

��������	
����
�����

����������	
�����
	����	����	����	�������������������������
������

�	������	�������	����	���������	
���������

��������������

	����		�����������	�������������	��	����	��	����	����������	�

��
	������
	��������������������	����	���������	��	����������	�����

������������
������	����������������	�����	��������������������	�

�����
��������������	�������������������������������������	�����

��
	�������������
������������	��� ������������������
���	
�������

!����������������	�������	������������	����	�������	��������������	�

���	���������������	�
	���������	�	
��������������	������	���������

	�����	������	����
�����
��	
	��������������������������������������

��	��	��	���������	�
	���������	�������	������
���	
�������������

��
���������������

�

��������
��������

"��#�������$���	�������%���	��������&���	
���������'����������(���	�

)���	�������*����	�	��������	�	����������	�������������
	����������������

����
���	
���������������#���$���	����������
����������������������

+�����������,���	�	�)���	�������	���	�����&���	
�������+����(������

���&--�./0012�����'����������(���	�)���	�������#����������	��

%���	����������	�������./003�/0012��

�

��������4��5���	�������%���	��������&���	
���������'����������(���	�

)���	�������*����	�	��������	�	����������	���
	���������	������	��������

��
	������������������������������	�	������	�����������

• �������
���167����	���

• �������
���5������,��	8�9�	�������."��	�/:��;77;2��

• �������
��<��������

• ���������739667=1/=��

• ������ ��0=:�739667=1/;��

Contents

Preface . ix

1 Mathematical Preliminaries and Error Analysis 1
1.1 Introduction . 1
1.2 Review of Calculus . 1
1.3 Round-off Error and Computer Arithmetic 17
1.4 Errors in Scientific Computation . 25
1.5 Computer Software . 34

2 Solutions of Equations of One Variable 39
2.1 Introduction . 39
2.2 The Bisection Method . 39
2.3 The Secant Method . 47
2.4 Newton’s Method . 55
2.5 Error Analysis and Accelerating Convergence 64
2.6 Müller’s Method . 70
2.7 Survey of Methods and Software . 77

3 Interpolation and Polynomial Approximation 79
3.1 Introduction . 79
3.2 Lagrange Polynomials . 81
3.3 Divided Differences . 95
3.4 Hermite Interpolation . 104
3.5 Spline Interpolation . 111
3.6 Parametric Curves . 124
3.7 Survey of Methods and Software . 131

4 Numerical Integration and Differentiation 133
4.1 Introduction . 133
4.2 Basic Quadrature Rules . 134
4.3 Composite Quadrature Rules . 144
4.4 Romberg Integration . 155
4.5 Gaussian Quadrature . 164
4.6 Adaptive Quadrature . 170

i

ii CONTENTS

4.7 Multiple Integrals . 178
4.8 Improper Integrals . 191
4.9 Numerical Differentiation . 198
4.10 Survey of Methods and Software . 210

5 Numerical Solution of Initial-Value Problems 213
5.1 Introduction . 213
5.2 Taylor Methods . 216
5.3 Runge-Kutta Methods . 229
5.4 Predictor-Corrector Methods . 239
5.5 Extrapolation Methods . 248
5.6 Adaptive Techniques . 255
5.7 Methods for Systems of Equations 265
5.8 Stiff Differential Equations . 277
5.9 Survey of Methods and Software . 283

6 Direct Methods for Solving Linear Systems 285
6.1 Introduction . 285
6.2 Gaussian Elimination . 285
6.3 Pivoting Strategies . 298
6.4 Linear Algebra and Matrix Inversion 307
6.5 Matrix Factorization . 320
6.6 Techniques for Special Matrices . 327
6.7 Survey of Methods and Software . 337

7 Iterative Methods for Solving Linear Systems 339
7.1 Introduction . 339
7.2 Convergence of Vectors . 340
7.3 Eigenvalues and Eigenvectors . 350
7.4 The Jacobi and Gauss-Seidel Methods 358
7.5 The SOR Method . 365
7.6 Error Bounds and Iterative Refinement 371
7.7 The Conjugate Gradient Method . 379
7.8 Survey of Methods and Software . 394

8 Approximation Theory 397
8.1 Introduction . 397
8.2 Discrete Least Squares Approximation 397
8.3 Continuous Least Squares Approximation 408
8.4 Chebyshev Polynomials . 417
8.5 Rational Function Approximation . 424
8.6 Trigonometric Polynomial Approximation 431
8.7 Fast Fourier Transforms . 438
8.8 Survey of Methods and Software . 444

CONTENTS iii

9 Approximating Eigenvalues 445

9.1 Introduction . 445

9.2 Isolating Eigenvalues . 445

9.3 The Power Method . 453

9.4 Householder’s Method . 467

9.5 The QR Method . 473

9.6 Survey of Methods and Software . 481

10 Solutions of Systems of Nonlinear Equations 483

10.1 Introduction . 483

10.2 Newton’s Method for Systems . 486

10.3 Quasi-Newton Methods . 497

10.4 The Steepest Descent Method . 505

10.5 Homotopy and Continuation Methods 512

10.6 Survey of Methods and Software . 521

11 Boundary-Value Problems for Ordinary Differential Equations 523

11.1 Introduction . 523

11.2 The Linear Shooting Method . 524

11.3 Linear Finite Difference Methods . 531

11.4 The Nonlinear Shooting Method . 540

11.5 Nonlinear Finite-Difference Methods 547

11.6 Variational Techniques . 552

11.7 Survey of Methods and Software . 568

12 Numerical Methods for Partial-Differential Equations 571

12.1 Introduction . 571

12.2 Finite-Difference Methods for Elliptic Problems 573

12.3 Finite-Difference Methods for Parabolic Problems 583

12.4 Finite-Difference Methods for Hyperbolic Problems 598

12.5 Introduction to the Finite-Element Method 607

12.6 Survey of Methods and Software . 623

Bibliography . 627

Answers for Numerical Methods . 633

Index . 755

NUMERICAL METHODS

THIRD EDITION

Doug Faires and Dick Burden

PREFACE

The teaching of numerical approximation techniques to undergraduates is done in a

variety of ways. The traditional Numerical Analysis course emphasizes both the approxi-

mation methods and the mathematical analysis that produces them. A Numerical Methods

course is more concerned with the choice and application of techniques to solve problems

in engineering and the physical sciences than with the derivation of the methods.

The books used in the Numerical Methods courses differ widely in both intent and

content. Sometimes a book written for Numerical Analysis is adapted for a Numerical

Methods course by deleting the more theoretical topics and derivations. The advantage

of this approach is that the leading Numerical Analysis books are mature; they have been

through a number of editions, and they have a wealth of proven examples and exercises.

They are also written for a full year coverage of the subject, so they have methods that

can be used for reference, even when there is not sufficient time for discussing them in

the course. The weakness of using a Numerical Analysis book for a Numerical Methods

course is that material will need to be omitted, and students might then have difficulty

distinguishing what is important from what is tangential.

The second type of book used for a Numerical Methods course is one that is specifi-

cally written for a service course. These books follow the established line of service-oriented

mathematics books, similar to the technical calculus books written for students in busi-

ness and the life sciences, and the statistics books designed for students in economics,

psychology, and business. However, the engineering and science students for whom the

Numerical Methods course is designed have a much stronger mathematical background

than students in other disciplines. They are quite capable of mastering the material in a

Numerical Analysis course, but they do not have the time for, nor, often, the interest in,

i

the theoretical aspects of such a course. What they need is a sophisticated introduction

to the approximation techniques that are used to solve the problems that arise in science

and engineering. They also need to know why the methods work, what type of error to

expect, and when a method might lead to difficulties. Finally, they need information,

with recommendations, regarding the availability of high quality software for numerical

approximation routines. In such a course the mathematical analysis is reduced due to a

lack of time, not because of the mathematical abilities of the students.

The emphasis in this Numerical Methods book is on the intelligent application of ap-

proximation techniques to the type of problems that commonly occur in engineering and

the physical sciences. The book is designed for a one semester course, but contains at

least 50% additional material, so instructors have flexibility in topic coverage and students

have a reference for future work. The techniques covered are essentially the same as those

included in our book designed for the Numerical Analysis course (See [BF], Burden and

Faires, Numerical Analysis, Seventh Edition, 2001, Brooks/Cole Publishing.) However,

the emphasis in the two books is quite different. In Numerical Analysis, a book with

about 800 text pages, each technique is given a mathematical justification before the im-

plementation of the method is discussed. If some portion of the justification is beyond

the mathematical level of the book, then it is referenced, but the book is, for the most

part, mathematically self-contained. In this Numerical Methods book, each technique is

motivated and described from an implementation standpoint. The aim of the motivation

is to convince the student that the method is reasonable both mathematically and com-

putationally. A full mathematical justification is included only if it is concise and adds to

the understanding of the method.

In the past decade a number of software packages have been developed to produce

symbolic mathematical computations. Predominant among them are DERIVE, Maple,

Mathematica and Matlab. There are versions of the software packages for most common

computer systems and student versions are available at reasonable prices. Although there

are significant differences among the packages, both in performance and price, they all can

perform standard algebra and calculus operations. Having a symbolic computation package

available can be very useful in the study of approximation techniques. The results in most

ii

of our examples and exercises have been generated using problems for which exact values

can be determined, since this permits the performance of the approximation method to be

monitored. Exact solutions can often be obtained quite easily using symbolic computation.

We have chosen Maple as our standard package, and have added examples and ex-

ercises whenever we felt that a computer algebra system would be of significant benefit.

In addition, we have discussed the approximation methods that Maple employs when it is

unable to solve a problem exactly. The Maple approximation methods generally parallel

the methods that are described in the text.

Software is included with and is an integral part of this Numerical Methods book, and

a program disk is included with the book. For each method discussed in the text the disk

contains a program in C, FORTRAN, and Pascal, and a worksheet in Maple, Mathematica,

and Matlab. The programs permit students to generate all the results that are included

in the examples and to modify the programs to generate solutions to problems of their

choice. The intent of the software is to provide students with programs that will solve

most of the problems that they are likely to encounter in their studies.

Occasionally, exercises in the text contain problems for which the programs do not

give satisfactory solutions. These are included to illustrate the difficulties that can arise

in the application of approximation techniques and to show the need for the flexibility

provided by the standard general purpose software packages that are available for sci-

entific computation. Information about the standard general purpose software packages

is discussed in the text. Included are those in packages distributed by the International

Mathematical and Statistical Library (IMSL), those produced by the National Algorithms

Group (NAG), the specialized techniques in EISPACK and LINPACK, and the routines

in Matlab.

New for this Edition

This edition includes two new major additions. The Preconditioned Conjugate Gra-

dient method has been added to Chapter 7 to provide a more complete treatment of the

iii

numerical solution to linear systems of equations. It is presented as an iterative approxi-

mation technique for solving positive definite linear systems. In this form, it is particularly

useful for approximating the solution to large sparse linear systems.

In Chapter 10 we have added a section on Homotopy and Continuation methods.

These methods provide a distinctly different technique for approximating the solutions to

nonlinear systems of equations, one that has attracted a great deal of recent attention.

We have also added extensive listings of Maple code throughout the book, since re-

viewers found this feature useful in the second edition. We have updated all the Maple

code to Release 8, the current version. Since versions of the symbolic computation software

are commonly released between editions of the book, we will post updated versions of the

Maple, Mathematica, and Matlab worksheets at the book website:

http://www.as.ysu.edu/∼faires/NumericalMethods3

when material in new versions of any the symbolic computation systems needs to be

modified. We will post additional information concerning the book at that site as well,

based on requests from those using the book.

Although the major changes in this edition may seem quite small, those familiar with

our past editions will find that virtually every page has been modified in some way. All

the references have been updated and revised, and new exercises have been added where

appropriate. We hope you will find these changes beneficial to the teaching and study

of Numerical Methods. These changes have been motivated by the presentation of the

material to our students and by comments from users of previous editions of the book.

A Student Solutions Manual is available with this edition. It includes solutions to

representative exercises, particularly those that extend the theory in the text. We have

included the first chapter of the Student Solutions Manual in Adobe Reader (PDF) format

at the book website so that students can determine if the Manual is likely to be sufficiently

useful to them to justify purchasing a copy.

The publisher can also provide instructors with a complete Instructor’s Manual that

provides solutions to all the exercises in the book. All the results in this Instructor’s

iv

Manual were regenerated for this edition using the programs on the disk. To further as-

sist instructors using the book, we plan to use the book website to prepare supplemental

material for the text, Student Solutions Manual, and Instructor’s Manual based on user re-

quests. Let us know how we can help you improve your course, we will try to accommodate

you.

The following chart shows the chapter dependencies in the book. We have tried to

keep the prerequisite material to a minimum to allow greater flexibility.

Chapter 6Chapter 2 Chapter 3

Chapter 7Chapter 10 Chapter 8

Chapter 9

Chapter 11

Chapter 12

Chapter 4 Chapter 5

Chapter 1

v

Note: All the pages numbers need to be revised.

Glossary of Notation

C(X) Set of all functions continuous on X 2
Cn(X) Set of all functions having n continuous derivatives on X 3
C∞(X) Set of all functions having derivatives of all orders on X 3
0.3 A decimal in which the numeral 3 repeats indefinitely 3
R Set of real numbers 9
fl(y) Floating-point form of the real number y 16
O(·) Order of convergence 23
∆ Forward difference 51
f [·] Divided difference of the function f 74(
n
k

)
The kth binomial coefficient of order n 76

∇ Backward difference 77
→ Equation replacement 238
↔ Equation interchange 238
(aij) Matrix with aij as the entry in the ith row and jth column 239
x Column vector or element of Rn 240
[A,b] Augmented matrix 240
δij Kronecker delta, 1 if i = j, 0 if i �= j 258
In n× n identity matrix 258
A−1 Inverse matrix of the matrix A 258
At Transpose matrix of the matrix A 261
Mij Minor of a matrix 261
detA Determinant of the matrix A 261
0 Vector with all zero entries 264
Rn Set of ordered n-tuples of real numbers 288
‖x‖ Arbitrary norm of the vector x 288
‖x‖2 The l2 norm of the vector x 288
‖x‖∞ The l∞ norm of the vector x 288
‖A‖ Arbitrary norm of the matrix A 292
‖A‖∞ The l∞ norm of the matrix A 292
‖A‖2 The l2 norm of the matrix A 293
ρ(A) The spectral radius of the matrix A 300
K(A) The condition number of the matrix A 316
Πn Set of all polynomials of degree n or less 334
Π̃n Set of all monic polynomials of degree n 343
Tn Set of all trigonometric polynomials of degree n or less 352
C Set of complex numbers 370
F Function mapping Rn into Rn 400
J(x) Jacobian matrix 403
∇g Gradient of the function g 418
C2

0 [0,1] Set of functions f in C2[0, 1] with f(0) = f(1) = 0 000

Trigonometry

y

x

(0, 1)

(1, 0)

P(t)

0
t

y

x

1

sin t = y cos t = x

tan t =
sin t
cos t

cot t =
cos t
sin t

sec t =
1

cos t
csc t =

1
sin t

(sin t)2 + (cos t)2 = 1

sin(t1 ± t2) = sin t1 cos t2 ± cos t1 sin t2

cos(t1 ± t2) = cos t1 cos t2 ∓ sin t1 sin t2

sin t1 sin t2 =
1
2
[cos(t1 − t2)− cos(t1 + t2)]

cos t1 cos t2 =
1
2
[cos(t1 − t2) + cos(t1 + t2)]

sin t1 cos t2 =
1
2
[sin(t1 − t2) + sin(t1 + t2)]

b

a g

a

b

c

Law of Sines:
sinα
α

=
sinβ
β

=
sin γ
γ

Law of Cosines: c2 = a2 + b2 − 2ab cos γ

Common Series

sin t =
∞∑

n=0

(−1)nt2n+1

(2n+ 1)!
= t− t3

3!
+
t5

5!
− · · ·

cos t =
∞∑

n=0

(−1)nt2n

(2n)!
= 1− t2

2!
+
t4

4!
− · · ·

et =
∞∑

n=0

tn

n!
= 1 + t+

t2

2!
+
t3

3!
+ · · ·

1
1− t =

∞∑
n=0

tn = 1 + t+ t2 + · · · , |t| < 1

The Greek Alphabet

Alpha A α Eta H η Nu N ν Tau T τ
Beta B β Theta Θ θ Xi Ξ ξ Upsilon Υ υ
Gamma Γ γ Iota I ι Omicron O o Phi Φ φ
Delta ∆ δ Kappa K κ Pi Π π Chi X χ
Epsilon E ε Lambda Λ λ Rho P ρ Psi Ψ ψ
Zeta Z ζ Mu M µ Sigma Σ σ Omega Ω ω

Note: All the pages numbers need to be revised.

Index of Programs

BISECT21 Bisection 33
SECANT22 Secant 38
FALPOS23 Method of False Position 40
NEWTON24 Newton-Raphson 44
MULLER25 Müller 55
NEVLLE31 Neville’s Iterated Interpolation 69
DIVDIF32 Newton’s Interpolatory

Divided-Difference 75
HERMIT33 Hermite Interpolation 85
NCUBSP34 Natural Cubic Spline 91
CCUBSP35 Clamped Cubic Spline 91
BEZIER36 Bézier Curve 104
CSIMPR41 Composite Simpson’s Rule 119
ROMBRG42 Romberg 131
ADAPQR43 Adaptive Quadrature 143
DINTGL44 Simpson’s Double Integral 152
DGQINT45 Gaussian Double Integral 152
TINTGL46 Gaussian Triple Integral 153
EULERM51 Euler 180
RKOR4M52 Runge-Kutta Order 4 194
PRCORM53 Adams Fourth-Order

Predictor-Corrector 203
EXTRAP54 Extrapolation 208
RKFVSM55 Runge-Kutta-Fehlberg 215
VPRCOR56 Adams Variable Step-Size

Predictor-Corrector 219
RKO4SY57 Runge-Kutta for Systems of

Differential Equations 222
TRAPNT58 Trapezoidal with Newton

Iteration 233
GAUSEL61 Gaussian Elimination with

Backward Substitution 245
GAUMPP62 Gaussian Elimination with

Partial Pivoting 251
GAUSPP63 Gaussian Elimination with

Scaled Partial Pivoting 252
LUFACT64 LU Factorization 271

CHOLFC65 Choleski 277
LDLFCT66 LDLt Factorization 277
CRTRLS67 Crout Reduction for Tridiagonal

Linear Systems 281
JACITR71 Jacobi Iterative 306
GSEITR72 Gauss-Seidel Iterative 308
SORITR73 Successive-Order-Relaxation

(SOR) 310
ITREF74 Iterative Refinement 317
PCCGRD75 Preconditioned Conjugate Gradient 000
PADEMD81 Padé Rational Approximation 348
FFTRNS82 Fast Fourier Transform 362
POWERM91 Power Method 374
SYMPWR92 Symmetric Power Method 376
INVPWR93 Inverse Power Method 380
WIEDEF94 Wielandt Deflation 381
HSEHLD95 Householder 388
QRSYMT96 QR 394
NWTSY101 Newton’s Method for Systems 404
BROYM102 Broyden 413
STPDC103 Steepest Descent 419
CONT104 Continuation 000
LINST111 Linear Shooting 427
LINFD112 Linear Finite-Difference 434
NLINS113 Nonlinear Shooting 442
NLFDM114 Nonlinear Finite-Difference 446
PLRRG115 Piecewise Linear Rayleigh-Ritz 455
CSRRG116 Cubic Spline Rayleigh-Ritz 460
POIFD121 Poisson Equation

Finite-Difference 475
HEBDM122 Heat Equation

Backward-Difference 484
HECNM123 Crank-Nicolson 488
WVFDM124 Wave Equation

Finite-Difference 496
LINFE125 Finite-Element 509

Chapter 1

Mathematical Preliminaries
and Error Analysis

1.1 Introduction

This book examines problems that can be solved by methods of approximation,
techniques we call numerical methods. We begin by considering some of the math-
ematical and computational topics that arise when approximating a solution to a
problem.

Nearly all the problems whose solutions can be approximated involve continuous
functions, so calculus is the principal tool to use for deriving numerical methods
and verifying that they solve the problems. The calculus definitions and results
included in the next section provide a handy reference when these concepts are
needed later in the book.

There are two things to consider when applying a numerical technique to solve
a problem. The first and most obvious is to obtain the approximation. The equally
important second objective is to determine a safety factor for the approximation:
some assurance, or at least a sense, of the accuracy of the approximation. Sections
1.3 and 1.4 deal with a standard difficulty that occurs when applying techniques
to approximate the solution to a problem: Where and why is computational error
produced and how can it be controlled?

The final section in this chapter describes various types and sources of mathe-
matical software for implementing numerical methods.

1.2 Review of Calculus

The limit of a function at a specific number tells, in essence, what the function
values approach as the numbers in the domain approach the specific number. This
is a difficult concept to state precisely. The limit concept is basic to calculus, and the
major developments of calculus were discovered in the latter part of the seventeenth
century, primarily by Isaac Newton and Gottfried Leibnitz. However, it was not

1

2CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

until 200 years later that Augustus Cauchy, based on work of Karl Weierstrass,
first expressed the limit concept in the form we now use.

We say that a function f defined on a set X of real numbers has the limit L at
x0, written limx→x0 f(x) = L, if, given any real number ε > 0, there exists a real
number δ > 0 such that |f(x)− L| < ε whenever 0 < |x− x0| < δ. This definition
ensures that values of the function will be close to L whenever x is sufficiently close
to x0. (See Figure 1.1.)

Figure 1.1

x

f (x)

L 1 e

L 2 e
L

x0 2 d x0 1 dx0

f

A function is said to be continuous at a number in its domain when the limit
at the number agrees with the value of the function at the number. So, a function
f is continuous at x0 if limx→x0 f(x) = f(x0), and f is continuous on the set
X if it is continuous at each number in X. We use C(X) to denote the set of all
functions that are continuous on X. When X is an interval of the real line, the
parentheses in this notation are omitted. For example, the set of all functions that
are continuous on the closed interval [a, b] is denoted C[a, b].

The limit of a sequence of real or complex numbers is defined in a similar manner.
An infinite sequence {xn}∞n=1 converges to a number x if, given any ε > 0, there
exists a positive integer N(ε) such that |xn − x| < ε whenever n > N(ε). The
notation limn→∞ xn = x, or xn → x as n→∞, means that the sequence {xn}∞n=1

converges to x.

[Continuity and Sequence Convergence] If f is a function defined on a set X
of real numbers and x0 ∈ X, then the following are equivalent:

a. f is continuous at x0;

b. If {xn}∞n=1 is any sequence in X converging to x0, then

lim
n→∞ f(xn) = f(x0).

1.2. REVIEW OF CALCULUS 3

All the functions we will consider when discussing numerical methods will be
continuous since this is a minimal requirement for predictable behavior. Functions
that are not continuous can skip over points of interest, which can cause difficul-
ties when we attempt to approximate a solution to a problem. More sophisticated
assumptions about a function generally lead to better approximation results.For
example, a function with a smooth graph would normally behave more predictably
than one with numerous jagged features. Smoothness relies on the concept of the
derivative.

If f is a function defined in an open interval containing x0, then f is differen-
tiable at x0 when

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

exists. The number f ′(x0) is called the derivative of f at x0. The derivative of f
at x0 is the slope of the tangent line to the graph of f at (x0, f(x0)), as shown in
Figure 1.2.

Figure 1.2

x

y

y 5 f (x)(x0, f (x0))
 f (x0)

x0

Tangent line, slope f 9(x0)

A function that has a derivative at each number in a set X is differentiable
on X. Differentiability is a stronger condition on a function than continuity in the
following sense.

[Differentiability Implies Continuity] If the function f is differentiable at x0,
then f is continuous at x0.

The set of all functions that have n continuous derivatives on X is denoted
Cn(X), and the set of functions that have derivatives of all orders on X is de-
noted C∞(X). Polynomial, rational, trigonometric, exponential, and logarithmic

4CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

functions are in C∞(X), where X consists of all numbers at which the function is
defined.

The next results are of fundamental importance in deriving methods for error
estimation. The proofs of most of these can be found in any standard calculus text.

[Mean Value Theorem] If f ∈ C[a, b] and f is differentiable on (a, b), then a
number c in (a, b) exists such that (see Figure 1.3)

f ′(c) =
f(b)− f(a)

b− a .

Figure 1.3

y

xa bc

Slope f 9(c)

Parallel lines

Slope
b 2 a

f (b) 2 f (a)

y 5 f (x)

The following result is frequently used to determine bounds for error formulas.

[Extreme Value Theorem] If f ∈ C[a, b], then c1 and c2 in [a, b] exist with
f(c1) ≤ f(x) ≤ f(c2) for all x in [a, b]. If, in addition, f is differentiable on
(a, b), then the numbers c1 and c2 occur either at endpoints of [a, b] or where
f ′ is zero.

As mentioned in the preface, we will use the computer algebra system Maple
whenever appropriate. We have found this package to be particularly useful for
symbolic differentiation and plotting graphs. Both techniques are illustrated in Ex-
ample 1.

1.2. REVIEW OF CALCULUS 5

EXAMPLE 1 Use Maple to find maxa≤x≤b |f(x)| for

f(x) = 5 cos 2x− 2x sin 2x,

on the intervals [1, 2] and [0.5, 1].
We will first illustrate the graphing capabilities of Maple. To access the graphing

package, enter the command

>with(plots);

A list of the commands within the package are then displayed. We define f by
entering

>f:= 5*cos(2*x)-2*x*sin(2*x);

The response from Maple is

f := 5 cos(2x)− 2x sin(2x)

To graph f on the interval [0.5, 2], use the command

>plot(f,x=0.5..2);

We can determine the coordinates of a point of the graph by moving the mouse
cursor to the point and clicking the left mouse button. The coordinates of the point
to which the cursor is pointing appear in the white box at the upper left corner of
the Maple screen, as shown in Figure 1.4. This technique is useful for estimating
the axis intercepts and extrema of functions.

Figure 1.4

6CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

We complete the example using the Extreme Value Theorem. First, consider
the interval [1, 2]. To obtain the first derivative, g = f ′, we enter

>g:=diff(f,x);

Maple returns
g := −12 sin(2x)− 4x cos(2x)

We can then solve g(x) = 0 for 1 ≤ x ≤ 2 with the statement

>fsolve(g,x,1..2);

obtaining 1.358229874, and compute f(1.358229874) = −5.675301338 using

>evalf(subs(x=1.358229874,f));

This implies that we have a minimum of approximately f(1.358229874) = −5.675301338.
What we will frequently need is the maximum magnitude that a function can

attain on an interval. This maximum magnitude will occur at a critical point or at

1.2. REVIEW OF CALCULUS 7

an endpoint. Since f(1) = −3.899329037 and f(2) = −0.241008124, the maximum
magnitude occurs at the critical point and

max
1≤x≤2

|f(x)| = max
1≤x≤2

|5 cos 2x− 2x sin 2x| ≈ |f(1.358229874)| = 5.675301338.

If we try to solve g(x) = 0 for 0.5 ≤ x ≤ 1, we find that when we enter

>fsolve(g,x,0.5..1);

Maple responds with

fsolve(−12 sin(2x)− 4x cos(2x), x, .5..1)

This indicates that Maple could not find a solution in [0.5, 1], for the very good
reason that there is no solution in this interval. As a consequence, the maximum
occurs at an endpoint on the interval [0.5, 1]. Since f(0.5) = 1.860040545 and
f(1) = −3.899329037, we have

max
0.5≤x≤1

|f(x)| = max
0.5≤x≤1

|5 cos 2x− 2x sin 2x| = |f(1)| = 3.899329037.

The integral is the other basic concept of calculus that is used extensively. The
Riemann integral of the function f on the interval [a, b] is the following limit,
provided it exists.

∫ b

a

f(x) dx = lim
max ∆xi→0

n∑
i=1

f(zi) ∆xi,

where the numbers x0, x1, . . . , xn satisfy a = x0 < x1 < · · · < xn = b and where
∆xi = xi− xi−1, for each i = 1, 2, . . . , n, and zi is arbitrarily chosen in the interval
[xi−1, xi].

A function f that is continuous on an interval [a, b] is also Riemann integrable
on [a, b]. This permits us to choose, for computational convenience, the points xi

to be equally spaced in [a, b] and for each i = 1, 2, . . . , n, to choose zi = xi. In this
case ∫ b

a

f(x) dx = lim
n→∞

b− a
n

n∑
i=1

f(xi),

where the numbers shown in Figure 1.5 as xi are xi = a+ (i(b− a)/n).

Figure 1.5

8CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

y

x

y 5 f (x)

a 5 x0 x1 x2 xi21 xi xn21 b 5 xn.

Two more basic results are needed in our study of numerical methods. The first
is a generalization of the usual Mean Value Theorem for Integrals.

[Mean Value Theorem for Integrals] If f ∈ C[a, b], g is integrable on [a, b] and
g(x) does not change sign on [a, b], then there exists a number c in (a, b) with

∫ b

a

f(x)g(x) dx = f(c)
∫ b

a

g(x) dx.

When g(x) ≡ 1, this result reduces to the usual Mean Value Theorem for Inte-
grals. It gives the average value of the function f over the interval [a, b] as

f(c) =
1

b− a
∫ b

a

f(x) dx.

(See Figure 1.6.)
Figure 1.6

x

y

 f (c)

y f (x)

a bc

The next theorem presented is the Intermediate Value Theorem. Although its
statement is not difficult, the proof is beyond the scope of the usual calculus course.

1.2. REVIEW OF CALCULUS 9

[Intermediate Value Theorem] If f ∈ C[a, b] and K is any number between
f(a) and f(b), then there exists a number c in (a, b) for which f(c) = K.
(Figure 1.7 shows one of the three possibilities for this function and interval.)

Figure 1.7

x

y

 f (a)

 f (b)

y 5 f (x)

K

(a, f (a))

(b, f (b))

a bc

EXAMPLE 2 To show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in the interval [0, 1], consider
f(x) = x5 − 2x3 + 3x2 − 1. We have

f(0) = −1 < 0 and 0 < 1 = f(1),

and f is continuous. Hence, the Intermediate Value Theorem implies a number x
exists, with 0 < x < 1, for which x5 − 2x3 + 3x2 − 1 = 0.

As seen in Example 2, the Intermediate Value Theorem is used to help determine
when solutions to certain problems exist. It does not, however, give an efficient
means for finding these solutions. This topic is considered in Chapter 2.

The final theorem in this review from calculus describes the development of
the Taylor polynomials. The importance of the Taylor polynomials to the study
of numerical analysis cannot be overemphasized, and the following result is used
repeatedly.

10CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

[Taylor’s Theorem] Suppose f ∈ Cn[a, b] and f (n+1) exists on [a, b]. Let x0 be
a number in [a, b]. For every x in [a, b], there exists a number ξ(x) between
x0 and x with

f(x) = Pn(x) +Rn(x),

where

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)
n!

(x− x0)
n

=
n∑

k=0

f (k)(x0)
k!

(x− x0)
k

and

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1
.

Here Pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x)
is called the truncation error (or remainder term) associated with Pn(x). Since
the number ξ(x) in the truncation error Rn(x) depends on the value of x at which
the polynomial Pn(x) is being evaluated, it is actually a function of the variable x.
However, we should not expect to be able to explicitly determine the function ξ(x).
Taylor’s Theorem simply ensures that such a function exists, and that its value lies
between x and x0. In fact, one of the common problems in numerical methods is
to try to determine a realistic bound for the value of f (n+1)(ξ(x)) for values of x
within some specified interval.

The infinite series obtained by taking the limit of Pn(x) as n → ∞ is called
the Taylor series for f about x0. In the case x0 = 0, the Taylor polynomial is
often called a Maclaurin polynomial, and the Taylor series is called a Maclaurin
series.

The term truncation error in the Taylor polynomial refers to the error involved
in using a truncated (that is, finite) summation to approximate the sum of an
infinite series.

EXAMPLE 3 Determine (a) the second and (b) the third Taylor polynomials for f(x) = cosx
about x0 = 0, and use these polynomials to approximate cos(0.01). (c) Use the
third Taylor polynomial and its remainder term to approximate

∫ 0.1

0
cosx dx.

Since f ∈ C∞(IR), Taylor’s Theorem can be applied for any n ≥ 0. Also,

f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, and f (4)(x) = cosx,

so
f(0) = 1, f ′(0) = 0, f ′′(0) = −1, and f ′′′(0) = 0.

1.2. REVIEW OF CALCULUS 11

a.For n = 2 and x0 = 0, we have

cosx = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(ξ(x))
3!

x3

= 1− 1
2
x2 +

1
6
x3 sin ξ(x),

where ξ(x) is some (unknown) number between 0 and x. (See Figure 1.8.)

Figure 1.8

y

x

y 5 cos x

y 5 P2(x) 5 1 2 qx2

1

2q q

2p p

When x = 0.01, this becomes

cos 0.01 = 1− 1
2
(0.01)2 +

1
6
(0.01)3 sin ξ(0.01) = 0.99995 +

10−6

6
sin ξ(0.01).

The approximation to cos 0.01 given by the Taylor polynomial is therefore
0.99995. The truncation error, or remainder term, associated with this ap-
proximation is

10−6

6
sin ξ(0.01) = 0.16× 10−6 sin ξ(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats
indefinitely. Although we have no way of determining sin ξ(0.01), we know
that all values of the sine lie in the interval [−1, 1], so the error occurring if
we use the approximation 0.99995 for the value of cos 0.01 is bounded by

| cos(0.01)− 0.99995| = 0.16× 10−6 sin ξ(0.01) ≤ 0.16× 10−6.

Hence the approximation 0.99995 matches at least the first five digits of
cos 0.01. Using standard tables we find that cos 0.01 = 0.99995000042, so the
approximation actually gives agreement through the first nine digits.
The error bound is much larger than the actual error. This is due in part to
the poor bound we used for |sin ξ(x)|.

12CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

It can be shown that or all values of x, we have |sinx| ≤ |x|. Since 0 < ξ(x) <
0.01, we could have used the fact that |sin ξ(x)| ≤ 0.01 in the error formula,
producing the bound 0.16× 10−8.

b.Since f ′′′(0) = 0, the third Taylor polynomial and remainder term about
x0 = 0 are

cosx = 1− 1
2
x2 +

1
24
x4 cos ξ̃(x),

where ξ̃(x) is some number between 0 and x, and likely distinct from the
value of ξ(x) that is associated with the remainder term of the second Taylor
polynomial.
Notice that the second and third Taylor polynomials are the same, so the
approximation to cos 0.01 is still 0.99995. However, we now have a much better
accuracy assurance. Since |cos ξ̃(x)| ≤ 1 for all x, when x = 0.01 we have

∣∣∣∣
1
24
x4 cos ξ̃(x)

∣∣∣∣ ≤
1
24

(0.01)4(1) ≈ 4.2× 10−10.

The first two parts of the example illustrate the two objectives of numerical
analysis:

(i)Find an approximation to the solution of a given problem.
(ii)Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the
third Taylor polynomial gave a much better answer to (ii) than the second
Taylor polynomial.

c.Using the third Taylor polynomial gives
∫ 0.1

0

cosx dx =
∫ 0.1

0

(
1− 1

2
x2

)
dx+

1
24

∫ 0.1

0

x4 cos ξ̃(x) dx

=
[
x− 1

6
x3

]0.1

0

+
1
24

∫ 0.1

0

x4 cos ξ̃(x) dx

= 0.1− 1
6
(0.1)3 +

1
24

∫ 0.1

0

x4 cos ξ̃(x) dx.

Therefore, ∫ 0.1

0

cosx dx ≈ 0.1− 1
6
(0.1)3 = 0.09983.

A bound for the error in this approximation is determined from the integral
of the Taylor remainder term and the fact that |cos ξ̃(x)| ≤ 1 for all x:

1
24

∣∣∣∣
∫ 0.1

0

x4 cos ξ̃(x) dx
∣∣∣∣ ≤

1
24

∫ 0.1

0

x4|cos ξ̃(x)| dx ≤ 1
24

∫ 0.1

0

x4 dx = 8.3×10−8.

The true value of this integral can be easily determined as
∫ 0.1

0

cosx dx = sinx
]0.1

0
= sin 0.1.

1.2. REVIEW OF CALCULUS 13

The true value of sin 0.1 to nine decimal places is 0.099833417, so the approx-
imation derived from the Taylor polynomial is in error by

|0.099833417− 0.09983| ≈ 8.4× 10−8,

which is essentially the same as the error bound derived from the Taylor poly-
nomial.

We can use a computer algebra system to simplify the calculations in Example
3. In the system Maple, we define f by

>f:=cos(x);

Maple allows us to place multiple statements on a line, and to use a colon to suppress
Maple responses. For example, we obtain the third Taylor polynomial with

>s3:=taylor(f,x=0,4): p3:=convert(s3, polynom);

The statement s3:=taylor(f,x=0,4) determines the Taylor polynomial about
x0 = 0 with four terms (degree 3) and its remainder. The statement p3:=convert(s3,
polynom) converts the series s3 to the polynomial p3 by dropping the remainder.
To obtain 11 decimal digits of display, we enter

>Digits:=11;

and evaluate f(0.01), P3(0.01), and |f(0.01)− P3(0.01)| with

>y1:=evalf(subs(x=0.01,f));
>y2:=evalf(subs(x=0.01,p3));
>err:=abs(y1-y2);

This produces y1 = f(0.01) = 0.99995000042, y2 = P3(0.01) = 0.99995000000, and
|f(0.01)− P3(0.01)| = .42× 10−9.

To obtain a graph similar to Figure 1.8, enter

>plot({f,p3},x=-Pi..Pi);

The commands for the integrals are

>q1:=int(f,x=0..0.1);
>q2:=int(p3,x=0..0.1);
>err:=abs(q1-q2);

which give the values

q1 =
∫ 0.1

0

f(x) dx = 0.099833416647 and q2 =
∫ 0.1

0

P3(x) dx = 0.099833333333,

with error 0.83314× 10−7 = 8.3314× 10−8.
Parts (a) and (b) of Example 3 show how two techniques can produce the same

approximation but have differing accuracy assurances. Remember that determining
approximations is only part of our objective. The equally important other part is
to determine at least a bound for the accuracy of the approximation.

14CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

EXERCISE SET 1.2

1. Show that the following equations have at least one solution in the given
intervals.

(a) x cosx− 2x2 + 3x− 1 = 0, [0.2, 0.3] and [1.2, 1.3]

(b) (x− 2)2 − lnx = 0, [1, 2] and [e, 4]

(c) 2x cos(2x)− (x− 2)2 = 0, [2, 3] and [3, 4]

(d) x− (lnx)x = 0, [4, 5]

2. Find intervals containing solutions to the following equations.

(a) x− 3−x = 0

(b) 4x2 − ex = 0

(c) x3 − 2x2 − 4x+ 3 = 0

(d) x3 + 4.001x2 + 4.002x+ 1.101 = 0

3. Show that the first derivatives of the following functions are zero at least once
in the given intervals.

(a) f(x) = 1− ex + (e− 1) sin((π/2)x), [0, 1]

(b) f(x) = (x− 1) tanx+ x sinπx, [0, 1]

(c) f(x) = x sinπx− (x− 2) lnx, [1, 2]

(d) f(x) = (x− 2) sinx ln(x+ 2), [−1, 3]

4. Find maxa≤x≤b |f(x)| for the following functions and intervals.

(a) f(x) = (2− ex + 2x)/3, [0, 1]

(b) f(x) = (4x− 3)/(x2 − 2x), [0.5, 1]

(c) f(x) = 2x cos(2x)− (x− 2)2, [2, 4]

(d) f(x) = 1 + e− cos(x−1), [1, 2]

5. Let f(x) = x3.

(a) Find the second Taylor polynomial P2(x) about x0 = 0.

(b) Find R2(0.5) and the actual error when using P2(0.5) to approximate
f(0.5).

(c) Repeat part (a) with x0 = 1.

(d) Repeat part (b) for the polynomial found in part (c).

6. Let f(x) =
√
x+ 1.

(a) Find the third Taylor polynomial P3(x) about x0 = 0.

(b) Use P3(x) to approximate
√

0.5 ,
√

0.75,
√

1.25, and
√

1.5.

1.2. REVIEW OF CALCULUS 15

(c) Determine the actual error of the approximations in part (b).

7. Find the second Taylor polynomial P2(x) for the function f(x) = ex cosx
about x0 = 0.

(a) Use P2(0.5) to approximate f(0.5). Find an upper bound for error |f(0.5)−
P2(0.5)| using the error formula, and compare it to the actual error.

(b) Find a bound for the error |f(x)−P2(x)| in using P2(x) to approximate
f(x) on the interval [0, 1].

(c) Approximate
∫ 1

0
f(x) dx using

∫ 1

0
P2(x) dx.

(d) Find an upper bound for the error in (c) using
∫ 1

0
|R2(x) dx|, and com-

pare the bound to the actual error.

8. Find the third Taylor polynomial P3(x) for the function f(x) = (x − 1) lnx
about x0 = 1.

(a) Use P3(0.5) to approximate f(0.5). Find an upper bound for error |f(0.5)−
P3(0.5)| using the error formula, and compare it to the actual error.

(b) Find a bound for the error |f(x)−P3(x)| in using P3(x) to approximate
f(x) on the interval [0.5, 1.5].

(c) Approximate
∫ 1.5

0.5
f(x) dx using

∫ 1.5

0.5
P3(x) dx.

(d) Find an upper bound for the error in (c) using
∫ 1.5

0.5
|R3(x) dx|, and

compare the bound to the actual error.

9. Use the error term of a Taylor polynomial to estimate the error involved in
using sinx ≈ x to approximate sin 1◦.

10. Use a Taylor polynomial about π/4 to approximate cos 42◦ to an accuracy of
10−6.

11. Let f(x) = ex/2 sin(x/3). Use Maple to determine the following.

(a) The third Maclaurin polynomial P3(x).

(b) f (4)(x) and a bound for the error |f(x)− P3(x)| on [0, 1].

12. Let f(x) = ln(x2 + 2). Use Maple to determine the following.

(a) The Taylor polynomial P3(x) for f expanded about x0 = 1.

(b) The maximum error |f(x)− P3(x)| for 0 ≤ x ≤ 1.

(c) The Maclaurin polynomial P̃3(x) for f .

(d) The maximum error |f(x)− P̃3(x)| for 0 ≤ x ≤ 1.

(e) Does P3(0) approximate f(0) better than P̃3(1) approximates f(1)?

13. The polynomial P2(x) = 1 − 1
2x

2 is to be used to approximate f(x) = cosx
in [− 1

2 ,
1
2]. Find a bound for the maximum error.

16CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

14. The nth Taylor polynomial for a function f at x0 is sometimes referred to as
the polynomial of degree at most n that “best” approximates f near x0.

(a) Explain why this description is accurate.

(b) Find the quadratic polynomial that best approximates a function f near
x0 = 1 if the tangent line at x0 = 1 has equation y = 4x − 1, and if
f ′′(1) = 6.

15. The error function defined by

erf(x) =
2√
π

∫ x

0

e−t2 dt

gives the probability that any one of a series of trials will lie within x units
of the mean, assuming that the trials have a normal distribution with mean
0 and standard deviation

√
2/2. This integral cannot be evaluated in terms

of elementary functions, so an approximating technique must be used.

(a) Integrate the Maclaurin series for e−t2 to show that

erf(x) =
2√
π

∞∑
k=0

(−1)kx2k+1

(2k + 1)k!
.

(b) The error function can also be expressed in the form

erf(x) =
2√
π
e−x2

∞∑
k=0

2kx2k+1

1 · 3 · 5 · · · (2k + 1)
.

Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the
Maclaurin series for e−x2

.]

(c) Use the series in part (a) to approximate erf(1) to within 10−7.

(d) Use the same number of terms used in part (c) to approximate erf(1)
with the series in part (b).

(e) Explain why difficulties occur using the series in part (b) to approximate
erf(x).

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 17

1.3 Round-off Error and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arith-
metic that we use in our algebra and calculus courses. From your past experience
you might expect that we always have as true statements such things as 2 + 2 = 4,
4 · 8 = 32, and (

√
3)2 = 3. In standard computational arithmetic we expect exact

results for 2 + 2 = 4 and 4 · 8 = 32, but we will not have precisely (
√

3)2 = 3. To
understand why this is true we must explore the world of finite-digit arithmetic.

In our traditional mathematical world we permit numbers with an infinite num-
ber of digits. The arithmetic we use in this world defines

√
3 as that unique positive

number that when multiplied by itself produces the integer 3. In the computational
world, however, each representable number has only a fixed and finite number of
digits. This means, for example, that only rational numbers—and not even all of
these—can be represented exactly. Since

√
3 is not rational, it is given an approx-

imate representation within the machine, a representation whose square will not
be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in
most situations. In most cases, then, this machine representation and arithmetic
is satisfactory and passes without notice or concern, but at times problems arise
because of this discrepancy.

The error that is produced when a calculator or computer is used to perform
real-number calculations is called round-off error. It occurs because the arithmetic
performed in a machine involves numbers with only a finite number of digits, with
the result that calculations are performed with only approximate representations
of the actual numbers. In a typical computer, only a relatively small subset of the
real number system is used for the representation of all the real numbers. This
subset contains only rational numbers, both positive and negative, and stores the
fractional part, together with an exponential part.

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published
a report called Binary Floating Point Arithmetic Standard 754–1985. Formats were
specified for single, double, and extended precisions. These standards are generally
followed by all microcomputer manufacturers using hardware that performs real-
number, or floating point , arithmetic operations. For example, the double precision
real numbers require a 64-bit (binary digit) representation.

The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent,
c, and a 52-bit binary fraction, f , called the mantissa. The base for the exponent
is 2.

The normalized form for the nonzero double precision numbers have 0 < c <
211 − 1 = 2047. Since c is positive, a bias of 1023 is subtracted from c to give an
actual exponent in the interval (−1023, 1024). This permits adequate representation
of numbers with both large and small magnitude.The first bit of the fractional part
of a number is assumed to be 1 and is not stored in order to give one additional bit
of precision to the representation, Since 53 binary digits correspond to between 15
and 16 decimal digits, we can assume that a number represented using this system
has at least 15 decimal digits of precision. Thus, numbers represented in normalized

18CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

double precision have the form

(−1)s ∗ 2c−1023 ∗ (1 + f).

Consider for example, the machine number

0 10000000011 10111001000100.

The leftmost bit is zero, which indicates that the number is positive. The next 11
bits, 10000000011, giving the exponent, are equivalent to the decimal number

c = 1 · 210 + 0 · 29 + · · ·+ 0 · 22 + 1 · 21 + 1 · 20 = 1024 + 2 + 1 = 1027.

The exponential part of the number is, therefore, 21027−1023 = 24. The final 52 bits
specify that the mantissa is

f = 1 ·
(

1
2

)1

+ 1 ·
(

1
2

)3

+ 1 ·
(

1
2

)4

+ 1 ·
(

1
2

)5

+ 1 ·
(

1
2

)8

+ 1 ·
(

1
2

)12

.

As a consequence, this machine number precisely represents the decimal number

(−1)s ∗ 2c−1023 ∗ (1 + f)

= (−1)0 · 21027−1023

(
1 +

(
1
2

+
1
8

+
1
16

+
1
32

+
1

256
+

1
4096

))

= 27.56640625.

However, the next smallest machine number is

0 10000000011 10111001000011

and the next largest machine number is

0 10000000011 1011100100010000000000000000000000000000000000000001.

This means that our original machine number represents not only 27.56640625, but
also half of all the real numbers that are between 27.56640625 and its two nearest
machine-number neighbors. To be precise, it represents any real number in the
interval

[27.56640624999999988897769753748434595763683319091796875,
27.56640625000000011102230246251565404236316680908203125).

The smallest normalized positive number that can be represented has s = 0, c = 1,
and f = 0, and is equivalent to the decimal number

2−1022 · (1 + 0) ≈ 0.225× 10−307,

The largest normalized positive number that can be represented has s = 0, c = 2046,
and f = 1− 2−52, and is equivalent to the decimal number

21023 · (1 +
(
1− 2−52

)) ≈ 0.17977× 10309.

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 19

Numbers occurring in calculations that have too small a magnitude to be repre-
sented result in underflow, and are generally set to 0 with computations contin-
uing. However, numbers occurring in calculations that have too large a magnitude
to be represented result in overflow and typically cause the computations to stop
(unless the program has been designed to detect this occurrence). Note that there
are two representations for the number zero; a positive 0 when s = 0, c = 0 and
f = 0 and a negative 0 when s = 1, c = 0 and f = 0. The use of binary digits
tends to complicate the computational problems that occur when a finite collection
of machine numbers is used to represent all the real numbers. To examine these
problems, we now assume, for simplicity, that machine numbers are represented in
the normalized decimal form

±0.d1d2 . . . dk × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9

for each i = 2, . . . , k. Numbers of this form are called k-digit decimal machine
numbers.

Any positive real number within numerical range of the machine can be nor-
malized to achieve the form

y = 0.d1d2 . . . dkdk+1dk+2 . . .× 10n.

The floating-point form of y, denoted by fl(y), is obtained by terminating the
mantissa of y at k decimal digits. There are two ways of performing the termination.
One method, called chopping, is to simply chop off the digits dk+1dk+2 . . . to obtain

fl(y) = 0.d1d2 . . . dk × 10n.

The other method of terminating the mantissa of y at k decimal points is called
rounding. If the k + 1st digit is smaller than 5, then the result is the same as
chopping. If the k + 1st digit is 5 or greater, then 1 is added to the kth digit and
the resulting number is chopped. As a consequence, rounding can be accomplished
by simply adding 5× 10n−(k+1) to y and then chopping the result to obtain fl(y).
Note that when rounding up the exponent n could increase by 1. In summary, when
rounding we add one to dk to obtain fl(y) whenever dk+1 ≥ 5, that is, we round
up; when dk+1 < 5, we chop off all but the first k digits, so we round down.

