.2. BASIC QUADRATURE RULES 141

The error for Simpson’s rule is bounded by

A
2880

5 3 5 =
(b—a) §2880(2 0)° = =0.03,
and the actual error is |2.958 — 2.964| = 0.006.

Since the error formulas all contain b — a to a power, they are most effective
when the interval [a,b] is small, so that b — a is much smaller than one. There
are formulas that can be used to improve the accuracy when integrating over large
intervals, some of which are considered in the exercises. However, a better solution
to the problem is considered in the next section.

142 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.2

1. Use the Midpoint rule to approximate the following integrals.

(a) /01 2t dx (b) /00'5 T i 4 du

.5

15 1
(c)/ 2?Inz de (d) / r?e™" dx
1 0

1.6 :0.35
2z 2
w/4 /4
(2) / rsinz dx (h) / 3% sin 2z dx
0 0

2. Use the error formula to find a bound for the error in Exercise 1, and compare
the bound to the actual error.

3. Repeat Exercise 1 using the Trapezoidal rule.
4. Repeat Exercise 2 using the Trapezoidal rule and the results of Exercise 3.
5. Repeat Exercise 1 using Simpson’s rule.

6. Repeat Exercise 2 using Simpson’s rule and the results of Exercise 5.

Other quadrature formulas with error terms are given by

i) [, f@)

() d 3h(f(a) + 3f(a+ h) + 3f(a + 2h) + f(b)] — 27 FD(¢), where
h=b39,

(i) [P f(z) de=22[f(a+h)+ fa+2R)] + 22 f7(€), where h = b4,

7. Repeat Exercises 1 and 2 using Formula (i).

8. Repeat Exercises 1 and 2 using Formula (ii).

9. The Trapezoidal rule applied to fo) dx gives the value 4, and Simpson’s
rule gives the value 2. What is f(1)?

10. The Trapezoidal rule applied to fo) dx: gives the value 5, and the Midpoint
rule gives the value 4. What value does Simpson’s rule glve‘?

4.2. BASIC QUADRATURE RULES 143

11. Find the constants cg, ¢1, and z1 so that the quadrature formula

/0 f(x) dz = cof(0) + erf (1)

gives exact results for all polynomials of degree at most 2.

12. Find the constants xg, x1, and ¢; so that the quadrature formula

| @) do = 35(0) + 17t
0

gives exact results for all polynomials of degree at most 3.

13. Given the function f at the following values:

z ‘ 1.8 ‘ 2.0 ‘ 2.2 ‘ 2.4 ‘ 2.6
(@) ‘ 3.12014 ‘ 4.42569 ‘ 6.04241 ‘ 8.03014 ‘ 10.46675

(a) Approximate flz.'sﬁ f(x) dz using each of the following.

(i) the Midpoint rule (i) the Trapezoidalrule (iii) Simpson’s
rule

(b) Suppose the data have round-off errors given by the following table:

x ‘ 1.8 ‘ 2.0 ‘ 2.9 ‘ 2.4 ‘ 26

Error in f(z) ‘ 2x 1076 ‘ —2x 1076 ‘ —0.9 x 1076 ‘ —0.9 x 1076 ‘ 2 x 1076

Calculate the errors due to round-off in each of the approximation meth-
ods.

144 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.3 Composite Quadrature Rules

The basic notions underlying numerical integration were derived in the previous
section, but the techniques given there are not satisfactory for many problems.
We saw an example of this at the end of that section, where the approximations
were poor for integrals of functions on the interval [0,2]. To see why this occurs,
let us consider Simpson’s method, generally the most accurate of these techniques.
Assuming that f € C*[a,b], Simpson’s method with its error formula, it is given by

/ab fa) dz b;a [f(a) +4f (a;b> +f(b)] - (b2§8%)5f<4><£>

= M@ vt ny + m) - b

where h = (b — a)/2 and ¢ lies somewhere in the interval (a,b). Since f € C*4[a, b]
implies that f(*) is bounded on [a, b], there exists a constant M such that | f*) (z)| <
M for all x in [a,b]. As a consequence,

h

b
DF(@) + Af(a+ h) + F()] - / (@) do

b M
= [fW)] < 5.
3 ‘9of (5)‘ =90

Since the error term in this formula involves M, a bound for the fourth derivative
of f, and h®, we can expect the error to be small provided that

e The fourth derivative of f is well behaved, and
e The value of h = b — a is small.

The first assumption we can live with, but the second might be quite unreasonable.
There is no reason, in general, to expect that the interval [a,b] over which the
integration is performed is small, and if it is not, the h® portion in the error term
will likely dominate the calculations.

We circumvent the problem of a large interval of integration by subdividing the
interval [a,b] into a collection of intervals that are sufficiently small so that the
error over each is kept under control.

EXAMPLE 1 Consider finding an approximation to f02 e® dx. If Simpson’s rule is used with h = 1,
2 1
/ e dr ~ 5(eO + 4e! +e?) = 6.4207278.
0
Since the exact answer in this case is e? — e® = 6.3890561, the error of magnitude
0.0316717 is larger than would generally be regarded as acceptable. To apply a

piecewise technique to this problem, subdivide [0,2] into [0,1] and [1,2],and use
Simpson’s rule twice with h = 3, giving

%

2 1 2
1 1
/e"’” d:c:/ e* d:ch/ e’ dx 6[60+460'5+61]+6[61+461'5+62]
0 0 1

1
= 3 [€0 +4e% + 2e! + 4e'® + %] = 6.3912102.

4.3. COMPOSITE QUADRATURE RULES 145

The magnitude of the error now has been reduced by more than 90% to 0.0021541.
If we subdivide each of the intervals [0, 1] and [1,2] and use Simpson’s rule with
h = i we get

2 0.5 1 1.5 2
/ezdx = / e’”dw—i—/ e“‘da:—i—/ e”dm—l—/ e’ dx
0 0 0.5 1 1.5

[60+460'25 +€0.5] 4 %[60'5 +4€0'75+61}

—_
t\:>|"

i 1 1.25 1.5 i 1.5 1.75 2
+12[€ + 4e +e]+12[e + 4e —1—6]

1
= D [60+460'25+260'5+460'75+261+461'25+261'5+4el'75+62]

= 6.3891937.

The magnitude of the error for this approximation is 0.0001376, only 0.4% of the
original error. O

The generalization of the procedure considered in this example is called the
Composite Simpson’s rule and is described as follows.

Choose an even integer, subdivide the interval [a,b] into n subintervals, and
use Simpson’s rule on each consecutive pair of subintervals. Let h = (b — a)/n and
a=1x9 <z <--- <z =>, where x; = xg + jh for each j = 0,1,...,n. Then

n/2

b T2j
/f(m)dx = Z/ f(z) dx
n/2 5
— Z{g[f($2j—2) +4f(zoj_1) + flwy)] — %f(4)(§j)}

for some &; with zoj_o < & < @2, provided that f € C*[a,b]. To simplify this
formula, first note that for each j = 1,2,..., 5 —1, we have f(z9;) appearing in the
term corresponding to the interval [zg;_2, 22;] and also in the term corresponding
to the interval [xg;, £2;12]. Combining these terms gives (see Figure 4.4)

b h (n/2)-1 n/2 h5 n/2
/ f(z) dx = 3 f(wo) +2 Z f(932j)+42f(332j71)+f(33n) —%wa(fj)-
@ j=1 j=1 j=1

Figure 4.4

146 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

s DY

Y

<V

a=Xp Xz -2 X1 Xy b =x,

The error associated with the approximation is

5 n/2

Z f(4)

where @gj_o < & < xg; for each j =1,2,...,%.If f € C*[a,b], the Extreme Value
Theorem implies that f*) assumes its maximum and minimum in [a, b]. Since

min 4 (z)<f(4)(f)< Igax fA (@),

z€[a,b]
we have
n n/2 n
i (4)) < (4) i (4)
2 [;nbf Zf 2 rg[b]f (z),
and
9 n/2
i (4) <z < (4)
min () < nj;f (&) < max fO(a).

The term in the middle lies between values of the continuous function f®, so the
Intermediate Value Theorem implies that a number p in (a,b) exists with

n/2

23 1)

Jj=1

[\)

FO (p) =

Since h = (b — a)/n, the error formula simplifies to

5 n/2

bh—a
Zf = 09),

Summarizing these results, we have the following: If f € C*[a,b] and n is even, the
Composite Simpson’s rule for n subintervals of [a,b] can be expressed with error
term as follows:

4.3. COMPOSITE QUADRATURE RULES 147

[Composite Simpson’s Rule] Suppose that f € C*[a,b]. Then for some p in
(a,b) we have

(n/2)—1 n/2 (b—a)h4

3

Jj=1 j=1

b
/f(x)dw:ﬁ fl)+2 3 o) +4D flwajon) + F(0) | =g — 1]

~

Composite Simpson’s rule is O(h?), so the approximations converge to ff f(z) dx
at about the same rate that h* — 0. This rate of convergence is sufficient for most
common problems, provided the interval of integration is subdivided so that A is
small. The program CSIMPRA41 implements the Composite Simpson’s rule on n
subintervals. This is the most frequently used general-purpose integral approxima-
tion technique.

The subdivision approach can be applied to any of the formulas we saw in the
preceding section. Since the Trapezoidal rule (see Figure 4.5) uses only interval
endpoint values to determine its approximation, the integer n can be odd or even.

Figure 4.5

Ya

a=x, X Xi-1 X Xo_1 b =X, X

Suppose that f € C?[a,b], that h = (b — a)/n, and that z; = a + jh for each
j=0,1,...,n. The Composite Trapezoidal rule for n subintervals is O(h?).

148 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

[Composite Trapezoidal Rule] Suppose that f € C?[a,b]. Then for some p in
(a,b) we have

b n—1 _a
[1@ =2 5@+ 10423 st | - o2),
@ j=1

Suppose that f € C?[a,b] and that n is an even integer. With h = (b—a)/(n+2)
and x; = a+ (j + 1)h for each j = —1,0,...,n + 1, the Composite Midpoint rule
for n + 2 subintervals is also O(h?). (see Figure 4.6).

Figure 4.6
Y
y=109
__/
a=Xq X X Xoj-1 Xy Xgjt1 Xo b= Xniq X

[Composite Midpoint Rule] Suppose that f € C?[a,b]. Then for some p in
(a,b) we have

b n/2 B2
[5wy do =2y sy + LI),
a j=0

EXAMPLE 2 Suppose that we want to use the O(h*) Composite Simpson’s rule to approximate

foﬂ sinz dx with an absolute error at most 0.00002. How many subintervals of [0, 7]

are required?

4.3. COMPOSITE QUADRATURE RULES 149

Applying the formula to the integral fow sinz dx gives

w h (n/2)-1 n/2 T
/0 sinx dr = 3 [2 ; sin xg; +4;sinx2j—1] — @sinu.

Since the absolute error is to be less than 0.00002, the inequality

——sinp —— <0.00002

wht wht o
< 1=
180 — 180 180n4

is used to determine n and then h. Completing these calculations gives n > 18.
Verifying this, we find that when n = 20 and h = 7/20, Composite Simpson’s rule
gives

9 . 10 .
e de e T 2300 (7)1 432 (2207 |
/o sinz dr ~ 50 2j:1 sin (E) +4 sin (T = 2.000006,

compared to the exact value of 2.
To be assured of this degree of accuracy using the O(h?) Composite Trapezoidal
rule requires that

h2 h2 3
Wsinu‘gﬂ = T <0.00002,

12 12 12n2

which implies that n > 360.
For comparison purposes, the O(h?) Composite Midpoint rule with n = 18 and

h = 7/20 gives

9 .
m 2 +1
/O sinz dz ~ 110 Y sin (%) — 2.0082484

Jj=0

and the O(h?) Composite Trapezoidal rule with n = 20 and h = 7/20 gives

- [190)
/Osin:rdx R I—O 2j§_:lsin<]2—g>+sin0+sin7r

[19 .
_ (T |
= 0 Q;Sm< 20) 1.9958860.

The O(h*) Composite Simpson’s rule with h = /20 gave an answer well within
the required error bound of 0.00002, whereas the Midpoint and Trapezoidal rules
with h = /20, which are only O(h?), clearly do not. O

Maple incorporates all three composite rules. To obtain access to the library
where they are defined, enter

150 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

>with(student) ;

The calls for the methods are middlesum(f,x=a..b,n), trapezoid(f,x=a..b,n),
and simpson(f,x=a..b,n). For our example the following commands are used.

>f:=sin(x);

| :=sin(z)

>evalf (middlesum(f,x=0..Pi,10));

2.008248408

>evalf (trapezoid(f,x=0..Pi,20));

1.995885974

>evalf (simpson(f,x=0..Pi,20));

2.000006785

We will illustrate the Composite Midpoint Rule using loops. First we define f(z)
and a, b, n, and h.

>f:=x->sin(x);
>a:=0; b:=Pi; n:=18; h:=(b-a)/(n+2);

We need a variable to calculate the running sum, and we initialize it at 0.
>Tot:=0;
In Maple the counter-controlled loop is defined by

for loop control variable from initial-value to terminal value do
statement;
statement;

statement;
od;

In the following example the loop control variable is j, which begins at 0 and
goes to n/2 =9 in steps of 1. For each value of j = 0,1,...,9 the loop is traversed
and each calculation inside the loop is performed until the word od is encountered.
The reserved words involved are for, from, to, do and od. Note that no ; follows
the do statement.

4.3. COMPOSITE QUADRATURE RULES 151

>for j from O to n/2 do
> xj:=a+(2%j+1)*h;

> Tot:=evalf (Tot+f (xj))
>od;

This produces a series of results culminating in the final summation

n/2 9
Tot = f(r2;) = f(za;) = 6.392453222.
§=0 §=0
We then multiply by 2h to finish the Composite Midpoint Method
>Tot:=evalf (2*¥h*Tot) ;

Tot := 2.008248408

An important property shared by all the composite rules is stability with respect
to round-off error. To demonstrate this, suppose we apply the Composite Simpson’s
rule with n subintervals to a function on [a,b] and determine the maximum bound
for the round-off error. Assume that f(z;) is approximated by f(z;) and that

f(xi) = f(z;) + e, for each 1 =0,1,...,n,

where e; denotes the round-off error associated with using f (z;) to approximate
f(z;). Then the accumulated round-off error, e(h), in the Composite Simpson’s
rule is

h (n/2)—1 n/2
G(h) = g 60—|—2 Z €24 —|—4Z(32j_1—|—€n
j=1 j=1
h (n/2)—1 n/2
< 3 |leol+2 D gl +4) leaja| + lenl
j=1 =1

If the round-off errors are uniformly bounded by some known tolerance ¢, then

n

2) 5—&—5} = g?mg = nhe.

h n
e(h) < = {5—}—2(__1)5—&-4(
(h) = 3 2
But nh = b—a, so e(h) < (b—a)e, a bound independent of h and n. This means that
even though we may need to divide an interval into more parts to ensure accuracy,
the increased computation that this requires does not increase the round-off error.

152 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.3

1. Use the Composite Trapezoidal rule with the indicated values of n to approx-
imate the following integrals.

2
? 3z o
(a)/xlnxdx, n =4 (b) /QSUG de, n=4
1

2 T
2 2
- d = d /xcosxdx, n==06
(c)/o 2 x, n=06 (d) :

2 3
(e)/oe%sin?)xdx, n=_§ (f)/1 %de, n=_§

5 3m/8
———dx, n=28 h t dz, =8
() /3 NZo (h) /0 anz dr, n

2. Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.

3. Use the Composite Midpoint rule with n + 2 subintervals to approximate the
integrals in Exercise 1.

4. Approximate f02 2%e~%" dz using h = 0.25.

(a) Use the Composite Trapezoidal rule.
(b) Use the Composite Simpson’s rule.

(¢) Use the Composite Midpoint rule.

5. Determine the values of n and h required to approximate

2
/ €%* sin 3z dx
0

to within 104,

(a) Use the Composite Trapezoidal rule.
(b) Use the Composite Simpson’s rule.

(¢) Use the Composite Midpoint rule.

6. Repeat Exercise 5 for the integral foﬂ 2% cosx dx.

4.3. COMPOSITE QUADRATURE RULES 153

7.

10.

11.

12.

13.

Determine the values of n and h required to approximate

2
1
/ dx
0o T+4

to within 10~° and compute the approximation.

(a) Use the Composite Trapezoidal rule.
(b) Use the Composite Simpson’s rule.

(¢) Use the Composite Midpoint rule.

Repeat Exercise 7 for the integral ff rlnx d.

Suppose that £(0.25) = f(0.75) = «. Find « if the Composite Trapezoidal

rule with n = 2 gives the value 2 for fol f(x) dx and with n = 4 gives the
value 1.75.

The Midpoint rule for approximating f_ll f(z) dx gives the value 12, the
Composite Midpoint rule with n = 2 gives 5, and Composite Simpson’s rule
gives 6. Use the fact that f(—1) = f(1) and f(—0.5) = f(0.5)—1 to determine
f(il)’ f(705)a f(0)7 f(05)7 and f(]-)

In multivariable calculus and in statistics courses it is shown that

o0 1 9
—(1/2)(z/0) _
e dr =1
/_oo o2

for any positive o. The function

F@) = —— e/ a/o)?

o2
is the normal density function with mean p = 0 and standard deviation o. The
probability that a randomly chosen value described by this distribution lies
in [a,b] is given by f; f(x) dz. Approximate to within 10~° the probability
that a randomly chosen value described by this distribution will lie in

(a) [~20,20] (b) [~30,30]
Determine to within 107° the length of the graph of the ellipse with equation
422 + 9y? = 36.

A car laps a race track in 84 s. The speed of the car at each 6-s interval is
determined using a radar gun and is given from the beginning of the lap, in
feet/second, by the entries in the following table:

Time| 0 6 12 18 24 30 36 42 48 54 60 66 72 78

84

Speed|124 134 148 156 147 133 121 109 99 8 78 89 104 116 123

How long is the track?

154

14.

15.

CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

A particle of mass m moving through a fluid is subjected to a viscous resis-
tance R, which is a function of the velocity v. The relationship between the
resistance R, velocity v, and time t is given by the equation

ot)
= du.
/v(to) R(u)
Suppose that R(v) = —vy/v for a particular fluid, where R is in newtons and

v is in meters/second. If m = 10 kg and v(0) = 10 m/s, approximate the time
required for the particle to slow to v =5 m/s.

The equation

1 —¢2/2
—e dt = 0.45
/0 V2T

can be solved for x by using Newton’s method with
fx) = Tl g oas
0o V2w

and

f(@) = \/%—Fe_”Z/Q.

To evaluate f at the approximation pg, we need a quadrature formula to
approximate
Pk 1 t2/2
/ Lt g
0 A4 2T

(a) Find a solution to f(x) = 0 accurate to within 107> using Newton’s
method with py = 0.5 and the Composite Simpson’s rule.

(b) Repeat (a) using the Composite Trapezoidal rule in place of the Com-
posite Simpson’s rule.

4.4. ROMBERG INTEGRATION 155

4.4 Romberg Integration

Extrapolation is used to accelerate the convergence of many approximation tech-
niques. It can be applied whenever it is known that the approximation technique
has an error term with a predictable form, which depends on a parameter, usually
the step size h. We will first consider the general form of extrapolation, and then
apply the technique to determine integration approximations.

The Trapezoidal rule is one of the simplest of the integration formulas, but it is
seldom sufficiently accurate. Romberg Integration uses the Composite Trapezoidal
rule to give preliminary approximations, and then applies Richardson extrapolation
to obtain improved approximations. Our first step is to describe the extrapolation
process.

Suppose that N(h) is a formula involving a step size h that approximates an
unknown value M, and that it is known that the error for N (k) has the form

M — N(h) = K1h + Koh® + K3h® + -+ -,

or

M = N(h) + K1h + Koh? + K3h® + - - - . (4.1)

for some unspecified, and often unknown, collection of constants, K1, Ko, K3.....
We assume here that i > 0 can be arbitrarily chosen and that improved approxi-
mations occur as h becomes small. The objective of extrapolation is to improve the
formula from one of order O(h) to one of higher order. Do not be misled by the
relative simplicity of Eq. (4.1). It may be quite difficult to obtain the approximation
N (h), particularly for small values of h.

Since Eq. (4.1) is assumed to hold for all positive h, consider the result when
we replace the parameter h by half its value. This gives the formula

2 3
MZN(%) +K1§+K2%+K3%+'“

Subtracting (4.1) from twice this equation eliminates the term involving K; and
gives

M= [N<%>+<N(%>N(h)>]+K2 <%2h2>+K3 (hzsh3>+....

To simplify the notation, define Ny(h) = N(h) and

Ny(h) = Ny <g> + [Nl (g) - Nl(h)} .

Then the two original O(h) approximations combine to produce an O(h?) approx-
imation formula for M:
3K3

K.
M:Ng(h)—th—Tiﬁ—..-. (4.2)

156 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

If we now replace h by h/2 in Eq. (4.2) we have

h K 3K
e ()

2
This can be combined with Eq. (4.2) to eliminate the h? term. Specifically, sub-
tracting Eq. (4.2) from 4 times Eq. (4.3) gives

3
3M = 4N, (g) —Ng(h)+%<—h—+h3>+~--,

R — ... (4.3)

1\ 2
and
) e
Na(h) = Ny (g) + N2(h/2)3— Na(h)

simplifies this to the O(h3) approximation formula for M:
K.
M:Ng(h)+?3h3+--~ .

The process is continued by constructing the O(h*) approximation

Ni(h) = Ny (g) 1 D(0/2) = Nafh)

the O(h®) approximation

Ns(h) = Ny (ﬁ> 1 Nalh/2) — Nalh)

2 15 ’
and so on. In general, if M can be written in the form

m—1
M = N(h)+ Y K;n +O(h™),

j=1
then for each j = 2,3,...,m, we have an O(h’) approximation of the form

N;j(h) = Nj_, (g) . Nj_l(};é%)1__]¥j_l(h)~

These approximations are generated by rows to take advantage of the highest order
formulas. The first four rows are shown in Table 4.3.

Table 4.3
O(h) O(h?) o(n?) O(h?)
Ni(h) = N(h)
Ni(5)=N(5) Na(h)
Ni(§) =N(%) Ny(%) N3(h)
Ni(%) = N(%) Ny(%) Ns(%) Ny(h)

4.4. ROMBERG INTEGRATION 157

We now consider a technique called Romberg integration, which applies extrap-
olation to approximations generated using the Composite Trapezoidal rule. Recall
that the Composite Trapezoidal rule for approximating the integral of a function f
on an interval [a, b] using m subintervals is

ey de =")+ 10123 s | - O
|ty do =5 | 1@+ 10y + 3 Sles)| = S

where a < p < b,h = (b—a)/m and z; = a + jh for each j = 0,1,...,m (see
Figure 4.7).

Figure 4.7

Y

y="1(X

<V

a=X, X X1 X Xm-1 b= Xqn

Let n be a positive integer. The first step in the Romberg process obtains the
Composite Trapezoidal rule approximations with m; = 1,ms = 2,m3 =4,..., and
m,, = 2"~ 1. The step size hy corresponding to my, is hy = (b—a)/my, = (b—a)/2F L.
With this notation the Trapezoidal rule becomes

ok—1_1q
—a

b
[r@de=2 | f@+ s +2 (Y flaim || = T),
a i=1

2

where, for each k, pu5 is some number in (a,b). If the notation Ry ; is introduced to
denote the portion of this equation that is used for the trapezoidal approximation,
then (see Figure 4.8):

R =)+ 00 = OS2 @ + e
Ryy = % [Ri1+ hif(a+ ho)];

Rz, = %{Rm+h2[f(a+h3)+f(a+3h3)]}-

158 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Figure 4.8

Yi Ya Ya
R, V=W R, V=1 Ry VI

11 - : N : _
/ v/ \//

In general, we have the following:

[Composite Trapezoidal Approximations|

2k—2

1)
Riy =5 | Be-11+ hi— Z fla+ (20 = 1)hx)

i=1

for each k = 2,3,...,n.

EXAMPLE 1 Using the Composite Trapezoidal rule to perform the first step of the Romberg
Integration scheme for approximating foﬂ sinz dr with n = 6 leads to

Ry1 = —[sin0+sinn] =0,

oy

Roy == {Ru + 7 sin g} — 1.57079633,

— N

3
Ryi =3 {Rz,l + g (sin% + sin %)} = 1.89611890),

1 T
Ry1 = 5 |:R3,1 + 1

Rs 1 =1.99357034, and Rg; = 1.99839336. [

(sing +sin %ﬂ 1 sin ‘%T 4 sin g)] — 1.97423160,

<V

4.4. ROMBERG INTEGRATION 159

Since the correct value for the integral in Example 1 is 2, it is clear that, although
the calculations involved are not difficult, the convergence is slow. To speed the
convergence, the Richardson extrapolation will be performed.

To apply extrapolation, we must first have an approximation method with its
error term in the form -

Z KL }Li,
i=1

for some collection of constants K7, Ko, --. Although it is not easy to demonstrate,
if f € C*Ja,b], then for each k = 1,2, ..., the Composite Trapezoidal rule can be
written with an alternative error term as

/f dx—Rkl—Zth =Kihj + Y Kby, (4.4)
i=1 =2

where K; for each i is independent of hy and depends only on f(*~1(a) and
FZ=1D(b). Because the powers of hy, in these equations are all even, the first aver-
aging step produces an O(h*) approximation, the second, an O(h®) approximation,
and so on. As a consequence, the accuracy acceleration is much faster than in our
initial discussion.

The first step is to rewrite Eq. (4.4) with hy replaced by hg1 = hy/2:

— Kih¥ Kih} o~ Kb
/f dx—RkHl_ZthH Z £2ik = Zlurz ;Zk (4.5)
i=1 =2

Then we subtract Eq. (4.4) from 4 times Eq. (4.5) to eliminate the K1h3 terms and
obtain

h21 >

=Y Kihi'.
=2

/f d$—4Rk+11+Rk1—4Z

Dividing by 3 and combining the sums gives

AR — Rin — K; [h} 2
/f 3 :Z?(zﬂl_hkz ’

b st i—1
Riy11—Rra| K, (1-4 0i
/a f(z) dz — [Rk+1,1 + f} = Z? <41——1) hie'-

=2

SO

Extrapolation can now be applied to this formula to eliminate the O(h}) term
and obtain an O(h$) result, and so on. To simplify the notation, we define

Ry — Ri—11
Rigo=Rkq + ———F——
3
for each k = 2,3,...,n, and apply extrapolation to these values. Continuing this
notation, we have, for each k = 2,3,4,...,nand j = 2,...,k, an O(hi]) approxi-

mation formula defined by

Ry j—1— Rk Lj-1

Ry,j = Rij—1 + yrE—

160 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

The results that are generated from these formulas are shown in Table 4.4.

Table 4.4

Ryn Rup Ri3z Ryg

Rnl Rn? Rn3 Rnn

)

The Romberg technique has the desirable feature that it allows an entire new
row in the table to be calculated by doing only one additional application of the
Composite Trapezoidal rule. It then uses a simple averaging on the previously
calculated values to obtain the remaining entries in the row. The method used to
construct a table of this type calculates the entries row by row, that is, in the order
Ri1,R21,R22,R31,R32,R3 3, etc. This is the process followed in the program
ROMBRGA42.

EXAMPLE 2 In Example 1, the values for R;; through R, ; were obtained by approximating
foﬂ sinz dr with n = 6. The output from ROMBRG42 produces the Romberg table
shown in Table 4.5. Although there are 21 entries in the table, only the six entries
in the first column require function evaluations since these are the only entries
generated by the Composite Trapezoidal rule. The other entries are obtained by a
simple averaging process. Notice that all the extrapolated values except for the first
(in the first row of the second column) are more accurate than the best composite
trapezoidal approximation (in the last row of the first column). O

Table 4.5

0
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999
1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000

The program ROMBRG32 requires a preset integer n to determine the number
of rows to be generated. It is often also useful to prescribe an error tolerance for the
approximation and generate R, for n within some upper bound, until consecutive
diagonal entries R, ,, agree to within the tolerance.

4.4. ROMBERG INTEGRATION 161

EXERCISE SET 4.4

1. Use Romberg integration to compute R3 3 for the following integrals.

1
15 2 =
(b / xfe " dx
(a) /1 ?Inx do) o
035 o /4
2 .
(c) /0 = dx (d) /0 z*sinx dx
w/4 1.6 2
3 g f =y
(e) /0 e’ sin 2 dx (f) /1 i
3.5 T w/4
——d h 2d
(g) 5 \/m €T () /O (COS.%') X

2. Calculate Ry 4 for the integrals in Exercise 1.

3. Use Romberg integration to approximate the integrals in Exercise 1 to within
1075, Compute the Romberg table until |R,, 1,1 — Rpn| < 1075, or until
n = 10. Compare your results to the exact values of the integrals.

4. Apply Romberg integration to the following integrals until R,,_1 -1 and R,, ,,
agree to within 1074,

1
(a) / /3 dx
0

0.3
(b) f(x) dz, where
0
3+ 1, if 0<z<0.1,
1.001 + 0.03(z — 0.1)
f(z) = +0.3(z —0.1)2 +2(z —0.1)3, if0.1<2<0.2,

1.009 + 0.15(z — 0.2)
+0.9(z —0.2)2 +2(x — 0.2)3, if0.2<z<0.3.

5. Use the following data to approximate ff f(x) dz as accurately as possible.
v | 1] 2 3| 4 5
(@) ‘ 2.4142 ‘ 2.6734 ‘ 2.8974 ‘ 3.0976 ‘ 3.2804

162

10.

11.

12.

CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Romberg integration is used to approximate

1 2
/ :c dx.
0 1 + QZ‘B

If RH = 0.250 and RQQ = 0.2315, what is R21?

Romberg integration is used to approximate

/2 * b dr.

If f(2) = 0.51342, f(3) = 0.36788, R3; = 0.43687, and Rs3 = 0.43662, find
F(2.5).

Romberg integration for approximating fol f(x) dx gives R1; = 4 and Roy = 5.
Find f(3).

Romberg integration for approximating f: f(x) dx gives Ry; = 8, Ros = %,

and Rz = 22, Find Rj;.

Suppose that N(h) is an approximation to M for every h > 0 and that
M = N(h) + Kih + Koh® + K3h® + - --

for some constants K, Ko, K3,.... Use the values N(h), N (%), and N (%)
to produce an O(h?) approximation to M.

Suppose that N(h) is an approximation to M for every h > 0 and that
M = N(h) + K1h? + Koh* + K3h® + -+

for some constants K, Ko, K3,.... Use the values N(h), N (%), and N (%)
to produce an O(h®) approximation to M.

We learn in calculus that e = limj,_o(1 + h)Y/".

(a) Determine approximations to e corresponding to h = 0.04, 0.02, and
0.01.

(b) Use extrapolation on the approximations, assuming that constants K7,
Ky, ..., exist with

e=(1+h)"" + Kih+ Koh® + K3h® + - -
to produce an O(h?) approximation to e, where h = 0.04.

(c) Do you think that the assumption in part (b) is correct?

4.4. ROMBERG INTEGRATION 163

24 h\ "
%L%(m) -

(b) Compute approximations to e using the formula

- (228)”

13. (a) Show that

2—h
for h = 0.04, 0.02, and 0.01.

(c) Assume that e = N(h) + K1h+ Koh? 4+ K3h® + - -+ . Use extrapolation,
with at least 16 digits of precision, to compute an O(h?) approximation
to e with h = 0.04. Do you think the assumption is correct?

(d) Show that N(—h) = N(h).
(e) Use part (d) to show that Ky = K3 = K5 = --- = 0 in the formula
e =N(h) + K1h + Kyh? + K3h® + Kuh* + K2 + -+ |
so that the formula reduces to

e = N(h) + Koh® + K4h* + Kgh® + -+ .
(f) Use the results of part (e) and extrapolation to compute an O(h%) ap-
proximation to e with h = 0.04.

14. Suppose the following extrapolation table has been constructed to approxi-
mate the number M with M = Ny(h) + K1h? + Koh* + K3h®:

Ni(h)
N (%) Na(h)
Ni(3) N2 (§) Ns(h)

(a) Show that the linear interpolating polynomial Py (h) through (h?, Ny (h))
and (h?/4,Ny(h/2)) satisfies Py1(0) = Nz(h). Similarly, show that
P; 5(0) = Na(h/2).

(b) Show that the linear interpolating polynomial Py 2(h) through (h*, Na(h))
and (h*/16, Na(h/2)) satisfies Py 2(0) = N3(h).

164 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.5 Gaussian Quadrature

The formulas in Section 4.2 for approximating the integral of a function were de-
rived by integrating interpolating polynomials. The error term in the interpolating
polynomial of degree n involves the (n + 1)st derivative of the function being ap-
proximated. Since every polynomial of degree less than or equal to n has zero for
its (n + 1)st derivative, applying a formula of this type to such polynomials gives
an exact result.

All the formulas in Section 4.2 use values of the function at equally spaced
points. This is convenient when the formulas are combined to form the composite
rules we considered in Section 4.3, but this restriction can significantly decrease the
accuracy of the approximation. Consider, for example, the Trapezoidal rule applied
to determine the integrals of the functions shown in Figure 4.9. The Trapezoidal
rule approximates the integral of the function by integrating the linear function
that joins the endpoints of the graph of the function.

Figure 4.9

y="1f()

y=1f(x y = f(x)

Q
I
x
2
X
N
I
o
<V
QD
I
X
2
X
N
Il
o
<V
QD
Il
x
2

But this is not likely the best line to use for approximating the integral. Lines
such as those shown in Figure 4.10 would give better approximations in most cases.

Figure 4.10

<V

EXAMPLE 1

4.5. GAUSSIAN QUADRATURE 165

Ya Ya Y

y="f(

|
|
|
|
|
|
|
;
X

<Jd-———___=
<V

®

PRl oo
R 3 I

1 X, b

i
x

Gaussian quadrature uses evaluation points, or nodes, that are not equally

spaced in the interval. The nodes x1, 2o, ..., 2, in the interval [a, b] and coefficients
c1,Ca, ...,y are chosen to minimize the expected error obtained in the approxima-
tion
b n
v i=1

To minimize the expected error, we assume that the best choice of these values is
that which produces the exact result for the largest class of polynomials.

The coefficients ¢y, cs,...,c, in the approximation formula are arbitrary, and
the nodes 1, s, ..., z, are restricted only by the fact that they must lie in [a, b],
the interval of integration. This gives 2n parameters to choose. If the coefficients of
a polynomial are considered parameters, the class of polynomials of degree at most
2n — 1 also contains 2n parameters. This, then, is the largest class of polynomials
for which it is reasonable to expect the formula to be exact. For the proper choice
of the values and constants, exactness on this set can be obtained.

To illustrate the procedure for choosing the appropriate constants, we will show
how to select the coefficients and nodes when n = 2 and the interval of integration
is [-1,1].

Suppose we want to determine ¢y, co, 1, and zo so that the integration formula

1
/71 f(z) dx =~ c1f(x1) + caf(w2)

gives the exact result whenever f(z) is a polynomial of degree 2(2) — 1 = 3 or less,

that is, when

f(z) = ap + a1z + axx® + aza®

for some collection of constants, ag, a1, as, and az. Because

/(a0+a1x+a212+a3x3) dx:ao/ldachal/x dx+a2/x2 dm+a3/x3 dx,

166 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

this is equivalent to showing that the formula gives exact results when f(z) is
1,z, 22, and 2%; this is the condition we will satisfy. So, we need to find ¢1, ¢, 1,
and xg, with

1 1
01-1+02-1:/ 1de=2, cl~x1+02-x2:/ r dr =0,
—1 —1

1 9 1
cl~x%+02-x§=/ a:2dx25, and cl~x§+62-x‘;’=/ 3 dr =
1 1

Solving this system of equations gives the unique solution

=1, =1, Ty =——, and x9=

&
|3

This result produces the following integral approximation formula:

! -3 V3
[f@armr (524 ().
1 3 3
which gives the exact result for every polynomial of degree 3 or less. O

The technique in Example 1 can be used to determine the nodes and coeffi-
cients for formulas that give exact results for higher-degree polynomials, but an
alternative method obtains them more easily. In Section 8.3 we will consider vari-
ous collections of orthogonal polynomials, sets of functions that have the property
that a particular definite integral of the product of any two of them is zero. The
set that is relevant to our problem is the set of Legendre polynomials, a collection
{Po(x), Pi(x),..., Py(x),...} that has the following properties:

e For each n, P,(z) is a polynomial of degree n.
o f_ll P;(z)P;j(x) dx = 0 whenever i # j.

The first few Legendre polynomials are

1
Py(z) =1, Pi(z) =z, Py(z) = 22 — 5
3 6 3
Py(z) =2° — £ and Py(z) = 2" — ?xZ + 35

The roots of these polynomials are distinct, lie in the interval (—1, 1), have a sym-
metry with respect to the origin, and, most importantly, are the nodes to use to
solve our problem.

The nodes x1, x2, ..., x, needed to produce an integral approximation formula
that will give exact results for any polynomial of degree 2n — 1 or less are the roots
of the nth-degree Legendre polynomial. In addition, once the roots are known, the

4.5. GAUSSIAN QUADRATURE 167

appropriate coefficients for the function evaluations at these nodes can be found
from the fact that for each ¢ = 1,2,...,n, we have

_ /1 (@ —21)(@ —) (@ — @) (@ — Tig1) - (T — @)
ci = dx.
—1 (Tz - Tl)(Tz - 1‘2) ce (Tq - Tv—l)(Tz - J%t+1) ce (Tq - -Tn)
However, both the roots of the Legendre polynomials and the coefficients are ex-
tensively tabulated, so it is not necessary to perform these evaluations. A small

sample is given in Table 4.6, and listings for higher-degree polynomials are given,
for example, in the book by Stroud and Secrest [StS].

Table 4.6

Roots Coefficients

n Tn,i Cn,i

0.5773502692

—0.5773502692

0.7745966692
0.0000000000

—0.7745966692

0.8611363116
0.3399810436

—0.3399810436
—0.8611363116

0.9061798459
0.5384693101
0.0000000000

1.0000000000
1.0000000000
0.5555555556
0.8888888889
0.5555555556
0.3478548451
0.6521451549
0.6521451549
0.3478548451
0.2369268850
0.4786286705
0.5688888889

—0.5384693101 0.4786286705
—0.9061798459 0.2369268850

This completes the solution to the approximation problem for definite integrals
of functions on the interval [—1,1].But this solution is sufficient for any closed
interval since the simple linear relation

_Qxfafb

t
b—a

transforms the variable x in the interval [a,b] into the variable ¢ in the interval
[—1,1]. Then the Legendre polynomials can be used to approximate

/abf(x) dmz/_llf ((b—a)t2+b+a) (b;a) i

Using the roots 7y, 1,7n.2,...,7n,n and the coefficients ¢, 1,¢n2,...,Cn,n given in
Table 4.6 produces the following approximation formula, which gives the exact
result for a polynomial of degree 2n + 1 or less.

EXAMPLE 2

168 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

[Gaussian Quadrature] The approximation

b n
/ f(x) do =~ b;azcnﬂ_f((b—a)rnéj+b+a>.
a pa

is exact whenever f(z) is a polynomial of degree 2n + 1 or less.

Consider the problem of finding approximations to f11'5 e~ dx, whose value to
seven decimal places is 0.1093643.

Gaussian quadrature applied to this problem requires that the integral be trans-
formed into one whose interval of integration is [—1,1]:

1.5 1 1
/ o d :/ ols—nerrstny/z (LS 1Y 1/ o~ (t45)°/16 gy
1 -1 2 4/

The values in Table 4.6 give the following Gaussian quadrature approximations.

n=2:

/1'5 e—mz dr ~ i[e—(5+0.5773502692)2/16 + e—(5—0.5773502692)2/16] — 0.1094003,
1

1.5
1
/ e dr Z[(05555555556)6_(5+0'7745966692)2/16—|—(0.8888888889)6_(5)2/16
1

+ (0.5555555556)¢~ (3-07745966692)° /161 _ (11093642,

Using Gaussian quadrature with n = 3 required three function evaluations and
produces an approximation that is accurate to within 10~7. The same number of
function evaluations is needed if Simpson’s rule is applied to the original integral
using h = (1.5 — 1)/2 = 0.25. This application of Simpson’s rule gives the approxi-
mation

L5 0.25 2 2
/ e do = (e*1 t e~ (125" | o—(15)) — 0.1093104,
1

a result that is accurate only to within 5 x 107°. O

For small problems, Composite Simpson’s rule may be acceptable to avoid the
computational complexity of Gaussian quadrature, but for problems requiring ex-
pensive function evaluations, the Gaussian procedure should certainly be consid-
ered. Gaussian quadrature is particularly important for approximating multiple in-
tegrals since the number of function evaluations increases as a power of the number
of integrals being evaluated. This topic is considered in Section 4.7.

4.5. GAUSSIAN QUADRATURE 169

EXERCISE SET 4.5

1.

DAl o

Approximate the following integrals using Gaussian quadrature with n = 2
and compare your results to the exact values of the integrals.

1
1.5 2 —x
(a) /1 ?Inz dx (b) /0 whe " dr
035 o /4
- d 2
(c) /0 R (d) /0 x?sinx dz

7 e gin 2 d (f) /1'62"” d
(e)/o e’ sin 2z dx ! po i

3.5 T

w/4)
(g) \ ﬁdl" (h)/o (cosx)® dx

Repeat Exercise 1 with n = 3.
Repeat Exercise 1 with n = 4.
Repeat Exercise 1 with n = 5.

Determine constants a, b, ¢, and d that will produce a quadrature formula

[(@) dz = af (<1) b)) + e (=1)+ ()

that gives exact results for polynomials of degree 3 or less.

. Determine constants a, b, ¢, and d that will produce a quadrature formula

/_ (@) do = af(=1) + bf(0) +ef (1) + & (<) +f (1)

that gives exact results for polynomials of degree 4 or less.

Verify the entries for the values of n = 2 and 3 in Table 4.6 by finding the
roots of the respective Legendre polynomials and use the equations preceding
this table to find the coefficients associated with the values.

. Use the recurrence relation

n2

Pryi(2) = 2P(2) = 5

P,_1(z), foreachn>1,

where Py(x) = 1 and P;(z) = z, to derive the Legendre polynomials Ps(z),
Ps(x), and Py(x).

170 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.6 Adaptive Quadrature

In Section 4.3 we used composite methods of approximation to break an integral
over a large interval into integrals over smaller subintervals. The approach used
in that section involved equally-sized subintervals, which permitted us to combine
the individual approximations into a convenient form. Although this is satisfactory
for most problems, it leads to increased computation when the function being in-
tegrated varies widely on some, but not all, parts of the interval of integration.
In this case, techniques that adapt to the differing accuracy needs of the interval
are superior. Adaptive numerical methods are particularly popular for inclusion in
professional software packages since, in addition to being efficient, they generally
provide approximations that are within a given specified tolerance.

In this section we consider an Adaptive quadrature method and see how it can
be used not only to reduce approximation error, but also to predict an error estimate
for the approximation that does not rely on knowledge of higher derivatives of the
function.

Suppose that we want to approximate f: f(x) dx to within a specified tolerance
e > 0. We first apply Simpson’s rule with step size h = (b — a)/2, which gives (see
Figure 4.11)

(b—a)®

b 5
[#@) do=sta,n) - C o200 = s@b) - g0, (10

for some number ¢ in (a,b), where we denote the Simpson’s rule approximation on

[a, b] by

S(a,b) = < [f(a) +4f(a+h) + f(D)].

w3

Figure 4.11

Ya

b x

RS

h

Next we determine an estimate for the accuracy of our approximation, in par-
ticular, one that does not require determining f* (€). To do this, we apply the

4.6. ADAPTIVE QUADRATURE 171

Composite Simpson’s rule to the problem with n = 4 and step size (b—a)/4 = h/2.
Thus

/:f(x) dr = % [f(a) +4f (a—i— g) +2f(a+h)+Af <a+ %) +f(b)} (4.7)

- (g) O o,

for some number 5 in (a,b). To simplify notation, let the Simpson’s rule approxi-
mation on [a, (a + b)/2] be denoted

5 (a“2“’> -4 [f(a>+4f (a+ Z) +f(a+h):

and the Simpson’s rule approximation on [(a 4+ b)/2,b] be denoted

s(“‘;b,b) :% [f(a+h)+4f <a+ %) +f(b): .

Then Eq. (4.7) can be rewritten (see Figure 4.12) as
a+b a+b 1 /h =
— — () @ 4
[rwa=s(a) s (500) - o (1) /0@ s

Figure 4.12

Yai

s(a a;b) +s(a;“b, b)

/v\v -

The error estimate is derived by assuming that f®) (&) ~ f®)(€), and the success
of the technique depends on the accuracy of this assumption.If it is accurate, then
equating the integrals in Eqs. (4.6) and (4.8) implies that

5 (05 45 (500) - 15 () 190 = S(ast) - e

EXAMPLE 1

172 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

SO

h® 16 a+b a+b
or@yey o 20 _ L
oo/ O~ [S<a,b> S(a, 5) s(5 b)]

Using this estimate in Eq. (4.8) produces the error estimation
b
b b
/f(x)dx—S 0, 0) g (2l
a 2 2
1 a+b a+b
B‘S(a,b)—S(a7 5 >—S< 5 J))‘.

This implies that S(a, (a+b)/2)+ S((a+b)/2,b) approximates f; f(z) dz 15 times
better than it agrees with the known value S(a,b). As a consequence, S(a, (a +

b)/2) + S((a + b)/2,b) approximates f: f(z) dx to within & provided that the two
approximations S(a, (a +b)/2) + S((a+b)/2,b) and S(a,b) differ by less than 15¢.

Q

[Adaptive Quadrature Error Estimate] If

’S(a,b) Iy <aa+b> ~5 (““’,b)’ < 15,

2 2

/abf(x) de(a,a;b> 5(“;b,b>

then

RN
)

To demonstrate the accuracy of the error estimate, consider its application to the

integral
/2
/ sinz dr = 1.
0

In this case,

S (0, Z) _ /) {sino + 4sing +sin f] - %(2\/§+ 1) = 1.002279878

2 3 2
and
S(O z)—l—S(E z) = M sinO—i—ﬁlsinz—|—2sinz-i-4$ins—7r—i—sinI
"4 4’2) 3 8 4 8 2
= 1.000134585.
So,

‘S (o, f) s (o, g) _s (% g) ’ — [1.002279878 — 1.000134585| = 0.002145293.

EXAMPLE 2

4.6. ADAPTIVE QUADRATURE 173

The estimate for the error obtained when using S(a, (a + b)) + S((a + b),b) to
approximate ff f(z) dz is consequently

1_15 5(0.5)-5(0.7) = 5(55)| = 0000143020,

This closely approximates the actual error,

/2
/ sinz dr — 1.000134585| = 0.000134585,
0

even though D% sinx = sinz varies significantly in the interval (0, 7/2). O

Example 1 gives a demonstration of the error estimate for the Adaptive Quadra-
ture method, but the real value of the method comes from being able to reasonably
predict the correct steps to ensure that a given approximation accuracy is obtained.
Suppose that an error tolerance £ > 0 is specified and

‘S(a,,b)S(a,a;rb> s<“;b,b)‘ < 15e.

Then we assume that S (a, 2£2) + 5 (22, b) is within € of the value of fub f(x) dx.
When the approximation is not sufficiently accurate, the error-estimation pro-
cedure can be applied individually to the subintervals [a, (a+b)/2] and [(a+b)/2,]

to determine if the approximation to the integral on each subinterval is within a

tolerance of £/2. If so, the sum of the approximations agrees with fab f(z) dx to
within the tolerance ¢.

If the approximation on one of the subintervals fails to be within the tolerance
€/2, then that subinterval is itself subdivided, and each of its subintervals is ana-
lyzed to determine if the integral approximation on that subinterval is accurate to
within /4.

The halving procedure is continued until each portion is within the required
tolerance. Although problems can be constructed for which this tolerance will never
be met, the technique is generally successful because each subdivision increases the
accuracy of the approximation by a factor of approximately 15 while requiring an
increased accuracy factor of only 2.

The program ADAPQR43 applies the adaptive quadrature procedure for Simp-
son’s rule. Some technical difficulties require the implementation of the method to
differ slightly from the preceding discussion. The tolerance between successive ap-
proximations has been conservatively set at 10e rather than the derived value of 15e
to compensate for possible error in the assumption f* &=~ f 4@ (5) In problems
when f® is known to be widely varying, it would be reasonable to lower this bound
further.

The graph of the function f(z) = (100/2?)sin(10/z) for x in [1, 3] is shown in Fig-
ure 4.13. The program ADAPQR43 with tolerance 10~ to approximate f13 f(z) dzx

174 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

produces —1.426014, a result that is accurate to within 1.1 x 107°.The approxima-
tion required that Simpson’s rule with n = 4 be performed on the 23 subintervals
whose endpoints are shown on the horizontal axis in Figure 4.13. The total number
of functional evaluations required for this approximation is 93.

Figure 4.13

LG

60 +
50 +
40 .
1 100 . (10
30 f(x) = 3 sin (7)
20 +

10 1

_20 =+

—30 +

-50 + J

—60 +

The largest value of h for which the standard Composite Simpson’s rule gives
10~% accuracy for this integral is h = %. This application requires 177 function
evaluations, nearly twice as many as the adaptive technique. O

4.6. ADAPTIVE QUADRATURE 175

EXERCISE SET 4.6

1. Compute the three Simpson’s rule approximations S(a, b), S(a, (a+0b)/2), and
S((a+1b)/2,b) for the following integrals, and verify the estimate given in the
approximation formula.

1
1.5 2 —x
(a) /1 ?Inz dx (b) /0 whe " dr
035 o 7/4
4 25i
(c) /0 2 (d) /0 2z’ sinx dx

N L6 o,
(e) / e’ sin 2z dx () —— dx
0 1 X

24

3'r
0 T

w/4
(g) , ﬁdx (h)/O (cos x)* dx

2. Use Adaptive quadrature to find approximations to within 10~3 for the inte-
grals in Exercise 1. Do not use a computer program to generate these results.

3. Use Adaptive quadrature to approximate the following integrals to within
1075,

3
3 3z -
(a) /1 e** sin 3z dx (b) /1 ¢ sin 2w du

(c) /0 [22 cos(22) — (¢ = 2)°] da (d) /O [42 cos(22) — (¢ — 2)*] da

4. Use Simpson’s Composite rule with n = 4,6,8, ..., until successive approxi-
mations to the following integrals agree to within 10~¢. Determine the number
of nodes required. Use Adaptive quadrature to approximate the integral to
within 1079 and count the number of nodes. Did Adaptive quadrature pro-
duce any improvement?

T s) 2
(a)/0 xcosz? dx (b)/o xsinz? drx

176

CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

(c) / z?cosx dx (d) / ?sinz dx
0 0

Sketch the graphs of sin(1/x) and cos(1/z) on [0.1,2]. Use Adaptive quadra-
ture to approximate the integrals

S | |
/ sin — dxr and / cos — dx
0.1 € 0.1 €

Let T'(a,b) and T'(a, “52) + T(%£2,b) be the single and double applications

2
of the Trapezoidal rule to f; f(z) dz. Determine a relationship between

‘T(a,b) <T(a,a;rb> +T<a;b,b)>‘
/abf(:z:) dx — <T(a,a;rb>+T<a;b,b>>|.

The differential equation

to within 1073,

and

mu” (t) + ku(t) = Fy coswt

describes a spring-mass system with mass m, spring constant k, and no applied
damping. The term Fjcoswt describes a periodic external force applied to
the system. The solution to the equation when the system is initially at rest
(u/(0) =u(0) =0) is

F [k
u(t) = 707w2 [coswt — coswpt], where wy= - #+ w.

m(w§ — w?)

Sketch the graph of u when m =1, k =9, Fyp = 1, w = 2, and t € [0, 27].
Approximate fo% u(t) dt to within 10~

If the term cu/(t) is added to the left side of the motion equation in Exercise
7, the resulting differential equation describes a spring-mass system that is
damped with damping constant ¢ # 0. The solution to this equation when
the system is initially at rest is

Fy
2w + m2 (2 — w2)?

u(t) = 1™t feget 4 [cw sinwt +m (wg - w2) cos wt] ,

where

—c+ 4/ — dwim? —c—/c?
ry = and 719 =
2m 2m

2.2
4wgm

4.6. ADAPTIVE QUADRATURE 177

(a) Letm=1,k=9, Fp =1, c= 10, and w = 2. Find the values of ¢; and
¢z so that u(0) = u(1) = 0.

b) Sketch the graph of u(t) for t € [0, 2n] and approximate 2T ou(t) dt to
0
within 1074,

9. The study of light diffraction at a rectangular aperture involves the Fresnel
integrals

toog b
c(t) = / cos —w? dw and s(t) = / sin —w? duw.
0 2 0 2

Construct a table of values for ¢(t) and s(t) that is accurate to within 10~*
for values of t =0.1,0.2,...,1.0.

178 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.7 Multiple Integrals

The techniques discussed in the previous sections can be modified in a straightfor-
ward manner for use in the approximation of multiple integrals. Let us first consider

the double integral
[[s aa.
R

where R is a rectangular region in the plane:
R={(z,y)|la<z<b, c<y<d}
for some constants a, b, ¢, and d (see Figure 4.14). We will employ the Compos-

ite Simpson’s rule to illustrate the approximation technique, although any other
approximation formula could be used without major modifications.

Figure 4.14

zZ
I Doz=f(xy)

X

Suppose that even integers m and m are chosen to determine the step sizes
h=(b—a)/n and k = (d — ¢)/m. We first write the double integral as an iterated

integral,
J[rewyaa= [’ (/Cdﬂx,y) dy> d,

and use the Composite Simpson’s rule to approximate

/C ") i,

4.7. MULTIPLE INTEGRALS 179

treating = as a constant. Let y; = ¢+ jk for each j = 0,1,...,m. Then

d i (m/2)—1 m/2
[ty = ¢ |femw) 2 3 fwm) 4 fes) + fm)
c i=1 =1

(d— c)k4 o f
180 8—y4($7ﬂ)

w

for some p in (e, d). Thus,

m/2)—1

ko ok b
5 [) do s 3) [) da

a

/ab/cdﬂw dy dz

4k m/2 b k b
+?Z/ f(@,y25-1) de‘*‘g/ f(@,ym) do
j=17@ a
(d—c)k* [*o'f
T . 8—y4($,u) dx.

Composite Simpson’s rule is now employed on each of the first four integrals in

this equation. Let z; = a+ih for each i = 0,1,...,n. Then for each j =0,1,...,m,
we have

b A (n/2)-1 n/2
/f@c,yj) de = 5 \f(xo.y) +2 Y a2 yy) +4Y 7 f(eaien) + F@n,y)
a i=1 i=1

b—a)ht 9t f
%@(fﬁyﬂ

for some &; in (a,b). Substituting the Composite Simpson’s rule approximations

180 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

into this equation gives

b rd
// f(z,y) dy dx
(n/2)—1 n/2

hk
%?{{f(afoyyo)-f'? Z f($2i,y0)+42f(332i71ayo)+f(93n,y0)
i=1 i=1

(m/2)—1 (m/2)—1(n/2)—1

|: Z f$0>y2g +2 Z Z f $217y2j

(m/2 —1n/2 (m/Z)fl

+4 Z Zf T2i-1,Y2j) Z f(fvm?/zj)}

m/2 m/2 ”/2

+4[fo0’y2] 1 +22 Z fx2uy2j 1)
m/2n/2 m;2

+4zzfz21 17?J23 1 +Zf In7y2_7 1:|
j=11i1=1

(n/2)—1 n/2
+ [f(ffo,ym) +2 Z f(invym) + 4Zf(x2i71aym) + f(xnaym):| }

i=1 =1

The error term, F, is given by

(m/2)—1 m/2
k(b — a)h? a4f 4 it
B = —5n |gaitbow) +2 ; Hpd (627 425) + 4; St (E2i-1,2j-1)
a4f (d—c)k* [P orf

8 4(£m»ym)‘| - 180 a—y4($,/i) dx.
If the fourth partial derivatives 9* f/0x* and 9* f/0y* are continuous, the Interme-

diate Value Theorem and Mean Value Theorem for Integrals can be used to show
that the error formula can be simplified to

—(d—c)(b—a) [, ,0f
180 [h Oat

a

4
(7, 1) +k4g—yf(ﬁ t)

E =
for some (7, i) and (7, i) in R.
EXAMPLE 1 The Composite Simpson’s rule applied to approximate

/ / x4 2y) dy dx
1.4

with n = 4 and m = 2 uses the step sizes h = 0.15 and k = 0.25. The region
of integration R is shown in Figure 4.15 together with the nodes (x;,y;) for i =

4.7. MULTIPLE INTEGRALS 181

0,1,2,3,4 and j = 0,1, 2. It also shows the coefficients w; ; of f(z;,y;) = In(x; +2y;)
in the sum that gives the Composite Simpson’s rule approximation to the integral.

Figure 4.15

Ya

1 4 2 4 1
150 +

4 16 8 16 4
125 +

1 4 2 4 1
1.00 +

140 155 170 185 200 X

The approximation is

4 2
015 (0.25)
/ / n(z+2y) dy de = de (@i + 2y;)
1.4 i=0

L

7 7=0
= 0.4295524387.
We have . .
Ot f -6 Otf —96
— < - - d — - -

and the maximum values of the absolute values of these partial derivatives occur
on R when x = 1.4 and y = 1.0. So the error is bounded by

(0.5)(0.6)
180

{(0.15)4 max L+(0.25)4 max L4 < 4.72x107°,

F| <
| | - (z,y) in R (.23 =+ 2y)4 (z,y) in R (.T —+ Qy)

The actual value of the integral to 10 decimal places is
/ / n(z + 2y) dy dz = 0.4295545265,
1.4
so the approximation is accurate to within 2.1 x 1076, O

The same techniques can be applied for the approximation of triple integrals, as
well as higher integrals for functions of more than three variables. The number of
functional evaluations required for the approximation is the product of the number
required when the method is applied to each variable.

EXAMPLE 2

182 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To reduce the number of functional evaluations, more efficient methods such as
Gaussian quadrature, Romberg integration, or Adaptive quadrature can be incor-
porated in place of Simpson’s formula. The following example illustrates the use
of Gaussian quadrature for the integral considered in Example 1. In this example,
the Gaussian nodes 73 ; and coefficients c3 ;, for j = 1,2, 3 are given in Table 4.6 of
Section 4.5.

Consider the double integral given in Example 1. Before employing a Gaussian
quadrature technique to approximate this integral, we must transform the region
of integration

R={(z,y) | 14<2<20, 1.0<y<15}

into .
R={(u,v)| —1<u<1l, —-1<wv<1}.

The linear transformations that accomplish this are

1
(2r —14—-2.0), and v=-———-(2y—1.0—1.5).

T20-14 15-1.0

This change of variables gives an integral on which Gaussian quadrature can be
applied:

/ / z + 2y) dydx_()075//ln03u+05v+42)dvdu
1.4 1.0

The Gaussian quadrature formula for n = 3 in both w and v requires that we use
the nodes

Uy =01 =Tr32 = 0, Up = Vg =T73,1 = —07745966692,
and ug = v9 =133 = 0.7745966692.

The associated weights are found in Table 4.3 (Section 4.5) to be ¢35 = 0.88 and
C3,1 = C33 = 0.55, SO

/ / x + 2y) dy dx
14 J1.0

Even though this result requires only 9 functional evaluations compared to 15
for the Composite Simpson’s rule considered in Example 1, the result is accurate to
within 4.8 x 1079, compared to an accuracy of only 2 x 10~% for Simpson’s rule. [J

3 3
0.075) > "esics;In(0.3rs; + 0.5r3 ; + 4.2)

i=1 j=1
= 0.4295545313.

%

The use of approximation methods for double integrals is not limited to integrals
with rectangular regions of integration. The techniques previously discussed can
be modified to approximate double integrals with variable inner limits—that is,

integrals of the form
d(a:)
/ / (x,y) dy du.
()

4.7. MULTIPLE INTEGRALS 183

For this type of integral we begin as before by applying Simpson’s Composite
rule to integrate with respect to both variables. The step size for the variable x is
h = (b—a)/2, but the step size k(x) for y varies with = (see Figure 4.16):

) <) =)
Figure 4.16
z
z=1(xYy)
i
Ya |
|
d(a) + y = d(x) | A®)
d(b) + i
k(@) |
k(b) '
o(b) + .} e W
@ T y—c9 | =
k@+h~| ! / y
: : - b~ RV
a a+h b X To-- - y = d)
X y=c
€Y (b)

Consequently,

I

b pd(x) b (.’L‘)
[revanae = [E200) 41t +) +)] do

Q

o

Q

g{%?wwmmn+4ﬂmd@+kmﬁ+f®dwm

4k h

+ PO ot cla+ b)) + 450t hoea+)

+k(a+h))+ f(a+ h,d(a+ h))]

k(b

+ S0, c0) + 410,00 + K) + £0.40)]).
The program DINTGL44 applies the Composite Simpson’s rule to a double

integral in this form and is also appropriate, of course, when ¢(z) = ¢ and d(z) = d.

EXAMPLE 3

184 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To apply Gaussian quadrature to the double integral first requires transforming,
for each z in [a,b], the variable y in the interval [¢(z),d(x)] into the variable ¢ in
the interval [—1,1]. This linear transformation gives

fla,y) = f(% (d(m)—C(x))t2+ d(x)+0(m)> and dy — M it

Then, for each x in [a, b], we apply Gaussian quadrature to the resulting integral

/d(m o) /1 ; <x7 (d(x) — c(x))t +d(x) + c(:r)> dt

c(x) -1 2

to produce

d(x)
/ / (z,y) dy dx

%/a d(x ifwf < d(x) — c(a:))r,,,éj +d(z) + c(m)) .

Jj=1

The constants r,, ; in this formula are the roots of the nth Legendre polynomial.
These are tabulated, for n = 2, 3,4, and 5, in Table 4.6 in Section 4.5. The values
of ¢, j are also given in this table.

After this, the interval [a, b] is transformed to [—1, 1], and Gaussian quadrature is

applied to approximate the integral on the right side of this equation. The program
DGQINT45 uses this technique.

Applying Simpson’s double integral program DINTGL44 with n = m = 10 to

0.5 pa?
/ / eV'* dy dx
0.1 Ja3

requires 121 evaluations of the function f(z,y) = e¥/* Tt produces the approxi-
mation 0.0333054, accurate to nearly 7 decimal places, for the volume of the solid
shown in Figure 4.17. Applying the Gaussian quadrature program DGQINT45 with
n = m = 5 requires only 25 function evaluations and gives the approximation,
0.3330556611, which is accurate to 11 decimal places. O

Figure 4.17

EXAMPLE 4

4.7. MULTIPLE INTEGRALS 185

Z)

14+ (01,001, € » (0.5, 0.25, €"5)

(0.1, 0.001, €201

(0.5, 0.125, %)

0.1

(0.5,0.25, 0)

(0.5,0.125, 0)

Triple integrals of the form

b pd(z) rB(z,y)
[[t dsayds
a Je(z) Joa(z,y)

are approximated in a manner similar to double integration. Because of the number
of calculations involved, Gaussian quadrature is the method of choice. The program
TINTGL46 implements this procedure.

The following example requires the evaluation of four triple integrals.

The center of mass of a solid region D with density function o occurs at

= = =\ Myz sz Mxy
(xayaz)_<M7M)M)

My~ [[[zomyav. st = [[[yote av.
My, = ///D zo(z,y,z) dV

where

and

186 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

are the moments about the coordinate planes and

M:///Da(x,y,z) v

is the mass. The solid shown in Figure 4.18 is bounded by the upper nappe of the

cone z? = 2% 4 y? and the plane z = 2. Suppose that this solid has density function

given by
(z,y,2

Figure 4.18

1

z
' 2
L

I
I
I

We will apply the program TINTGL46 with five Gaussian nodes in each di-
mension. So we have n = m = p = 5 which requires 125 function evaluations per
integral and gives the following approximations:

Va—z2 2
M = / / / Va2 +y? dz dy dx
4— xz ac2+y2
Va—zZ 2
= 4 22 +y2 dz dy dv =~ 8.37504476,
T

Vi—z2 2

M, = / / / ry/22 +y2 dz dy dv ~ —5.55111512 x 10717,
4— I2 5132+’y2
Vi—z2 2

M,, = / / / Y22 +y2 dz dy dx ~ —8.01513675 x 1017,
4— xz ac2+y2
Va—z2 2

My, = / / / zv/2? +y? dz dy dz ~ 13.40038156.
A— 1.2 w2+y2

4.7. MULTIPLE INTEGRALS 187

This implies that the approximate location of the center of mass is \/(Z,7,2z) =
(0,0, 1.60003701). These integrals are quite easy to evaluate directly. If you do this,
you will find that the center of mass occurs at (0,0, 1.6). O

188 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.7

1. Use Composite Simpson’s rule for double integrals with n = m = 4 to ap-
proximate the following double integrals. Compare the results to the exact
answer.

95 14 0.5 0.5
(a) / ’ / ’ wa dy da (b) / / ey " d:y dx
2.1 1.2 0 0

© [/:I<x2+y3> dy o @ | @ v dy da

2. Find the smallest values for n = m so that Composite Simpson’s rule for
double integrals can be used to approximate the integrals in Exercise 1 to
within 107° of the actual value.

3. Use Composite Simpson’s rule for double integrals with n = 4,m = 8 and
n =38 m =4 and n = m = 6 to approximate the following double integrals.
Compare the results to the exact answer.

w/4 peosa b / / Inzy dy dx
(a) / (2ysinx + cos® x) dy dx (b) 1)1 v
0 sin x

(©) /;/:m(xuyfﬁ) dy do () /ol/i(yQHS) dy do

(e)/ / cosx dy dx (f)/ / cosy dy dx
o Jo o Jo

3n/2 p2mw
dy dx (h) / (ysinz + x cosy) dy dx
0

w/4 psinz 1
@ [N
0 0 V1—y o

4. Find the smallest values for n = m so that Composite Simpson’s rule for
double integrals can be used to approximate the integrals in Exercise 3 to
within 107° of the actual value.

5. Use Gaussian quadrature for double integrals with n = m = 2 to approxi-
mate the integrals in Exercise 1 and compare the results to those obtained in
Exercise 1.

4.7. MULTIPLE INTEGRALS 189

10.
11.

12.

. Find the smallest values of n = m so that Gaussian quadrature for double

integrals may be used to approximate the integrals in Exercise 1 to within
1075, Do not continue beyond n = m = 5. Compare the number of functional
evaluations required to the number required in Exercise 2.

. Use Gaussian quadrature for double integrals with n =m = 3; n =3, m = 4;

n =4, m =3 and n = m = 4 to approximate the integrals in Exercise 3.

. Use Gaussian quadrature for double integrals with n = m = 5 to approximate

the integrals in Exercise 3. Compare the number of functional evaluations
required to the number required in Exercise 4.

. Use Gaussian quadrature for triple integrals with n = m = p = 2 to ap-

proximate the following triple integrals, and compare the results to the exact
answer.

1 1 Yy
1 2 0.5
(a) / // etV dz dy dx (b) /0 / /0 y’z dzdy do
o J1 Jo

1 x Tty 1 z T4y
(c) / / / y dz dy dx (d) / / / z dz dy dx
0 Jz2 Jxz—y 0 Jz2 Jxz—y
Y S | 1 1 Ty .
(e) / / / “sin = dz dy dz (f) / / / Y 1, dy dz
o Jo Jo Y Y 0 Jo J-zy

Repeat Exercise 9 using n =m =p = 3.

Use Composite Simpson’s rule for double integrals with n = m = 14 and
Gaussian quadrature for double integrals with n = m = 4 to approximate

// e~ (@ty) g4
R

for the region R in the plane bounded by the curves y = 22 and y = \/z.

Use Composite Simpson’s rule for double integrals to approximate

/ Vry +y? dA,

R

where R is the region in the plane bounded by the lines z+y =6, 3y —z = 2,
and 3z —y = 2. First partition R into two regions, R; and Rs, on which
Composite Simpson’s rule for double integrals can be applied. Use n = m = 6
on both R; and Rs.

190

13.

14.

15.

16.

CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

The area of the surface described by z = f(x,y) for (z,y) in R is given by

// Vel)2 + [fy (2 9)]2 + 1 dA.
R

Find an approximation to the area of the surface on the hemisphere z2 +y2 +
22 =9, z > 0 that lies above the region R = {(z,y) |0 <2 <1,0<y < 1},
using each program.

(a) DINTGL44 with n =m =8
(b) DGQINT45 with n =m =4

A plane lamina is defined to be a thin sheet of continuously distributed mass.
If o is a function describing the density of a lamina having the shape of a
region R in the zy-plane, then the center of the mass of the lamina (Z,7) is

defined by

Rffxo(x,y) dA) R[fya(x,y) dA
JTowy da’ VT To(ey) dA”
R R

Find the center of mass of the lamina described by R = {(z,y) | 0 < 2 <
1, 0 <y < V1 — 22} with the density function o(z,y) = e~ (@*+¥”) ysing each
program.

Tr =

(a) DINTGL44 with n = m = 14
(b) DGQINT45 with n =m =5

Use Gaussian quadrature for triple integrals with n = m = p = 4 to approxi-

mate
/// xysin(yz) dV,
5

where S is the solid bounded by the coordinate planes and the planes x = ,
y =m7/2, z = m/3. Compare this approximation to the exact result.

Use Gaussian quadrature for triple integrals with n = m = p = 5 to approxi-

mate /// —
s

when S is the region in the first octant bounded by the cylinder z2 + 3? = 4,
the sphere 22 442 + 22 = 4, and the plane x +y + 2z = 8. How many functional
evaluations are required for the approximation?

4.8. IMPROPER INTEGRALS 191

4.8 Improper Integrals

Improper integrals result when the notion of integration is extended either to an
interval of integration on which the function is unbounded or to an interval with
one or both infinite endpoints. In either circumstance the normal rules of integral
approximation must be modified.

We will first handle the situation when the integrand is unbounded at the left
endpoint of the interval of integration, as shown in Figure 4.19. In this case we
say that f has a singularity at the endpoint a. We will then show that, by a
suitable manipulation, the other improper integrals can be reduced to problems of
this form.

Figure 4.19

y=1()

W+ ———— e — — —

The improper integral with a singularity at the left endpoint,

b
1
/a @ —ap ™

converges if and only if 0 < p < 1, and in this case,

b 1 B (x —a)t~P
/ woar T 1o,

If f is a function that can be written in the form

b

(b—a)l P
. l-p

f(z) = 9(z)

(x —a)?

where 0 < p < 1 and ¢ is continuous on [a, b], then the improper integral

/abf(x) dz

EXAMPLE 1

192 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

also exists. We will approximate this integral using Composite Simpson’s rule. If
g € C®[a,b], we can construct the fourth Taylor polynomial, Py(x), for g about a:

1 n . (4)

Pi(a) = g(a) + o @)z~ a) + L0 — 0 + 0D 0 a4 S Dot

and write
b b b
_ [T 9(@) — Pu(x) / Py(x)
/a f(x) dx = /a w—ar dx + oy dx.
We can exactly determine the value of
b 4 *) (@
k —p _ g o k+1—p
/a(x—a a = k'k+1— (b 2 '
(4.9)

This is generally the dominant portion of the approximation, especially when the
Taylor polynomial Py(x) agrees closely with the function g throughout the interval
[a, b].

To approximate the integral of f, we need to add this value to the approximation
of

, ifa<xz<b,
0, if v = a.

Since 0 < p < 1 and Pik)(a) agrees with g(®)(a) for each k = 0,1,2,3,4, we
have G € C*[a,b]. This implies that Composite Simpson’s rule can be applied to
approximate the integral of G on [a, b]. Adding this approximation to the value from
Eq. (4.9) gives an approximation to the improper integral of f on [a, b], within the
accuracy of the Composite Simpson’s rule approximation.

We will use the Composite Simpson’s rule with h = 0.25 to approximate the value
of the improper integral

efL‘

/Olﬁdx.

Since the fourth Taylor polynomial for e® about x = 0 is

2 CCS .’,E4

x
P4(9C):1+33+7+€+ﬂ7

4.8. IMPROPER INTEGRALS 193

One portion of the approximation to dx is given by

JO \/_

1 1
Py(x) / 1 1 1 1
d _ /2 1/2 , +.3/2 | 1.5/2 7723 4
/o NG T ; x +ax/"+ 2:6 + 6:10 + 24x T

- lim [2301/2 254 20 g %xgﬂ}

1

M—0+ 5 21 10 M
= 2+ + = +1+ ! 2.9235450.
B 35 108
For the other portion of the approximation to fo \[dx, we need to approximate
fo) dx, where
ot — Py(x
il £ GO NP
G(x) = vz
0, if x =0.