The next examples illustrate floating-point arithmetic when the number of digits
being retained is quite small. Although the floating-point arithmetic that is per-
formed on a calculator or computer will retain many more digits, the problems this
arithmetic can cause are essentially the same regardless of the number of digits.
Retaining more digits simply postpones the awareness of the situation.

EXAMPLE 1 The irrational number π has an infinite decimal expansion of the form π = 3.14159265
Written in normalized decimal form, we have

π = 0.314159265 . . .× 101.

The five-digit floating-point form of π using chopping is

fl(π) = 0.31415× 101 = 3.1415.

20CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Since the sixth digit of the decimal expansion of π is a 9, the five-digit floating-point
form of π using rounding is

fl(π) = (0.31415 + 0.00001)× 101 = 0.31416× 101 = 3.1416.

The error that results from replacing a number with its floating-point form is
called round-off error (regardless of whether the rounding or chopping method is
used). There are two common methods for measuring approximation errors.

The approximation p∗ to p has absolute error |p − p∗| and relative error
|p− p∗|/|p|, provided that p
= 0.

EXAMPLE 2 a.If p = 0.3000×101 and p∗ = 0.3100×101, the absolute error is 0.1 and the relative
error is 0.3333× 10−1.

b.If p = 0.3000 × 10−3 and p∗ = 0.3100 × 10−3, the absolute error is 0.1 × 10−4,
but the relative error is again 0.3333× 10−1.

c.If p = 0.3000× 104 and p∗ = 0.3100× 104, the absolute error is 0.1× 103, but the
relative error is still 0.3333× 10−1.

This example shows that the same relative error can occur for widely varying
absolute errors. As a measure of accuracy, the absolute error can be misleading and
the relative error is more meaningful, since the relative error takes into consideration
the size of the true value.

The arithmetic operations of addition, subtraction, multiplication, and division
performed by a computer on floating-point numbers also introduce error. These
arithmetic operations involve manipulating binary digits by various shifting and
logical operations, but the actual mechanics of the arithmetic are not pertinent to
our discussion. To illustrate the problems that can occur, we simulate this finite-
digit arithmetic by first performing, at each stage in a calculation, the appropriate
operation using exact arithmetic on the floating-point representations of the num-
bers. We then convert the result to decimal machine-number representation. The
most common round-off error producing arithmetic operation involves the subtrac-
tion of nearly equal numbers.

EXAMPLE 3 Suppose we use four-digit decimal chopping arithmetic to simulate the problem of
performing the computer operation π − 22

7 . The floating-point representations of
these numbers are

fl(π) = 0.3141× 101 and fl

(
22
7

)
= 0.3142× 101.

Performing the exact arithmetic on the floating-point numbers gives

fl(π)− fl
(

22
7

)
= −0.0001× 101,

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 21

which converts to the floating-point approximation of this calculation:

p∗ = fl

(
fl(π)− fl

(
22
7

))
= −0.1000× 10−2.

Although the relative errors using the floating-point representations for π and 22
7

are small, ∣∣∣∣
π − fl(π)

π

∣∣∣∣ ≤ 0.0002 and

∣∣∣∣∣
22
7 − fl

(
22
7

)
22
7

∣∣∣∣∣ ≤ 0.0003,

the relative error produced by subtracting the nearly equal numbers π and 22
7 is

about 700 times as large:
∣∣∣∣∣
(
π − 22

7

)− p∗(
π − 22

7

)
∣∣∣∣∣ ≈ 0.2092.

Rounding arithmetic is easily implemented in Maple. The statement

>Digits:=t;

causes all arithmetic to be rounded to t digits. For example, fl(fl(x) + fl(y)) is
performed using t-digit rounding arithmetic by

>evalf(evalf(x)+evalf(y));

Implementing t-digit chopping arithmetic in Maple is more difficult and requires
a sequence of steps or a procedure. Exercise 12 explores this problem.

22CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

EXERCISE SET 1.3

1. Compute the absolute error and relative error in approximations of p by p∗.

(a) p = π, p∗ = 22
7

(b) p = π, p∗ = 3.1416

(c) p = e, p∗ = 2.718 (d) p =
√

2, p∗ = 1.414

(e) p = e10, p∗ = 22000 (f) p = 10π, p∗ = 1400

(g) p = 8!, p∗ = 39900 (h) p = 9!, p∗ =
√

18π (9/e)9

2. Perform the following computations (i) exactly, (ii) using three-digit chopping
arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the
relative errors in parts (ii) and (iii).

(a)
4
5

+
1
3

(b)
4
5
· 1
3

(c)
(

1
3
− 3

11

)
+

3
20

(d)
(

1
3

+
3
11

)
− 3

20

3. Use three-digit rounding arithmetic to perform the following calculations.
Compute the absolute error and relative error with the exact value determined
to at least five digits.

(a) 133 + 0.921 (b) 133− 0.499

(c) (121− 0.327)− 119 (d) (121− 119)− 0.327

(e)
13
14 − 6

7

2e− 5.4
(f) −10π + 6e− 3

62

(g)
(

2
9

)
·
(

9
7

)
(h)

π − 22
7

1
17

4. Repeat Exercise 3 using three-digit chopping arithmetic.

5. Repeat Exercise 3 using four-digit rounding arithmetic.

6. Repeat Exercise 3 using four-digit chopping arithmetic.

1.3. ROUND-OFF ERROR AND COMPUTER ARITHMETIC 23

7. The first three nonzero terms of the Maclaurin series for the arctanx are
x− 1

3x
3 + 1

5x
5. Compute the absolute error and relative error in the following

approximations of π using the polynomial in place of the arctanx:

(a) 4
[
arctan

(
1
2

)
+ arctan

(
1
3

)]
(b) 16 arctan

(
1
5

)
− 4 arctan

(
1

239

)

8. The two-by-two linear system

ax+ by = e,

cx+ dy = f,

where a, b, c, d, e, f are given, can be solved for x and y as follows:

set m =
c

a
, provided a
= 0;

d1 = d−mb;
f1 = f −me;
y =

f1
d1

;

x =
(e− by)

a
.

Solve the following linear systems using four-digit rounding arithmetic.

(a) 1.130x − 6.990y = 14.20
8.110x + 12.20y = −0.1370

(b) 1.013x − 6.099y = 14.22
−18.11x + 112.2y = −0.1376

9. Suppose the points (x0, y0) and (x1, y1) are on a straight line with y1
= y0.
Two formulas are available to find the x-intercept of the line:

x =
x0y1 − x1y0
y1 − y0 and x = x0 − (x1 − x0)y0

y1 − y0 .

(a) Show that both formulas are algebraically correct.

(b) Use the data (x0, y0) = (1.31, 3.24) and (x1, y1) = (1.93, 4.76) and three-
digit rounding arithmetic to compute the x-intercept both ways. Which
method is better, and why?

10. The Taylor polynomial of degree n for f(x) = ex is
∑n

i=0 x
i/i!. Use the

Taylor polynomial of degree nine and three-digit chopping arithmetic to find
an approximation to e−5 by each of the following methods.

24CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

(a) e−5 ≈
9∑

i=0

(−5)i

i!
=

9∑
i=0

(−1)i5i

i!

(b) e−5 =
1
e5
≈ 1∑9

i=0 5i/i!

An approximate value of e−5 correct to three digits is 6.74 × 10−3. Which
formula, (a) or (b), gives the most accuracy, and why?

11. A rectangular parallelepiped has sides 3 cm, 4 cm, and 5 cm, measured to the
nearest centimeter.

(a) What are the best upper and lower bounds for the volume of this par-
allelepiped?

(b) What are the best upper and lower bounds for the surface area?

12. The following Maple procedure chops a floating-point number x to t digits.

chop:=proc(x,t);
if x=0 then 0
else
e:=trunc(evalf(log10(abs(x))));
if e>0 then e:=e+1 fi;
x2:=evalf(trunc(x*10^(t-e))*10^(e-t));
fi
end;

Verify that the procedure works for the following values.

(a) x = 124.031, t = 5 (b) x = 124.036, t = 5

(c) x = −0.00653, t = 2 (d) x = −0.00656, t = 2

1.4. ERRORS IN SCIENTIFIC COMPUTATION 25

1.4 Errors in Scientific Computation

In the previous section we saw how computational devices represent and manipulate
numbers using finite-digit arithmetic. We now examine how the problems with this
arithmetic can compound and look at ways to arrange arithmetic calculations to
reduce this inaccuracy.

The loss of accuracy due to round-off error can often be avoided by a careful
sequencing of operations or a reformulation of the problem. This is most easily
described by considering a common computational problem.

EXAMPLE 1 The quadratic formula states that the roots of ax2 + bx+ c = 0, when a
= 0, are

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−√b2 − 4ac
2a

.

Consider this formula applied, using four-digit rounding arithmetic, to the equation
x2 + 62.10x + 1 = 0, whose roots are approximately x1 = −0.01610723 and x2 =
−62.08390. In this equation, b2 is much larger than 4ac, so the numerator in the
calculation for x1 involves the subtraction of nearly equal numbers. Since

√
b2 − 4ac =

√
(62.10)2 − (4.000)(1.000)(1.000) =

√
3856− 4.000 = 62.06,

we have
fl(x1) =

−62.10 + 62.06
2.000

=
−0.04000

2.000
= −0.02000,

a poor approximation to x1 = −0.01611 with the large relative error

|−0.01611 + 0.02000|
|−0.01611| = 2.4× 10−1.

On the other hand, the calculation for x2 involves the addition of the nearly equal
numbers −b and −√b2 − 4ac. This presents no problem since

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10

has the small relative error

|−62.08 + 62.10|
|−62.08| = 3.2× 10−4.

To obtain a more accurate four-digit rounding approximation for x1, we can change
the form of the quadratic formula by rationalizing the numerator:

x1 =

(
−b+

√
b2 − 4ac

2a

)(
−b−√b2 − 4ac
−b−√b2 − 4ac

)
=

b2 − (b2 − 4ac)
2a(−b−√b2 − 4ac)

,

which simplifies to

x1 =
−2c

b+
√
b2 − 4ac

.

26CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

Table 1.1:
x x2 x3 6.1x2 3.2x

Exact 4.71 22.1841 104.487111 135.32301 15.072
Three-digit (chopping) 4.71 22.1 104. 134. 15.0
Three-digit (rounding) 4.71 22.2 105. 135. 15.1

Using this form of the equation gives

fl(x1) =
−2.000

62.10 + 62.06
=
−2.000
124.2

= −0.01610,

which has the small relative error 6.2× 10−4.

The rationalization technique in Example 1 can also be applied to give an al-
ternative formula for x2:

x2 =
−2c

b−√b2 − 4ac
.

This is the form to use if b is negative. In Example 1, however, the use of this
formula results in the subtraction of nearly equal numbers, which produces the
result

fl(x2) =
−2.000

62.10− 62.06
=
−2.000
0.04000

= −50.00,

with the large relative error 1.9× 10−1.

EXAMPLE 2 Evaluate f(x) = x3 − 6.1x2 + 3.2x+ 1.5 at x = 4.71 using three-digit arithmetic.
Table 1.1 gives the intermediate results in the calculations. Carefully verify these

results to be sure that your notion of finite-digit arithmetic is correct. Note that the
three-digit chopping values simply retain the leading three digits, with no rounding
involved, and differ significantly from the three-digit rounding values.

Exact: f(4.71) = 104.487111− 135.32301 + 15.072 + 1.5
= −14.263899;

Three-digit (chopping): f(4.71) = ((104.− 134.) + 15.0) + 1.5 = −13.5;
Three-digit (rounding): f(4.71) = ((105.− 135.) + 15.1) + 1.5 = −13.4.

The relative errors for the three-digit methods are
∣∣∣∣
−14.263899 + 13.5
−14.263899

∣∣∣∣ ≈ 0.05 for chopping

1.4. ERRORS IN SCIENTIFIC COMPUTATION 27

and
∣∣∣∣
−14.263899 + 13.4
−14.263899

∣∣∣∣ ≈ 0.06 for rounding.

As an alternative approach, f(x) can be written in a nested manner as

f(x) = x3 − 6.1x2 + 3.2x+ 1.5 = ((x− 6.1)x+ 3.2)x+ 1.5.

This gives

Three-digit (chopping): f(4.71) = ((4.71− 6.1)4.71 + 3.2)4.71 + 1.5 = −14.2

and a three-digit rounding answer of −14.3. The new relative errors are

Three-digit (chopping):
∣∣∣∣
−14.263899 + 14.2
−14.263899

∣∣∣∣ ≈ 0.0045;

Three-digit (rounding):
∣∣∣∣
−14.263899 + 14.3
−14.263899

∣∣∣∣ ≈ 0.0025.

Nesting has reduced the relative error for the chopping approximation to less than
one-tenth that obtained initially. For the rounding approximation the improvement
has been even more dramatic: the error has been reduced by more than 95%. Nested
multiplication should be performed whenever a polynomial is evaluated since it
minimizes the number of error producing computations.

We will be considering a variety of approximation problems throughout the text,
and in each case we need to determine approximation methods that produce de-
pendably accurate results for a wide class of problems. Because of the differing ways
in which the approximation methods are derived, we need a variety of conditions
to categorize their accuracy. Not all of these conditions will be appropriate for any
particular problem.

One criterion we will impose, whenever possible, is that of stability. A method
is called stable if small changes in the initial data produce correspondingly small
changes in the final results. When it is possible to have small changes in the initial
date producing large changes in the final results, the method is unstable. Some
methods are stable only for certain choices of initial data. These methods are called
conditionally stable. We attempt to characterize stability properties whenever pos-
sible.

One of the most important topics effecting the stability of a method is the way
in which the round-off error grows as the method is successively applied. Suppose
an error with magnitude E0 > 0 is introduced at some stage in the calculations
and that the magnitude of the error after n subsequent operations is En. There are
two distinct cases that often arise in practice. If a constant C exists independent
of n, with En ≈ CnE0, the growth of error is linear. If a constant C > 1 exists
independent of n, with En ≈ CnE0, the growth of error is exponential. (It would

28CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

be unlikely to have En ≈ CnE0, with C < 1, since this implies that the error tends
to zero.)

Linear growth of error is usually unavoidable and, when C and E0 are small,
the results are generally acceptable. Methods having exponential growth of error
should be avoided, since the term Cn becomes large for even relatively small values
of n and E0. As a consequence, a method that exhibits linear error growth is stable,
while one exhibiting exponential error growth is unstable. (See Figure 1.9 .)

Figure 1.9

En

E0

n

Exponential growth
En 5 CnE0

Linear growth
En 5 CnE0

1 2 3 4 5 6 7 8

Since iterative techniques involving sequences are often used, the section con-
cludes with a brief discussion of some terminology used to describe the rate at
which convergence occurs when employing a numerical technique. In general, we
would like to choose techniques that converge as rapidly as possible. The following
definition is used to compare the convergence rates of various methods.

Suppose that {αn}∞n=1 is a sequence that converges to a number α as n becomes
large. If positive constants p and K exist with

|α− αn| ≤ K

np
, for all large values of n,

then we say that {αn} converges to α with rate, or order, of convergence
O(1/np) (read “big oh of 1/np”). This is indicated by writing αn = α + O(1/np)
and stated as “αn → α with rate of convergence 1/np.” We are generally interested
in the largest value of p for which αn = α+O(1/np).

We also use the “big oh” notation to describe how some divergent sequences
grow as n becomes large. If positive constants p and K exist with

|αn| ≤ Knp, for all large values of n,

1.4. ERRORS IN SCIENTIFIC COMPUTATION 29

Table 1.2:
n 1 2 3 4 5 6 7

αn 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327
α̂n 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

then we say that {αn} goes to ∞ with rate, or order, O(np). In the case of
a sequence that becomes infinite, we are interested in the smallest value of p for
which αn is O(np).

The “big oh” definition for sequences can be extended to incorporate more
general sequences, but the definition as presented here is sufficient for our purposes.

EXAMPLE 3 Suppose that the sequences {αn} and {α̂n} are described by

αn =
n+ 1
n2

and α̂n =
n+ 3
n3

.

Although both limn→∞ αn = 0 and limn→∞ α̂n = 0, the sequence {α̂n} converges to
this limit much faster than does {αn}. This can be seen from the five-digit rounding
entries for the sequences shown in Table 1.2.

Since

|αn − 0| = n+ 1
n2

≤ n+ n

n2
= 2 · 1

n

and

|α̂n − 0| = n+ 3
n3

≤ n+ 3n
n3

= 4 · 1
n2
,

we have

αn = 0 +O

(
1
n

)
and α̂n = 0 +O

(
1
n2

)
.

This result implies that the convergence of the sequence {αn} is similar to the
convergence of {1/n} to zero. The sequence {α̂n} converges in a manner similar to
the faster-converging sequence {1/n2}.

We also use the “big oh” concept to describe the rate of convergence of functions,
particularly when the independent variable approaches zero.

Suppose that F is a function that converges to a number L as h goes to zero. If
positive constants p and K exist with

|F (h)− L| ≤ Khp, as h→ 0,

30CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

then F(h) converges to L with rate, or order, of convergence O(hp). This
is written as F (h) = L+O(hp) and stated as “F (h)→ L with rate of convergence
hp.”

We are generally interested in the largest value of p for which F (h) = L+O(hp).
The “big oh” definition for functions can also be extended to incorporate more

general zero-converging functions in place of hp.

1.4. ERRORS IN SCIENTIFIC COMPUTATION 31

EXERCISE SET 1.4

1. (i) Use four-digit rounding arithmetic and the formulas of Example 1 to find
the most accurate approximations to the roots of the following quadratic
equations. (ii) Compute the absolute errors and relative errors for these ap-
proximations.

(a)
1
3
x2 − 123

4
x+

1
6

= 0 (b)
1
3
x2 +

123
4
x− 1

6
= 0

(c) 1.002x2 − 11.01x+ 0.01265 = 0 (d) 1.002x2 + 11.01x+ 0.01265 = 0

2. Repeat Exercise 1 using four-digit chopping arithmetic.

3. Let f(x) = 1.013x5 − 5.262x3 − 0.01732x2 + 0.8389x− 1.912.

(a) Evaluate f(2.279) by first calculating (2.279)2, (2.279)3, (2.279)4, and
(2.279)5 using four-digit rounding arithmetic.

(b) Evaluate f(2.279) using the formula

f(x) = (((1.013x2 − 5.262)x− 0.01732)x+ 0.8389)x− 1.912

and four-digit rounding arithmetic.

(c) Compute the absolute and relative errors in parts (a) and (b).

4. Repeat Exercise 3 using four-digit chopping arithmetic.

5. The fifth Maclaurin polynomials for e2x and e−2x are

P5(x) =
((((

4
15
x+

2
3

)
x+

4
3

)
x+ 2

)
x+ 2

)
x+ 1

and

P̂5(x) =
((((

− 4
15
x+

2
3

)
x− 4

3

)
x+ 2

)
x− 2

)
x+ 1

(a) Approximate e−0.98 using P̂5(0.49) and four-digit rounding arithmetic.

(b) Compute the absolute and relative error for the approximation in part
(a).

(c) Approximate e−0.98 using 1/P5(0.49) and four-digit rounding arith-
metic.

(d) Compute the absolute and relative errors for the approximation in part
(c).

32CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

6. (a) Show that the polynomial nesting technique described in Example 2 can
also be applied to the evaluation of

f(x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.

(b) Use three-digit rounding arithmetic, the assumption that e1.53 = 4.62,
and the fact that en(1.53) = (e1.53)n to evaluate f(1.53) as given in part
(a).

(c) Redo the calculation in part (b) by first nesting the calculations.

(d) Compare the approximations in parts (b) and (c) to the true three-digit
result f(1.53) = −7.61.

7. Use three-digit chopping arithmetic to compute the sum
∑10

i=1 1/i2 first by
1
1 + 1

4 + · · · + 1
100 and then by 1

100 + 1
81 + · · · + 1

1 . Which method is more
accurate, and why?

8. The Maclaurin series for the arctangent function converges for −1 < x ≤ 1
and is given by

arctanx = lim
n→∞Pn(x) = lim

n→∞

n∑
i=1

(−1)i+1 x2i−1

(2i− 1)
.

(a) Use the fact that tanπ/4 = 1 to determine the number of terms of the
series that need to be summed to ensure that |4Pn(1)− π| < 10−3.

(b) The C programming language requires the value of π to be within 10−10.
How many terms of the series would we need to sum to obtain this degree
of accuracy?

9. The number e is defined by e =
∑∞

n=0 1/n!, where n! = n(n− 1) · · · 2 · 1, for
n
= 0 and 0! = 1. (i) Use four-digit chopping arithmetic to compute the
following approximations to e. (ii) Compute absolute and relative errors for
these approximations.

(a)
5∑

n=0

1
n!

(b)
5∑

j=0

1
(5− j)!

(c)
10∑

n=0

1
n!

(d)
10∑

j=0

1
(10− j)!

1.4. ERRORS IN SCIENTIFIC COMPUTATION 33

10. Find the rates of convergence of the following sequences as n→∞.

(a) lim
n→∞ sin

(
1
n

)
= 0 (b) lim

n→∞ sin
(

1
n2

)
= 0

(c) lim
n→∞

(
sin

(
1
n

))2

= 0
(d) lim

n→∞[ln(n+ 1)− ln(n)] = 0

11. Find the rates of convergence of the following functions as h→ 0.

(a) lim
h→0

sinh− h cosh
h

= 0 (b) lim
h→0

1− eh

h
= −1

(c) lim
h→0

sinh
h

= 1 (d) lim
h→0

1− cosh
h

= 0

12. (a) How many multiplications and additions are required to determine a
sum of the form

n∑
i=1

i∑
j=1

aibj?

(b) Modify the sum in part (a) to an equivalent form that reduces the
number of computations.

13. The sequence {Fn} described by F0 = 1, F1 = 1, and Fn+2 = Fn + Fn+1,
if n ≥ 0, is called a Fibonacci sequence. Its terms occur naturally in many
botanical species, particularly those with petals or scales arranged in the form
of a logarithmic spiral. Consider the sequence {xn}, where xn = Fn+1/Fn.
Assuming that limn→∞ xn = x exists, show that x is the golden ratio (1 +√

5)/2.

14. The Fibonacci sequence also satisfies the equation

Fn ≡ F̃n =
1√
5

[(
1 +
√

5
2

)n

−
(

1−√5
2

)n]
.

(a) Write a Maple procedure to calculate F100.

(b) Use Maple with the default value of Digits followed by evalf to calcu-
late
F̃100.

34CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

(c) Why is the result from part (a) more accurate than the result from part
(b)?

(d) Why is the result from part (b) obtained more rapidly than the result
from part (a)?

(e) What results when you use the command simplify instead of evalf to
compute F̃100?

15. The harmonic series 1 + 1
2 + 1

3 + 1
4 + · · · diverges, but the sequence γn =

1+ 1
2+· · ·+ 1

n−lnn converges, since {γn} is a bounded, nonincreasing sequence.
The limit γ ≈ 0.5772156649 . . . of the sequence {γn} is called Euler’s constant.

(a) Use the default value of Digits in Maple to determine the value of n
for γn to be within 10−2 of γ.

(b) Use the default value of Digits in Maple to determine the value of n
for γn to be within 10−3 of γ.

(c) What happens if you use the default value of Digits in Maple to de-
termine the value of n for γn to be within 10−4 of γ?

1.5. COMPUTER SOFTWARE 35

1.5 Computer Software

Computer software packages for approximating the numerical solutions to problems
are available in many forms. With this book, we have provided programs written
in C, Fortran 77, Maple, Mathematica, MATLAB, and Pascal that can be used to
solve the problems given in the examples and exercises. These programs will give
satisfactory results for most problems that a student might need to solve, but they
are what we call special-purpose programs. We use this term to distinguish these
programs from those available in the standard mathematical subroutine libraries.
The programs in these packages will be called general purpose.

The programs in general-purpose software packages differ in their intent from
the programs provided with this book. General-purpose software packages consider
ways to reduce errors due to machine rounding, underflow, and overflow. They also
describe the range of input that will lead to results of a certain specified accuracy.
Since these are machine-dependent characteristics, general-purpose software pack-
ages use parameters that describe the floating-point characteristics of the machine
being used for computations.

There are many forms of general-purpose numerical software available com-
mercially and in the public domain. Most of the early software was written for
mainframe computers, and a good reference for this is Sources and Development of
Mathematical Software, edited by Wayne Crowell [Cr]. Now that the desktop com-
puter has become sufficiently powerful, standard numerical software is available for
personal computers and workstations. Most of this numerical software is written in
Fortran 77, although some packages are written in C, C++, and Fortran 90.

ALGOL procedures were presented for matrix computations in 1971 in [WR].
A package of FORTRAN subroutines based mainly on the ALGOL procedures
was then developed into the EISPACK routines. These routines are documented
in the manuals published by Springer-Verlag as part of their Lecture Notes in
Computer Science series [SBIKM] and [GBDM]. The FORTRAN subroutines are
used to compute eigenvalues and eigenvectors for a variety of different types of
matrices. The EISPACK project was the first large-scale numerical software package
to be made available in the public domain and led the way for many packages to
follow. EISPACK is mantained by netlib and can be found on the Internet at
http://www.netlib.org/eispack.

LINPACK is a package of Fortran 77 subroutines for analyzing and solving
systems of linear equations and solving linear least squares problems. The docu-
mentation for this package is contained in [DBMS] and located on the Internet
at http://www.netlib.org/linpack. A step-by-step introduction to LINPACK, EIS-
PACK, and BLAS (Basic Linear Algebra Subprograms) is given in [CV].

The LAPACK package, first available in 1992, is a library of Fortran 77 sub-
routines that supersedes LINPACK and EISPACK by integrating these two sets
of algorithms into a unified and updated package. The software has been restruc-
tured to achieve greater efficiency on vector processors and other high-performance
or shared-memory multiprocessors. LAPACK is expanded in depth and breadth in
version 3.0, which is available in Fortran 77, Fortran 90, C, C++, and JAVA. For-
tran 90, C, and JAVA are only available as language interfaces or translations of the

36CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

FORTRAN libraries of LAPACK. The package BLAS is not a part of LAPACK,
but the code for BLAS is distributed with LAPACK. The LAPACK User’s Guide,
3rd ed. [An] is available from SIAM or on the Internet at
http://www.netlib.org/lapack/lug/lapack lug.html.
The complete LAPACK or individual routines from LAPACK can be obtained
through netlib at netlibornl.gov, netlibresearch.att.com, or http://www.netlib.org/lapack.

Other packages for solving specific types of problems are available in the pub-
lic domain. Information about these programs can be obtained through electronic
mail by sending the line “help” to one of the following Internet addresses: netlibre-
search.att.com, netlibornl.gov, netlibnac.no, or netlibdraci.cs.uow.edu.au or to the
uucp address uunet!research!netlib.

These software packages are highly efficient, accurate, and reliable. They are
thoroughly tested, and documentation is readily available. Although the packages
are portable, it is a good idea to investigate the machine dependence and read the
documentation thoroughly. The programs test for almost all special contingencies
that might result in error and failures. At the end of each chapter we will discuss
some of the appropriate general-purpose packages.

Commercially available packages also represent the state of the art in numerical
methods. Their contents are often based on the public-domain packages but include
methods in libraries for almost every type of problem.

IMSL (International Mathematical and Statistical Libraries) consists of the li-
braries MATH, STAT, and SFUN for numerical mathematics, statistics, and special
functions, respectively. These libraries contain more than 900 subroutines originally
available in Fortran 77 and now available in C, Fortran 90, and JAVA. These sub-
routines solve the most common numerical analysis problems. In 1970 IMSL became
the first large-scale scientific library for mainframes. Since that time, the libraries
have been made available for computer systems ranging from supercomputers to
personal computers. The libraries are available commercially from Visual Numer-
ics, 9990 Richmond Ave S400, Houston, TX 77042-4548, with Internet address
http://www.vni.com. The packages are delivered in compiled form with extensive
documentation. There is an example program for each routine as well as background
reference information. IMSL contains methods for linear systems, eigensystem anal-
ysis, interpolation and approximation, integration and differentiation, differential
equations, transforms, nonlinear equations, optimization, and basic matrix/vector
operations. The library also contains extensive statistical routines.

The Numerical Algorithms Group (NAG) has been in existence in the United
Kingdom since 1970. NAG offers more than 1000 subroutines in a Fortran 77 library,
about 400 subroutines in a C library, over 200 subroutines in a Fortran 90 library,
and an MPI FORTRAN numerical library for parallel machines and clusters of
workstations or personal computers. A subset of their Fortran 77 library (the NAG
Foundation Library) is available for personal computers and workstations where
work space is limited. The NAG C Library, the Fortran 90 library, and the MPI
FORTRAN library offer many of the same routines as the FORTRAN Library.
The NAG user’s manual includes instructions and examples, along with sample
output for each of the routines. A useful introduction to the NAG routines is [Ph].
The NAG library contains routines to perform most standard numerical analysis

1.5. COMPUTER SOFTWARE 37

tasks in a manner similar to those in the IMSL. It also includes some statistical
routines and a set of graphic routines. The library is commercially available from
Numerical Algorithms Group, Inc., 1400 Opus Place, Suite 200, Downers Grove, IL
60515–5702, with Internet address http://www.nag.com.

The IMSL and NAG packages are designed for the mathematician, scientist,
or engineer who wishes to call high-quality FORTRAN subroutines from within
a program. The documentation available with the commercial packages illustrates
the typical driver program required to use the library routines. The next three
software packages are stand-alone environments. When activated, the user enters
commands to cause the package to solve a problem. However, each package allows
programming within the command language.

MATLAB is a matrix laboratory that was originally a FORTRAN program pub-
lished by Cleve Moler [Mo]. The laboratory is based mainly on the EISPACK and
LINPACK subroutines, although functions such as nonlinear systems, numerical in-
tegration, cubic splines, curve fitting, optimization, ordinary differential equations,
and graphical tools have been incorporated. MATLAB is currently written in C and
assembler, and the PC version of this package requires a numeric coprocessor. The
basic structure is to perform matrix operations, such as finding the eigenvalues of
a matrix entered from the command line or from an external file via function calls.
This is a powerful self-contained system that is especially useful for instruction in
an applied linear algebra course. MATLAB has been available since 1985 and can be
purchased from The MathWorks Inc., Cochituate Place, 24 Prime Park Way, Natick,
MA 01760. The electronic mail address of The Mathworks is infomathworks.com,
and the Internet address is http://www.mathworks.com. MATLAB software is de-
signed to run on many computers, including IBM PC compatibles, APPLE Mac-
intosh, and SUN workstations. A student version of MATLAB does not require a
coprocessor but will use one if it is available.

The second package is GAUSS, a mathematical and statistical system produced
by Lee E. Ediefson and Samuel D. Jones in 1985. It is coded mainly in assembler
and based primarily on EISPACK and LINPACK. As in the case of MATLAB,
integration/differentiation, nonlinear systems, fast Fourier transforms, and graphics
are available. GAUSS is oriented less toward instruction in linear algebra and more
toward statistical analysis of data. This package also uses a numeric coprocessor if
one is available. It can be purchased from Aptech Systems, Inc., 23804 S.E. Kent-
Kangley Road, Maple Valley, WA 98038 (infoaptech.com).

The third package is Maple, a computer algebra system developed in 1980 by the
Symbolic Computational Group at the University of Waterloo. The design for the
original Maple system is presented in the paper by B.W. Char, K.O. Geddes, W.M.
Gentlemen, and G.H. Gonnet [CGGG]. Maple has been available since 1985 and can
be purchased from Waterloo Maple Inc., 57 Erb Street, Waterloo, ON N2L 6C2. The
electronic mail address of Waterloo Maple is infomaplesoft.com, and the Internet
address is http://www.maplesoft.com. Maple, which is written in C, has the ability
to manipulate information in a symbolic manner. This symbolic manipulation allows
the user to obtain exact answers instead of numerical values. Maple can give exact
answers to mathematical problems such as integrals, differential equations, and
linear systems. Maple has the additional property of allowing worksheets, which

38CHAPTER 1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS

contain written text and Maple commands. These worksheets can then be loaded
into Maple and the commands executed. Because of the properties of symbolic
computation, numerical computation, and worksheets, Maple is the language of
choice for this text. Throughout the book Maple commands will be embedded into
the text.

Numerous packages are available that can be classified as supercalculator pack-
ages for the PC. These should not be confused, however, with the general-purpose
software listed here. If you have an interest in one of these packages, you should
read Supercalculators on the PC by B. Simon and R. M. Wilson [SW].

Additional information about software and software libraries can be found in
the books by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by
Dongarra and Walker [DW]. More information about floating-point computation
can be found in the book by Chaitini-Chatelin and Frayse [CF] and the article by
Goldberg [Go].

Books that address the application of numerical techniques on parallel comput-
ers include those by Schendell [Sche], Phillips and Freeman [PF], and Golub and
Ortega [GO].

Chapter 2

Solutions of Equations of
One Variable

2.1 Introduction

In this chapter we consider one of the most basic problems of numerical approxima-
tion, the root-finding problem. This process involves finding a root, or solution, of
an equation of the form f(x) = 0. A root of this equation is also called a zero of the
function f . This is one of the oldest known approximation problems, yet research
continues in this area at the present time.

The problem of finding an approximation to the root of an equation can be
traced at least as far back as 1700 b.c. A cuneiform table in the Yale Babylonian
Collection dating from that period gives a sexagesimal (base-60) number equivalent
to 1.414222 as an approximation to

√
2, a result that is accurate to within 10−5.

This approximation can be found by applying a technique given in Section 2.4.

2.2 The Bisection Method

The first and most elementary technique we consider is the Bisection, or Binary-
Search, method. The Bisection method is used to determine, to any specified ac-
curacy that your computer will permit, a solution to f(x) = 0 on an interval [a, b],
provided that f is continuous on the interval and that f(a) and f(b) are of oppo-
site sign. Although the method will work for the case when more than one root is
contained in the interval [a, b], we assume for simplicity of our discussion that the
root in this interval is unique.

To begin the Bisection method, set a1 = a and b1 = b, as shown in Figure 2.1,
and let p1 be the midpoint of the interval [a, b]:

p1 = a1 +
b1 − a1

2
.

39

40 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

If f(p1) = 0, then the root p is given by p = p1; if f(p1)
= 0, then f(p1) has the
same sign as either f(a1) or f(b1).
Figure 2.1

x

y

 f (a)

 f (b)

y 5 f (x)

a 5 a1 b 5 b1

p
p1p2

p3

a1 b1p1

p2a2 b2

p3a3 b3

If f(p1) and f(a1) have the same sign, then p is in the interval (p1, b1), and we
set

a2 = p1 and b2 = b1.

If, on the other hand, f(p1) and f(a1) have opposite signs, then p is in the interval
(a1, p1), and we set

a2 = a1 and b2 = p1.

We reapply the process to the interval [a2, b2], and continue forming [a3, b3],
[a4, b4], Each new interval will contain p and have length one half of the length
of the preceding interval.

[Bisection Method] An interval [an+1, bn+1] containing an approximation to
a root of f(x) = 0 is constructed from an interval [an, bn] containing the root
by first letting

pn = an +
bn − an

2
.

Then set

an+1 = an and bn+1 = pn if f(an)f(pn) < 0,

and
an+1 = pn and bn+1 = bn otherwise.

2.2. THE BISECTION METHOD 41

There are three stopping criteria commonly incorporated in the Bisection method.
First, the method stops if one of the midpoints happens to coincide with the root.
It also stops when the length of the search interval is less than some prescribed tol-
erance we call TOL. The procedure also stops if the number of iterations exceeds
a preset bound N0.

To start the Bisection method, an interval [a, b] must be found with f(a) ·f(b) <
0. At each step, the length of the interval known to contain a zero of f is reduced
by a factor of 2. Since the midpoint p1 must be within (b− a)/2 of the root p, and
each succeeding iteration divides the interval under consideration by 2, we have

|pn − p| ≤ b− a
2n

.

As a consequence, it is easy to determine a bound for the number of iterations
needed to ensure a given tolerance. If the root needs to be determined within the
tolerance TOL, we need to determine the number of iterations, n, so that

b− a
2n

< TOL.

Solving for n in this inequality gives

b− a
TOL

< 2n, which implies that log2

(
b− a
TOL

)
< n.

Since the number of required iterations to guarantee a given accuracy depends
on the length of the initial interval [a, b], we want to choose this interval as small
as possible. For example, if f(x) = 2x3 − x2 + x− 1, we have both

f(−4) · f(4) < 0 and f(0) · f(1) < 0,

so the Bisection method could be used on either [−4, 4] or [0, 1]. Starting the Bi-
section method on [0, 1] instead of [−4, 4] reduces by 3 the number of iterations
required to achieve a specified accuracy.

EXAMPLE 1 The equation f(x) = x3 + 4x2 − 10 = 0 has a root in [1, 2] since f(1) = −5 and
f(2) = 14. It is easily seen from a sketch of the graph of f in Figure 2.2 that there
is only one root in [1, 2].

Figure 2.2

42 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

1 5 a 2 5 bp

y 5 f (x) 5 x3 1 4x2 2 10

25

14

x

y

To use Maple to approximate the root, we define the function f by the command

>f:=x->x^3+4*x^2-10;

The values of a1 and b1 are given by

>a1:=1; b1:=2;

We next compute f(a1) = −5 and f(b1) = 14 by

>fa1:=f(a1); fb1:=f(b1);

and the midpoint p1 = 1.5 and f(p1) = 2.375 by

>p1:=a1+0.5*(b1-a1);
>pf1:=f(p1);

Since f(a1) and f(p1) have opposite signs, we reject b1 and let a2 = a1 and
b2 = p1. This process is continued to find p2, p3, and so on.

As discussed in the Preface, each of the methods we consider in the book has
an accompanying set of programs contained on the CD that is in the back of the
book. The programs are given for the programming languages C, FORTRAN, and
Pascal, and also in Maple V, Mathematica, and MATLAB. The program BISECT21,
provided with the inputs a = 1, b = 2, TOL = 0.0005, and N0 = 20, gives the values
in Table 2.1. The actual root p, to 10 decimal places, is p = 1.3652300134, and
|p−p11| < 0.0005. Since the expected number of iterations is log2((2−1)/0.0005) ≈
10.96, the bound N0 was certainly sufficient.

2.2. THE BISECTION METHOD 43

Table 2.1

n an bn pn f(pn)

1 1.0000000000 2.0000000000 1.5000000000 2.3750000000
2 1.0000000000 1.5000000000 1.2500000000 −1.7968750000
3 1.2500000000 1.5000000000 1.3750000000 0.1621093750
4 1.2500000000 1.3750000000 1.3125000000 −0.8483886719
5 1.3125000000 1.3750000000 1.3437500000 −0.3509826660
6 1.3437500000 1.3750000000 1.3593750000 −0.0964088440
7 1.3593750000 1.3750000000 1.3671875000 0.0323557854
8 1.3593750000 1.3671875000 1.3632812500 −0.0321499705
9 1.3632812500 1.3671875000 1.3652343750 0.0000720248
10 1.3632812500 1.3652343750 1.3642578125 −0.0160466908
11 1.3642578125 1.3652343750 1.3647460938 −0.0079892628

The Bisection method, though conceptually clear, has serious drawbacks. It
is slow to converge relative to the other techniques we will discuss, and a good
intermediate approximation may be inadvertently discarded. This happened, for
example, with p9 in Example 1. However, the method has the important property
that it always converges to a solution and it is easy to determine a bound for
the number of iterations needed to ensure a given accuracy. For these reasons, the
Bisection method is frequently used as a dependable starting procedure for the
more efficient methods presented later in this chapter.

The bound for the number of iterations for the Bisection method assumes that
the calculations are performed using infinite-digit arithmetic. When implementing
the method on a computer, consideration must be given to the effects of round-off
error. For example, the computation of the midpoint of the interval [an, bn] should
be found from the equation

pn = an +
bn − an

2

instead of from the algebraically equivalent equation

pn =
an + bn

2
.

The first equation adds a small correction, (bn − an)/2, to the known value an.
When bn−an is near the maximum precision of the machine, this correction might
be in error, but the error would not significantly affect the computed value of pn.
However, in the second equation, if bn − an is near the maximum precision of the
machine, it is possible for pn to return a midpoint that is not even in the interval
[an, bn].

A number of tests can be used to see if a root has been found. We would normally
use a test of the form

|f(pn)| < ε,

44 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

where ε > 0 would be a small number related in some way to the tolerance. However,
it is also possible for the value f(pn) to be small when pn is not near the root p.

As a final remark, to determine which subinterval of [an, bn] contains a root of
f , it is better to make use of signum function, which is defined as

sgn(x) =




−1, if x < 0,
0, if x = 0,
1, if x > 0.

The test

sgn(f(an)) sgn(f(pn)) < 0 instead of f(an)f(pn) < 0

gives the same result but avoids the possibility of overflow or underflow in the
multiplication of f(an) and f(pn).

2.2. THE BISECTION METHOD 45

EXERCISE SET 2.2

1. Use the Bisection method to find p3 for f(x) =
√
x− cosx on [0, 1].

2. Let f(x) = 3(x+1)(x− 1
2)(x− 1). Use the Bisection method on the following

intervals to find p3 .

(a) [−2, 1.5] (b) [−1.25, 2.5]

3. Use the Bisection method to find solutions accurate to within 10−2 for x3 −
7x2 + 14x− 6 = 0 on each interval.

(a) [0, 1] (b) [1, 3.2] (c) [3.2, 4]

4. Use the Bisection method to find solutions accurate to within 10−2 for x4 −
2x3 − 4x2 + 4x+ 4 = 0 on each interval.

(a) [−2,−1] (b) [0, 2]

(c) [2, 3] (d) [−1, 0]

5. (a) Sketch the graphs of y = x and y = 2 sinx.

(b) Use the Bisection method to find an approximation to within 10−2 to
the first positive value of x with x = 2 sinx.

6. (a) Sketch the graphs of y = x and y = tanx.

(b) Use the Bisection method to find an approximation to within 10−2 to
the first positive value of x with x = tanx.

7. Let f(x) = (x+2)(x+1)x(x−1)3(x−2). To which zero of f does the Bisection
method converge for the following intervals?

(a) [−3, 2.5] (b) [−2.5, 3]

(c) [−1.75, 1.5] (d) [−1.5, 1.75]

8. Let f(x) = (x + 2)(x + 1)2x(x − 1)3(x − 2). To which zero of f does the
Bisection method converge for the following intervals?

(a) [−1.5, 2.5] (b) [−0.5, 2.4]

(c) [−0.5, 3] (d) [−3,−0.5]

9. Use the Bisection method to find an approximation to
√

3 correct to within
10−4. [Hint: Consider f(x) = x2 − 3.]

46 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

10. Use the Bisection method to find an approximation to 3
√

25 correct to within
10−4.

11. Find a bound for the number of Bisection method iterations needed to achieve
an approximation with accuracy 10−3 to the solution of x3 + x− 4 = 0 lying
in the interval [1, 4]. Find an approximation to the root with this degree of
accuracy.

12. Find a bound for the number of Bisection method iterations needed to achieve
an approximation with accuracy 10−4 to the solution of x3 − x− 1 = 0 lying
in the interval [1, 2]. Find an approximation to the root with this degree of
accuracy.

13. The function defined by f(x) = sinπx has zeros at every integer. Show that
when −1 < a < 0 and 2 < b < 3, the Bisection method converges to

(a) 0, if a+ b < 2

(b) 2, if a+ b > 2

(c) 1, if a+ b = 2

2.3. THE SECANT METHOD 47

2.3 The Secant Method

Although the Bisection method always converges, the speed of convergence is usu-
ally too slow for general use. Figure 2.3 gives a graphical interpretation of the
Bisection method that can be used to discover how improvements on this technique
can be derived. It shows the graph of a continuous function that is negative at a1

and positive at b1. The first approximation p1 to the root p is found by drawing
the line joining the points (a1, sgn(f(a1))) = (a1,−1) and (b1, sgn(f(b1))) = (b1, 1)
and letting p1 be the point where this line intersects the x-axis. In essence, the line
joining (a1,−1) and (b1, 1) has been used to approximate the graph of f on the
interval [a1, b1]. Successive approximations apply this same process on subintervals
of [a1, b1], [a2, b2], and so on. Notice that the Bisection method uses no information
about the function f except the fact that f(x) is positive and negative at certain
values of x.

Figure 2.3

x

y

p1 5 b2

a3 5 p2
p3 p

b 5 b1

(b1, 1)(b2, 1) 5 (b3, 1)

a 5 a1 5 a2

(a1, 21) 5 (a2, 21)

(a3, 21)

y 5 f (x)

1

21

Suppose that in the initial step we know that |f(a1)| < |f(b1)|. Then we would
expect the root p to be closer to a1 than to b1. Alternatively, if |f(b1)| < |f(a1)|,
p is likely to be closer to b1 than to a1. Instead of choosing the intersection of
the line through (a1, sgn(f(a1))) = (a1,−1) and (b1, sgn(f(b1))) = (b1, 1) as the
approximation to the root p, the Secant method chooses the x-intercept of the
secant line to the curve, the line through (a1, f(a1)) and (b1, f(b1)). This places
the approximation closer to the endpoint of the interval for which f has smaller
absolute value, as shown in Figure 2.4.

48 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Figure 2.4

x

y

p0

p1

p2 p
p3

p4

y 5 f (x)

The sequence of approximations generated by the Secant method is started by
setting p0 = a and p1 = b. The equation of the secant line through (p0, f(p0)) and
(p1, f(p1)) is

y = f(p1) +
f(p1)− f(p0)

p1 − p0
(x− p1).

The x-intercept (p2, 0) of this line satisfies

0 = f(p1) +
f(p1)− f(p0)

p1 − p0
(p2 − p1)

and solving for p2 gives

p2 = p1 − f(p1)(p1 − p0)
f(p1)− f(p0)

.

[Secant Method] The approximation pn+1, for n > 1, to a root of f(x) = 0 is
computed from the approximations pn and pn−1 using the equation

pn+1 = pn − f(pn)(pn − pn−1)
f(pn)− f(pn−1)

.

The Secant method does not have the root-bracketing property of the Bisection
method. As a consequence, the method does not always converge, but when it does
converge, it generally does so much faster than the Bisection method.

We use two stopping conditions in the Secant method. First, we assume that
pn is sufficiently accurate when |pn − pn−1| is within a given tolerance. Also, a
safeguard exit based upon a maximum number of iterations is given in case the
method fails to converge as expected.

2.3. THE SECANT METHOD 49

The iteration equation should not be simplified algebraically to

pn+1 = pn − f(pn)(pn − pn−1)
f(pn)− f(pn−1)

=
f(pn−1)pn − f(pn)pn−1

f(pn−1)− f(pn)
.

Although this is algebraically equivalent to the iteration equation, it could in-
crease the significance of rounding error if the nearly equal numbers f(pn−1)pn

and f(pn)pn−1 are subtracted.

EXAMPLE 1 In this example we will approximate a root of the equation x3 + 4x2 − 10 = 0. To
use Maple we first define the function f(x) and the numbers p0 and p1 with the
commands

>f:=x->x^3+4*x^2-10;
>p0:=1; p1:=2;

The values of f(p0) = −5 and f(p1) = 14 are computed by

>fp0:=f(p0); fp1:=f(p1);

and the first secant approximation, p2 = 24
19 , by

>p2:=p1-fp1*(p1-p0)/(fp1-fp0);

The next command forces a floating-point representation for p2 instead of an exact
rational representation.

>p2:=evalf(p2);

We compute f(p2) = −1.602274379 and continue to compute p3 = 1.338827839 by

>fp2:=f(p2);
>p3:=p2-fp2*(p2-p1)/(fp2-fp1);

The program SECANT22 with inputs p0 = 1, p1 = 2, TOL = 0.0005, and
N0 = 20 produces the results in Table 2.2. About half the number of iterations are
needed, compared to the Bisection method in Example 1 of Section 2.2. Further,
|p − p6| = |1.3652300134 − 1.3652300011| < 1.3 × 10−8 is much smaller than the
tolerance 0.0005.

Table 2.2
n pn f(pn)

2 1.2631578947 −1.6022743840
3 1.3388278388 −0.4303647480
4 1.3666163947 0.0229094308
5 1.3652119026 −0.0002990679
6 1.3652300011 −0.0000002032

50 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

There are other reasonable choices for generating a sequence of approximations
based on the intersection of an approximating line and the x-axis. The method of
False Position (or Regula Falsi)is a hybrid bisection-secant method that constructs
approximating lines similar to those of the Secant method but always brackets the
root in the manner of the Bisection method. As with the Bisection method, the
method of False Position requires that an initial interval [a, b] first be found, with
f(a) and f(b) of opposite sign. With a1 = a and b1 = b, the approximation, p2, is
given by

p2 = a1 − f(a1)(b1 − a1)
f(b1)− f(a1)

.

If f(p2) and f(a1) have the same sign, then set a2 = p2 and b2 = b1. Alternatively,
if f(p2) and f(b1) have the same sign, set a2 = a1 and b2 = p2. (See Figure 2.5.)

[Method of False Position] An interval [an+1, bn+1], for n > 1, containing
an approximation to a root of f(x) = 0 is found from an interval [an, bn]
containing the root by first computing

pn+1 = an − f(an)(bn − an)
f(bn)− f(an)

.

Then set

an+1 = an and bn+1 = pn+1 if f(an)f(pn+1) < 0,

and
an+1 = pn+1 and bn+1 = bn otherwise.

Figure 2.5

y y
y 5 f (x) y 5 f (x)

p0 p1

p2 p3

p4p0 p1

p2 p3

p4

Secant method Method of False Position

xx

2.3. THE SECANT METHOD 51

Although the method of False Position may appear superior to the Secant
method, it generally converges more slowly, as the results in Table 2.3 indicate
for the problem we considered in Example 1. In fact, the method of False Position
can converge even more slowly than the Bisection method (as the problem given in
Exercise 14 shows), although this is not usually the case. The program FALPOS23
implements the method of False Position.