Table 4.7 lists the values needed for the Composite Simpson’s rule for this approx-
imation.

Table 4.7

x G(z)

0.00 0

0.25 0.0000170
0.50 0.0004013
0.75 0.0026026
1.00 0.0099485

Applying the Composite Simpson’s rule using these data gives

1
0.25
/ G(z) dz ~ =2=[0+4(0.0000170) +2(0.0004013) + 4(0.0026026) + 0.0099485]
0.0017691.

Hence,

/ — dx ~ 2.9235450 + 0.0017691 = 2.9253141.

This result is accurate within the accuracy of the Composite Simpson’s rule ap-
proximation for the function G. Since |G™) (x)| < 1 on [0, 1], the error is bounded
by

1-0

0.25)4(1) = 0.0000217. O

194 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To approximate the improper integral with a singularity at the right endpoint,
we could apply the technique we used previously but expand in terms of the right
endpoint b instead of the left endpoint a. Alternatively, we can make the substitution
z = —x, dz = —dx to change the improper integral into one of the form

b —a
/f(x) dx = . f(=2) dz,

which has its singularity at the left endpoint. (See Figure 4.20.) We can now ap-
proximate f:ba f(=2) dz as we did earlier in the section, which gives us our approx-

imation for jab f(z) dx.

Figure 4.20
Y Yai
| |
| |
| |
| |
| |
| |
y=1f(® /| L\ y="f(-2

| |
| |
| |
| |
| |
| |
| |
L .

é t') X —'b —a z

An improper integral with a singularity at ¢, where a < ¢ < b, is treated as the
sum of improper integrals with endpoint singularities since

/abf(x) dz:/acf(:c) dx—|—/cbf(ac) dzx.

The other type of improper integral involves infinite limits of integration. A
basic convergent integral of this type has the form

%)
1
/ Y dil',
a P

for p > 1. This integral is converted to an integral with left-endpoint singularity by
making the integration substitution

Then

4.8. IMPROPER INTEGRALS 195

In a similar manner, the variable change ¢t = x~! converts the improper integral

faoo f(x) dz into one that has a left-endpoint singularity at zero:

/:o f(z) dx:/ol/at—Qf G) dt.

It can now be approximated using a quadrature formula of the type described
earlier.

EXAMPLE 2 To approximate the value of the improper integral
* a1
1= T sin — dz
1 1’

we make the change of variable t = ~!. Since

1
dt = —x~ 2 dzx, wehave dr=—z2dt= a2 dt,

and

r=00 ‘ 1 t=0 1 —3/2 1 1
I :/ 2732 sin = dx :/ - sint | ——= dt =/ t~2sint dt.
=1 €T t=1 t t2 0

The fourth Taylor polynomial, P (t), for sint about 0 is

1
_a@):t—éﬁ,

SO
Lsint —t 4+ L¢3 1 1
0 0
1 im 1.3 1
= / w dt + 2t3/2 — it7/2
0 t1/2 3 21 0
Usint —t+ 513
= ——z b+ 0.61904761.
0

The Composite Simpson’s rule with n = 16 for the remaining integral is 0.0014890097.
This gives a final approximation of

I =0.0014890097 4 0.61904761 = 0.62053661,

which is accurate to within 4.0 x 1078,]

196 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.8

1. Use Composite Simpson’s rule and the given values of n to approximate the
following improper integrals.

1 2z
1 e . B
(a) /0 " V4sing de with n =4 (b) /0 2 dr withn =6
2 1
Inz . cos 2z .

2. Use the Composite Simpson’s rule and the given values of n to approximate
the following improper integrals.

2 T
(b)/ #dw with n = 8
0

dr withn =26 z—1)2

(a) /oﬁ

3. Use the transformation t = 2! and then the Composite Simpson’s rule and
the given values of n to approximate the following improper integrals.

o 1
oo 1 i =
(a)/ siyg %% withn=4 (b)/l T
1
(c) / COS?)I dxr withn =6 (d) / v~sine dr with n =6
1 € !

4. The improper integral fooo f(z) dz cannot be converted into an integral with
finite limits using the substitution ¢ = 1/x because the limit at zero becomes
infinite. The problem is resolved by first writing [;° f(z) do = fol f(x) dz
+ [100 f(z) dx. Apply this technique to approximate the following improper
integrals to within 107°.

S e 1
@ [® f Gy

4.8. IMPROPER INTEGRALS 197

5. Suppose a body of mass m is travelling vertically upward starting at the
surface of the earth. If all resistance except gravity is neglected, the escape
velocity v is given by

v = 2gR/ 272 dz, where z = 2,
1 R

R = 3960 mi is the radius of the earth, and g = 0.00609 mi/s® is the force of
gravity at the earth’s surface. Approximate the escape velocity v.

198 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.9 Numerical Differentiation

The derivative of the function f at x(is defined as

f/(xo) _ }L% f(IO +hf)L_ f(l'o)

This formula gives an obvious way to generate an approximation to f’(x¢); simply
compute
f(zo 4+ h) — f(x0)
h

for small values of h. Although this may be obvious, it is not very successful, due
to our old nemesis, round-off error. But, it is certainly the place to start.

To approximate f'(x¢), suppose first that x¢ € (a,b), where f € C?[a,b], and
that ©1 = 29 + h for some h # 0 that is sufficiently small to ensure that =1 € [a, b].
We construct the first Lagrange polynomial, Fy 1, for f determined by z¢ and z;
with its error term

(x — o) (x — 1)

flx) = Poa(x)+ ff”(ﬁ(z))
_ f(xo)(ﬂ«"_—hﬂfo —h) . f(xo + hf)L(ﬂc —) . (z — 330)(332— xg — h) F(E@)

for some number £(z) in [a, b]. Differentiating this equation gives

f(zo+h) = f(zo)

(x —x0)(x — 20 — D)

o)= f@)), g 7 (&)
- ot flen) 2o) e
oz nE 20 =W preta),
S0 o)~ flzo + h})L — f(xo)7
with error
A= 20) =R gy 4 E 2220 2N preta).

There are two terms for the error in this approximation. The first term involves
1"(&(x)), which can be bounded if we have a bound for the second derivative of
f. The second part of the truncation error involves D, f"(£(z)) = f"'({(x)) - &' (x),
which generally cannot be estimated because it contains the unknown term &'(z).
However, when z is xq, the coefficient of D, f”(£(x)) is zero. In this case the formula
simplifies to the following:

4.9. NUMERICAL DIFFERENTIATION 199

[Two-Point Formula] If f” exists on the interval containing ¢ and ¢ + h,

then L L
f/(xo) _ f(TO + })L — f(TO) _ 5.](-//(6)’

for some number £ between xy and xg + h.

Suppose that M is a bound on |f”(z)| for « € [a,b]. Then for small values of h,
the difference quotient [f(zo+h)— f(z0)]/h can be used to approximate f’(x) with
an error bounded by M|h|/2. This is a two-point formula known as the forward-
difference formula if h > 0 (see Figure 4.21) and the backward-difference
formula if h < 0.

Figure 4.21

Y
Slopef'(Xg)
f +h) — f(xo)

Slope h

X
o

X
o

+
=0
<V

EXAMPLE 1 Let f(x) =Inz and xo = 1.8. The forward-difference formula,

F(1.8+h) — f(1.8)
h b)

can be used to approximate f’(1.8) with error

[hf" 1 _ 1hl _ Al

2 262 7 2(1.8)%

where 1.8 < { < 1.8 + h.

The results in Table 4.8 are produced when h = 0.1,0.01, and 0.001.

200 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 4.8
f(1.84h)— f(1.8) |h]
h 1.8+ h
JA8+1) h 2(1.8)2
0.1 0.64185389 0.5406722 0.0154321
0.01 0.59332685 0.5540180 0.0015432
0.001 0.58834207 0.5554013 0.0001543
Since f’(x) = 1/z, the exact value of f/(1.8) is -tz = 0.5, and the error bounds
are quite close to the true approximation error. O
To obtain general derivative approximation formulas, suppose that xg, z1,...,z,

are (n + 1) distinct numbers in some interval I and that f € C"**(I). Then

£) =3 flay)Ly(a) + E T @8 sy)

= (n+1)!

for some {(x) in I, where L;(x) denotes the jth Lagrange coefficient polynomial for
f at xg,x1, ..., x,. Differentiating this expression gives

D s) + D, |] 0 ()
=0 '

(2= 20) (2= 2n)) ¢ i
+ Tt D0 ()

Again we have a problem with the second part of the truncation error unless x is
one of the numbers z. In this case, the multiplier of D,[f"1 (&(x))] is zero, and
the formula becomes

/ . / f(nJrl) u

wk) = Y flag) (k) + 1 H Ty — Tj).
— (n+ i=0
J#k

Applying this technique using the second Lagrange polynomial at zg, x; =
xg + h, and z92 = xg + 2h produces the following formula.

[Three-Point Endpoint Formula] If f’ exists on the interval containing xg
and xg + 2h, then

2

/(w0) = 581 (o) + 4f (o + h) — flao +20)] + 51" (6),

1
o

for some number & between xy and zg + 2h.

4.9. NUMERICAL DIFFERENTIATION 201

This formula is most useful when approximating the derivative at the endpoint
of an interval. This situation occurs, for example, when approximations are needed
for the derivatives used for the clamped cubic splines discussed in Section 3.5. Left
endpoint approximations are found using h > 0, and right endpoint approximations
using h < 0.

When approximating the derivative of a function at an interior point of an
interval, it is better to use the formula that is produced from the second Lagrange
polynomial at xy — h, x¢, and zg + h.

[Three-Point Midpoint Formula]

If f"” exists on the interval containing xg — h and xg + h, then
o/ 1 . h2 11
f'(x0) = ﬁ[f(% +h) = f(zo — h)| — Ff (&),

for some number £ between xy — h and g + h.

The error in the Midpoint formula is approximately half the error in the End-
point formula and f needs to be evaluated at only two points, whereas in the
Endpoint formula three evaluations are required. Figure 4.22 gives an illustration
of the approximation produced from the Midpoint formula.

Figure 4.22

Y

Slope 5[0 +) — (g —)]

X
o
[
-0
X
o
X
o
+
-0
<V

These methods are called three-point formulas (even though the third point,
f(xo), does not appear in the Midpoint formula). Similarly, there are methods
known as five-point formulas that involve evaluating the function at two additional
points, whose error term is O(h*). These formulas are generated by differentiating

EXAMPLE 2

202 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

fourth Lagrange polynomials that pass through the evaluation points. The most

useful is the interior-point formula:

and xg + 2h, then

h4

fI(IL'()) = ﬁ [f(CU(] — 2h) — 8f((E(] - h) + 8f(IL'() + h) — f(.’f() + Qh)] + %

for some number & between xg — 2h and zg + 2h.

[Five-Point Midpoint Formula] If f (5) exists on the interval containing zo — 2h

£,

There is another five-point formula that is useful, particularly with regard to

the clamped cubic spline interpolation of Section 3.5.

[Five-Point Endpoint Formula]
If f(5) exists on the interval containing xy and xg + 4h, then

Flag) = ﬁ[—%f(.ro) + 48F (20 + h) — 36 (0 + 2h)
+16f(xo + 3h) — 3f(zo + 4h)] + %4.7”(5) 3}

for some number & between xy and xg + 4h.

Left-endpoint approximations are found using h > 0, and right-endpoint ap-

proximations are found using h < 0.

x

Table 4.9 gives values for f(z) = ze”.

Table 4.9

z f(z)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Since f'(z) = (z + 1)e®, we have f/(2.0) = 22.167168. Approximating f'(2.0)

using the various three- and five-point formulas produces the following results.

Three-Point formulas

4.9. NUMERICAL DIFFERENTIATION 203

Endpoint with h = 0.1: g45[~3£(2.0) + 4f(2.1) — £(2.2)] = 22.032310.
Endpoint with h = —0.1: —L5[=37(2.0) + 4(1.9) — f(1.8)] = 22.054525.

Midpoint with 7 = 0.1: g5[f(2.1) — f(1.9)] = 22.228790.

Midpoint with h = 0.2 : 0%4[]"(2.2) — f(1.8)] = 22.414163.
Five-Point formula

Midpoint with A = 0.1 (the only five-point formula applicable):

1

T3 F(18) = 8f(L9) +8f(2.1) — f(2.2)] = 22.166999.

The errors are approximately 1.35x107!,1.13x107!, =6.16 x 1072, —2.47x 10,
and 1.69 x 104, respectively. The five-point formula approximation is clearly su-
perior. Note also that the error from the midpoint formula with A = 0.1 is approx-
imately half of the magnitude of the error produced using the endpoint formula
with either h = 0.1 or h = —0.1. O

It is particularly important to pay attention to round-off error when approx-
imating derivatives. When approximating integrals in Section 4.3 we found that
reducing the step size in the Composite Simpson’s rule reduced the truncation er-
ror, and, even though the amount of calculation increased, the total round-off error
remained bounded. This is not the case when approximating derivatives.

When applying a numerical differentiation technique, the truncation error will
also decrease if the step size is reduced, but only at the expense of increased round-
off error. To see why this occurs, let us examine more closely the Three-Point
Midpoint formula:

2 g
(w0) = 55 (o +) = flao = 0] = 17 (©)

Suppose that, in evaluating f(zo+ h) and f(zo —h), we encounter round-off errors
e(xo + h) and e(zg — h). Then our computed values f(xg + h) and f(xo — h) are
related to the true values f(xzo + h) and f(zo — h) by the formulas

f(zo+h) = f(xo+h)+elxzo+h) and f(xo—h)= f(zo— h)+e(xo— h).
In this case, the total error in the approximation,

(@) — f(xo+h) Q_hf(l‘o —h) _ e(xo + h)2—h6(mo —h) %me(f),

is due in part to round-off and in part to truncating. If we assume that the round-off
errors, e(xg £ h), for the function evaluations are bounded by some number ¢ > 0
and that the third derivative of f is bounded by a number M > 0, then

r} 7 2
F'(wo) — L0t h)th(x‘) th - %M.

204 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To reduce the truncation portion of the error, h?M /6, we must reduce h. But as
h is reduced, the round-off portion of the error, £/h, grows. In practice, then, it is
seldom advantageous to let h be too small, since the round-off error will dominate
the calculations.

EXAMPLE 3 Consider using the values in Table 4.10 to approximate f/(0.900) for f(z) = sinx.
The true value is c0s(0.900) = 0.62161. Using the formula
0.900 + h) — £(0.900 — h
£(0900) ~ L0900 — £)
2h
with different values of h gives the approximations in Table 4.11.
Table 4.10 Table 4.11
» g Approximation
. me v me h to £/(0.900) Error
0.800 0.71736 0.901 0.78395 0.001 0.62500 0.00339
0.850 0.75128 0.902 0.78457 0.002 0.62250 0.00089
0.880 0.77074 0.905 0.78643 0.005 0.62200 0.00039
0.890 0.77707 0.910 0.78950 0.010 0.62150 —0.00011
0.895 0.78021 0.920 0.79560 0.020 0.62150 —0.00011
0.898 0.78208 0.950 0.81342 0.050 0.62140 —0.00021
0.899 0.78270 1.000 0.84147 0.100 0.62055 —0.00106
Table 4.11
Approximation
to f/(0.900) Error

0.001 0.62500 0.00339

0.002 0.62250 0.00089

0.005 0.62200 0.00039

0.010 0.62150 —0.00011

0.020 0.62150 —0.00011

0.050 0.62140 —0.00021

0.100 0.62055 —0.00106

It appears that an optimal choice for h lies between 0.005 and 0.05. The minimal
value of the error term,

e(h) =

€
h

h2

—+—M,
+6 .

occurs when 0 = ¢/(h) = — 35 + %J\f[, that is, when h = {/3¢/M. We can determine
a reasonable value for the bound M in this case since

M=

max
2€[0.800,1.00]

‘f///(

2)| =

max |cosz| =~ 0.69671.
£€[0.800,1.00]

4.9. NUMERICAL DIFFERENTIATION 205

Since the values of f are given to five decimal places, it is reasonable to assume
that £ = 0.000005. Therefore, the optimal choice of h is approximately

J[3= ,/3(0.000005)
h = 5 — — - ~0.02
M 0.69671 0.028,

which is consistent with the results in Table 4.11. In practice, though, we cannot
compute an optimal h to use in approximating the derivative, since we have no
knowledge of the third derivative of the function. O

We have considered only the round-off error problems that are presented by the
Three-Point Midpoint formula, but similar difficulties occur with all the differenti-
ation formulas. The reason for the problems can be traced to the need to divide by
a power of h. As we found in Section 1.4 (see, in particular, Example 1), division
by small numbers tends to exaggerate round-off error, and this operation should be
avoided if possible. In the case of numerical differentiation, it is impossible to avoid
the problem entirely, although the higher-order methods reduce the difficulty.

Keep in mind that as an approximation method, numerical differentiation is
unstable, since the small values of h needed to reduce truncation error cause the
round-off error to grow. This is the first class of unstable methods we have en-
countered, and these techniques would be avoided if it were possible. However, it
is not since, in addition to being used for computational purposes, the formulas we
have derived will be used in Chapters 11 and 12 for approximating the solutions of
ordinary and partial-differential equations.

Methods for approximating higher derivatives of functions can be derived as was
done for approximating the first derivative or by using an averaging technique that
is similar to that used for extrapolation. These techniques, of course, suffer from
the same stability weaknesses as the approximation methods for first derivatives,
but they are needed for approximating the solution to boundary value problems in
differential equations. The only one we will need is a three-point midpoint formula,
which has the following form.

[Three-Point Midpoint Formula for Approximating f”]
If ™) exists on the interval containing zo — h and xo + h, then

£ (o) = sl w0 — B) = 27(wo) + Flao + B)] = = f 9 g),

h2[

for some number £ between xg — h and o + h.

206 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.9

1. Use the forward-difference formulas and backward-difference formulas to de-
termine approximations that will complete the following tables.

(a) (b) ,
v | f@) | (@) v | @ | f@)
0.5 | 0.4794 0.0 | 0.00000
0.6 | 0.5646 0.2 | 0.74140
0.7 | 0.6442 0.4 1.3718

2. The data in Exercise 1 were taken from the following functions. Compute the
actual errors in Exercise 1, and find error bounds using the error formulas.

(a) fz)=sinz (b) f(z)=e" — 22 + 32 -1

3. Use the most appropriate three-point formula to determine approximations
that will complete the following tables.

(a) (b) /
x \ f(z) \f’(w) x \ f(z) \f(x)
1.1 | 9.025013 8.1 | 16.94410
1.2 | 11.02318 8.3 | 17.56492
1.3 | 13.46374 8.5 | 18.19056
1.4 | 16.44465 8.7 | 18.82091
(c) (d)
T ‘ f(x) ‘ () T ‘ f(2) ’ ()
2.9 | —4.827866 2.0 | 3.6887983
3.0 | —4.240058 2.1 | 3.6905701
3.1 | —3.496909 2.2 | 3.6688192
3.2 | —2.596792 2.3 | 3.6245909

4. The data in Exercise 3 were taken from the following functions. Compute the
actual errors in Exercise 3 and find error bounds using the error formulas.

(a) fz)=e* (b) f(z)=znx

(c) f(z) =2zcosz — 2%sinz (d) f(z) =2(Inx)?+ 3sinx

4.9. NUMERICAL DIFFERENTIATION 207

5. Use the most accurate formula possible to determine approximations that will
complete the following tables.

oo

10

(a) (b) /
2.1 | —1.709847 —3.0 | 9.367879
2.2 | —1.373823 —2.8 | 8.233241
2.3 | —1.119214 —2.6 | 7.180350
2.4 | —0.9160143 —2.4 | 6.209329
2.5 | —0.7470223 —2.2 | 5.320305
2.6 | —0.6015966 —2.0 | 4.513417

. The data in Exercise 5 were taken from the given functions. Compute the
actual errors in Exercise 5 and find error bounds using the error formulas and

Maple.

(a) f(z) =tanx

(b) f(x) = /% 4+ 2

. Let f(z) = cosmz. Use the Three-point Midpoint formula for f” and the
values of f(x) at = 0.25, 0.5, and 0.75 to approximate f”(0.5). Compare
this result to the exact value and to the approximation found in Exercise
7 of Section 3.5. Explain why this method is particularly accurate for this

problem.

. Let f(z) = 3ze® —cos x. Use the following data and the Three-point Midpoint
formula for f” to approximate f”(1.3) with h = 0.1 and h = 0.01, and

compare your results to f”(1.3).

x ‘ 1.20

‘ 1.29

‘ 1.30 | 1.31 | 1.40

f(z) ‘ 11.59006 ‘ 13.78176 ‘ 14.04276 | 14.30741 | 16.86187

. Use the following data and the knowledge that the first five derivatives of
f were bounded on [1,5] by 2, 3, 6, 12 and 23, respectively, to approximate
1'(3) as accurately as possible. Find a bound for the error.

l‘ ‘

|

2‘ 3’ 4‘ 5

) ‘ 2.4142 ‘ 2.6734 ‘ 2.8974 ’ 3.0976 ‘ 3.2804

. Repeat Exercise 9, assuming instead that the third derivative of f is bounded

on [1,5] by 4.

208

11.

12.

13.

14.

15.

16.

CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Analyze the round-off errors for the formula

f/(xo) — f(l‘o + h’f)L — f(IO) _ gf//(é-o).

Find an optimal A > 0 in terms of a bound M for f” on (zg,zo + h).

All calculus students know that the derivative of a function f at = can be

defined as
fl@+h) = f(z)
—

Choose your favorite function f, nonzero number z, and computer or calcu-
lator. Generate approximations f} (z) to f’(z) by

sy - Je+107") — f(z)
fn(x) - 10—"

for n =1,2,...,20 and describe what happens.

f(@) = lim

Consider the function
ey =S+
h (I
where M is a bound for the third derivative of a function. Show that e(h) has

a minimum at {/3e/M.

The forward-difference formula can be expressed as

1 h h?
f'(xo) = E[f(xo +h) = f(@o)] — §f”(930) - Ffm(%) +O0(h%).
Use extrapolation on this formula to derive an O(h?) formula for f/(x).

In Exercise 7 of Section 3.4, data were given describing a car traveling on a
straight road. That problem asked to predict the position and speed of the
car when ¢t = 10 s. Use the following times and positions to predict the speed
at each time listed.

Time ‘0‘3|5‘8|10‘13

Distance ‘ 0 ‘ 295 ’ 383 ‘ 623 | 742 ‘ 993

In a circuit with impressed voltage £(t) and inductance L, Kirchhoff’s first

law gives the relationship
di
E=L—+Ri
a + R,

where R is the resistance in the circuit and ¢ is the current. Suppose we
measure the current for several values of ¢ and obtain:

t ‘ 1.00 ‘ 1.01 ‘ 1.02 ‘ 1.03 ‘ 1.0

i ‘ 3.10 ‘ 312 ‘ 3.14 ‘ 318 ‘ 3.94

4.9. NUMERICAL DIFFERENTIATION 209

where t is measured in seconds, 7 is in amperes, the inductance, L, is a constant

0.98 henries, and the resistance is 0.142 ohms. Approximate the voltage £ at
the values £ = 1.00, 1.01, 1.02, 1.03, and 1.04.

210 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.10 Survey of Methods and Software

In this chapter we considered approximating integrals of functions of one, two, or
three variables and approximating the derivatives of a function of a single real
variable.

The Midpoint rule, Trapezoidal rule, and Simpson’s rule were studied to intro-
duce the techniques and error analysis of quadrature methods. Composite Simpson’s
rule is easy to use and produces accurate approximations unless the function os-
cillates in a subinterval of the interval of integration. Adaptive quadrature can be
used if the function is suspected of oscillatory behavior. To minimize the number
of nodes and increase the degree of precision, we studied Gaussian quadrature.
Romberg integration was introduced to take advantage of the easily applied Com-
posite Trapezoidal rule and extrapolation.

Most software for integrating a function of a single real variable is based on the
adaptive approach or extremely accurate Gaussian formulas. Cautious Romberg
integration is an adaptive technique that includes a check to make sure that the
integrand is smoothly behaved over subintervals of the integral of integration. This
method has been successfully used in software libraries. Multiple integrals are gen-
erally approximated by extending good adaptive methods to higher dimensions.
Gaussian-type quadrature is also recommended to decrease the number of function
evaluations.

The main routines in both the IMSL and NAG Libraries are based on QUAD-
PACK: A Subroutine Package for Automatic Integration by R. Piessens, E. de
Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner published by Springer-
Verlag in 1983 [PDUK]. The routines are also available as public domain software,
at http://www.netlib.org/quadpack The main technique is an adaptive integration
scheme based on the 21-point Gaussian-Kronrod rule using the 10-point Gaussian

rule for error estimation. The Gaussian rule uses the 10 points x1,...,x10 and
weights wq, ..., w;o to give the quadrature formula 2121 w; f(x;) to approximate
f; f(x) dz. The additional points 11, ...,z91 and the new weights vy, ..., v9; are

then used in the Kronrod formula, Zil v; f(x;). The results of the two formulas
are compared to eliminate error. The advantage in using xi,...,x1¢ in each for-
mula is that f needs to be evaluated at only 21 points. If independent 10- and
21-point Gaussian rules were used, 31 function evaluations would be needed. This
procedure also permits endpoint singularities in the integrand. Other subroutines
allow user specified singularities and infinite intervals of integration. Methods are
also available for multiple integrals.
The Maple function call

>int(f,x=a..b);

computes the definite integral fab f(z) dz. The numerical method applies singular-
ity handling routines and then uses Clenshaw-Curtis quadrature, which is described
in [CC]. If this fails, due to singularities in or near the interval, then an adaptive
Newton-Cotes formula is applied. The adaptive Newton-Cotes formula can be ap-
plied by specifying the option _NCrule in the Maple function call

4.10. SURVEY OF METHODS AND SOFTWARE 211

>int(f,x=a..b,digits,_NCrule);

The method attempts to achieve a relative error tolerance 0.5 x 10(1~Pigits) where
Digits is a variable in Maple that specifies the number of digits of rounding
Maple uses for numerical calculation. The default value for Digits is 10, but it
can be changed to any positive integer n by the command Digits:=n; The Maple
command QUAD approximates the definite integral using an adaptive eight-panel
Newton-Cotes rule.

Although numerical differentiation is unstable, derivative approximation for-
mulas are needed for solving differential equations. The NAG Library includes a
subroutine for the numerical differentiation of a function of one real variable, with
differentiation to the fourteenth derivative being possible. An IMSL function uses
an adaptive change in step size for finite differences to approximate a derivative
of f at x to within a given tolerance. Both packages allow the differentiation and
integration of interpolatory cubic splines.

For further reading on numerical integration we recommend the books by En-
gels [E] and by Davis and Rabinowitz [DR]. For more information on Gaussian
quadrature see Stroud and Secrest [StS]. Books on multiple integrals include those
by Stroud [Stro] and the recent book by Sloan and Joe [SJ].

212 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Chapter 5

Numerical Solution of
Initial-Value Problems

5.1 Introduction

Differential equations are used to model problems that involve the change of some
variable with respect to another. These problems require the solution to an initial-
value problem—that is, the solution to a differential equation that satisfies a given
initial condition.

In many real-life situations, the differential equation that models the problem
is too complicated to solve exactly, and one of two approaches is taken to approxi-
mate the solution. The first approach is to simplify the differential equation to one
that can be solved exactly, and then use the solution of the simplified equation to
approximate the solution to the original equation. The other approach, the one we
examine in this chapter, involves finding methods for directly approximating the
solution of the original problem. This is the approach commonly taken since more
accurate results and realistic error information can be obtained.

The methods we consider in this chapter do not produce a continuous approx-
imation to the solution of the initial-value problem. Rather, approximations are
found at certain specified, and often equally spaced, points. Some method of in-
terpolation, commonly a form of Hermite (see Section 3.4), is used if intermediate
values are needed.

The first part of the chapter concerns approximating the solution y(t) to a
problem of the form

@:f(ty)’ for a <t <b,
dt
subject to an initial condition
y(a) = a.

These techniques form the core of the study since more general procedures use these
as a base. Later in the chapterwe deal with the extension of these methods to a

213

EXAMPLE 1

214CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

system of first-order differential equations in the form

dy:

E = fl(tvy17y27"'ayn)v
dyz

— = t

dt f2(y Y1, Y2, ayn)v
dyn

dtﬂ = fn(t7y1’y27"'ayn)7

for a <t < b, subject to the initial conditions

yi(a) = a1, yola)=az, ..., ynla)= .

We also examine the relationship of a system of this type to the general nth-order
initial-value problem of the form

y™ =ty yy", .y

for a <t < b, subject to the multiple initial conditions

y((]‘) = Qo, y/((l) :alv"'ay(nil)(a‘) = Qp—1-

Before describing the methods for approximating the solution to our basic prob-
lem, we consider some situations that ensure the solution will exist. In fact, since
we will not be solving the given problem, only an approximation to the problem,
we need to know when problems that are close to the given problem have solutions
that accurately approximate the solution to the given problem. This property of an
initial-value problem is called well-posed, and these are the problems for which
numerical methods are appropriate. The following result shows that the class of
well-posed problems is quite broad.

[Well-Posed Condition] Suppose that f and fy, its first partial derivative with
respect to y, are continuous for ¢ in [a,b] and for all y. Then the initial-value
problem

y = f(t,y), fora<t<b, with y(a)=a,

has a unique solution y(t) for a < ¢ < b, and the problem is well-posed.

Consider the initial-value problem

y = 1+tsin(ty), for0<t<2 withy(0)=0.

5.1. INTRODUCTION 215

Since the functions

ft,y) =1+ tsin(ty) and fy(t,y) =t cos(ty)

are both continuous for 0 < t < 2 and for all y, a unique solution exists to this
well-posed initial-value problem.

If you have taken a course in differential equations, you might attempt to de-
termine the solution to this problem by using one of the techniques you learned in
that course. O

Maple can be used to solve many initial-value problems. Consider the problem

d
d_ZZ:y—t2+1, for 0 <t <2, withy(0)=0.5.

To define the differential equation, enter
>deq:=D(y) (t)=y(t)-t*t+1;

and the initial condition
>init:=y(0)=0.5;

The names deq and init are chosen by the user. The command to solve the initial-
value problems is

>degsol:=dsolve({deq,init},y(t));

which gives the response

1
degqsol = y(t) =t> +2t +1 — iet

To use the solution to obtain a specific value, such as y(1.5), we enter

>q:=rhs(degsol) ;
>evalf (subs(t=1.5,9));

The function rhs (for right hand side) is used to assign the solution of the
initial-value problem to the function ¢, which we then evaluate at t = 1.5 to obtain
y(1.5) = 4.009155465. The function dsolve can fail if an explicit solution to the
initial value problem cannot be found. For example, for the initial-value problem
given in Example 1, the command

>deqsol2:=dsolve ({D(y) (t)=1+t*sin(t*y(t)),y(0)=0},y(£));

does not succeed, because Maple cannot find an explicit solution. In this case a
numerical method must be used.

216CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

5.2 Taylor Methods

Many of the numerical methods we saw in the first four chapters have an un-
derlying derivation from Taylor’s Theorem. The approximation of the solution to
initial-value problems is no exception. In this case, the function we need to expand
in a Taylor polynomial is the (unknown) solution to the problem, y(¢). In its most
elementary form this leads to Euler’s Method. Although Euler’s method is sel-
dom used in practice, the simplicity of its derivation illustrates the technique used
for more advanced procedures, without the cumbersome algebra that accompanies
these constructions.

The object of Euler’s method is to find, for a given positive integer N, an
approximation to the solution of a problem of the form

d

ditJ = f(t,y), fora<t<b, withy(a)=a

at the N +1 equally spaced mesh points {tg,t1,t2,...,tn} (see Figure 5.1), where
t;=a+1th, foreachi=0,1,...N.

The common distance between the points, h = (b — a)/N, is called the step size.
Approximations at other values of ¢ in [a, b] can then be found using interpolation.

Figure 5.1

Yai

yty =yb) + Y =fE),
y@) = a

Suppose that y(t), the solution to the problem, has two continuous derivatives
on [a,b], so that for each i =0,1,2,..., N — 1, Taylor’s Theorem implies that

(tiv1 —ti)

y(tiv1) = y(ts) + (tigr —ta)y' (t:) + 5 v (&),

for some number &; in (¢;,¢;41). Letting h = (b — a)/N = t;41 — t;, we have

2
tier) = ylte) + by () + 5-9"(60),

5.2. TAYLOR METHODS 217

and, since y(t) satisfies the differential equation y'(t) = f(¢,y(t)),

(tisn) = y(t) + Rf Gt (1)) + " (60,

Euler’s method constructs the approximation w; to y(¢;) for eachi =1,2,..., N
by deleting the error term in this equation. This produces a difference equation that
approximates the differential equation. The term local error refers to the error at
the given step if it is assumed that all the previous results are all exact. The true,
or accumulated, error of the method is called global error.

[Euler’s Method]

wy = «Q,
wip1 = w; +hf(ti,w;),
where ¢ = 0,1,..., N — 1, with local error %y”(&)h2 for some &; in (¢;,t;41).

To interpret Euler’s method geometrically, note that when w; is a close approx-
imation to y(¢;), the assumption that the problem is well-posed implies that

f(ti,wi) =y (t:) = f(ti, y(ts)).

The first step of Euler’s method appears in Figure 5.2(a), and a series of steps
appears in Figure 5.2(b). The program EULERMS51 implements Euler’s method.

Figure 5.2

Y4 y' =1y,
y' =fty),
y@) = «

Slopey'(a) = f(a, @)

v

218CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXAMPLE 1 Suppose that Euler’s method is used to approximate the solution to the initial-value
problem
y =y—t>+1, for 0<t<2, withy(0) = 0.5,

assuming that N = 10. Then h = 0.2 and ¢; = 0.21.
Since f(t,y) =y —t2+ 1 and wy = y(0) = 0.5, we have

wiy1 = wi + h(w; — 2 +1) = w; + 0.2[w; — 0.04i* + 1] = 1.2w; — 0.008i% + 0.2
fori=0,1,...,9.

The exact solution is y(t) = (t + 1)® — 0.5e’. Table 5.1 shows the comparison
between the approximate values at t; and the actual values. O

Table 5.1

t yi = y(ti) w; lyi — w

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8292986 0.8000000 0.0292986
0.4 1.2140877 1.1520000 0.0620877
0.6 1.6489406 1.5504000 0.0985406
0.8 2.1272295 1.9884800 0.1387495
1.0 2.6408591 2.4581760 0.1826831
1.2 3.1799415 2.9498112 0.2301303
1.4 3.7324000 3.4517734 0.2806266
1.6 4.2834838 3.9501281 0.3333557
1.8 4.8151763 4.4281538 0.3870225
2.0 530564720 4.8657845 0.4396874

Euler’s method is available in Maple using an optional part of the dsolve state-
ment. Enter the command

>eq:= D(y) (t)=y(t)-t"2+1;

to define the differential equation in Example 1, and specify the initial condition
with

>init:= y(0)=0.5;
The command
>g:=dsolve({eq,init},numeric,method=classical [foreuler],y(t),stepsize=0.2);
activates Euler’s method and returns a procedure
g := proc(z_classical) . . .end proc

To approximate y(t) using g(t) at specific values of ¢, for example at ¢t = 2.0, enter
the command

EXAMPLE 2

5.2. TAYLOR METHODS 219

>g(2.0);

which returns the value

2.0 = 2.0,(2.0) = 4.8657850431999876]

Since Euler’s method is derived from a Taylor polynomial whose error term
involves the square of the step size h, the local error at each step is proportional to
h?, so it is O(h?). However, the total error, or global error, accumulates these local
errors, so it generally grows at a much faster rate.

[Euler’s Method Error Bound] Let y(¢) denote the unique solution to the
initial-value problem

y = f(t,y), fora<t<b, withy(a)=a,

and wg, w1, ..., wy be the approximations generated by Euler’s method for
some positive integer N. Suppose that f is continuous for all ¢ in [a,b] and
all y in (—o00,00), and constants L and M exist with

of

‘8—y(t,y(t))’ <L and |y'()] <M.

Then, for each i =0,1,2,..., N,

hM
ly(t:) —wi| < f[euti_a) —1].

An important point to notice is that although the local error of Euler’s method
is O(h?), the global error is only O(h). The reduction of one power of h from local to
global error is typical of initial-value techniques. Even though we have a reduction
in order from local to global errors, the formula shows that the error tends to zero
with h.