Table 2.3

n an bn pn+1 f(pn+1)

1 1.00000000 2.00000000 1.26315789 −1.60227438
2 1.26315789 2.00000000 1.33882784 −0.43036475
3 1.33882784 2.00000000 1.35854634 −0.11000879
4 1.35854634 2.00000000 1.36354744 −0.02776209
5 1.36354744 2.00000000 1.36480703 −0.00698342
6 1.36480703 2.00000000 1.36512372 −0.00175521
7 1.36512372 2.00000000 1.36520330 −0.00044106

52 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.3

1. Let f(x) = x2 − 6, p0 = 3, and p1 = 2. Find p3 using each method.

(a) Secant method (b) method of False Position

2. Let f(x) = −x3 − cosx, p0 = −1, and p1 = 0. Find p3 using each method.

(a) Secant method (b) method of False Position

3. Use the Secant method to find solutions accurate to within 10−4 for the
following problems.

(a) x3 − 2x2 − 5 = 0, on [1, 4] (b) x3 + 3x2 − 1 = 0, on [−3,−2]

(c) x− cosx = 0, on [0, π/2] (d) x− 0.8− 0.2 sinx = 0, on [0, π/2]

4. Use the Secant method to find solutions accurate to within 10−5 for the
following problems.

(a) 2x cos 2x− (x− 2)2 = 0 on [2, 3] and on [3, 4]

(b) (x− 2)2 − lnx = 0 on [1, 2] and on [e, 4]

(c) ex − 3x2 = 0 on [0, 1] and on [3, 5]

(d) sinx− e−x = 0 on [0, 1], on [3, 4] and on [6, 7]

5. Repeat Exercise 3 using the method of False Position.

6. Repeat Exercise 4 using the method of False Position.

7. Use the Secant method to find all four solutions of 4x cos(2x)− (x− 2)2 = 0
in [0, 8] accurate to within 10−5.

8. Use the Secant method to find all solutions of x2 + 10 cosx = 0 accurate to
within 10−5.

9. Use the Secant method to find an approximation to
√

3 correct to within
10−4, and compare the results to those obtained in Exercise 9 of Section 2.2.

10. Use the Secant method to find an approximation to 3
√

25 correct to within
10−6, and compare the results to those obtained in Exercise 10 of Section 2.2.

11. Approximate, to within 10−4, the value of x that produces the point on the
graph of y = x2 that is closest to (1, 0). [Hint: Minimize [d(x)]2, where d(x)
represents the distance from (x, x2) to (1, 0).]

2.3. THE SECANT METHOD 53

12. Approximate, to within 10−4, the value of x that produces the point on the
graph of y = 1/x that is closest to (2, 1).

13. The fourth-degree polynomial

f(x) = 230x4 + 18x3 + 9x2 − 221x− 9

has two real zeros, one in [−1, 0] and the other in [0, 1]. Attempt to approxi-
mate these zeros to within 10−6 using each method.

(a) method of False Position (b) Secant method

14. The function f(x) = tanπx−6 has a zero at (1/π) arctan 6 ≈ 0.447431543. Let
p0 = 0 and p1 = 0.48 and use 10 iterations of each of the following methods
to approximate this root. Which method is most successful and why?

(a) Bisection method

(b) method of False Position

(c) Secant method

15. Use Maple to determine how many iterations of the Secant method with
p0 = 1

2 and p1 = π/4 are needed to find a root of f(x) = cosx− x to within
10−100.

16. The sum of two numbers is 20. If each number is added to its square root,
the product of the two sums is 155.55. Determine the two numbers to within
10−4.

17. A trough of length L has a cross section in the shape of a semicircle with
radius r. (See the accompanying figure.) When filled with water to within a
distance h of the top, the volume, V , of water is

V = L

[
0.5πr2 − r2 arcsin

(
h

r

)
− h(r2 − h2)1/2

]

Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft3. Find the depth of water in the
trough to within 0.01 ft.

18. A particle starts at rest on a smooth inclined plane whose angle θ is changing
at a constant rate

dθ

dt
= ω < 0.

54 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

h hr
u

x(t)

u (t)

At the end of t seconds, the position of the object is given by

x(t) =
g

2ω2

(
eωt − e−ωt

2
− sinωt

)
.

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10−5, the rate ω
at which θ changes. Assume that g = −32.17 ft/s2.

2.4. NEWTON’S METHOD 55

2.4 Newton’s Method

The Bisection and Secant methods both have geometric representations that use
the zero of an approximating line to the graph of a function f to approximate
the solution to f(x) = 0. The increase in accuracy of the Secant method over the
Bisection method is a consequence of the fact that the secant line to the curve better
approximates the graph of f than does the line used to generate the approximations
in the Bisection method.

The line that best approximates the graph of the function at a point on its graph
is the tangent line to the graph at that point. Using this line instead of the secant
line produces Newton’s method (also called the Newton–Raphson method), the
technique we consider in this section.

Suppose that p0 is an initial approximation to the root p of the equation f(x) = 0
and that f ′ exists in an interval containing all the approximations to p. The slope of
the tangent line to the graph of f at the point (p0, f(p0)) is f ′(p0), so the equation
of this tangent line is

y − f(p0) = f ′(p0)(x− p0).

Since this line crosses the x-axis when the y-coordinate of the point on the line
is zero, the next approximation, p1, to p satisfies

0− f(p0) = f ′(p0)(p1 − p0),

which implies that

p1 = p0 − f(p0)
f ′(p0)

,

provided that f ′(p0)
= 0. Subsequent approximations are found for p in a similar
manner, as shown in Figure 2.6.

Figure 2.6

xx

y

(p0, f (p0))

(p1, f (p1))

p0

p1

p2
p Slope f 9(p0)

y 5 f (x)Slope f 9(p1)

56 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

[Newton’s Method] The approximation pn+1 to a root of f(x) = 0 is computed
from the approximation pn using the equation

pn+1 = pn − f(pn)
f ′(pn)

.

EXAMPLE 1 In this example we use Newton’s method to approximate the root of the equation
x3 +4x2−10 = 0. Maple is used to find the first iteration of Newton’s method with
p0 = 1. We define f(x) and compute f ′(x) by

>f:=x->x^3+4*x^2-10;
>fp:=x->D(f)(x);
>p0:=1;

The first iteration of Newton’s method gives p1 = 16
11 , which is obtained with

>p1:=p0-f(p0)/fp(p0);

A decimal representation of 1.454545455 for p1 is given by

>p1:=evalf(p1);

The process can be continued to generate the entries in Table 2.4.

Table 2.4
n pn f(pn)

1 1.4545454545 1.5401953418
2 1.3689004011 0.0607196886
3 1.3652366002 0.0001087706
4 1.3652300134 0.0000000004

We use p0 = 1, TOL = 0.0005, and N0 = 20 in the program NEWTON24
to compare the convergence of this method with those applied to this problem
previously. The number of iterations needed to solve the problem by Newton’s
method is less than the number needed for the Secant method, which, in turn,
required less than half the iterations needed for the Bisection method. In addition,
for Newton’s method we have |p− p4| ≈ 10−10.

2.4. NEWTON’S METHOD 57

Newton’s method generally produces accurate results in just a few iterations.
With the aid of Taylor polynomials we can see why this is true. Suppose p is the
solution to f(x) = 0 and that f ′′ exists on an interval containing both p and the
approximation pn. Expanding f in the first Taylor polynomial at pn and evaluating
at x = p gives

0 = f(p) = f(pn) + f ′(pn)(p− pn) +
f ′′(ξ)

2
(p− pn)2,

where ξ lies between pn and p. Consequently, if f ′(pn)
= 0, we have

p− pn +
f(pn)
f ′(pn)

= − f ′′(ξ)
2f ′(pn)

(p− pn)2.

Since

pn+1 = pn − f(pn)
f ′(pn)

,

this implies that

p− pn+1 = − f ′′(ξ)
2f ′(pn)

(p− pn)2.

If a positive constant M exists with |f ′′(x)| ≤M on an interval about p, and if
pn is within this interval, then

|p− pn+1| ≤ M

2|f ′(pn)| |p− pn|2.

The important feature of this inequality is that the error |p − pn+1| of the (n +
1)st approximation is bounded by approximately the square of the error of the
nth approximation, |p− pn|. This implies that Newton’s method has the tendency
to approximately double the number of digits of accuracy with each successive
approximation. Newton’s method is not, however, infallible, as the equation in
Exercise 12 shows.

EXAMPLE 2 Find an approximation to the solution of the equation x = 3−x that is accurate to
within 10−8.

A solution of this equation corresponds to a solution of

0 = f(x) = x− 3−x.

Since f is continuous with f(0) = −1 and f(1) = 2
3 , a solution of the equation lies

in the interval (0, 1). We have chosen the initial approximation to be the midpoint
of this interval, p0 = 0.5. Succeeding approximations are generated by applying the
formula

pn+1 = pn − f(pn)
f ′(pn)

= pn − pn − 3−pn

1 + 3−pn ln 3
.

58 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

These approximations are listed in Table 2.5, together with differences between
successive approximations. Since Newton’s method tends to double the number of
decimal places of accuracy with each iteration, it is reasonable to suspect that p3

is correct at least to the places listed.

Table 2.5
n pn |pn − pn−1|
0 0.500000000
1 0.547329757 0.047329757
2 0.547808574 0.000478817
3 0.547808622 0.000000048

The success of Newton’s method is predicated on the assumption that the deriva-
tive of f is nonzero at the approximations to the root p. If f ′ is continuous, this
means that the technique will be satisfactory provided that f ′(p)
= 0 and that a
sufficiently accurate initial approximation is used. The condition f ′(p)
= 0 is not
trivial; it is true precisely when p is a simple root. A simple root of a function f
occurs at p if a function q exists with the property that, for x
= p,

f(x) = (x− p)q(x), where lim
x→p

q(x)
= 0.

When the root is not simple, Newton’s method may converge, but not with the
speed we have seen in our previous examples.

EXAMPLE 3 The root p = 0 of the equation f(x) = ex − x − 1 = 0 is not simple, since both
f(0) = e0 − 0 − 1 = 0 and f ′(0) = e0 − 1 = 0. The terms generated by Newton’s
method with p0 = 0 are shown in Table 2.6 and converge slowly to zero. The graph
of f is shown in Figure 2.7.

Table 2.6
n pn n pn

0 1.0 9 2.7750× 10−3

1 0.58198 10 1.3881× 10−3

2 0.31906 11 6.9411× 10−4

3 0.16800 12 3.4703× 10−4

4 0.08635 13 1.7416× 10−4

5 0.04380 14 8.8041× 10−5

6 0.02206
7 0.01107
8 0.005545

Figure 2.7

2.4. NEWTON’S METHOD 59

x21 1

1

e 2 2

e21

f (x) 5 ex 2 x 2 1

f (x)

(21, e21)

(1, e 2 2)

60 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.4

1. Let f(x) = x2 − 6 and p0 = 1. Use Newton’s method to find p2.

2. Let f(x) = −x3− cosx and p0 = −1. Use Newton’s method to find p2. Could
p0 = 0 be used for this problem?

3. Use Newton’s method to find solutions accurate to within 10−4 for the fol-
lowing problems.

(a) x3 − 2x2 − 5 = 0, on [1, 4]

(b) x3 + 3x2 − 1 = 0, on [−3,−2]

(c) x− cosx = 0, on [0, π/2]

(d) x− 0.8− 0.2 sinx = 0, on [0, π/2]

4. Use Newton’s method to find solutions accurate to within 10−5 for the fol-
lowing problems.

(a) 2x cos 2x− (x− 2)2 = 0, on [2, 3] and [3, 4]

(b) (x− 2)2 − lnx = 0, on [1, 2] and [e, 4]

(c) ex − 3x2 = 0, on [0, 1] and [3, 5]

(d) sinx− e−x = 0, on [0, 1], [3, 4], and [6, 7]

5. Use Newton’s method to find all four solutions of 4x cos(2x) − (x − 2)2 = 0
in [0, 8] accurate to within 10−5.

6. Use Newton’s method to find all solutions of x2 + 10 cosx = 0 accurate to
within 10−5.

7. Use Newton’s method to approximate the solutions of the following equations
to within 10−5 in the given intervals. In these problems the convergence will
be slower than normal since the roots are not simple roots.

(a) x2 − 2xe−x + e−2x = 0, on [0, 1]

(b) cos(x+
√

2) + x
(
x/2 +

√
2
)

= 0, on [−2,−1]

(c) x3 − 3x2(2−x) + 3x(4−x) + 8−x = 0, on [0, 1]

(d) e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3, on [−1, 0]

8. The numerical method defined by

pn = pn−1 − f(pn−1)f ′(pn−1)
[f ′(pn−1)]2 − f(pn−1)f ′′(pn−1)

,

for n = 1, 2, . . . , can be used instead of Newton’s method for equations having
multiple roots. Repeat Exercise 7 using this method.

2.4. NEWTON’S METHOD 61

9. Use Newton’s method to find an approximation to
√

3 correct to within 10−4,
and compare the results to those obtained in Exercise 9 of Sections 2.2 and
2.3.

10. Use Newton’s method to find an approximation to 3
√

25 correct to within
10−6, and compare the results to those obtained in Exercise 10 of Section 2.2
and 2.3.

11. In Exercise 14 of Section 2.3 we found that for f(x) = tanπx − 6, the Bi-
section method on [0, 0.48] converges more quickly than the method of False
Position with p0 = 0 and p1 = 0.48. Also, the Secant method with these val-
ues of p0 and p1 does not give convergence. Apply Newton’s method to this
problem with (a) p0 = 0, and (b) p0 = 0.48. (c) Explain the reason for any
discrepancies.

12. Use Newton’s method to determine the first positive solution to the equation
tanx = x, and explain why this problem can give difficulties.

13. Use Newton’s method to solve the equation

0 =
1
2

+
1
4
x2 − x sinx− 1

2
cos 2x, with p0 =

π

2
.

Iterate using Newton’s method until an accuracy of 10−5 is obtained. Explain
why the result seems unusual for Newton’s method. Also, solve the equation
with p0 = 5π and p0 = 10π.

14. Use Maple to determine how many iterations of Newton’s method with p0 =
π/4 are needed to find a root of f(x) = cosx− x to within 10−100.

15. Player A will shut out (win by a score of 21–0) player B in a game of rac-
quetball with probability

P =
1 + p

2

(
p

1− p+ p2

)21

,

where p denotes the probability A will win any specific rally (independent of
the server). (See [K,J], p. 267.) Determine, to within 10−3, the minimal value
of p that will ensure that A will shut out B in at least half the matches they
play.

16. The function described by f(x) = ln(x2 + 1) − e0.4x cosπx has an infinite
number of zeros.

(a) Determine, within 10−6, the only negative zero.

(b) Determine, within 10−6, the four smallest positive zeros.

(c) Determine a reasonable initial approximation to find the nth smallest
positive zero of f . [Hint: Sketch an approximate graph of f .]

62 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

(d) Use part (c) to determine, within 10−6, the 25th smallest positive zero
of f .

17. The accumulated value of a savings account based on regular periodic pay-
ments can be determined from the annuity due equation,

A =
P

i
[(1 + i)n − 1].

In this equation A is the amount in the account, P is the amount regularly
deposited, and i is the rate of interest per period for the n deposit periods.
An engineer would like to have a savings account valued at $750,000 upon
retirement in 20 years and can afford to put $1500 per month toward this
goal. What is the minimal interest rate at which this amount can be invested,
assuming that the interest is compounded monthly?

18. Problems involving the amount of money required to pay off a mortgage over
a fixed period of time involve the formula

A =
P

i
[1− (1 + i)−n],

known as an ordinary annuity equation. In this equation A is the amount of
the mortgage, P is the amount of each payment, and i is the interest rate
per period for the n payment periods. Suppose that a 30-year home mortgage
in the amount of $135,000 is needed and that the borrower can afford house
payments of at most $1000 per month. What is the maximal interest rate the
borrower can afford to pay?

19. A drug administered to a patient produces a concentration in the blood stream
given by c(t) = Ate−t/3 milligrams per milliliter t hours after A units have
been injected. The maximum safe concentration is 1 mg/ml.

(a) What amount should be injected to reach this maximum safe concen-
tration and when does this maximum occur?

(b) An additional amount of this drug is to be administered to the patient
after the concentration falls to 0.25 mg/ml. Determine, to the nearest
minute, when this second injection should be given.

(c) Assuming that the concentration from consecutive injections is additive
and that 75% of the amount originally injected is administered in the
second injection, when is it time for the third injection?

20. Let f(x) = 33x+1 − 7 · 52x.

(a) Use the Maple commands solve and fsolve to try to find all roots of
f .

(b) Plot f(x) to find initial approximations to roots of f .

2.4. NEWTON’S METHOD 63

(c) Use Newton’s method to find roots of f to within 10−16.

(d) Find the exact solutions of f(x) = 0 algebraically.

64 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

2.5 Error Analysis and Accelerating Convergence

In the previous section we found that Newton’s method generally converges very
rapidly if a sufficiently accurate initial approximation has been found. This rapid
speed of convergence is due to the fact that Newton’s method produces quadratically
convergent approximations.

A method that produces a sequence {pn} of approximations that converge to a
number p converges linearly if, for large values of n, a constant 0 < M < 1 exists
with

|p− pn+1| ≤M |p− pn|.

The sequence converges quadratically if, for large values of n, a constant 0 < M
exists with

|p− pn+1| ≤M |p− pn|2.

The following example illustrates the advantage of quadratic over linear conver-
gence.

EXAMPLE 1 Suppose that {pn} converges linearly to p = 0, {p̂n} converges quadratically to
p = 0, and the constant M = 0.5 is the same in each case. Then

|p1| ≤M |p0| ≤ (0.5) · |p0| and |p̂1| ≤M |p̂0|2 ≤ (0.5) · |p̂0|2.

Similarly,

|p2| ≤M |p1| ≤ 0.5(0.5) · |p0| = (0.5)2|p0|

and

|p̂2| ≤M |p̂1|2 ≤ 0.5(0.5|p̂0|2)2 = (0.5)3|q0|4.

Continuing,

|p3| ≤M |p2| ≤ 0.5((0.5)2|p0|) = (0.5)3|p0|

and

|p̂3| ≤M |p̂2|2 ≤ 0.5((0.5)3|p̂0|4)2 = (0.5)7|q0|8.

In general,

|pn| ≤ 0.5n|p0|, whereas |p̂n| ≤ (0.5)2
n−1|p̂0|2n

for each n = 1, 2, Table 2.7 illustrates the relative speed of convergence of these
error bounds to zero, assuming that |p0| = |p̂0| = 1.

2.5. ERROR ANALYSIS AND ACCELERATING CONVERGENCE 65

Table 2.7

Linear Convergence Quadratic Convergence
Sequence Bound Sequence Bound

n pn =(0.5)n p̂n =(0.5)2
n−1

1 5.0000× 10−1 5.0000× 10−1

2 2.5000× 10−1 1.2500× 10−1

3 1.2500× 10−1 7.8125× 10−3

4 6.2500× 10−2 3.0518× 10−5

5 3.1250× 10−2 4.6566× 10−10

6 1.5625× 10−2 1.0842× 10−19

7 7.8125× 10−3 5.8775× 10−39

The quadratically convergent sequence is within 10−38 of zero by the seventh
term. At least 126 terms are needed to ensure this accuracy for the linearly conver-
gent sequence. If |p̂0| < 1, the bound on the sequence {p̂n} will decrease even more
rapidly. No significant change will occur, however, if |p0| < 1.

As illustrated in Example 1, quadratically convergent sequences generally con-
verge much more quickly than those that converge only linearly. However, linearly
convergent methods are much more common than those that converge quadrat-
ically. Aitken’s ∆2 method is a technique that can be used to accelerate the
convergence of a sequence that is linearly convergent, regardless of its origin or
application.

Suppose {pn}∞n=0 is a linearly convergent sequence with limit p. To motivate the
construction of a sequence {qn} that converges more rapidly to p than does {pn},
let us first assume that the signs of pn − p, pn+1 − p, and pn+2 − p agree and that
n is sufficiently large that

pn+1 − p
pn − p ≈

pn+2 − p
pn+1 − p .

Then
(pn+1 − p)2 ≈ (pn+2 − p)(pn − p),

so
p2

n+1 − 2pn+1p+ p2 ≈ pn+2pn − (pn + pn+2)p+ p2

and
(pn+2 + pn − 2pn+1)p ≈ pn+2pn − p2

n+1.

Solving for p gives

p ≈ pn+2pn − p2
n+1

pn+2 − 2pn+1 + pn
.

66 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Adding and subtracting the terms p2
n and 2pnpn+1 in the numerator and grouping

terms appropriately gives

p ≈ pnpn+2 − 2pnpn+1 + p2
n − p2

n+1 + 2pnpn+1 − p2
n

pn+2 − 2pn+1 + pn

=
pn(pn+2 − 2pn+1 + pn)− (p2

n+1 − 2pnpn+1 + p2
n)

pn+2 − 2pn+1 + pn

= pn − (pn+1 − pn)2

pn+2 − 2pn+1 + pn
.

Aitken’s ∆2 method uses the sequence {qn}∞n=0 defined by this approximation to p.

[Aitken’s ∆2 Method] If {pn}∞n=0 is a sequence that converges linearly to p,
and if

qn = pn − (pn+1 − pn)2

pn+2 − 2pn+1 + pn
,

then {qn}∞n=0 also converges to p, and, in general, more rapidly.

EXAMPLE 2 The sequence {pn}∞n=1, where pn = cos(1/n), converges linearly to p = 1. The first
few terms of the sequences {pn}∞n=1 and {qn}∞n=1 are given in Table 2.8. It certainly
appears that {qn}∞n=1 converges more rapidly to p = 1 than does {pn}∞n=1.

Table 2.8
n pn qn

1 0.54030 0.96178
2 0.87758 0.98213
3 0.94496 0.98979
4 0.96891 0.99342
5 0.98007 0.99541
6 0.98614
7 0.98981

For a given sequence {pn}∞n=0, the forward difference, ∆pn (read ”delta pn”),
is defined as

∆pn = pn+1 − pn, for n ≥ 0.

Higher powers of the operator ∆ are defined recursively by

∆kpn = ∆(∆k−1pn), for k ≥ 2.

2.5. ERROR ANALYSIS AND ACCELERATING CONVERGENCE 67

The definition implies that

∆2pn = ∆(pn+1 − pn) = ∆pn+1 −∆pn = (pn+2 − pn+1)− (pn+1 − pn),

so
∆2pn = pn+2 − 2pn+1 + pn.

Thus, the formula for qn given in Aitken’s ∆2 method can be written as

qn = pn − (∆pn)2

∆2pn
, for all n ≥ 0.

The sequence {qn}∞n=1 converges to p more rapidly than does the original se-
quence {pn}∞n=0 in the following sense:

[Aitken’s ∆2 Convergence] If {pn} is a sequence that converges linearly to the
limit p and (pn − p)(pn+1 − p) > 0 for large values of n, and

qn = pn − (∆pn)2

∆2pn
, then lim

n→∞
qn − p
pn − p = 0.

We will find occasion to apply this acceleration technique at various times in
our study of approximation methods.

68 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.5

1. The following sequences are linearly convergent. Generate the first five terms
of the sequence {qn} using Aitken’s ∆2 method.

(a) p0 = 0.5, pn = (2− epn−1 + p2
n−1)/3, for n ≥ 1

(b) p0 = 0.75, pn = (epn−1/3)1/2, for n ≥ 1

(c) p0 = 0.5, pn = 3−pn−1 , for n ≥ 1

(d) p0 = 0.5, pn = cos pn−1, for n ≥ 1

2. Newton’s method does not converge quadratically for the following problems.
Accelerate the convergence using the Aitken’s ∆2 method. Iterate until |qn−
qn−1| < 10−4.

(a) x2 − 2xe−x + e−2x = 0, [0, 1]

(b) cos(x+
√

2) + x(x/2 +
√

2) = 0, [−2,−1]

(c) x3 − 3x2(2−x) + 3x(4−x)− 8−x = 0, [0, 1]

(d) e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3 = 0, [−1, 0]

3. Consider the function f(x) = e6x + 3(ln 2)2e2x− (ln 8)e4x− (ln 2)3. Use New-
ton’s method with p0 = 0 to approximate a zero of f . Generate terms until
|pn+1 − pn| < 0.0002. Construct the Aitken’s ∆2 sequence {qn}. Is the con-
vergence improved?

4. Repeat Exercise 3 with the constants in f(x) replaced by their four-digit
approximations, that is, with f(x) = e6x + 1.441e2x − 2.079e4x − 0.3330, and
compare the solutions to the results in Exercise 3.

5. (i) Show that the following sequences {pn} converge linearly to p = 0. (ii) How
large must n be before |pn − p| ≤ 5 × 10−2? (iii) Use Aitken’s ∆2 method
to generate a sequence {qn} until |qn − p| ≤ 5× 10−2.

(a) pn =
1
n

, for n ≥ 1 (b) pn =
1
n2

, for n ≥ 1

6. (a) Show that for any positive integer k, the sequence defined by pn = 1/nk

converges linearly to p = 0.

(b) For each pair of integers k and m, determine a number N for which
1/Nk < 10−m.

7. (a) Show that the sequence pn = 10−2n

converges quadratically to zero.

2.5. ERROR ANALYSIS AND ACCELERATING CONVERGENCE 69

(b) Show that the sequence pn = 10−nk

does not converge to zero quadrat-
ically, regardless of the size of the exponent k > 1.

8. A sequence {pn} is said to be superlinearly convergent to p if a sequence
{cn} converging to zero exists with

|pn+1 − p| ≤ cn|pn − p|.

(a) Show that if {pn} is superlinearly convergent to p, then {pn} is linearly
convergent to p.

(b) Show that pn = 1/nn is superlinearly convergent to zero but is not
quadratically convergent to zero.

70 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

2.6 Müller’s Method

There are a number of root-finding problems for which the Secant, False Position,
and Newton’s methods will not give satisfactory results. They will not give rapid
convergence, for example, when the function and its derivative are simultaneously
close to zero. In addition, these methods cannot be used to approximate complex
roots unless the initial approximation is a complex number whose imaginary part
is nonzero. This often makes them a poor choice for use in approximating the roots
of polynomials, which, even with real coefficients, commonly have complex roots
occuring in conjugate pairs.

In this section we consider Müller’s method, which is a generalization of the
Secant method. The Secant method finds the zero of the line passing through points
on the graph of the function that corresponds to the two immediately previous
approximations, as shown in Figure 2.8(a). Müller’s method uses the zero of the
parabola through the three immediately previous points on the graph as the new
approximation, as shown in part (b) of Figure 2.8.

Figure 2.8

x x

y y

f f
x0 x1 x2x0 x1 x2 x3

(a) (b)

Suppose that three initial approximations, p0, p1, and p2, are given for a so-
lution of f(x) = 0. The derivation of Müller’s method for determining the next
approximation p3 begins by considering the quadratic polynomial

P (x) = a(x− p2)2 + b(x− p2) + c

that passes through (p0, f(p0)), (p1, f(p1)), and (p2, f(p2)). The constants a, b, and
c can be determined from the conditions

f(p0) = a(p0 − p2)2 + b(p0 − p2) + c,

f(p1) = a(p1 − p2)2 + b(p1 − p2) + c,

2.6. MÜLLER’S METHOD 71

and
f(p2) = a · 02 + b · 0 + c.

To determine p3, the root of P (x) = 0, we apply the quadratic formula to
P (x). Because of round-off error problems caused by the subtraction of nearly equal
numbers, however, we apply the formula in the manner prescribed in Example 1 of
Section 1.4:

p3 − p2 =
−2c

b±√b2 − 4ac
.

This gives two possibilities for p3, depending on the sign preceding the radical
term. In Müller’s method, the sign is chosen to agree with the sign of b. Chosen in
this manner, the denominator will be the largest in magnitude, which avoids the
possibility of subtracting nearly equal numbers and results in p3 being selected as
the closest root of P (x) = 0 to p2.

[Müller’s Method] Given initial approximations p0, p1, and p2, generate

p3 = p2 − 2c
b+ sgn(b)

√
b2 − 4ac

,

where

c = f(p2),

b =
(p0 − p2)2[f(p1)− f(p2)]− (p1 − p2)2[f(p0)− f(p2)]

(p0 − p2)(p1 − p2)(p0 − p1)
,

and
a =

(p1 − p2)[f(p0)− f(p2)]− (p0 − p2)[f(p1)− f(p2)]
(p0 − p2)(p1 − p2)(p0 − p1)

.

Then continue the iteration, with p1, p2, and p3 replacing p0, p1, and p2.

The method continues until a satisfactory approximation is obtained. Since the
method involves the radical

√
b2 − 4ac at each step, the method approximates com-

plex roots when b2− 4ac < 0, provided, of course, that complex arithmetic is used.

EXAMPLE 1 Consider the polynomial f(x) = 16x4 − 40x3 + 5x2 + 20x + 6. Using the program
MULLER25 with accuracy tolerance 10−5 and various inputs for p0, p1, and p2

produces the results in Tables 2.9, 2.10, and 2.11.

Table 2.9
p0 = 0.5, p1 = −0.5, p2 = 0

72 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

n pn f(pn)

3 −0.555556 + 0.598352i −29.4007− 3.89872i
4 −0.435450 + 0.102101i 1.33223− 1.19309i
5 −0.390631 + 0.141852i 0.375057− 0.670164i
6 −0.357699 + 0.169926i −0.146746− 0.00744629i
7 −0.356051 + 0.162856i −0.183868× 10−2 + 0.539780× 10−3i
8 −0.356062 + 0.162758i 0.286102× 10−5 + 0.953674× 10−6i

Table 2.10
p0 = 0.5, p1 = 1.0, p2 = 1.5

n pn f(pn)

3 1.28785 −1.37624
4 1.23746 0.126941
5 1.24160 0.219440× 10−2

6 1.24168 0.257492× 10−4

7 1.24168 0.257492× 10−4

Table 2.11
p0 = 2.5, p1 = 2.0, p2 = 2.25

n pn f(pn)

3 1.96059 −0.611255
4 1.97056 0.748825× 10−2

5 1.97044 −0.295639× 10−4

6 1.97044 −0.295639× 10−4

To use Maple to generate the first entry in Table 2.9 we define f(x) and the
initial approximations with the Maple statements

>f:=x->16*x^4-40*x^3+5*x^2+20*x+6;
>p0:=0.5; p1:=-0.5; p2:=0.0;

We evaluate the polynomial at the initial values

>f0:=f(p0); f1:=f(p1); f2:=f(p2);

and we compute c = 6, b = 10, a = 9, and p3 = −0.5555555558 + 0.5983516452i
using the Müller’s method formulas:

2.6. MÜLLER’S METHOD 73

>c:=f2;
>b:=((p0-p2)^2*(f1-f2)-(p1-p2)^2*(f0-f2))/((p0-p2)*(p1-p2)*(p0-p1));
>a:=((p1-p2)*(f0-f2)-(p0-p2)*(f1-f2))/((p0-p2)*(p1-p2)*(p0-p1));
>p3:=p2-(2*c)/(b+(b/abs(b))*sqrt(b^2-4*a*c));

The value p3 was generated using complex arithmetic, as is the calculation

>f3:=f(p3);

which gives f3 = −29.40070112− 3.898724738i.
The actual values for the roots of the equation are −0.356062 ± 0.162758i,

1.241677, and 1.970446, which demonstrate the accuracy of the approximations
from Müller’s method.

Example 1 illustrates that Müller’s method can approximate the roots of poly-
nomials with a variety of starting values. In fact, the technique generally converges
to the root of a polynomial for any initial approximation choice. General-purpose
software packages using Müller’s method request only one initial approximation per
root and, as an option, may even supply this approximation.

Although Müller’s method is not quite as efficient as Newton’s method, it is
generally better than the Secant method. The relative efficiency, however, is not
as important as the ease of implementation and the likelihood that a root will be
found. Any of these methods will converge quite rapidly once a reasonable initial
approximation is determined.

When a sufficiently accurate approximation p∗ to a root has been found, f(x)
is divided by x − p∗ to produce what is called a deflated equation. If f(x) is a
polynomial of degree n, the deflated polynomial will be of degree n − 1, so the
computations are simplified. After an approximation to the root of the deflated
equation has been determined, either Müller’s method or Newton’s method can be
used in the original function with this root as the initial approximation. This will
ensure that the root being approximated is a solution to the true equation, not to
the less accurate deflated equation.

74 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

EXERCISE SET 2.6

1. Find the approximations to within 10−4 to all the real zeros of the following
polynomials using Newton’s method.

(a) P (x) = x3 − 2x2 − 5

(b) P (x) = x3 + 3x2 − 1

(c) P (x) = x4 + 2x2 − x− 3

(d) P (x) = x5 − x4 + 2x3 − 3x2 + x− 4

2. Find approximations to within 10−5 to all the zeros of each of the following
polynomials by first finding the real zeros using Newton’s method and then
reducing to polynomials of lower degree to determine any complex zeros.

(a) P (x) = x4 + 5x3 − 9x2 − 85x− 136

(b) P (x) = x4 − 2x3 − 12x2 + 16x− 40

(c) P (x) = x4 + x3 + 3x2 + 2x+ 2

(d) P (x) = x5 + 11x4 − 21x3 − 10x2 − 21x− 5

3. Repeat Exercise 1 using Müller’s method.

4. Repeat Exercise 2 using Müller’s method.

5. Find, to within 10−3, the zeros and critical points of the following functions.
Use this information to sketch the graphs of P .

(a) P (x) = x3 − 9x2 + 12 (b) P (x) = x4 − 2x3 − 5x2 + 12x− 5

6. P (x) = 10x3 − 8.3x2 + 2.295x− 0.21141 = 0 has a root at x = 0.29.

(a) Use Newton’s method with p0 = 0.28 to attempt to find this root.

(b) Use Müller’s method with p0 = 0.275, p1 = 0.28, and p2 = 0.285 to
attempt to find this root.

(c) Explain any discrepancies in parts (a) and (b).

7. Use Maple to find the exact roots of the polynomial P (x) = x3 + 4x− 4.

8. Use Maple to find the exact roots of the polynomial P (x) = x3 − 2x− 5.

9. Use each of the following methods to find a solution accurate to within 10−4

for the problem

600x4 − 550x3 + 200x2 − 20x− 1 = 0, for 0.1 ≤ x ≤ 1.

2.6. MÜLLER’S METHOD 75

x1

x2

H

W

(a) Bisection method

(b) Newton’s method

(c) Secant method

(d) method of False Position

(e) Müller’s method

10. Two ladders crisscross an alley of width W . Each ladder reaches from the
base of one wall to some point on the opposite wall. The ladders cross at a
height H above the pavement. Find W given that the lengths of the ladders
are x1 = 20 ft and x2 = 30 ft and that H = 8 ft. (See the figure on page 58.)

11. A can in the shape of a right circular cylinder is to be constructed to contain
1000 cm3. The circular top and bottom of the can must have a radius of 0.25
cm more than the radius of the can so that the excess can be used to form a
seal with the side. The sheet of material being formed into the side of the can
must also be 0.25 cm longer than the circumference of the can so that a seal
can be formed. Find, to within 10−4, the minimal amount of material needed
to construct the can.

12. In 1224 Leonardo of Pisa, better known as Fibonacci, answered a mathemat-
ical challenge of John of Palermo in the presence of Emperor Frederick II.
His challenge was to find a root of the equation x3 + 2x2 + 10x = 20. He
first showed that the equation had no rational roots and no Euclidean irra-
tional root—that is, no root in one of the forms a ±√b,√a ±√b,

√
a±√b,

or
√√

a±√b, where a and b are rational numbers. He then approximated
the only real root, probably using an algebraic technique of Omar Khayyam

76 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

r 1 0.25

r

h

involving the intersection of a circle and a parabola. His answer was given in
the base-60 number system as

1 + 22
(

1
60

)
+ 7

(
1
60

)2

+ 42
(

1
60

)3

+ 33
(

1
60

)4

+ 4
(

1
60

)5

+ 40
(

1
60

)6

.

How accurate was his approximation?

2.7. SURVEY OF METHODS AND SOFTWARE 77

2.7 Survey of Methods and Software

In this chapter we have considered the problem of solving the equation f(x) =
0, where f is a given continuous function. All the methods begin with an initial
approximation and generate a sequence that converges to a root of the equation, if
the method is successful. If [a, b] is an interval on which f(a) and f(b) are of opposite
sign, then the Bisection method and the method of False Position will converge.
However, the convergence of these methods may be slow. Faster convergence is
generally obtained using the Secant method or Newton’s method. Good initial
approximations are required for these methods, two for the Secant method and
one for Newton’s method, so the Bisection or the False Position method can be
used as starter methods for the Secant or Newton’s method.

Müller’s method will give rapid convergence without a particularly good initial
approximation. It is not quite as efficient as Newton’s method, but it is better than
the Secant method, and it has the added advantage of being able to approximate
complex roots.

Deflation is generally used with Müller’s method once an approximate root of a
polynomial has been determined. After an approximation to the root of the deflated
equation has been determined, use either Müller’s method or Newton’s method in
the original polynomial with this root as the initial approximation. This procedure
will ensure that the root being approximated is a solution to the true equation, not
to the deflated equation. We recommended Müller’s method for finding all the zeros
of polynomials, real or complex. Müller’s method can also be used for an arbitrary
continuous function.

Other high-order methods are available for determining the roots of polynomials.
If this topic is of particular interest, we recommend that consideration be given to
Laguerre’s method, which gives cubic convergence and also approximates complex
roots (see [Ho, pp. 176–179] for a complete discussion), the Jenkins-Traub method
(see [JT]), and Brent’s method. (see [Bre]), Both IMSL and NAG supply subroutines
based on Brent’s method. This technique uses a combination of linear interpolation,
an inverse quadratic interpolation similar to Müller’s method, and the bisection
method.

The netlib FORTRAN subroutine fzero.f uses a combination of the Bisection and
Secant method developed by T. J. Dekker to approximate a real zero of f(x) = 0
in the interval [a, b]. It requires specifying an interval [a, b] that contains a root and
returns an interval with a width that is within a specified tolerance. The FOR-
TRAN subroutine sdzro.f uses a combination of the bisection method, interpola-
tion, and extrapolation to find a real zero of f(x) = 0 in a given interval [a, b]. The
routines rpzero and cpzero can be used to approximate all zeros of a real polyno-
mial or complex polynomial, respectively. Both methods use Newton’s method for
systems, which will be considered in Chapter 10. All routines are given in single
and double precision. These methods are available on the Internet from netlib at
http://www.netlib.org/slatec/src.

Within MATLAB, the function ROOTS is used to compute all the roots, both
real and complex, of a polynomial. For an arbitrary function, FZERO computes a
root near a specified initial approximation to within a specified tolerance.

78 CHAPTER 2. SOLUTIONS OF EQUATIONS OF ONE VARIABLE

Maple has the procedure fsolve to find roots of equations. For example,
>fsolve(x^2 - x - 1, x);
returns the numbers −.6180339887 and 1.618033989. You can also specify a partic-
ular variable and interval to search. For example,
>fsolve(x^2 - x - 1,x,1..2);
returns only the number 1.618033989. The command fsolve uses a variety of spe-
cialized techniques that depend on the particular form of the equation or system of
equations.

Notice that in spite of the diversity of methods, the professionally written pack-
ages are based primarily on the methods and principles discussed in this chapter.
You should be able to use these packages by reading the manuals accompanying the
packages to better understand the parameters and the specifications of the results
that are obtained.

There are three books that we consider to be classics on the solution of nonlinear
equations, those by Traub [Tr], by Ostrowski [Os], and by Householder [Ho]. In
addition, the book by Brent [Bre] served as the basis for many of the currently
used root-finding methods.

Chapter 3

Interpolation and Polynomial
Approximation

3.1 Introduction

Engineers and scientists commonly assume that relationships between variables in a
physical problem can be approximately reproduced from data given by the problem.
The ultimate goal might be to determine the values at intermediate points, to
approximate the integral or derivative of the underlying function, or to simply give
a smooth or continuous representation of the variables in the problem.

Interpolation refers to determining a function that exactly represents a collection
of data. The most elementary type of interpolation consists of fitting a polynomial
to a collection of data points. Polynomials have derivatives and integrals that are
themselves polynomials, so they are a natural choice for approximating derivatives
and integrals. We will see in this chapter that polynomials to approximate contin-
uous functions are easily constructed. The following result implies that there are
polynomials that are arbitrarily close to any continuous function.

[Weierstrass Approximation Theorem] Suppose that f is defined and contin-
uous on [a, b]. For each ε > 0, there exists a polynomial P (x) defined on [a, b],
with the property that

|f(x)− P (x)| < ε, for all x ∈ [a, b].

The Taylor polynomials were introduced in Section 1.2, where they were de-
scribed as one of the fundamental building blocks of numerical analysis. Given
this prominence, you might assume that polynomial interpolation makes heavy use
of these functions. However, this is not the case. The Taylor polynomials agree

79

80CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

as closely as possible with a given function at a specific point, but they concen-
trate their accuracy only near that point. A good interpolation polynomial needs
to provide a relatively accurate approximation over an entire interval, and Taylor
polynomials do not do that. For example, suppose we calculate the first six Taylor
polynomials about x0 = 0 for f(x) = ex. Since the derivatives of f are all ex, which
evaluated at x0 = 0 gives 1, the Taylor polynomials are

P0(x) = 1, P1(x) = 1 + x, P2(x) = 1 + x+
x2

2
, P3(x) = 1 + x+

x2

2
+
x3

6
,

P4(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
, and P5(x) = 1 + x+

x2

2
+
x3

6
+
x4

24
+

x5

120
.

The graphs of these Taylor polynomials are shown in Figure 3.1. Notice that the
error becomes progressively worse as we move away from zero.

Figure 3.1

y

x

5

10

15

20

121 2 3

y 5 P2(x)

y 5 P3(x)

y 5 P4(x)

y 5 P5(x)

y 5 P1(x)

y 5 P0(x)

y 5 ex

Although better approximations are obtained for this problem if higher-degree
Taylor polynomials are used, this situation is not always true. Consider, as an
extreme example, using Taylor polynomials of various degrees for f(x) = 1/x ex-
panded about x0 = 1 to approximate f(3) = 1

3 . Since

f(x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,
f (n)(x) = (−1)nn!x−n−1,

3.2. LAGRANGE POLYNOMIALS 81

the Taylor polynomials for n ≥ 0 are

Pn(x) =
n∑

k=0

f (k)(1)
k!

(x− 1)k =
n∑

k=0

(−1)k(x− 1)k.

When we approximate f(3) = 1
3 by Pn(3) for larger values of n, the approximations

become increasingly inaccurate, as shown Table 3.1.

Table 3.1

n 0 1 2 3 4 5 6 7
Pn(3) 1 −1 3 −5 11 −21 43 −85

Since the Taylor polynomials have the property that all the information used in
the approximation is concentrated at the single point x0, it is not uncommon for
these polynomials to give inaccurate approximations as we move away from x0. This
limits Taylor polynomial approximation to the situation in which approximations
are needed only at points close to x0. For ordinary computational purposes it is more
efficient to use methods that include information at various points, which we will
consider in the remainder of this chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes; instead it is for the derivation
of numerical techniques.

3.2 Lagrange Polynomials

In the previous section we discussed the general unsuitability of Taylor polynomi-
als for approximation. These polynomials are useful only over small intervals for
functions whose derivatives exist and are easily evaluated. In this section we find
approximating polynomials that can be determined simply by specifying certain
points on the plane through which they must pass.

Determining a polynomial of degree 1 that passes through the distinct points
(x0, y0) and (x1, y1) is the same as approximating a function f for which f(x0) = y0
and f(x1) = y1 by means of a first-degree polynomial interpolating, or agreeing
with,the values of f at the given points. We first define the functions

L0(x) =
x− x1

x0 − x1
and L1(x) =

x− x0

x1 − x0
,

and note that these definitions imply that

L0(x0) =
x0 − x1

x0 − x1
= 1, L0(x1) =

x1 − x1

x0 − x1
= 0, L1(x0) = 0, and L1(x1) = 1.

82CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

We then define

P (x) = L0(x)f(x0) + L1(x)f(x1) =
x− x1

x0 − x1
f(x0) +

x− x0

x1 − x0
f(x1).

This gives
P (x0) = 1 · f(x0) + 0 · f(x1) = f(x0) = y0

and
P (x1) = 0 · f(x0) + 1 · f(x1) = f(x1) = y1.

So, P is the unique linear function passing through (x0, y0) and (x1, y1). (See Figure
3.2.)

Figure 3.2

x

y

y1 5 f (x1)

y0 5 f (x0) y 5 P(x)

y 5 f (x)

x1x0

To generalize the concept of linear interpolation to higher-degree polynomials,
consider the construction of a polynomial of degree at most n that passes through
the n+ 1 points

(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)).

(See Figure 3.3.)
Figure 3.3

y

x

f

P

x0 x1 x2 xn

3.2. LAGRANGE POLYNOMIALS 83

In this case, we need to construct, for each k = 0, 1, . . . , n, a polynomial of
degree n, which we will denote by Ln,k(x), with the property that Ln,k(xi) = 0
when i
= k and Ln,k(xk) = 1.

To satisfy Ln,k(xi) = 0 for each i
= k, the numerator of Ln,k(x) must contain
the term

(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this term evaluated
at x = xk. Thus,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k is shown in Figure 3.4.

Figure 3.4

xx0 x1 xk21 xk xk11 xn21 xn

Ln,k(x)

1

.

The interpolating polynomial is easily described now that the form of Ln,k(x)
is known. This polynomial is called the nth Lagrange interpolating polynomial.

[nth Lagrange Interpolating Polynomial]

Pn(x) = f(x0)Ln,0(x) + · · ·+ f(xn)Ln,n(x) =
n∑

k=0

f(xk)Ln,k(x),

where

Ln,k(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

for each k = 0, 1, . . . , n.

If x0, x1, . . . , xn are (n + 1) distinct numbers and f is a function whose values
are given at these numbers, then Pn(x) is the unique polynomial of degree at most

84CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

n that agrees with f(x) at x0, x1, . . . , xn. The notation for describing the Lagrange
interpolating polynomial Pn(x) is rather complicated since Pn(x) is sum of the n+1
polynomials f(xk)Ln,k(x), for k = 0, 1, . . . , n, each of which is of degree n, provided
f(xk)
= 0. To reduce the notational complication, we will write Ln,k(x) simply as
Lk(x) when there should be no confusion that its degree is n.

EXAMPLE 1 Using the numbers, or nodes, x0 = 2, x1 = 2.5, and x2 = 4 to find the second inter-
polating polynomial for f(x) = 1/x requires that we first determine the coefficient
polynomials L0(x), L1(x), and L2(x).

In the nested form described in Section 1.4 they are

L0(x) =
(x− 2.5)(x− 4)
(2− 2.5)(2− 4)

=
x2 − 6.5x+ 10

1
= (x− 6.5)x+ 10,

L1(x) =
(x− 2)(x− 4)

(2.5− 2)(2.5− 4)
=
x2 − 6x+ 8
−3/4

=
(−4x+ 24)x− 32

3
,

and

L2(x) =
(x− 2)(x− 2.5)
(4− 2)(4− 2.5)

=
x2 − 4.5x+ 5

3
=

(x− 4.5)x+ 5
3

.

Since f(x0) = f(2) = 0.5, f(x1) = f(2.5) = 0.4, and f(x2) = f(4) = 0.25, we have

P2(x) =
2∑

k=0

f(xk)Lk(x)

= 0.5((x− 6.5)x+ 10) + 0.4
(−4x+ 24)x− 32

3
+ 0.25

(x− 4.5)x+ 5
3

= (0.05x− 0.425)x+ 1.15.

An approximation to f(3) = 1
3 is

f(3) ≈ P (3) = 0.325.

Compare this to Table 3.1, where no Taylor polynomial expanded about x0 = 1
can be used to reasonably approximate f(3) = 1

3 . (See Figure 3.5.)

Figure 3.5

3.2. LAGRANGE POLYNOMIALS 85

x

y

1

2

3

4

51 2 3 4

f

P

Maple constructs an interpolating polynomial with the command

>interp(X,Y,x);

where X is the list [x0, . . . , xn], Y is the list [f(x0), . . . , f(xn)], and x is the variable
to be used. In this example we can generate the interpolating polynomial p =
.05000000000x2 − .4250000000x+ 1.150000000 with the command

>p:=interp([2,2.5,4],[0.5,0.4,0.25],x);

To evaluate p(x) as an approximation to f(3) = 1
3 , enter

>subs(x=3,p);

which gives .3250000000.
The Lagrange polynomials have remainder terms that are reminiscent of those

for the Taylor polynomials. The nth Taylor polynomial about x0 concentrates all
the known information at x0 and has an error term of the form

f (n+1)(ξ(x))
(n+ 1)!

(x− x0)n+1,

where ξ(x) is between x and x0. The nth Lagrange polynomial uses information
at the distinct numbers x0, x1, . . . , xn. In place of (x − x0)n+1, its error formula
uses a product of the n+ 1 terms (x− x0), (x− x1), . . . , (x− xn), and the number
ξ(x) can lie anywhere in the interval that contains the points x0, x1, . . . , xn, and x.
Otherwise it has the same form as the error formula for the Taylor polynomials.

86CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

[Lagrange Polynomial Error Formula]

f(x) = Pn(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn),

for some (unknown) number ξ(x) that lies in the smallest interval that con-
tains x0, x1, . . . , xn and x.

This error formula is an important theoretical result, because Lagrange poly-
nomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange er-
ror formula. The specific use of this error formula, however, is restricted to those
functions whose derivatives have known bounds. The next example illustrates in-
terpolation techniques for a situation in which the Lagrange error formula cannot
be used. This example shows that we should look for a more efficient way to obtain
approximations via interpolation.

EXAMPLE 2 Table 3.2 lists values of a function at various points. The approximations to f(1.5)
obtained by various Lagrange polynomials will be compared.

Table 3.2

x f(x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Since 1.5 is between 1.3 and 1.6, the most appropriate linear polynomial uses
x0 = 1.3 and x1 = 1.6. The value of the interpolating polynomial at 1.5 is

P1(1.5) =
(1.5− 1.6)
(1.3− 1.6)

f(1.3) +
(1.5− 1.3)
(1.6− 1.3)

f(1.6)

=
(1.5− 1.6)
(1.3− 1.6)

(0.6200860) +
(1.5− 1.3)
(1.6− 1.3)

(0.4554022) = 0.5102968.

Two polynomials of degree 2, which we denote P2(x) and P̂2(x), could reasonably
be used. To obtain P2(x), we let x0 = 1.3, x1 = 1.6, and x2 = 1.9, which gives the

3.2. LAGRANGE POLYNOMIALS 87

following approximation to f(1.5).

P2(1.5) =
(1.5− 1.6)(1.5− 1.9)
(1.3− 1.6)(1.3− 1.9)

(0.6200860) +
(1.5− 1.3)(1.5− 1.9)
(1.6− 1.3)(1.6− 1.9)

(0.4554022)

+
(1.5− 1.3)(1.5− 1.6)
(1.9− 1.3)(1.9− 1.6)

(0.2818186)

= 0.5112857,

To obtain P̂2(x) we let x0 = 1.0, x1 = 1.3, and x2 = 1.6, which results in the
approximation f(1.5) ≈ P̂2(1.5) = 0.5124715.

In the third-degree case there are also two reasonable choices for the polynomial.
One uses x0 = 1.3, x1 = 1.6, x2 = 1.9, and x3 = 2.2, which gives P3(1.5) =
0.5118302. The other is obtained by letting x0 = 1.0, x1 = 1.3, x2 = 1.6, and
x3 = 1.9, giving P̂3(1.5) = 0.5118127.

The fourth Lagrange polynomial uses all the entries in the table. With x0 =
1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, the approximation is P4(1.5) =
0.5118200.

Since P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2×10−5, we expect P4(1.5)
to be the most accurate approximation and to be correct to within 2× 10−5. The
actual value of f(1.5) is known to be 0.5118277, so the true accuracies of the
approximations are as follows:

|P1(1.5)− f(1.5)| ≈ 1.53× 10−3, |P2(1.5)− f(1.5)| ≈ 5.42× 10−4,

|P̂2(1.5)− f(1.5)| ≈ 6.44× 10−4, |P3(1.5)− f(1.5)| ≈ 2.5× 10−6,

|P̂3(1.5)− f(1.5)| ≈ 1.50× 10−5, |P4(1.5)− f(1.5)| ≈ 7.7× 10−6.

Although P3(1.5) is the most accurate approximation, if we had no knowledge
of the actual value of f(1.5), we would accept P4(1.5) as the best approximation,
since it includes the most data about the function. The Lagrange error term can-
not be applied here, since no knowledge of the fourth derivative of f is available.
Unfortunately, this is generally the case.

A practical difficulty with Lagrange interpolation is that since the error term is
difficult to apply, the degree of the polynomial needed for the desired accuracy is
generally not known until the computations are determined. The usual practice is to
compute the results given from various polynomials until appropriate agreement is
obtained, as was done in the previous example. However, the work done in calculat-
ing the approximation by the second polynomial does not lessen the work needed to
calculate the third approximation; nor is the fourth approximation easier to obtain
once the third approximation is known, and so on. To derive these approximating
polynomials in a manner that uses the previous calculations to advantage, we need
some new notation.

Let f be a function defined at x0, x1, x2, . . . , xn and suppose thatm1,m2, . . . ,mk

are k distinct integers with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that
agrees with f(x) at the k points xm1 , xm2 , . . . , xmk

is denoted Pm1,m2,...,mk
(x).

88CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXAMPLE 3 If x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and f(x) = ex, then P1,2,4(x) is the
polynomial that agrees with f(x) at x1 = 2, x2 = 3, and x4 = 6; that is,

P1,2,4(x) =
(x− 3)(x− 6)
(2− 3)(2− 6)

e2 +
(x− 2)(x− 6)
(3− 2)(3− 6)

e3 +
(x− 2)(x− 3)
(6− 2)(6− 3)

e6.

The next result describes a method for recursively generating Lagrange polyno-
mial approximations.

[Recursively Generated Lagrange Polynomials] Let f be defined at
x0, x1, . . . , xk and xj , xi be two numbers in this set. If

P (x) =
(x− xj)P0,1,...,j−1,j+1,...,k(x)− (x− xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)
,

then P (x) is the kth Lagrange polynomial that interpolates, or agrees with,
f(x) at the k + 1 points x0, x1, . . . , xk.

To see why this recursive formula is true, first let Q ≡ P0,1,...,i−1,i+1,...,k and
Q̂ ≡ P0,1,...,j−1,j+1,...,k. Since Q(x) and Q̂(x) are polynomials of degree at most
k − 1,

P (x) =
(x− xj)Q̂(x)− (x− xi)Q(x)

(xi − xj)

must be of degree at most k. If 0 ≤ r ≤ k with r
= i and r
= j, then Q(xr) =
Q̂(xr) = f(xr), so

P (xr) =
(xr − xj)Q̂(xr)− (xr − xi)Q(xr)

xi − xj
=

(xi − xj)
(xi − xj)

f(xr) = f(xr).

Moreover,

P (xi) =
(xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
=

(xi − xj)
(xi − xj)

f(xi) = f(xi),

and similarly, P (xj) = f(xj). But there is only one polynomial of degree at most
k that agrees with f(x) at x0, x1, . . . , xk, and this polynomial by definition is
P0,1,...,k(x). Hence,

P0,1,...,k(x) = P (x) =
(x− xj)P0,1,...,j−1,j+1,...,k(x)− (x− xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)
.

This result implies that the approximations from the interpolating polynomials
can be generated recursively in the manner shown in Table 3.3. The row-by-row

3.2. LAGRANGE POLYNOMIALS 89

generation is performed to move across the rows as rapidly as possible, since these
entries are given by successively higher-degree interpolating polynomials.

Table 3.3

x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2.0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

This procedure is called Neville’s method and is implemented with the pro-
gram NEVLLE31.

The P notation used in Table 3.3 is cumbersome because of the number of
subscripts used to represent the entries. Note, however, that as an array is being
constructed, only two subscripts are needed. Proceeding down the table corresponds
to using consecutive points xi with larger i, and proceeding to the right corresponds
to increasing the degree of the interpolating polynomial. Since the points appear
consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation. To avoid the
cumbersome subscripts we let Qi,j(x), for 0 ≤ j ≤ i, denote the jth interpolating
polynomial on the j + 1 numbers xi−j , xi−j+1, . . . , xi−1, xi, that is,

Qi,j = Pi−j,i−j+1,...,i−1,i

Using this notation for Neville’s method provides the Q notation in Table 3.3.

EXAMPLE 4 In Example 2, values of various interpolating polynomials at x = 1.5 were obtained
using the data shown in the first two columns of Table 3.4. Suppose that we want to
use Neville’s method to calculate the approximation to f(1.5). If x0 = 1.0, x1 = 1.3,
x2 = 1.6, x3 = 1.9, and x4 = 2.2, then f(1.0) = Q0,0, f(1.3) = Q1,0, f(1.6) = Q2,0,
f(1.9) = Q3,0, and f(2.2) = Q4,0; so these are the five polynomials of degree zero
(constants) that approximate f(1.5). Calculating the approximation Q1,1(1.5) gives

Q1,1(1.5) =
(1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

(1.3− 1.0)

=
0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449.

Similarly,

Q2,1(1.5) =
(1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

(1.6− 1.3)
= 0.5102968,

Q3,1(1.5) = 0.5132634, and Q4,1(1.5) = 0.5104270.

90CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

The best linear approximation is expected to be Q2,1, since 1.5 is between x1 = 1.3
and x2 = 1.6.

In a similar manner, the approximations using quadratic polynomials are given
by

Q2,2(1.5) =
(1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

(1.6− 1.0)
= 0.5124715,

Q3,2(1.5) = 0.5112857, and Q4,2(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown
in Table 3.4.

Table 3.4

1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, Q4,4, is not as accurate as desired, another node,
x5, can be selected and another row can be added to the table:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 can be compared to determine further accuracy.
The function in Example 4 is the Bessel function of the first kind of order zero,

whose value at 2.5 is −0.0483838, and a new row of approximations to f(1.5) is

2.5 − 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry is correct to seven decimal places.

EXAMPLE 5 Table 3.5 lists the values of f(x) = lnx accurate to the places given.

Table 3.5

i xi lnxi

0 2.0 0.6931

1 2.2 0.7885

2 2.3 0.8329

3.2. LAGRANGE POLYNOMIALS 91

We use Neville’s method to approximate f(2.1) = ln 2.1. Completing the table
gives the entries in Table 3.6.

Table 3.6

i xi x− xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931

1 2.2 −0.1 0.7885 0.7410

2 2.3 −0.2 0.8329 0.7441 0.7420

Thus, P2(2.1) = Q22 = 0.7420. Since f(2.1) = ln 2.1 = 0.7419 to four decimal
places, the absolute error is

|f(2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4.

However, f ′(x) = 1/x, f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the Lagrange error
formula gives an error bound of

|f(2.1)− P2(2.1)| =
∣∣∣∣
f ′′′(ξ(2.1))

3!
(x− x0)(x− x1)(x− x2)

∣∣∣∣

=

∣∣∣∣∣
1

3 (ξ(2.1))3
(0.1)(−0.1)(−0.2)

∣∣∣∣∣ ≤
0.002
3(2)3

= 8.3× 10−5.

Notice that the actual error, 10−4, exceeds the error bound, 8.3×10−5. This appar-
ent contradiction is a consequence of finite-digit computations.We used four-digit
approximations, and the Lagrange error formula assumes infinite-digit arithmetic.
This is what caused our actual errors to exceed the theoretical error estimate.

92CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.2

1. For the given functions f(x), let x0 = 0, x1 = 0.6, and x2 = 0.9. Construct
the Lagrange interpolating polynomials of degree (i) at most 1 and (ii) at
most 2 to approximate f(0.45), and find the actual error.

(a) f(x) = cosx (b) f(x) =
√

1 + x

(c) f(x) = ln(x+ 1) (d) f(x) = tanx

2. Use the Lagrange polynomial error formula to find an error bound for the
approximations in Exercise 1.

3. Use appropriate Lagrange interpolating polynomials of degrees 1, 2, and 3 to
approximate each of the following:

(a) f(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515,
f(8.7) = 18.82091

(b) f
(− 1

3

)
if f(−0.75) = −0.07181250, f(−0.5) = −0.02475000, f(−0.25) =

0.33493750, f(0) = 1.10100000

(c) f(0.25) if f(0.1) = 0.62049958, f(0.2) = −0.28398668, f(0.3) = 0.00660095,
f(0.4) = 0.24842440

(d) f(0.9) if f(0.6) = −0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362,
f(1.0) = 0.65809197

4. Use Neville’s method to obtain the approximations for Exercise 3.

5. Use Neville’s method to approximate
√

3 with the function f(x) = 3x and the
values x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

6. Use Neville’s method to approximate
√

3 with the function f(x) =
√
x and

the values x0 = 0, x1 = 1, x2 = 2, x3 = 4, and x4 = 5. Compare the accuracy
with that of Exercise 5.

7. The data for Exercise 3 were generated using the following functions. Use the
error formula to find a bound for the error and compare the bound to the
actual error for the cases n = 1 and n = 2.

(a) f(x) = x lnx

(b) f(x) = x3 + 4.001x2 + 4.002x+ 1.101

(c) f(x) = x cosx− 2x2 + 3x− 1

(d) f(x) = sin(ex − 2)

3.2. LAGRANGE POLYNOMIALS 93

8. Use the Lagrange interpolating polynomial of degree 3 or less and four-digit
chopping arithmetic to approximate cos 0.750 using the following values. Find
an error bound for the approximation.

cos 0.698 = 0.7661 cos 0.733 = 0.7432
cos 0.768 = 0.7193 cos 0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the
discrepancy between the actual error and the error bound.

9. Use the following values and four-digit rounding arithmetic to construct a
third Lagrange polynomial approximation to f(1.09). The function being ap-
proximated is f(x) = log10(tanx). Use this knowledge to find a bound for the
error in the approximation.

f(1.00) = 0.1924 f(1.05) = 0.2414 f(1.10) = 0.2933 f(1.15) = 0.3492

10. Repeat Exercise 9 using Maple with Digits set to 10.

11. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3),
and (2, 2). Find y if the coefficient of x3 in P3(x) is 6.

12. Neville’s method is used to approximate f(0.5), giving the following table.

x0 = 0 P0 = 0
x1 = 0.4 P1 = 2.8 P0,1 = 3.5
x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f(0.7).

13. Suppose you need to construct eight-decimal-place tables for the common, or
base-10, logarithm function from x = 1 to x = 10 in such a way that linear
interpolation is accurate to within 10−6. Determine a bound for the step size
for this table. What choice of step size would you make to ensure that x = 10
is included in the table?

14. Suppose xj = j for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x+ 1, P0,2(x) = x+ 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

15. Neville’s method is used to approximate f(0) using f(−2), f(−1), f(1), and
f(2). Suppose f(−1) was overstated by 2 and f(1) was understated by 3.
Determine the error in the original calculation of the value of the interpolating
polynomial to approximate f(0).

94CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

16. The following table lists the population of the United States from 1940 to
1990.

Year 1940 1950 1960 1970 1980 1990

Population 132, 165 151, 326 179, 323 203, 302 226, 542 249, 633

(in thousands)

Find the Lagrange polynomial of degree 5 fitting this data, and use this
polynomial to estimate the population in the years 1930, 1965, and 2010.
The population in 1930 was approximately 123,203,000. How accurate do you
think your 1965 and 2010 figures are?

17. In Exercise 15 of Section 1.2 a Maclaurin series was integrated to approximate
erf(1), where erf(x) is the normal distribution error function defined by

erf(x) =
2√
π

∫ x

0

e−t2dt.

(a) Use the Maclaurin series to construct a table for erf(x) that is accurate
to within 10−4 for erf(xi), where xi = 0.2i, for i = 0, 1, . . . , 5.

(b) Use both linear interpolation and quadratic interpolation to obtain an
approximation to erf(1

3). Which approach seems more feasible?

3.3. DIVIDED DIFFERENCES 95

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively
higher degree polynomial approximations at a specific point. Divided-difference
methods introduced in this section are used to successively generate the polynomials
themselves.

We first need to introduce the divided-difference notation, which should remind
you of the Aitken’s ∆2 notation used in Section 2.5. Suppose we are given the n+1
points (x0, f(x0)), (x1, f(x1)), . . . (xn, f(xn)). There are n + 1 zeroth divided
differences of the function f . For each i = 0, 1, . . . , n we define f [xi] simply as the
value of f at xi:

f [xi] = f(xi).

The remaining divided differences are defined inductively. There are n first divided
differences of f , one for each i = 0, 1, . . . , n−1. The first divided difference relative
to xi and xi+1 is denoted f [xi, xi+1] and is defined by

f [xi, xi+1] =
f [xi+1]− f [xi]
xi+1 − xi

.

After the (k − 1)st divided differences,

f [xi, xi+1, xi+2, . . . , xi+k−1] and f [xi+1, xi+2, . . . , xi+k−1, xi+k],

have been determined, the kth divided difference relative to xi, xi+1, xi+2, . . . , xi+k

is defined by

f [xi, xi+1, . . . , xi+k−1, xi+k] =
f [xi+1, xi+2, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
.

The process ends with the single nth divided difference,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
.

With this notation, it can be shown that the nth Lagrange interpolation polynomial
for f with respect to x0, x1, . . . , xn can be expressed as

Pn(x) = f [x0] + f [x0, x1](x− x0)
+ f [x0, x1, x2](x− x0)(x− x1) + · · ·
+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)

which is called Newton’s divided-difference formula.
In compressed form we have the following.

[Newton’s Interpolatory Divided-Difference Formula]

P (x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0) · · · (x− xk−1).

96CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

The generation of the divided differences is outlined in Table 3.7. Two fourth
differences and one fifth difference could also be determined from these data, but
they have not been recorded in the table.

Table 3.7

First Second Third
x f(x) Divided Differences Divided Differences Divided Differences

x0 f [x0]
f [x0, x1] = f [x1]−f [x0]

x1−x0

x1 f [x1] f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x1, x2] = f [x2]−f [x1]
x2−x1

f [x0, x1, x2, x3] = f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

x2 f [x2] f [x1, x2, x3] = f [x2,x3]−f [x1,x2]
x3−x1

f [x2, x3] = f [x3]−f [x2]
x3−x2

f [x1, x2, x3, x4] = f [x2,x3,x4]−f [x1,x2,x3]
x4−x1

x3 f [x3] f [x2, x3, x4] = f [x3,x4]−f [x2,x3]
x4−x2

f [x3, x4] = f [x4]−f [x3]
x4−x3

f [x2, x3, x4, x5] = f [x3,x4,x5]−f [x2,x3,x4]
x5−x2

x4 f [x4] f [x3, x4, x5] = f [x4,x5]−f [x3,x4]
x5−x3

f [x4, x5] = f [x5]−f [x4]
x5−x4

x5 f [x5]

Divided-difference tables are easily constructed by hand calculation. Alterna-
tively, the program DIVDIF32 computes the interpolating polynomial for f at
x0, x1, . . . , xn. The form of the output can be modified to produce all the divided
differences, as is done in the following example.

EXAMPLE 1 In the previous section we approximated the value at 1.5 given the data shown
in the second and third columns of Table 3.8. The remaining entries of this table
contain the divided differences computed using the program DIVDIF32.

The coefficients of the Newton forward divided-difference form of the interpola-
tory polynomial are along the upper diagonal in the table. The polynomial is

P4(x) = 0.7651977− 0.4837057(x− 1.0)− 0.1087339(x− 1.0)(x− 1.3)
+ 0.0658784(x− 1.0)(x− 1.3)(x− 1.6)
+ 0.0018251(x− 1.0)(x− 1.3)(x− 1.6)(x− 1.9).

3.3. DIVIDED DIFFERENCES 97

Table 3.8

i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, . . . , xi] f [xi−4, . . . , xi]

0 1.0 0.7651977
−0.4837057

1 1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

2 1.6 0.4554022 −0.0494433 0.0018251
−0.5786120 0.0680685

3 1.9 0.2818186 0.0118183
−0.5715210

4 2.2 0.1103623

It is easily verified that P4(1.5) = 0.5118200, which agrees with the result deter-
mined in Example 4 of Section 3.2.

Newton’s interpolatory divided-difference formula has a simpler form when
x0, x1, . . . , xn are arranged consecutively with equal spacing. In this case, we first
introduce the notation h = xi+1−xi for each i = 0, 1, . . . , n− 1. Then we let a new
variable s be defined by the equation x = x0 + sh. The difference x− xi can then
be written as x− xi = (s− i)h, and the divided-difference formula becomes

Pn(x) = Pn(x0 + sh) = f [x0] + shf [x0, x1] + s(s− 1)h2f [x0, x1, x2] + · · ·
+ s(s− 1) · · · (s− n+ 1)hnf [x0, x1, . . . , xn]

= f [x0] +
n∑

k=1

s(s− 1) · · · (s− k + 1)hkf [x0, x1, . . . , xk].

Using a generalization of the binomial-coefficient notation,
(
s

k

)
=
s(s− 1) · · · (s− k + 1)

k!
,

where s need not be an integer, we can express Pn(x) compactly as follows.

[Newton Forward Divided-Difference Formula]

Pn(x) = Pn(x0 + sh) = f [x0] +
n∑

k=1

(
s

k

)
k!hkf [x0, x1, . . . , xk].

Another form is constructed by making use of the forward difference notation

98CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

introduced in Section 2.5. With this notation

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
=

1
h

∆f(x0),

f [x0, x1, x2] =
1
2h

[
∆f(x1)−∆f(x0)

h

]
=

1
2h2

∆2f(x0),

and, in general,

f [x0, x1, . . . , xk] =
1

k!hk
∆kf(x0).

This gives the following.

[Newton Forward-Difference Formula]

Pn(x) = f [x0] +
n∑

k=1

(
s

k

)
∆kf(x0).

If the interpolating nodes are reordered from last to first as xn, xn−1, . . . , x0, we
can write the interpolatory formula as

Pn(x) = f [xn] + f [xn, xn−1](x− xn) + f [xn, xn−1, xn−2](x− xn)(x− xn−1)
+ · · ·+ f [xn, . . . , x0](x− xn)(x− xn−1) · · · (x− x1).

If the nodes are equally spaced with x = xn + sh and x = xi + (s+ n− i)h, then

Pn(x) = Pn(xn + sh)
= f [xn] + shf [xn, xn−1] + s(s+ 1)h2f [xn, xn−1, xn−2] + · · ·

+ s(s+ 1) · · · (s+ n− 1)hnf [xn, . . . , x0].

This form is called the Newton backward divided-difference formula. It is used
to derive a formula known as the Newton backward-difference formula. To discuss
this formula, we first need to introduce some notation.

Given the sequence {pn}∞n=0, the backward difference ∇pn (read “nabla pn”)
is defined by

∇pn ≡ pn − pn−1, for n ≥ 1

and higher powers are defined recursively by

∇kpn = ∇ (∇k−1pn

)
, for k ≥ 2.

This implies that

f [xn, xn−1] =
1
h
∇f(xn), f [xn, xn−1, xn−2] =

1
2h2
∇2f(xn),

3.3. DIVIDED DIFFERENCES 99

and, in general,

f [xn, xn−1, . . . , xn−k] =
1

k!hk
∇kf(xn).

Consequently,

Pn(x) = f [xn]+s∇f(xn)+
s(s+ 1)

2
∇2f(xn)+· · ·+ s(s+ 1) · · · (s+ n− 1)

n!
∇nf(xn).

Extending the binomial-coefficient notation to include all real values of s, we let(−s
k

)
=
−s(−s− 1) · · · (−s− k + 1)

k!
= (−1)k s(s+ 1) · · · (s+ k − 1)

k!

and

Pn(x) = f(xn) + (−1)1
(−s

1

)
∇f(xn) + (−1)2

(−s
2

)
∇2f(xn) + · · ·

+ (−1)n

(−s
n

)
∇nf(xn),

which gives the following result.

[Newton Backward-Difference Formula]

Pn(x) = f [xn] +
n∑

k=1

(−1)k

(−s
k

)
∇kf(xn).

EXAMPLE 2 Consider the table of data given in Example 1 and reproduced in the first two
columns of Table 3.9.

Table 3.9

First Second Third Fourth
Divided Divided Divided Divided

Differences Differences Differences Differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433 0.0018251
−0.5786120 0.0680685

1.9 0.2818186 0.0118183
−0.5715210

2.2 0.1103623

100CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

There is only one interpolating polynomial of degree at most 4 using these five
data points, but we will organize the data points to obtain the best interpolation
approximations of degrees 1, 2, and 3. This will give us a sense of the accuracy of
the fourth-degree approximation for the given value of x.

If an approximation to f(1.1) is required, the reasonable choice for x0, x1, . . . , x4

would be x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, since this choice
makes the earliest possible use of the data points closest to x = 1.1 and also makes
use of the fourth divided difference. These values imply that h = 0.3 and s = 1

3 , so
the Newton forward divided-difference formula is used with the divided differences
that are underlined in Table 3.9.

P4(1.1) = P4

(
1.0 +

1
3
(0.3)

)

= 0.7651997 +
1
3
(0.3)(−0.4837057) +

1
3

(
−2

3

)
(0.3)2(−0.1087339)

+
1
3

(
−2

3

)(
−5

3

)
(0.3)3(0.0658784)

+
1
3

(
−2

3

)(
−5

3

)(
−8

3

)
(0.3)4(0.0018251)

= 0.7196480.

To approximate a value when x is close to the end of the tabulated values, say,
x = 2.0, we would again like to make earliest use of the data points closest to x. To
do so requires using the Newton backward divided-difference formula with x4 = 2.2,
x3 = 1.9, x2 = 1.6, x1 = 1.3, x0 = 1.0, s = − 2

3 and the divided differences in Table
3.9 that are underlined with a dashed line:

P4(2.0) = P4

(
2.2− 2

3
(0.3)

)

= 0.1103623− 2
3
(0.3)(−0.5715210)− 2

3

(
1
3

)
(0.3)2(0.0118183)

− 2
3

(
1
3

)(
4
3

)
(0.3)3(0.0680685)− 2

3

(
1
3

)(
4
3

)(
7
3

)
(0.3)4(0.0018251)

= 0.2238754.

The Newton formulas are not appropriate for approximating f(x) when x lies
near the center of the table, since employing either the backward or forward method
in such a way that the highest-order difference is involved will not allow x0 to be
close to x. A number of divided-difference formulas are available for this situation,
each of which has situations when it can be used to maximum advantage. These
methods are known as centered-difference formulas. There are a number of such
methods, but we do not discuss any of these techniques. They can be found in
many classical numerical analysis books, including the book by Hildebrand [Hi]
that is listed in the bibliography.

3.3. DIVIDED DIFFERENCES 101

EXERCISE SET 3.3

1. Use Newton’s interpolatory divided-difference formula to construct interpo-
lating polynomials of degrees 1, 2, and 3 for the following data. Approximate
the specified value using each of the polynomials.

(a) f(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515,
f(8.7) = 18.82091

(b) f(0.9) if f(0.6) = −0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362,
f(1.0) = 0.65809197

2. Use Newton’s forward-difference formula to construct interpolating polyno-
mials of degrees 1, 2, and 3 for the following data. Approximate the specified
value using each of the polynomials.

(a) f
(− 1

3

)
if f(−0.75) = −0.07181250, f(−0.5) = −0.02475000, f(−0.25) =

0.33493750, f(0) = 1.10100000

(b) f(0.25) if f(0.1) = −0.62049958, f(0.2) = −0.28398668,
f(0.3) = 0.00660095, f(0.4) = 0.24842440

3. Use Newton’s backward-difference formula to construct interpolating polyno-
mials of degrees 1, 2, and 3 for the following data. Approximate the specified
value using each of the polynomials.

(a) f
(− 1

3

)
if f(−0.75) = −0.07181250, f(−0.5) = −0.02475000, f(−0.25) =

0.33493750, f(0) = 1.10100000

(b) f(0.25) if f(0.1) = −0.62049958, f(0.2) = −0.28398668,
f(0.3) = 0.00660095, f(0.4) = 0.24842440

4. (a) Construct the fourth interpolating polynomial for the unequally spaced
points given in the following table:

x 0.0 0.1 0.3 0.6 1.0

f(x) −6.00000 −5.89483 −5.65014 −5.17788 −4.28172

(b) Suppose f(1.1) = −3.99583 is added to the table. Construct the fifth
interpolating polynomial.

5. (a) Use the following data and the Newton forward divided-difference for-
mula to approximate f(0.05).

x 0.0 0.2 0.4 0.6 0.8

f(x) 1.00000 1.22140 1.49182 1.82212 2.22554

102CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

(b) Use the Newton backward divided-difference formula to approximate
f(0.65).

6. The following population table was given in Exercise 16 of Section 3.2.

Year 1940 1950 1960 1970 1980 1990

Population 132, 165 151, 326 179, 323 203, 302 226, 542 249, 633

(in thousands)

Use an appropriate divided difference method to approximate each value.

(a) The population in the year 1930.

(b) The population in the year 2010.

7. Show that the polynomial interpolating the following data has degree 3.

x −2 −1 0 1 2 3

f(x) 1 4 11 16 13 −4

8. (a) Show that the Newton forward divided-difference polynomials

P (x) = 3− 2(x+ 1) + 0(x+ 1)(x) + (x+ 1)(x)(x− 1)

and

Q(x) = −1 + 4(x+ 2)− 3(x+ 2)(x+ 1) + (x+ 2)(x+ 1)(x)

both interpolate the data

x −2 −1 0 1 2

f(x) −1 3 1 −1 3

(b) Why does part (a) not violate the uniqueness property of interpolating
polynomials?

9. A fourth-degree polynomial P (x) satisfies ∆4P (0) = 24, ∆3P (0) = 6, and
∆2P (0) = 0, where ∆P (x) = P (x+ 1)− P (x). Compute ∆2P (10).

3.3. DIVIDED DIFFERENCES 103

10. The following data are given for a polynomial P (x) of unknown degree.

x 0 1 2

P (x) 2 −1 4

Determine the coefficient of x2 in P (x) if all third-order forward differences
are 1.

11. The Newton forward divided-difference formula is used to approximate f(0.3)
given the following data.

x 0.0 0.2 0.4 0.6

f(x) 15.0 21.0 30.0 51.0

Suppose it is discovered that f(0.4) was understated by 10 and f(0.6) was
overstated by 5. By what amount should the approximation to f(0.3) be
changed?

12. For a function f , the Newton’s interpolatory divided-difference formula gives
the interpolating polynomial

P3(x) = 1 + 4x+ 4x(x− 0.25) +
16
3
x(x− 0.25)(x− 0.5)

on the nodes x0 = 0, x1 = 0.25, x2 = 0.5 and x3 = 0.75. Find f(0.75).

13. For a function f , the forward divided differences are given by

x0 = 0 f [x0]
f [x0, x1]

x1 = 0.4 f [x1] f [x0, x1, x2] = 50
7

f [x1, x2] = 10
x2 = 0.7 f [x2] = 6

Determine the missing entries in the table.

104CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

3.4 Hermite Interpolation

The Lagrange polynomials agree with a function f at specified points. The values
of f are often determined from observation, and in some situations it is possible
to determine the derivative of f as well. This is likely to be the case, for example,
if the independent variable is time and the function describes the position of an
object. The derivative of the function in this case is the velocity, which might be
available.

In this section we will consider Hermite interpolation, which determines a poly-
nomial that agrees with the function and its first derivative at specified points.
Suppose that n+ 1 data points and values of the function, (x0, f(x0)), (x1, f(x1)),
. . . , (xn, f(xn)), are given, and that f has a continuous first derivative on an inter-
val [a, b] that contains x0, x1, . . ., xn. (Recall from Section 1.2 that this is denoted
f ∈ C1[a, b].) The Lagrange polynomial agreeing with f at these points will gen-
erally have degree n. If we require, in addition, that the derivative of the Hermite
polynomial agree with the derivative of f at x0, x1, . . . , xn, then the additional n+1
conditions raise the expected degree of the Hermite polynomial to 2n+ 1.

[Hermite Polynomial] Suppose that f ∈ C1[a, b] and that x0, . . . , xn in [a, b]
are distinct. The unique polynomial of least degree agreeing with f and f ′ at
x0, . . . , xn is the polynomial of degree at most 2n+ 1 given by

H2n+1(x) =
n∑

j=0

f(xj)Hn,j(x) +
n∑

j=0

f ′(xj)Ĥn,j(x),

where
Hn,j(x) = [1− 2(x− xj)L′

n,j(xj)]L2
n,j(x)

and
Ĥn,j(x) = (x− xj)L2

n,j(x).

Here, Ln,j(x) denotes the jth Lagrange coefficient polynomial of degree n.

The error term for the Hermite polynomial is similar to that of the Lagrange
polynomial, with the only modifications being those needed to accommodate the
increased amount of data used in the Hermite polynomial.

[Hermite Polynomial Error Formula] If f ∈ C2n+2[a, b], then

f(x) = H2n+1(x) +
f (2n+2)(ξ(x))

(2n+ 2)!
(x− x0)2 · · · (x− xn)2

for some ξ(x) (unknown) in the interval (a, b).

3.4. HERMITE INTERPOLATION 105

Although the Hermite formula provides a complete description of the Hermite
polynomials, the need to determine and evaluate the Lagrange polynomials and
their derivatives makes the procedure tedious even for small values of n. An alter-
native method for generating Hermite approximations is based on the connection
between the nth divided difference and the nth derivative of f .

[Divided-Difference Relationship to the Derivative] If f ∈ Cn[a, b] and
x0, x1, . . . , xn are distinct in [a, b], then some number ξ in (a, b) exists with

f [x0, x1, . . . , xn] =
f (n)(ξ)
n!

.

To use this result to generate the Hermite polynomial, first suppose the distinct
numbers x0, x1, . . . , xn are given together with the values of f and f ′ at these
numbers. Define a new sequence z0, z1, . . . , z2n+1 by

z2k = z2k+1 = xk, for each k = 0, 1, . . . , n.

Now construct the divided-difference table using the variables z0, z1, . . . , z2n+1.
Since z2k = z2k+1 = xk for each k, we cannot define f [z2k, z2k+1] by the basic

divided-difference relation:

f [z2k, z2k+1] =
f [z2k+1]− f [z2k]
z2k+1 − z2k

.

But, for each k we have f [xk, xk+1] = f ′(ξk) for some number ξk in (xk, xk+1), and
limxk+1→xk

f [xk, xk+1] = f ′(xk). So a reasonable substitution in this situation is
f [z2k, z2k+1] = f ′(xk), and we use the entries

f ′(x0), f ′(x1), . . . , f ′(xn)

in place of the first divided differences

f [z0, z1], f [z2, z3], . . . , f [z2n, z2n+1].

The remaining divided differences are produced as usual, and the appropriate di-
vided differences are employed in Newton’s interpolatory divided-difference formula.
This provides us with an alternative, and more easily evaluated, method for deter-
mining coefficients of the Hermite polynomial.

[Divided-Difference Form of the Hermite Polynomial] If f ∈ C1[a, b] and
x0, x1, . . . , xn are distinct in [a, b], then

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, z1, . . . , zk](x− z0), . . . , (x− zk−1),

where z2k = z2k+1 = xk and f [z2k, z2k+1] = f ′(xk) for each k = 0, 1, . . . , n.

106CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 3.10 shows the entries that are used for the first three divided-difference
columns when determining the Hermite polynomial H5(x) for x0, x1, and x2. The
remaining entries are generated in the usual divided-difference manner.

Table 3.10

First Divided Second Divided

z f(z) Differences Differences

z0 = x0 f [z0] = f(x0)
f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f(x0) f [z0, z1, z2] = f [z1,z2]−f [z0,z1]
z2−z0

f [z1, z2] = f [z2]−f [z1]
z2−z1

z2 = x1 f [z2] = f(x1) f [z1, z2, z3] = f [z2,z3]−f [z1,z2]
z3−z1

f [z2, z3] = f ′(x1)
z3 = x1 f [z3] = f(x1) f [z2, z3, z4] = f [z3,z4]−f [z2,z3]

z4−z2

f [z3, z4] = f [z4]−f [z3]
z4−z3

z4 = x2 f [z4] = f(x2) f [z3, z4, z5] = f [z4,z5]−f [z3,z4]
z5−z3

f [z4, z5] = f ′(x2)
z5 = x2 f [z5] = f(x2)

EXAMPLE 1 The entries in Table 3.11 use the data in the examples we have previously consid-
ered, together with known values of the derivative. The underlined entries are the
given data; the remainder are generated by the standard divided-difference method.
They produce the following approximation to f(1.5).

H5(1.5) = 0.6200860− 0.5220232(1.5− 1.3)− 0.0897427(1.5− 1.3)2

+ 0.0663657(1.5− 1.3)2(1.5− 1.6) + 0.0026663(1.5− 1.3)2(1.5− 1.6)2

− 0.0027738(1.5− 1.3)2(1.5− 1.6)2(1.5− 1.9)
= 0.5118277.

3.4. HERMITE INTERPOLATION 107

Table 3.11

1.3 0.6200860
−0.5220232

1.3 0.6200860 −0.0897427
−0.5489460 0.0663657

1.6 0.4554022 −0.0698330 0.0026663
−0.5698959 0.0679655 −0.0027738

1.6 0.4554022 −0.0290537 0.0010020
−0.5786120 0.0685667

1.9 0.2818186 −0.0084837
−0.5811571

1.9 0.2818186

The program HERMIT33 generates the coefficients for the Hermite polynomials
using this modified Newton interpolatory divided-difference formula. The program
is structured slightly differently from the discussion to take advantage of efficiency
of computation.

108CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.4

1. Use Hermite interpolation to construct an approximating polynomial for the
following data.

(a)
x f(x) f ′(x)

8.3 17.56492 3.116256
8.6 18.50515 3.151762

(b)

x f(x) f ′(x)

0.8 0.22363362 2.1691753
1.0 0.65809197 2.0466965

(c)

x f(x) f ′(x)

−0.5 −0.0247500 0.7510000
−0.25 0.3349375 2.1890000

0 1.1010000 4.0020000

(d)

x f(x) f ′(x)

0.1 −0.62049958 3.58502082
0.2 −0.28398668 3.14033271
0.3 0.00660095 2.66668043
0.4 0.24842440 2.16529366

2. The data in Exercise 1 were generated using the following functions. For the
given value of x, use the polynomials constructed in Exercise 1 to approximate
f(x), and calculate the actual error.

(a) f(x) = x lnx; approximate f(8.4).

(b) f(x) = sin(ex − 2); approximate f(0.9).

(c) f(x) = x3 + 4.001x2 + 4.002x+ 1.101; approximate f(− 1
3).

(d) f(x) = x cosx− 2x2 + 3x− 1; approximate f(0.25).

3. (a) Use the following values and five-digit rounding arithmetic to construct
the Hermite interpolating polynomial to approximate sin 0.34.

x sinx Dx sinx = cosx

0.30 0.29552 0.95534

0.32 0.31457 0.94924

0.35 0.34290 0.93937

(b) Determine an error bound for the approximation in part (a) and com-
pare to the actual error.

3.4. HERMITE INTERPOLATION 109

(c) Add sin 0.33 = 0.32404 and cos 0.33 = 0.94604 to the data and redo the
calculations.

4. Let f(x) = 3xex − e2x.

(a) Approximate f(1.03) by the Hermite interpolating polynomial of degree
at most 3 using x0 = 1 and x1 = 1.05. Compare the actual error to the
error bound.

(b) Repeat (a) with the Hermite interpolating polynomial of degree at most
5, using x0 = 1, x1 = 1.05, and x2 = 1.07.

5. Use the error formula and Maple to find a bound for the errors in the approx-
imations of f(x) in parts (a) and (c) of Exercise 2.

6. The following table lists data for the function described by f(x) = e0.1x2
.

Approximate f(1.25) by using H5(1.25) and H3(1.25), where H5 uses the
nodes x0 = 1, x1 = 2, and x2 = 3 and H3 uses the nodes x̄0 = 1 and x̄1 = 1.5.
Find error bounds for these approximations.

x f(x) = e0.1x2
f ′(x) = 0.2xe0.1x2

x0 = x̄0 = 1 1.105170918 0.2210341836

x̄1 = 1.5 1.252322716 0.3756968148

x1 = 2 1.491824698 0.5967298792

x2 = 3 2.459603111 1.475761867

7. A car traveling along a straight road is clocked at a number of points. The
data from the observations are given in the following table, where the time is
in seconds, the distance is in feet, and the speed is in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

(a) Use a Hermite polynomial to predict the position of the car and its
speed when t = 10 s.

(b) Use the derivative of the Hermite polynomial to determine whether the
car ever exceeds a 55-mi/h speed limit on the road. If so, what is the
first time the car exceeds this speed?

(c) What is the predicted maximum speed for the car?

110CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

8. Let z0 = x0, z1 = x0, z2 = x1, and z3 = x1. Form the following divided-
difference table.

z0 = x0 f [z0] = f(x0)
f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f(x0) f [z0, z1, z2]
f [z1, z2] f [z0, z1, z2, z3]

z2 = x1 f [z2] = f(x1) f [z1, z2, z3]
f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f(x1)

Show if

P (x) = f [z0] + f [z0, z1](x− x0) + f [z0, z1, z2](x− x0)2

+ f [z0, z1, z2, z3](x− x0)2(x− x1),

then

P (x0) = f(x0), P (x1) = f(x1), P ′(x0) = f ′(x0), and P ′(x1) = f ′(x1),

which implies that P (x) ≡ H3(x).

3.5. SPLINE INTERPOLATION 111

3.5 Spline Interpolation

The previous sections use polynomials to approximate arbitrary functions. How-
ever, we have seen that relatively high-degree polynomials are needed for accurate
approximation and that these have some serious disadvantages. They all have an
oscillatory nature, and a fluctuation over a small portion of the interval can induce
large fluctuations over the entire range.

An alternative approach is to divide the interval into a collection of subintervals
and construct a different approximating polynomial on each subinterval. This is
called piecewise polynomial approximation.

The simplest piecewise polynomial approximation consists of joining a set of
data points (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)) by a series of straight lines, such
as those shown in Figure 3.6.

A disadvantage of linear approximation is that the approximation is generally
not differentiable at the endpoints of the subintervals, so the interpolating func-
Figure 3.6

y 5 f (x)

x0 x1 x2 xj xj11 xj12 xn21 xn.

y

x

tion is not “smooth” at these points. It is often clear from physical conditions
that smoothness is required, and the approximating function must be continuously
differentiable.

One remedy for this problem is to use a piecewise polynomial of Hermite
type. For example, if the values of f and f ′ are known at each of the points
x0 < x1 < · · · < xn, a cubic Hermite polynomial can be used on each of the subin-
tervals [x0, x1], [x1, x2], . . . , [xn−1, xn] to obtain an approximating function that has
a continuous derivative on the interval [x0, xn]. To determine the appropriate cubic
Hermite polynomial on a given interval, we simply compute the function H3(x) for
that interval.

The Hermite polynomials are commonly used in application problems to study
the motion of particles in space. The difficulty with using Hermite piecewise polyno-
mials for general interpolation problems concerns the need to know the derivative

112CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

of the function being approximated. The remainder of this section considers ap-
proximation using piecewise polynomials that require no derivative information,
except perhaps at the endpoints of the interval on which the function is being
approximated.

The most common piecewise polynomial approximation uses cubic polynomials
between pairs of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants; so there is sufficient flexibility in the cubic
spline procedure to ensure that the interpolant has two continuous derivatives on
the interval. The derivatives of the cubic spline do not, in general, however, agree
with the derivatives of the function, even at the nodes. (See Figure 3.7.)

Figure 3.7

x0 x1 x2 xj xj11 xj12 xn21 xn

S(x)

xxn22

S0

S1
Sj Sj11

Sn21

Sn22

Sj(xj11) 5 f (xj11) 5 Sj11(xj11)
Sj(xj11) 5 Sj11(xj11)9 9

0Sj (xj11) 5 Sj11(xj11)0

.

3.5. SPLINE INTERPOLATION 113

[Cubic Spline Interpolation] Given a function f defined on [a, b] and a set of
nodes, a = x0 < x1 < · · · < xn = b, a cubic spline interpolant, S, for f is a
function that satisfies the following conditions:

(a) For each j = 0, 1, . . . , n−1, S(x) is a cubic polynomial, denoted by Sj(x),
on the subinterval [xj , xj+1) .

(b) S(xj) = f(xj) for each j = 0, 1, . . . , n.

(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n− 2.

(d) S′
j+1(xj+1) = S′

j(xj+1) for each j = 0, 1, . . . , n− 2.

(e) S′′
j+1(xj+1) = S′′

j (xj+1) for each j = 0, 1, . . . , n− 2.

(f) One of the following sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (natural or free boundary);

(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

Although cubic splines are defined with other boundary conditions, the con-
ditions given in (f) are sufficient for our purposes. When the natural boundary
conditions are used, the spline assumes the shape that a long flexible rod would
take if forced to go through the points {(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn))}.
This spline continues linearly when x ≤ x0 and when x ≥ xn.

In general, clamped boundary conditions lead to more accurate approximations
since they include more information about the function. However, for this type of
boundary condition, we need values of the derivative at the endpoints or an accurate
approximation to those values.

To construct the cubic spline interpolant for a given function f , the conditions
in the definition are applied to the cubic polynomials

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

for each j = 0, 1, . . . , n− 1.
Since

Sj(xj) = aj = f(xj),

condition (c) can be applied to obtain

aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj +bj(xj+1−xj)+cj(xj+1−xj)2+dj(xj+1−xj)3

for each j = 0, 1, . . . , n− 2.
Since the term xj+1−xj is used repeatedly in this development, it is convenient

to introduce the simpler notation

hj = xj+1 − xj ,

114CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

for each j = 0, 1, . . . , n− 1. If we also define an = f(xn), then the equation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j (3.1)

holds for each j = 0, 1, . . . , n− 1.
In a similar manner, define bn = S′(xn) and observe that

S′
j(x) = bj + 2cj(x− xj) + 3dj(x− xj)2 (3.2)

implies that S′
j(xj) = bj for each j = 0, 1, . . . , n− 1. Applying condition (d) gives

bj+1 = bj + 2cjhj + 3djh
2
j , (3.3)

for each j = 0, 1, . . . , n− 1.
Another relation between the coefficients of Sj is obtained by defining cn =

S′′(xn)/2 and applying condition (e). In this case,

cj+1 = cj + 3djhj , (3.4)

for each j = 0, 1, . . . , n− 1.
Solving for dj in Eq. (3.4) and substituting this value into Eqs. (3.1) and (3.3)

gives the new equations

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1) (3.5)

and
bj+1 = bj + hj(cj + cj+1) (3.6)

for each j = 0, 1, . . . , n− 1.
The final relationship involving the coefficients is obtained by solving the ap-

propriate equation in the form of Eq. (3.5) for bj ,

bj =
1
hj

(aj+1 − aj)− hj

3
(2cj + cj+1), (3.7)

and then, with a reduction of the index, for bj−1, which gives

bj−1 =
1

hj−1
(aj − aj−1)− hj−1

3
(2cj−1 + cj).

Substituting these values into the equation derived from Eq. (3.6), when the index
is reduced by 1, gives the linear system of equations

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3
hj

(aj+1 − aj)− 3
hj−1

(aj − aj−1) (3.8)

for each j = 1, 2, . . . , n − 1. This system involves only {cj}nj=0 as unknowns since
the values of {hj}n−1

j=0 and {aj}nj=0 are given by the spacing of the nodes {xj}nj=0

and the values {f(xj)}nj=0.

3.5. SPLINE INTERPOLATION 115

Once the values of {cj}nj=0 are determined, it is a simple matter to find the
remainder of the constants {bj}n−1

j=0 from Eq. (3.7) and {dj}n−1
j=0 from Eq. (3.4) and

to construct the cubic polynomials {Sj(x)}n−1
j=0 . In the case of the clamped spline,

we also need equations involving the {cj} that ensure that S′(x0) = f ′(x0) and
S′(xn) = f ′(xn). In Eq. (3.2) we have S′

j(x) in terms of bj , cj , and dj . Since we now
know bj and dj in terms of cj , we can use this equation to show that the appropriate
equations are

2h0c0 + h0c1 =
3
h0

(a1 − a0)− 3f ′(x0) (3.9)

and
hn−1cn−1 + 2hn−1cn = 3f ′(xn)− 3

hn−1
(an − an−1). (3.10)

The solution to the cubic spline problem with the natural boundary conditions
S′′(x0) = S′′(xn) = 0 can be obtained by applying the program NCUBSP34. The
program CCUBSP35 determines the cubic spline with the clamped boundary con-
ditions S′(x0) = f ′(x0) and S′(xn) = f ′(xn).

EXAMPLE 1 Determine the clamped cubic spline for f(x) = x sin 4x using the nodes x0 = 0,
x1 = 0.25, x2 = 0.4, and x3 = 0.6.

We first define the function in Maple by

>f:=y->y*sin(4*y);

To use Maple to do the calculations, we first define the nodes and step sizes as

>x[0]:=0; x[1]:=0.25; x[2]:=0.4; x[3]:=0.6;

and

>h[0]:=x[1]-x[0]; h[1]:=x[2]-x[1]; h[2]:=x[3]-x[2];

The function is evaluated at the nodes with the commands

>a[0]:=f(x[0]); a[1]:=f(x[1]); a[2]:=f(x[2]); a[3]:=f(x[3]);

Eq. (3.8) with j = 1 and j = 2 gives us the following:

>eq1:=h[0]*c[0]+2*(h[0]+h[1])*c[1]+h[1]*c[2]
=3*(a[2]-a[1])/h[1]-3*(a[1]-a[0])/h[0];

>eq2:=h[1]*c[1]+2*(h[1]+h[2])*c[2]+h[2]*c[3]
=3*(a[3]-a[2])/h[2]-3*(a[2]-a[1]/h[1];

Since we are constructing a clamped spline, we need the derivative f ′(x) ≡ fp(x)
at the endpoints 0 and 0.6, so we also define

>fp:=y->D(f)(y);

116CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

and the fact that f ′(x0) = s′(x0) and f ′(x3) = s′(x3) to obtain two equations

>eq0:=2*h[0]*c[0]+h[0]*c[1]=3*(a[1]-a[0])/h[0]-3*fp(x[0]);
>eq3:=h[2]*c[2]+2*h[2]*c[3]=3*fp(x[3])-3*(a[3]-a[2])/h[2];

The Maple function solve is used to obtain values for c0 = c[0], c1 = c[1], c2 = c[2],
and c3 = c[3].

>g:=solve({eq0,eq1,eq2,eq3},{c[0],c[1],c[2],c[3]});

The values produced by this Maple command are then assigned to be

>c[0]:=4.649673229; c[1]:=.7983053588; c[2]:=-3.574944315;
c[3]:=-6.623958383;

Then we use equations (3.7) and (3.4) to obtain

>b[0]:=evalf((a[1]-a[0])/h[0]-h[0]*(2*c[0]+c[1])/3);
>b[1]:=(a[2]-a[1])/h[1]-h[1]*(2*c[1]+c[2])/3;
>b[2]:=(a[3]-a[2])/h[2]-h[2]*(2*c[2]+c[3])/3;
>d[0]:=(c[1]-c[0])/(3*h[0]);
>d[1]:=(c[2]-c[1])/(3*h[1]);
>d[2]:=(c[3]-c[2])/(3*h[2]);

The three pieces of the spline are now defined by

>s1:=y->a[0]+b[0]*(y-x[0])+c[0]*(y-x[0])^2+d[0]*(y-x[0])^3;
>s2:=y->a[1]+b[1]*(y-x[1])+c[1]*(y-x[1])^2+d[1]*(y-x[1])^3;
>s3:=y->a[2]+b[2]*(y-x[2])+c[2]*(y-x[2])^2+d[2]*(y-x[2])^3;

The values of the coefficients to three decimal places are listed in Table 3.12.