Returning to the initial-value problem

y =y—t*+1, for0<t<2 with y(0)=0.5,
considered in Example 1, we see that with f(t,y) = y — t* + 1, we have f,(t,y) =1
for all y, so L = 1. For this problem we know that the exact solution is y(t) =
(t+1)% — Let, so y(t) = 2 — 0.5¢!, and

ly"(t)] < 0.5¢* =2 for 0 <t < 2.

220CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1,
and M = 0.5¢2 — 2 gives

ly; —w;| < 0.1(0.5¢% — 2) (e’ — 1).

Table 5.2 lists the actual error found in Example 1, together with this error bound.
Notice that the bound for the error far exceeds the actual approximation error,

particularly for the larger values of ;. O

Table 5.2

t; 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Actual

Error 0.02930 0.06209 0.09854 0.13875 0.18268 0.23013 0.28063 0.33336 0.38702 0.43969
Error
Bound 0.03752 0.08334 0.13931 0.20767 0.29117 0.39315 0.51771 0.66985 0.85568 1.08264

Since Euler’s method was derived using Taylor’s Theorem with n = 2, the first
attempt to find methods for improving the accuracy of difference methods is to
extend this technique of derivation to larger values of n. Suppose the solution y(t)
to the initial-value problem

y = f(t,y), fora<t<b, withy(a)=a,

has n 4 1 continuous derivatives. If we expand the solution y(t¢) in terms of its nth
Taylor polynomial about ¢;, we obtain

(te2) = y(t) + by (1) + (0 o P) - Py g
Y(lit+1) = Yl Yy 2y i n!y i (n+1)!y i

for some number &; in (¢;,¢;41).
Successive differentiation of the solution y(t) gives

Y1) = f(ty(t), y'(t) = f(ty(t), and, generally, y™(1) = f*V(t,y(t)).

Substituting these results into the Taylor expansion gives

h2
y(tiv1) = y(ts) +hf(ts,yts)) + ?f,(ti»?/(ti)) +ee
prtl

F (&L y(&)).

hn
M o, g,
AR AR GG R ey

The difference-equation method corresponding to this equation is obtained by
deleting the remainder term involving &;.

EXAMPLE 3

5.2. TAYLOR METHODS 221

[Taylor Method of Order n|

wy = Q,
wipr = w;+hT™ (b, w;)
for each i =0,1,..., N — 1, where

n—1

h h
T(n)(tiawi) = f(ti7wi) + §f/(ti7wi) + -+ —'f(n_l)(ti7wi).
n.

The local error is

(ni1)1y(n+l)(5i)h"+1 for some & in (t;,t;11).

The formula for T is easily expressed, but it is difficult to use, because it
requires the derivatives of f with respect to t. Since f is described as a multivariable
function of both ¢ and y, the chain rule implies that the total derivative of f with
respect to ¢, which we denoted f'(¢,y(t)), is obtained by

of of

= S (ty®)+ a—y(t,y(t))y'(t)

or, since ¥/ (t) = f(t,y(t)), by

of of

ot dy
Higher derivatives can be obtained in a similar manner, but they might become
increasingly complicated. For example, f”(¢,y(t)) involves the partial derivatives of
all the terms on the right side of this equation with respect to both ¢ and .

Suppose that we want to apply Taylor’s method of orders 2 and 4 to the initial-value
problem
y=y—t+1,

for 0 <t <2, with y(0)=0.5,

which was studied in Examples 1 and 2. We must find the first three derivatives of
f(t,y(t)) = y(t) — t2 + 1 with respect to the variable ¢:

fty@) = %(y—tZ-i-l)=y'—2t:y—t2+1—2t
) = -1 =y 22

= y—t?+1-2-2=y—-t>-2t—1

and J
f’”(t,y(t)):E(y—tZ—Qt—l):y’—2t—2:y—t2—2t—1.

222CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

So
) h ., 2 h 2
T wi) = fltiwi) + 5 f (twi) = wi = + 1+ S(wi =7 =2t +1)
= <1+g)(wi_t?+1)_hti
and
(4) h / h? " h? "
T (ti,wi) = f(ti,w;) + §f (ti,ws) + Ff (ti,ws) + ﬂf (ti, w;)

h h?
= wi—tiz—i—l—l—§(wi—t?—2ti+1)—|—€(wi—t?—2ti—1)

h3 9
— —ty—2t; — 1
+ 24 (wl tz tl)
h h% A3 h h?
- 1 = —_ - i 2y — 1 - - hti
<+2+6+24>(w t7) <+3+12)
T4 h h%2 A
2 6 24"
The Taylor methods of orders 2 and 4 are, consequently,
woy = 0.5,
h 9
Wi41 = W; —+ h 1 + 5 (w7 — tz —+ 1) — hti
and
woy = 05
h h? B3
Wit1 =w; +h |:<1+§+€+ﬁ) (wi—t?)
1+h’+h2 Bt 4140 o
3 12) " 2 6 24|

If h =0.2, then N = 10 and ¢; = 0.27 for each i = 1,2,...,10, so the second-order
method becomes

wy = 05,
0.2 9 .
wipr = w; +02 1+ - (w; — 0.044° + 1) — 0.044

= 1.22w; — 0.0088i% — 0.008i + 0.22,

and the fourth-order method becomes

0.2 0.04 0.008 9

Wi+1 = wi+0.2 |:(1+7+T+7) (wl—0.04z)
0.2 0.04 . 0.2 0.04 0.008
— <1+3+12) (0.O4Z)+1+2624:|

= 1.2214w; — 0.008856i* — 0.00856i + 0.2186,

5.2. TAYLOR METHODS 223

for each ¢t =0,1,...,9.

Table 5.3 lists the actual values of the solution y(t) = (t+1)? —0.5¢, the results
from the Taylor methods of orders 2 and 4, and the actual errors involved with these
methods. As expected, the fourth-order results are vastly superior.

Table 5.3
Taylor Taylor
Exact Order 2 Error Order 4 Error
t; y(t:) wj |y (t:) — wi w; |y (t:) — wi
0.0 0.5000000 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8300000 0.0007014 0.8293000 0.0000014
0.4 1.2140877 1.2158000 0.0017123 1.2140910 0.0000034
0.6 1.6489406 1.6520760 0.0031354 1.6489468 0.0000062
0.8 2.1272295 2.1323327 0.0051032 2.1272396 0.0000101
1.0 2.6408591 2.6486459 0.0077868 2.6408744 0.0000153
1.2 3.1799415 3.1913480 0.0114065 3.1799640 0.0000225
1.4 3.7324000 3.7486446 0.0162446 3.7324321 0.0000321
1.6 4.2834838 4.3061464 0.0226626 4.2835285 0.0000447
1.8 4.8151763 4.8462986 0.0311223 4.8152377 0.0000615
2.0 5.3054720 5.3476843 0.0422123 5.3055554 0.0000834

Suppose we need to determine an approximation to an intermediate point in
the table, for example at ¢ = 1.25. If we use linear interpolation on the order four
approximations at ¢ = 1.2 and ¢t = 1.4, we have

1.25—-1.4 1.25

. 25— 1.2
1.25) ~ =227 2% 31799640 + —22— 2 37324321 = 3.3180810.
y(1.25) ~ 5] 1112

Since the true value is y(1.25) = 3.3173285, this approximation has an error of
0.0007525, which is nearly 30 times the average of the approximation errors at 1.2
and 1.4.

We can significantly improve the approximation to y(1.25) by using cubic Her-
mite interpolation. This requires approximations to y’(1.2) and y'(1.4), as well as

approximations to y(1.2) and y(1.4). But these derivative approximations are avail-
able from the differential equation, since

y'(t) = f(ty(t) = y(t) =t + 1.

So
y'(1.2) = y(1.2) — (1.2)2 + 1 ~ 3.1799640 — 1.44 + 1 = 2.7399640

and
y'(1.4) = y(1.4) — (1.4)2 + 1~ 3.7324327 — 1.96 + 1 = 2.7724321.

224CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

The divided-difference procedure in Section 3.3 gives the information in Table
5.4. The underlined entries come from the data and the other entries use the divided-
difference formulas.

Table 5.4
1.2 3.1799640
2.7399640
1.2 3.1799640 0.1118825
2.7623405 —0.3071225
1.4 3.7324321 0.0504580
2.7724321
1.4 3.7324321

The cubic Hermite polynomial is
y(t) ~ 3.1799640+2.7399640(t—1.2)+0.1118825(t—1.2)*—0.3071225(t—1.2)*(t—1.4),
S0

y(1.25) &~ 3.1799640 + 0.1369982 + 0.0002797 + 0.0001152 = 3.3173571,

a result that is accurate to within 0.0000286. This is less than twice the average
error at 1.2 and 1.4, or about 4% of the error obtained using linear interpolation.
This improvement in accuracy certainly justifies the added computation required
for the Hermite method. O

Error estimates for the Taylor methods are similar to those for Euler’s method.
If sufficient differentiability conditions are met, an nth-order Taylor method will
have local error O(h"*1) and global error O(h™).

5.2. TAYLOR METHODS 225

EXERCISE SET 5.2

1. Use Euler’s method to approximate the solutions for each of the following
initial-value problems.

(a) ¢/ =te¥t —2y, for0<t<1, withy(0)=0andh=0.5
M) v =1+ (t—y)? for2<t<3, withy(2)=1andh=05
() y’:l—i—%, for 1 <t <2, withy(l)=2and h=0.25

(d) ¥/ =cos2t +sin3t, for 0<t<1, withy(0)=1andh=0.25

2. The actual solutions to the initial-value problems in Exercise 1 are given here.
Compare the actual error at each step to the error bound.

= _)1
(a) y(t) = gte® — 55e + gpe™ (b) y(t) =t+(1—1t)

(c) y(t) =tlnt+2t (d) y(t) = §sin2t — £ cos3t + 5

3. Use Euler’s method to approximate the solutions for each of the following
initial-value problems.

2
(a) y’z%—(%), for 1 <t <2, withy(l)=1andh=0.1

T A ; _ _
(b)y—1—|—t+ 2) for 1 <t <3, withy(l)=0andh=0.2
) vV=—wy+1(y+3), for0<t<2, withy(0)=-2andh=0.2
(d) ¥/ = —by+5t2+2t, for0<t<1, withy(0)=1/3and h=0.1

4. The actual solutions to the initial-value problems in Exercise 3 are given here.
Compute the actual error in the approximations of Exercise 3.

(a) y(t) =t(1+1nt)~!
(b) y(t) = ttan(Int)
(€) yt) ==3+2(1+e)"
(@) y(t) = + fe=
5. Repeat Exercise 1 using Taylor’s method of order 2.

6. Repeat Exercise 3 using Taylor’s method of order 2.

226CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

7. Repeat Exercise 3 using Taylor’s method of order 4.

8. Given the initial-value problem
/ 2 2t
y'=gytte, 1<t<2 y(1)=0
with exact solution y(t) = t%(ef —e) :
(a) Use Euler’s method with A = 0.1 to approximate the solution and com-

pare it with the actual values of y.

(b) Use the answers generated in part (a) and linear interpolation to ap-
proximate the following values of y and compare them to the actual
values.

) y(1.04) (i) y(1.55) (iii) y(1.97)

(¢) Use Taylor’s method of order 2 with h = 0.1 to approximate the solution
and compare it with the actual values of y.

(d) Use the answers generated in part (c¢) and linear interpolation to ap-
proximate y at the following values and compare them to the actual
values of y.

(i) y(1.04) (ii) y(1.55) (iil) y(1.97)
(e) Use Taylor’s method of order 4 with h = 0.1 to approximate the solution
and compare it with the actual values of y.

(f) Use the answers generated in part (e) and piecewise cubic Hermite in-
terpolation to approximate y at the following values and compare them
to the actual values of y.

) y(1.04) (i) y(1.55) (iii) (1.97)

9. Given the initial-value problem

1y
/I J 2
Y=2 3

with exact solution y(t) = —1/t.

(a) Use Euler’s method with h = 0.05 to approximate the solution and
compare it with the actual values of y.

5.2. TAYLOR METHODS 227

(b)

Use the answers generated in part (a) and linear interpolation to ap-
proximate the following values of y and compare them to the actual
values.

() y(1.052) (i) y(1.555) (iii) y(1.978)

Use Taylor’s method of order 2 with h = 0.05 to approximate the solu-
tion and compare it with the actual values of y.

Use the answers generated in part (c¢) and linear interpolation to ap-
proximate the following values of y and compare them to the actual
values.

() (1.052) (i) y(1.555) (iii) y(1.978)

Use Taylor’s method of order 4 with h = 0.05 to approximate the solu-
tion and compare it with the actual values of y.

Use the answers generated in part (e) and piecewise cubic Hermite in-
terpolation to approximate the following values of y and compare them
to the actual values.

) y(1.052) (ii) y(1.555) (iii) y(1.978)

10. In an electrical circuit with impressed voltage £, having resistance R, induc-
tance L, and capacitance C' in parallel, the current i satisfies the differential
equation

: 2
di Cd E 1d¢ 1

a S Tra T

Suppose i(0) = 0, C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the
voltage is given by

E(t) = e %07 gin(2t — 7).

Use Euler’s method to find the current ¢ for the valuest = 0.15,7 =0, 1,...,100.

11. In a book entitled Looking at History Through Mathematics, Rashevsky [Ra]
considers a model for a problem involving the production of nonconformists in
society. Suppose that a society has a population of z(¢) individuals at time ¢, in
years, and that all nonconformists who mate with other nonconformists have
offspring who are also nonconformists, while a fixed proportion r of all other
offspring are also nonconformist. If the birth and death rates for all individuals
are assumed to be the constants b and d, respectively, and if conformists

228CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

and nonconformists mate at random, the problem can be expressed by the
differential equations
dz(t)

3 = (b—d)xz(t) and

dx,(t)
dt

= (b= d)zn(t) +10(x(t) — zn (1)),

where z,,(t) denotes the number of nonconformists in the population at time
t.

(a) If the variable p(t) = x,(t)/x(t) is introduced to represent the propor-
tion of nonconformists in the society at time ¢, show that these equations
can be combined and simplified to the single differential equation

dp(t)
——= =7rb(1 —p(t)).
O 0)
(b) Assuming that p(0) = 0.01, b = 0.02, d = 0.015, and r = 0.1, use Euler’s
method to approximate the solution p(t) from ¢ = 0 to ¢ = 50 when the
step size is h = 1 year.

(¢) Solve the differential equation for p(t) exactly, and compare your result
in part (b) when ¢ = 50 with the exact value at that time.

12. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity
v(0) = 8 m/s is slowed due to the force of gravity F, = mg and due to air
resistance F, = —kv|v|, where ¢ = —9.8 m/s? and k& = 0.002 kg/m. The
differential equation for the velocity v is given by

mv’ = mg — kv|v|.

(a) Find the velocity after 0.1,0.2,...,1.0 s.

(b) To the nearest tenth of a second, determine when the projectile reaches
its maximum height and begins falling.

5.3. RUNGE-KUTTA METHODS 229

5.3 Runge-Kutta Methods

In the last section we saw how Taylor methods of arbitrary high order can be gen-
erated. However, the application of these high-order methods to a specific problem
is complicated by the need to determine and evaluate high-order derivatives with
respect to t on the right side of the differential equation. The widespread use of
computer algebra systems, such as Maple, has simplified this process, but it still
remains cumbersome.

In this section we consider Runge-Kutta methods, which modify the Taylor
methods so that the high-order error bounds are preserved, but the need to de-
termine and evaluate the high-order partial derivatives is eliminated. The strategy
behind these techniques involves approximating a Taylor method with a method
that is easier to evaluate. This approximation might increase the error, but the
increase does not exceed the order of the truncation error that is already present in
the Taylor method. As a consequence, the new error does not significantly influence
the calculations.

The Runge-Kutta techniques make use of the Taylor expansion of f, the function
on the right side of the differential equation. Since f is a function of two variables,
t and y, we must first consider the generalization of Taylor’s Theorem to functions
of this type. This generalization appears more complicated than the single-variable
form, but this is only because of all the partial derivatives of the function f.

[Taylor’s Theorem for Two Variables] If f and all its partial derivatives of
order less than or equal to n+ 1 are continuous on D = {(¢,y)la <t <b, ¢ <
y < d} and (t,y) and (¢ + o,y +) both belong to D, then

faysm) ~ fta)+ |ad i+ 5)]
2 2f ﬁQaZf
S5 +aﬂata a y>+73,—y2<t,y>}+---

1 — o f
8 ()

The error term in this approximation is similar to that given in Taylor’s The-
orem, with the added complications that arise because of the incorporation of all
the partial derivatives of order n + 1.

To illustrate the use of this formula in developing the Runge-Kutta methods,
let us consider the Runge-Kutta method of order 2. We saw in the previous section
that the Taylor method of order 2 comes from

’ h? h3
y(ts) + hf(ts,y(ts)) + 7f’(ti,y(ti)) + gy”’(&),

h? h3
y(tiva) = y(ti) +hy'(ti) + 5" (t) + Qym(f)

230CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Pt0) = Pt y(0)) + T 5, 4(00) v 0
and y'(t;) = f(ti,y(t;)), we have
3
ltien) = 6+ { £ pl8)) 4§ G (00) + 5 5 (6 FCiye) 50 €.

Taylor’s Theorem of two variables permits us to replace the term in the braces with
a multiple of a function evaluation of f of the form a; f(t; + o, y(t;) + 3). If we
expand this term using Taylor’s Theorem with n = 1, we have

of
ot

(Lo y(t:)) + ﬂ%ti,y(tm]

Q

ar f(t; + o, y(t;) + 06)

o | it + o >

= a1 f(ti,y(ti) + ala%(tny(ti)) + alﬁg_z(tia y(ti))-

Equating this expression with the terms enclosed in the braces in the preceding
equation implies that a1, o, and should be chosen so that

h h
s =a, and < f(t,y(ti) = a1 f;

1:
ai, 9 92

that is,

ap=1 a= g, and = gf(tiay(ti))'

The error introduced by replacing the term in the Taylor method with its approx-
imation has the same order as the error term for the method, so the Runge-Kutta
method produced in this way, called the Midpoint method, is also a second-order
method. As a consequence, the local error of the method is proportional to A3, and
the global error is proportional to h2.

[Midpoint Method]
wyg = «
h h
wit1 = wi+h|f|t+ o Wi + if(tuwi))

where i = 0,1,..., N — 1, with local error O(h?) and global error O(h?).

Using a1 f(t + «,y +) to replace the term in the Taylor method is the easiest
choice, but it is not the only one. If we instead use a term of the form

arf(t,y) +axf(t + o,y + Bf(t,y)),

5.3. RUNGE-KUTTA METHODS 231

the extra parameter in this formula provides an infinite number of second-order
Runge-Kutta formulas. When a1 = as = % and a = 3 = h, we have the Modified
Euler method.

[Modified Euler Method]
wyg = «

Wi = wit g+t v b w0)]

where i = 0,1,..., N — 1, with local error O(h3) and global error O(h?).

,and o = 8 = %h, we have Heun’s method.

=]

When a; = i,ag =

[Heun’s Method]
wyg = «

h 2 2
Wir1 = Wi+ Z [f(tz,wz) + 3f (ti + gh,wz + ghf(ti, wz)>:|

where i = 0,1,..., N — 1, with local error O(h?) and global error O(h?).

EXAMPLE 1 Suppose we apply the Runge-Kutta methods of order 2 to our usual example,
Y =y—t>+1, for0<t<2 withy(0)=0.5,

where N = 10,h = 0.2,t; = 0.2¢, and wy = 0.5 in each case. The difference
equations produced from the various formulas are

Midpoint method: w;y; = 1.22w; — 0.0088i? — 0.008i + 0.218;
Modified Euler method: w;11 = 1.22w; — 0.0088i% — 0.008i + 0.216;
Heun’s method: w;11 = 1.22w; — 0.0088:% — 0.008i + 0.2173;

for each ¢ = 0,1,...,9. Table 5.5 lists the results of these calculations. O

232CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Table 5.5
Midpoint Modified Euler Heun’s
t; y(t;) Method Error Method Error Method Error
0.0 0.5000000 0.5000000 0 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986 0.8273333 0.0019653
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677 1.2098800 0.0042077
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982 1.6421869 0.0067537
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938 2.1176014 0.0096281
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715 2.6280070 0.0128521
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627 3.1635019 0.0164396
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138 3.7120057 0.0203944
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866 4.2587802 0.0247035
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577 4.7858452 0.0293310
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173 5.2712645 0.0342074

Higher-order Taylor formulas can be converted into Runge-Kutta techniques in
a similar way, but the algebra becomes tedious. The most common Runge-Kutta
method is of order 4 and is obtained by expanding an expression that involves
only four function evaluations. Deriving this expression requires solving a system
of equations involving 12 unknowns. Once the algebra has been performed, the
method has the following simple representation.

[Runge-Kutta Method of Order 4]

wo = «Q,

]431 = hf(ti, wi),

h 1
ko = hf (ﬁ + o5 Wi + 2k1> ,

h 1
ks = hf <fi + 5,11)7‘, + 5/{‘2) ,
k/l =]7,‘f(t,;+1, w; + kg),

1
Wip1 = w; + 6(1471 + 2ky 4 2k3 + ky),

where i = 0,1,..., N — 1, with local error O(h%) and global error O(h*).

The program RKO4M52 implements this method.

EXAMPLE 2 The Runge-Kutta method of order 4 applied to the initial-value problem

Y =y—t>4+1, for0<t<2 withy(0)=0.5,

5.3. RUNGE-KUTTA METHODS 233

with h = 0.2, N = 10, and ¢; = 0.2¢, gives the results and errors listed in Table

5.6. O
Table 5.6
Runge-Kutta
Exact Order 4 Error
t; yi = y(ts) w; lyi — w;]
0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089

We can also generate the entries in Table 5.6 quite easily using Maple. To
determine the Runge-Kutta approximation for y(0.2), we first define the function
f(t,y) with the command

>fi=(t,y)->y-t~2+1;

The values of a, b, N, h, and y(0) are defined by

>a:=0; b:=2; N:=10; h:=(b-a)/N; alpha:=0.5;

and we initialize wg and tg with

>w0:=alpha; t0:=a;

We compute k1 = 0.3, ko = 0.328, k3 = 0.3308, and k4 = 0.35816 with
>k1:=h*f (t0,w0);

>k2:=h*f (t0+h/2,w0+k1/2);

>k3:=hx*f (t0+h/2,w0+k2/2) ;

>k4 :=hx*f (t0+h,w0+k3) ;

The approximation w; = 0.8292933334 at t; = 0.2 is obtained from

>wil:=w0+(k1+2%k2+2*xk3+k4) /6;

EXAMPLE 3

234CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS
Now that we have y(0.2) ~ 0.8292933334, we can re-initialize the Maple steps as
>w0:=0.8292933334; t0:=0.2;

and run through preceding steps to generate new values for k1, k2, k3, k4 and
the approximation wi to y(0.4). The remaining entries in Table 5.6 are generated
in a similar fashion.

The main computational effort in applying the Runge-Kutta methods involves
the function evaluations of f. In the second-order methods, the local error is O(h®)
and the cost is two functional evaluations per step. The Runge-Kutta method of
order 4 requires four evaluations per step and the local error is O(h®). The relation-
ship between the number of evaluations per step and the order of the local error is
shown in Table 5.7. Because of the relative decrease in the order for n greater than
4, the methods of order less than 5 with smaller step size are used in preference to
the higher-order methods using a larger step size.

Table 5.7
Evaluations per step ‘ 2 3 4 h<n<7 8<n<9 10<n
Best possible local error ‘ O3 O O(hd) O(h™) O™ 1) O(h"™?)

One way to compare the lower-order Runge-Kutta methods is described as fol-
lows: The Runge-Kutta method of order 4 requires four evaluations per step, so to
be superior to Euler’s method, which requires only one evaluation per step, it should
give more accurate answers than when Euler’s method uses one-fourth the Runge-
Kutta step size. Similarly, if the Runge-Kutta method of order 4 is to be superior
to the second-order Runge-Kutta methods, which require two evaluations per step,
it should give more accuracy with step size h than a second-order method with
step size %h. An illustration of the superiority of the Runge-Kutta Fourth-Order
method by this measure is shown in the following example.

For the problem
y =y—t>+1, for0<t<2 withy(0)=0.5,

Euler’s method with A = 0.025, the Modified Euler’s method with h = 0.05, and the
Runge-Kutta method of order 4 with A = 0.1 are compared at the common mesh
points of the three methods, 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques
requires 20 functional evaluations to approximate y(0.5). (See Table 5.8.) In this
example, the fourth-order method is clearly superior, as it is in most situations. [J

5.3. RUNGE-KUTTA METHODS 235

Table 5.8
Modified Runge-Kutta
Euler Euler Order 4
t; Exact h =0.025 h = 0.05 h=0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

The Midpoint, Modified Euler, and Runge-Kutta Fourth-Order methods are all
available in Maple using dsolve with the numeric and classical options. Enter
the command

>eq:= D(y) (t)=y(t)-t"2+1;
to define the differential equation, and specify the initial condition with
>init:= y(0)=0.5;

The Midpoint, Modified Euler, and Runge-Kutta methods are activated, respec-
tively, with the commands

>g:=dsolve({eq,init},numeric,method=classical [impoly],y(t),stepsize=0.2);
>g:=dsolve({eq,init},numeric,method=classical [rk2],y(t),stepsize=0.2);
and
>g:=dsolve({eq,init},numeric,method=classical [rk4],y(t),stepsize=0.2);
Each call returns the procedure

g := proc(z_classical) . . . end proc

To approximate y(t) using g(t) at specific values of ¢, for example at ¢ = 2.0, enter
the command

>g(2.0);

236 CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXERCISE SET 5.3

1. Use the Midpoint method to approximate the solutions to each of the following
initial-value problems, and compare the results to the actual values.

(a) y =te3t -2y, for 0 <t < 1, with y(0) = 0 and h = 0.5; actual solution

y(t) = %te‘% — 2—1563t + 2%67%.

() v =1+ (t—y)? for 2 <t < 3, with y(2) = 1 and h = 0.5; actual
solution y(t) =t +1/(1 —¢t).

(€) y =1+ % for 1 <t <2, with y(1) = 2 and h = 0.25; actual solution
y(t) =tlnt + 2t.
(d) ¥ = cos2t+sin3t, for 0 <t < 1, with y(0) = 1 and h = 0.25; actual
solution y(t) = % sin2t — & cos 3t + 3.
2. Repeat Exercise 1 using Heun’s method.
3. Repeat Exercise 1 using the Modified Euler method.

4. Use the Modified Euler method to approximate the solutions to each of the
following initial-value problems, and compare the results to the actual values.

2
(a) ¢/ = % - (%) ,for 1 <t <2 with y(1) =1and h = 0.1; actual
solution y(¢) = t/(1 + Int).

2
(b) v =1+ % + (%) Jfor 1 <¢ <3, with y(1) =0and h=0.2; actual
solution y(t) = ttan(lnt).

(€) ¥ = —(y+1)(y+3), for 0<t<2 with y(0) = —2 and h = 0.2;
actual solution y(t) = —3 + 2(1 + e~2t)~ 1,

(d) ¥ = —by+5t2+2¢t, for 0 <t <1, with y(0) =4 and h=0.1; actual

: _ 42 1,5t
solution y(t) = t* + ze™".

5. Use the results of Exercise 4 and linear interpolation to approximate values
of y(t), and compare the results to the actual values.

(a) y(1.25) and y(1.93) (b) y(2.1) and y(2.75)

(¢) y(1.3) and y(1.93) (d) y(0.54) and y(0.94)

6. Repeat Exercise 4 using Heun’s method.

7. Repeat Exercise 5 using the results of Exercise 6.

5.3. RUNGE-KUTTA METHODS 237

8.
9.
10.
11.
12.

13.

14.

15.

Repeat Exercise 4 using the Midpoint method.

Repeat Exercise 5 using the results of Exercise 8.

Repeat Exercise 1 using the Runge-Kutta method of order 4.
Repeat Exercise 4 using the Runge-Kutta method of order 4.

Use the results of Exercise 11 and Cubic Hermite interpolation to approximate
values of y(t) and compare the approximations to the actual values.

(a) y(1.25) and y(1.93) (b) y(2.1) and y(2.75)
(¢) y(1.3) and y(1.93) (d) 5(0.54) and y(0.94)

Show that the Midpoint method, the Modified Euler method, and Heun’s
method give the same approximations to the initial-value problem

y=—y+t+1, 0<t<1, y(0)=1,
for any choice of h. Why is this true?

Water flows from an inverted conical tank with circular orifice at the rate
dx NG
— = —0.6mr%y/ 29—,
dt VT A (@)

where r is the radius of the orifice, = is the height of the liquid level from
the vertex of the cone, and A(x) is the area of the cross section of the tank
x units above the orifice. Suppose r = 0.1 ft, g = —32.17 ft/s?, and the tank
has an initial water level of 8 ft and initial volume of 512(r/3) ft3.

(a) Compute the water level after 10 min with h = 20 s.

(b) Determine, to within 1 min, when the tank will be empty.

The irreversible chemical reaction in which two molecules of solid potassium
dichromate (K2Cry0O7), two molecules of water (H20), and three atoms of
solid sulfur (S) combine to yield three molecules of the gas sulfur dioxide
(SO4), four molecules of solid potassium hydroxide (KOH), and two molecules
of solid chromic oxide (CraO3) can be represented symbolically by the stoi-
chiometric equation

2K5Cry07 + 2H50 + 3S — 4KOH + 2Cry03 + 3S0Os.

If nq molecules of KoCryO7, no molecules of HyO, and ng molecules of S are
originally available, the following differential equation describes the amount
z(t) of KOH after time ¢:

dx

b2 (e 2) (e %Y

238CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

where k is the velocity constant of the reaction. If k = 6.22 x 107'?, n; =
ne = 2 x 103, and nz = 3 x 10, how many units of potassium hydroxide will
have been formed after 0.2 s?7

5.4. PREDICTOR-CORRECTOR METHODS 239

5.4 Predictor-Corrector Methods

The Taylor and Runge-Kutta methods are examples of one-step methods for
approximating the solution to initial-value problems. These methods use w; in the
approximation w;y1 to y(¢;+1) but do not involve any of the prior approximations
wo, W1, - - ., w;—1. Generally some functional evaluations of f are required at inter-
mediate points, but these are discarded as soon as w;11 is obtained.

Since |y(t;) — wj| decreases in accuracy as j increases, better approximation
methods can be derived if, when approximating y(¢;11), we include in the method
some of the approximations prior to w;. Methods developed using this philosophy
are called multistep methods. In brief, one-step methods consider what occurred
at only one previous step; multistep methods consider what happened at more than
one previous step.

To derive a multistep method, suppose that the solution to the initial-value

problem

di
—y:ft,y, fora <t <b, withy(a)=a,
dt

is integrated over the interval [t;,¢;11]. Then

Y(tisn) — ylts) = /t T dt = /Tmf(t,y(t)) dt,

and

Y(tien) = y(t) + / Tt y() dr.

sl

Since we cannot integrate f(¢,y(t)) without knowing y(¢), which is the solution
to the problem, we instead integrate an interpolating polynomial, P(t), determined
by some of the previously obtained data points (to,wo), (t1,w1), ..., (t;, w;). When
we assume, in addition, that y(¢;) ~ w;, we have

tita
y(tis1) =~ w; +/ P(t) dt.

ti

If w41 is the first approximation generated by the multistep method, then
we need to supply starting values wg, wq, ..., w,, for the method. These starting
values are generated using a one-step Runge-Kutta method with the same error
characteristics as the multistep method.

There are two distinct classes of multistep methods. In an explicit method,
w;+1 does not involve the function evaluation f(¢;41,w;+1). A method that does
depend in part on f(t;11,w;11) is implicit.

Some of the explicit multistep methods, together with their required starting
values and local error terms, are given next.

240CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

[Adams-Bashforth Two-Step Explicit Method]

wo = @, w1 = Qq,
h
Wit1 = wi+§[3f(ti7wi)*f(ti—lawi—l)}v
where ¢« = 1,2,...,N — 1, with local error %y’”(ui)h‘?’ for some p; in

(tic1stit1)-

[Adams-Bashforth Three-Step Explicit Method]

Wy = G, wp =0y, W2 = Qy,
h
Wip1 = w;+ E[Q3f(ti7wi) —16f(tim1,wi—1) +5f(ti—o, wi2)]
where i = 2,3,...,N — 1, with local error %y(4)(ui)h4 for some p; in
(ti—2,tiy1).

[Adams-Bashforth Four-Step Explicit Method]

wo = &, Wp =01, W2 = q2, W3 = a3,
h
wiy1 = w;i+ ﬂ[55f(tiawi) = 59f(tim1,wi—1) + 37f (ti—2, wi—2) — 9f (ti—3, w]
where ¢ = 3,4,...,N — 1, with local error %y@)(m)hf’ for some p; in
(ti-3,tiv1)

[Adams-Bashforth Five-Step Explicit Method]
wy = @, W =1, Wy = Qg, W3 = a3, W4 = Q4
Wi = w;+ %[190”(% w;) — 27TAf (ti—1,wi—1)
+ 2616 (t;—o, w;—2) — 1274 f (t;—3,w;—3) + 251 f (t;—4, wi—4)]

95

where ¢ = 4,5,...,N — 1, with local error ngy(@(ui)hﬁ for some pu; in

(ticastiv1)-

5.4. PREDICTOR-CORRECTOR METHODS 241

Implicit methods use (t;+1, f(ti+1,y(t;+1))) as an additional interpolation node
in the approximation of the integral

tit1
|) ar
Some of the more common implicit methods are listed next. Notice that the local
error of an (m — 1)-step implicit method is O(h™*1), the same as that of an m-step
explicit method. They both use m function evaluations, however, since the implicit
methods use f(t;+1,w;+1), but the explicit methods do not.

[Adams-Moulton Two-Step Implicit Method]

wo = @, W1 = oy
h
Wiy1 = wi+ ﬁ[5f(ti+1,’w¢+1) +8f(ti,wi) — f(tio1, wi—1)]
where 7 = 1,2,...,N — 1, with local error fiy(‘l)(,ui)h‘l for some p; in
(tiz1,tig1).

[Adams-Moulton Three-Step Implicit Method]

wy = o, wp =, Wy = Qg
Wit1 = Wi+ %[9f(ti+1, wit1) + 19f (i, wi) = 5f(ti—1, wi—1) + f(ti—2, wi—2)
where ¢ = 2,3,..., N — 1, with local error —%y@(ﬂi)hf’ for some p; in
(ti—2stit1).
[Adams-Moulton Four-Step Implicit Method]

Wy = @, W) =01, W2 =Q2, W3 = a3,
wir1 = w;+ %0[25”(12“7 wiy1) 4 646 f (ts, w;) — 246 f (t;—1,wi—1)
+ 106 f(ti—2, wi—2) — 19f(ti—3, wi—3)]

where ¢ = 3,4,..., N — 1, with local error f%y(@(ui)h(s for some p; in
(ti—sstit1)-

EXAMPLE 1

242CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

It is interesting to compare an m-step Adams-Bashforth explicit method to an
(m —1)-step Adams-Moulton implicit method. Both require m evaluations of f per
step, and both have the terms y(m‘H)(,ui)hm'*‘1 in their local errors. In general, the
coefficients of the terms involving f in the approximation and those in the local
error are smaller for the implicit methods than for the explicit methods. This leads
to smaller truncation and round-off errors for the implicit methods.

Consider the initial-value problem
y =y—t>4+1, for0<t<2 withy(0)=0.5,

and the approximations given by the explicit Adams-Bashforth Four-Step method
and the implicit Adams-Moulton Three-Step method, both using h = 0.2. The
explicit Adams-Bashforth method has the difference equation

h
Wit1 = w; + ﬂ[55f(tiv w;) = 59f (ti—1, wi—1) + 3T f(ti—2, wi—2) — 9f(ti—3, wi—3)],

for i = 3,4,...,9. When simplified using f(¢,y) =y —t>+1,h = 0.2, and t; = 0.2i,
it becomes

1
Wiy = ﬂ[35wi — 11.8w;_1 + T4w;_o — 1.8w;_3 — 0.192i% — 0.192i + 4.736].

The implicit Adams-Moulton method has the difference equation

h
Wit1 = w; + ﬂ[9f(ti+1, wiy1) + 19f (L, ws) — 5f (ti1,wi—1)] + f(ti—2, wi—2)],
for i =2,3,...,9. This reduces to
1
Wiss = o [18wis1 + 27805 — wioy +0.2wi — 01927 — 0192 + 4.736].