Table 3.12

j xj aj bj cj dj

0 0 0 −0.2× 10−9 4.650 −5.135
1 0.25 0.210 1.362 0.798 −9.718
2 0.4 0.400 0.945 −3.575 −5.082
3 0.6 0.405 − −6.624 −

3.5. SPLINE INTERPOLATION 117

EXAMPLE 2 Figure 3.8 shows a ruddy duck in flight.

Figure 3.8

We have chosen points along the top profile of the duck through which we want
an approximating curve to pass. Table 3.13 lists the coordinates of 21 data points
relative to the superimposed coordinate system shown in Figure 3.9.

Table 3.13

x 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3
f(x) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Notice that more points are used when the curve is changing rapidly than when
it is changing more slowly.
Figure 3.9

f (x)

x

1

2

3

4

6 7 8 91 32 4 5 10 11 12 13

118CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

Using NCUBSP34 to generate the natural cubic spline for this data produces
the coefficients shown in Table 3.14. This spline curve is nearly identical to the
profile, as shown in Figure 3.10.

Table 3.14

j xj aj bj cj dj

0 0.9 1.3 5.40 0.00 −0.25
1 1.3 1.5 0.42 −0.30 0.95
2 1.9 1.85 1.09 1.41 −2.96
3 2.1 2.1 1.29 −0.37 −0.45
4 2.6 2.6 0.59 −1.04 0.45
5 3.0 2.7 −0.02 −0.50 0.17
6 3.9 2.4 −0.50 −0.03 0.08
7 4.4 2.15 −0.48 0.08 1.31
8 4.7 2.05 −0.07 1.27 −1.58
9 5.0 2.1 0.26 −0.16 0.04
10 6.0 2.25 0.08 −0.03 0.00
11 7.0 2.3 0.01 −0.04 −0.02
12 8.0 2.25 −0.14 −0.11 0.02
13 9.2 1.95 −0.34 −0.05 −0.01
14 10.5 1.4 −0.53 −0.10 −0.02
15 11.3 0.9 −0.73 −0.15 1.21
16 11.6 0.7 −0.49 0.94 −0.84
17 12.0 0.6 −0.14 −0.06 0.03
18 12.6 0.5 −0.18 0.00 −0.43
19 13.0 0.4 −0.39 −0.52 0.49
20 13.3 0.25

Figure 3.10

f (x)

x

1

2

3

4

6 7 8 931 2 54 10 11 12 13

3.5. SPLINE INTERPOLATION 119

For comparison purposes, Figure 3.11 gives an illustration of the curve generated
using a Lagrange interpolating polynomial to fit these same data. Since there are
21 data points, the Lagrange polynomial is of degree 20 and oscillates wildly. This
produces a very strange illustration of the back of a duck, in flight or otherwise.

Figure 3.11

f (x)

x

1

2

3

4

8 96 731 2 4 5 10 1211

To use a clamped spline to approximate the curve in Example 2, we would need
derivative approximations for the endpoints. Even if these approximations were
available, we could expect little improvement because of the close agreement of the
natural cubic spline to the curve of the top profile.

Cubic splines generally agree quite well with the function being approximated,
provided that the points are not too far apart and the fourth derivative of the
function is well behaved. For example, suppose that f has four continuous deriva-
tives on [a, b] and that the fourth derivative on this interval has a magnitude
bounded by M . Then the clamped cubic spline S(x) agreeing with f(x) at the
points a = x0 < x1 < · · · < xn = b has the property that for all x in [a, b],

|f(x)− S(x)| ≤ 5M
384

max
0≤j≤n−1

(xj+1 − xj)4.

A similar—but more complicated—result holds for the free cubic splines.

120CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.5

1. Determine the free cubic spline S that interpolates the data f(0) = 0, f(1) =
1, and f(2) = 2.

2. Determine the clamped cubic spline s that interpolates the data f(0) = 0,
f(1) = 1, f(2) = 2 and satisfies s′(0) = s′(2) = 1.

3. Construct the free cubic spline for the following data.

(a)
x f(x)

8.3 17.56492
8.6 18.50515

(b)
x f(x)

0.8 0.22363362
1.0 0.65809197

(c)
x f(x)

−0.5 −0.0247500
−0.25 0.3349375

0 1.1010000

(d)
x f(x)

0.1 −0.62049958
0.2 −0.28398668
0.3 0.00660095
0.4 0.24842440

4. The data in Exercise 3 were generated using the following functions. Use the
cubic splines constructed in Exercise 3 for the given value of x to approximate
f(x) and f ′(x), and calculate the actual error.

(a) f(x) = x lnx; approximate f(8.4) and f ′(8.4).

(b) f(x) = sin(ex − 2); approximate f(0.9) and f ′(0.9).

(c) f(x) = x3+4.001x2+4.002x+1.101; approximate f(− 1
3) and f ′(− 1

3).

(d) f(x) = x cosx− 2x2 + 3x− 1; approximate f(0.25) and f ′(0.25).

5. Construct the clamped cubic spline using the data of Exercise 3 and the given
information.

(a) f ′(8.3) = 3.116256 and f ′(8.6) = 3.151762

(b) f ′(0.8) = 2.1691753 and f ′(1.0) = 2.0466965

(c) f ′(−0.5) = 0.7510000 and f ′(0) = 4.0020000

(d) f ′(0.1) = 3.58502082 and f ′(0.4) = 2.16529366

6. Repeat Exercise 4 using the cubic splines constructed in Exercise 5.

3.5. SPLINE INTERPOLATION 121

7. (a) Construct a free cubic spline to approximate f(x) = cosπx by using the
values given by f(x) at x = 0, 0.25, 0.5, 0.75, and 1.0.

(b) Integrate the spline over [0, 1], and compare the result to
∫ 1

0
cosπx dx =

0.

(c) Use the derivatives of the spline to approximate f ′(0.5) and f ′′(0.5),
and compare these approximations to the actual values.

8. (a) Construct a free cubic spline to approximate f(x) = e−x by using the
values given by f(x) at x = 0, 0.25, 0.75, and 1.0.

(b) Integrate the spline over [0, 1], and compare the result to
∫ 1

0
e−x dx =

1− 1/e.

(c) Use the derivatives of the spline to approximate f ′(0.5) and f ′′(0.5),
and compare the approximations to the actual values.

9. Repeat Exercise 7, constructing instead the clamped cubic spline with f ′(0) =
f ′(1) = 0.

10. Repeat Exercise 8, constructing instead the clamped cubic spline with f ′(0) =
−1, f ′(1) = −e−1.

11. A natural cubic spline S on [0, 2] is defined by

S(x) =

{
S0(x) = 1 + 2x− x3, if 0 ≤ x < 1,
S1(x) = a+ b(x− 1) + c(x− 1)2 + d(x− 1)3, if 1 ≤ x ≤ 2.

Find a, b, c, and d.

12. A clamped cubic spline s for a function f is defined on [1, 3] by

s(x) =

{
s0(x) = 3(x− 1) + 2(x− 1)2 − (x− 1)3, if 1 ≤ x < 2,
s1(x) = a+ b(x− 2) + c(x− 2)2 + d(x− 2)3, if 2 ≤ x ≤ 3.

Given f ′(1) = f ′(3), find a, b, c, and d.

13. A natural cubic spline S is defined by

S(x) =

{
S0(x) = 1 +B(x− 1)−D(x− 1)3, if 1 ≤ x < 2,
S1(x) = 1 + b(x− 2)− 3

4 (x− 2)2 + d(x− 2)3, if 2 ≤ x ≤ 3.

If S interpolates the data (1, 1), (2, 1), and (3, 0), find B, D, b, and d.

14. A clamped cubic spline s for a function f is defined by

s(x) =

{
s0(x) = 1 +Bx+ 2x2 − 2x3, if 0 ≤ x < 1,
s1(x) = 1 + b(x− 1)− 4(x− 1)2 + 7(x− 1)3, if 1 ≤ x ≤ 2.

Find f ′(0) and f ′(2).

122CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

15. Suppose that f(x) is a polynomial of degree 3. Show that f(x) is its own
clamped cubic spline but that it cannot be its own free cubic spline.

16. Suppose the data {xi, f(xi))}ni=1 lie on a straight line. What can be said about
the free and clamped cubic splines for the function f? [Hint: Take a cue from
the results of Exercises 1 and 2.]

17. The data in the following table give the population of the United States for
the years 1940 to 1990 and were considered in Exercise 16 of Section 3.2.

Year 1940 1950 1960 1970 1980 1990

Population 132, 165 151, 326 179, 323 203, 302 226, 542 249, 633

(in thousands)

Find a free cubic spline agreeing with these data, and use the spline to predict
the population in the years 1930, 1965, and 2010. Compare your approxima-
tions with those previously obtained. If you had to make a choice, which
interpolation procedure would you choose?

18. A car traveling along a straight road is clocked at a number of points. The
data from the observations are given in the following table, where the time is
in seconds, the distance is in feet, and the speed is in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

(a) Use a clamped cubic spline to predict the position of the car and its
speed when t = 10 s.

(b) Use the derivative of the spline to determine whether the car ever ex-
ceeds a 55-mi/h speed limit on the road; if so, what is the first time the
car exceeds this speed?

(c) What is the predicted maximum speed for the car?

19. The 1995 Kentucky Derby was won by a horse named Thunder Gulch in a
time of 2:011

5 (2 min 11
5 s) for the 11

4 -mi race. Times at the quarter-mile,
half-mile, and mile poles were 222

5 , 454
5 , and 1:353

5 .

(a) Use these values together with the starting time to construct a free cubic
spline for Thunder Gulch’s race.

(b) Use the spline to predict the time at the three-quarter-mile pole, and
compare this to the actual time of 1:10 1

5 .

3.5. SPLINE INTERPOLATION 123

(c) Use the spline to approximate Thunder Gulch’s starting speed and speed
at the finish line.

20. It is suspected that the high amounts of tannin in mature oak leaves inhibit
the growth of the winter moth (Operophtera bromata L., Geometridae) larvae
that extensively damage these trees in certain years. The following table lists
the average weight of two samples of larvae at times in the first 28 days after
birth. The first sample was reared on young oak leaves, whereas the second
sample was reared on mature leaves from the same tree.

(a) Use a free cubic spline to approximate the average weight curve for each
sample.

(b) Find an approximate maximum average weight for each sample by de-
termining the maximum of the spline.

Day 0 6 10 13 17 20 28

Sample 1 average 6.67 17.33 42.67 37.33 30.10 29.31 28.74
weight (mg.)

Sample 2 average 6.67 16.11 18.89 15.00 10.56 9.44 8.89
weight (mg.)

124CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

3.6 Parametric Curves

None of the techniques we have developed can be used to generate curves of the
form shown in Figure 3.12, since this curve cannot be expressed as a function
of one coordinate variable in terms of the other. In this section we will see how
to represent general curves by using a parameter to express both the x- and y-
coordinate variables. This technique can be extended to represent general curves
and surfaces in space.

Figure 3.12

y

x1

1

21

21

A straightforward parametric technique for determining a polynomial or piece-
wise polynomial to connect the points (x0, y0), (x1, y1), . . . , (xn, yn) is to use a pa-
rameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approxima-
tion functions with

xi = x(ti) and yi = y(ti) for each i = 0, 1, . . . , n.

The following example demonstrates the technique when both approximating
functions are Lagrange interpolating polynomials.

EXAMPLE 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure
3.12, using the data points shown on the curve.

There is flexibility in choosing the parameter, and we will choose the points {ti}
equally spaced in [0, 1]. In this case, we have the data in Table 3.15.

Table 3.15

3.6. PARAMETRIC CURVES 125

i 0 1 2 3 4
ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

Using the data (0,−1), (0.25, 0), (0.5, 1), (0.75, 0), and (1, 1) for t and x produces
the Lagrange polynomial

x(t) =
(((

64t− 352
3

)
t+ 60

)
t− 14

3

)
t− 1

and using (0, 0), (0.25, 1), (0.5, 0.5), (0.75, 0), and (1,−1) for t and y gives

y(t) =
(((

− 64
3
t+ 48

)
t− 116

3
t

)
+ 11

)
t.

Plotting this parametric system produces the graph in Figure 3.13. Although it
passes through the required points and has the same basic shape, it is quite a crude
approximation to the original curve. A more accurate approximation would require
additional nodes, with the accompanying increase in computation.

Figure 3.13

y

x1

1

21

21

126CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

Hermite and spline curves can be generated in a similar manner, but these also
require extensive computation.

Applications in computer graphics require the rapid generation of smooth curves
that can be easily and quickly modified. Also, for both aesthetic and computational
reasons, changing one portion of the curves should have little or no effect on other
portions. This eliminates the use of interpolating polynomials and splines, since
changing one portion of these curves affects the whole curve.

The choice of curve for use in computer graphics is generally a form of the
piecewise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial
is completely determined by specifying its endpoints and the derivatives at these
endpoints. As a consequence, one portion of the curve can be changed while leaving
most of the curve the same. Only the adjacent portions need to be modified if we
want to ensure smoothness at the endpoints. The computations can be performed
quickly, and the curve can be modified a section at a time.

The problem with Hermite interpolation is the need to specify the derivatives
at the endpoints of each section of the curve. Suppose the curve has n + 1 data
points (x0, y0), . . . , (xn, yn), and we wish to parameterize the cubic to allow complex
features. Then if (xi, yi) = (x(ti), y(ti)) for each i = 0, 1, . . . , n, we must specify
x′(ti) and y′(ti). This is not as difficult as it would first appear, however, since
each portion of the curve is generated independently. Essentially, then, we can
simplify the process to one of determining a pair of cubic Hermite polynomials in
the parameter t, where t0 = 0, t1 = 1, given the endpoint data (x(0), y(0)), and
(x(1), y(1)) and the derivatives dy/dx (at t = 0) and dy/dx (at t = 1).

Notice that we are specifying only six conditions, and each cubic polynomial has
four parameters, for a total of eight. This provides considerable flexibility in choos-
ing the pair of cubic Hermite polynomials to satisfy these conditions, because the
natural form for determining x(t) and y(t) requires that we specify x′(0), x′(1), y′(0),
and y′(1). The explicit Hermite curve in x and y requires specifying only the quo-
tients

dy

dx
(at t = 0) =

y′(0)
x′(0)

and
dy

dx
(at t = 1) =

y′(1)
x′(1)

.

By multiplying x′(0) and y′(0) by a common scaling factor, the tangent line to
the curve at (x(0), y(0)) remains the same, but the shape of the curve varies. The
larger the scaling factor, the closer the curve comes to approximating the tangent
line near (x(0), y(0)). A similar situation exists at the other endpoint (x(1), y(1)).

To further simplify the process, the derivative at an endpoint is specified graph-
ically by describing a second point, called a guidepoint, on the desired tangent
line.The farther the guidepoint is from the node, the larger the scaling factor and
the more closely the curve approximates the tangent line near the node.

In Figure 3.14, the nodes occur at (x0, y0) and (x1, y1), the guidepoint for (x0, y0)
is (x0 +α0, y0 +β0), and the guidepoint for (x1, y1) is (x1−α1, y1−β1). The cubic
Hermite polynomial x(t) on [0, 1] must satisfy

x(0) = x0, x(1) = x1, x′(0) = α0, and x′(1) = α1.

3.6. PARAMETRIC CURVES 127

Figure 3.14

x

y

(x0, y0)

(x1, y1)

(x0 1 a0, y0 1 b0)

(x1 2 a1, y1 2 b1)

The unique cubic polynomial satisfying these conditions is

x(t) = [2(x0 − x1) + (α0 + α1)]t3 + [3(x1 − x0)− (α1 + 2α0)]t2 + α0t+ x0.

In a similar manner, the unique cubic polynomial for y satisfying y(0) = y0, y(1) =
y1, y′(0) = β0, and y′(1) = β1 is

y(t) = [2(y0 − y1) + (β0 + β1)]t3 + [3(y1 − y0)− (β1 + 2β0)]t2 + β0t+ y0.

EXAMPLE 2 The graphs in Figure 3.15 show some possibilities that occur when the nodes are
(0, 0) and (1, 0), and the slopes at these nodes are 1 and −1, respectively. The
specification of the slope at the endpoints requires only that α0 = β0 and α1 = −β1,
since the ratios α0/β0 = 1 and α1/β1 = −1 give the slopes at the left and right
endpoints, respectively.

Figure 3.15

128CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

y

x1 2

1

(0.25, 0.25)
(0.75, 0.25)

y

x1 2

(0.5, 0.5)

(1, 1)

(2, 2)

(2, 21) (2, 21)

(0.5, 0.5)

(a) (b)

y

x1 2

1

y

x2

(c) (d)

1

21

1

2 2

1

21

1

The standard procedure for determining curves in an interactive graphics mode
is to first use an input device, such as a mouse or trackball, to set the nodes
and guidepoints to generate a first approximation to the curve. These can be set
manually, but most graphics systems permit you to use your input device to draw
the curve on the screen freehand and will select appropriate nodes and guidepoints
for your freehand curve.

3.6. PARAMETRIC CURVES 129

The nodes and guidepoints can then be manipulated into a position that pro-
duces an aesthetically satisfying curve. Since the computation is minimal, the curve
is determined so quickly that the resulting change can be seen almost immediately.
Moreover, all the data needed to compute the curves are imbedded in coordinates
of the nodes and guidepoints, so no analytical knowledge is required of the user of
the system.

Popular graphics programs use this type of system for their freehand graphic
representations in a slightly modified form. The Hermite cubics are described as
Bézier polynomials, which incorporate a scaling factor of 3 when computing the
derivatives at the endpoints. This modifies the parametric equations to

x(t) = [2(x0 − x1) + 3(α0 + α1)]t3 + [3(x1 − x0)− 3(α1 + 2α0)]t2 + 3α0t+ x0,

y(t) = [2(y0 − y1) + 3(β0 + β1)]t3 + [3(y1 − y0)− 3(β1 + 2β0)]t2 + 3β0t+ y0,

for 0 ≤ t ≤ 1, but this change is transparent to the user of the system.
Three-dimensional curves can be generated in a similar manner by additionally

specifying third components z0 and z1 for the nodes and z0 + γ0 and z1 − γ1 for
the guidepoints. The more difficult problem involving the representation of three-
dimensional curves concerns the loss of the third dimension when the curve is
projected onto a two-dimensional medium such as a computer screen or printer
paper. Various projection techniques are used, but this topic lies within the realm
of computer graphics. For an introduction to this topic and ways that the technique
can be modified for surface representations, see one of the many books on computer
graphics methods. The program BEZIER36 will generate Bézier curves from input
data.

130CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

EXERCISE SET 3.6

1. Let (x0, y0) = (0, 0) and (x1, y1) = (5, 2) be the endpoints of a curve. Use
the given guidepoints to construct parametric cubic Hermite approximations
(x(t), y(t)) to the curve and graph the approximations.

(a) (1, 1) and (6, 1) (b) (0.5, 0.5) and (5.5, 1.5)

(c) (1, 1) and (6, 3) (d) (2, 2) and (7, 0)

2. Repeat Exercise 1 using cubic Bézier polynomials.

3. Construct and graph the cubic Bézier polynomials given the following points
and guidepoints.

(a) Point (1, 1) with guidepoint (1.5, 1.25) to point (6, 2) with guidepoint
(7, 3)

(b) Point (1, 1) with guidepoint (1.25, 1.5) to point (6, 2) with guidepoint
(5, 3)

(c) Point (0, 0) with guidepoint (0.5, 0.5) to point (4, 6) with entering guide-
point (3.5, 7) and exiting guidepoint (4.5, 5) to point (6, 1) with guide-
point (7, 2)

(d) Point (0, 0) with guidepoint (0.5, 0.25) to point (2, 1) with entering
guidepoint (3, 1) and exiting guidepoint (3, 1) to point (4, 0) with en-
tering guidepoint (5, 1) and exiting guidepoint (3,−1) to point (6,−1)
with guidepoint (6.5,−0.25)

4. Use the data in the following table to approximate the letter N .

i xi yi αi βi α′
i β′

i

0 3 6 3.3 6.5
1 2 2 2.8 3.0 2.5 2.5
2 6 6 5.8 5.0 5.0 5.8
3 5 2 5.5 2.2 4.5 2.5

4 6.5 3 6.4 2.8

3.7. SURVEY OF METHODS AND SOFTWARE 131

3.7 Survey of Methods and Software

In this chapter we have considered approximating a function using polynomials and
piecewise polynomials. The function can be specified by a given defining equation
or by providing points in the plane through which the graph of the function passes.
A set of nodes x0, x1, . . . , xn is given in each case, and more information, such as the
value of various derivatives, may also be required. We need to find an approximating
function that satisfies the conditions specified by these data.

The interpolating polynomial P (x) is the polynomial of least degree that satis-
fies, for a function f ,

P (xi) = f(xi) for each i = 0, 1, . . . , n.

Although there is a unique interpolating polynomial, it can take many different
forms. The Lagrange form is most often used for interpolating tables when n is small
and for deriving formulas for approximating derivatives and integrals. Neville’s
method is used for evaluating several interpolating polynomials at the same value
of x. Newton’s forms of the polynomial are more appropriate for computation and
are also used extensively for deriving formulas for solving differential equations.
However, polynomial interpolation has the inherent weaknesses of oscillation, par-
ticularly if the number of nodes is large. In this case there are other methods that
can be better applied.

The Hermite polynomials interpolate a function and its derivative at the nodes.
They can be very accurate but require more information about the function being
approximated. When you have a large number of nodes, the Hermite polynomials
also exhibit oscillation weaknesses.

The most commonly used form of interpolation is piecewise polynomial inter-
polation. If function and derivative values are available, piecewise cubic Hermite
interpolation is recommended. This is preferred method for interpolating values of
a function that is the solution to a differential equation. When only the function
values are available, free cubic spline interpolation could be used. This spline forces
the second derivative of the spline to be zero at the endpoints. Some of the other
cubic splines require additional data. For example, the clamped cubic spline needs
values of the derivative of the function at the endpoints of the interval.

Other methods of interpolation are commonly used. Trigonometric interpola-
tion, in particular, the Fast Fourier Transform discussed in Chapter 8, is used with
large amounts of data when the function has a periodic nature. Interpolation by ra-
tional functions is also used. If the data are suspected to be inaccurate, smoothing
techniques can be applied, and some form of least squares fit of data is recom-
mended. Polynomials, trigonometric functions, rational functions, and splines can
be used in least squares fitting of data. We consider these topics in Chapter 8.

Interpolation routines included in the IMSL and the NAG Library are based on
the book A Practical Guide to Splines by de Boor [De]and use interpolation by cubic
splines. The libraries contain subroutines for spline interpolation with user supplied
end conditions, periodic end conditions, and the not-a-knot condition. There are
also cubic splines to minimize oscillations or to preserve concavity. Methods for
two-dimensional interpolation by bicubic splines are also included.

132CHAPTER 3. INTERPOLATION AND POLYNOMIAL APPROXIMATION

The netlib library contains the subroutines cubspl.f under the package pppack
to compute the cubic spline with various endpoint conditions. Under the package
slatec, polint.f produces the Newton’s divided difference coefficients for a discrete
set of data points, and under the package slatec/pchip are various routines for
evaluating Hermite piecewise polynomials.

The MATLAB function INTERP1 can be used to interpolate a discrete set of
data points using either the nearest neighbor interpolation, linear interpolation, cu-
bic spline interpolation, or cubic interpolation. INTERP1 outputs the polynomial
evaluated at a discrete set of points. POLYFIT, based on a least squares approxi-
mation (see Section 8.2) can be used to find an interpolating function of degree at
most n that passes through n + 1 specified points. Cubic splines can be produced
with the function SPLINE.

Maple is used to construct an interpolating polynomial using the command
>interp(X,Y,x);
where X is the list [x[0], x[1], . . . , x[n]], Y is the list [f(x[0]), f(x[1]), . . . , f(x[n])],
and x is the variable to be used.

The natural cubic spline can also be constructed with Maple. First enter
>readlib(spline);
to make the package available. With X and Y as in the preceding paragraph the
command
>spline(X,Y,x,3);
constructs the natural cubic spline interpolating X = [x[0], . . . , x[n]] and Y = [y[0], . . . , y[n]],
where x is the variable and 3 refers to the degree of the cubic spline. Linear and
quadratic splines can also be created.

General references to the methods in this chapter are the books by Powell [Po]
and by Davis [Da2]. The seminal paper on splines is due to Schoenberg [Scho].
Important books on splines are by Schultz [Schul], De Boor [Deb], and Schumaker
[Schum]. A recent book by Diercx [Di] is also recommended for those needing more
information about splines.

Chapter 4

Numerical Integration and
Differentiation

4.1 Introduction

Many techniques are described in calculus courses for the exact evaluation of inte-
grals, but seldom can these techniques be used to evaluate the integrals that occur
in real-life problems. Exact techniques fail to solve many problems that arise in the
physical world; for these we need approximation methods of the type we consider
in this chapter. The basic techniques are discussed in Section 4.2, and refinements
and special applications of these procedures are given in the next six sections. The
final section in the chapter considers approximating the derivatives of functions.
Methods of this type will be needed in Chapters 11 and 12 for approximating the
solutions to ordinary and partial differential equations.

You might wonder why there is so much more emphasis on approximating inte-
grals than on approximating derivatives. This is because determining the derivative
of a function is a constructive process that leads to straightforward rules for eval-
uation. Although the definition of the integral is also constructive, the principal
tool for evaluating a definite integral is the Fundamental Theorem of Calculus. To
apply this theorem we must determine the antiderivative of the function we wish
to evaluate. This is not generally a constructive process, and it leads to the need
for accurate approximation procedures.

In this chapter we will also discover one of the more interesting facts in the study
of numerical methods. The approximation of integrals—a task that is frequently
needed—can usually be accomplished very accurately and often with little effort.
The accurate approximation of derivatives—which is needed far less frequently—
is a more difficult problem. We think that there is something satisfying about a
subject that provides good approximation methods for problems that need them
but is less successful for problems that don’t.

133

134 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.2 Basic Quadrature Rules

The basic procedure for approximating the definite integral of a function f on the
interval [a, b] is to determine an interpolating polynomial that approximates f and
then integrate this polynomial.In this section we determine approximations that
arise when some basic polynomials are used for the approximation and determine
error bounds for these approximations.

The approximations we consider use interpolating polynomials at equally spaced
points in the interval [a, b]. The first of these is the Midpoint rule, which uses
the midpoint of [a, b], (a + b)/2, as its only interpolation point. The Midpoint
rule approximation is easy to generate geometrically, as shown in Figure 4.1, but
to establish the pattern for the higher-order methods and to determine an error
formula for the technique, we will use a basic tool for these derivations, the Newton
interpolatory divided-difference formula we discussed in Section 3.3.

NOTE from Author: Change made in Figure 4.1.

Figure 4.1

x

y

y 5 f (x)

y 5 P0(x)

x0 5
a 1 b

2

f
a 1 b

2((

a b

Suppose that f ∈ Cn+1[a, b], where [a, b] is an interval that contains all the
nodes x0, x1, . . . , xn. The Newton interpolatory divided-difference formula states
that the interpolating polynomial for the function f using the nodes x0, x1, . . . , xn

can be expressed in the form

P0,1,...,n(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·
+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1).

Since this is equivalent to the nth Lagrange polynomial, the error formula has the
form

f(x)− P0,1,...,n(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn),

4.2. BASIC QUADRATURE RULES 135

where ξ(x) is a number, depending on x, that lies in the smallest interval that
contains all of x, x0, x1, . . . , xn.

To derive the Midpoint rule we could use the constant interpolating polynomial
with x0 = (a+ b)/2 to produce

∫ b

a

f(x) dx ≈
∫ b

a

f [x0] dx = f [x0](b− a) = f

(
a+ b

2

)
(b− a),

but we could also use a linear interpolating polynomial with this value of x0 and
an arbitrary value of x1. This is due to the fact that the integral of the second
term in the Newton interpolatory divided-difference formula is zero for our choice
of x0, independent of the value of x1, and as such does not contribute to the
approximation:

∫ b

a

f [x0, x1](x− x0) dx =
f [x0, x1]

2
(x− x0)2

]b

a

=
f [x0, x1]

2

(
x− a+ b

2

)2
]b

a

=
f [x0, x1]

2

[(
b− a+ b

2

)2

−
(
a− a+ b

2

)2
]

=
f [x0, x1]

2

[(
b− a

2

)2

−
(
a− b

2

)2
]

= 0.

We would like to derive approximation methods that have high powers of b− a in
the error term. In general, the higher the degree of the approximation, the higher
the power of b−a in the error term, so we will integrate the error for P0,1(x) instead
of P0(x) to determine an error formula for the Midpoint rule.

Suppose that the arbitrary x1 was chosen to be the same value as x0. (In fact,
this is the only value that we cannot have for x1, but we will ignore this problem for
the moment.) Then the integral of the error formula for the interpolating polynomial
P0(x) has the form

∫ b

a

(x− x0)(x− x1)
2

f ′′(ξ(x)) dx =
∫ b

a

(x− x0)2

2
f ′′(ξ(x)) dx,

where, for each x, the number ξ(x) lies in the interval (a, b).

Since the term (x − x0)2 does not change sign on the interval (a, b), the Mean
Value Theorem for Integrals implies that a number ξ, independent of x, exists in

136 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

(a, b) with

∫ b

a

(x− x0)2

2
f ′′(ξ(x)) dx = f ′′(ξ)

∫ b

a

(x− x0)2

2
dx =

f ′′(ξ)
6

(x− x0)3
]b

a

=
f ′′(ξ)

6

[(
b− b+ a

2

)3

−
(
a− b+ a

2

)3
]

=
f ′′(ξ)

6
(b− a)3

4
=
f ′′(ξ)

24
(b− a)3.

As a consequence, the Midpoint rule with its error formula has the following
form:

[Midpoint Rule] If f ∈ C2[a, b], then a number ξ in (a, b) exists with

∫ b

a

f(x) dx = (b− a)f
(
a+ b

2

)
+
f ′′(ξ)

24
(b− a)3.

The invalid assumption, x1 = x0, that leads to this result can be avoided by
taking x1 close, but not equal, to x0 and using limits to show that the error formula
is valid.

The Midpoint rule uses a constant interpolating polynomial disguised as a linear
interpolating polynomial. The next method we consider uses a true linear interpo-
lating polynomial, one with the distinct nodes x0 = a and x1 = b. This approxima-
tion is also easy to generate geometrically, as is shown in Figure 4.2, and is aptly
called the Trapezoidal, or Trapezium, rule. If we integrate the linear interpolating
polynomial with x0 = a and x1 = b we also produce this formula:

∫ b

a

{f [x0] + f [x0, x1](x− x0)} dx =
[
f [a]x+ f [a, b]

(x− a)2
2

]b

a

= f(a)(b− a) +
f(b)− f(a)

b− a
[
(b− a)2

2
− (a− a)2

2

]

= (b− a)f(a) + f(b)
2

.

Figure 4.2

4.2. BASIC QUADRATURE RULES 137

y

xa 5 x0 x1 5 b

y 5 f (x)

y 5 P1(x)

The error for the Trapezoidal rule follows from integrating the error term for
P0,1(x) when x0 = a and x1 = b. Since (x− x0)(x− x1) = (x− a)(x− b) does not
change sign in the interval (a, b), we can again apply the Mean Value Theorem for
Integrals. In this case it implies that a number ξ in (a, b) exists with

∫ b

a

(x− a)(x− b)
2

f ′′(ξ(x)) dx =
f ′′(ξ)

2

∫ b

a

(x− a)[(x− a) + (a− b)] dx

=
f ′′(ξ)

2

[
(x− a)3

3
+

(x− a)2
2

(a− b)
]b

a

=
f ′′(ξ)

2

[
(b− a)3

3
+

(b− a)2
2

(a− b)
]
.

Simplifying this equation gives the Trapezoidal rule with its error formula.

[Trapezoidal Rule] If f ∈ C2[a, b], then a number ξ in (a, b) exists with

∫ b

a

f(x) dx = (b− a)f(a) + f(b)
2

− f ′′(ξ)
12

(b− a)3.

We cannot improve on the power of b−a in the error formula for the Trapezoidal
rule, as we did in the case of the Midpoint rule, because the integral of the next
higher term in the Newton interpolatory divided-difference formula is

∫ b

a

f [x0, x1, x2](x− x0)(x− x1) dx = f [x0, x1, x2]
∫ b

a

(x− a)(x− b) dx.

Since (x − a)(x − b) < 0 for all x in (a, b), this term will not be zero unless
f [x0, x1, x2] = 0. As a consequence, the error formulas for the Midpoint and the

138 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Trapezoidal rules both involve (b−a)3, even though they are derived from interpo-
lation formulas with error formulas that involve b− a and (b− a)2, respectively.

Next in line is an integration formula based on approximating the function f
by a quadratic polynomial that agrees with f at the equally spaced points x0 = a,
x1 = (a + b)/2, and x2 = b. This formula is not easy to generate geometrically,
although the approximation is illustrated in Figure 4.3.

Figure 4.3

y

xa 5 x0 x2 5 bx1

y 5 f (x)

y 5 P2(x)

To derive the formula we integrate P0,1,2(x).

∫ b

a

P0,1,2(x) dx

=
∫ b

a

{
f(a) + f

[
a,
a+ b

2

]
(x− a) + f

[
a,
a+ b

2
, b

]
(x− a)

(
x− a+ b

2

)}
dx

=
[
f(a)x+ f

[
a,
a+ b

2

]
(x− a)2

2

]b

a

+ f

[
a,
a+ b

2
, b

] ∫ b

a

(x− a)
[
(x− a) +

(
a− a+ b

2

)]
dx

= f(a)(b− a) +
f(a+b

2)− f(a)
a+b
2 − a

(b− a)2
2

+
f [a+b

2 , b]− f [a, a+b
2]

b− a
[
(x− a)3

3
+

(x− a)2
2

(
a− b

2

)]b

a

= (b− a)
[
f(a) + f

(
a+ b

2

)
− f(a)

]

+
(

1
b− a

)[
f(b)− f(a+b

2)
b−a
2

− f(a+b
2)− f(a)

b−a
2

] [
(b− a)3

3
− (b− a)3

4

]

= (b− a)f
(
a+ b

2

)
+

2
(b− a)2

[
f(b)− 2f

(
a+ b

2

)
+ f(a)

]
(b− a)3

12
.

4.2. BASIC QUADRATURE RULES 139

Simplifying this equation gives the approximation method known as Simpson’s rule:

∫ b

a

f(x) dx ≈ (b− a)
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

An error formula for Simpson’s rule involving (b− a)4 can be derived by using
the error formula for the interpolating polynomial P0,1,2(x). However, similar to the
case of the Midpoint rule, the integral of the next term in the Newton interpolatory
divided-difference formula is zero. This implies that the error formula for P0,1,2,3(x)
can be used to produce an error formula that involves (b − a)5. When simplified,
Simpson’s rule with this error formula is as follows:

[Simpson’s Rule] If f ∈ C4[a, b], then a number ξ in (a, b) exists with

∫ b

a

f(x) dx =
(b− a)

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− f (4)(ξ)

2880
(b− a)5.

This higher power of b− a in the error term makes Simpson’s rule significantly
superior to the Midpoint and Trapezoidal rules in almost all situations, provided
that b− a is small. This is illustrated in the following example.

EXAMPLE 1 Tables 4.1 and 4.2 show results of the Midpoint, Trapezoidal, and Simpson’s rules
applied to a variety of functions integrated over the intervals [1, 1.2] and [0, 2]. All
the methods give useful results for the function on [1, 1.2], but only Simpson’s rule
gives reasonable accuracy on [0, 2].

Table 4.1 INTEGRALS ON THE INTERVAL [1, 1.2]

f(x) x2 x4 1/(x+ 1)
√

1 + x2 sinx ex

Exact value 0.24267 0.29766 0.09531 0.29742 0.17794 0.60184
Midpoint 0.24200 0.29282 0.09524 0.29732 0.17824 0.60083

Trapezoidal 0.24400 0.30736 0.09545 0.29626 0.17735 0.60384
Simpson’s 0.24267 0.29767 0.09531 0.29742 0.17794 0.60184

140 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 4.2 INTEGRALS ON THE INTERVAL [0, 2]

f(x) x2 x4 1/(x+ 1)
√

1 + x2 sinx ex

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Midpoint 2.000 2.000 1.000 2.818 1.682 5.436

Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

To demonstrate the error terms for the Midpoint, Trapezoidal, and Simpson’s
methods, we will find bounds for the errors in approximating

∫ 2

0

√
1 + x2 dx. With

f(x) = (1 + x2)1/2, we have

f ′(x) =
x

(1 + x2)1/2
, f ′′(x) =

1
(1 + x2)3/2

, and f ′′′(x) =
−3x

(1 + x2)5/2
.

To bound the error of the Midpoint method, we need to determine max0≤x≤2 |f ′′(x)|.
This maximum will occur at either the maximum or the minimum value of f ′′ on
[0, 2]. Maximum and minimum values for f ′′ on [0, 2] can occur only when x = 0,
x = 2, or when f ′′′(x) = 0. Since f ′′′(x) = 0 only when x = 0, we have

max
0≤x≤2

|f ′′(x)| = max{|f ′′(0)|, |f ′′(2)|} = max
{

1, 5−3/2
}

= 1.

So a bound for the error in the Midpoint method is
∣∣∣∣
f ′′(ξ)

24
(b− a)3

∣∣∣∣ ≤
1
24

(2− 0)3 =
1
3

= 0.3.

The actual error is within this bound, since |2.958− 2.818| = 0.14. For the Trape-
zoidal method we have the error bound∣∣∣∣−

f ′′(ξ)
12

(b− a)3
∣∣∣∣ ≤

1
12

(2− 0)3 =
2
3

= 0.6,

and the actual error is |2.958− 3.326| = 0.368. We need more derivatives for Simp-
son’s rule:

f (4)(x) =
12x2 − 3

(1 + x2)7/2
and f (5)(x) =

45x− 60x3

(1 + x2)9/2
.

Since f (5)(x) = 0 implies

0 = 45x− 60x3 = 15x(3− 4x2),

f (4)(x) has critical points 0,±√3/2. Thus,

|f (4)(ξ)| ≤ max
0≤x≤2

|f (4)(x)| = max

{
|f (4)(0)|,

∣∣∣∣∣f
(4)

(√
3

2

)∣∣∣∣∣ , |f
(4)(2)|

}

= max

{
| − 3|, 768

√
7

2401
,
9
√

5
125

}
= 3.

4.2. BASIC QUADRATURE RULES 141

The error for Simpson’s rule is bounded by
∣∣∣∣−
f (4)(ξ)
2880

(b− a)5
∣∣∣∣ ≤

3
2880

(2− 0)5 =
96

2880
= 0.03,

and the actual error is |2.958− 2.964| = 0.006.
Since the error formulas all contain b − a to a power, they are most effective

when the interval [a, b] is small, so that b − a is much smaller than one. There
are formulas that can be used to improve the accuracy when integrating over large
intervals, some of which are considered in the exercises. However, a better solution
to the problem is considered in the next section.

142 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.2

1. Use the Midpoint rule to approximate the following integrals.

(a)
∫ 1

0.5

x4 dx
(b)

∫ 0.5

0

2
x− 4

dx

(c)
∫ 1.5

1

x2 lnx dx (d)
∫ 1

0

x2e−x dx

(e)
∫ 1.6

1

2x
x2 − 4

dx (f)
∫ 0.35

0

2
x2 − 4

dx

(g)
∫ π/4

0

x sinx dx (h)
∫ π/4

0

e3x sin 2x dx

2. Use the error formula to find a bound for the error in Exercise 1, and compare
the bound to the actual error.

3. Repeat Exercise 1 using the Trapezoidal rule.

4. Repeat Exercise 2 using the Trapezoidal rule and the results of Exercise 3.

5. Repeat Exercise 1 using Simpson’s rule.

6. Repeat Exercise 2 using Simpson’s rule and the results of Exercise 5.

Other quadrature formulas with error terms are given by

(i)
∫ b

a
f(x) dx = 3h

8 [f(a) + 3f(a + h) + 3f(a + 2h) + f(b)] − 3h5

80 f
(4)(ξ), where

h = b−a
3 ;

(ii)
∫ b

a
f(x) dx = 3h

2 [f(a+ h) + f(a+ 2h)] + 3h3

4 f ′′(ξ), where h = b−a
3 .

7. Repeat Exercises 1 and 2 using Formula (i).

8. Repeat Exercises 1 and 2 using Formula (ii).

9. The Trapezoidal rule applied to
∫ 2

0
f(x) dx gives the value 4, and Simpson’s

rule gives the value 2. What is f(1)?

10. The Trapezoidal rule applied to
∫ 2

0
f(x) dx gives the value 5, and the Midpoint

rule gives the value 4. What value does Simpson’s rule give?

4.2. BASIC QUADRATURE RULES 143

11. Find the constants c0, c1, and x1 so that the quadrature formula
∫ 1

0

f(x) dx = c0f(0) + c1f(x1)

gives exact results for all polynomials of degree at most 2.

12. Find the constants x0, x1, and c1 so that the quadrature formula
∫ 1

0

f(x) dx =
1
2
f(x0) + c1f(x1)

gives exact results for all polynomials of degree at most 3.

13. Given the function f at the following values:

x 1.8 2.0 2.2 2.4 2.6

f(x) 3.12014 4.42569 6.04241 8.03014 10.46675

(a) Approximate
∫ 2.6

1.8
f(x) dx using each of the following.

(i) the Midpoint rule (ii) the Trapezoidal rule (iii) Simpson’s
rule

(b) Suppose the data have round-off errors given by the following table:

x 1.8 2.0 2.2 2.4 2.6

Error in f(x) 2× 10−6 −2× 10−6 −0.9× 10−6 −0.9× 10−6 2× 10−6

Calculate the errors due to round-off in each of the approximation meth-
ods.

144 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.3 Composite Quadrature Rules

The basic notions underlying numerical integration were derived in the previous
section, but the techniques given there are not satisfactory for many problems.
We saw an example of this at the end of that section, where the approximations
were poor for integrals of functions on the interval [0, 2]. To see why this occurs,
let us consider Simpson’s method, generally the most accurate of these techniques.
Assuming that f ∈ C4[a, b], Simpson’s method with its error formula, it is given by

∫ b

a

f(x) dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

2880
f (4)(ξ)

=
h

3
[f(a) + 4f(a+ h) + f(b)]− h5

90
f (4)(ξ)

where h = (b − a)/2 and ξ lies somewhere in the interval (a, b). Since f ∈ C4[a, b]
implies that f (4) is bounded on [a, b], there exists a constantM such that |f (4)(x)| ≤
M for all x in [a, b]. As a consequence,

∣∣∣∣∣
h

3
[f(a) + 4f(a+ h) + f(b)]−

∫ b

a

f(x) dx

∣∣∣∣∣ =
∣∣∣∣
h5

90
f (4)(ξ)

∣∣∣∣ ≤
M

90
h5.

Since the error term in this formula involvesM , a bound for the fourth derivative
of f , and h5, we can expect the error to be small provided that

• The fourth derivative of f is well behaved, and

• The value of h = b− a is small.

The first assumption we can live with, but the second might be quite unreasonable.
There is no reason, in general, to expect that the interval [a, b] over which the
integration is performed is small, and if it is not, the h5 portion in the error term
will likely dominate the calculations.

We circumvent the problem of a large interval of integration by subdividing the
interval [a, b] into a collection of intervals that are sufficiently small so that the
error over each is kept under control.

EXAMPLE 1 Consider finding an approximation to
∫ 2

0
ex dx. If Simpson’s rule is used with h = 1,

∫ 2

0

ex dx ≈ 1
3
(e0 + 4e1 + e2) = 6.4207278.

Since the exact answer in this case is e2 − e0 = 6.3890561, the error of magnitude
0.0316717 is larger than would generally be regarded as acceptable. To apply a
piecewise technique to this problem, subdivide [0, 2] into [0, 1] and [1, 2],and use
Simpson’s rule twice with h = 1

2 , giving
∫ 2

0

ex dx =
∫ 1

0

ex dx+
∫ 2

1

ex dx ≈ 1
6
[
e0 + 4e0.5 + e1

]
+

1
6
[
e1 + 4e1.5 + e2

]

=
1
6
[
e0 + 4e0.5 + 2e1 + 4e1.5 + e2

]
= 6.3912102.

4.3. COMPOSITE QUADRATURE RULES 145

The magnitude of the error now has been reduced by more than 90% to 0.0021541.
If we subdivide each of the intervals [0, 1] and [1, 2] and use Simpson’s rule with
h = 1

4 , we get

∫ 2

0

ex dx =
∫ 0.5

0

ex dx+
∫ 1

0.5

ex dx+
∫ 1.5

1

ex dx+
∫ 2

1.5

ex dx

≈ 1
12
[
e0 + 4e0.25 + e0.5

]
+

1
12
[
e0.5 + 4e0.75 + e1

]

+
1
12
[
e1 + 4e1.25 + e1.5

]
+

1
12
[
e1.5 + 4e1.75 + e2

]

=
1
12
[
e0 + 4e0.25 + 2e0.5 + 4e0.75 + 2e1 + 4e1.25 + 2e1.5 + 4e1.75 + e2

]

= 6.3891937.

The magnitude of the error for this approximation is 0.0001376, only 0.4% of the
original error.

The generalization of the procedure considered in this example is called the
Composite Simpson’s rule and is described as follows.

Choose an even integer, subdivide the interval [a, b] into n subintervals, and
use Simpson’s rule on each consecutive pair of subintervals. Let h = (b− a)/n and
a = x0 < x1 < · · · < xn = b, where xj = x0 + jh for each j = 0, 1, . . . , n. Then

∫ b

a

f(x) dx =
n/2∑
j=1

∫ x2j

x2j−2

f(x) dx

=
n/2∑
j=1

{
h

3
[f(x2j−2) + 4f(x2j−1) + f(x2j)]− h5

90
f (4)(ξj)

}

for some ξj with x2j−2 < ξj < x2j , provided that f ∈ C4[a, b]. To simplify this
formula, first note that for each j = 1, 2, . . . , n

2 −1, we have f(x2j) appearing in the
term corresponding to the interval [x2j−2, x2j] and also in the term corresponding
to the interval [x2j , x2j+2]. Combining these terms gives (see Figure 4.4)

∫ b

a

f(x) dx =
h

3


f(x0) + 2

(n/2)−1∑
j=1

f(x2j) + 4
n/2∑
j=1

f(x2j−1) + f(xn)


−h

5

90

n/2∑
j=1

f (4)(ξj).

Figure 4.4

146 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

y

xa 5 x0 x2 b 5 xn

y 5 f (x)

x2j22 x2j21 x2j

The error associated with the approximation is

E(f) = −h
5

90

n/2∑
j=1

f (4)(ξj),

where x2j−2 < ξj < x2j for each j = 1, 2, . . . , n
2 . If f ∈ C4[a, b], the Extreme Value

Theorem implies that f (4) assumes its maximum and minimum in [a, b]. Since

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

we have
n

2
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤ n

2
max

x∈[a,b]
f (4)(x),

and

min
x∈[a,b]

f (4)(x) ≤ 2
n

n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x).

The term in the middle lies between values of the continuous function f (4), so the
Intermediate Value Theorem implies that a number µ in (a, b) exists with

f (4)(µ) =
2
n

n/2∑
j=1

f (4)(ξj).

Since h = (b− a)/n, the error formula simplifies to

E(f) = −h
5

90

n/2∑
j=1

f (4)(ξj) = −h
4(b− a)

180
f (4)(µ).

Summarizing these results, we have the following: If f ∈ C4[a, b] and n is even, the
Composite Simpson’s rule for n subintervals of [a, b] can be expressed with error
term as follows:

4.3. COMPOSITE QUADRATURE RULES 147

[Composite Simpson’s Rule] Suppose that f ∈ C4[a, b]. Then for some µ in
(a, b) we have

∫ b

a

f(x) dx =
h

3


f(a) + 2

(n/2)−1∑
j=1

f(x2j) + 4
n/2∑
j=1

f(x2j−1) + f(b)


− (b− a)h4

180
f (4)(µ).

Composite Simpson’s rule isO(h4), so the approximations converge to
∫ b

a
f(x) dx

at about the same rate that h4 → 0. This rate of convergence is sufficient for most
common problems, provided the interval of integration is subdivided so that h is
small. The program CSIMPR41 implements the Composite Simpson’s rule on n
subintervals. This is the most frequently used general-purpose integral approxima-
tion technique.

The subdivision approach can be applied to any of the formulas we saw in the
preceding section. Since the Trapezoidal rule (see Figure 4.5) uses only interval
endpoint values to determine its approximation, the integer n can be odd or even.

Figure 4.5

y

xa 5 x0 b 5 xn

y 5 f (x)

xj21 xjx1 xn21

Suppose that f ∈ C2[a, b], that h = (b − a)/n, and that xj = a + jh for each
j = 0, 1, . . . , n. The Composite Trapezoidal rule for n subintervals is O(h2).

148 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

[Composite Trapezoidal Rule] Suppose that f ∈ C2[a, b]. Then for some µ in
(a, b) we have

∫ b

a

f(x) dx =
h

2


f(a) + f(b) + 2

n−1∑
j=1

f(xj)


− (b− a)h2

12
f ′′(µ).

Suppose that f ∈ C2[a, b] and that n is an even integer. With h = (b−a)/(n+2)
and xj = a + (j + 1)h for each j = −1, 0, . . . , n + 1, the Composite Midpoint rule
for n+ 2 subintervals is also O(h2). (see Figure 4.6).

Figure 4.6

x

y

a 5 x21 x0 x1 xnx2j21 x2j x2j11 b 5 xn11

y 5 f (x)

[Composite Midpoint Rule] Suppose that f ∈ C2[a, b]. Then for some µ in
(a, b) we have

∫ b

a

f(x) dx = 2h
n/2∑
j=0

f(x2j) +
(b− a)h2

6
f ′′(µ).

EXAMPLE 2 Suppose that we want to use the O(h4) Composite Simpson’s rule to approximate∫ π

0
sinx dx with an absolute error at most 0.00002. How many subintervals of [0, π]

are required?

4.3. COMPOSITE QUADRATURE RULES 149

Applying the formula to the integral
∫ π

0
sinx dx gives

∫ π

0

sinx dx =
h

3

[
2

(n/2)−1∑
j=1

sinx2j + 4
n/2∑
j=1

sinx2j−1

]
− πh4

180
sinµ.

Since the absolute error is to be less than 0.00002, the inequality
∣∣∣∣
πh4

180
sinµ

∣∣∣∣ ≤
πh4

180
· 1 =

π5

180n4
≤ 0.00002

is used to determine n and then h. Completing these calculations gives n ≥ 18.
Verifying this, we find that when n = 20 and h = π/20, Composite Simpson’s rule
gives

∫ π

0

sinx dx ≈ π

60


2

9∑
j=1

sin
(
jπ

10

)
+ 4

10∑
j=1

sin
(

(2j − 1)π
20

)
 = 2.000006,

compared to the exact value of 2.
To be assured of this degree of accuracy using the O(h2) Composite Trapezoidal

rule requires that ∣∣∣∣
πh2

12
sinµ

∣∣∣∣ ≤
πh2

12
=

π3

12n2
< 0.00002,

which implies that n ≥ 360.
For comparison purposes, the O(h2) Composite Midpoint rule with n = 18 and

h = π/20 gives

∫ π

0

sinx dx ≈ π

10

9∑
j=0

sin
(

(2j + 1)π
20

)
= 2.0082484

and the O(h2) Composite Trapezoidal rule with n = 20 and h = π/20 gives

∫ π

0

sinx dx ≈ π

40


2

19∑
j=1

sin
(
jπ

20

)
+ sin 0 + sinπ




=
π

40


2

19∑
j=1

sin
(
jπ

20

)
 = 1.9958860.

The O(h4) Composite Simpson’s rule with h = π/20 gave an answer well within
the required error bound of 0.00002, whereas the Midpoint and Trapezoidal rules
with h = π/20, which are only O(h2), clearly do not.

Maple incorporates all three composite rules. To obtain access to the library
where they are defined, enter

150 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

>with(student);

The calls for the methods are middlesum(f,x=a..b,n), trapezoid(f,x=a..b,n),
and simpson(f,x=a..b,n). For our example the following commands are used.

>f:=sin(x);

f := sin(x)

>evalf(middlesum(f,x=0..Pi,10));

2.008248408

>evalf(trapezoid(f,x=0..Pi,20));

1.995885974

>evalf(simpson(f,x=0..Pi,20));

2.000006785

We will illustrate the Composite Midpoint Rule using loops. First we define f(x)
and a, b, n, and h.

>f:=x->sin(x);
>a:=0; b:=Pi; n:=18; h:=(b-a)/(n+2);

We need a variable to calculate the running sum, and we initialize it at 0.

>Tot:=0;

In Maple the counter-controlled loop is defined by

for loop control variable from initial-value to terminal value do
statement;
statement;
...
statement;

od;

In the following example the loop control variable is j, which begins at 0 and
goes to n/2 = 9 in steps of 1. For each value of j = 0, 1, . . . , 9 the loop is traversed
and each calculation inside the loop is performed until the word od is encountered.
The reserved words involved are for, from, to, do and od. Note that no ; follows
the do statement.

4.3. COMPOSITE QUADRATURE RULES 151

>for j from 0 to n/2 do
> xj:=a+(2*j+1)*h;
> Tot:=evalf(Tot+f(xj))
>od;

This produces a series of results culminating in the final summation

Tot =
n/2∑
j=0

f(x2j) =
9∑

j=0

f(x2j) = 6.392453222.

We then multiply by 2h to finish the Composite Midpoint Method

>Tot:=evalf(2*h*Tot);

Tot := 2.008248408

An important property shared by all the composite rules is stability with respect
to round-off error. To demonstrate this, suppose we apply the Composite Simpson’s
rule with n subintervals to a function on [a, b] and determine the maximum bound
for the round-off error. Assume that f(xi) is approximated by f̃(xi) and that

f(xi) = f̃(xi) + ei, for each i = 0, 1, . . . , n,

where ei denotes the round-off error associated with using f̃(xi) to approximate
f(xi). Then the accumulated round-off error, e(h), in the Composite Simpson’s
rule is

e(h) =

∣∣∣∣∣∣
h

3


e0 + 2

(n/2)−1∑
j=1

e2j + 4
n/2∑
j=1

e2j−1 + en



∣∣∣∣∣∣

≤ h

3


|e0|+ 2

(n/2)−1∑
j=1

|e2j |+ 4
n/2∑
j=1

|e2j−1|+ |en|

 .

If the round-off errors are uniformly bounded by some known tolerance ε, then

e(h) ≤ h

3

[
ε+ 2

(n
2
− 1

)
ε+ 4

(n
2

)
ε+ ε

]
=
h

3
3nε = nhε.

But nh = b−a, so e(h) ≤ (b−a)ε, a bound independent of h and n. This means that
even though we may need to divide an interval into more parts to ensure accuracy,
the increased computation that this requires does not increase the round-off error.

152 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.3

1. Use the Composite Trapezoidal rule with the indicated values of n to approx-
imate the following integrals.

(a)
∫ 2

1

x lnx dx, n = 4 (b)
∫ 2

−2

x3ex dx, n = 4

(c)
∫ 2

0

2
x2 + 4

dx, n = 6 (d)
∫ π

0

x2 cosx dx, n = 6

(e)
∫ 2

0

e2x sin 3x dx, n = 8 (f)
∫ 3

1

x

x2 + 4
dx, n = 8

(g)
∫ 5

3

1√
x2 − 4

dx, n = 8 (h)
∫ 3π/8

0

tanx dx, n = 8

2. Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.

3. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the
integrals in Exercise 1.

4. Approximate
∫ 2

0
x2e−x2

dx using h = 0.25.

(a) Use the Composite Trapezoidal rule.

(b) Use the Composite Simpson’s rule.

(c) Use the Composite Midpoint rule.

5. Determine the values of n and h required to approximate
∫ 2

0

e2x sin 3x dx

to within 10−4.

(a) Use the Composite Trapezoidal rule.

(b) Use the Composite Simpson’s rule.

(c) Use the Composite Midpoint rule.

6. Repeat Exercise 5 for the integral
∫ π

0
x2 cosx dx.

4.3. COMPOSITE QUADRATURE RULES 153

7. Determine the values of n and h required to approximate
∫ 2

0

1
x+ 4

dx

to within 10−5 and compute the approximation.

(a) Use the Composite Trapezoidal rule.

(b) Use the Composite Simpson’s rule.

(c) Use the Composite Midpoint rule.

8. Repeat Exercise 7 for the integral
∫ 2

1
x lnx dx.

9. Suppose that f(0.25) = f(0.75) = α. Find α if the Composite Trapezoidal
rule with n = 2 gives the value 2 for

∫ 1

0
f(x) dx and with n = 4 gives the

value 1.75.

10. The Midpoint rule for approximating
∫ 1

−1
f(x) dx gives the value 12, the

Composite Midpoint rule with n = 2 gives 5, and Composite Simpson’s rule
gives 6. Use the fact that f(−1) = f(1) and f(−0.5) = f(0.5)−1 to determine
f(−1), f(−0.5), f(0), f(0.5), and f(1).

11. In multivariable calculus and in statistics courses it is shown that∫ ∞

−∞

1
σ
√

2π
e−(1/2)(x/σ)2 dx = 1

for any positive σ. The function

f(x) =
1

σ
√

2π
e−(1/2)(x/σ)2

is the normal density function with mean µ = 0 and standard deviation σ. The
probability that a randomly chosen value described by this distribution lies
in [a, b] is given by

∫ b

a
f(x) dx. Approximate to within 10−5 the probability

that a randomly chosen value described by this distribution will lie in

(a) [−2σ, 2σ] (b) [−3σ, 3σ]

12. Determine to within 10−6 the length of the graph of the ellipse with equation
4x2 + 9y2 = 36.

13. A car laps a race track in 84 s. The speed of the car at each 6-s interval is
determined using a radar gun and is given from the beginning of the lap, in
feet/second, by the entries in the following table:

Time 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84
Speed 124 134 148 156 147 133 121 109 99 85 78 89 104 116 123

How long is the track?

154 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

14. A particle of mass m moving through a fluid is subjected to a viscous resis-
tance R, which is a function of the velocity v. The relationship between the
resistance R, velocity v, and time t is given by the equation

t =
∫ v(t)

v(t0)

m

R(u)
du.

Suppose that R(v) = −v√v for a particular fluid, where R is in newtons and
v is in meters/second. If m = 10 kg and v(0) = 10 m/s, approximate the time
required for the particle to slow to v = 5 m/s.

15. The equation ∫ x

0

1√
2π
e−t2/2 dt = 0.45

can be solved for x by using Newton’s method with

f(x) =
∫ x

0

1√
2π
e−t2/2 dt− 0.45

and

f ′(x) =
1√
2π
e−x2/2.

To evaluate f at the approximation pk, we need a quadrature formula to
approximate ∫ pk

0

1√
2π
e−t2/2 dt.

(a) Find a solution to f(x) = 0 accurate to within 10−5 using Newton’s
method with p0 = 0.5 and the Composite Simpson’s rule.

(b) Repeat (a) using the Composite Trapezoidal rule in place of the Com-
posite Simpson’s rule.

4.4. ROMBERG INTEGRATION 155

4.4 Romberg Integration

Extrapolation is used to accelerate the convergence of many approximation tech-
niques. It can be applied whenever it is known that the approximation technique
has an error term with a predictable form, which depends on a parameter, usually
the step size h. We will first consider the general form of extrapolation, and then
apply the technique to determine integration approximations.

The Trapezoidal rule is one of the simplest of the integration formulas, but it is
seldom sufficiently accurate. Romberg Integration uses the Composite Trapezoidal
rule to give preliminary approximations, and then applies Richardson extrapolation
to obtain improved approximations. Our first step is to describe the extrapolation
process.

Suppose that N(h) is a formula involving a step size h that approximates an
unknown value M , and that it is known that the error for N(h) has the form

M −N(h) = K1h+K2h
2 +K3h

3 + · · · ,

or
M = N(h) +K1h+K2h

2 +K3h
3 + · · · . (4.1)

for some unspecified, and often unknown, collection of constants, K1,K2,K3
We assume here that h > 0 can be arbitrarily chosen and that improved approxi-
mations occur as h becomes small. The objective of extrapolation is to improve the
formula from one of order O(h) to one of higher order. Do not be misled by the
relative simplicity of Eq. (4.1). It may be quite difficult to obtain the approximation
N(h), particularly for small values of h.

Since Eq. (4.1) is assumed to hold for all positive h, consider the result when
we replace the parameter h by half its value. This gives the formula

M = N

(
h

2

)
+K1

h

2
+K2

h2

4
+K3

h3

8
+ · · · .

Subtracting (4.1) from twice this equation eliminates the term involving K1 and
gives

M =
[
N

(
h

2

)
+
(
N

(
h

2

)
−N(h)

)]
+K2

(
h2

2
− h2

)
+K3

(
h3

4
− h3

)
+ · · · .

To simplify the notation, define N1(h) ≡ N(h) and

N2(h) = N1

(
h

2

)
+
[
N1

(
h

2

)
−N1(h)

]
.

Then the two original O(h) approximations combine to produce an O(h2) approx-
imation formula for M :

M = N2(h)− K2

2
h2 − 3K3

4
h3 − · · · . (4.2)

156 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

If we now replace h by h/2 in Eq. (4.2) we have

M = N2

(
h

2

)
− K2

8
h2 − 3K3

32
h3 − · · · . (4.3)

This can be combined with Eq. (4.2) to eliminate the h2 term. Specifically, sub-
tracting Eq. (4.2) from 4 times Eq. (4.3) gives

3M = 4N2

(
h

2

)
−N2(h) +

3K3

4

(
−h

3

2
+ h3

)
+ · · · ,

and

M =
[
N2

(
h

2

)
+
N2(h/2)−N2(h)

3

]
+
K3

8
h3 + · · · .

Defining

N3(h) ≡ N2

(
h

2

)
+
N2(h/2)−N2(h)

3
simplifies this to the O(h3) approximation formula for M :

M = N3(h) +
K3

8
h3 + · · · .

The process is continued by constructing the O(h4) approximation

N4(h) = N3

(
h

2

)
+
N3(h/2)−N3(h)

7
,

the O(h5) approximation

N5(h) = N4

(
h

2

)
+
N4(h/2)−N4(h)

15
,

and so on. In general, if M can be written in the form

M = N(h) +
m−1∑
j=1

Kjh
j +O(hm),

then for each j = 2, 3, . . . ,m, we have an O(hj) approximation of the form

Nj(h) = Nj−1

(
h

2

)
+
Nj−1(h/2)−Nj−1(h)

2j−1 − 1
.

These approximations are generated by rows to take advantage of the highest order
formulas. The first four rows are shown in Table 4.3.

Table 4.3

O(h) O(h2) O(h3) O(h4)

N1(h) ≡ N(h)

N1(h
2) ≡ N(h

2) N2(h)

N1(h
4) ≡ N(h

4) N2(h
2) N3(h)

N1(h
8) ≡ N(h

8) N2(h
4) N3(h

2) N4(h)

4.4. ROMBERG INTEGRATION 157

We now consider a technique called Romberg integration, which applies extrap-
olation to approximations generated using the Composite Trapezoidal rule. Recall
that the Composite Trapezoidal rule for approximating the integral of a function f
on an interval [a, b] using m subintervals is

∫ b

a

f(x) dx =
h

2


f(a) + f(b) + 2

m−1∑
j=1

f(xj)


− (b− a)

12
h2f ′′(µ),

where a < µ < b, h = (b − a)/m and xj = a + jh for each j = 0, 1, . . . ,m (see
Figure 4.7).

Figure 4.7

y

xa 5 x0 b 5 xm

y 5 f (x)

xj21 xjx1 xm21

Let n be a positive integer. The first step in the Romberg process obtains the
Composite Trapezoidal rule approximations with m1 = 1,m2 = 2,m3 = 4, . . . , and
mn = 2n−1. The step size hk corresponding tomk is hk = (b−a)/mk = (b−a)/2k−1.
With this notation the Trapezoidal rule becomes

∫ b

a

f(x) dx =
hk

2


f(a) + f(b) + 2




2k−1−1∑
i=1

f(a+ ihk)




− b− a

12
h2

kf
′′(µk),

where, for each k, µk is some number in (a, b). If the notation Rk,1 is introduced to
denote the portion of this equation that is used for the trapezoidal approximation,
then (see Figure 4.8):

R1,1 =
h1

2
[f(a) + f(b)] =

(b− a)
2

[f(a) + f(b)];

R2,1 =
1
2

[R1,1 + h1f(a+ h2)] ;

R3,1 =
1
2
{R2,1 + h2[f(a+ h3) + f(a+ 3h3)]} .

158 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Figure 4.8

y

x

yy

y 5 f (x)R1,1 R2,1

a b a b a bx x

R3,1
y 5 f (x) y 5 f (x)

In general, we have the following:

[Composite Trapezoidal Approximations]

Rk,1 =
1
2


Rk−1,1 + hk−1

2k−2∑
i=1

f(a+ (2i− 1)hk)




for each k = 2, 3, . . . , n.

EXAMPLE 1 Using the Composite Trapezoidal rule to perform the first step of the Romberg
Integration scheme for approximating

∫ π

0
sinx dx with n = 6 leads to

R1,1 =
π

2
[sin 0 + sinπ] = 0,

R2,1 =
1
2

[
R1,1 + π sin

π

2

]
= 1.57079633,

R3,1 =
1
2

[
R2,1 +

π

2

(
sin

π

4
+ sin

3π
4

)]
= 1.89611890,

R4,1 =
1
2

[
R3,1 +

π

4

(
sin

π

8
+ sin

3π
8

+ sin
5π
8

+ sin
7π
8

)]
= 1.97423160,

R5,1 = 1.99357034, and R6,1 = 1.99839336.

4.4. ROMBERG INTEGRATION 159

Since the correct value for the integral in Example 1 is 2, it is clear that, although
the calculations involved are not difficult, the convergence is slow. To speed the
convergence, the Richardson extrapolation will be performed.

To apply extrapolation, we must first have an approximation method with its
error term in the form ∞∑

i=1

Kih
i,

for some collection of constants K1,K2, · · · . Although it is not easy to demonstrate,
if f ∈ C∞[a, b], then for each k = 1, 2, . . ., the Composite Trapezoidal rule can be
written with an alternative error term as

∫ b

a

f(x) dx−Rk,1 =
∞∑

i=1

Kih
2i
k = K1h

2
k +

∞∑
i=2

Kih
2i
k , (4.4)

where Ki for each i is independent of hk and depends only on f (2i−1)(a) and
f (2i−1)(b). Because the powers of hk in these equations are all even, the first aver-
aging step produces an O(h4) approximation, the second, an O(h6) approximation,
and so on. As a consequence, the accuracy acceleration is much faster than in our
initial discussion.

The first step is to rewrite Eq. (4.4) with hk replaced by hk+1 = hk/2:
∫ b

a

f(x) dx−Rk+1,1 =
∞∑

i=1

Kih
2i
k+1 =

∞∑
i=1

Kih
2i
k

22i
=
K1h

2
k

4
+

∞∑
i=2

Kih
2i
k

4i
. (4.5)

Then we subtract Eq. (4.4) from 4 times Eq. (4.5) to eliminate the K1h
2
k terms and

obtain

3
∫ b

a

f(x) dx− 4Rk+1,1 +Rk,1 = 4
∞∑

i=2

Kih
2i
k

4i
−

∞∑
i=2

Kih
2i
k .

Dividing by 3 and combining the sums gives
∫ b

a

f(x) dx− 4Rk+1,1 −Rk,1

3
=

∞∑
i=2

Ki

3

(
h2i

k

4i−1
− h2i

k

)
,

so ∫ b

a

f(x) dx−
[
Rk+1,1 +

Rk+1,1 −Rk,1

3

]
=

∞∑
i=2

Ki

3

(
1− 4i−1

4i−1

)
h2i

k .

Extrapolation can now be applied to this formula to eliminate the O(h4
k) term

and obtain an O(h6
k) result, and so on. To simplify the notation, we define

Rk,2 = Rk,1 +
Rk,1 −Rk−1,1

3
for each k = 2, 3, . . . , n, and apply extrapolation to these values. Continuing this
notation, we have, for each k = 2, 3, 4, . . . , n and j = 2, . . . , k, an O(h2j

k) approxi-
mation formula defined by

Rk,j = Rk,j−1 +
Rk,j−1 −Rk−1,j−1

4j−1 − 1
.

160 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

The results that are generated from these formulas are shown in Table 4.4.

Table 4.4
R1,1

R2,1 R2,2

R3,1 R3,2 R3,3

R4,1 R4,2 R4,3 R4,4

...
...

...
. . .

Rn,1 Rn,2 Rn,3 · · · · · · Rn,n

The Romberg technique has the desirable feature that it allows an entire new
row in the table to be calculated by doing only one additional application of the
Composite Trapezoidal rule. It then uses a simple averaging on the previously
calculated values to obtain the remaining entries in the row. The method used to
construct a table of this type calculates the entries row by row, that is, in the order
R1,1, R2,1, R2,2, R3,1, R3,2, R3,3, etc. This is the process followed in the program
ROMBRG42.

EXAMPLE 2 In Example 1, the values for R1,1 through Rn,1 were obtained by approximating∫ π

0
sinx dx with n = 6. The output from ROMBRG42 produces the Romberg table

shown in Table 4.5. Although there are 21 entries in the table, only the six entries
in the first column require function evaluations since these are the only entries
generated by the Composite Trapezoidal rule. The other entries are obtained by a
simple averaging process. Notice that all the extrapolated values except for the first
(in the first row of the second column) are more accurate than the best composite
trapezoidal approximation (in the last row of the first column).

Table 4.5

0
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999
1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000

The program ROMBRG32 requires a preset integer n to determine the number
of rows to be generated. It is often also useful to prescribe an error tolerance for the
approximation and generate Rnn, for n within some upper bound, until consecutive
diagonal entries Rn,n agree to within the tolerance.

4.4. ROMBERG INTEGRATION 161

EXERCISE SET 4.4

1. Use Romberg integration to compute R3,3 for the following integrals.

(a)
∫ 1.5

1

x2 lnx dx (b)
∫ 1

0

x2e−x dx

(c)
∫ 0.35

0

2
x2 − 4

dx (d)
∫ π/4

0

x2 sinx dx

(e)
∫ π/4

0

e3x sin 2x dx (f)
∫ 1.6

1

2x
x2 − 4

dx

(g)
∫ 3.5

3

x√
x2 − 4

dx (h)
∫ π/4

0

(cosx)2 dx

2. Calculate R4,4 for the integrals in Exercise 1.

3. Use Romberg integration to approximate the integrals in Exercise 1 to within
10−6. Compute the Romberg table until |Rn−1,n−1 − Rn,n| < 10−6, or until
n = 10. Compare your results to the exact values of the integrals.

4. Apply Romberg integration to the following integrals until Rn−1,n−1 and Rn,n

agree to within 10−4.

(a)
∫ 1

0

x1/3 dx

(b)
∫ 0.3

0

f(x) dx, where

f(x) =




x3 + 1, if 0 ≤ x ≤ 0.1,
1.001 + 0.03(x− 0.1)

+ 0.3(x− 0.1)2 + 2(x− 0.1)3, if 0.1 < x ≤ 0.2,
1.009 + 0.15(x− 0.2)

+ 0.9(x− 0.2)2 + 2(x− 0.2)3, if 0.2 < x ≤ 0.3.

5. Use the following data to approximate
∫ 5

1
f(x) dx as accurately as possible.

x 1 2 3 4 5

f(x) 2.4142 2.6734 2.8974 3.0976 3.2804

162 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

6. Romberg integration is used to approximate

∫ 1

0

x2

1 + x3
dx.

If R11 = 0.250 and R22 = 0.2315, what is R21?

7. Romberg integration is used to approximate

∫ 3

2

f(x) dx.

If f(2) = 0.51342, f(3) = 0.36788, R31 = 0.43687, and R33 = 0.43662, find
f(2.5).

8. Romberg integration for approximating
∫ 1

0
f(x) dx gives R11 = 4 andR22 = 5.

Find f(1
2).

9. Romberg integration for approximating
∫ b

a
f(x) dx gives R11 = 8, R22 = 16

3 ,
and R33 = 208

45 . Find R31.

10. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h) +K1h+K2h
2 +K3h

3 + · · ·

for some constants K1, K2, K3, Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h3) approximation to M .

11. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h) +K1h
2 +K2h

4 +K3h
6 + · · ·

for some constants K1, K2, K3, Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h6) approximation to M .

12. We learn in calculus that e = limh→0(1 + h)1/h.

(a) Determine approximations to e corresponding to h = 0.04, 0.02, and
0.01.

(b) Use extrapolation on the approximations, assuming that constants K1,
K2, . . . , exist with

e = (1 + h)1/h +K1h+K2h
2 +K3h

3 + · · ·

to produce an O(h3) approximation to e, where h = 0.04.

(c) Do you think that the assumption in part (b) is correct?

4.4. ROMBERG INTEGRATION 163

13. (a) Show that

lim
h→0

(
2 + h

2− h
)1/h

= e.

(b) Compute approximations to e using the formula

N(h) =
(

2 + h

2− h
)1/h

for h = 0.04, 0.02, and 0.01.

(c) Assume that e = N(h) +K1h+K2h
2 +K3h

3 + · · · . Use extrapolation,
with at least 16 digits of precision, to compute an O(h3) approximation
to e with h = 0.04. Do you think the assumption is correct?

(d) Show that N(−h) = N(h).

(e) Use part (d) to show that K1 = K3 = K5 = · · · = 0 in the formula

e = N(h) +K1h+K2h
2 +K3h

3 +K4h
4 +K5

5 + · · · ,

so that the formula reduces to

e = N(h) +K2h
2 +K4h

4 +K6h
6 + · · · .

(f) Use the results of part (e) and extrapolation to compute an O(h6) ap-
proximation to e with h = 0.04.

14. Suppose the following extrapolation table has been constructed to approxi-
mate the number M with M = N1(h) +K1h

2 +K2h
4 +K3h

6:

N1(h)

N1

(
h
2

)
N2(h)

N1

(
h
4

)
N2

(
h
2

)
N3(h)

(a) Show that the linear interpolating polynomial P0,1(h) through (h2, N1(h))
and (h2/4, N1(h/2)) satisfies P0,1(0) = N2(h). Similarly, show that
P1,2(0) = N2(h/2).

(b) Show that the linear interpolating polynomial P0,2(h) through (h4, N2(h))
and (h4/16, N2(h/2)) satisfies P0,2(0) = N3(h).

164 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.5 Gaussian Quadrature

The formulas in Section 4.2 for approximating the integral of a function were de-
rived by integrating interpolating polynomials. The error term in the interpolating
polynomial of degree n involves the (n + 1)st derivative of the function being ap-
proximated. Since every polynomial of degree less than or equal to n has zero for
its (n + 1)st derivative, applying a formula of this type to such polynomials gives
an exact result.

All the formulas in Section 4.2 use values of the function at equally spaced
points. This is convenient when the formulas are combined to form the composite
rules we considered in Section 4.3, but this restriction can significantly decrease the
accuracy of the approximation. Consider, for example, the Trapezoidal rule applied
to determine the integrals of the functions shown in Figure 4.9. The Trapezoidal
rule approximates the integral of the function by integrating the linear function
that joins the endpoints of the graph of the function.

Figure 4.9

y

x

yy

xa 5 x1 a 5 x1 a 5 x1x2 5 b x2 5 b x2 5 bx

y 5 f (x)
y 5 f (x)

y 5 f (x)

But this is not likely the best line to use for approximating the integral. Lines
such as those shown in Figure 4.10 would give better approximations in most cases.

Figure 4.10

4.5. GAUSSIAN QUADRATURE 165

yyy

x x xa x1 bx2 a x1 bx2 a x1 bx2

y 5 f (x)

y 5 f (x)
y 5 f (x)

Gaussian quadrature uses evaluation points, or nodes, that are not equally
spaced in the interval. The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients
c1, c2, . . . , cn are chosen to minimize the expected error obtained in the approxima-
tion ∫ b

a

f(x) dx ≈
n∑

i=1

cif(xi).

To minimize the expected error, we assume that the best choice of these values is
that which produces the exact result for the largest class of polynomials.

The coefficients c1, c2, . . . , cn in the approximation formula are arbitrary, and
the nodes x1, x2, . . . , xn are restricted only by the fact that they must lie in [a, b],
the interval of integration. This gives 2n parameters to choose. If the coefficients of
a polynomial are considered parameters, the class of polynomials of degree at most
2n − 1 also contains 2n parameters. This, then, is the largest class of polynomials
for which it is reasonable to expect the formula to be exact. For the proper choice
of the values and constants, exactness on this set can be obtained.

To illustrate the procedure for choosing the appropriate constants, we will show
how to select the coefficients and nodes when n = 2 and the interval of integration
is [−1, 1].

EXAMPLE 1 Suppose we want to determine c1, c2, x1, and x2 so that the integration formula

∫ 1

−1

f(x) dx ≈ c1f(x1) + c2f(x2)

gives the exact result whenever f(x) is a polynomial of degree 2(2)− 1 = 3 or less,
that is, when

f(x) = a0 + a1x+ a2x
2 + a3x

3

for some collection of constants, a0, a1, a2, and a3. Because
∫

(a0 + a1x+ a2x
2 + a3x

3) dx = a0

∫
1 dx+ a1

∫
x dx+ a2

∫
x2 dx+ a3

∫
x3 dx,

166 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

this is equivalent to showing that the formula gives exact results when f(x) is
1, x, x2, and x3; this is the condition we will satisfy. So, we need to find c1, c2, x1,
and x2, with

c1 · 1 + c2 · 1 =
∫ 1

−1

1 dx = 2, c1 · x1 + c2 · x2 =
∫ 1

−1

x dx = 0,

c1 · x2
1 + c2 · x2

2 =
∫ 1

−1

x2 dx =
2
3
, and c1 · x3

1 + c2 · x3
2 =

∫ 1

−1

x3 dx = 0.

Solving this system of equations gives the unique solution

c1 = 1, c2 = 1, x1 = −
√

3
3
, and x2 =

√
3

3
.

This result produces the following integral approximation formula:

∫ 1

−1

f(x) dx ≈ f
(
−√3

3

)
+ f

(√
3

3

)
,

which gives the exact result for every polynomial of degree 3 or less.

The technique in Example 1 can be used to determine the nodes and coeffi-
cients for formulas that give exact results for higher-degree polynomials, but an
alternative method obtains them more easily. In Section 8.3 we will consider vari-
ous collections of orthogonal polynomials, sets of functions that have the property
that a particular definite integral of the product of any two of them is zero. The
set that is relevant to our problem is the set of Legendre polynomials, a collection
{P0(x), P1(x), . . . , Pn(x), . . .} that has the following properties:

• For each n, Pn(x) is a polynomial of degree n.

• ∫ 1

−1
Pi(x)Pj(x) dx = 0 whenever i
= j.

The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = x2 − 1
3
,

P3(x) = x3 − 3
5
x, and P4(x) = x4 − 6

7
x2 +

3
35
.

The roots of these polynomials are distinct, lie in the interval (−1, 1), have a sym-
metry with respect to the origin, and, most importantly, are the nodes to use to
solve our problem.

The nodes x1, x2, . . . , xn needed to produce an integral approximation formula
that will give exact results for any polynomial of degree 2n− 1 or less are the roots
of the nth-degree Legendre polynomial. In addition, once the roots are known, the

4.5. GAUSSIAN QUADRATURE 167

appropriate coefficients for the function evaluations at these nodes can be found
from the fact that for each i = 1, 2, . . . , n, we have

ci =
∫ 1

−1

(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xn)
(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

dx.

However, both the roots of the Legendre polynomials and the coefficients are ex-
tensively tabulated, so it is not necessary to perform these evaluations. A small
sample is given in Table 4.6, and listings for higher-degree polynomials are given,
for example, in the book by Stroud and Secrest [StS].

Table 4.6
Roots Coefficients

n rn,i cn,i

2 0.5773502692 1.0000000000
−0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
−0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
−0.5384693101 0.4786286705
−0.9061798459 0.2369268850

This completes the solution to the approximation problem for definite integrals
of functions on the interval [−1, 1].But this solution is sufficient for any closed
interval since the simple linear relation

t =
2x− a− b
b− a

transforms the variable x in the interval [a, b] into the variable t in the interval
[−1, 1]. Then the Legendre polynomials can be used to approximate

∫ b

a

f(x) dx =
∫ 1

−1

f

(
(b− a)t+ b+ a

2

)
(b− a)

2
dt.

Using the roots rn,1, rn,2, . . . , rn,n and the coefficients cn,1, cn,2, . . . , cn,n given in
Table 4.6 produces the following approximation formula, which gives the exact
result for a polynomial of degree 2n+ 1 or less.

168 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

[Gaussian Quadrature] The approximation

∫ b

a

f(x) dx ≈ b− a
2

n∑
j=1

cn,jf

(
(b− a)rn,j + b+ a

2

)
.

is exact whenever f(x) is a polynomial of degree 2n+ 1 or less.

EXAMPLE 2 Consider the problem of finding approximations to
∫ 1.5

1
e−x2

dx, whose value to
seven decimal places is 0.1093643.

Gaussian quadrature applied to this problem requires that the integral be trans-
formed into one whose interval of integration is [−1, 1]:
∫ 1.5

1

e−x2
dx =

∫ 1

−1

e−[((1.5−1)t+1.5+1)/2]2
(

1.5− 1
2

)
dt =

1
4

∫ 1

−1

e−(t+5)2/16 dt.

The values in Table 4.6 give the following Gaussian quadrature approximations.

n = 2:
∫ 1.5

1

e−x2
dx ≈ 1

4
[
e−(5+0.5773502692)2/16 + e−(5−0.5773502692)2/16

]
= 0.1094003,

n = 3:
∫ 1.5

1

e−x2
dx ≈ 1

4
[
(0.5555555556)e−(5+0.7745966692)2/16 + (0.8888888889)e−(5)2/16

+ (0.5555555556)e−(5−0.7745966692)2/16
]

= 0.1093642.

Using Gaussian quadrature with n = 3 required three function evaluations and
produces an approximation that is accurate to within 10−7. The same number of
function evaluations is needed if Simpson’s rule is applied to the original integral
using h = (1.5− 1)/2 = 0.25. This application of Simpson’s rule gives the approxi-
mation

∫ 1.5

1

e−x2
dx ≈ 0.25

3

(
e−1 + 4e−(1.25)2 + e−(1.5)2

)
= 0.1093104,

a result that is accurate only to within 5× 10−5.

For small problems, Composite Simpson’s rule may be acceptable to avoid the
computational complexity of Gaussian quadrature, but for problems requiring ex-
pensive function evaluations, the Gaussian procedure should certainly be consid-
ered. Gaussian quadrature is particularly important for approximating multiple in-
tegrals since the number of function evaluations increases as a power of the number
of integrals being evaluated. This topic is considered in Section 4.7.

4.5. GAUSSIAN QUADRATURE 169

EXERCISE SET 4.5

1. Approximate the following integrals using Gaussian quadrature with n = 2
and compare your results to the exact values of the integrals.

(a)
∫ 1.5

1

x2 lnx dx (b)
∫ 1

0

x2e−x dx

(c)
∫ 0.35

0

2
x2 − 4

dx (d)
∫ π/4

0

x2 sinx dx

(e)
∫ π/4

0

e3x sin 2x dx (f)
∫ 1.6

1

2x
x2 − 4

dx

(g)
∫ 3.5

3

x√
x2 − 4

dx (h)
∫ π/4

0

(cosx)2 dx

2. Repeat Exercise 1 with n = 3.

3. Repeat Exercise 1 with n = 4.

4. Repeat Exercise 1 with n = 5.

5. Determine constants a, b, c, and d that will produce a quadrature formula
∫ 1

−1

f(x) dx = af(−1) + bf(1) + cf ′(−1) + df ′(1)

that gives exact results for polynomials of degree 3 or less.

6. Determine constants a, b, c, and d that will produce a quadrature formula
∫ 1

−1

f(x) dx = af(−1) + bf(0) + cf(1) + df ′(−1) + ef ′(1)

that gives exact results for polynomials of degree 4 or less.

7. Verify the entries for the values of n = 2 and 3 in Table 4.6 by finding the
roots of the respective Legendre polynomials and use the equations preceding
this table to find the coefficients associated with the values.

8. Use the recurrence relation

Pn+1(x) = xPn(x)− n2

4n2 − 1
Pn−1(x), for each n ≥ 1,

where P0(x) = 1 and P1(x) = x, to derive the Legendre polynomials P2(x),
P3(x), and P4(x).

170 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.6 Adaptive Quadrature

In Section 4.3 we used composite methods of approximation to break an integral
over a large interval into integrals over smaller subintervals. The approach used
in that section involved equally-sized subintervals, which permitted us to combine
the individual approximations into a convenient form. Although this is satisfactory
for most problems, it leads to increased computation when the function being in-
tegrated varies widely on some, but not all, parts of the interval of integration.
In this case, techniques that adapt to the differing accuracy needs of the interval
are superior. Adaptive numerical methods are particularly popular for inclusion in
professional software packages since, in addition to being efficient, they generally
provide approximations that are within a given specified tolerance.

In this section we consider an Adaptive quadrature method and see how it can
be used not only to reduce approximation error, but also to predict an error estimate
for the approximation that does not rely on knowledge of higher derivatives of the
function.

Suppose that we want to approximate
∫ b

a
f(x) dx to within a specified tolerance

ε > 0. We first apply Simpson’s rule with step size h = (b− a)/2, which gives (see
Figure 4.11)

∫ b

a

f(x) dx = S(a, b)− (b− a)5
2880

f (4)(ξ) = S(a, b)− h5

90
f (4)(ξ), (4.6)

for some number ξ in (a, b), where we denote the Simpson’s rule approximation on
[a, b] by

S(a, b) =
h

3
[f(a) + 4f(a+ h) + f(b)].

Figure 4.11

x

y

y 5 f (x)

a b
hh

 S(a, b)

Next we determine an estimate for the accuracy of our approximation, in par-
ticular, one that does not require determining f (4)(ξ). To do this, we apply the

4.6. ADAPTIVE QUADRATURE 171

Composite Simpson’s rule to the problem with n = 4 and step size (b−a)/4 = h/2.
Thus
∫ b

a

f(x) dx =
h

6

[
f(a) + 4f

(
a+

h

2

)
+ 2f(a+ h) + 4f

(
a+

3h
2

)
+ f(b)

]
(4.7)

−
(
h

2

)4 (b− a)
180

f (4)(ξ̃),

for some number ξ̃ in (a, b). To simplify notation, let the Simpson’s rule approxi-
mation on [a, (a+ b)/2] be denoted

S

(
a,
a+ b

2

)
=
h

6

[
f(a) + 4f

(
a+

h

2

)
+ f(a+ h)

]

and the Simpson’s rule approximation on [(a+ b)/2, b] be denoted

S

(
a+ b

2
, b

)
=
h

6

[
f(a+ h) + 4f

(
a+

3h
2

)
+ f(b)

]
.

Then Eq. (4.7) can be rewritten (see Figure 4.12) as
∫ b

a

f(x) dx = S

(
a,
a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ̃). (4.8)

Figure 4.12

x

y

y 5 f (x)

a b

2
h

2
a 1 b

2
a 1 b

S ((, b
2

a 1 b
S ((,a 1

The error estimate is derived by assuming that f (4)(ξ) ≈ f (4)(ξ̃), and the success
of the technique depends on the accuracy of this assumption.If it is accurate, then
equating the integrals in Eqs. (4.6) and (4.8) implies that

S

(
a,
a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ) ≈ S(a, b)− h5

90
f (4)(ξ),

172 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

so
h5

90
f (4)(ξ) ≈ 16

15

[
S(a, b)− S

(
a,
a+ b

2

)
− S

(
a+ b

2
, b

)]
.

Using this estimate in Eq. (4.8) produces the error estimation
∣∣∣∣∣
∫ b

a

f(x) dx− S
(
a,
a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣∣

≈ 1
15

∣∣∣∣S(a, b)− S
(
a,
a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ .

This implies that S(a, (a+ b)/2)+S((a+ b)/2, b) approximates
∫ b

a
f(x) dx 15 times

better than it agrees with the known value S(a, b). As a consequence, S(a, (a +
b)/2) + S((a+ b)/2, b) approximates

∫ b

a
f(x) dx to within ε provided that the two

approximations S(a, (a+ b)/2)+S((a+ b)/2, b) and S(a, b) differ by less than 15ε.

[Adaptive Quadrature Error Estimate] If
∣∣∣∣S(a, b)− S

(
a,
a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ ≤ 15ε,

then ∣∣∣∣∣
∫ b

a

f(x) dx− S
(
a,
a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣∣ � ε.

EXAMPLE 1 To demonstrate the accuracy of the error estimate, consider its application to the
integral ∫ π/2

0

sinx dx = 1.

In this case,

S
(
0,
π

2

)
=

(π/4)
3

[
sin 0 + 4 sin

π

4
+ sin

π

2

]
=

π

12
(2
√

2 + 1) = 1.002279878

and

S
(
0,
π

4

)
+ S

(π
4
,
π

2

)
=

(π/8)
3

[
sin 0 + 4 sin

π

8
+ 2 sin

π

4
+ 4 sin

3π
8

+ sin
π

2

]

= 1.000134585.

So,
∣∣∣S
(
0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4
,
π

2

)∣∣∣ = |1.002279878− 1.000134585| = 0.002145293.

4.6. ADAPTIVE QUADRATURE 173

The estimate for the error obtained when using S(a, (a + b)) + S((a + b), b) to
approximate

∫ b

a
f(x) dx is consequently

1
15

∣∣∣S
(
0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4
,
π

2

)∣∣∣ = 0.000143020.

This closely approximates the actual error,
∣∣∣∣∣
∫ π/2

0

sinx dx− 1.000134585

∣∣∣∣∣ = 0.000134585,

even though D4
x sinx = sinx varies significantly in the interval (0, π/2).

Example 1 gives a demonstration of the error estimate for the Adaptive Quadra-
ture method, but the real value of the method comes from being able to reasonably
predict the correct steps to ensure that a given approximation accuracy is obtained.
Suppose that an error tolerance ε > 0 is specified and

∣∣∣∣S(a, b)− S
(
a,
a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ < 15ε.

Then we assume that S
(
a, a+b

2

)
+S

(
a+b
2 , b

)
is within ε of the value of

∫ b

a
f(x) dx.

When the approximation is not sufficiently accurate, the error-estimation pro-
cedure can be applied individually to the subintervals [a, (a+b)/2] and [(a+b)/2, b]
to determine if the approximation to the integral on each subinterval is within a
tolerance of ε/2. If so, the sum of the approximations agrees with

∫ b

a
f(x) dx to

within the tolerance ε.
If the approximation on one of the subintervals fails to be within the tolerance

ε/2, then that subinterval is itself subdivided, and each of its subintervals is ana-
lyzed to determine if the integral approximation on that subinterval is accurate to
within ε/4.

The halving procedure is continued until each portion is within the required
tolerance. Although problems can be constructed for which this tolerance will never
be met, the technique is generally successful because each subdivision increases the
accuracy of the approximation by a factor of approximately 15 while requiring an
increased accuracy factor of only 2.

The program ADAPQR43 applies the adaptive quadrature procedure for Simp-
son’s rule. Some technical difficulties require the implementation of the method to
differ slightly from the preceding discussion. The tolerance between successive ap-
proximations has been conservatively set at 10ε rather than the derived value of 15ε
to compensate for possible error in the assumption f (4)(ξ) ≈ f (4)(ξ̃). In problems
when f (4) is known to be widely varying, it would be reasonable to lower this bound
further.

EXAMPLE 2 The graph of the function f(x) = (100/x2) sin(10/x) for x in [1, 3] is shown in Fig-
ure 4.13. The program ADAPQR43 with tolerance 10−4 to approximate

∫ 3

1
f(x) dx

174 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

produces −1.426014, a result that is accurate to within 1.1× 10−5.The approxima-
tion required that Simpson’s rule with n = 4 be performed on the 23 subintervals
whose endpoints are shown on the horizontal axis in Figure 4.13. The total number
of functional evaluations required for this approximation is 93.

Figure 4.13

x1.0 1.25 1.5 1.75 2.0 2.25 2.5

2.75 3.0

60

50

40

30

20

10

210

220

230

240

250

260

 f (x)

x2

100
 f (x) 5 sin ((x

10

The largest value of h for which the standard Composite Simpson’s rule gives
10−4 accuracy for this integral is h = 1

88 . This application requires 177 function
evaluations, nearly twice as many as the adaptive technique.

4.6. ADAPTIVE QUADRATURE 175

EXERCISE SET 4.6

1. Compute the three Simpson’s rule approximations S(a, b), S(a, (a+b)/2), and
S((a+ b)/2, b) for the following integrals, and verify the estimate given in the
approximation formula.

(a)
∫ 1.5

1

x2 lnx dx (b)
∫ 1

0

x2e−x dx

(c)
∫ 0.35

0

2
x2 − 4

dx (d)
∫ π/4

0

x2 sinx dx

(e)
∫ π/4

0

e3x sin 2x dx (f)
∫ 1.6

1

2x
x2 − 4

dx

(g)
∫ 3.5

3

x√
x2 − 4

dx (h)
∫ π/4

0

(cosx)2 dx

2. Use Adaptive quadrature to find approximations to within 10−3 for the inte-
grals in Exercise 1. Do not use a computer program to generate these results.

3. Use Adaptive quadrature to approximate the following integrals to within
10−5.

(a)
∫ 3

1

e2x sin 3x dx (b)
∫ 3

1

e3x sin 2x dx

(c)
∫ 5

0

[
2x cos(2x)− (x− 2)2

]
dx (d)

∫ 5

0

[
4x cos(2x)− (x− 2)2

]
dx

4. Use Simpson’s Composite rule with n = 4, 6, 8, . . . , until successive approxi-
mations to the following integrals agree to within 10−6. Determine the number
of nodes required. Use Adaptive quadrature to approximate the integral to
within 10−6 and count the number of nodes. Did Adaptive quadrature pro-
duce any improvement?

(a)
∫ π

0

x cosx2 dx
(b)

∫ π

0

x sinx2 dx

176 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

(c)
∫ π

0

x2 cosx dx (d)
∫ π

0

x2 sinx dx

5. Sketch the graphs of sin(1/x) and cos(1/x) on [0.1, 2]. Use Adaptive quadra-
ture to approximate the integrals

∫ 2

0.1

sin
1
x
dx and

∫ 2

0.1

cos
1
x
dx

to within 10−3.

6. Let T (a, b) and T (a, a+b
2) + T (a+b

2 , b) be the single and double applications
of the Trapezoidal rule to

∫ b

a
f(x) dx. Determine a relationship between

∣∣∣∣T (a, b)−
(
T

(
a,
a+ b

2

)
+ T

(
a+ b

2
, b

))∣∣∣∣
and ∣∣∣∣∣

∫ b

a

f(x) dx−
(
T

(
a,
a+ b

2

)
+ T

(
a+ b

2
, b

))∣∣∣∣∣ .

7. The differential equation

mu′′(t) + ku(t) = F0 cosωt

describes a spring-mass system with massm, spring constant k, and no applied
damping. The term F0 cosωt describes a periodic external force applied to
the system. The solution to the equation when the system is initially at rest
(u′(0) = u(0) = 0) is

u(t) =
F0

m(ω2
0 − ω2)

[cosωt− cosω0t] , where ω0 =

√
k

m

= ω.

Sketch the graph of u when m = 1, k = 9, F0 = 1, ω = 2, and t ∈ [0, 2π].
Approximate

∫ 2π

0
u(t) dt to within 10−4.

8. If the term cu′(t) is added to the left side of the motion equation in Exercise
7, the resulting differential equation describes a spring-mass system that is
damped with damping constant c
= 0. The solution to this equation when
the system is initially at rest is

u(t) = c1e
r1t+c2er2t+

F0

c2ω2 +m2(ω2
0 − ω2)2

[
cω sinωt+m

(
ω2

0 − ω2
)
cosωt

]
,

where

r1 =
−c+

√
c2 − 4ω2

0m
2

2m
and r2 =

−c−
√
c2 − 4ω2

0m
2

2m
.

4.6. ADAPTIVE QUADRATURE 177

(a) Let m = 1, k = 9, F0 = 1, c = 10, and ω = 2. Find the values of c1 and
c2 so that u(0) = u(1) = 0.

(b) Sketch the graph of u(t) for t ∈ [0, 2π] and approximate
∫ 2π

0
u(t) dt to

within 10−4.

9. The study of light diffraction at a rectangular aperture involves the Fresnel
integrals

c(t) =
∫ t

0

cos
π

2
w2 dw and s(t) =

∫ t

0

sin
π

2
w2 dw.

Construct a table of values for c(t) and s(t) that is accurate to within 10−4

for values of t = 0.1, 0.2, . . . , 1.0.

178 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.7 Multiple Integrals

The techniques discussed in the previous sections can be modified in a straightfor-
ward manner for use in the approximation of multiple integrals. Let us first consider
the double integral ∫∫

R

f(x, y) dA,

where R is a rectangular region in the plane:

R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}

for some constants a, b, c, and d (see Figure 4.14). We will employ the Compos-
ite Simpson’s rule to illustrate the approximation technique, although any other
approximation formula could be used without major modifications.

Figure 4.14

z

z 5 f (x, y)

a

b

c
d

R

x

y

Suppose that even integers n and m are chosen to determine the step sizes
h = (b− a)/n and k = (d− c)/m. We first write the double integral as an iterated
integral, ∫∫

R

f(x, y) dA =
∫ b

a

(∫ d

c

f(x, y) dy

)
dx,

and use the Composite Simpson’s rule to approximate

∫ d

c

f(x, y) dy,

4.7. MULTIPLE INTEGRALS 179

treating x as a constant. Let yj = c+ jk for each j = 0, 1, . . . ,m. Then

∫ d

c

f(x, y) dy =
k

3


f(x, y0) + 2

(m/2)−1∑
j=1

f(x, y2j) + 4
m/2∑
j=1

f(x, y2j−1) + f(x, ym)




− (d− c)k4

180
∂4f

∂y4
(x, µ)

for some µ in (c, d). Thus,

∫ b

a

∫ d

c

f(x, y) dy dx =
k

3

∫ b

a

f(x, y0) dx+
2k
3

(m/2)−1∑
j=1

∫ b

a

f(x, y2j) dx

+
4k
3

m/2∑
j=1

∫ b

a

f(x, y2j−1) dx+
k

3

∫ b

a

f(x, ym) dx

− (d− c)k4

180

∫ b

a

∂4f

∂y4
(x, µ) dx.