To use this method explicitly, we can solve for w;;1, which gives

1

55527 8wi = wiy +0.2w; 5 — 0192 — 0.192i + 4.736]

Wi41 =

for i = 2,3,...,9. The results in Table 5.9 were obtained using the exact values
from y(t) = (t +1)* — 0.5¢" for a, a1, g, and a3 in the explicit Adams-Bashforth
case and for «, a1, and asg in the implicit Adams-Moulton case. O

5.4. PREDICTOR-CORRECTOR METHODS 243

Table 5.9
Adams Adams
Bashforth Error Moulton Error
ti yi=y(t) w; w;
0.0 0.5000000 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8292986 0.0000000 0.8292986 0.0000000
0.4 1.2140877 1.2140877 0.0000000 1.2140877 0.0000000
0.6 1.6489406 1.6489406 0.0000000 1.6489341 0.0000065
0.8 21272295 2.1273124 0.0000828 2.1272136 0.0000160
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293
1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527
2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132

In Example 1, the implicit Adams-Moulton method gave considerably better
results than the explicit Adams-Bashforth method of the same order. Although this
is generally the case, the implicit methods have the inherent weakness of first having
to convert the method algebraically to an explicit representation for w;1. That this
procedure can become difficult, if not impossible, can be seen by considering the
elementary initial-value problem

y' =¢eY, for0<t<0.25 withy(0)=1.
Since f(t,y) = e¥, the Adams-Moulton Three-Step method has

h
w1 = w; + ﬂ[Qewi“ + 19e"t — HeWi-t 4 eWi—2?]

as its difference equation, and this equation cannot be solved explicitly for w;q.
We could use Newton’s method or the Secant method to approximate w;y1, but
this complicates the procedure considerably.

In practice, implicit multistep methods are not used alone. Rather, they are
used to improve approximations obtained by explicit methods. The combination of
an explicit and implicit technique is called a predictor-corrector method. The
explicit method predicts an approximation, and the implicit method corrects this
prediction.

Consider the following fourth-order method for solving an initial-value problem.
The first step is to calculate the starting values wg, w1, we, and ws for the explicit
Adams-Bashforth Four-Step method. To do this, we use a fourth-order one-step
method, specifically, the Runge-Kutta method of order 4. The next step is to calcu-
late an approximation, wflo), to y(t4) using the explicit Adams-Bashforth Four-Step
method as predictor:

wi = ws + %[55f(ts,w3) — 59 (t2, wa) + 37 (t1, w1) — 9f (to, wo)]-

EXAMPLE 2

244CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

This approximation is improved by use of the implicit Adams-Moulton Three-Step
method as corrector:

w) = 1wy + % [9f(t4,w§10)) +19f (t3,w3) — 5 (t2, wa) + f(t1,w1)].

The value wy = wfll) is now used as the approximation to y(t4). Then the tech-
nique of using the Adams-Bashforth method as a predictor and the Adams-Moulton
method as a corrector is repeated to find wéo) and wél), the initial and final ap-
proximations to y(t5). This process is continued until we obtain an approximation

to y(tn) = y(b).

The program PRCORMS53 is based on the Adams-Bashforth Four-Step method
as predictor and one iteration of the Adams-Moulton Three-Step method as cor-
rector, with the starting values obtained from the Runge-Kutta method of order
4.

Table 5.10 lists the results obtained by using the program PRCORMS53 for the
initial-value problem

y =y—t>+1, for0<t<2 withy(0)=0.5,

with N = 10. O

Table 5.10

Error

t yi = y(ti) wy lyi — w
0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 21272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013

Other multistep methods can be derived using integration of interpolating poly-
nomials over intervals of the form [t;,¢;41] for j < i — 1, where some of the data
points are omitted. Milne’s method is an explicit technique that results when a New-
ton Backward-Difference interpolating polynomial is integrated over [t;_s5,%;11].

5.4. PREDICTOR-CORRECTOR METHODS 245

[Milne’s Method]

4h
Wiyl = Wi—3 + ?[2f(ti7 w;) — f(tic1, wiz1) + 2f(ti—2, wi—2)],
where i = 3,4,...,N — 1, with local error 2%y (u;) for some p; in
(ti—3,tig1).

This method is used as a predictor for an implicit method called Simpson’s
method. Its name comes from the fact that it can be derived using Simpson’s rule
for approximating integrals.

[Simpson’s Method]

h
Wig1 = Wi—1 + g[f(ti+1,wi+1) +A4f(ts, wi) + f(tim1, wiz1)],

where i = 1,2,...,N — 1, with local error —%lﬁy(‘r’)(ui) for some p; in
(ti-1,tiv1)-

Although the local error involved with a predictor-corrector method of the
Milne-Simpson type is generally smaller than that of the Adams-Bashforth-Moulton
method, the technique has limited use because of round-off error problems, which
do not occur with the Adams procedure.

The Adams-Bashforth Four-Step Explicit method is available in Maple using
dsolve with the numeric and classical options. Enter the command

>eq:= D(y) (t)=y(t)-t~2+1;

to define the differential equation, and specify the initial condition with

>init:= y(0)=0.5;

The Adams-Bashforth method is activated with the command
>g:=dsolve({eq,init},numeric,method=classical [adambash],y(t),stepsize=0.2);

To approximate y(t) using g(t) at specific values of ¢, for example at ¢ = 2.0, enter
the command

>g(2.0);

In a similar manner, the predictor-corrector method using the Adams-Bashforth
Four-Step Explicit method with the Adams-Moulton Three-Step Implicit method
is called using

>g:=dsolve({eq,init},numeric,method=classical [abmoulton],y(t),stepsize=0.2);

246CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXERCISE SET 5.4

1. Use all the Adams-Bashforth methods to approximate the solutions to the
following initial-value problems. In each case use exact starting values and
compare the results to the actual values.

(a) v = tedt -2y, for 0 <t <1, with y(0) =0 and h = 0.2; actual solution
— lpeBt _ L3t | 1 "y
= 5756 25 + 35”7

(b) v = 1+ (t —y)? for 2 < ¢t < 3, with y(2) = 1 and h = 0.2; actual
solution y(t) =t + 1/(1 —¢t).

(c)y =1+ %, for 1 <t¢ <2, with y(1) = 2 and h = 0.2; actual solution
y(t) = tint + 2t.

(d) y' = cos2t + sin 3t, for 0 < t<1 With y(0) =1 and h = 0.2; actual
solution y(t) = % sin2t — & cos 3t + 3.

2. Use all the Adams-Moulton methods to approximate the solutions to the
Exercises 1(a), 1(c), and 1(d). In each case use exact starting values and
explicitly solve for w;41. Compare the results to the actual values.

3. Use each of the Adams-Bashforth methods to approximate the solutions to
the following initial-value problems. In each case use starting values obtained
from the Runge-Kutta method of order 4. Compare the results to the actual
values.

(a) o/ () for 1 <t < 2, with y(1) = 1 and h = 0.1; actual
solutlon y(t) —t/(1+111t)

2
(b) ¢ =1+ % + (%) ,for 1 <t <3, with y(1) =0 and h = 0.2; actual
solution y(t) = ttan(lnt).

(c) ¥ =—(y+1)(y+3), for 0 <t <2, with y(0) = =2 and h = 0.1; actual
solution y(t) = =3 +2/(1 + e~ 2).

(d) v = =5y +5t2 +2t, for 0 < ¢t < 1, with y(0) = 1/3 and h = 0.1; actual
solution y(t) = t? 4+ $e~°".

4. Use the predictor-corrector method based on the Adams-Bashforth Four-Step
method and the Adams-Moulton Three-Step method to approximate the so-
lutions to the initial-value problems in Exercise 1.

5. Use the predictor-corrector method based on the Adams-Bashforth Four-Step
method and the Adams-Moulton Three-Step method to approximate the so-
lutions to the initial-value problem in Exercise 3.

5.4. PREDICTOR-CORRECTOR METHODS 247

6. The initial-value problem

/

y =¢Y, for 0<t¢<0.20, withy(0)=1
has solution
y(t) =1—1In(1 — et).

Applying the Adams-Moulton Three-Step method to this problem is equiva-
lent to finding the fixed point w; 1 of

h
g(w) = w; + ﬂ[gew + 19eWi — HeWi-1 4 e’LUi—2].

(a) With h = 0.01, obtain w;; by functional iteration for ¢ = 2,...,19 us-
ing exact starting values wg, w1, and ws. At each step use w; to initially
approximate w;41.

(b) Will Newton’s method speed the convergence over functional iteration?
7. Use the Milne-Simpson Predictor-Corrector method to approximate the solu-
tions to the initial-value problems in Exercise 3.

8. Use the Milne-Simpson Predictor-Corrector method to approximate the solu-
tion to
y = -5y, for0<t<2 with y(0) =e,

with h = 0.1. Repeat the procedure with h = 0.05. Are the answers consistent
with the local error?

248CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

5.5 Extrapolation Methods

Extrapolation was used in Section 4.5 for the approximation of definite integrals,
where we found that by correctly averaging relatively inaccurate trapezoidal ap-
proximations we could produce new approximations that are exceedingly accurate.
In this section we will apply extrapolation to increase the accuracy of approxi-
mations to the solution of initial-value problems. As we have previously seen, the
original approximations must have an error expansion of a specific form for the
procedure to be successful.

To apply extrapolation to solve initial-value problems, we use a technique based
on the Midpoint method:

Wil = Wi—1 + th(ti, wi), for i > 1. (51)

This technique requires two starting values, since both wy and w; are needed before
the first midpoint approximation, ws, can be determined. As usual, we use the initial
condition for wy = y(a) = a. To determine the second starting value, wy, we apply
Euler’s method. Subsequent approximations are obtained from Eq. (5.1). After a
series of approximations of this type are generated ending at a value ¢, an endpoint
correction is performed that involves the final two midpoint approximations. This
produces an approximation w(t, h) to y(t) that has the form

y(t) = w(t,h) + i Sph?k, (5.2)
k=1

where the J; are constants related to the derivatives of the solution y(t). The
important point is that the d; do not depend on the step size h.
To illustrate the extrapolation technique for solving

y'(t) = f(t,y), fora<t<b, withy(a)=a,

let us assume that we have a fixed step size h and that we wish to approximate
y(a+h).

As the first step we let hy = h/2 and use Euler’s method with wy = « to
approximate y(a + ho) = y(a + h/2) as

w1 = wo + ho f(a,w).

We then apply the Midpoint method with ¢;_1 = a and t; = a+ hg = a+ h/2 to
produce a first approximation to y(a + h) = y(a + 2hg),

wo = wo + 2ho f(a + ho,wr).

The endpoint correction is applied to obtain the final approximation to y(a + h)
for the step size hg. This results in an O(h3) approximation to y(t1) given by

1
Y1,1 = 5[102 +wp + hof(a + 2hy, wg)]

5.5. EXTRAPOLATION METHODS 249

We save the first approximation y; 1 to y(t1) and discard the intermediate results,
wi and wa.

To obtain a second approximation, y2 1, to y(t1), we let hy = h/4 and use Euler’s
method with wy = « to obtain an approximation w; to y(a + hy) = y(a + h/4);
that is,

w1 = wo + h1 f(a, wo).
Next we produce an approximation ws to y(a + 2hy) = y(a + h/2) and ws to
y(a+ 3h1) = y(a + 3h/4) given by

wy =wo + 2h1 f(a+ hi,wy) and w3z = wy + 2hy fa + 2hy, we).
Then we produce the approximation wy to y(a + 4hy) = y(t1) given by
wy = wa + 2hy f(a + 3hy,ws).

The endpoint correction is now applied to ws and w4 to produce the improved
O(h?) approximation to y(t1),

1
Y2,1 = 5[1114 + ws + h1f(a + 4hyq, w4)]

Because of the form of the error given in Eq. (5.2), the two approximations to
y(a + h) have the property that

R\ > * h2 4
yla+h)=yi+d|5) +d|5) + =y +6—F +d—+
2 2 4 1
and
R\ R* h2 4
y(a+h):y271+5l (Z) +52<Z> +---:y2,1+611—6+62%+---.

We can eliminate the O(h?) portion of this truncation error by averaging these two
formulas appropriately. Specifically, if we subtract the first from 4 times the second
and divide the result by 3, we have

4

1 h
h p— — — —_— 6 E— ...
yla+h)=y21+ 3(y2,1 Y1) 257 +

So the approximation to y(¢1) given by
1

3(2/2,1 - y1,1)

Y2,2 = Y2,1 +
has error of order O(h%).

Continuing in this manner, we next let ho = h/6 and apply Euler’s method once,
followed by the Midpoint method five times. Then we use the endpoint correction
to determine the h? approximation, ys 1, to y(a + h) = y(t1). This approximation
can be averaged with ys ; to produce a second O(h*) approximation that we denote

250CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

y3.2. Then y3 2 and ya 2 are averaged to eliminate the O(h*) error terms and produce
an approximation with error of order O(h%). Higher-order formulas are generated
by continuing the process.

The only significant difference between the extrapolation performed here and
that used for Romberg integration in Section 4.4 results from the way the subdivi-
sions are chosen. In Romberg integration there is a convenient formula for represent-
ing the Composite Trapezoidal rule approximations that uses consecutive divisions
of the step size by the integers 1, 2, 4, 8, 16, 32, 64,.... This procedure permits
the averaging process to proceed in an easily followed manner. We do not have
a means for easily producing refined approximations for initial-value problems, so
the divisions for the extrapolation technique are chosen to minimize the number of
required function evaluations. The averaging procedure arising from this choice of
subdivision is not as elementary, but, other than that, the process is the same as
that used for Romberg integration.

The program EXTRAP54 uses the extrapolation technique with the sequence
of integers qo — Q,Q1 = 4,QQ = 6,(]3 = 8,(]4 = 12,(]5 = 16,q6 = 24,Q7 = 32. A
basic step size, h, is selected, and the method progresses by using h; = h/qg;, for
each j =0,...,7, to approximate y(t+ h). The error is controlled by requiring that
the approximations y11,¥2.2,... be computed until |y; ; — y;—1,-1/] is less than a
given tolerance. If the tolerance is not achieved by ¢ = 8, then A is reduced, and
the process is reapplied. Minimum and maximum values of h, hmin, and hmax,
respectively, are specified in the program to ensure control over the method.

If y; ; is found to be acceptable, then wy is set to y; ;, and computations begin
again to determine ws, which will approximate y(t2) = y(a + 2h). The process is
repeated until the approximation wy to y(b) is determined.

EXAMPLE 1 Consider the initial-value problem
y =y—t*+1, for0<t<2 with y(0) = 0.5,

which has solution y(t) = (t+ 1) —0.5¢'. The program EXTRAP54 applied to this
problem with A = 0.25, TOL = 10~'°, hmax = 0.25, and hmin = 0.01 gives the
values in Table 5.11 as approximations to y(0.25). O

Table 5.11

y1,1 = 0.9187011719

y2,1 = 0.9200379848 y3 o = 0.9204835892

y3,1 = 0.9202873689 y3.2 = 0.9204868761 ys3 3 = 0.9204872870

ya,1 = 0.9203747896 y4,0 = 0.9204871876 y4,3 = 0.9204872914 y44 = 0.9204872917

Ys,1 = 0.9204372763 y5.0 = 0.9204872656 y53 = 0.9204872916 y5 4 = 0.9204872917 ys5 5 = 0.9204872

We will also compute y1,1, y2.1, and ys 2 in Table 5.11 using Maple. Define f(t, y)
with the command

5.5. EXTRAPOLATION METHODS 251

>fi=(t,y)->y-t"2+1;

The variables a, b, a;, and h are defined by
>a:=0; b:=2; alpha:=0.5; h:=0.25;
and ty = t0 and wg = w0 are initialized by
>t0:=a; wlO:=alpha;

We use Euler’s method with hg = h0 = h/2 = 0.125 to obtain w; = wl as 0.6875
with

>h0:=h/2;

>wl:=w0+hO0xf (t0,w0) ;

We then use the Midpoint method to obtain we = w2 as 0.91796875 with
>t :=t0+h0;

>w2:=w0+2xh0*f (t,wl);

>t :=t0+2*h0;

The endpoint correction gives y; 1 = y11 = 0.9187011719 with
>y11:=(w2+wl+h0*f (t,w2))/2;

We then proceed to the next iteration, defining

>hil:=h/4;

and using Euler’s method

>wl:=w0+h1xf (t0,w0) ;

>t:=t0+h1;

to give w; = 0.59375. We then use the Midpoint method three times to obtain
>w2:=w0+2xh1*xf (t,wl); t:=t0+2*hi;

>w3:=wl+2*xhl1*f (t,w2); t:=t0+3%*hil;

>wh:=w2+2*xh1*xf (t,w3); t:=t0+4x*hi;

which produces we = 0.6987304688, w3 = 0.8041381836, and w4 = 0.9198532106.
We have w2 ~ y(0.125), w3 ~ y(0.1875), and w4 =~ y(0.25), and we use the
endpoint correction to obtain ¥, ; = y21 = 0.920037985 from

>y21:=(wh+w3+h1xf (t,wd))/2;

252CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Extrapolation gives the entry ys o = y22 = 0.9204835891 with the command
>y22:=y21+(h/4) ~2*(y21-y11) / ((h/2) "2-(h/4)"2);

The computations stopped with wy = ys55 because |ys5 — ya4| < 10719 and
Y55 is accepted as the approximation to y(t1) = y(0.25). The complete set of
approximations accurate to the places listed is given in Table 5.12.

Table 5.12

t; yi = y(t:) wj h k
0.25 0.9204872917 0.9204872917 0.25 5
0.50 1.4256393646 1.4256393646 0.25 5
0.75 2.0039999917 2.0039999917 0.25 5
1.00 2.6408590858 2.6408590858 0.25 5
1.25 3.3173285213 3.3173285212 0.25 4
1.50 4.0091554648 4.0091554648 0.25 3
1.75 4.6851986620 4.6851986619 0.25 3
2.00 5.3054719505 5.3054719505 0.25 3

5.5. EXTRAPOLATION METHODS 253

EXERCISE SET 5.5

1. The initial-value problem

y =2 —y2e', for0<t<0.8, withy(0)=0

has actual solution y(t) = v/2sin(e? — 1). Use extrapolation with h = 0.1
to find an approximation for y(0.1) to within a tolerance of TOL = 107°.
Compare the approximation to the actual value.

2. The initial-value problem
y’:—y—i—l—%, for 1 <t <2, withy(l)=1

has actual solution y(t) = 1 + (e!=% — 1)/t. Use extrapolation with h = 0.2
to find an approximation for y(1.2) to within a tolerance of TOL = 0.00005.
Compare the approximation to the actual value.

3. Use the extrapolation program EXTRAP54 with TOL = 10~* to approximate
the solutions to the following initial-value problems:

2

(a) ¢ = (%) + (%), for 1<t <1.2, with y(1) =1, hmaz = 0.05, and
hmin = 0.02.

(b) v/ = sint + et for 0 <t <1, with y(0) =0, hmar = 0.25, and
hmin = 0.02.

(c) y = (y> +y)t ! for 1 <t <3, with y(1) = —2, hmaz = 0.5, and
hmin = 0.02.

(d) v/ = —ty +4ty~!, for 0 <t <1, with y(0) = 1, hmaz = 0.25, and
hmin = 0.02.

4. Use the extrapolation program EXTRAP54 with tolerance TOL = 1075,
hmax = 0.5, and hmin = 0.05 to approximate the solutions to the following
initial-value problems. Compare the results to the actual values.

2
(a) ¢/ = L %, for 1 <t <4, with y(1) = 1; actual solution y(t) =

t
t/(1+Int).

2
(b) v =1+ % + (%) ,for 1 <t <3, with y(1) = 0; actual solution
y(t) = ttan(Int).

(¢) v =—=(y+1)(y+3), for 0<t<3, with y(0) =—2; actual solution

)
y(t) = =3 +2(1 +e %)L
(d) y

"= (t+2t%)y® —ty, for 0 <t <2, with y(0) = &; actual solution
y(t) = (3+ 22 + 6¢t”)~1/2,

254CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

5. Let P(t) be the number of individuals in a population at time ¢, measured
in years. If the average birth rate b is constant and the average death rate d
is proportional to the size of the population (due to overcrowding), then the
growth rate of the population is given by the logistic equation

dP(t
PO _ b - kP2
dt
where d = kP(t). Suppose P(0) = 50,976,b =2.9x 1072, and k = 1.4 x 10~ ".
Find the population after 5 years.

5.6. ADAPTIVE TECHNIQUES 255

5.6 Adaptive Techniques

The appropriate use of varying step size was seen in Section 4.6 to produce integral
approximating methods that are efficient in the amount of computation required.
This might not be sufficient to favor these methods due to the increased compli-
cation of applying them, but they have another important feature. The step-size
selection procedure produces an estimate of the local error that does not require
the approximation of the higher derivatives of the function. These methods are
called adaptive because they adapt the number and position of the nodes used in
the approximation to keep the local error within a specified bound.

There is a close connection between the problem of approximating the value of a
definite integral and that of approximating the solution to an initial-value problem.
It is not surprising, then, that there are adaptive methods for approximating the
solutions to initial-value problems, and that these methods are not only efficient
but incorporate the control of error.

Any one-step method for approximating the solution, y(¢), of the initial-value
problem

y' = f(t,y), fora<t<b, withy(a)=a

can be expressed in the form
Wit1 :wi—I—hiqﬁ(ti,wi,hi), fori=0,1,...,N —1,

for some function ¢.

An ideal difference-equation method, would have the property that given a tol-
erance £ > 0, the minimal number of mesh points would be used to ensure that
the global error, |y(t;) — w;|, would not exceed € for any ¢ = 0,1,..., N. Having
a minimal number of mesh points and also controlling the global error of a differ-
ence method is, not surprisingly, inconsistent with the points being equally spaced
in the interval. In this section we examine techniques used to control the error of
a difference-equation method in an efficient manner by the appropriate choice of
mesh points.

Although we cannot generally determine the global error of a method, we saw
in Section 5.2 that there is often a close connection between the local error and
the global error. If a method has local error O(h"T1), then the global error of the
method is O(h™). By using methods of differing order we can predict the local error
and, using this prediction, choose a step size that will keep the global error in check.

To illustrate the technique, suppose that we have two approximation techniques.
The first is an nth-order method obtained from an nth-order Taylor method of the
form

y(tiyr) = y(t:) + h(ti, y(t:), h) + O(h™).
This method produces approximations
wyg = «
Wit1 = wW;+ hgf)(tz, Wi, h) for > 0,

256 CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

which satisfy, for some K and all relevant h and 1,
ly(ti) —wi| < Kh™.

In general, the method is generated by applying a Runge-Kutta modification to the
Taylor method, but the specific derivation is unimportant.

The second method is similar but of higher order. For example, let us suppose
it comes from an (n + 1)st-order Taylor method of the form

Y(tir1) = y(ts) + hd(ti, y(t:), h) + O(R"2),
producing approximations

Wy = «
Wip1 = W; +hd(ty,ws,h) for i>0,
which satisfy, for some K and all relevant h and i,
ly(t;) — ;| < K",
We assume now that at the point ¢; we have
w; = W; = z(t;),
where z(t) is the solution to the differential equation that does not satisfy the

original initial condition but instead satisfies the condition z(¢;) = w;. The typical
difference between y(t) and z(t) is shown in Figure 5.3.

Figure 5.3

y(ti+1) N

2t 41)
Z(t;) 1

Q
_l—"
o+
T
X

R

5.6. ADAPTIVE TECHNIQUES 257

Applying the two methods to the differential equation with the fixed step size
h produces two approximations, w;4+1 and w;y1, whose differences from y(t; + h)
represent global errors but whose differences from z(¢; + h) represent local errors.
Now consider

2(ti + h) — wip1 = (Wig1 — wip1) + (2(ti + h) — Wiq1).

The term on the left side of this equation is O(h"™*!), the local error of the nth
order method, but the second term on the right side is O(h""2), the local error of
the (n + 1)st order method. This implies that the dominant portion on the right
side comes from the first term; that is,

Z(ti + h) — wi+1 ~ wi+1 — wiJrl — O(h,”+1)_
So, a constant K exists with

KR = |a(ti + h) = wisa| & [@ig1 — wigal,

and K can be approximated by

[Wir1 — wit1]
K e R (5.3)

Let us now return to the global error associated with the problem we really

want to solve,
y' = f(t,y), fora<t<b, withy(a)=a,

and consider the adjustment to the step size needed if this global error is expected
to be bounded by the tolerance ¢ . Using a multiple ¢ of the original step size implies
that we need to ensure that

ly(t; + gh) — w;+1(using the new step size gh)| < K(gh)" < ¢.

This implies, from Eq. (5.3), that for the approximations w;+, and w;41 using the
original step size h we have
q"|[Wit1 — Wiy

q"h" = — <e

[W41 — wit1]

nin
Kq"h" =~ RS

Solving this inequality for ¢ tells us how we should choose the new step size, ¢h, to
ensure that the global error is within the bound ¢ :

_ |: ch :|1/n
q T —
|wi+1 —w¢+1|

One popular technique that uses this inequality for error control is the Runge-
Kutta-Fehlberg method. It uses a Runge-Kutta method of order 5,

B e A8 6636 28561
T 35 T 1982578

9 2
56130 ~ 507 t 55k

258 CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

to estimate the local error in a Runge-Kutta method of order 4,

25 1408 2197 1
Wi+1 _wz+%k1+_2565k3 4104]94—3]65,

where the coefficient equations are

kv = hf(ts,w),

ko = hf(tiﬁ—%,wi-#ikl)’

ks hf@+%%m+%h+%b»

ke = hj‘<ti+-%§?,uu-+ ;?33 1";iggk2*‘;iz$ 3)’

ke = hf(tiJFgwi_%lir%Q_%kBJr%4_111_(1)]65)'

An advantage of this method is that only six evaluations of f are required per
step, whereas arbitrary Runge-Kutta methods of order 4 and 5 used together would
require (see Table 5.7) at least four evaluations of f for the fourth-order method
and an additional six for the fifth-order method.

In the theory of error control, an initial value of h at the ith step was used to
find the first values of w; 1 and w; 1, which led to the determination of ¢ for that
step. Then the calculations were repeated with the step size h replaced by gh. This
procedure requires twice the number of functional evaluations per step as without
error control. In practice, the value of ¢ to be used is chosen somewhat differently
in order to make the increased functional-evaluation cost worthwhile. The value of
q determined at the ith step is used for two purposes:

e When g < 1, to reject the initial choice of h at the ith step and repeat the
calculations using gh, and

e When ¢ > 1, to accept the computed value at the ith step using the step size
h and to change the step size to ¢gh for the (i + 1)st step.

Because of the penalty in terms of functional evaluations that must be paid
if many steps are repeated, g tends to be chosen conservatively. In fact, for the
Runge-Kutta-Fehlberg method with n = 4, the usual choice is

h 1/4 h 1/4
= <5) ~0.84 <€> :
2\wi+1 — wi+1| |wi+1 - wi+1|

The program RKFVSM55, which implements the Runge-Kutta-Fehlberg method,
incorporates a technique to eliminate large modifications in step size. This is done

EXAMPLE 1

5.6. ADAPTIVE TECHNIQUES 259

to avoid spending too much time with very small step sizes in regions with irreg-
ularities in the derivatives of y, and to avoid large step sizes, which may result in
skipping sensitive regions nearby. In some instances the step-size-increase proce-
dure is omitted completely and the step-size-decrease procedure is modified to be
incorporated only when needed to bring the error under control.

The Runge-Kutta-Fehlberg method will be used to approximate the solution to the
initial-value problem

Yy =y—t>+1, for0<t<2 withy(0) =05,

which has solution y(t) = (t + 1)? — 0.5¢!. The input consists of tolerance, TOL =
107°, a maximum step size, hmaz = 0.25, and a minimum step size, hmin = 0.01.
The results from the program RKFVSM55 are shown in Table 5.13. The column
labelled g; in this table shows the step-size multiplier at each step. Notice that this
multiplier has no effect when the step size reaches 0.25, the maximum permissible
step size, nor at the final step when the step size has been adjusted to determine

an approximation at 2, the right endpoint. O
Table 5.13
ti yi = y(t:) w; h; 4 lyi — w
0.0000000 0.5000000 0.5000000 0 0 0.0000000

0.2500000 0.9204873 0.9204886 0.2500000 0.9462099 0.0000013
0.4865522 1.3964884 1.3964910 0.2365522 1.0263307 0.0000026
0.7293332 1.9537446 1.9537488 0.2427810 1.0390018 0.0000042
0.9793332 2.5864198 2.5864260 0.2500000 1.0716655 0.0000062
1.2293332 3.2604520 3.2604605 0.2500000 1.1954111 0.0000085
1.4793332 3.9520844 3.9520955 0.2500000 1.6205073 0.0000111
1.7293332 4.6308127 4.6308268 0.2500000 1.3538945 0.0000141
1.9793332 5.2574687 5.2574861 0.2500000 1.0366443 0.0000173
2.0000000 5.3054720 5.3054896 0.0206668 0.0000177

An implementation of the Runge-Kutta-Fehlberg method is available in Maple
using the dsolve command with the numeric option. Consider the initial value
problem of Example 1. The command

>g:=dsolve ({D(y) (t)=y(t)-t*t+1,y(0)=0.5},y(t) ,numeric);

uses the Runge-Kutta-Fehlberg method. We can approximate y(2) in our example
by using

>g(2.0);

260CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

which gives
[t =2.0,y(t) = 5.30547195840019459]

The Runge-Kutta-Fehlberg method is popular for error control because at each
step it provides, at little additional cost, two approximations that can be com-
pared and related to the local error. Predictor-corrector techniques always generate
two approximations at each step, so they are natural candidates for error-control
adaptation.

To demonstrate the procedure, we construct a variable-step-size predictor-corrector
method using the explicit Adams-Bashforth Four-Step method as predictor and the
implicit Adams-Moulton Three-Step method as corrector.

The Adams-Bashforth Four-Step method comes from the equation

h
ytivr) = y(ti) + 5, [55f (ti,y(t:)) — 59f (timay(ti-1))
251 .
+37f (ti—2, y(tiz2)) — 9f (tizs, y(tiz))]+_?§6 Y (fu)h®
for some p; in (¢;_3,t;11). Suppose we assume that the approximations wg, wy, . .., w;

are all exact and, as in the case of the one-step methods, we let z represent the
solution to the differential equation satisfying the initial condition z(¢;) = w;. Then

0 251
2(tin) —wify = =52

A similar analysis of the Adams-Moulton Three-Step method leads to the local
error

(ﬂz)hE’ fOI‘ some ﬂz in (ti_g,ti). (54)

19 _ i
2(tig1) — wip1 = 7%2(5) (f1)h° for some fi; in (t;_o,tis1). (5.5)

To proceed further, we must make the assumption that for small values of h,
2O () = 20),

and the effectiveness of the error-control technique depends directly on this assump-
tion.
If we subtract Eq. (5.5) from Eq. (5.4), and assume that 2®)(j1;) ~ 2®)(ji;), we
have 5
3 _
i —wih = 75 (25127 () + 1920 ()] & 21720 (o),
SO

. 8 0
2% (f1i) = 305 (w2+1 z(-i-)l) .
Using this result to eliminate the term involving h°z®)(fi;) from Eq. (5.5) gives
the approximation to the error

0
19h° i, L 19w - w |
720 35T Wil = 270 '

This expression was derived under the assumption that wg,wq,...,w; are the
exact values of y(tg),y(t1), ..., y(t;), respectively, which means that this is an ap-

proximation to the local error. As in the case of the one-step methods, the global

|2(tig1) — wiy1| =

5.6. ADAPTIVE TECHNIQUES 261

error is of order one degree less, so for the function y that is the solution to the
original initial-value problem,

y = f(t,y), for a<t<b, withy(a)=a,
the global error can be estimated by

(0)
|mtﬂ_w,ﬂwk@ﬂfﬂmﬂzlﬂwﬂfwwl
o * h 270h

Suppose we now reconsider the situation with a new step size gh generating new
approximations wﬁ’l and w;41. To control the global error to within e, we want to

choose ¢ so that

|z(t; + gh) — ;41 (using the step size gh)]

an < €.
But from Eq. (5.5),
|2(t; + gh) — Wit1(using gh)| 19 ’ Gy apa ., 19 8 0) | 474
ah = 70 [B0~ oo | sl —wiy || 'Y

so we need to choose ¢ with

10 Ju —)],

19 8 (0)
{ 270 R 4

% %|wi+l wi+1|:| q4h4 =

Consequently, we need the change in step size from h to gh, where ¢ satisfies

1/4 1/4
e
19 |wi+1 - w§3)1| |wi+1 - w£3)1|

A number of approximation assumptions have been made in this development,
so in practice g is chosen conservatively, usually as

A 1/4
a2)
|wis1 —wiy) |

A change in step size for a multistep method is more costly in terms of functional
evaluations than for a one-step method, since new equally-spaced starting values
must be computed. As a consequence, it is also common practice to ignore the
step-size change whenever the global error is between £/10 and e; that is, when

(0)

€
— < |y(tit1) — wiy1| = wit1 —wi | < e

10 270h

In addition, ¢ is generally given an upper bound to ensure that a single unusu-
ally accurate approximation does not result in too large a step size. The program

EXAMPLE 2

262CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

VPRCORD56 incorporates this safeguard with an upper bound of four times the
previous step size.

It should be emphasized that since the multistep methods require equal step
sizes for the starting values, any change in step size necessitates recalculating new
starting values at that point. In the program VPRCORS56, this is done by incorpo-
rating RKO4Mb3, the Runge-Kutta method of order 4, as a subroutine.

Table 5.14 lists the results obtained using the program VPRCORS56 to find approx-
imations to the solution of the initial-value problem

y =y—t>+1, for0<t<2 withy(0)=0.5,

which has solution y(t) = (¢t + 1)* — 0.5¢!. Included in the input is the tolerance,
TOL = 107°, maximum step size, hmax = 0.25, and minimum step size, hmin =
0.01. In the fifth column of the table we list the estimate to the error,

19
g; = W w; — ’U)Z(O)‘ ~ |y(ti) — wz\
O
Table 5.14

ti yi = y(t:) w; h; g lyi — wi
0.1257017 0.7002323 0.7002318 0.1257017 4.051 x 10=% 0.0000005
0.2514033 0.9230960 0.9230949 0.1257017 4.051 x 10=% 0.0000011
0.3771050 1.1673894 1.1673877 0.1257017 4.051 x 1075 0.0000017
0.5028066 1.4317502 1.4317480 0.1257017 4.051 x 10=% 0.0000022
0.6285083 1.7146334 1.7146306 0.1257017 4.610 x 10=% 0.0000028
0.7542100 2.0142869 2.0142834 0.1257017 5.210 x 10=% 0.0000035
0.8799116 2.3287244 2.3287200 0.1257017 5.913 x 10~% 0.0000043
1.0056133 2.6556930 2.6556877 0.1257017 6.706 x 107 0.0000054
1.1313149 2.9926385 2.9926319 0.1257017 7.604 x 10~ 0.0000066
1.2570166 3.3366642 3.3366562 0.1257017 8.622 x 10~ 0.0000080
1.3827183 3.6844857 3.6844761 0.1257017 9.777 x 10~ 0.0000097
1.4857283 3.9697541 3.9697433 0.1030100 7.029 x 10~ 0.0000108
1.5887383 4.2527830 4.2527711 0.1030100 7.029 x 10~ 0.0000120
1.6917483 4.5310269 4.5310137 0.1030100 7.029 x 10~ 0.0000133
1.7947583 4.8016639 4.8016488 0.1030100 7.029 x 10=6 0.0000151
1.8977683 5.0615660 5.0615488 0.1030100 7.760 x 10~ 0.0000172
1.9233262 5.1239941 5.1239764 0.0255579 3.918 x 10~% 0.0000177
1.9488841 5.1854932 5.1854751 0.0255579 3.918 x 10~% 0.0000181
1.9744421 5.2460056 5.2459870 0.0255579 3.918 x 10~% 0.0000186
2.0000000 5.3054720 5.3054529 0.0255579 3.918 x 10~ 0.0000191

5.6. ADAPTIVE TECHNIQUES 263

EXERCISE SET 5.6

1. The initial-value problem

Yy =+2—y2e', for0<t<08, withy(0)=0
has actual solution y(t) = v/2sin(e’ — 1).