Composite Simpson’s rule is now employed on each of the first four integrals in
this equation. Let xi = a+ ih for each i = 0, 1, . . . , n. Then for each j = 0, 1, . . . ,m,
we have

∫ b

a

f(x, yj) dx =
h

3


f(x0, yj) + 2

(n/2)−1∑
i=1

f(x2i, yj) + 4
n/2∑
i=1

f(x2i−1, yj) + f(xn, yj)




− (b− a)h4

180
∂4f

∂x4
(ξj , yj)

for some ξj in (a, b). Substituting the Composite Simpson’s rule approximations

180 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

into this equation gives
∫ b

a

∫ d

c

f(x, y) dy dx

≈ hk

9

{[
f(x0, y0) + 2

(n/2)−1∑
i=1

f(x2i, y0) + 4
n/2∑
i=1

f(x2i−1, y0) + f(xn, y0)
]

+ 2
[(m/2)−1∑

j=1

f(x0, y2j) + 2
(m/2)−1∑

j=1

(n/2)−1∑
i=1

f(x2i, y2j)

+ 4
(m/2)−1∑

j=1

n/2∑
i=1

f(x2i−1, y2j) +
(m/2)−1∑

j=1

f(xn, y2j)
]

+ 4
[m/2∑

j=1

f(x0, y2j−1) + 2
m/2∑
j=1

(n/2)−1∑
i=1

f(x2i, y2j−1)

+ 4
m/2∑
j=1

n/2∑
i=1

f(x2i−1, y2j−1) +
m/2∑
j=1

f(xn, y2j−1)
]

+
[
f(x0, ym) + 2

(n/2)−1∑
i=1

f(x2i, ym) + 4
n/2∑
i=1

f(x2i−1, ym) + f(xn, ym)
]}

.

The error term, E, is given by

E =
−k(b− a)h4

540

[
∂4f

∂x4
(ξ0, y0) + 2

(m/2)−1∑
j=1

∂4f

∂x4
(ξ2j , y2j) + 4

m/2∑
j=1

∂4f

∂x4
(ξ2j−1, y2j−1)

+
∂4f

∂x4
(ξm, ym)

]
− (d− c)k4

180

∫ b

a

∂4f

∂y4
(x, µ) dx.

If the fourth partial derivatives ∂4f/∂x4 and ∂4f/∂y4 are continuous, the Interme-
diate Value Theorem and Mean Value Theorem for Integrals can be used to show
that the error formula can be simplified to

E =
−(d− c)(b− a)

180

[
h4 ∂

4f

∂x4
(η̄, µ̄) + k4 ∂

4f

∂y4
(η̂, µ̂)

]

for some (η̄, µ̄) and (η̂, µ̂) in R.

EXAMPLE 1 The Composite Simpson’s rule applied to approximate
∫ 2.0

1.4

∫ 1.5

1.0

ln(x+ 2y) dy dx

with n = 4 and m = 2 uses the step sizes h = 0.15 and k = 0.25. The region
of integration R is shown in Figure 4.15 together with the nodes (xi, yj) for i =

4.7. MULTIPLE INTEGRALS 181

0, 1, 2, 3, 4 and j = 0, 1, 2. It also shows the coefficients wi,j of f(xi, yi) = ln(xi+2yi)
in the sum that gives the Composite Simpson’s rule approximation to the integral.

Figure 4.15

x

y

1.40 1.55 1.70 1.85 2.00

1.00

1.25

1.50
14 2

4

1

4

16 8 16

41

4

2

4

1

The approximation is

∫ 2.0

1.4

∫ 1.5

1.0

ln(x+ 2y) dy dx ≈ (0.15)(0.25)
9

4∑
i=0

2∑
j=0

wi,j ln(xi + 2yj)

= 0.4295524387.

We have
∂4f

∂x4
(x, y) =

−6
(x+ 2y)4

and
∂4f

∂y4
(x, y) =

−96
(x2 + 2y)4

,

and the maximum values of the absolute values of these partial derivatives occur
on R when x = 1.4 and y = 1.0. So the error is bounded by

|E| ≤ (0.5)(0.6)
180

[
(0.15)4 max

(x,y) in R

6
(x+ 2y)4

+ (0.25)4 max
(x,y) in R

96
(x+ 2y)4

]
≤ 4.72×10−6.

The actual value of the integral to 10 decimal places is

∫ 2.0

1.4

∫ 1.5

1.0

ln(x+ 2y) dy dx = 0.4295545265,

so the approximation is accurate to within 2.1× 10−6.

The same techniques can be applied for the approximation of triple integrals, as
well as higher integrals for functions of more than three variables. The number of
functional evaluations required for the approximation is the product of the number
required when the method is applied to each variable.

182 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To reduce the number of functional evaluations, more efficient methods such as
Gaussian quadrature, Romberg integration, or Adaptive quadrature can be incor-
porated in place of Simpson’s formula. The following example illustrates the use
of Gaussian quadrature for the integral considered in Example 1. In this example,
the Gaussian nodes r3,j and coefficients c3,j , for j = 1, 2, 3 are given in Table 4.6 of
Section 4.5.

EXAMPLE 2 Consider the double integral given in Example 1. Before employing a Gaussian
quadrature technique to approximate this integral, we must transform the region
of integration

R = {(x, y) | 1.4 ≤ x ≤ 2.0, 1.0 ≤ y ≤ 1.5}
into

R̂ = {(u, v) | − 1 ≤ u ≤ 1, −1 ≤ v ≤ 1}.
The linear transformations that accomplish this are

u =
1

2.0− 1.4
(2x− 1.4− 2.0), and v =

1
1.5− 1.0

(2y − 1.0− 1.5).

This change of variables gives an integral on which Gaussian quadrature can be
applied:

∫ 2.0

1.4

∫ 1.5

1.0

ln(x+ 2y) dy dx = 0.075
∫ 1

−1

∫ 1

−1

ln(0.3u+ 0.5v + 4.2) dv du.

The Gaussian quadrature formula for n = 3 in both u and v requires that we use
the nodes

u1 = v1 = r3,2 = 0, u0 = v0 = r3,1 = −0.7745966692,
and u2 = v2 = r3,3 = 0.7745966692.

The associated weights are found in Table 4.3 (Section 4.5) to be c3,2 = 0.88 and
c3,1 = c3,3 = 0.55, so

∫ 2.0

1.4

∫ 1.5

1.0

ln(x+ 2y) dy dx ≈ 0.075
3∑

i=1

3∑
j=1

c3,ic3,j ln(0.3r3,i + 0.5r3,j + 4.2)

= 0.4295545313.

Even though this result requires only 9 functional evaluations compared to 15
for the Composite Simpson’s rule considered in Example 1, the result is accurate to
within 4.8×10−9, compared to an accuracy of only 2×10−6 for Simpson’s rule.

The use of approximation methods for double integrals is not limited to integrals
with rectangular regions of integration. The techniques previously discussed can
be modified to approximate double integrals with variable inner limits—that is,
integrals of the form ∫ b

a

∫ d(x)

c(x)

f(x, y) dy dx.

4.7. MULTIPLE INTEGRALS 183

For this type of integral we begin as before by applying Simpson’s Composite
rule to integrate with respect to both variables. The step size for the variable x is
h = (b− a)/2, but the step size k(x) for y varies with x (see Figure 4.16):

k(x) =
d(x)− c(x)

2
.

Figure 4.16

z

x

y

z 5 f (x, y)

y 5 d(x)

y 5 c(x)

y 5 c(x)

y 5 d(x)

k(b)
k(a)

k(a 1 h)

a ba 1 h

a

b
R

A(x)

d(b)

c(a)
c(b)

x

y

d(a)

(a) (b)

Consequently,

∫ b

a

∫ d(x)

c(x)

f(x, y) dy dx ≈
∫ b

a

k(x)
3

[f(x, c(x)) + 4f(x, c(x) + k(x)) + f(x, d(x))] dx

≈ h

3

{
k(a)

3
[f(a, c(a)) + 4f(a, c(a) + k(a)) + f(a, d(a))]

+
4k(a+ h)

3
[f(a+ h, c(a+ h)) + 4f(a+ h, c(a+ h)

+ k(a+ h)) + f(a+ h, d(a+ h))]

+
k(b)
3

[f(b, c(b)) + 4f(b, c(b) + k(b)) + f(b, d(b))]
}
.

The program DINTGL44 applies the Composite Simpson’s rule to a double
integral in this form and is also appropriate, of course, when c(x) ≡ c and d(x) ≡ d.

184 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To apply Gaussian quadrature to the double integral first requires transforming,
for each x in [a, b], the variable y in the interval [c(x), d(x)] into the variable t in
the interval [−1, 1]. This linear transformation gives

f(x, y) = f

(
x,

(d(x)− c(x))t+ d(x) + c(x)
2

)
and dy =

d(x)− c(x)
2

dt.

Then, for each x in [a, b], we apply Gaussian quadrature to the resulting integral

∫ d(x)

c(x)

f(x, y) dy =
∫ 1

−1

f

(
x,

(d(x)− c(x))t+ d(x) + c(x)
2

)
dt

to produce

∫ b

a

∫ d(x)

c(x)

f(x, y) dy dx

≈
∫ b

a

d(x)− c(x)
2

n∑
j=1

cn,jf

(
x,

(d(x)− c(x))rn,j + d(x) + c(x)
2

)
dx.

The constants rn,j in this formula are the roots of the nth Legendre polynomial.
These are tabulated, for n = 2, 3, 4, and 5, in Table 4.6 in Section 4.5. The values
of cn,j are also given in this table.

After this, the interval [a, b] is transformed to [−1, 1], and Gaussian quadrature is
applied to approximate the integral on the right side of this equation. The program
DGQINT45 uses this technique.

EXAMPLE 3 Applying Simpson’s double integral program DINTGL44 with n = m = 10 to

∫ 0.5

0.1

∫ x2

x3
ey/x dy dx

requires 121 evaluations of the function f(x, y) = ey/x. It produces the approxi-
mation 0.0333054, accurate to nearly 7 decimal places, for the volume of the solid
shown in Figure 4.17. Applying the Gaussian quadrature program DGQINT45 with
n = m = 5 requires only 25 function evaluations and gives the approximation,
0.3330556611, which is accurate to 11 decimal places.

Figure 4.17

4.7. MULTIPLE INTEGRALS 185

(0.1, 0.001, e0.01)

(0.1, 0.01, e0.1) (0.5, 0.25, e0.5)

(0.5, 0.125, e0.25)

(0.5, 0.125, 0)

(0.5, 0.25, 0)

0.125

0.25

0.1

0.5

R

x

y

z

1

Triple integrals of the form
∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)

f(x, y, z) dz dy dx

are approximated in a manner similar to double integration. Because of the number
of calculations involved, Gaussian quadrature is the method of choice. The program
TINTGL46 implements this procedure.

The following example requires the evaluation of four triple integrals.

EXAMPLE 4 The center of mass of a solid region D with density function σ occurs at

(x̄, ȳ, z̄) =
(
Myz

M
,
Mxz

M
,
Mxy

M

)
,

where

Myz =
∫∫∫

D

xσ(x, y, z) dV, Mxz =
∫∫∫

D

yσ(x, y, z) dV,

and

Mxy =
∫∫∫

D

zσ(x, y, z) dV

186 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

are the moments about the coordinate planes and

M =
∫∫∫

D

σ(x, y, z) dV

is the mass. The solid shown in Figure 4.18 is bounded by the upper nappe of the
cone z2 = x2 + y2 and the plane z = 2. Suppose that this solid has density function
given by

σ(x, y, z) =
√
x2 + y2.

Figure 4.18

x

y

z

1
2 1

2

1

2

We will apply the program TINTGL46 with five Gaussian nodes in each di-
mension. So we have n = m = p = 5 which requires 125 function evaluations per
integral and gives the following approximations:

M =
∫ 2

−2

∫ √
4−x2

−√
4−x2

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx

= 4
∫ 2

0

∫ √
4−x2

0

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx ≈ 8.37504476,

Myz =
∫ 2

−2

∫ √
4−x2

−√
4−x2

∫ 2

√
x2+y2

x
√
x2 + y2 dz dy dx ≈ −5.55111512× 10−17,

Mxz =
∫ 2

−2

∫ √
4−x2

−√
4−x2

∫ 2

√
x2+y2

y
√
x2 + y2 dz dy dx ≈ −8.01513675× 10−17,

Mxy =
∫ 2

−2

∫ √
4−x2

−√
4−x2

∫ 2

√
x2+y2

z
√
x2 + y2 dz dy dx ≈ 13.40038156.

4.7. MULTIPLE INTEGRALS 187

This implies that the approximate location of the center of mass is
√

(x̄, ȳ, z̄) =
(0, 0, 1.60003701). These integrals are quite easy to evaluate directly. If you do this,
you will find that the center of mass occurs at (0, 0, 1.6).

188 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.7

1. Use Composite Simpson’s rule for double integrals with n = m = 4 to ap-
proximate the following double integrals. Compare the results to the exact
answer.

(a)
∫ 2.5

2.1

∫ 1.4

1.2

xy2 dy dx
(b)

∫ 0.5

0

∫ 0.5

0

ey−x dy dx

(c)
∫ 2.2

2

∫ 2x

x

(x2 + y3) dy dx (d)
∫ 1.5

1

∫ x

0

(x2 +
√
y) dy dx

2. Find the smallest values for n = m so that Composite Simpson’s rule for
double integrals can be used to approximate the integrals in Exercise 1 to
within 10−6 of the actual value.

3. Use Composite Simpson’s rule for double integrals with n = 4,m = 8 and
n = 8,m = 4 and n = m = 6 to approximate the following double integrals.
Compare the results to the exact answer.

(a)
∫ π/4

0

∫ cos x

sin x

(2y sinx+ cos2 x) dy dx
(b)

∫ e

1

∫ x

1

lnxy dy dx

(c)
∫ 1

0

∫ 2x

x

(x2 + y3) dy dx (d)
∫ 1

0

∫ 2x

x

(y2 + x3) dy dx

(e)
∫ π

0

∫ x

0

cosx dy dx (f)
∫ π

0

∫ x

0

cos y dy dx

(g)
∫ π/4

0

∫ sin x

0

1√
1− y2

dy dx (h)
∫ 3π/2

−π

∫ 2π

0

(y sinx+ x cos y) dy dx

4. Find the smallest values for n = m so that Composite Simpson’s rule for
double integrals can be used to approximate the integrals in Exercise 3 to
within 10−6 of the actual value.

5. Use Gaussian quadrature for double integrals with n = m = 2 to approxi-
mate the integrals in Exercise 1 and compare the results to those obtained in
Exercise 1.

4.7. MULTIPLE INTEGRALS 189

6. Find the smallest values of n = m so that Gaussian quadrature for double
integrals may be used to approximate the integrals in Exercise 1 to within
10−6. Do not continue beyond n = m = 5. Compare the number of functional
evaluations required to the number required in Exercise 2.

7. Use Gaussian quadrature for double integrals with n = m = 3; n = 3, m = 4;
n = 4, m = 3 and n = m = 4 to approximate the integrals in Exercise 3.

8. Use Gaussian quadrature for double integrals with n = m = 5 to approximate
the integrals in Exercise 3. Compare the number of functional evaluations
required to the number required in Exercise 4.

9. Use Gaussian quadrature for triple integrals with n = m = p = 2 to ap-
proximate the following triple integrals, and compare the results to the exact
answer.

(a)
∫ 1

0

∫ 2

1

∫ 0.5

0

ex+y+z dz dy dx
(b)

∫ 1

0

∫ 1

x

∫ y

0

y2z dz dy dx

(c)
∫ 1

0

∫ x

x2

∫ x+y

x−y

y dz dy dx (d)
∫ 1

0

∫ x

x2

∫ x+y

x−y

z dz dy dx

(e)
∫ π

0

∫ x

0

∫ xy

0

1
y

sin
z

y
dz dy dx (f)

∫ 1

0

∫ 1

0

∫ xy

−xy

ex2+y2
dz dy dx

10. Repeat Exercise 9 using n = m = p = 3.

11. Use Composite Simpson’s rule for double integrals with n = m = 14 and
Gaussian quadrature for double integrals with n = m = 4 to approximate

∫∫

R

e−(x+y) dA

for the region R in the plane bounded by the curves y = x2 and y =
√
x.

12. Use Composite Simpson’s rule for double integrals to approximate
∫∫

R

√
xy + y2 dA,

where R is the region in the plane bounded by the lines x+y = 6, 3y−x = 2,
and 3x − y = 2. First partition R into two regions, R1 and R2, on which
Composite Simpson’s rule for double integrals can be applied. Use n = m = 6
on both R1 and R2.

190 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

13. The area of the surface described by z = f(x, y) for (x, y) in R is given by
∫∫

R

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA.

Find an approximation to the area of the surface on the hemisphere x2 +y2 +
z2 = 9, z ≥ 0 that lies above the region R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
using each program.

(a) DINTGL44 with n = m = 8

(b) DGQINT45 with n = m = 4

14. A plane lamina is defined to be a thin sheet of continuously distributed mass.
If σ is a function describing the density of a lamina having the shape of a
region R in the xy-plane, then the center of the mass of the lamina (x̄, ȳ) is
defined by

x̄ =

∫∫
R

xσ(x, y) dA
∫∫
R

σ(x, y) dA
, ȳ =

∫∫
R

yσ(x, y) dA
∫∫
R

σ(x, y) dA
.

Find the center of mass of the lamina described by R = {(x, y) | 0 ≤ x ≤
1, 0 ≤ y ≤ √1− x2} with the density function σ(x, y) = e−(x2+y2) using each
program.

(a) DINTGL44 with n = m = 14

(b) DGQINT45 with n = m = 5

15. Use Gaussian quadrature for triple integrals with n = m = p = 4 to approxi-
mate ∫∫∫

S

xy sin(yz) dV,

where S is the solid bounded by the coordinate planes and the planes x = π,
y = π/2, z = π/3. Compare this approximation to the exact result.

16. Use Gaussian quadrature for triple integrals with n = m = p = 5 to approxi-
mate ∫∫∫

S

√
xyz dV,

when S is the region in the first octant bounded by the cylinder x2 + y2 = 4,
the sphere x2 +y2 +z2 = 4, and the plane x+y+z = 8. How many functional
evaluations are required for the approximation?

4.8. IMPROPER INTEGRALS 191

4.8 Improper Integrals

Improper integrals result when the notion of integration is extended either to an
interval of integration on which the function is unbounded or to an interval with
one or both infinite endpoints. In either circumstance the normal rules of integral
approximation must be modified.

We will first handle the situation when the integrand is unbounded at the left
endpoint of the interval of integration, as shown in Figure 4.19. In this case we
say that f has a singularity at the endpoint a. We will then show that, by a
suitable manipulation, the other improper integrals can be reduced to problems of
this form.
Figure 4.19

x

y 5 f (x)

y

a b

The improper integral with a singularity at the left endpoint,

∫ b

a

1
(x− a)p

dx,

converges if and only if 0 < p < 1, and in this case,

∫ b

a

1
(x− a)p

dx =
(x− a)1−p

1− p
∣∣∣∣
b

a

=
(b− a)1−p

1− p .

If f is a function that can be written in the form

f(x) =
g(x)

(x− a)p
,

where 0 < p < 1 and g is continuous on [a, b], then the improper integral

∫ b

a

f(x) dx

192 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

also exists. We will approximate this integral using Composite Simpson’s rule. If
g ∈ C5[a, b], we can construct the fourth Taylor polynomial, P4(x), for g about a:

P4(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 +

g′′′(a)
3!

(x− a)3 +
g(4)(a)

4!
(x− a)4,

and write ∫ b

a

f(x) dx =
∫ b

a

g(x)− P4(x)
(x− a)p

dx+
∫ b

a

P4(x)
(x− a)p

dx.

We can exactly determine the value of

∫ b

a

P4(x)
(x− a)p

dx =
4∑

k=0

∫ b

a

g(k)(a)
k!

(x− a)k−p dx =
4∑

k=0

g(k)(a)
k!(k + 1− p) (b− a)k+1−p.

(4.9)
This is generally the dominant portion of the approximation, especially when the
Taylor polynomial P4(x) agrees closely with the function g throughout the interval
[a, b].

To approximate the integral of f , we need to add this value to the approximation
of ∫ b

a

g(x)− P4(x)
(x− a)p

dx.

To determine this, we first define

G(x) =




g(x)− P4(x)
(x− a)p

, if a < x ≤ b,

0, if x = a.

Since 0 < p < 1 and P
(k)
4 (a) agrees with g(k)(a) for each k = 0, 1, 2, 3, 4, we

have G ∈ C4[a, b]. This implies that Composite Simpson’s rule can be applied to
approximate the integral of G on [a, b]. Adding this approximation to the value from
Eq. (4.9) gives an approximation to the improper integral of f on [a, b], within the
accuracy of the Composite Simpson’s rule approximation.

EXAMPLE 1 We will use the Composite Simpson’s rule with h = 0.25 to approximate the value
of the improper integral ∫ 1

0

ex

√
x
dx.

Since the fourth Taylor polynomial for ex about x = 0 is

P4(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
,

4.8. IMPROPER INTEGRALS 193

One portion of the approximation to
∫ 1

0

ex

√
x
dx is given by

∫ 1

0

P4(x)√
x

dx =
∫ 1

0

(
x−1/2 + x1/2 +

1
2
x3/2 +

1
6
x5/2 +

1
24
x7/2

)
dx

= lim
M→0+

[
2x1/2 +

2
3
x3/2 +

1
5
x5/2 +

1
21
x7/2 +

1
108

x9/2

]1

M

= 2 +
2
3

+
1
5

+
1
21

+
1

108
≈ 2.9235450.

For the other portion of the approximation to
∫ 1

0

ex

√
x
dx, we need to approximate

∫ 1

0
G(x) dx, where

G(x) =




ex − P4(x)√
x

, if 0 < x ≤ 1,

0, if x = 0.

Table 4.7 lists the values needed for the Composite Simpson’s rule for this approx-
imation.

Table 4.7

x G(x)

0.00 0
0.25 0.0000170
0.50 0.0004013
0.75 0.0026026
1.00 0.0099485

Applying the Composite Simpson’s rule using these data gives
∫ 1

0

G(x) dx ≈ 0.25
3

[0 + 4(0.0000170) + 2(0.0004013) + 4(0.0026026) + 0.0099485]

= 0.0017691.

Hence, ∫ 1

0

ex

√
x
dx ≈ 2.9235450 + 0.0017691 = 2.9253141.

This result is accurate within the accuracy of the Composite Simpson’s rule ap-
proximation for the function G. Since |G(4)(x)| < 1 on [0, 1], the error is bounded
by

1− 0
180

(0.25)4(1) = 0.0000217.

194 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To approximate the improper integral with a singularity at the right endpoint,
we could apply the technique we used previously but expand in terms of the right
endpoint b instead of the left endpoint a. Alternatively, we can make the substitution
z = −x, dz = −dx to change the improper integral into one of the form

∫ b

a

f(x) dx =
∫ −a

−b

f(−z) dz,

which has its singularity at the left endpoint. (See Figure 4.20.) We can now ap-
proximate

∫ −a

−b
f(−z) dz as we did earlier in the section, which gives us our approx-

imation for
∫ b

a
f(x) dx.

Figure 4.20

x z

y y

y 5 f (x) y 5 f (2z)

a b 2a2b

An improper integral with a singularity at c, where a < c < b, is treated as the
sum of improper integrals with endpoint singularities since

∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx.

The other type of improper integral involves infinite limits of integration. A
basic convergent integral of this type has the form

∫ ∞

a

1
xp

dx,

for p > 1. This integral is converted to an integral with left-endpoint singularity by
making the integration substitution

t = x−1, dt = −x−2 dx, so dx = −x2 dt = −t−2 dt.

Then ∫ ∞

a

1
xp

dx =
∫ 0

1/a

− t
p

t2
dt =

∫ 1/a

0

1
t2−p

dt.

4.8. IMPROPER INTEGRALS 195

In a similar manner, the variable change t = x−1 converts the improper integral∫∞
a
f(x) dx into one that has a left-endpoint singularity at zero:

∫ ∞

a

f(x) dx =
∫ 1/a

0

t−2f

(
1
t

)
dt.

It can now be approximated using a quadrature formula of the type described
earlier.

EXAMPLE 2 To approximate the value of the improper integral

I =
∫ ∞

1

x−3/2 sin
1
x
dx

we make the change of variable t = x−1. Since

dt = −x−2 dx, we have dx = −x2 dt = − 1
t2
dt,

and

I =
∫ x=∞

x=1

x−3/2 sin
1
x
dx =

∫ t=0

t=1

(
1
t

)−3/2

sin t
(
− 1
t2
dt

)
=
∫ 1

0

t−1/2 sin t dt.

The fourth Taylor polynomial, P4(t), for sin t about 0 is

P4(t) = t− 1
6
t3,

so

I =
∫ 1

0

sin t− t+ 1
6 t

3

t1/2
dt+

∫ 1

0

t1/2 − 1
6
t5/2 dt

=
∫ 1

0

sin t− t+ 1
6 t

3

t1/2
dt+

[
2
3
t3/2 − 1

21
t7/2

]∣∣∣∣
1

0

=
∫ 1

0

sin t− t+ 1
6 t

3

t1/2
dt+ 0.61904761.

The Composite Simpson’s rule with n = 16 for the remaining integral is 0.0014890097.
This gives a final approximation of

I = 0.0014890097 + 0.61904761 = 0.62053661,

which is accurate to within 4.0× 10−8.

196 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.8

1. Use Composite Simpson’s rule and the given values of n to approximate the
following improper integrals.

(a)
∫ 1

0

x−1/4 sinx dx with n = 4 (b)
∫ 1

0

e2x

5
√
x2

dx with n = 6

(c)
∫ 2

1

lnx
(x− 1)1/5

dx with n = 8 (d)
∫ 1

0

cos 2x
x1/3

dx with n = 6

2. Use the Composite Simpson’s rule and the given values of n to approximate
the following improper integrals.

(a)
∫ 1

0

e−x

√
1− x dx with n = 6 (b)

∫ 2

0

xex

3
√

(x− 1)2
dx with n = 8

3. Use the transformation t = x−1 and then the Composite Simpson’s rule and
the given values of n to approximate the following improper integrals.

(a)
∫ ∞

1

1
x2 + 9

dx with n = 4 (b)
∫ ∞

1

1
1 + x4

dx with n = 4

(c)
∫ ∞

1

cosx
x3

dx with n = 6 (d)
∫ ∞

1

x−4 sinx dx with n = 6

4. The improper integral
∫∞
0
f(x) dx cannot be converted into an integral with

finite limits using the substitution t = 1/x because the limit at zero becomes
infinite. The problem is resolved by first writing

∫∞
0
f(x) dx =

∫ 1

0
f(x) dx

+
∫∞
1
f(x) dx. Apply this technique to approximate the following improper

integrals to within 10−6.

(a)
∫ ∞

0

1
1 + x4

dx
(b)

∫ ∞

0

1
(1 + x2)3

dx

4.8. IMPROPER INTEGRALS 197

5. Suppose a body of mass m is travelling vertically upward starting at the
surface of the earth. If all resistance except gravity is neglected, the escape
velocity v is given by

v2 = 2gR
∫ ∞

1

z−2 dz, where z =
x

R
,

R = 3960 mi is the radius of the earth, and g = 0.00609 mi/s2 is the force of
gravity at the earth’s surface. Approximate the escape velocity v.

198 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.9 Numerical Differentiation

The derivative of the function f at x0 is defined as

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.

This formula gives an obvious way to generate an approximation to f ′(x0); simply
compute

f(x0 + h)− f(x0)
h

for small values of h. Although this may be obvious, it is not very successful, due
to our old nemesis, round-off error. But, it is certainly the place to start.

To approximate f ′(x0), suppose first that x0 ∈ (a, b), where f ∈ C2[a, b], and
that x1 = x0 + h for some h
= 0 that is sufficiently small to ensure that x1 ∈ [a, b].
We construct the first Lagrange polynomial, P0,1, for f determined by x0 and x1

with its error term

f(x) = P0,1(x) +
(x− x0)(x− x1)

2!
f ′′(ξ(x))

=
f(x0)(x− x0 − h)

−h +
f(x0 + h)(x− x0)

h
+

(x− x0)(x− x0 − h)
2

f ′′(ξ(x))

for some number ξ(x) in [a, b]. Differentiating this equation gives

f ′(x) =
f(x0 + h)− f(x0)

h
+Dx

[
(x− x0)(x− x0 − h)

2
f ′′(ξ(x))

]

=
f(x0 + h)− f(x0)

h
+

2(x− x0)− h
2

f ′′(ξ(x))

+
(x− x0)(x− x0 − h)

2
Dx(f ′′(ξ(x))),

so

f ′(x) ≈ f(x0 + h)− f(x0)
h

,

with error

2(x− x0)− h
2

f ′′(ξ(x)) +
(x− x0)(x− x0 − h)

2
Dx(f ′′(ξ(x))).

There are two terms for the error in this approximation. The first term involves
f ′′(ξ(x)), which can be bounded if we have a bound for the second derivative of
f . The second part of the truncation error involves Dxf

′′(ξ(x)) = f ′′′(ξ(x)) · ξ′(x),
which generally cannot be estimated because it contains the unknown term ξ′(x).
However, when x is x0, the coefficient of Dxf

′′(ξ(x)) is zero. In this case the formula
simplifies to the following:

4.9. NUMERICAL DIFFERENTIATION 199

[Two-Point Formula] If f ′′ exists on the interval containing x0 and x0 + h,
then

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ),

for some number ξ between x0 and x0 + h.

Suppose that M is a bound on |f ′′(x)| for x ∈ [a, b]. Then for small values of h,
the difference quotient [f(x0+h)−f(x0)]/h can be used to approximate f ′(x0) with
an error bounded by M |h|/2. This is a two-point formula known as the forward-
difference formula if h > 0 (see Figure 4.21) and the backward-difference
formula if h < 0.

Figure 4.21

y

xx0

Slope f 9(x0)

Slope
h

f (x0 1 h) 2 f (x0)

x0 1 h

EXAMPLE 1 Let f(x) = lnx and x0 = 1.8. The forward-difference formula,

f(1.8 + h)− f(1.8)
h

,

can be used to approximate f ′(1.8) with error

|hf ′′(ξ)|
2

=
|h|
2ξ2
≤ |h|

2(1.8)2
, where 1.8 < ξ < 1.8 + h.

The results in Table 4.8 are produced when h = 0.1, 0.01, and 0.001.

200 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 4.8

h f(1.8 + h)
f(1.8 + h)− f(1.8)

h

|h|
2(1.8)2

0.1 0.64185389 0.5406722 0.0154321
0.01 0.59332685 0.5540180 0.0015432
0.001 0.58834207 0.5554013 0.0001543

Since f ′(x) = 1/x, the exact value of f ′(1.8) is 1
1.8 = 0.5̄, and the error bounds

are quite close to the true approximation error.

To obtain general derivative approximation formulas, suppose that x0, x1, . . . , xn

are (n+ 1) distinct numbers in some interval I and that f ∈ Cn+1(I). Then

f(x) =
n∑

j=0

f(xj)Lj(x) +
(x− x0) · · · (x− xn)

(n+ 1)!
f (n+1)(ξ(x))

for some ξ(x) in I, where Lj(x) denotes the jth Lagrange coefficient polynomial for
f at x0, x1, . . . , xn. Differentiating this expression gives

f ′(x) =
n∑

j=0

f(xj)L′
j(x) +Dx

[
(x− x0) · · · (x− xn)

(n+ 1)!

]
f (n+1)(ξ(x))

+
(x− x0) · · · (x− xn)

(n+ 1)!
Dx[f (n+1)(ξ(x))].

Again we have a problem with the second part of the truncation error unless x is
one of the numbers xk. In this case, the multiplier of Dx[f (n+1)(ξ(x))] is zero, and
the formula becomes

f ′(xk) =
n∑

j=0

f(xj)L′
j(xk) +

f (n+1)(ξ(xk))
(n+ 1)!

n∏
j=0
j 	=k

(xk − xj).

Applying this technique using the second Lagrange polynomial at x0, x1 =
x0 + h, and x2 = x0 + 2h produces the following formula.

[Three-Point Endpoint Formula] If f ′′′ exists on the interval containing x0

and x0 + 2h, then

f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f

′′′
(ξ),

for some number ξ between x0 and x0 + 2h.

4.9. NUMERICAL DIFFERENTIATION 201

This formula is most useful when approximating the derivative at the endpoint
of an interval. This situation occurs, for example, when approximations are needed
for the derivatives used for the clamped cubic splines discussed in Section 3.5. Left
endpoint approximations are found using h > 0, and right endpoint approximations
using h < 0.

When approximating the derivative of a function at an interior point of an
interval, it is better to use the formula that is produced from the second Lagrange
polynomial at x0 − h, x0, and x0 + h.

[Three-Point Midpoint Formula]
If f ′′′ exists on the interval containing x0 − h and x0 + h, then

f ′(x0) =
1
2h

[f(x0 + h)− f(x0 − h)]− h2

6
f

′′′
(ξ),

for some number ξ between x0 − h and x0 + h.

The error in the Midpoint formula is approximately half the error in the End-
point formula and f needs to be evaluated at only two points, whereas in the
Endpoint formula three evaluations are required. Figure 4.22 gives an illustration
of the approximation produced from the Midpoint formula.

Figure 4.22

y

x

Slope
2h

[f (x0 1 h) 2 f (x0 2 h)]
1

Slope f 9(x0)

x0 2 h x0 1 hx0

These methods are called three-point formulas (even though the third point,
f(x0), does not appear in the Midpoint formula). Similarly, there are methods
known as five-point formulas that involve evaluating the function at two additional
points, whose error term is O(h4). These formulas are generated by differentiating

202 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

fourth Lagrange polynomials that pass through the evaluation points. The most
useful is the interior-point formula:

[Five-Point Midpoint Formula] If f (5) exists on the interval containing x0−2h
and x0 + 2h, then

f ′(x0) =
1

12h
[f(x0− 2h)− 8f(x0−h)+8f(x0 +h)− f(x0 +2h)]+

h4

30
f (5)(ξ),

for some number ξ between x0 − 2h and x0 + 2h.

There is another five-point formula that is useful, particularly with regard to
the clamped cubic spline interpolation of Section 3.5.

[Five-Point Endpoint Formula]
If f (5) exists on the interval containing x0 and x0 + 4h, then

f ′(x0) =
1

12h
[−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h)

+ 16f(x0 + 3h)− 3f(x0 + 4h)] +
h4

5
f (5)(ξ),

for some number ξ between x0 and x0 + 4h.

Left-endpoint approximations are found using h > 0, and right-endpoint ap-
proximations are found using h < 0.

EXAMPLE 2 Table 4.9 gives values for f(x) = xex.

Table 4.9
x f(x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Since f ′(x) = (x + 1)ex, we have f ′(2.0) = 22.167168. Approximating f ′(2.0)
using the various three- and five-point formulas produces the following results.

Three-Point formulas

4.9. NUMERICAL DIFFERENTIATION 203

Endpoint with h = 0.1 : 1
0.2 [−3f(2.0) + 4f(2.1)− f(2.2)] = 22.032310.

Endpoint with h = −0.1 : 1
−0.2 [−3f(2.0) + 4f(1.9)− f(1.8)] = 22.054525.

Midpoint with h = 0.1 : 1
0.2 [f(2.1)− f(1.9)] = 22.228790.

Midpoint with h = 0.2 : 1
0.4 [f(2.2)− f(1.8)] = 22.414163.

Five-Point formula

Midpoint with h = 0.1 (the only five-point formula applicable):

1
1.2

[f(1.8)− 8f(1.9) + 8f(2.1)− f(2.2)] = 22.166999.

The errors are approximately 1.35×10−1, 1.13×10−1,−6.16×10−2,−2.47×10−1,
and 1.69 × 10−4, respectively. The five-point formula approximation is clearly su-
perior. Note also that the error from the midpoint formula with h = 0.1 is approx-
imately half of the magnitude of the error produced using the endpoint formula
with either h = 0.1 or h = −0.1.

It is particularly important to pay attention to round-off error when approx-
imating derivatives. When approximating integrals in Section 4.3 we found that
reducing the step size in the Composite Simpson’s rule reduced the truncation er-
ror, and, even though the amount of calculation increased, the total round-off error
remained bounded. This is not the case when approximating derivatives.

When applying a numerical differentiation technique, the truncation error will
also decrease if the step size is reduced, but only at the expense of increased round-
off error. To see why this occurs, let us examine more closely the Three-Point
Midpoint formula:

f ′(x0) =
1
2h

[f(x0 + h)− f(x0 − h)]− h2

6
f

′′′
(ξ).

Suppose that, in evaluating f(x0 +h) and f(x0−h), we encounter round-off errors
e(x0 + h) and e(x0 − h). Then our computed values f̃(x0 + h) and f̃(x0 − h) are
related to the true values f(x0 + h) and f(x0 − h) by the formulas

f(x0 + h) = f̃(x0 + h) + e(x0 + h) and f(x0 − h) = f̃(x0 − h) + e(x0 − h).

In this case, the total error in the approximation,

f ′(x0)− f̃(x0 + h)− f̃(x0 − h)
2h

=
e(x0 + h)− e(x0 − h)

2h
− h2

6
f

′′′
(ξ),

is due in part to round-off and in part to truncating. If we assume that the round-off
errors, e(x0 ± h), for the function evaluations are bounded by some number ε > 0
and that the third derivative of f is bounded by a number M > 0, then

∣∣∣∣∣f
′(x0)− f̃(x0 + h)− f̃(x0 + h)

2h

∣∣∣∣∣ ≤
ε

h
+
h2

6
M.

204 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

To reduce the truncation portion of the error, h2M/6, we must reduce h. But as
h is reduced, the round-off portion of the error, ε/h, grows. In practice, then, it is
seldom advantageous to let h be too small, since the round-off error will dominate
the calculations.

EXAMPLE 3 Consider using the values in Table 4.10 to approximate f ′(0.900) for f(x) = sinx.
The true value is cos(0.900) = 0.62161. Using the formula

f ′(0.900) ≈ f(0.900 + h)− f(0.900− h)
2h

with different values of h gives the approximations in Table 4.11.

Table 4.10

x sinx x sinx

0.800 0.71736 0.901 0.78395
0.850 0.75128 0.902 0.78457
0.880 0.77074 0.905 0.78643
0.890 0.77707 0.910 0.78950
0.895 0.78021 0.920 0.79560
0.898 0.78208 0.950 0.81342
0.899 0.78270 1.000 0.84147

Table 4.11

Approximation
h to f ′(0.900) Error

0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 −0.00011
0.020 0.62150 −0.00011
0.050 0.62140 −0.00021
0.100 0.62055 −0.00106

Table 4.11
Approximation

h to f ′(0.900) Error

0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 −0.00011
0.020 0.62150 −0.00011
0.050 0.62140 −0.00021
0.100 0.62055 −0.00106

It appears that an optimal choice for h lies between 0.005 and 0.05. The minimal
value of the error term,

e(h) =
ε

h
+
h2

6
M,

occurs when 0 = e′(h) = − ε
h2 + h

3M , that is, when h = 3
√

3ε/M . We can determine
a reasonable value for the bound M in this case since

M = max
x∈[0.800,1.00]

|f ′′′(x)| = max
x∈[0.800,1.00]

|cosx| ≈ 0.69671.

4.9. NUMERICAL DIFFERENTIATION 205

Since the values of f are given to five decimal places, it is reasonable to assume
that ε = 0.000005. Therefore, the optimal choice of h is approximately

h = 3

√
3ε
M

= 3

√
3(0.000005)

0.69671
≈ 0.028,

which is consistent with the results in Table 4.11. In practice, though, we cannot
compute an optimal h to use in approximating the derivative, since we have no
knowledge of the third derivative of the function.

We have considered only the round-off error problems that are presented by the
Three-Point Midpoint formula, but similar difficulties occur with all the differenti-
ation formulas. The reason for the problems can be traced to the need to divide by
a power of h. As we found in Section 1.4 (see, in particular, Example 1), division
by small numbers tends to exaggerate round-off error, and this operation should be
avoided if possible. In the case of numerical differentiation, it is impossible to avoid
the problem entirely, although the higher-order methods reduce the difficulty.

Keep in mind that as an approximation method, numerical differentiation is
unstable, since the small values of h needed to reduce truncation error cause the
round-off error to grow. This is the first class of unstable methods we have en-
countered, and these techniques would be avoided if it were possible. However, it
is not since, in addition to being used for computational purposes, the formulas we
have derived will be used in Chapters 11 and 12 for approximating the solutions of
ordinary and partial-differential equations.

Methods for approximating higher derivatives of functions can be derived as was
done for approximating the first derivative or by using an averaging technique that
is similar to that used for extrapolation. These techniques, of course, suffer from
the same stability weaknesses as the approximation methods for first derivatives,
but they are needed for approximating the solution to boundary value problems in
differential equations. The only one we will need is a three-point midpoint formula,
which has the following form.

[Three-Point Midpoint Formula for Approximating f ′′]
If f (4) exists on the interval containing x0 − h and x0 + h, then

f ′′(x0) =
1
h2

[f(x0 − h)− 2f(x0) + f(x0 + h)]− h2

12
f (4)(ξ),

for some number ξ between x0 − h and x0 + h.

206 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

EXERCISE SET 4.9

1. Use the forward-difference formulas and backward-difference formulas to de-
termine approximations that will complete the following tables.

(a)
x f(x) f ′(x)

0.5 0.4794
0.6 0.5646
0.7 0.6442

(b)
x f(x) f ′(x)

0.0 0.00000
0.2 0.74140
0.4 1.3718

2. The data in Exercise 1 were taken from the following functions. Compute the
actual errors in Exercise 1, and find error bounds using the error formulas.

(a) f(x) = sinx (b) f(x) = ex − 2x2 + 3x− 1

3. Use the most appropriate three-point formula to determine approximations
that will complete the following tables.

(a)
x f(x) f ′(x)

1.1 9.025013
1.2 11.02318
1.3 13.46374
1.4 16.44465

(b)
x f(x) f ′(x)

8.1 16.94410
8.3 17.56492
8.5 18.19056
8.7 18.82091

(c)
x f(x) f ′(x)

2.9 −4.827866
3.0 −4.240058
3.1 −3.496909
3.2 −2.596792

(d)
x f(x) f ′(x)

2.0 3.6887983
2.1 3.6905701
2.2 3.6688192
2.3 3.6245909

4. The data in Exercise 3 were taken from the following functions. Compute the
actual errors in Exercise 3 and find error bounds using the error formulas.

(a) f(x) = e2x (b) f(x) = x lnx

(c) f(x) = x cosx− x2 sinx (d) f(x) = 2(lnx)2 + 3 sinx

4.9. NUMERICAL DIFFERENTIATION 207

5. Use the most accurate formula possible to determine approximations that will
complete the following tables.

(a)
x f(x) f ′(x)

2.1 −1.709847
2.2 −1.373823
2.3 −1.119214
2.4 −0.9160143
2.5 −0.7470223
2.6 −0.6015966

(b)
x f(x) f ′(x)

−3.0 9.367879
−2.8 8.233241
−2.6 7.180350
−2.4 6.209329
−2.2 5.320305
−2.0 4.513417

6. The data in Exercise 5 were taken from the given functions. Compute the
actual errors in Exercise 5 and find error bounds using the error formulas and
Maple.

(a) f(x) = tanx (b) f(x) = ex/3 + x2

7. Let f(x) = cosπx. Use the Three-point Midpoint formula for f ′′ and the
values of f(x) at x = 0.25, 0.5, and 0.75 to approximate f ′′(0.5). Compare
this result to the exact value and to the approximation found in Exercise
7 of Section 3.5. Explain why this method is particularly accurate for this
problem.

8. Let f(x) = 3xex−cosx. Use the following data and the Three-point Midpoint
formula for f ′′ to approximate f ′′(1.3) with h = 0.1 and h = 0.01, and
compare your results to f ′′(1.3).

x 1.20 1.29 1.30 1.31 1.40

f(x) 11.59006 13.78176 14.04276 14.30741 16.86187

9. Use the following data and the knowledge that the first five derivatives of
f were bounded on [1, 5] by 2, 3, 6, 12 and 23, respectively, to approximate
f ′(3) as accurately as possible. Find a bound for the error.

x 1 2 3 4 5

f(x) 2.4142 2.6734 2.8974 3.0976 3.2804

10. Repeat Exercise 9, assuming instead that the third derivative of f is bounded
on [1, 5] by 4.

208 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

11. Analyze the round-off errors for the formula

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ0).

Find an optimal h > 0 in terms of a bound M for f ′′ on (x0, x0 + h).

12. All calculus students know that the derivative of a function f at x can be
defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

Choose your favorite function f , nonzero number x, and computer or calcu-
lator. Generate approximations f ′n(x) to f ′(x) by

f ′n(x) =
f(x+ 10−n)− f(x)

10−n

for n = 1, 2, . . . , 20 and describe what happens.

13. Consider the function

e(h) =
ε

h
+
h2

6
M,

where M is a bound for the third derivative of a function. Show that e(h) has
a minimum at 3

√
3ε/M .

14. The forward-difference formula can be expressed as

f ′(x0) =
1
h

[f(x0 + h)− f(x0)]− h

2
f ′′(x0)− h2

6
f ′′′(x0) +O(h3).

Use extrapolation on this formula to derive an O(h3) formula for f ′(x0).

15. In Exercise 7 of Section 3.4, data were given describing a car traveling on a
straight road. That problem asked to predict the position and speed of the
car when t = 10 s. Use the following times and positions to predict the speed
at each time listed.

Time 0 3 5 8 10 13

Distance 0 225 383 623 742 993

16. In a circuit with impressed voltage E(t) and inductance L, Kirchhoff’s first
law gives the relationship

E = L
di

dt
+Ri,

where R is the resistance in the circuit and i is the current. Suppose we
measure the current for several values of t and obtain:

t 1.00 1.01 1.02 1.03 1.0

i 3.10 3.12 3.14 3.18 3.24

4.9. NUMERICAL DIFFERENTIATION 209

where t is measured in seconds, i is in amperes, the inductance, L, is a constant
0.98 henries, and the resistance is 0.142 ohms. Approximate the voltage E at
the values t = 1.00, 1.01, 1.02, 1.03, and 1.04.

210 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

4.10 Survey of Methods and Software

In this chapter we considered approximating integrals of functions of one, two, or
three variables and approximating the derivatives of a function of a single real
variable.

The Midpoint rule, Trapezoidal rule, and Simpson’s rule were studied to intro-
duce the techniques and error analysis of quadrature methods. Composite Simpson’s
rule is easy to use and produces accurate approximations unless the function os-
cillates in a subinterval of the interval of integration. Adaptive quadrature can be
used if the function is suspected of oscillatory behavior. To minimize the number
of nodes and increase the degree of precision, we studied Gaussian quadrature.
Romberg integration was introduced to take advantage of the easily applied Com-
posite Trapezoidal rule and extrapolation.

Most software for integrating a function of a single real variable is based on the
adaptive approach or extremely accurate Gaussian formulas. Cautious Romberg
integration is an adaptive technique that includes a check to make sure that the
integrand is smoothly behaved over subintervals of the integral of integration. This
method has been successfully used in software libraries. Multiple integrals are gen-
erally approximated by extending good adaptive methods to higher dimensions.
Gaussian-type quadrature is also recommended to decrease the number of function
evaluations.

The main routines in both the IMSL and NAG Libraries are based on QUAD-
PACK: A Subroutine Package for Automatic Integration by R. Piessens, E. de
Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner published by Springer-
Verlag in 1983 [PDUK]. The routines are also available as public domain software,
at http://www.netlib.org/quadpack The main technique is an adaptive integration
scheme based on the 21-point Gaussian-Kronrod rule using the 10-point Gaussian
rule for error estimation. The Gaussian rule uses the 10 points x1, . . . , x10 and
weights w1, . . . , w10 to give the quadrature formula

∑10
i=1 wif(xi) to approximate∫ b

a
f(x) dx. The additional points x11, . . . , x21 and the new weights v1, . . . , v21 are

then used in the Kronrod formula,
∑21

i=1 vif(xi). The results of the two formulas
are compared to eliminate error. The advantage in using x1, . . . , x10 in each for-
mula is that f needs to be evaluated at only 21 points. If independent 10- and
21-point Gaussian rules were used, 31 function evaluations would be needed. This
procedure also permits endpoint singularities in the integrand. Other subroutines
allow user specified singularities and infinite intervals of integration. Methods are
also available for multiple integrals.

The Maple function call

>int(f,x=a..b);

computes the definite integral
∫ b

a
f(x) dx. The numerical method applies singular-

ity handling routines and then uses Clenshaw-Curtis quadrature, which is described
in [CC]. If this fails, due to singularities in or near the interval, then an adaptive
Newton-Cotes formula is applied. The adaptive Newton-Cotes formula can be ap-
plied by specifying the option NCrule in the Maple function call

4.10. SURVEY OF METHODS AND SOFTWARE 211

>int(f,x=a..b,digits,_NCrule);

The method attempts to achieve a relative error tolerance 0.5× 10(1−Digits), where
Digits is a variable in Maple that specifies the number of digits of rounding
Maple uses for numerical calculation. The default value for Digits is 10, but it
can be changed to any positive integer n by the command Digits:=n; The Maple
command QUAD approximates the definite integral using an adaptive eight-panel
Newton-Cotes rule.

Although numerical differentiation is unstable, derivative approximation for-
mulas are needed for solving differential equations. The NAG Library includes a
subroutine for the numerical differentiation of a function of one real variable, with
differentiation to the fourteenth derivative being possible. An IMSL function uses
an adaptive change in step size for finite differences to approximate a derivative
of f at x to within a given tolerance. Both packages allow the differentiation and
integration of interpolatory cubic splines.

For further reading on numerical integration we recommend the books by En-
gels [E] and by Davis and Rabinowitz [DR]. For more information on Gaussian
quadrature see Stroud and Secrest [StS]. Books on multiple integrals include those
by Stroud [Stro] and the recent book by Sloan and Joe [SJ].

212 CHAPTER 4. NUMERICAL INTEGRATION AND DIFFERENTIATION

Chapter 5

Numerical Solution of
Initial-Value Problems

5.1 Introduction

Differential equations are used to model problems that involve the change of some
variable with respect to another. These problems require the solution to an initial-
value problem—that is, the solution to a differential equation that satisfies a given
initial condition.

In many real-life situations, the differential equation that models the problem
is too complicated to solve exactly, and one of two approaches is taken to approxi-
mate the solution. The first approach is to simplify the differential equation to one
that can be solved exactly, and then use the solution of the simplified equation to
approximate the solution to the original equation. The other approach, the one we
examine in this chapter, involves finding methods for directly approximating the
solution of the original problem. This is the approach commonly taken since more
accurate results and realistic error information can be obtained.