(a) Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10~% to
find wy. Compare the approximate solution to the actual solution.

(b) Use the Adams Variable-Step-Size Predictor-Corrector method with tol-
erance TOL = 10~* and starting values from the Runge-Kutta method
of order 4 to find wy. Compare the approximate solution to the actual
solution.

2. The initial-value problem
y':—y—l—l—%, for 1 <t<2, withy(l)=1

has actual solution y(t) = 1+ (e!=t — 1)¢t~1,

(a) Use the Runge-Kutta-Fehlberg method with tolerance TOL = 1073
to find w; and wy. Compare the approximate solutions to the actual
solution.

(b) Use the Adams Variable-Step-Size Predictor-Corrector method with tol-
erance T'OL = 0.002 and starting values from the Runge-Kutta method
of order 4 to find wy and ws. Compare the approximate solutions to the
actual solution.

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10~* to ap-
proximate the solution to the following initial-value problems.

2

@y = () + % for 1<t< 12 with y(1) = 1, hmaz = 0.05, and
hmin = 0.02.

(b) v/ = sint +et, for 0 <t <1, with y(0) = 0, hmaz = 0.25, and
hmin = 0.02.

() y = (y?> +y)t—t for 1 <t <3, with y(1) = —2, hmaz = 0.5, and
hmin = 0.02.

(d) ¥ = —ty+4ty~!, for 0 <t < 1, with y(0) = 1, hmaz = 0.2, and
hmin = 0.01.

4. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 1075, hmaz =
0.5, and hmin = 0.05 to approximate the solutions to the following initial-
value problems. Compare the results to the actual values.

264CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

2
(a) ¢y = L :g—Q, for 1 <t <4, with y(1) = 1; actual solution y(t) =

t
t/(1+1nt).

2
(b) vy =1+ % + (%) ,for 1 <t <3, with y(1) = 0; actual solution
y(t) = ttan(Int).

(c)

Yy =—(y+1)(y+3), for 0<t<3, with y(0) =—2; actual solution
y(t) = =3+ 2(1 4+ e)7L,
(d) y

"= (t+2%)y® —ty, for 0 <t <2, with y(0) = %; actual solution
y(t) = (3+ 20 + 6et”) 1/,

5. Use the Adams Variable-Step-Size Predictor-Corrector method with TOL =
10~* to approximate the solutions to the initial-value problems in Exercise 3.

6. Use the Adams Variable-Step-Size Predictor-Corrector method with tolerance
TOL = 107%, hmaz = 0.5, and hmin = 0.02 to approximate the solutions to
the initial-value problems in Exercise 4.

7. An electrical circuit consists of a capacitor of constant capacitance C' = 1.1
farads in series with a resistor of constant resistance Ry = 2.1 ohms. A voltage
E(t) = 110sint is applied at time ¢ = 0. When the resistor heats up, the
resistance becomes a function of the current 7,

R(t) = Ry + ki, where k=0.9,

and the differential equation for 7 becomes

1+%i ﬂ+—1 i——l e
dt = RoC"~ RyC dt’

Find the current i after 2 s, assuming (0) = 0.

5.7. METHODS FOR SYSTEMS OF EQUATIONS 265

5.7 Methods for Systems of Equations

The most common application of numerical methods for approximating the solu-
tion of initial-value problems concerns not a single problem, but a linked system of
differential equations. Why, then, have we spent the majority of this chapter con-
sidering the solution of a single equation? The answer is simple: to approximate the
solution of a system of initial-value problems, we successively apply the techniques
that we used to solve a single problem. As is so often the case in mathematics, the
key to the methods for systems can be found by examining the easier problem and
then logically modifying it to treat the more complicated situation.
An mth-order system of first-order initial-value problems has the form

du
d—tl = fl(t,ul,ug,...,um),
du
d—t2 = fg(t,ul,U2,...,um),
du
d:L - f'm(tauhu% ce 7um)a

for a <t < b, with the initial conditions
ui(a) = ar, wus(a) =ag, ..., up(a) = an.

The object is to find m functions uy, us, . . ., u,, that satisfy the system of differential
equations together with all the initial conditions.

Methods to solve systems of first-order differential equations are generalizations
of the methods for a single first-order equation presented earlier in this chapter.
For example, the classical Runge-Kutta method of order 4 given by

wo = «Q,

kl = hf(ti, wi),

h 1

ko = hf(ti t 3wt 2k1>,
h 1

ks = hf(h‘ +towit §7<72>,

ko= hf(tiz1,w; + ks),
and
1
Wil = W; + E[lﬁ + 2ko + 2k3 + k4],

for each ¢ = 0,1,..., N — 1, is used to solve the first-order initial-value problem

y' = f(t,y), fora<t<b, withy(a)=a.

266CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

It is generalized as follows.
Let an integer N > 0 be chosen and set h = (b — a)/N. Partition the interval
[a,b] into N subintervals with the mesh points

tj =a+ jh foreachj=0,1,...,N.

M

Use the notation w;; for each j = 0,1,...,N and i = 1,2,...,m to denote
an approximation to w;(t;); that is,w;; approximates the ith solution w;(t) of the
system at the jth mesh point ¢;. For the initial conditions, set

wi,0 = Q1, wa,0 = (2, ceey Wm,0 = Qm.-

Figure 5.4 gives an illustration of this notation.

Figure 5.4

YA Y Y
u,(a) =
WM 4 o WZa 4 Ua(t) Wa + @) = a .
wi; I ‘. 2T ‘ 2 *)
"\ul(a) = ul(t) Way + [W + °
TN
U(a) =
—t——+— ———+— —t——+—
a= to tl t2 t3 t a= to tl t2 t3 t a= to tl t2 t3 t

Suppose that the values wq ;,ws ;,...,w,, ; have been computed. We obtain
g0 W25 J
W1 41, W2,541, - - - W, j+1 by first calculating, for each i = 1,2,...,m,
kvi = hfi(tj,wij, w24, W),

and then finding, for each 1,

h
ko = h; (tj +3

1 1 1
Wi+ Sk, W+ Sk, W §k1,m> :

We next determine all the terms

h 1 1 1
k3= hf; <fj + 57 WL + 5152,177172,]’ + 51432,2, ey Wi j T+ 2k2,m>

and, finally, calculate all the terms
kag = hfi(tj + h,wrj + ksa,waj+ kso, o Wi + ksm).-

Combining these values gives

1
Wi j1 = Wi+ g[kl,i + 2ko; + 2k3 i + ka i

EXAMPLE 1

5.7. METHODS FOR SYSTEMS OF EQUATIONS 267

for each i =1,2,...m.

Note that all the values k1, k12, ..., k1 ,» must be computed before any of the
terms of the form ks ; can be determined. In general, each k; 1,k; 2, .. ., k., must be
computed before any of the expressions k;; ;. The program RKO4SY57 implements
the Runge-Kutta method of order four for systems of differential equations.

Kirchhoff’s Law states that the sum of all instantaneous voltage changes around
a closed electrical circuit is zero. This implies that the current, I(¢), in a closed
circuit containing a resistance of R ohms, a capacitance of C' farads, an inductance
of L henrys, and a voltage source of E(t) volts must satisfy the equation

LI'(t) + RI(t) + % /I(t) dt = E(t).

The currents I (t) and I5(¢) in the left and right loops, respectively, of the circuit
shown in Figure 5.5 are the solutions to the system of equations

20(t) + 6[11(t) — L(t)] + 2L (1) = 12,
o5 [B(t) db+ 4L + 6[L(t) — L()] = 0.
Figure 5.5
2 i1
<L MV AN
Vo L
1 2
12V — §6Q §4Q

Lo

Suppose that the switch in the circuit is closed at time ¢ = 0. This implies that
I,(0) and I5(0) = 0. Solve for I{(t) in the first equation, differentiate the second
equation, and substitute for I1(t) to get

I = fi(t,[,) = —41; + 31, +6, with I;(0) =0,

I, = fo(t,]1,Io) = 0.6I, — 0.2I, = —2.41 + 1.6I5 + 3.6, with I»(0) = 0.

The exact solution to this system is

Ii(t) = —3.375¢ % 4+ 1.875¢ %4 4 1.5,
L(t) = —2.25e 2" +2.25¢ 04,

268CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

We will apply the Runge-Kutta method of order four to this system with A = 0.1.
Since w1 9 = 11(0) = 0 and wq g = I3(0) =0,

kii = hfi(to, w10, wa) = 0.1 f1(0,0,0) = 0.1]—4(0) + 3(0) + 6] = 0.6,
k1o = hfa(to,wio,wao) = 0.1 f2(0,0,0) = 0.1[—2.4(0) + 1.6(0) + 3.6] = 0.36,
key = hfi (to + %h,wl,o + %kl,l,wg,o + %km) = 0.1 £1(0.05,0.3,0.18)
= 0.1]-4(0.3) 4 3(0.18) + 6] = 0.534,
kao = hfs <t0 + %mwl,o + %kLhwg,o + %km) = 0.1 £2(0.05,0.3,0.18)

= 0.1[—2.4(0.3) + 1.6(0.18) + 3.6] = 0.3168.
Generating the remaining entries in a similar manner produces

ks1 = (0.1)1(0.05,0.267,0.1584) = 0.54072,
ks = (0.1)£2(0.05,0.267,0.1584) = 0.321264,
ka1 = (0.1)£1(0.1,0.54072,0.321264) = 0.4800912,

and

ks = (0.1)£2(0.1,0.54072, 0.321264) = 0.28162944.

As a consequence,
I(0.1) xwy 1 =wi o+ %Uﬁ,l + 2k 1 + 2k31 + ka1]
=0+ é[O.G +2(0.534) + 2(0.54072) + 0.4800912] = 0.5382552
and

1
12(01) R w1 = Wa t E[kl"Q + 2]43272 + 2]63,2 -+ k4’2} = 0.3196263.

The remaining entries in Table 5.15 are generated in a similar manner. O
Table 5.15

t w1, wa,j 1(tj) —wiy| [L2(t)) — wa
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285 x 10~° 0.5803 x 10~°
0.2 0.9684983 0.5687817 0.1514 x 10~ 0.9596 x 10~°
0.3 1.310717 0.7607328 0.1907 x 10~* 0.1216 x 10~*
0.4 1.581263 0.9063208 0.2098 x 10~* 0.1311 x 10~*
0.5 1.793505 1.014402 0.2193 x 10~* 0.1240 x 10~

5.7. METHODS FOR SYSTEMS OF EQUATIONS 269

Maple’s command dsolve can be used to solve systems of first-order differential
equations. The system in Example 1 is defined with

>sys2:=D(ul) (t)=-4*ul(t)+3*u2(t)+6,D(u2) (t)=-2.4*ul(t)+1.6*%u2(t)+3.6;
and the initial conditions with

>init2:=u1(0)=0,u2(0)=0;

The system is solved with the command

>s0l12:=dsolve ({sys2,init2},{ul(t),u2(t)});

to obtain
sol2 := {u2(t) = %6(72/5 0 %6(72 O ul(t) = 1—856(*2/5 R 56(72 RIS 3}

To isolate the solution in function form, use

>ri1:=rhs(s0l2[2]);

e Doz 2T 20 3

8 8 2

and

>r2:=rhs(sol2[1]);

which gives a similar response. To evaluate u1(0.5) and u2(0.5), use
>evalf (subs(t=0.5,r1));evalf (subs(t=0.5,r2);

which gives u;1(0.5) = 1.793527048 and u2(0.5) = 1.014415451.

The command dsolve will fail if an explicit solution cannot be found. In that
case we can use the numeric option in dsolve. We can apply the Runge-Kutta
method for systems to the problem in Example 1 with the commands

>sys:=D(ul) (t)=-4*ul(t)+3*u2(t)+6,D(u2) (t)=-2.4*ul (t)+1.6*u2(t)+3.6;
>init:=ul(0)=0,u2(0)=0;

The procedure is called with
>g:=dsolve({sys,init},numeric, method=classical[rk4],
{u1l(t),u2(t)},stepsize=0.1);

To obtain approximations to u1(0.5) and u3(0.5) we use

>g(0.5);

270CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

which gives

u1(0.5) = 1.79350749012028298 and ws(t) = 1.01440241676988330.

We can also use the numeric option in dsolve to apply the Runge-Kutta-
Fehlberg technique. In fact, this is the standard numeric technique, so the command

>g:=dsolve({sys,init},numeric);
returns the procedure
g := proc(rkf}5_z)...end proc
To approximate the solutions at t = 0.5, enter
>g(0.5);
to obtain

up(t) = 1.79352716981717686 and wua(t) = 1.01441553295146902.

Many important physical problems—for example, electrical circuits and vibrat-
ing systems— involve initial-value problems whose equations have order higher than
1. New techniques are not required for solving these problems, since by relabeling
the variables we can reduce a higher-order differential equation into a system of
first-order differential equations and then apply one of the methods we have al-
ready discussed.

A general mth-order initial-value problem has the form

y M) = fltyy oy ™),
for a <t < b, with initial conditions
y(a) = a1,y (a) = as,...,y" D (a) = .
To convert this into a system of first-order differential equations, define
ui(t) = y(t), ua(t) = ¢/ (1), ... um(t) =y V().

Using this notation, we obtain the first-order system

duy dy
E = % = U2,
dus dy

E = E = us,

dum—l dy(m_Q)
= — u,n,“

dt dt

EXAMPLE 2

5.7. METHODS FOR SYSTEMS OF EQUATIONS 271

and

dtty, dy™=Y

dum _) _ / (m-1)y _
dt dt Yy f(t7y7y7"'7y) f(t,ul,uQ,...,um),

with initial conditions
ui(a) = y(a) = a1, uz(a) =y'(a) = az, ..., um(a) =y () = an.

Consider the second-order initial-value problem
y" =2y + 2y =e*sint, for0<t<1, withy(0)=-04 and 3 (0)= —0.6.

Let uy(t) = y(t) and us(t) = y'(¢t). This transforms the equation into the system

ui(t) = ua(t),
uh(t) = e*sint — 2u(t) + 2ua(t),

with initial conditions u;(0) = —0.4, and wus(0) = —0.6.

The Runge-Kutta fourth-order method will be used to approximate the solution
to this problem using h = 0.1. The initial conditions give w; o = —0.4 and wy o =
—0.6. The Runge-Kutta coefficient equations with j = 0 give

k11 = hfi(to, w10, w2,0) = hwa o = —0.06,
k12 = hfa(to, w10, w2,0) = hle* sinty — 2wy o + 2wa o] = —0.04,

h 1 1 1
ko1 = hfi (to + 50 W + §k1,1,w2,0 + §k‘1,2> = hlwag,0 + 576172] = —0.062,

h 1 1
koo = hfa (to + §,w1,0 + §k1,1, w0 + 57“31,2)

[5 1 1
—h 62(t0+0~00) sin(to + 005) —2 <U)1’0 + 2]61’1) + 2 <w270 + 2k172>:|
= —0.032476448,

[1
k31 =h w20+ 51@4 = —0.061628322,

[1 1
k3’2 =h 62(t0+0~05) SiIl(to + 005) —2 <U)170 + ikz’l) +2 <’LU2’0 + §k212>:|

= —0.031524092,
ka1 = hlwao + ks 2] = —0.063152409,

and

kao=h [e2<t0+0'1) sin(to + 0.1) — 2(wy o + k31) + 2(wa0 + k3 2)| = —0.021786373.

272CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

So
1
wi,1 = W10 + é(kl"l + 2]472_’1 + 2]433’1 +]{3471) = —0.46173334 and

1
wa 1 = Wz + 6(]411_’2 + 2]432,2 + 2]473,2 + k‘472) = —0.63163124.

The value w; ; approximates u1(0.1) = y(0.1) = 0.2¢2(*V(sin0.1 — 2cos0.1),
and w1 approximates uz(0.1) = 3/(0.1) = 0.2¢2(®"1)(4sin 0.1 — 3 cos 0.1).

The set of values wy ; and wsy ;, for j =0,1,...,10, obtained using the Runge-
Kutta method of order four, are presented in Table 5.16 and are compared to the
actual values of uj(t) = 0.2 (sint — 2cost) and ug(t) = wj(t) = 0.2¢* (4sint —

3cost). O
Table 5.16

ty y(ty) = uilty) Wy, y'(t5) = ua(t;) ws,j ly(t;) —wigl [y'(t;) — wal
0.0 —0.40000000 —0.40000000 —0.60000000 —0.60000000 0 0

0.1 —0.46173297 —0.46173334 —0.6316304 —0.63163124 3.7 x 1077 7.75 x 1077
0.2 —0.52555905 —0.52555988 —0.6401478 —0.64014895 8.3 x 10—~ 1.01 x 1076
0.3 —0.58860005 —0.58860144 —0.6136630 —0.61366381 1.39 x 107% 8.34 x 107"
0.4 —0.64661028 —0.64661231 —0.5365821 —0.53658203 2.03 x 1076 1.79 x 1077
0.5 —0.69356395 —0.69356666 —0.3887395 —0.38873810 2.71 x 1076 5.96 x 1077
0.6 —0.72114849 —0.72115190 —0.1443834 —0.14438087 3.41x107% 7.75x 10"
0.7 —0.71814890 —0.71815295 0.2289917 0.22899702 4.05 x 1076 2.03 x 10~
0.8 —0.66970677 —0.66971133 0.7719815 0.77199180 4.56 x 1076 5.30 x 10—
0.9 —0.55643814 —0.55644290 1.534764 1.5347815 4.76 x 1075 9.54 x 1076
1.0 —0.35339436 —0.35339886 2.578741 2.5787663 4.50 x 1079 1.34 x 107

We can use dsolve from Maple on those higher-order equations that can be
solved exactly. The nth derivative 3™ (t) is specified in Maple by (D@@n) (y) (t).
To define the differential equation of Example 2, use

>def2:=(D0Q2) (y) (t)-2*D(y) (t)+2*xy(t)=exp(2*t)*sin(t);

and to specify the initial conditions use

>init2:=y(0)=-0.4, D(y) (0)=-0.6;

The solution is obtained by the command

>s012:=dsolve({def2,init2},y(t));

5.7. METHODS FOR SYSTEMS OF EQUATIONS 273

as
1
sol2 == y(t) = 5e<2t> (sin(t) — 2cos(t))
We isolate the solution in function form using
>g:=rhs(s0l2);
To obtain y(1.0) = ¢g(1.0) = —0.3533943574, enter
>evalf (subs(t=1.0,g));

which gives the result —.3533943574.
Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve
command with the numeric option. We enter the command

>g:=dsolve({def2,init2},y(t) ,numeric) ;

with the Maple response

g := proc(rkf45_x) . ..end proc

274CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

We can approximate y(1.0) using the command
>g(1.0);

to give

0
t =1.0,y(t) = —.353394140089434705, ay(t) = 2.57874755316308502

Other one-step approximation methods can be extended to systems. If the
Runge-Kutta-Fehlberg method is extended, then each component of the numerical
solution wy;, waj, . . ., wmy; must be examined for accuracy. If any of the components
fail to be sufficiently accurate, the entire numerical solution must be recomputed.

The multistep methods and predictor-corrector techniques are also extended
easily to systems. Again, if error control is used, each component must be accurate.
The extension of the extrapolation technique to systems can also be done, but the
notation becomes quite involved.

5.7. METHODS FOR SYSTEMS OF EQUATIONS 275

EXERCISE SET 5.7

1. Use the Runge-Kutta method for systems to approximate the solutions of the
following systems of first-order differential equations and compare the results
to the actual solutions.

(a) vy = 3uy + 2us — (262 + 1)e?, for 0 <t <1 with uy(0) = 1;
ub = dug +ug + (t2 +2t —4)e?t, for 0 <t <1 with uy(0) = 1;
h=0.2; actual solutions ui(t) = 2 — Ye7' +e* and uy(t) =
1.5t 2 — 2.2
3 4 Zet - t2e?h

(b) uj = —4uy — 2us + cost+4sint, for 0 <t <2 with u;(0) = 0;
uh = 3uy +ug — 3sint, for 0<t <2 with uy(0) = —1;
h =0.1; actual solutions u1(t) = 2¢=! —2e72' +sint and wuo(t) =

—3e7t + 272,
(¢) uy =ug, for0<t<2 withwu(0)=1;
uh=—uy —2e' +1, for0<t <2 withus(0)=0;
uhy=—uy —e+1, for0<t<2 withuz(0)=1,
h = 0.5; actual solutions uy(t) = cost + sint — e’ + 1, us(t) =
—sint + cost — e!, and ug(t) = —sint + cost.
(d) ui =uz—uz+t, for 0<t<1 with u(0)=1;

uh =3t2, for 0 <t <1 with uy(0)=1;

uhy=us+et, for0<t<1 withuz(0)=—1;

h = 0.1; actual solutions u1(t) = —0.05t° 4+ 0.25t* + ¢ + 2 — e™¢,
ua(t) =t + 1, and ug(t) = 0.25¢* +¢ — e "

2. Use the Runge-Kutta method for systems to approximate the solutions of the
following higher-order differential equations and compare the results to the
actual solutions.

(a) v' =2y +y =tet —¢t, for 0 <t <1 with y(0) =y (0) =0 and
h=0.1; actual solution y(t) = gt?e’ — te’ + 2e* —t — 2.

(b) t2y" —2ty' +2y =t3Int, for1 <t <2 withy(l)=1, (1) =0, and
h=0.1; actual solution y(t) = Tt + 2t3Int — 343,

() y" +2y" —y —2y =€, for 0 <t <3 with y(0) = 1,
2, y"(0) = 0, and h = 0.2; actual solution y(t) = 23e' +
272 4 Ltet.

1, ¥'(0) =
1 -t
1

(d) 3y — 29" + 3ty — 4y = 5t3Int + 93, for 1 <t <2 with y(1) =
0, (1) =1, y"(1) = 3, and h = 0.1; actual solution y(t) = —t> +
tcos(Int) + tsin(lnt) + 3 Int.

3. Change the Adams Fourth-Order Predictor-Corrector method to obtain ap-
proximate solutions to systems of first-order equations.

276CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

4. Repeat Exercise 1 using the method developed in Exercise 3.

5. The study of mathematical models for predicting the population dynamics of
competing species has its origin in independent works published in the early
part of this century by A. J. Lotka and V. Volterra. Consider the problem of
predicting the population of two species, one of which is a predator, whose
population at time ¢ is x2(t), feeding on the other, which is the prey, whose
population is z(t). We will assume that the prey always has an adequate
food supply and that its birth rate at any time is proportional to the number
of prey alive at that time; that is, birth rate (prey) is k121 (t). The death rate
of the prey depends on both the number of prey and predators alive at that
time. For simplicity, we assume death rate (prey) = kox1(t)x2(t). The birth
rate of the predator, on the other hand, depends on its food supply, x1(t),
as well as on the number of predators available for reproduction purposes.
For this reason, we assume that the birth rate (predator) is ka1 (¢)z2(¢). The
death rate of the predator will be taken as simply proportional to the number
of predators alive at the time; that is, death rate (predator) = kyxo(t).

Since 2 (t) and a4 (t) represent the change in the prey and predator popu-
lations, respectively, with respect to time, the problem is expressed by the
system of nonlinear differential equations

3?/1 (t) == k:lxl(t) — kgml(t)l'g(t) and .’EIQ(t) = kgl‘l(t)xg(t) — k?4$2(t).

Solve this system for 0 < ¢ < 4, assuming that the initial population of the
prey is 1000 and of the predators is 500 and that the constants are ki =
3, ko = 0.002, k3 = 0.0006, and k4 = 0.5. Is there a stable solution to this
population model? If so, for what values 21 and x5 is the solution stable?

6. In Exercise 5 we considered the problem of predicting the population in a
predator-prey model. Another problem of this type is concerned with two
species competing for the same food supply. If the numbers of species alive
at time ¢ are denoted by x1(¢) and x2(t), it is often assumed that, although
the birth rate of each of the species is simply proportional to the number
of species alive at that time, the death rate of each species depends on the
population of both species. We will assume that the population of a particular
pair of species is described by the equations

dmd;t(t) = 21(t)[4 — 0.000321 (t) — 0.00042>(t)]
and
dx; t(t) = @(t)[2 — 0.00021 (t) — 0.0001z2(t)].

If it is known that the initial population of each species is 10,000, find the
solution to this system for 0 < ¢t < 4. Is there a stable solution to this
population model? If so, for what values of z; and x5 is the solution stable?

EXAMPLE 1

5.8. STIFF DIFFERENTIAL EQUATIONS 277

5.8 Stiff Differential Equations

All the methods for approximating the solution to initial-value problems have er-
ror terms that involve a higher derivative of the solution of the equation. If the
derivative can be reasonably bounded, then the method will have a predictable er-
ror bound that can be used to estimate the accuracy of the approximation. Even if
the derivative grows as the steps increase, the error can be kept in relative control,
provided that the solution also grows in magnitude. Problems frequently arise, how-
ever, where the magnitude of the derivative increases, but the solution does not.
In this situation, the error can grow so large that it dominates the calculations.
Initial -value problems for which this is likely to occur are called stiff equations
and are quite common, particularly in the study of vibrations, chemical reactions,
and electrical circuits. Stiff systems derive their name from the motion of spring
and mass systems that have large spring constants.

Stiff differential equations are characterized as those whose exact solution has
a term of the form e~¢, here c is a large positive constant. This is usually only a
part of the solution, called the transient solution, the more important portion of the
solution is called the steady-state solution. A transient portion of a stiff equation
will rapidly decay to zero as ¢ increases, but since the nth derivative of this term
has magnitude c"e ¢, the derivative does not decay as quickly. In fact, since the
derivative in the error term is evaluated not at ¢, but at a number between zero
and t, the derivative terms may increase as t increases—and very rapidly indeed.
Fortunately, stiff equations can generally be predicted from the physical problem
from which the equation is derived, and with care the error can be kept under
control. The manner in which this is done is considered in this section.

The system of initial-value problems

1 4
9uq + 24us + Scost — 3 sint, with u;(0) = 3

e
5
Il

1 2
—24uy — 51ug — 9cost + 3 sint, with wus(0) = 3

<
)
Il

has the unique solution

1
up(t) = 273 -39 4 3 cos t,

1
us(t) = —e 3 42739 - 3 cos t.

The transient term e 3! in the solution causes this system to be stiff. Applying the
Runge-Kutta Fourth-Order method for systems gives results listed in Table 5.17.
Accurate approximations occur when h = 0.05. Increasing the step-size to h = 0.1,
however, leads to the disastrous results shown in the table. O

278CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Table 5.17
w (t) w (t) wa(t) wa(t)

t i (t) h=005 h=0.1 us(t) h=005 h=01
0.1 1.793061 1.712219 —2.645169 —1.032001 —0.8703152 7.844527
0.2 1.423901 1.414070 —18.45158 —0.8746809 —0.8550148 38.87631
0.3 1.131575 1.130523 —87.47221 —0.7249984 —0.7228910 176.4828
0.4 0.9094086 0.9092763 —934.0722 —0.6082141 —0.6079475 789.3540
0.5 0.7387877 9.7387506 —1760.016 —0.5156575 —0.5155810 3520.00
0.6 0.6057094 0.6056833 —7848.550 —0.4404108 —0.4403558 15697.84
0.7 0.4998603 0.4998361 —34989.63 —0.3774038 —0.3773540 69979.87
0.8 0.4136714 0.4136490 —155979.4 —0.3229535 —0.3229078 311959.5
0.9 0.3416143 0.3415939 —695332.0 —0.2744088 —0.2743673 1390664.
1.0 0.2796748 0.2796568 —3099671. —0.2298877 —0.2298511 6199352.

Although stiffness is usually associated with systems of differential equations,

the approximation characteristics of a particular numerical method applied to a
stiff system can be predicted by examining the error produced when the method is
applied to a simple test equation,

y' =y, with y(0) = a,

where A is a negative real number. The solution to this equation contains the
transient solution e and the steady-state solution is zero, so the approximation
characteristics of a method are easy to determine. (A more complete discussion of
the round-off error associated with stiff systems requires examining the test equation
when X is a complex number with negative real part.)

Suppose that we apply Euler’s method to the test equation. Letting h = (b —
a)/N and t; = jh, for j =0,1,2,..., N, implies that

Wy =
and

wjy1 = w; + h(Aw;) = (1 + hA)w;,

0
wir1 = (1+ AN we = (1 + kAT, for j=0,1,...,N—1. (5.6)
Since the exact solution is y(t) = ae, the absolute error is

ly(t;) — w;| = [= (L+hAY [l = (") — (1+hXN)| |l

5.8. STIFF DIFFERENTIAL EQUATIONS 279

and the accuracy is determined by how well the term 1 + A\ approximates e*.

When A < 0, the exact solution, (e"*)7, decays to zero as j increases, but, by
Eq. (5.6), the approximation will have this property only if |1 + hA| < 1. This
effectively restricts the step size h for Euler’s method to satisfy |14 hA| < 1, which
in turn implies that h < 2/|A|.

Suppose now that a round-off error Jy is introduced in the initial condition for
Euler’s method,

’U.)():Oé+50.

At the jth step the round-off error is
d; =(1+ hA)? 8.

If A < 0, the condition for the control of the growth of round-off error is the same
as the condition for controlling the absolute error: h < 2/|\|.

The situation is similar for other one-step methods. In general, a function @) ex-
ists with the property that the difference method, when applied to the test equation,
gives

w1 = Q(hA)w;.

The accuracy of the method depends upon how well Q(h\) approximates e”
the error will grow without bound if |Q(hA)| > 1.

The problem of determining when a method is stable is more complicated in
the case of multistep methods, due to the interplay of previous approximations
at each step. Explicit multistep methods tend to have stability problems, as do
predictor-corrector methods, since they involve explicit techniques. In practice, the
techniques used for stiff systems are implicit multistep methods. Generally, w; 1
is obtained by iteratively solving a nomnlinear equation or nonlinear system, often
by Newton’s method. To illustrate the procedure, consider the following implicit
technique.

A and

[Implicit Trapezoidal Method]
wyg = «

E[f(tjﬂ’ wit1) + f(t, w;)]

Wit = Wi+ g

where j =0,1,...,N — 1.

To determine w; using this technique, we apply Newton’s method to find the
root, of the equation

0= Fw) =w —wo — 2 [f(t0,w0) + f(t1,w)] = w—a ~ S[f(a,a) + f(t2,w)].

EXAMPLE 2

280CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

To approximate this solution, select w%o) (usually as wg) and generate w%k) by
applying Newton’s method to obtain

k—1
w1 _ F(wj"™)

Fr(wi ™)
k— k—
o0 _ W — o= lf(a,0) £ £t uy)
1= %fy(tlvwgk_l))

wf?

until |w§k) — wgk_1)| is sufficiently small. Normally only three or four iterations are
required.

Once a satisfactory approximation for w; has been determined, the method is
repeated to find wy and so on. This is the procedure incorporated in TRAPNTSS,
which implements this technique.

Alternatively, the Secant method can be used in the Implicit Trapezoidal method

in place of Newton’s method, but then two distinct initial approximations to w;4q

are required. To determine these, the usual practice is to let wﬁ)l = w; and obtain
w](i)l from some explicit multistep method. When a system of stiff equations is
involved, a generalization is required for either Newton’s or the Secant method.

These topics are considered in Chapter 10.

The stiff initial-value problem

y =5 (y—t)2+1, for0<t<1, withy(0)=-1

has solution y(t) = t —e 5. To show the effects of stiffness, the Trapezoidal method

and the Runge-Kutta fourth-order method are applied both with N = 4, giving
h = 0.25, and with N = 5, giving h = 0.20. The Trapezoidal method performs
well in both cases, using M = 10 and TOL = 1075, as does Runge-Kutta with
h = 0.2, as shown in Table 5.18. However, for A = 0.25 the Runge-Kutta method

gives inaccurate results, as shown in Table 5.19. O
Table 5.18
Runge-Kutta Method Trapezoidal Method
h=0.2 h=0.2
ti w; ly(t:) — wl w; ly(t:) — wil

0.0 —1.0000000 0 —1.0000000 0

0.2 —0.1488521 1.9027 x 1072 —0.1414969 2.6383 x 1072
0.4 0.2684884 3.8237 x 1073 0.2748614 1.0197 x 1072
0.6 0.5519927 1.7798 x 1073 0.5539828 3.7700 x 1073
0.8 0.7822857 6.0131 x 10~* 0.7830720 1.3876 x 1073

1.0 0.9934905 2.2845 x 10~ 0.9937726 5.1050 x 10~4

5.8. STIFF DIFFERENTIAL EQUATIONS 281
Table 5.19
Runge-Kutta Method Trapezoidal Method
h=0.25 h=10.25
ti w; ly(ti) — w;l w; ly(t:) — wil
0.0 —1.0000000 0 —1.0000000 0
0.25 0.4014315 4.37936 x 107! 0.0054557 4.1961 x 1072
0.5 3.4374753 3.01956 0.4267572 8.8422 x 1073
0.75 1.44639 x 10% 1.44639 x 10% 0.7291528 2.6706 x 1073
1.0 Overflow 0.9940199 7.5790 x 10~*

282CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXERCISE SET 5.8

1. Solve the following stiff initial-value problems using Euler’s method and com-
pare the results with the actual solution.

(a) v =—-9y, for0<t<1, with y(0)=eandh =0.1; actual solution
y(t — el—gt
(b) ¥/ = —20(y —t*) +2t, for 0 < ¢ <1, with y(0) = % and h = 0.1;

actual solution y(t) = t* + $e~ 20",
(¢) ¥ = —20y 4+ 20sint + cost, for 0 < ¢ < 2, with y(0) = 1 and
h = 0.25; actual solution y(t) = sint + e 2%
50
(d) ' = — =50y, for0<t<1, withy(0)=+2andh=0.1; actual
Y
solution y(t) = (1 4 e~ 100t)1/2,

2. Repeat Exercise 1 using the Runge-Kutta Fourth-Order method.

3. Repeat Exercise 1 using the Adams Fourth-Order Predictor-Corrector method.
4. Repeat Exercise 1 using the Trapezoidal method with a tolerance of 107°.

5. The Backward Euler One-Step method is defined by

Wit1 = w; + hf(ti+1, ’wi+1) for i =0, 1,...,N —1.

Repeat Exercise 1 using the Backward Euler method incorporating Newton’s
method to solve for w; 1.

6. In Exercise 11 of Section 5.2, the differential equation

dp(t

W0 o1~ p0)
was obtained as a model for studying the proportion p(t) of nonconformists
in a society whose birth rate was b and where r represented the rate at which
offspring would become nonconformists when at least one of their parents was
a conformist. That exercise requiredthat an approximation for p(t) be found
by using Euler’s method for integral values of ¢ when given p(0) = 0.01,b =
0.02, and r = 0.1, and then the approximation for p(50) be compared with the
actual value. Use the Trapezoidal method to obtain another approximation
for p(50), again assuming that h = 1 year.

5.9. SURVEY OF METHODS AND SOFTWARE 283

5.9 Survey of Methods and Software

In this chapter we have considered methods to approximate the solutions to initial-
value problems for ordinary differential equations. We began with a discussion of the
most elementary numerical technique, Euler’s method. This procedure is not suffi-
ciently accurate to be of use in applications, but it illustrates the general behavior
of the more powerful techniques, without the accompanying algebraic difficulties.
The Taylor methods were then considered as generalizations of Euler’s method.
They were found to be accurate but cumbersome because of the need to determine
extensive partial derivatives of the defining function of the differential equation.
The Runge-Kutta formulas simplified the Taylor methods, while not significantly
increasing the error. To this point we had considered only one-step methods, tech-
niques that use only data at the most recently computed point.

Multistep methods are discussed in Section 5.4, where Explicit methods of
Adams-Bashforth type and implicit methods of Adams-Moulton type were consid-
ered. These culminate in predictor-corrector methods, which use an explicit method,
such as an Adams-Bashforth, to predict the solution and then apply a corresponding
implicit method, like an Adams-Moulton, to correct the approximation.

Section 5.7 illustrated how these techniques can be used to solve higher-order
initial-value problems and systems of initial-value problems.

The more accurate adaptive methods are based on the relatively uncomplicated
one-step and multistep techniques. In particular, we saw in Section 5.6 that the
Runge-Kutta-Fehlberg method is a one-step procedure that seeks to select mesh
spacing to keep the local error of the approximation under control. The Variable
Step-Size Predictor-Corrector method also presented in Section 5.6 is based on
the four-step Adams-Bashforth method and three-step Adams-Moulton method.
It also changes the step size to keep the local error within a given tolerance. The
Extrapolation method discussed in Section 5.5 is based on a modification of the
Midpoint method and incorporates extrapolation to maintain a desired accuracy of
approximation.

The final topic in the chapter concerned the difficulty that is inherent in the
approximation of the solution to a stiff equation, a differential equation whose exact
solution contains a portion of the form e~*, where) is a positive constant. Special
caution must be taken with problems of this type, or the results can be overwhelmed
by roundoff error.

Methods of the Runge-Kutta-Fehlberg type are generally sufficient for nonstiff
problems when moderate accuracy is required. The extrapolation procedures are
recommended for nonstiff problems where high accuracy is required. Extensions of
the Implicit Trapezoidal method to variable-order and variable step-size implicit
Adams-type methods are used for stiff initial-value problems.

The ISML Library includes

two subroutines for approximating the solutions of initial-value problems. One
is a variable step-size subroutine similar to the Runge-Kutta-Fehlberg method but
based on fifth- and sixth- order formulas. The other subroutine is designed for stiff
systems and uses implicit multistep methods of order up to 12. The NAG Library
contains a Runge-Kutta type formula with a variable step size. A variable order,

284CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

variable-step-size backward-difference method for stiff systems is also available.

The netlib Library includes several subroutines for approximating the solu-
tions of initial-value problems in the package ODE, located on the Internet at
http://www.netlib.org/ode. The subroutine dverk.f is based on the Runge-Kutta-
Verner fifth- and sixth-order methods. The subroutine rkf45.f is based on the Runge-
Kutta-Fehlberg fourth- and fifth-order methods as described in Section 5.6. For stiff
ordinary differential equation initial-value problems the subroutine epsode.f based
on variable coefficient backward differentiation formula can be used.

Many books specialize in the numerical solution of initial-value problems. Two
classics are by Henrici [Hel] and Gear [Gel]. Other books that survey the field
are by Botha and Pinder [BP], Ortega and Poole [OP], Golub and Ortega [GO],
Shampine [Sh], and Dormand [Do]. Two books by Hairer, Norsett, and Warner
provide comprehensive discussions on nonstiff [HNW1] and stiff [HNW2] problems.
The book by Burrage [Bur| describes parallel and sequential methods.

Chapter 6

Direct Methods for Solving
Linear Systems

6.1 Introduction

Systems of equations are used to represent physical problems that involve the in-
teraction of various properties. The variables in the system represent the properties
being studied, and the equations describe the interaction between the variables.
The system is easiest to study when the equations are all linear. Often the number
of equations is the same as the number of variables, for only in this case is it likely
that a unique solution will exist.

Although not all physical problems can be reasonably represented using a linear
system with the same number of equations as unknowns, the solutions to many
problems either have this form or can be approximated by such a system. In fact,
this is quite often the only approach that can give quantitative information about
a physical problem.

In this chapter we consider direct methods for approximating the solution of a
system of n linear equations in n unknowns. A direct method is one that gives the
exact solution to the system, if it is assumed that all calculations can be performed
without round-off error effects. This assumption is idealized. We will need to con-
sider quite carefully the role of finite-digit arithmetic error in the approximation
to the solution to the system and how to arrange the calculations to minimize its
effect.

6.2 Gaussian Elimination

If you have studied linear algebra or matrix theory, you probably have been in-
troduced to Gaussian elimination, the most elementary method for systematically
determining the solution of a system of linear equations. Variables are eliminated
from the equations until one equation involves only one variable, a second equation

285

EXAMPLE 1

286 ~CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

involves only that variable and one other, a third has only these two and one ad-
ditional, and so on. The solution is found by solving for the variable in the single
equation, using this to reduce the second equation to one that now contains a single
variable, and so on, until values for all the variables are found.

Three operations are permitted on a system of equations (E,,).

[Operations on Systems of Equations]

1. Equation F; can be multiplied by any nonzero constant A\, with the
resulting equation used in place of FE;. This operation is denoted
(AE;) — (E)).

2. Equation E; can be multiplied by any constant A, and added to equation
E;, with the resulting equation used in place of E;. This operation is
denoted (E; + AE;) — (E;).

3. Equations F; and FE; can be transposed in order. This operation is
denoted (E;) < (Ej).

By a sequence of the operations just given, a linear system can be transformed
to a more easily solved linear system with the same solutions. The sequence of
operations is illustrated in the next example.

The four equations

E1: r1 + Lo + 3174 = 4,
EQI 2.’£1 —+ T2 — xr3 + Ty = 1,
E3Z 3.’E1 — Ty — r3s + 2(E4 = —3,
Ey —x1 + 229 + 323 — ry = 4,

will be solved for x1, xo, x3, and x4. First use equation F; to eliminate the unknown
x1 from Es, E3, and Ey by performing (Ey —2E;) — (Es), (E3 —3E;) — (E3), and
(E4 + E1) — (E4). The resulting system is

Ey: 1 + oz + 3z4s = 4
EQI — To — r3 — 51’4 = *7,
Egl — 4.’E2 - xr3 — 71’4 = —].57
FEy: 3rs + 3x3 + 2x4 = 8§,

where, for simplicity, the new equations are again labeled Fq, Fs, F3, and Ej.
In the new system, Es is used to eliminate zo from Fs5 and Ey by (E5 —4FE;) —
(E5) and (F4 + 3F3) — (F4), resulting in

Ey: 1 + w2 + 3z = 4,
EQI — T2 — T3 5934 = *7,
Eg: 31’3 + 13%4 = 13,
E4: - 13$4 = —13.

EXAMPLE 2

6.2. GAUSSIAN ELIMINATION 287

The system of equations is now in triangular (or reduced) form and can be
solved for the unknowns by a backward-substitution process.Noting that E4 implies
x4 = 1, we can solve F3 for x3:

1 1
x3 = (13 — 1324) = = (13 — 13) = 0.
3 3
Continuing, Fy gives
xo =—(=T+bxy+23)=—(—74+5+0) =2,

and F; gives
r1=4—3r4—20=4—3—-2=—1.

The solution is, therefore, 1 = —1, 2o = 2, 3 = 0, and x4 = 1. It is easy to verify
that these values solve the original system of equations. O

When performing the calculations of Example 1, we did not need to write out
the full equations at each step or to carry the variables 1, x2, x3, and x4 through
the calculations, since they always remained in the same column. The only variation
from system to system occurred in the coefficients of the unknowns and in the values
on the right side of the equations. For this reason, a linear system is often replaced
by a matrix, a rectangular array of elements in which not only is the value of
an element important, but also its position in the array. The matrix contains all
the information about the system that is necessary to determine its solution in a
compact form.

The notation for an n x m (n by m) matrix will be a capital letter, such as A,
for the matrix and lowercase letters with double subscripts, such as a;;, to refer to
the entry at the intersection of the ith row and jth column; that is,

a1 a1z - Aim

21 QA22 - A2m
A=lay]=

an1 an2 T Anm

The matrix

2 -1 7
A= [3 10]
is a 2 x 3 matrix with ail] = 27 a9 = 717 ais = 7, a1 = 3, a929 = 1, and ags = 0. O

The 1 xn matrix A = [a11 a12 ---ay,] is called an n-dimensional row vector,
and an n x 1 matrix

288 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

is called an n-dimensional column vector. Usually the unnecessary subscript is
omitted for vectors and a boldface lowercase letter is used for notation. So,

T
T2
X =
Ln
denotes a column vector, and y = [y1 y2 - - ¥yn] denotes a row vector.
A system of n linear equations in the n unknowns x1, xs, ..., x, has the form
11201 + @129 + -+ + A1 Ty - b17
a21T1 + Q22T + + - + A2 Ty, = b27
Ap1T1 + Ap2®a + - -+ QppTn = bn

An nx(n+1) matrix can be used to represent this linear system by first constructing

ain a2 - Qin by

21 A2 -t d2p bz
A= aig] = . . : and b=

an1 an2 T Ann bn

and then combining these matrices to form the augmented matriz:

ailr a2 -t Qip by

a21 Q22 -+ G2pn bo
[A,b] = :

Apn1 Ap2 *** Apn by,

where the vertical dotted line is used to separate the coefficients of the unknowns
from the values on the right-hand side of the equations.

Repeating the operations involved in Example 1 with the matrix notation results
in first considering the augmented matrix:

1 1 0 3 4
2 1 -1 1 1
3 -1 -1 2 =3
-1 2 3 -1 4

Performing the operations as described in that example produces the matrices

1 1 0 3 4
0 -1 -1 =5 7|
0 -4 -1 -7 —15| *®

o 3 3 2 8

1 0 3 4
-1 -1 =5 -7
0 3 13 13
0 0 -13 -13

oo o

6.2. GAUSSIAN ELIMINATION 289

The latter matrix can now be transformed into its corresponding linear system
and solutions for x1, s, 3, and x4 obtained. The procedure involved in this process
is called Gaussian Elimination with Backward Substitution.

The general Gaussian elimination procedure applied to the linear system

Ei: anx +apra+-0 + ap®, = by,
Ey: a1 +anra+ -0+ ap®, = by,
En: Ap1T1 + Q2o+ -+ AppTp = bn»

is handled in a similar manner. First form the augmented matrix A:

aix aiz - A1n a1,n+41
a1 Q22 - G2p a2 n+41

A - [A, b] == 9
anl a2 et Ann an,nJrl

where A denotes the matrix formed by the coefficients and the entries in the (n-+1)st

column are the values of b; that is, a; 41 = b; for each i =1,2,...,n.
Suppose that a;; # 0. To convert the entries in the first column, below a1,
to zero, we perform the operations (Ey — mp1Eq1) — (E)) for each k = 2,3...,n

for an appropriate multiplier my;. We first designate the diagonal element in the
column, a;; as the pivot element. The multiplier for the kth row is defined
by mg1 = agi/a11. Performing the operations (Ey — myi1E1) — (Ej) for each
k =2,3,...,n eliminates (that is, change to zero) the coefficient of x; in each of
these rows:

a1 a2 -+ @ bi| Eyo—moEy — Ey |ann a2 - a, by

as1 Qg v+ A2y by| E3—mz1 By — E3 0 ax - a2 bo

an1l An2 o Ann bn En - mnlEl - En 0 An2 T Ann bn
Although the entries in rows 2, 3, ..., n are expected to change, for ease of notation,

we again denote the entry in the ith row and the jth column by a;;.
If the pivot element asy # 0, we form the multipliers mye = aga/a22 and perform

the operations (Ey — myaFEs) — Ej, for each k = 3,...,n obtaining
air a2 - Qin by aipr a2 - Qip by
By — E. E
0 ax - a2 bo| 7P m32. 2 0 a2 -+ aoy by
5 > B : : : :
0 Ap2 Ann bn " Mn252 7 En 0 0 o Ann bn
We then follow this sequential procedure for the rows ¢ = 3...,n — 1. Define

the multiplier my; = ag;/a;; and perform the operation

(Ex —mpi ;) — (Ey)

290 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

for each £ = i + 1,7 + 2,...,n, provided the pivot element a;; is nonzero. This
eliminates x; in each row below the ith for all values of i = 1,2,...,n — 1. The
resulting matrix has the form

aix aiz - Qin a1,n+1

~ 0 axx - azy a2,.n+1
A= .)

0 0 Ann an,n+1

where, except in the first row, the values of a;; are not expected to agree with those

in the original matrix A. The matrix A represents a linear system with the same
solution set as the original system. Since the new linear system is triangular,

a11ry + appry + -0+ Q@ = Q1
G22T2 + -+ QpTn = G2n41,
Apnn = Gn,n+1,

backward substitution can be performed. Solving the nth equation for z,, gives

an,n—i—l
Ty = ———.

ann
Then solving the (n — 1)st equation for x,,_1 and using the known value for z,
yields

z Un—1,n+1 — An—1,nTn
n—1 = .
Gp—1,n—1

Continuing this process, we obtain
Qint1 — (Qiis1%ig1 + -+ Qin®n) Cintl — Zj:i+1 Qij g

A A

foreachi=n—-1,n—2,...,2 1.

The procedure will fail if at the ith step the pivot element a;; is zero, for then
either the multipliers my; = ag;/a;; are not defined (this occurs if a;; = 0 for some
i < n) or the backward substitution cannot be performed (if a,, = 0). This does
not necessarily mean that the system has no solution, but rather that the technique
for finding the solution must be altered. An illustration is given in the following
example.

EXAMPLE 3 Consider the linear system

FEy: xr1 — To + 2x3 — Ty = -8,
E22 2{E1 - 2:1?2 + 3933 - 3$4 = *20,
Eg: X1 —+ T2 —+ xIs = 72,
Ey 0 — oy + dxs3 4+ 3x4 = 4.

6.2. GAUSSIAN ELIMINATION 291

The augmented matrix is

1 -1 2 -1 -8
2 -2 3 =3 =20
1 1 1 0 -2
1 -1 4 3 4

Performing the operations
(E2 — 2E1) — (EQ), (Eg — El) — (Eg), and <E4 — El) — (E‘4)7

we have the matrix
1 -1 2 -1 -8
0 0o -1 -1 -4
0 2 -1 1 6
0 0 2 4 12

The element aos in this matrix is zero, so the procedure cannot continue in its
present form. But operations of the form (E;) « (E,) are permitted, so a search is
made of the elements azo and a4o for the first nonzero element. Since ags # 0, the
operation (Fs) < (E3) is performed to obtain a new matrix:

1 -1 2 -1 =8
0 2 -1 1 6
0 0o -1 -1 -4
0 0 2 4 12

The variable x5 is already eliminated from F3 and E4, so the computations continue
with the operation (Ey + 2FE3) — (Fy), giving

1 -1 2 -1 =8
0 2 -1 1 6
0 0o -1 -1 -4
0 0 0 2 4

Finally, the backward substitution is applied:

4= (D] _,

B ~[8=((=D)za + 273 + (—1)wq)]
9 = 3, Tl = 1 =-T.

1 2
€T = - = 5 :L‘::
4 2 3

To define matrices and perform Gaussian elimination using Maple, you must
first access the linear algebra library using the command

>with(linalg) ;

292 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

To define the the initial augmented matrix in Example 3, which we will call AA,
use the command

>AA:=matrix(4,5,[1,-1,2,-1,-8,2,-2,3,-3,-20,1,1,1,0,-2,1,-1,4,3,4]1);

The first two parameters, 4 and 5, give the number of rows and columns, respec-
tively, and the last parameter is a list, by rows, of the entries of AA. The function
addrow(AA,i,j,m) performs the operation (E; + mE;) — (E;) and the function
swaprow(AA,1i,j) performs the operation (E;) < (E;). So, the sequence of opera-
tions

>AA:=addrow(AA,1,2,-2);
>AA:=addrow(AA,1,3,-1);
>AA:=addrow(AA,1,4,-1);
>AA:=swaprow(AA,2,3);
>AA:=addrow(AA,3,4,2);

gives the final reduction, which is again called AA. Alternatively, the single com-
mand AA:=gausselim(AA) ; returns the reduced matrix. A final operation,

>x:=backsub(AA);

produces the solution z := [-7, 3,2, 2].

Example 3 illustrates what is done if one of the pivot elements is zero. If the
ith pivot element is zero,the ith column of the matrix is searched from the ith row
downward for the first nonzero entry, and a row interchange is performed to obtain
the new matrix. Then the procedure continues as before. If no nonzero entry is
found the procedure stops, and the linear system does not have a unique solution; it
might have no solution or an infinite number of solutions. The program GAUSEL61
implements Gaussian Elimination with Backward Substitution and incorporates
row interchanges when required.

The computations in the program are performed using only one n x (n + 1)
array for storage. This is done by replacing, at each step, the previous value of a;;
by the new one. In addition, the multipliers are stored in the locations of aj; known
to have zero values—that is, when ¢ < n and k = ¢+ 1,7 + 2,...,n. Thus, the
original matrix A is overwritten by the multipliers below the main diagonal and by
the nonzero entries of the final reduced matrix on and above the main diagonal. We
will see in Section 6.5 that these values can be used to solve other linear systems
involving the original matrix A.

Both the amount of time required to complete the calculations and the subse-
quent round-off error depend on the number of floating-point arithmetic operations
needed to solve a routine problem. In general, the amount of time required to per-
form a multiplication or division on a computer is approximately the same and is
considerably greater than that required to perform an addition or subtraction. Even
though the actual differences in execution time depend on the particular computing
system being used, the count of the additions/subtractions are kept separate from
the count of the multiplications/divisions because of the time differential. The total

6.2. GAUSSIAN ELIMINATION 293

number of arithmetic operations depends on the size n, as follows:

3

Multiplications/divisions: % +n? — g
3 2
5
Additions/subtractions: % + % - Fn

For large n, the total number of multiplications and divisions is approximately
n®/3, that is, O(n?), as is the total number of additions and subtractions. The
amount of computation, and the time required to perform it, increases with n in
approximate proportion to n3/3, as shown in Table 6.1.

Table 6.1

n Multiplications/Divisions Additions/Subtractions

3 17 11
10 430 375
50 44,150 42,875

100 343, 300 338,250

294 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

EXERCISE SET 6.2

1. Obtain a solution by graphical methods of the following linear systems, if

possible.

(a) z1 + 229 = 3, () il —_F 2? _ 87
ry — To = 0. ! 2= ’

(¢) =1 + 229 = 3, (d) 1 + 2m9 = 3,
201 + 4z = 6. —2xr1 — 4z = 6.

() =1 + 222 = 0, (f) 220 + x2 = -1,
201 + 4dxo = 0. T + xe = 2,

ry — 3332 = 5.

(g) 209 + x2 = -1, (h) 221 + @ot+x3 = 1,
4371 + 2.’1}2 = —2, 2561 + 4.’1}2 — X3 = —1.
T - 3$2 = b.

2. Use Gaussian elimination and two-digit rounding arithmetic to solve the fol-
lowing linear systems. Do not reorder the equations. (The exact solution to

each system is 1 = 1,29 = —1,23 = 3.)
(a) 4v; — w2 + w3 = 8§, (b) 41 + 22 + 213 = 9,
2$1 + 4.7/'2 — xr3 = _5)
SR SR 1 4+ ® — 3rz3 = -9
r1 + 2z + 4z = 1L 1 2 3 = ,

3. Use Gaussian elimination to solve the following linear systems, if possible,
and determine whether row interchanges are necessary:

(a) r, — Ty + 3IE3 _ 27 (b) 2$1 — 151’2 + 3LE3 = 1,

3z 3z + x5 = -1 e + 2u 3,
1 - 2 3 — 4 _ . _
21+ 1 _ 3 4z 4.5z5 + bxs 1.

(c) 24 (@ 31 — Fz2 + w3 =4,

xr1 + 151[,’2 = 21235}, — o — X3 + X4 = 5,
—3x9 + 0.5x3 = 6.6+ To =2,
201 — 2x0 + r3 + x4, = K&y — %1’2 + x3 + x4, =5.

() x1 + @ + xy = %) = 4+ + x4 = 2,
21‘1 + X9 — T3 + Xry4 = 17 2I1 + i) — T3 + Ty = 1,
4xq Ty — 2x3 4+ 224 = 0, —x1 + 220 + 323 — x4 = 4,
3rv1 — 29 — x3 + 224 = —-33x1 — xo — w3 + 214 = -—3.

6.2. GAUSSIAN ELIMINATION 295

4. Use Maple with Digits set to 7 and Gaussian elimination to solve the follow-
ing linear systems.

(a) %Il + %zz + dzz = 9,
§Q:1 + 3T2 + T3 = 8,
5131 + To -+ 21‘3 = &.
(b) 3.333z; + 1592020 — 10.333z3 = 15913,
2.222z; + 16.71zy + 9.612x3 = 28.544,
1.5611z; + 5.1791zy + 1.6852x3 = 8.4254.
(¢) @1+ gxa+ w3+ o4 = 3,
SUNR SR MO S
%$1+ T2 + $3+§$4 =7
§$1+—$2+ FT3 + §l‘4 = %
le—i—gxg—i— EZC3+ 7334 = 9
(d) 2r1 + To — r3 + T4 — 3xs =1,
T —+ 2(133 — T4 —+ Ts5 = 2,
— 29 — w3 + g — x5 = —I,
3r1 + xy — A4z + b5 =6,
xrT — To — r3 — x4 + x5 = 3.
5. Given the linear system
221 — OGaze = 3,
3ax; — Ty = %

(a) Find value(s) of « for which the system has no solutions.

(b) Find value(s) of « for which the system has an infinite number of solu-

tions.

(¢) Assuming a unique solution exists for a given a, find the solution.

6. Given the linear system

Ty — x9 4+ ary = =2,
—x1 + 2z — axz = 3,
ary + x9 + r3 = 2.

(a) Find value(s) of a for which the system has no solutions.

(b) Find value(s) of « for which the system has an infinite number of solu-
tions.

(¢) Assuming a unique solution exists for a given a, find the solution.

296

CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

7. Suppose that in a biological system there are n species of animals and m

sources of food. Let x; represent the population of the jth species for each
Jj =1,...,n; b; represent the available daily supply of the ith food; and a;;
represent the amount of the ith food consumed on the average by a member
of the jth species. The linear system

anrr + a2 4+ -+ T, = by,
ag1x1 + axr2 + -+ aT, = by,
aAm1T1 + Qmao + - + AmaTn, = bm

represents an equilibrium where there is a daily supply of food to precisely
meet the average daily consumption of each species.

(a) Let

A = lai;] =

S = =
S O N
—= N O
— N W

x = (x;) = [1000, 500, 350,400], and b = (b;) = [3500,2700,900]. Is
there sufficient food to satisfy the average daily consumption?

(b) What is the maximum number of animals of each species that could be
individually added to the system with the supply of food still meeting
the consumption?

(c) If species 1 became extinct, how much of an individual increase of each
of the remaining species could be supported?

(d) If species 2 became extinct, how much of an individual increase of each
of the remaining species could be supported?

8. A Fredholm integral equation of the second kind is an equation of the form

u(z) = f(z) +/ K(z,t)u(t) dt,

where a and b and the functions f and K are given. To approximate the
function w on the interval [a,b], a partition g = a < 21 < -+ < Tppy1 <
., = b is selected and the equations

b
u(z;) = f(z) +/ K(x;,t)u(t) dt, foreachi=0,...,m,

are solved for u(zg),u(x1),. .., u(x,,). The integrals are approximated using
quadrature formulas based on the nodes x, ..., x,,. In our problem, a = 0,
b=1, f(z) =22, and K(z,t) = el*tl.

6.2. GAUSSIAN ELIMINATION 297

(a) Show that the linear system

u(0) = f(0) + 5[K(0,0)u(0) + K(0, Du(1)],
u(l) = f(1)+ 3[K(1,0)u(0) + K(1,1)u(1)]

must be solved when the Trapezoidal rule is used.

(b) Set up and solve the linear system that results when the Composite
Trapezoidal rule is used with n = 4.

(c) Repeat part (b) using the Composite Simpson’s rule.

EXAMPLE 1

298 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

6.3 Pivoting Strategies

If all the calculations could be done using exact arithmetic, we could nearly end the
chapter with the previous section. We now know how many calculations are needed
to perform Gaussian elimination on a system,and from this we should be able to
determine whether our computational device can solve our problem in reasonable
time. In a practical situation, however, we do not have exact arithmetic, and the
large number of arithmetic computations, on the order of O(n?), makes the con-
sideration of computational round-off error necessary. In fact, as we will see in our
next example, even for certain very small systems round-off error can dominate the
calculations. In this section we will see how the calculations in Gaussian elimination
can be arranged to reduce the effect of this error.

In deriving the Gaussian elimination method, we found that a row interchange
is needed when one of the pivot elements, a;;, is zero. This row interchange has
the form (E;) < (E,), where p is the smallest integer greater than ¢ with a,; # 0.
To reduce the round-off error associated with finite-digit arithmetic, it is often
necessary to perform row interchanges even when the pivot elements are not zero.

If a;; is small in magnitude compared to ay;, the magnitude of the multiplier

Qi
Qg

Mpi =

will be much larger than 1. A round-off error introduced in the computation of one
of the terms a;; is multiplied by my; when computing ax;, compounding the original
error. Also, when performing the backward substitution for

n
Ain+1 — Zj:i-H Qij

€Ty =

Qi
with a small value of a;;, any round-off error in the numerator is dramatically

increased when dividing by a;;. An illustration of this difficulty is given in the
following example.

The linear system

E;: 0.003000x7 + 59.14zo = 59.17,
Es: 5.291z; — 6.130z2 = 46.78
has the solution z; = 10.00 and x5 = 1.000. Suppose Gaussian elimination is

performed on this system using four-digit arithmetic with rounding.

The first pivot element, a1; = 0.003000, is small, and its associated multiplier,
5291
~0.003000

rounds to the large number 1764. Performing (Fy — mo1 E1) — (Fs) and the appro-
priate rounding gives

Mgy — 1763.6,

0.003000x1 + 59.14x9 = 59.17
—104300z2 —104400

%

6.3. PIVOTING STRATEGIES 299

instead of the precise values

0.003000x1 + 59.14x9 = 59.17
—104309.37622 = —104309.376.

The disparity in the magnitudes of moja;13 and as3 has introduced round-off error,
but the error has not yet been propagated. Backward substitution yields

r9 ~ 1.001,
which is a close approximation to the actual value, zo = 1.000. However, because
of the small pivot a;; = 0.003000,

o D917 — (59.14)(1.001)
L 0.003000

contains the small error of 0.001 multiplied by 59.14/0.003000 ~ 20000. This ruins
the approximation to the actual value 1 = 10.00. (See Figure 6.1.)

= —10.00

Figure 6.1

Approximation

(—10, 1.001) Exact solution
(10, 1) E,

bt pt >

—10 10 X1

This is clearly a contrived example and the graph demonstrate why the error
can so easily occur, but for only slightly larger systems it is much more difficult to
predict in advance when devastating round-off error can occur. O

Example 1 shows how difficulties arise when the pivot element a;; is small rela-
tive to the entries ay; for ¢ <k <n and i < j <n. To avoid this problem, pivoting
is performed by selecting an element a,,, for the pivot that has a larger magnitude
than ap, and interchanging the ith and pth rows.

The simplest strategy is to select, at the ith step, the element in the same
column that is below the diagonal and has the largest absolute value; that is, to
determine the smallest p > ¢ such that

lapal = max o]

and perform (E;) < (E,). In this case no interchange of columns is used.

EXAMPLE 2

300 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

Reconsider the system

E;: 0.003000x7 + 59.14z9 = 59.17,
Ey: 5.291z; — 6.130z2 46.78.

The pivoting procedure just described results in first finding
max{|ai1], |a21]} = max{|0.003000|,|5.291|} = |5.291| = |az1].
The operation (Fs) < (E7) is then performed to give the system

Ey: 5.291x1 — 6.130z2 = 46.78,
Ey: 0.003000x7 + 59.14z9 59.17.

The multiplier for this system is

may = 221 — 0.0005670,

a11

and the operation (Ey — ma1 E1) — (E2) reduces the system to

5.291x1 — 6.130z2

46.78,
59.14.

%

The four-digit answers resulting from the backward substitution are the correct
values, r1 = 10.00 and x5 = 1.000. O

The technique just described is called partial pivoting, or mazimal column
pivoting, and is implemented in the program GAUMPP62.

Although partial pivoting is sufficient for many linear systems, situations do
arise when it is inadequate. For example, the linear system

Ey: 30.00z7 + 591400z, = 591700,
Ey: 5291z — 6.130x2 = 46.78

is the same as that in Examples 1 and 2 except that all entries in the first equation
have been multiplied by 10%. Partial pivoting with four-digit arithmetic leads to the
same results as obtained in Example 1 since no row interchange would be performed.
A technique known as scaled partial pivoting is needed for this system. The first
step in this procedure is to define a scale factor s for each row:

S, = max |ak;l.
1<j<n

The appropriate row interchange to place zeros in the first column is determined
by choosing the first integer p with

lap| _ o Jasl

Sp

EXAMPLE 3

EXAMPLE 4

6.3. PIVOTING STRATEGIES 301

and performing (E1) < (E,). The effect of scaling is to ensure that the largest
element in each row has a relative magnitude of 1 before the comparison for row
interchange is performed.

In a similar manner, before eliminating variable x; using the operations

Ey,—muE;, - E, fork=1i+1,...,n
we select the smallest integer p > ¢ with

lapil |ai
sp i<k<n g

and perform the row interchange E; < E, if i # p. We must note that the scale
factors si,...,s, are computed only once at the start of the procedure and must
also be interchanged when row interchanges are performed.

In the program GAUSPP63 the scaling is done only for comparison purposes,
so the division by scaling factors produces no round-off error in the system.

Applying scaled partial pivoting to the system in Example 1 gives

s1 = max{]30.00[, |591400|} = 591400 and s = max{|5.291],|—6.130|} = 6.130.

Consequently,
|a11| 30.00 —4 \a21| 5.291
= = 0.5073 x 10 d — =——=0.8631
s 591400 e T T 6130

and the interchange (E7) < (E2) is made. Applying Gaussian elimination to the
new system produces the correct results: 1 = 10.00 and x2 = 1.000. O

Use scaled partial pivoting to solve the linear system using three-digit rounding
arithmetic.

211z — 4212z + 092123 = 2.01,
4.01z; + 102z, — 11223 = -—-3.09,
1.0927 + 098722 4+ 0.832z3 = 4.21.

To obtain three-digit rounding arithmetic, enter
>Digits:=3;

We have s1 = 4.21, so = 10.2, and s3 = 1.09. So

lay| 211 lag1| 4.01 _
o ap1 OO0 T = gpn = 0393, and TR =900

The augmented matrix AA is defined by

>AA:=matrix(3,4,[2.11,-4.21,0.921,2.01,4.01,10.2,-1.12,-3.09,1.09,
0.987,0.832,4.21]);

302 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

which gives
211 —4.21 921 2.01
AA:=| 4.01 10.2 —1.12 -3.09
1.09 987 832 4.21

Since |asi|/ss is largest, we perform (FE;) < (FE3) using
>AA:=swaprow(AA,1,3);

to obtain
1.09 987 .832 4.21

AA:= | 4.01 10.2 -1.12 —-3.09
211 —4.21 921 2.01

We compute the multipliers mo; = 3.68 and mg3; = 1.94 using
>m21:=4.01/1.09;

and

>m31:=2.11/1.09;

We perform the first two eliminations using
>AA:=addrow(AA,1,2,-m21);

and

>AA:=addrow(AA,1,3,-m31);

to obtain
1.09 987 .832 4.21
AA: =10 6.57 —4.18 —18.6
0 —6.12 —.689 —6.16
Sinee lazs] 657 lass| 612
a2 . aso .
= — =0644< == —=14
So 10.2 0.644 < S3 4.21 5

we perform

>AA:=swaprow(AA,2,3);

giving
1.09 987 .832 4.21
AA=1| 0 —6.12 —.689 —6.16
0 6.57 —4.18 —18.6

The multiplier mgy = —1.07 is computed by

6.3. PIVOTING STRATEGIES 303

>m32:=6.57/(-6.12) ;
The elimination step

>AA:=addrow(AA,2,3,-m32) ;

gives
1.09 987 .832 4.21
AA:=1 0 —6.12 —.689 —6.16
0 02 —4.92 -252

We cannot use backsub because of the entry .02 in the (3, 2) position. This entry is
nonzero due to rounding, but we can remedy this minor problem using the command

>AA[3,2] :=0;

which replaces the entry .02 with a 0. To see this enter
>evalm(AA) ;

which displays the matrix AA. Finally,
>x:=backsub(AA);

gives the solution
x:=[—.431 430 5.12]. O

The scaled partial pivoting procedure adds a total of

En(n —1) comparisons

and

n(n+1)

2

to the Gaussian elimination procedure. The time required to perform a comparison
is slightly more than that of an addition/subtraction. The total time to perform
the basic Gaussian elimination procedure is the time required for approximately
n?/3 multiplications/divisions and n?/3 additions/subtractions. So scaled partial
pivoting does not add significantly to the computational time required to solve a
system for large values of n.

If a system has computation difficulties that scaled partial pivoting cannot re-
solve, maximal (also called total or full) pivoting can be used. Maximal pivoting at
the ith step searches all the entries ay;, for k =4,i+1,...,nand j =1,14+1,...,n,
to find the entry with the largest magnitude. Both row and column interchanges are

— 1 divisions

304 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS
performed to bring this entry to the pivot position. The additional time required
to incorporate maximal pivoting into Gaussian elimination is

n(n—1)(2n +5)
6

comparisons.

This approximately doubles the amount of addition/subtraction time over ordinary
Gaussian elimination.

6.3. PIVOTING STRATEGIES 305

EXERCISE SET 6.3

1. Use standard Gaussian elimination to find the row interchanges that are re-
quired to solve the following linear systems.

(a) 21 — 1o + 23 = 7 (b) Ty + T2 — r3 = 1
10z + 20m5 = 6 T &2 A Az =2
! 3 201 — x9 + 2x3 = 3

51‘1 — €T3 = 4
(C) 201 — 3x2 + 23 = 5 (d) To 4+ x3 = 6
741‘1 + 21’2 - 6$3 = 14 €Tq - 2:62 — I3 = 4
2251 + 21’2 + 4.%3 = 8 ry — To + x3 = 5

2. Repeat Exercise 1 using Gaussian elimination with partial pivoting.
3. Repeat Exercise 1 using Gaussian elimination with scaled partial pivoting.
4. Repeat Exercise 1 using Gaussian elimination with complete pivoting.

5. Use Gaussian elimination and three-digit chopping arithmetic to solve the fol-
lowing linear systems, and compare the approximations to the actual solution.

58.9x1 +0.03z9 = 59.2
—6.1027 + 5.3l = 47.0
Actual solution z1 = 1,z = 10.

(a) 0.03z1 +58.970 = 59.2 (b)
5.31lx1 — 6.10zo = 47.0
Actual solution z1 = 10,25 = 1.

(¢) 3.03z; —12.1ag + 1423 = —119
—3.03z1 + 12.1z5 — Tzz = 120
6113)1 - 142$2 + 213}‘3 = -139

Actual solution 1 =0, zo = 10, z3 = %

(d) 3.3330x7; + 15920x2 + 10.333z3 = 7953
2.2220x7 + 16.710z2 + 9.6120z3 = 0.965
—1.5611xz7 + 5.1792x5 — 1.6855xz3 = 2.714
Actual solution 1 = 1,29 = 0.5, 23 = —1.

() 1.19z; + 21lzy — 100z5 + a4 = 1.12
14221 — 012229 + 12223 — x4 = 3.44

100z — 99923 + x4 = 2.15
153z + 0.110z9 — 13.1z3 — x4 = 4.16

Actual solution z; = 0.17682530, o = 0.01269269, x3 = —0.02065405,
x4 = —1.18260870.

306 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(f) 7wz - ers + V23 — V34 = V11
m2x, + ers — exs + %14 = 0
Vory — 6z + 3 — V214 = T
ey 4+ ety — \/?333 + %334 = V2

Actual solution x; = 0.78839378, zo = —3.12541367, x3 = 0.16759660,
x4 = 4.55700252.

6. Repeat Exercise 5 using three-digit rounding arithmetic.
7. Repeat Exercise 5 using Gaussian elimination with partial pivoting.
8. Repeat Exercise 5 using Gaussian elimination with scaled partial pivoting.

9. Suppose that
2(E1+ To + 31’3:1
4x1 +6x2 + 8xr3=25
6x1 + axs + 1023 =5

with |a| < 10. For which of the following values of « will there be no row
interchange required when solving this system using scaled partial pivoting?

(a) a=6 (b) =9 (¢) a=-3

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 307

6.4 Linear Algebra and Matrix Inversion

Early in this chapter we illustrated the convenience of matrix notation for the
study of linear systems of equations, but there is a wealth of additional material in
linear algebra that finds application in the study of approximation techniques. In
this section we introduce some basic notation and results that are needed for both
theory and application. All the topics discussed here should be familiar to anyone
who has studied matrix theory at the undergraduate level. This section could be
omitted, but it is advisable to read the section to see the results from linear algebra
that will be frequently called upon for service.

Two matrices A and B are equal if both are of the same size, say, n x m, and
if a;; = b;; foreach i =1,2,...,nand j =1,2,...,m.

This definition means, for example, that

~ =
O = W

3 10]#_

since they differ in dimension.

If A and B are n X m matrices and A is a real number, then the sum of A and
B, denoted A + B, is the n x m matrix whose entries are a;; + b;;, and the scalar
product of A and A, denoted AA, is the n x m matrix whose entries are Aa;;.

If Ais an n X m matrix and B is an m X p matrix, the matrix product of A
and B, denoted AB, is an n X p matrix C' whose entries ¢;; are given by

m
cij = E aikbrj = ainbij + apboj + - 4 @imbpy,
k=1

foreacht=1,2,...nand j =1,2,...,p.

The computation of ¢;; can be viewed as the multiplication of the entries of
the 7th row of A with corresponding entries in the jth column of B, followed by a
summation; that is,

[aila @;i2, . .- 7aim] . = [Cij]a
where
m
Cij = ainbyj + Qigboj + -+ + Qimbmj = > airbi;.
k=1

This explains why the number of columns of A must equal the number of rows of
B for the product AB to be defined.

308 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

EXAMPLE 1 Let

2 1 -1 3 2
A=13 1 2|, B=| -1 1/,
0 -2 -3 | 6 4
[1 -1 1
C:[_f Zl)) g}, and D=2 -1 2
| 3 0 3
Then,
1 -3 1 -1 -2 -6
AD = 1 —4 11 | # 1 -3 —-10 | =DA
—13 2 —-13 6 -3 —12
Further,
4 9 4 5 5
BC=| -3 2 2 and 03[6 9}
8 18 8

are not even the same size. Finally,

-1 1
AB = 20 15
—-16 —-14
but BA cannot be computed. O

A square matrix has the same number of rows as columns. A diagonal matrix
is a square matrix D = [d;;| with d;; = 0 whenever i # j. The identity matrix of
order n, I, = [d;;], is a diagonal matrix with entries

1, iti=yj,
dij = e
0, ifi#j.

When the size of I, is clear, this matrix is generally written simply as I. For
example, the identity matrix of order three is

1 0 0
I=]0 10
0 0 1
If Ais any n X n matrix, then Al = TA = A.
An n x n upper-triangular matrix U = [u;;] has, for each j =1,2,...,n, the
entries

u;j =0, foreachi=j7+1,7+2,...,n;

and a lower-triangular matrix L = [I;;] has, for each j = 1,2,...,n, the entries

li; =0, foreachi=1,2,...,57—1.

EXAMPLE 2

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 309

(A diagonal matrix is both upper and lower triangular.)

In Example 1 we found that, in general, AB # BA, even when both products
are defined. However, the other arithmetic properties associated with multiplication
do hold. For example, when A, B, and C are matrices of the appropriate size and
A is a scalar, we have

A(BC) = (AB)C, A(B+C)=AB+AC, and MAB)= (A)B = A(\B).

Certain n X n matrices have the property that another n x n matrix, which
we will denote A™!, exists with AA~™! = A='A = I. In this case A is said to
be nonsingular, or invertible, and the matrix A~! is called the inverse of A. A
matrix without an inverse is called singular, or noninvertible.

Let
1 2 -1 1 -2 5 -1
A= 2 1 and B = 9 4 -1 2
-1 1 2 -3 3 3
Since
1 2 -1 1 —2 5 —1 1 0 0
AB = 21 0 |- 9 4 -1 2 (=101 0
-1 1 2 -3 3 3 0 0 1
and
1 -2 5 -1 1 2 -1 100
BA = 9 4 -1 2]~ 21 Of=1]10 1 0,
-3 3 3 -1 1 2 0 0 1
A and B are nonsingular with B = A"! and A = B!, O

The reason for introducing this matrix operation at this time is that the linear
system

1121 + a2 + -+ a1p®, = by,
2121 + A22%2 + -+ + A2p®y, = by,
Ap1T1 + Ap2T2 + - + GppTy, = bna

can be viewed as the matrix equation Ax = b, where

a1l a2 A1n & by

a1 G2 - Q2p T bo
A= . . . , X= . , and b=

an1 an2 e Ann Tn bn

If A is a nonsingular matrix, then the solution x to the linear system Ax =
b is given by x = A71(Ax) = A~ 'b. In general, however, it is more difficult

EXAMPLE 3

310 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

to determine A~! than it is to solve the system Ax = b, because the number

of operations involved in determining A~"' is larger. Even so, it is useful from a

conceptual standpoint to describe a method for determining the inverse of a matrix.

To determine the inverse of the matrix

1 2 -1
A=| 21 o0/,
-1 1 2

let us first consider the product AB, where B is an arbitrary 3 x 3 matrix.

1 2 -1 bir bz bis
AB = 2 1 0 bo1 bao bos
| — 1 1 2 bs1 b3z2 b33

bi1 + 2021 — b3 bio + 2022 — b3
= 2b11 + boy 2b1o + bao
| —b11 +b21 + 2031 —b12 + baz + 2032

If B=A"', then AB = I, so we must have

bin 4+ 2621 — b3 = 1, b1z 4+ 2b2
2b11 4+ by = 0, 2b12 4+ b2
b1+ b + 2b31 = 0, —bia + b

bis + 2bag — bss
2b13 + bag
—b13 + bag + 2b33

+

b3o

2b32

Oa b13
1, 2b13
07 7b13

Notice that the coefficients in each of the systems of equations are the same; the only
change in the systems occurs on the right side of the equations. As a consequence,
the computations can be performed on the larger augmented matrix, formed by

combining the matrices for each of the systems

1 2 -1 1 00
2 1 0 0 1 0f.
-1 1 2 0 0 1
First, performing (Fy — 2E7) — (E7) and (E3 + Ep) —

1 2 -1 100
0 -3 2 -2 1 0
0 3 1 1 01

Next, performing (E5 + E3) — (Es3) produces

1 2 -1 1 0 0
0 -3 2 =210
0 0 3 -1 11

(E3) gives

Backward substitution is performed on each of the three augmented matrices,

1 2 -1 111 2 -1 o[
0 -3 2 —2|,lo0 -3 2 1/,]o0
0o 0o 3 -1l o o 3 1| |o

2
-3
0

-1
2
3

0
0
1

)

+ 2ba3
+ bog
+ bos

+

b33

2b33

EXAMPLE 4

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 311

to eventually give

by = —%, b = 3, bis = —3,
b21 = g, b22 = —%, and b23 = %,
b31 = _%7 b32 = %7 bSd = 3
These are the entries of A~ !:
_2 5 _1
9 9 9 1 -2 5 —1
-1 4 1 2 | _
A= b 3 3l=5| 41 2| O 6.1)
_1 1 1 -3 3 3
3 3 3

The transpose of an n X m matrix A =
square matrix A is symmetric if A = A?.

la;;] is the m x n matrix A" = [a;;]. A

The matrices

7T 2 0 6 4 -3
A=|3 5 -1, B:{g _g _’17}, C= 4 =2
0 5 —6 -3 0 1
have transposes
7T 3 0 2 3 6 4 -3
At = 2 5 51|, Bt=|4 -5 |, Ct= 4 -2 0
0 -1 -6 7 -1 -3 0 1

= (C. The matrices A and B are not symmetric.
O

The matrix C is symmetric, since C*

The following operations involving the transpose of a matrix hold whenever the
operation is possible.

[Transpose Facts]
(i) (AN =
(i) (A+ B)! = At + B,

(iii) (AB)! = B'A!.

) If A=1 exists, (A~1)t = (A%)~L.

(iv

The determinant of a square matrix is a number that can be useful in deter-
mining the existence and uniqueness of solutions to linear systems. We denote the
determinant of a matrix A by det A, but it is also common to use the notation |A].

312 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

[Determinant of a Matrix]
(i) If A =Ja] is a 1 x 1 matrix, then det A = a.

(ii) If A is an n x n matrix, the minor M;; is the determinant of the
(n—1) x (n—1) submatrix of A obtained by deleting the ith row and
jth column of the matrix A.

Then the determinant of A is given either by
n
det A = Z(—l)’ﬂaijMi» forany i =1,2,...,n,
=1
or by

det A = Z(fl)i+jaijM14 forany j =1,2,...,n.
i=1

To calculate the determinant of a general n x n matrix by expanding by minors
requires O(n!) multiplications/divisions and additions/subtractions. Even for rela-
tively small values of n, the number of calculations becomes unwieldy. Fortunately,
the precise value of the determinant is seldom needed, and there are efficient ways
to approximate its value.

Although it appears that there are 2n different definitions of det A, depending
on which row or column is chosen, all definitions give the same numerical result. The
flexibility in the definition is used in the following example. It is most convenient
to compute det A across the row or down the column with the most zeros.

EXAMPLE 5 Let

2 -1 3 0
4 =2 70
A= -3 -4 1 5
6 -6 8 0

To compute det A, it is easiest to expand about the fourth column:

det A = —a1aMig+ agaMoy — azaMsy + asaMag = —5M3y
2 -1 3
= —5det| 4 -2 7
6 —6 &8

—5{2det[~ H —(—1)det[. ;]—I—Sdet{g =]}
C5{(2(—16 + 42) — (—1)(32 — 42) + 3(—24 + 12)} = —30.
O (6.2)

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 313

The following properties of determinants are useful in relating linear systems
and Gaussian elimination to determinants.

[Determinant Facts] Suppose A is an n x n matrix:

(i) If any row or column of A has only zero entries, then det A = 0.

(ii) If A is obtained from A by the operation (E;) < (Ey), with i # F,
then det A = —det A.

(iii) If A has two rows or two columns the same, then det A = 0.

(iv) If 121~ is obtained from A by the operation (AE;) — (E;), then
det A = Adet A.

(v) If A is obtained from A by the operation (E; + AEy) — (E;) with
i # k, then det A = det A.

(vi) If B is also an n X n matrix, then det AB = det A det B.
(vii) det A = det A.

1
iii) If A—! exists, then det A1 = ——.
(viii) xists, ot d
(ix) If A is an upper triangular, lower triangular, or diagonal matrix,

then
det A = a11 - a22 - App-

EXAMPLE 6 We will compute the determinant of the matrix

-1 2 3 -1
3 -1 -1 2

using Determinant Facts (ii), (iv), and (vi) and Maple. Matrix A is defined by
>A:=matrix(4,4,[2,1,-1,1,1,1,0,3,-1,2,3,-1,3,-1,-1,2]);

The sequence of operations in Table 6.2 produces the matrix

UFRE
0 1 1 5
A8 = 0 0 3 13
0 0 0 —13
By fact (ix), det A8 = (1)(1)(3)(—13) = —39, so det A = — det A8 = —39. O

314 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

Table 6.2
Operation Maple Effect
1B, — By A1:= mulrow(4,1,0.5) det A1 = Jdet A
Ey—FEy — E, A2:= addrow(A1,1,2,-1) det A2 = det Al = Jdet A
Es + E; — Ej A3:= addrow(A2,1,3,1) det A3 =det A2 = L det A
Ey—3F1 — E4 A4:= addrow(A3,1,4,-3) det A4 = det A3 = %detA
2F9 — FEy A5:= mulrow(A,2,2) det A5 = 2det A4 = det A
E3 —3E, — E; A6:= addrow(4,2,3,-2.5) det A6 = det A5 = det A
Ei+5Ey — Ey A7:= addrow(4,2,4,2.5) det A7 = det A6 = det A
Es — By A8:= swaprow(A,3,4) det A = —det A7 = —det A

The key result relating nonsingularity, Gaussian elimination, linear systems, and
determinants is that the following statements are equivalent.

(iv) det A #0.

[Equivalent Statements about an n x n Matrix A]

(i) The equation Ax = 0 has the unique solution x = 0.

(ii) The system Ax = b has a unique solution for any n-dimensional
column vector b.

(iii) The matrix A is nonsingular; that is, A~1 exists.

(v) Gaussian elimination with row interchanges can be performed on
the system Ax = b for any n-dimensional column vector b.

Maple can be used to perform the arithmetic operations on matrices. Ma-
trix addition is done with matadd(A,B) or evalm(A+B). Scalar multiplication is
defined by scalarmul(A,C) or evalm(C*A). Matrix multiplication is done using
multiply(A,B) or evalm(A&*B). The matrix operation of transposition is achieved
with transpose(A), matrix inversion with inverse(A), and the determinant with

det (A).

6.4. LINEAR ALGEBRA AND MATRIX INVERSION

EXERCISE SET 6.4

1. Compute the following matrix products.

(a)

()

—_

o

o o

[\]

o = O

2. For the matrices given below:

i. Find the transpose of the matrix.

ii. Determine which matrices are nonsingular

()

O O =

UL © O =~

o O O
w o o

= -0 O

_— o o o

o

o

(f)

315

and compute their inverses.

W N =
L

W N =N

S = N =

0
1
-1
-1

=W o =

-2

—4

W = NN

3. Compute the determinants of the matrices in Exercise 2 and the determinants
of the inverse matrices of those that are nonsingular.

4. Consider the four 3 x 3 linear systems having the same coefficient matrix:

2:]31
Ty
—x1

2.131
€
—x

+ 4

-

32132
T2
T2

31‘2
)
T2

+

+

zs3
Zs3
31‘3

T3
T3
3:)']3

2:13’1
Ty
-1

2l‘1
Ty
—x1

+ 4

-

3

3

T2
T2
T2

T2
)
T2

+

+

T3
I3 =4,
3373)
Zs3
r3 =V,
3333

316 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(a) Solve the linear systems by applying Gaussian elimination to the aug-
mented matrix

2 =3 1 2 6 0 -1
1 1 -1 -1 4 1 0
-1 1 -3 0 5 =3 0

(b) Solve the linear systems by finding and multiplying by the inverse of

2 -3 1
A= 1 1 -1
-1 1 -3

(¢) Which method requires more operations?

5. Show that the following statements are true or provide counterexamples to
show they are not.

(a) The product of two symmetric matrices is symmetric.

(b) The inverse of a nonsingular symmetric matrix is a nonsingular sym-
metric matrix.

(c) If A and B are n x n matrices, then (AB)! = A'B*.

6. (a) Show that the product of two n x n lower triangular matrices is lower
triangular.

(b) Show that the product of two n X n upper triangular matrices is upper
triangular.

(¢) Show that the inverse of a nonsingular n x n lower triangular matrix is
lower triangular.

7. The solution by Cramer’s rule to the linear system

anr1 + aipr2 + aizrz = by,
a21x1 + QT2 + a23r3 = ba,
az vy + asTz + azzrs = b3
has
by a2 ais
D,

l‘lzﬁdet b2 22 423 =
b3 azz ass

6.4. LINEAR ALGEBRA AND MATRIX INVERSION

1
To = D det
and
1
T3 = D det
where
D = det

2%1
Z1
T

2],‘1
T
-1

does not have a solution.

2$1
A
—x1

317
a1 b1 ais Dy
az1 by ass 537
az1 by ass
ann a2 b Ds
az aze by 537
as1 azz b3
ailr a2 ais
a21 a2z a23
as; a3z as3

Use Cramer’s rule to find the solution to the linear system

Show that the linear system

+ 3ry — r3 =4,
- 2w + w3 =6,
— 1229 + bxz =10.
+ 3z — x3 =4,
— 21’2 + r3 = 6,
— 121’2 + 5.’£3 =9

Compute Dy, D5, and Ds.

Show that the linear system

+ 3o — r3 =4,
— 2$2 + xr3 = 6,
- 12562 + 5173 =10

has an infinite number of solutions. Compute Dy, Do, and Dj.

(d)

Suppose that a 3 x 3 linear system with D = 0 has solutions. Explain

why we must also have D1 = Dy = D3 = 0.

8. In a paper entitled “Population Waves,” Bernadelli [Ber| hypothesizes a type

of simplified beetle, which has

a natural life span of 3 years. The female of

this species has a survival rate of % in the first year of life, has a survival rate
of % from the second to third years, and gives birth to an average of six new
females before expiring at the end of the third year. A matrix can be used to
show the contribution an individual female beetle makes, in a probabilistic

318 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

sense, to the female population of the species by letting a;; in the matrix
A = [a;;] denote the contribution that a single female beetle of age j will
make to the next year’s female population of age i; that is,

0 0 6
_ | 1

A=1{3 0 0

0 % 0

(a) The contribution that a female beetle makes to the population 2 years
hence is determined from the entries of A2, of 3 years hence from A3,
and so on. Construct A% and A3, and try to make a general statement
about the contribution of a female beetle to the population in n years’
time for any positive integral value of n.

b) Use your conclusions from part (a) to describe what will occur in future
Yy
years to a population of these beetles that initially consists of 6000
female beetles in each of the three age groups.

(c) Construct A~! and describe its significance regarding the population of
this species.

9. The study of food chains is an important topic in the determination of the
spread and accumulation of environmental pollutants in living matter. Sup-
pose that a food chain has three links. The first link consists of vegetation of

types v1,va, ..., v,, which provide all the food requirements for herbivores of
species hy, ha, ..., hy, in the second link. The third link consists of carnivorous
animals ¢, co, ..., ck, which depend entirely on the herbivores in the second

link for their food supply. The coordinate a;; of the matrix

aixp a2 - Gim

a1 Q22 - G2m
A=

anl an2 Tt Anm

represents the total number of plants of type v; eaten by the herbivores in
the species h;, whereas b;; in

bin bz - b

bar baa --- bop
B P—

bml bm2 e bmk

describes the number of herbivores in species h; that are devoured by the
animals of type c;.

(a) Show that the number of plants of type v; that eventually end up in
the animals of species c¢; is given by the entry in the ith row and jth
column of the matrix AB.

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 319

(b) What physical significance is associated with the matrices A~!, B,
and (AB)~' = B~1A"1?

10. In Section 3.6 we found that the parametric form (z(t),y(t)) of the cubic

Hermite polynomials through (2(0),y(0)) = (zo,y0) and (z(1),y(1)) =
(21, y1) with guidepoints (zo+ o, Yo+ 5o) and (z1 — a1, y1 — B1), respectively,
is given by

z(t) = [2(zo—z1)+ (g +a1)|t® + [3(x1 —20) — a1 —2a0]t? + agt + w0

y(t) = [2(yo —y1) + (Bo +B0)]* + [Blyr —yo) — B —260]t* + ot + o
The Bézier cubic polynomials have the form

#(t) = [2(zo—21)+3(ao+a1)]t® + [3(z1—20) — 3(a1+200)]t* + 3apt + x
and

9(t) = [2(yo—y1) +3(Bo+0)]E> + [3(y1—0) — 3(B1+200)]t* + 360t + yo-

(a) Show that the matrix

A =

|

c oo
|

o o w
|

o W o

—_ o oo

maps the Hermite polynomial coefficients onto the Bézier polynomial
coefficients.

(b) Determine a matrix B that maps the Bézier polynomial coefficients onto
the Hermite polynomial coefficients.

11. Consider the 2 x 2 linear system (A + iB)(x + iy) = ¢ + id with complex
entries in component form:

(@11 +ibi1)(z1 + i) + (a2 +ibi2)(z2 +iy2) =c1 + idy,
(@21 +iba1) (1 +iy1) + (a2 +iba2) (w2 +iy2) =co + ido.

(a) Use the properties of complex numbers to convert this system to the

equivalent 4 x 4 real linear system

Real part: Ax — By
Imaginary part: Bx + Ay

|
o

|
&

(b) Solve the linear system

(3 + 21)(LE2 + iyg) =5 + 22',
(4 + 31)(.%2 + in) =4 — 1.

(1 —2i)(z1 +iy1)

|
2+ i) (w1 +iy1) +

EXAMPLE 1

320 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

6.5 Matrix Factorization

Gaussian elimination is the principal tool for the direct solution of linear systems
of equations, so it should come as no surprise to learn that it can be used for
other purposes. In this section we will see that the steps used to solve a system
of the form Ax = b by Gaussian Elimination can be used to factor the matrix
A into a product of matrices that are easier to manipulate. The factorization is
particularly useful when it has the form A = LU, where L is lower triangular
and U is upper triangular. Although not all matrices have this type of repre-
sentation, many do that occur frequently in the application of numerical tech-
niques.

In Section 6.2 we found that Gaussian elimination applied to an arbitrary non-
singular system requires O(n?) operations to determine x. However, to solve a linear
system that involves an upper-triangular system requires only backward substitu-
tion, which takes O(n?) operations. The situation is similar for lower-triangular
systems. So if A has been factored into the triangular form A = LU, then we
can solve for x more easily by using a two-step process. First we let y = Ux and
solve the system Ly = b for y. Since L is lower triangular, determining y from
this equation requires only O(n?) operations. Once y is known, the upper trian-
gular system Ux = y requires only an additional O(n?) operations to determine
the solution x. This means that the total number of operations needed to solve
the system Ax = b is reduced from O(n?) to O(n?). In systems greater than
100 by 100, this can reduce the amount of calculation by more than 99%, since
100% = 10,000 = (0.01)(1,000,000) = (0.01)(100)3.

Not surprisingly, the reductions from the factorization do not come free; de-
termining the specific matrices L and U requires O(n?) operations. But once the
factorization is determined, systems involving the matrix A can be solved in this
simplified manner for any number of vectors b.

The linear system

ry + T2 + 3xy4 =4,
207 + 1y — r3 + x4 =1,
3:61 - To - T3 + 2584 = 73,
—x1 + 220 + 3x3 — x4 =4

was considered in Section 6.2. The sequence of operations (Fy—2FE;) — (E2), (E5—
3E) — (B3), (Ex—(=1)E1) — (E4), (B3 —4E2) — (E3), (Es— (=3)E2) — (Ea)
converts the system to one that has the upper triangular form

ry + X2 + 3ry =4,
— T2 — T3 — 5$4 = —7,
3:173 + 131‘4 = 13,
- 13z4y =-13.

Let U be the upper triangular matrix with these coefficients as its entries and L be
the lower triangular matrix with 1s along the diagonal and the multipliers my; as

6.5. MATRIX FACTORIZATION 321

entries below the diagonal. Then we have the factorization

1 1 0 3 0 0 1 1 0 3
2 1 -1 1 1 0O -1 -1 =5

0
A= B 0 o 0 3 13
1

1
2

3 -1 -1 2 3 4 =LU.
1 0 0 0 —13

_ o O

-1 2 3 -1 -3

o

This factorization permits us to easily solve any system involving the matrix A. For
example, to solve

1 0 0 O 1 1 0 3 T 8
2 1 0 0 0 -1 -1 -5 T2 | 7
3 4 1 0 0 0 3 13 g | | 14 |
-1 -3 0 1 0 0 0 —13 Ty =7
we first introduce the substitution y = Ux. Then Ly = b; that is,
1 0 0 O Y1 8
2 1 0 0 y2 | 7
3 410 ys | | 14
-1 -3 0 1 Ya -7
This system is solved for y by a simple forward substitution process:
Y1 - 87
201 +y2 = 7, s0 y2 = T—2y1=-9
3y1 +4ya +ys = 14, so y3 = 14—3y; —4y> =26
—y1—3y2+ys = -7, so ys = —T+y +3y2=-26.
We then solve Ux =y for x, the solution of the original system; that is,
1 1 0 3 T 8
0 -1 -1 -5 T2 | -9
0 0 3 13 x5 | 26
0 0 0 —13 Ty —26
Using backward substitution we obtain x4 =2, 23 =0, 2o = —1, 1 = 3. O

In the factorization of A = LU, we generate the first column of L and the first
row of U using the equations

liiuin = an
and, for each j =2,3,...,n,

a; ai;
l7‘1 = l and Uy = ﬁ
’ U11 ' I
For each i = 2,3,...,n — 1, we select the diagonal entries u;; and l;; and generate

the remaining entries in the ith column of L and the ith row of U. The required
equations are

i—1
lius; = ag; — E lirUpis
k=1

EXAMPLE 2

322 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

and, for each j =i+ 1,...,n,

1 i—1 1 i—1
lji = — |GQj; — lekuki and Uiy = 7= | Qi — Zlikukj .
Ui 1 lii 1

Finally, [,,, and u,,, are selected to satisfy

n—1

lnnunn = Unn — § lnkukn
k=1

A general procedure for factoring matrices into a product of triangular matrices
is performed in the program LUFACT64. Although new matrices L and U are
constructed, the values generated replace the corresponding entries of A that are
no longer needed. Thus, the new matrix has entries a;; = l;; for each i = 2,3,...,n
and j =1,2,...,i—1and a;; = u;j foreachi=1,2,...,nand j =i+1,i4+2,...,n.

The factorization is particularly useful when a number of linear systems involv-
ing A must be solved, since the bulk of the operations need to be performed only
once. To solve LUx = b, we first solve Ly = b for y. Since L is lower triangular,
we have

by

Y1 = —
I

and

i—1
1
yi:r[bi_ g ll-jy]}, for each i =2,3,...,n.
(x3 j_l

Once y is calculated by this forward substitution process, the upper triangular
system Ux =y is solved by backward substitution using the equations

n
n 1
Tp=-— and x;,=— |y;— g Ui T
Jj=i+1

In the previous discussion we assumed that A is such that a linear system of the
form Ax = b can be solved using Gaussian elimination that does not require row
interchanges. From a practical standpoint, this factorization is useful only when
row interchanges are not required to control the round-off error resulting from the
use of finite-digit arithmetic. Although many systems we encounter when using
approximation methods are of this type, factorization modifications must be made
when row interchanges are required. We begin the discussion with the introduction
of a class of matrices that are used to rearrange, or permute, rows of a given matrix.

An n x n permutation matrix P is a matrix with precisely one entry whose
value is 1 in each column and each row and all of whose other entries are 0.

The matrix

= o O
o = O

EXAMPLE 3

6.5. MATRIX FACTORIZATION 323

is a 3 x 3 permutation matrix. For any 3 x 3 matrix A, multiplying on the left by
P has the effect of interchanging the second and third rows of A:

10 0 a1 a2 a3 ai1 a2 a3
PA=1]0 0 1 az1 G2 a3 | = | az asx ass
010 az1 azz as3 az1 a2 a3

Similarly, multiplying on the right by P interchanges the second and third columns
of A. O

There are two useful properties of permutation matrices that relate to Gaussian
elimination. The first of these is illustrated in the previous example and states that
if k1,...,k, is a permutation of the integers 1,...,n and the permutation matrix

P = [p;;] is defined by
1, if j=k
Dij =

0, otherwise,

then
Qg1 Qky,2 "0 Qkyn
Aky,1 Qky,2 "7 Qkon
PA= ,
Q.1 Ok, 2 e Ak, .n

The second is that if P is a permutation matrix, then P~' exists and P~ = P?.

Since a7 = 0, the matrix

0 1 -1 1
1 1 -1 2
A=1_0 49 1 0
1 2 0 2

does not have an LU factorization. However, using the row interchange (Fp) <
(E3), followed by (E3 + E1) — E3 and (Ey — Ey) — Ey4, produces

11 -1 2
01 -1 1
0 0 0 2
0 1 1 0

Then the row interchange (E3) < (Ej,), followed by (E3 — Es) — Ej, gives the
matrix

11 -1 2
0 1 -1 1
U= 0 0 2 -1
0 0 0 2

324 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

The permutation matrix associated with the row interchanges (F1) < (E2) and
(E3) < (Ea) is

01 0 O
10 0 0
P= 0 0 0 1
0 010
Gaussian elimination can be performed on PA without row interchanges to give

the LU factorization

1 0 0 O 1 1 -1 =2
0 1 0 0 0 1 -1 1
PA= 1 1 1 0 0 0 2 -1 =LU.
-1 0 0 1 00 O 2
So
0O 1 0 0 1 1 -1 2
I o el 10000 01 -1 1
A=P L) =PULO)=(PDU=| | o o 11100 o 1 O
1 1 1 0 0 0 0 2

Maple has the command LUdecomp to compute a factorization of the form A =
PLU of the matrix A. If the matrix A has been created, the function call

>U:=LUdecomp(A,P="G’ ,L="H’);

returns the upper triangular matrix U as the value of the function and returns the
lower triangular matrix L in H and the permutation matrix P in G.

6.5. MATRIX FACTORIZATION

EXERCISE SET 6.5

1. Solve the following linear systems.

1 0
(a) 2 1
| -1 0
2 0
b) | -1 1
| 3 2

0
0
1

0
0
-1

0

3 —1 T1

2 1 xTo =
0 3 T3

1 1 T

1 2 T2 =
0 1 I3

325

2. Factor the following matrices into the LU decomposition with [;; = 1 for all

0

1.5
-3
-2

—
o
~

N O =N

2.1756
—4.0231
(d) —1.0000
6.0235

3. Obtain factorizations of the form A = P!LU for the following matrices.

0
(a) A=| 1
| 0
[1
(© A=
|1

0
0
0.
1

1

-2
—6

1
—2

5

_— o o o

4.0231

6.0000
—5.2107
7.0000

N =~ © W

(b)
~2.1732 5.1967
0 1.1973
L1111 0
0 —4.1561

1.012
—2.132
3.104

[N

[e e

—2.132
4.096
—7.013

W N W W

w

3.104

—7.013

0
1
-2
-1

0.014

4. Suppose A = P'LU, where P is a permutation matrix, L is a lower-triangular
matrix with 1s on the diagonal, and U is an upper-triangular matrix.

(a) Count the number of operations needed to compute P'LU for a given

matrix A.

326 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(b) Show that if P contains k row interchanges, then

det P = det P! = (—1)*.

(c) Use det A = det P*det LdetU = (—1)*detU to count the number of
operations for determining det A by factoring.

(d) Compute det A and count the number of operations when

— =W =N N

— W N = W

N OO N
|

O UL~ O W

1
-1
1
—4
1
2

EXAMPLE 1

6.6. TECHNIQUES FOR SPECIAL MATRICES 327

6.6 Techniques for Special Matrices

Although this chapter has been concerned primarily with the effective application of
Gaussian elimination for finding the solution to a linear system of equations, many
of the results have wider application. It might be said that Gaussian elimination is
the hub about which the chapter revolves, but the wheel itself is of equal interest
and has application in many forms in the study of numerical methods. In this
section we consider some matrices that are of special types, forms that will be used
in other chapters of the book.
The n x n matrix A is said to be strictly diagonally dominant when

n
|aii| > |aij]
J

=1

J=1,
J#i
holds for each i = 1,2,...,n.
Consider the matrices
7T 2 0 6 4 -3
A=1|3 5 -1 and B = 4 -2 0
0 5 —6 -3 0 1

The nonsymmetric matrix A is strictly diagonally dominant, since |7| > |2| + [0],
[5] > |3] + |—1|, and |—6] > |0|] + |5|. The symmetric matrix B is not strictly
diagonally dominant, because, for example, in the first row the absolute value of
the diagonal element is |6] < |4| + |—3| = 7. It is interesting to note that A* is not
strictly diagonally dominant, since the middle row of A’ is 2 5 5, nor, of course, is
Bt since B! = B. U

[Strictly Diagonally Dominant Matrices] A strictly diagonally dominant ma-
trix A has an inverse. Moreover, in this case, Gaussian elimination can be
performed on any linear system of the form Ax = b to obtain its unique so-
lution without row or column interchanges, and the computations are stable
with respect to the growth of round-off error.

A matrix A is positive definite if it is symmetric and if x!Ax > 0 for every
n-dimensional column vector x # 0. Using the definition to determine whether a
matrix is positive definite can be difficult. Fortunately, there are more easily verified
criteria for identifying members that are and are not of this important class.

328

CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

[Positive Definite Matrix Properties] If A is an n X n positive definite matrix,
then

(i) A has an inverse;

(ii) a;; > 0 for each i =1,2,....m;

(iif) maxi<g j<n [ar;| < maxi<icn |ail;
)

(iV (a,;j)z < QA4 for each 7& 7.

Our definition of positive definite requires the matrix to be symmetric, but

not all authors make this requirement. For example, Golub and Van Loan [GV], a
standard reference in matrix methods, requires only that x! Ax > 0 for each nonzero
vector x. Matrices we call positive definite are called symmetric positive definite in
[GV]. Keep this discrepancy in mind if you are using material from other sources.

The next result parallels the strictly diagonally dominant results presented pre-

viously.

[Positive Definite Matrix Equivalences] The following are equivalent for any
n X n symmetric matrix A:

(i) A is positive definite.

(ii) Gaussian elimination without row interchanges can be performed on
the linear system Ax = b with all pivot elements positive. (This ensures
that the computations are stable with respect to the growth of round-off
error.)

(iii) A can be factored in the form LL!, where L is lower triangular with
positive diagonal entries.

(iv) A can be factored in the form LDL!, where L is lower triangular with
1s on its diagonal and D is a diagonal matrix with positive diagonal

entries.
(v) For each i=1,2,...,n, we have
air aiz - Qi
a21 Qg2 - A2

det . . . > 0.

6.6. TECHNIQUES FOR SPECIAL MATRICES 329

Maple also has a useful command to determine the positive definiteness of a
matrix. The command

>definite(A,positive_def);

returns true or false as an indication. Consistent with our definition, symmetry is
required for a true result to be produced.

The factorization in part (iv) can be obtained by Choleski’s factorization method.
Set l11 = y/a11 and generate the remainder of the first column of L using the equa-
tion

a;i .
lj1 = T for each j =2,3,...,n.
11

For each i = 2,3,...,n — 1, determine the ith column of L by

i—1 1/2
k=1

Ly

and, foreach j =i+ 1,14+ 2,...,n,
by

i—1
1
l]‘i = E (aji — kz_lljklik> .

Finally,

lnn

n—1 1/2
< S zgk> |
k=1

These equations can be derived by writing out the system associated with A = LL!.
Choleski’s method gives the LL! factorization and can be implemented using the
program CHOLFCG65.

The Choleski factorization of A is computed in Maple using the statement
>L:=cholesky(A);

In a similar manner to the general LU factorization, the factorization A = LDL!
uses the equations dq = a11 and lj1 = aj1/d;y for each j = 2.3,...,n, to generate

the first column of L. For each i = 2,3,...,n — 1, compute d; and the ith column
of L as follows:

i—1
§ : 2

di = Q4; — Zijdj
Jj=1

and

i—1
1
lip = € laji -];ljklikdk]

EXAMPLE 2

330 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS
for each j =i+ 1,74 2,...,n. The last entry in D is
n—1
dy = ann — Y 17;d;.
j=1
The LDL! factorization can be accomplished with the program LDLFCT66.

The matrix

4 -1 1
A=| -1 4.25 2.75
1 2.75 3.5

is positive definite. The factorization LDL! of A is

1 0 0 4 0 0 1 -0.25 0.25
A=LDL'=| -0.25 1 0 0 4 0 0 1 0.75 |,
0.25 075 1 0 01 0 0 1

and Choleski’s method produces the factorization

2 0 0 2 —-05 05
A=LL'=| -05 2 0 0 2 1.5 . O
05 15 1 0 0 1

We can solve the linear system Ax = b when A is positive definite by using
Choleski’s method to factor A into the form LL!. Then LL'x = y, and to solve
this system we first let y = L'x. The linear system Ly = b is solved using forward
substitution, as

by

n o=
Iy

and, for i =2,3,...,n,
1
Yi = o b; — E lijy;

Then the solution to the original system is obtained by using backward substi-
tution to solve L'x = y with the equations

x Yn
" lnn
and, fori=n—1,n—-2,...,1,
- u- 2
Ty = . Yi §ily |-

j=i+1

If Ax = b is to be solved and the factorization A = LDL' is known, then we
let y = DL!'x and solve the system Ly = b using forward substitution

y1 = by

6.6. TECHNIQUES FOR SPECIAL MATRICES 331

and, for i = 2,3,...,n,
i1
Yi =b; — Z Lijyj.
=1

The system Dz =y is solved as
Zi = =, foreacht=1,2,...,n.

d;

Then the system L'x = z is solved by backward substitution

Tn = Zn
and, fori=n—1,n—-2,...,1,
n
r, = Z;— E ljixj.
j=i+1

Any symmetric matrix A for which Gaussian elimination can be applied without
row interchanges can be factored into the form LDL?. In this general case, L is lower
triangular with 1’s on its diagonal, and D is the diagonal matrix with the Gaussian
elimination pivots on its diagonal. This result is widely applied, since symmetric
matrices are common and easily recognized.

The last matrices considered are band matrices. In many applications the band
matrices are also strictly diagonally dominant or positive definite. This combination
of properties is very useful.

An n x n matrix is called a band matrix if integers p and ¢, with 1 < p, ¢ < n,
exist with the property that a;; = 0 whenever p < j —i or ¢ <7 — j. The number
p describes the number of diagonals above, and including, the main diagonal on
which nonzero entries may lie. The number ¢ describes the number of diagonals
below, and including, the main diagonal on which nonzero entries may lie. The
bandwidth of the band matrix is w = p + ¢ — 1, which tells us how many of the
diagonals can contain n