The methods we consider in this chapter do not produce a continuous approx-
imation to the solution of the initial-value problem. Rather, approximations are
found at certain specified, and often equally spaced, points. Some method of in-
terpolation, commonly a form of Hermite (see Section 3.4), is used if intermediate
values are needed.

The first part of the chapter concerns approximating the solution y(t) to a
problem of the form

dy

dt
= f(t, y), for a ≤ t ≤ b,

subject to an initial condition
y(a) = α.

These techniques form the core of the study since more general procedures use these
as a base. Later in the chapterwe deal with the extension of these methods to a

213

214CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

system of first-order differential equations in the form

dy1
dt

= f1(t, y1, y2, . . . , yn),

dy2
dt

= f2(t, y1, y2, . . . , yn),

...
dyn

dt
= fn(t, y1, y2, . . . , yn),

for a ≤ t ≤ b, subject to the initial conditions

y1(a) = α1, y2(a) = α2, . . . , yn(a) = αn.

We also examine the relationship of a system of this type to the general nth-order
initial-value problem of the form

y(n) = f
(
t, y, y′, y′′, . . . , y(n−1)

)

for a ≤ t ≤ b, subject to the multiple initial conditions

y(a) = α0, y′(a) = α1, . . . , y
(n−1)(a) = αn−1.

Before describing the methods for approximating the solution to our basic prob-
lem, we consider some situations that ensure the solution will exist. In fact, since
we will not be solving the given problem, only an approximation to the problem,
we need to know when problems that are close to the given problem have solutions
that accurately approximate the solution to the given problem. This property of an
initial-value problem is called well-posed, and these are the problems for which
numerical methods are appropriate. The following result shows that the class of
well-posed problems is quite broad.

[Well-Posed Condition] Suppose that f and fy, its first partial derivative with
respect to y, are continuous for t in [a, b] and for all y. Then the initial-value
problem

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b, and the problem is well-posed.

EXAMPLE 1 Consider the initial-value problem

y′ = 1 + t sin(ty), for 0 ≤ t ≤ 2, with y(0) = 0.

5.1. INTRODUCTION 215

Since the functions

f(t, y) = 1 + t sin(ty) and fy(t, y) = t2 cos(ty)

are both continuous for 0 ≤ t ≤ 2 and for all y, a unique solution exists to this
well-posed initial-value problem.

If you have taken a course in differential equations, you might attempt to de-
termine the solution to this problem by using one of the techniques you learned in
that course.

Maple can be used to solve many initial-value problems. Consider the problem

dy

dt
= y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5.

To define the differential equation, enter

>deq:=D(y)(t)=y(t)-t*t+1;

and the initial condition

>init:=y(0)=0.5;

The names deq and init are chosen by the user. The command to solve the initial-
value problems is

>deqsol:=dsolve({deq,init},y(t));

which gives the response

deqsol = y(t) = t2 + 2t+ 1− 1
2
et

To use the solution to obtain a specific value, such as y(1.5), we enter

>q:=rhs(deqsol);
>evalf(subs(t=1.5,q));

The function rhs (for right hand side) is used to assign the solution of the
initial-value problem to the function q, which we then evaluate at t = 1.5 to obtain
y(1.5) = 4.009155465. The function dsolve can fail if an explicit solution to the
initial value problem cannot be found. For example, for the initial-value problem
given in Example 1, the command

>deqsol2:=dsolve({D(y)(t)=1+t*sin(t*y(t)),y(0)=0},y(t));

does not succeed, because Maple cannot find an explicit solution. In this case a
numerical method must be used.

216CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

5.2 Taylor Methods

Many of the numerical methods we saw in the first four chapters have an un-
derlying derivation from Taylor’s Theorem. The approximation of the solution to
initial-value problems is no exception. In this case, the function we need to expand
in a Taylor polynomial is the (unknown) solution to the problem, y(t). In its most
elementary form this leads to Euler’s Method. Although Euler’s method is sel-
dom used in practice, the simplicity of its derivation illustrates the technique used
for more advanced procedures, without the cumbersome algebra that accompanies
these constructions.

The object of Euler’s method is to find, for a given positive integer N , an
approximation to the solution of a problem of the form

dy

dt
= f(t, y), for a ≤ t ≤ b, with y(a) = α

at the N+1 equally spaced mesh points {t0, t1, t2, . . . , tN} (see Figure 5.1), where

ti = a+ ih, for each i = 0, 1, . . . N.

The common distance between the points, h = (b− a)/N , is called the step size.
Approximations at other values of t in [a, b] can then be found using interpolation.

Figure 5.1

t

y

y(tN) 5 y(b) y9 5 f (t, y),
y(a) 5 a

y(t2)

y(t1)
y(t0) 5 a

t0 5 a t1 t2 tN 5 b. . .

. .
 .

Suppose that y(t), the solution to the problem, has two continuous derivatives
on [a, b], so that for each i = 0, 1, 2, . . . , N − 1, Taylor’s Theorem implies that

y(ti+1) = y(ti) + (ti+1 − ti)y′(ti) +
(ti+1 − ti)2

2
y′′(ξi),

for some number ξi in (ti, ti+1). Letting h = (b− a)/N = ti+1 − ti, we have

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi),

5.2. TAYLOR METHODS 217

and, since y(t) satisfies the differential equation y′(t) = f(t, y(t)),

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi).

Euler’s method constructs the approximation wi to y(ti) for each i = 1, 2, . . . , N
by deleting the error term in this equation. This produces a difference equation that
approximates the differential equation. The term local error refers to the error at
the given step if it is assumed that all the previous results are all exact. The true,
or accumulated, error of the method is called global error.

[Euler’s Method]

w0 = α,

wi+1 = wi + hf(ti, wi),

where i = 0, 1, . . . , N − 1, with local error 1
2y

′′(ξi)h2 for some ξi in (ti, ti+1).

To interpret Euler’s method geometrically, note that when wi is a close approx-
imation to y(ti), the assumption that the problem is well-posed implies that

f(ti, wi) ≈ y′(ti) = f(ti, y(ti)).

The first step of Euler’s method appears in Figure 5.2(a), and a series of steps
appears in Figure 5.2(b). The program EULERM51 implements Euler’s method.

Figure 5.2

w1

Slope y9(a) 5 f (a, a)

y

t

y9 5 f (t, y),
y(a) 5 a

a

t0 5 a t1 t2 tN 5 b

(a)

w1

y

t

a

t0 5 a t1 t2 tN 5 b

y(b)

w2

wN

y9 5 f (t, y),
y(a) 5 a

(b)

.

218CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXAMPLE 1 Suppose that Euler’s method is used to approximate the solution to the initial-value
problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

assuming that N = 10. Then h = 0.2 and ti = 0.2i.
Since f(t, y) = y − t2 + 1 and w0 = y(0) = 0.5, we have

wi+1 = wi + h(wi − t2i + 1) = wi + 0.2[wi − 0.04i2 + 1] = 1.2wi − 0.008i2 + 0.2

for i = 0, 1, . . . , 9.
The exact solution is y(t) = (t + 1)2 − 0.5et. Table 5.1 shows the comparison

between the approximate values at ti and the actual values.

Table 5.1
ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0.0000000
0.2 0.8292986 0.8000000 0.0292986
0.4 1.2140877 1.1520000 0.0620877
0.6 1.6489406 1.5504000 0.0985406
0.8 2.1272295 1.9884800 0.1387495
1.0 2.6408591 2.4581760 0.1826831
1.2 3.1799415 2.9498112 0.2301303
1.4 3.7324000 3.4517734 0.2806266
1.6 4.2834838 3.9501281 0.3333557
1.8 4.8151763 4.4281538 0.3870225
2.0 5.3054720 4.8657845 0.4396874

Euler’s method is available in Maple using an optional part of the dsolve state-
ment. Enter the command

>eq:= D(y)(t)=y(t)-t^2+1;

to define the differential equation in Example 1, and specify the initial condition
with

>init:= y(0)=0.5;

The command

>g:=dsolve({eq,init},numeric,method=classical[foreuler],y(t),stepsize=0.2);

activates Euler’s method and returns a procedure

g := proc(x classical) . . . end proc

To approximate y(t) using g(t) at specific values of t, for example at t = 2.0, enter
the command

5.2. TAYLOR METHODS 219

>g(2.0);

which returns the value

[2.0 = 2.0, y(2.0) = 4.8657850431999876]

Since Euler’s method is derived from a Taylor polynomial whose error term
involves the square of the step size h, the local error at each step is proportional to
h2, so it is O(h2). However, the total error, or global error, accumulates these local
errors, so it generally grows at a much faster rate.

[Euler’s Method Error Bound] Let y(t) denote the unique solution to the
initial-value problem

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α,

and w0, w1, . . . , wN be the approximations generated by Euler’s method for
some positive integer N . Suppose that f is continuous for all t in [a, b] and
all y in (−∞,∞), and constants L and M exist with

∣∣∣∣
∂f

∂y
(t, y(t))

∣∣∣∣ ≤ L and |y′′(t)| ≤M.

Then, for each i = 0, 1, 2, . . . , N ,

|y(ti)− wi| ≤ hM

2L
[eL(ti−a) − 1].

An important point to notice is that although the local error of Euler’s method
is O(h2), the global error is only O(h). The reduction of one power of h from local to
global error is typical of initial-value techniques. Even though we have a reduction
in order from local to global errors, the formula shows that the error tends to zero
with h.

EXAMPLE 2 Returning to the initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

considered in Example 1, we see that with f(t, y) = y− t2 + 1, we have fy(t, y) = 1
for all y, so L = 1. For this problem we know that the exact solution is y(t) =
(t+ 1)2 − 1

2e
t, so y′′(t) = 2− 0.5et, and

|y′′(t)| ≤ 0.5e2 − 2 for 0 ≤ t ≤ 2.

220CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1,
and M = 0.5e2 − 2 gives

|yi − wi| ≤ 0.1(0.5e2 − 2)(eti − 1).

Table 5.2 lists the actual error found in Example 1, together with this error bound.
Notice that the bound for the error far exceeds the actual approximation error,
particularly for the larger values of ti.

Table 5.2

ti 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Actual
Error 0.02930 0.06209 0.09854 0.13875 0.18268 0.23013 0.28063 0.33336 0.38702 0.43969
Error
Bound 0.03752 0.08334 0.13931 0.20767 0.29117 0.39315 0.51771 0.66985 0.85568 1.08264

Since Euler’s method was derived using Taylor’s Theorem with n = 2, the first
attempt to find methods for improving the accuracy of difference methods is to
extend this technique of derivation to larger values of n. Suppose the solution y(t)
to the initial-value problem

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α,

has n+ 1 continuous derivatives. If we expand the solution y(t) in terms of its nth
Taylor polynomial about ti, we obtain

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) + · · ·+ hn

n!
y(n)(ti) +

hn+1

(n+ 1)!
y(n+1)(ξi)

for some number ξi in (ti, ti+1).
Successive differentiation of the solution y(t) gives

y′(t) = f(t, y(t)), y′′(t) = f ′(t, y(t)), and, generally, y(k)(t) = f (k−1)(t, y(t)).

Substituting these results into the Taylor expansion gives

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ti, y(ti)) + · · ·

+
hn

n!
f (n−1)(ti, y(ti)) +

hn+1

(n+ 1)!
f (n)(ξi, y(ξi)).

The difference-equation method corresponding to this equation is obtained by
deleting the remainder term involving ξi.

5.2. TAYLOR METHODS 221

[Taylor Method of Order n]

w0 = α,

wi+1 = wi + hT (n)(ti, wi)

for each i = 0, 1, . . . , N − 1, where

T (n)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) + · · ·+ hn−1

n!
f (n−1)(ti, wi).

The local error is 1
(n+1)!y

(n+1)(ξi)hn+1 for some ξi in (ti, ti+1).

The formula for T (n) is easily expressed, but it is difficult to use, because it
requires the derivatives of f with respect to t. Since f is described as a multivariable
function of both t and y, the chain rule implies that the total derivative of f with
respect to t, which we denoted f ′(t, y(t)), is obtained by

f ′(t, y(t)) =
∂f

∂t
(t, y(t)) · dt

dt
+
∂f

∂y
(t, y(t))

dy(t)
dt

,

=
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))y′(t)

or, since y′(t) = f(t, y(t)), by

f ′(t, y(t)) =
∂f

∂t
(t, y(t)) + f(t, y(t))

∂f

∂y
(t, y(t)).

Higher derivatives can be obtained in a similar manner, but they might become
increasingly complicated. For example, f ′′(t, y(t)) involves the partial derivatives of
all the terms on the right side of this equation with respect to both t and y.

EXAMPLE 3 Suppose that we want to apply Taylor’s method of orders 2 and 4 to the initial-value
problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

which was studied in Examples 1 and 2. We must find the first three derivatives of
f(t, y(t)) = y(t)− t2 + 1 with respect to the variable t:

f ′(t, y(t)) =
d

dt
(y − t2 + 1) = y′ − 2t = y − t2 + 1− 2t

f ′′(t, y(t)) =
d

dt
(y − t2 + 1− 2t) = y′ − 2t− 2

= y − t2 + 1− 2t− 2 = y − t2 − 2t− 1

and
f ′′′(t, y(t)) =

d

dt
(y − t2 − 2t− 1) = y′ − 2t− 2 = y − t2 − 2t− 1.

222CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

So

T (2)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) = wi − t2i + 1 +

h

2
(wi − t2i − 2t+ 1)

=
(

1 +
h

2

)
(wi − t2i + 1)− hti

and

T (4)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) +

h2

6
f ′′(ti, wi) +

h3

24
f ′′′(ti, wi)

= wi − t2i + 1 +
h

2
(wi − t2i − 2ti + 1) +

h2

6
(wi − t2i − 2ti − 1)

+
h3

24
(wi − t2i − 2ti − 1)

=
(

1 +
h

2
+
h2

6
+
h3

24

)
(wi − t2i)−

(
1 +

h

3
+
h2

12

)
hti

+ 1 +
h

2
− h2

6
− h3

24
.

The Taylor methods of orders 2 and 4 are, consequently,

w0 = 0.5,

wi+1 = wi + h

[(
1 +

h

2

)
(wi − t2i + 1)− hti

]

and

w0 = 0.5,

wi+1 = wi + h

[(
1 +

h

2
+
h2

6
+
h3

24

)
(wi − t2i)

−
(

1 +
h

3
+
h2

12

)
hti + 1 +

h

2
− h2

6
− h3

24

]
.

If h = 0.2, then N = 10 and ti = 0.2i for each i = 1, 2, . . . , 10, so the second-order
method becomes

w0 = 0.5,

wi+1 = wi + 0.2
[(

1 +
0.2
2

)
(wi − 0.04i2 + 1)− 0.04i

]

= 1.22wi − 0.0088i2 − 0.008i+ 0.22,

and the fourth-order method becomes

wi+1 = wi + 0.2
[(

1 +
0.2
2

+
0.04
6

+
0.008
24

)
(wi − 0.04i2)

−
(

1 +
0.2
3

+
0.04
12

)
(0.04i) + 1 +

0.2
2
− 0.04

6
− 0.008

24

]

= 1.2214wi − 0.008856i2 − 0.00856i+ 0.2186,

5.2. TAYLOR METHODS 223

for each i = 0, 1, . . . , 9.
Table 5.3 lists the actual values of the solution y(t) = (t+1)2−0.5et, the results

from the Taylor methods of orders 2 and 4, and the actual errors involved with these
methods. As expected, the fourth-order results are vastly superior.

Table 5.3

Taylor Taylor
Exact Order 2 Error Order 4 Error

ti y(ti) wi |y(ti)− wi| wi |y(ti)− wi|
0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8300000 0.0007014 0.8293000 0.0000014
0.4 1.2140877 1.2158000 0.0017123 1.2140910 0.0000034
0.6 1.6489406 1.6520760 0.0031354 1.6489468 0.0000062
0.8 2.1272295 2.1323327 0.0051032 2.1272396 0.0000101
1.0 2.6408591 2.6486459 0.0077868 2.6408744 0.0000153
1.2 3.1799415 3.1913480 0.0114065 3.1799640 0.0000225
1.4 3.7324000 3.7486446 0.0162446 3.7324321 0.0000321
1.6 4.2834838 4.3061464 0.0226626 4.2835285 0.0000447
1.8 4.8151763 4.8462986 0.0311223 4.8152377 0.0000615
2.0 5.3054720 5.3476843 0.0422123 5.3055554 0.0000834

Suppose we need to determine an approximation to an intermediate point in
the table, for example at t = 1.25. If we use linear interpolation on the order four
approximations at t = 1.2 and t = 1.4, we have

y(1.25) ≈ 1.25− 1.4
1.2− 1.4

3.1799640 +
1.25− 1.2
1.4− 1.2

3.7324321 = 3.3180810.

Since the true value is y(1.25) = 3.3173285, this approximation has an error of
0.0007525, which is nearly 30 times the average of the approximation errors at 1.2
and 1.4.

We can significantly improve the approximation to y(1.25) by using cubic Her-
mite interpolation. This requires approximations to y′(1.2) and y′(1.4), as well as
approximations to y(1.2) and y(1.4). But these derivative approximations are avail-
able from the differential equation, since

y′(t) = f(t, y(t)) = y(t)− t2 + 1.

So
y′(1.2) = y(1.2)− (1.2)2 + 1 ≈ 3.1799640− 1.44 + 1 = 2.7399640

and
y′(1.4) = y(1.4)− (1.4)2 + 1 ≈ 3.7324327− 1.96 + 1 = 2.7724321.

224CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

The divided-difference procedure in Section 3.3 gives the information in Table
5.4. The underlined entries come from the data and the other entries use the divided-
difference formulas.

Table 5.4

1.2 3.1799640
2.7399640

1.2 3.1799640 0.1118825
2.7623405 −0.3071225

1.4 3.7324321 0.0504580
2.7724321

1.4 3.7324321

The cubic Hermite polynomial is

y(t) ≈ 3.1799640+2.7399640(t−1.2)+0.1118825(t−1.2)2−0.3071225(t−1.2)2(t−1.4),

so

y(1.25) ≈ 3.1799640 + 0.1369982 + 0.0002797 + 0.0001152 = 3.3173571,

a result that is accurate to within 0.0000286. This is less than twice the average
error at 1.2 and 1.4, or about 4% of the error obtained using linear interpolation.
This improvement in accuracy certainly justifies the added computation required
for the Hermite method.

Error estimates for the Taylor methods are similar to those for Euler’s method.
If sufficient differentiability conditions are met, an nth-order Taylor method will
have local error O(hn+1) and global error O(hn).

5.2. TAYLOR METHODS 225

EXERCISE SET 5.2

1. Use Euler’s method to approximate the solutions for each of the following
initial-value problems.

(a) y′ = te3t − 2y, for 0 ≤ t ≤ 1, with y(0) = 0 and h = 0.5

(b) y′ = 1 + (t− y)2, for 2 ≤ t ≤ 3, with y(2) = 1 and h = 0.5

(c) y′ = 1 +
y

t
, for 1 ≤ t ≤ 2, with y(1) = 2 and h = 0.25

(d) y′ = cos 2t+ sin 3t, for 0 ≤ t ≤ 1, with y(0) = 1 and h = 0.25

2. The actual solutions to the initial-value problems in Exercise 1 are given here.
Compare the actual error at each step to the error bound.

(a) y(t) = 1
5 te

3t − 1
25e

3t + 1
25e

−2t (b) y(t) = t+ (1− t)−1

(c) y(t) = t ln t+ 2t (d) y(t) = 1
2 sin 2t− 1

3 cos 3t+ 4
3

3. Use Euler’s method to approximate the solutions for each of the following
initial-value problems.

(a) y′ =
y

t
−
(y
t

)2

, for 1 ≤ t ≤ 2, with y(1) = 1 and h = 0.1

(b) y′ = 1 +
y

t
+
(y
t

)2

, for 1 ≤ t ≤ 3, with y(1) = 0 and h = 0.2

(c) y′ = −(y + 1)(y + 3), for 0 ≤ t ≤ 2, with y(0) = −2 and h = 0.2

(d) y′ = −5y + 5t2 + 2t, for 0 ≤ t ≤ 1, with y(0) = 1/3 and h = 0.1

4. The actual solutions to the initial-value problems in Exercise 3 are given here.
Compute the actual error in the approximations of Exercise 3.

(a) y(t) = t(1 + ln t)−1

(b) y(t) = t tan(ln t)

(c) y(t) = −3 + 2(1 + e−2t)−1

(d) y(t) = t2 + 1
3e

−5t

5. Repeat Exercise 1 using Taylor’s method of order 2.

6. Repeat Exercise 3 using Taylor’s method of order 2.

226CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

7. Repeat Exercise 3 using Taylor’s method of order 4.

8. Given the initial-value problem

y′ =
2
t
y + t2et, 1 ≤ t ≤ 2, y(1) = 0

with exact solution y(t) = t2(et − e) :

(a) Use Euler’s method with h = 0.1 to approximate the solution and com-
pare it with the actual values of y.

(b) Use the answers generated in part (a) and linear interpolation to ap-
proximate the following values of y and compare them to the actual
values.

(i) y(1.04) (ii) y(1.55) (iii) y(1.97)

(c) Use Taylor’s method of order 2 with h = 0.1 to approximate the solution
and compare it with the actual values of y.

(d) Use the answers generated in part (c) and linear interpolation to ap-
proximate y at the following values and compare them to the actual
values of y.

(i) y(1.04) (ii) y(1.55) (iii) y(1.97)

(e) Use Taylor’s method of order 4 with h = 0.1 to approximate the solution
and compare it with the actual values of y.

(f) Use the answers generated in part (e) and piecewise cubic Hermite in-
terpolation to approximate y at the following values and compare them
to the actual values of y.

(i) y(1.04) (ii) y(1.55) (iii) y(1.97)

9. Given the initial-value problem

y′ =
1
t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1

with exact solution y(t) = −1/t.

(a) Use Euler’s method with h = 0.05 to approximate the solution and
compare it with the actual values of y.

5.2. TAYLOR METHODS 227

(b) Use the answers generated in part (a) and linear interpolation to ap-
proximate the following values of y and compare them to the actual
values.

(i) y(1.052) (ii) y(1.555) (iii) y(1.978)

(c) Use Taylor’s method of order 2 with h = 0.05 to approximate the solu-
tion and compare it with the actual values of y.

(d) Use the answers generated in part (c) and linear interpolation to ap-
proximate the following values of y and compare them to the actual
values.

(i) y(1.052) (ii) y(1.555) (iii) y(1.978)

(e) Use Taylor’s method of order 4 with h = 0.05 to approximate the solu-
tion and compare it with the actual values of y.

(f) Use the answers generated in part (e) and piecewise cubic Hermite in-
terpolation to approximate the following values of y and compare them
to the actual values.

(i) y(1.052) (ii) y(1.555) (iii) y(1.978)

10. In an electrical circuit with impressed voltage E , having resistance R, induc-
tance L, and capacitance C in parallel, the current i satisfies the differential
equation

di

dt
= C

d2E
dt2

+
1
R

dE
dt

+
1
L
E .

Suppose i(0) = 0, C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the
voltage is given by

E(t) = e−0.06πt sin(2t− π).

Use Euler’s method to find the current i for the values t = 0.1j, j = 0, 1, . . . , 100.

11. In a book entitled Looking at History Through Mathematics, Rashevsky [Ra]
considers a model for a problem involving the production of nonconformists in
society. Suppose that a society has a population of x(t) individuals at time t, in
years, and that all nonconformists who mate with other nonconformists have
offspring who are also nonconformists, while a fixed proportion r of all other
offspring are also nonconformist. If the birth and death rates for all individuals
are assumed to be the constants b and d, respectively, and if conformists

228CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

and nonconformists mate at random, the problem can be expressed by the
differential equations

dx(t)
dt

= (b− d)x(t) and
dxn(t)
dt

= (b− d)xn(t) + rb(x(t)− xn(t)),

where xn(t) denotes the number of nonconformists in the population at time
t.

(a) If the variable p(t) = xn(t)/x(t) is introduced to represent the propor-
tion of nonconformists in the society at time t, show that these equations
can be combined and simplified to the single differential equation

dp(t)
dt

= rb(1− p(t)).

(b) Assuming that p(0) = 0.01, b = 0.02, d = 0.015, and r = 0.1, use Euler’s
method to approximate the solution p(t) from t = 0 to t = 50 when the
step size is h = 1 year.

(c) Solve the differential equation for p(t) exactly, and compare your result
in part (b) when t = 50 with the exact value at that time.

12. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity
v(0) = 8 m/s is slowed due to the force of gravity Fg = mg and due to air
resistance Fr = −kv|v|, where g = −9.8 m/s2 and k = 0.002 kg/m. The
differential equation for the velocity v is given by

mv′ = mg − kv|v|.

(a) Find the velocity after 0.1, 0.2, . . . , 1.0 s.

(b) To the nearest tenth of a second, determine when the projectile reaches
its maximum height and begins falling.

5.3. RUNGE-KUTTA METHODS 229

5.3 Runge-Kutta Methods

In the last section we saw how Taylor methods of arbitrary high order can be gen-
erated. However, the application of these high-order methods to a specific problem
is complicated by the need to determine and evaluate high-order derivatives with
respect to t on the right side of the differential equation. The widespread use of
computer algebra systems, such as Maple, has simplified this process, but it still
remains cumbersome.

In this section we consider Runge-Kutta methods, which modify the Taylor
methods so that the high-order error bounds are preserved, but the need to de-
termine and evaluate the high-order partial derivatives is eliminated. The strategy
behind these techniques involves approximating a Taylor method with a method
that is easier to evaluate. This approximation might increase the error, but the
increase does not exceed the order of the truncation error that is already present in
the Taylor method. As a consequence, the new error does not significantly influence
the calculations.

The Runge-Kutta techniques make use of the Taylor expansion of f , the function
on the right side of the differential equation. Since f is a function of two variables,
t and y, we must first consider the generalization of Taylor’s Theorem to functions
of this type. This generalization appears more complicated than the single-variable
form, but this is only because of all the partial derivatives of the function f .

[Taylor’s Theorem for Two Variables] If f and all its partial derivatives of
order less than or equal to n+ 1 are continuous on D = {(t, y)|a ≤ t ≤ b, c ≤
y ≤ d} and (t, y) and (t+ α, y + β) both belong to D, then

f(t+ α, y + β) ≈ f(t, y) +
[
α
∂f

∂t
(t, y) + β

∂f

∂y
(t, y)

]

+
[
α2

2
∂2f

∂t2
(t, y) + αβ

∂2f

∂t ∂y
(t, y) +

β2

2
∂2f

∂y2
(t, y)

]
+ · · ·

+
1
n!

n∑
j=0

(
n

j

)
αn−jβj ∂nf

∂tn−j∂yj
(t, y).

The error term in this approximation is similar to that given in Taylor’s The-
orem, with the added complications that arise because of the incorporation of all
the partial derivatives of order n+ 1.

To illustrate the use of this formula in developing the Runge-Kutta methods,
let us consider the Runge-Kutta method of order 2. We saw in the previous section
that the Taylor method of order 2 comes from

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) +

h3

3!
y′′′(ξ)

= y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ti, y(ti)) +

h3

3!
y′′′(ξ),

230CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

or, since

f ′(ti, y(ti)) =
∂f

∂t
(ti, y(ti)) +

∂f

∂y
(ti, y(ti)) · y′(ti)

and y′(ti) = f(ti, y(ti)), we have

y(ti+1) = y(ti)+h
{
f(ti, y(ti)) +

h

2
∂f

∂t
(ti, y(ti)) +

h

2
∂f

∂y
(ti, y(ti)) · f(ti, y(ti))

}
+
h3

3!
y′′′(ξ).

Taylor’s Theorem of two variables permits us to replace the term in the braces with
a multiple of a function evaluation of f of the form a1f(ti + α, y(ti) + β). If we
expand this term using Taylor’s Theorem with n = 1, we have

a1f(ti + α, y(ti) + β) ≈ a1

[
f(ti, y(ti)) + α

∂f

∂t
(ti, y(ti)) + β

∂f

∂y
(ti, y(ti))

]

= a1f(ti, y(ti)) + a1α
∂f

∂t
(ti, y(ti)) + a1β

∂f

∂y
(ti, y(ti)).

Equating this expression with the terms enclosed in the braces in the preceding
equation implies that a1, α, and β should be chosen so that

1 = a1,
h

2
= a1α, and

h

2
f(ti, y(ti)) = a1β;

that is,

a1 = 1, α =
h

2
, and β =

h

2
f(ti, y(ti)).

The error introduced by replacing the term in the Taylor method with its approx-
imation has the same order as the error term for the method, so the Runge-Kutta
method produced in this way, called the Midpoint method, is also a second-order
method. As a consequence, the local error of the method is proportional to h3, and
the global error is proportional to h2.

[Midpoint Method]

w0 = α

wi+1 = wi + h

[
f

(
ti +

h

2
, wi +

h

2
f(ti, wi)

)]
,

where i = 0, 1, . . . , N − 1, with local error O(h3) and global error O(h2).

Using a1f(t+ α, y + β) to replace the term in the Taylor method is the easiest
choice, but it is not the only one. If we instead use a term of the form

a1f(t, y) + a2f(t+ α, y + βf(t, y)),

5.3. RUNGE-KUTTA METHODS 231

the extra parameter in this formula provides an infinite number of second-order
Runge-Kutta formulas. When a1 = a2 = 1

2 and α = β = h, we have the Modified
Euler method.

[Modified Euler Method]

w0 = α

wi+1 = wi +
h

2
[f(ti, wi) + f(ti+1, wi + hf(ti, wi))]

where i = 0, 1, . . . , N − 1, with local error O(h3) and global error O(h2).

When a1 = 1
4 , a2 = 3

4 , and α = β = 2
3h, we have Heun’s method.

[Heun’s Method]

w0 = α

wi+1 = wi +
h

4

[
f(ti, wi) + 3f

(
ti +

2
3
h,wi +

2
3
hf(ti, wi)

)]

where i = 0, 1, . . . , N − 1, with local error O(h3) and global error O(h2).

EXAMPLE 1 Suppose we apply the Runge-Kutta methods of order 2 to our usual example,

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

where N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5 in each case. The difference
equations produced from the various formulas are

Midpoint method: wi+1 = 1.22wi − 0.0088i2 − 0.008i+ 0.218;
Modified Euler method: wi+1 = 1.22wi − 0.0088i2 − 0.008i+ 0.216;

Heun’s method: wi+1 = 1.22wi − 0.0088i2 − 0.008i+ 0.2173;

for each i = 0, 1, . . . , 9. Table 5.5 lists the results of these calculations.

232CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Table 5.5

Midpoint Modified Euler Heun’s
ti y(ti) Method Error Method Error Method Error
0.0 0.5000000 0.5000000 0 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986 0.8273333 0.0019653
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677 1.2098800 0.0042077
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982 1.6421869 0.0067537
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938 2.1176014 0.0096281
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715 2.6280070 0.0128521
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627 3.1635019 0.0164396
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138 3.7120057 0.0203944
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866 4.2587802 0.0247035
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577 4.7858452 0.0293310
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173 5.2712645 0.0342074

Higher-order Taylor formulas can be converted into Runge-Kutta techniques in
a similar way, but the algebra becomes tedious. The most common Runge-Kutta
method is of order 4 and is obtained by expanding an expression that involves
only four function evaluations. Deriving this expression requires solving a system
of equations involving 12 unknowns. Once the algebra has been performed, the
method has the following simple representation.

[Runge-Kutta Method of Order 4]

w0 = α,

k1 = hf(ti, wi),

k2 = hf

(
ti +

h

2
, wi +

1
2
k1

)
,

k3 = hf

(
ti +

h

2
, wi +

1
2
k2

)
,

k4 = hf(ti+1, wi + k3),

wi+1 = wi +
1
6
(k1 + 2k2 + 2k3 + k4),

where i = 0, 1, . . . , N − 1, with local error O(h5) and global error O(h4).

The program RKO4M52 implements this method.

EXAMPLE 2 The Runge-Kutta method of order 4 applied to the initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

5.3. RUNGE-KUTTA METHODS 233

with h = 0.2, N = 10, and ti = 0.2i, gives the results and errors listed in Table
5.6.

Table 5.6

Runge-Kutta
Exact Order 4 Error

ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089

We can also generate the entries in Table 5.6 quite easily using Maple. To
determine the Runge-Kutta approximation for y(0.2), we first define the function
f(t, y) with the command

>f:=(t,y)->y-t^2+1;

The values of a, b, N , h, and y(0) are defined by

>a:=0; b:=2; N:=10; h:=(b-a)/N; alpha:=0.5;

and we initialize w0 and t0 with

>w0:=alpha; t0:=a;

We compute k1 = 0.3, k2 = 0.328, k3 = 0.3308, and k4 = 0.35816 with

>k1:=h*f(t0,w0);

>k2:=h*f(t0+h/2,w0+k1/2);

>k3:=h*f(t0+h/2,w0+k2/2);

>k4:=h*f(t0+h,w0+k3);

The approximation w1 = 0.8292933334 at t1 = 0.2 is obtained from

>w1:=w0+(k1+2*k2+2*k3+k4)/6;

234CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Now that we have y(0.2) ≈ 0.8292933334, we can re-initialize the Maple steps as

>w0:=0.8292933334; t0:=0.2;

and run through preceding steps to generate new values for k1, k2, k3, k4 and
the approximation w1 to y(0.4). The remaining entries in Table 5.6 are generated
in a similar fashion.

The main computational effort in applying the Runge-Kutta methods involves
the function evaluations of f . In the second-order methods, the local error is O(h3)
and the cost is two functional evaluations per step. The Runge-Kutta method of
order 4 requires four evaluations per step and the local error is O(h5). The relation-
ship between the number of evaluations per step and the order of the local error is
shown in Table 5.7. Because of the relative decrease in the order for n greater than
4, the methods of order less than 5 with smaller step size are used in preference to
the higher-order methods using a larger step size.

Table 5.7

Evaluations per step 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 10 ≤ n
Best possible local error O(h3) O(h4) O(h5) O(hn) O(hn−1) O(hn−2)

One way to compare the lower-order Runge-Kutta methods is described as fol-
lows: The Runge-Kutta method of order 4 requires four evaluations per step, so to
be superior to Euler’s method, which requires only one evaluation per step, it should
give more accurate answers than when Euler’s method uses one-fourth the Runge-
Kutta step size. Similarly, if the Runge-Kutta method of order 4 is to be superior
to the second-order Runge-Kutta methods, which require two evaluations per step,
it should give more accuracy with step size h than a second-order method with
step size 1

2h. An illustration of the superiority of the Runge-Kutta Fourth-Order
method by this measure is shown in the following example.

EXAMPLE 3 For the problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

Euler’s method with h = 0.025, the Modified Euler’s method with h = 0.05, and the
Runge-Kutta method of order 4 with h = 0.1 are compared at the common mesh
points of the three methods, 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques
requires 20 functional evaluations to approximate y(0.5). (See Table 5.8.) In this
example, the fourth-order method is clearly superior, as it is in most situations.

5.3. RUNGE-KUTTA METHODS 235

Table 5.8

Modified Runge-Kutta
Euler Euler Order 4

ti Exact h = 0.025 h = 0.05 h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

The Midpoint, Modified Euler, and Runge-Kutta Fourth-Order methods are all
available in Maple using dsolve with the numeric and classical options. Enter
the command

>eq:= D(y)(t)=y(t)-t^2+1;

to define the differential equation, and specify the initial condition with

>init:= y(0)=0.5;

The Midpoint, Modified Euler, and Runge-Kutta methods are activated, respec-
tively, with the commands

>g:=dsolve({eq,init},numeric,method=classical[impoly],y(t),stepsize=0.2);

>g:=dsolve({eq,init},numeric,method=classical[rk2],y(t),stepsize=0.2);

and

>g:=dsolve({eq,init},numeric,method=classical[rk4],y(t),stepsize=0.2);

Each call returns the procedure

g := proc(x classical) . . . end proc

To approximate y(t) using g(t) at specific values of t, for example at t = 2.0, enter
the command

>g(2.0);

236CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXERCISE SET 5.3

1. Use the Midpoint method to approximate the solutions to each of the following
initial-value problems, and compare the results to the actual values.

(a) y′ = te3t−2y, for 0 ≤ t ≤ 1, with y(0) = 0 and h = 0.5; actual solution
y(t) = 1

5 te
3t − 1

25e
3t + 1

25e
−2t.

(b) y′ = 1 + (t − y)2, for 2 ≤ t ≤ 3, with y(2) = 1 and h = 0.5; actual
solution y(t) = t+ 1/(1− t).

(c) y′ = 1 +
y

t
, for 1 ≤ t ≤ 2, with y(1) = 2 and h = 0.25; actual solution

y(t) = t ln t+ 2t.

(d) y′ = cos 2t + sin 3t, for 0 ≤ t ≤ 1, with y(0) = 1 and h = 0.25; actual
solution y(t) = 1

2 sin 2t− 1
3 cos 3t+ 4

3 .

2. Repeat Exercise 1 using Heun’s method.

3. Repeat Exercise 1 using the Modified Euler method.

4. Use the Modified Euler method to approximate the solutions to each of the
following initial-value problems, and compare the results to the actual values.

(a) y′ =
y

t
−
(y
t

)2

, for 1 ≤ t ≤ 2, with y(1) = 1 and h = 0.1; actual

solution y(t) = t/(1 + ln t).

(b) y′ = 1 +
y

t
+
(y
t

)2

, for 1 ≤ t ≤ 3, with y(1) = 0 and h = 0.2; actual

solution y(t) = t tan(ln t).

(c) y′ = −(y + 1)(y + 3), for 0 ≤ t ≤ 2, with y(0) = −2 and h = 0.2;
actual solution y(t) = −3 + 2(1 + e−2t)−1.

(d) y′ = −5y+5t2 +2t, for 0 ≤ t ≤ 1, with y(0) = 1
3 and h = 0.1; actual

solution y(t) = t2 + 1
3e

−5t.

5. Use the results of Exercise 4 and linear interpolation to approximate values
of y(t), and compare the results to the actual values.

(a) y(1.25) and y(1.93) (b) y(2.1) and y(2.75)

(c) y(1.3) and y(1.93) (d) y(0.54) and y(0.94)

6. Repeat Exercise 4 using Heun’s method.

7. Repeat Exercise 5 using the results of Exercise 6.

5.3. RUNGE-KUTTA METHODS 237

8. Repeat Exercise 4 using the Midpoint method.

9. Repeat Exercise 5 using the results of Exercise 8.

10. Repeat Exercise 1 using the Runge-Kutta method of order 4.

11. Repeat Exercise 4 using the Runge-Kutta method of order 4.

12. Use the results of Exercise 11 and Cubic Hermite interpolation to approximate
values of y(t) and compare the approximations to the actual values.

(a) y(1.25) and y(1.93) (b) y(2.1) and y(2.75)

(c) y(1.3) and y(1.93) (d) y(0.54) and y(0.94)

13. Show that the Midpoint method, the Modified Euler method, and Heun’s
method give the same approximations to the initial-value problem

y′ = −y + t+ 1, 0 ≤ t ≤ 1, y(0) = 1,

for any choice of h. Why is this true?

14. Water flows from an inverted conical tank with circular orifice at the rate

dx

dt
= −0.6πr2

√
−2g

√
x

A(x)
,

where r is the radius of the orifice, x is the height of the liquid level from
the vertex of the cone, and A(x) is the area of the cross section of the tank
x units above the orifice. Suppose r = 0.1 ft, g = −32.17 ft/s2, and the tank
has an initial water level of 8 ft and initial volume of 512(π/3) ft3.

(a) Compute the water level after 10 min with h = 20 s.

(b) Determine, to within 1 min, when the tank will be empty.

15. The irreversible chemical reaction in which two molecules of solid potassium
dichromate (K2Cr2O7), two molecules of water (H2O), and three atoms of
solid sulfur (S) combine to yield three molecules of the gas sulfur dioxide
(SO2), four molecules of solid potassium hydroxide (KOH), and two molecules
of solid chromic oxide (Cr2O3) can be represented symbolically by the stoi-
chiometric equation

2K2Cr2O7 + 2H2O + 3S −→ 4KOH + 2Cr2O3 + 3SO2.

If n1 molecules of K2Cr2O7, n2 molecules of H2O, and n3 molecules of S are
originally available, the following differential equation describes the amount
x(t) of KOH after time t:

dx

dt
= k

(
n1 − x

2

)2 (
n2 − x

2

)2
(
n3 − 3x

4

)3

,

238CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

where k is the velocity constant of the reaction. If k = 6.22 × 10−19, n1 =
n2 = 2× 103, and n3 = 3× 103, how many units of potassium hydroxide will
have been formed after 0.2 s?

5.4. PREDICTOR-CORRECTOR METHODS 239

5.4 Predictor-Corrector Methods

The Taylor and Runge-Kutta methods are examples of one-step methods for
approximating the solution to initial-value problems. These methods use wi in the
approximation wi+1 to y(ti+1) but do not involve any of the prior approximations
w0, w1, . . . , wi−1. Generally some functional evaluations of f are required at inter-
mediate points, but these are discarded as soon as wi+1 is obtained.

Since |y(tj) − wj | decreases in accuracy as j increases, better approximation
methods can be derived if, when approximating y(ti+1), we include in the method
some of the approximations prior to wi. Methods developed using this philosophy
are called multistep methods. In brief, one-step methods consider what occurred
at only one previous step; multistep methods consider what happened at more than
one previous step.

To derive a multistep method, suppose that the solution to the initial-value
problem

dy

dt
= f(t, y), for a ≤ t ≤ b, with y(a) = α,

is integrated over the interval [ti, ti+1]. Then

y(ti+1)− y(ti) =
∫ ti+1

ti

y′(t) dt =
∫ ti+1

ti

f(t, y(t)) dt,

and

y(ti+1) = y(ti) +
∫ ti+1

ti

f(t, y(t)) dt.

Since we cannot integrate f(t, y(t)) without knowing y(t), which is the solution
to the problem, we instead integrate an interpolating polynomial, P (t), determined
by some of the previously obtained data points (t0, w0), (t1, w1), . . . , (ti, wi). When
we assume, in addition, that y(ti) ≈ wi, we have

y(ti+1) ≈ wi +
∫ ti+1

ti

P (t) dt.

If wm+1 is the first approximation generated by the multistep method, then
we need to supply starting values w0, w1, . . . , wm for the method. These starting
values are generated using a one-step Runge-Kutta method with the same error
characteristics as the multistep method.

There are two distinct classes of multistep methods. In an explicit method,
wi+1 does not involve the function evaluation f(ti+1, wi+1). A method that does
depend in part on f(ti+1, wi+1) is implicit.

Some of the explicit multistep methods, together with their required starting
values and local error terms, are given next.

240CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

[Adams-Bashforth Two-Step Explicit Method]

w0 = α, w1 = α1,

wi+1 = wi +
h

2
[3f(ti, wi)− f(ti−1, wi−1)],

where i = 1, 2, . . . , N − 1, with local error 5
12y

′′′(µi)h3 for some µi in
(ti−1, ti+1).

[Adams-Bashforth Three-Step Explicit Method]

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h

12
[23f(ti, wi)− 16f(ti−1, wi−1) + 5f(ti−2, wi−2)]

where i = 2, 3, . . . , N − 1, with local error 3
8y

(4)(µi)h4 for some µi in
(ti−2, ti+1).

[Adams-Bashforth Four-Step Explicit Method]

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h

24
[55f(ti, wi)− 59f(ti−1, wi−1) + 37f(ti−2, wi−2)− 9f(ti−3, wi−3)]

where i = 3, 4, . . . , N − 1, with local error 251
720y

(5)(µi)h5 for some µi in
(ti−3, ti+1).

[Adams-Bashforth Five-Step Explicit Method]

w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4

wi+1 = wi +
h

720
[1901f(ti, wi)− 2774f(ti−1, wi−1)

+ 2616f(ti−2, wi−2)− 1274f(ti−3, wi−3) + 251f(ti−4, wi−4)]

where i = 4, 5, . . . , N − 1, with local error 95
288y

(6)(µi)h6 for some µi in
(ti−4, ti+1).

5.4. PREDICTOR-CORRECTOR METHODS 241

Implicit methods use (ti+1, f(ti+1, y(ti+1))) as an additional interpolation node
in the approximation of the integral

∫ ti+1

ti

f(t, y(t)) dt.

Some of the more common implicit methods are listed next. Notice that the local
error of an (m−1)-step implicit method is O(hm+1), the same as that of an m-step
explicit method. They both use m function evaluations, however, since the implicit
methods use f(ti+1, wi+1), but the explicit methods do not.

[Adams-Moulton Two-Step Implicit Method]

w0 = α, w1 = α1

wi+1 = wi +
h

12
[5f(ti+1, wi+1) + 8f(ti, wi)− f(ti−1, wi−1)]

where i = 1, 2, . . . , N − 1, with local error − 1
24y

(4)(µi)h4 for some µi in
(ti−1, ti+1).

[Adams-Moulton Three-Step Implicit Method]

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h

24
[9f(ti+1, wi+1) + 19f(ti, wi)− 5f(ti−1, wi−1) + f(ti−2, wi−2)],

where i = 2, 3, . . . , N − 1, with local error − 19
720y

(5)(µi)h5 for some µi in
(ti−2, ti+1).

[Adams-Moulton Four-Step Implicit Method]

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h

720
[251f(ti+1, wi+1) + 646f(ti, wi)− 246f(ti−1, wi−1)

+ 106f(ti−2, wi−2)− 19f(ti−3, wi−3)]

where i = 3, 4, . . . , N − 1, with local error − 3
160y

(6)(µi)h6 for some µi in
(ti−3, ti+1).

242CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

It is interesting to compare an m-step Adams-Bashforth explicit method to an
(m−1)-step Adams-Moulton implicit method. Both require m evaluations of f per
step, and both have the terms y(m+1)(µi)hm+1 in their local errors. In general, the
coefficients of the terms involving f in the approximation and those in the local
error are smaller for the implicit methods than for the explicit methods. This leads
to smaller truncation and round-off errors for the implicit methods.

EXAMPLE 1 Consider the initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

and the approximations given by the explicit Adams-Bashforth Four-Step method
and the implicit Adams-Moulton Three-Step method, both using h = 0.2. The
explicit Adams-Bashforth method has the difference equation

wi+1 = wi +
h

24
[55f(ti, wi)− 59f(ti−1, wi−1) + 37f(ti−2, wi−2)− 9f(ti−3, wi−3)],

for i = 3, 4, . . . , 9. When simplified using f(t, y) = y− t2 +1, h = 0.2, and ti = 0.2i,
it becomes

wi+1 =
1
24

[35wi − 11.8wi−1 + 7.4wi−2 − 1.8wi−3 − 0.192i2 − 0.192i+ 4.736].

The implicit Adams-Moulton method has the difference equation

wi+1 = wi +
h

24
[9f(ti+1, wi+1) + 19f(ti, wi)− 5f(ti−1, wi−1)] + f(ti−2, wi−2)],

for i = 2, 3, . . . , 9. This reduces to

wi+1 =
1
24

[1.8wi+1 + 27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i+ 4.736].

To use this method explicitly, we can solve for wi+1, which gives

wi+1 =
1

22.2
[27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i+ 4.736]

for i = 2, 3, . . . , 9. The results in Table 5.9 were obtained using the exact values
from y(t) = (t+ 1)2 − 0.5et for α, α1, α2, and α3 in the explicit Adams-Bashforth
case and for α, α1, and α2 in the implicit Adams-Moulton case.

5.4. PREDICTOR-CORRECTOR METHODS 243

Table 5.9

Adams Adams
Bashforth Error Moulton Error

ti yi = y(ti) wi wi

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8292986 0.0000000 0.8292986 0.0000000
0.4 1.2140877 1.2140877 0.0000000 1.2140877 0.0000000
0.6 1.6489406 1.6489406 0.0000000 1.6489341 0.0000065
0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293
1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527
2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132

In Example 1, the implicit Adams-Moulton method gave considerably better
results than the explicit Adams-Bashforth method of the same order. Although this
is generally the case, the implicit methods have the inherent weakness of first having
to convert the method algebraically to an explicit representation for wi+1. That this
procedure can become difficult, if not impossible, can be seen by considering the
elementary initial-value problem

y′ = ey, for 0 ≤ t ≤ 0.25, with y(0) = 1.

Since f(t, y) = ey, the Adams-Moulton Three-Step method has

wi+1 = wi +
h

24
[9ewi+1 + 19ewi − 5ewi−1 + ewi−2]

as its difference equation, and this equation cannot be solved explicitly for wi+1.
We could use Newton’s method or the Secant method to approximate wi+1, but
this complicates the procedure considerably.

In practice, implicit multistep methods are not used alone. Rather, they are
used to improve approximations obtained by explicit methods. The combination of
an explicit and implicit technique is called a predictor-corrector method. The
explicit method predicts an approximation, and the implicit method corrects this
prediction.

Consider the following fourth-order method for solving an initial-value problem.
The first step is to calculate the starting values w0, w1, w2, and w3 for the explicit
Adams-Bashforth Four-Step method. To do this, we use a fourth-order one-step
method, specifically, the Runge-Kutta method of order 4. The next step is to calcu-
late an approximation, w(0)

4 , to y(t4) using the explicit Adams-Bashforth Four-Step
method as predictor:

w
(0)
4 = w3 +

h

24
[55f(t3, w3)− 59f(t2, w2) + 37f(t1, w1)− 9f(t0, w0)].

244CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

This approximation is improved by use of the implicit Adams-Moulton Three-Step
method as corrector:

w
(1)
4 = w3 +

h

24
[
9f
(
t4, w

(0)
4

)
+ 19f(t3, w3)− 5f(t2, w2) + f(t1, w1)

]
.

The value w4 ≡ w
(1)
4 is now used as the approximation to y(t4). Then the tech-

nique of using the Adams-Bashforth method as a predictor and the Adams-Moulton
method as a corrector is repeated to find w

(0)
5 and w

(1)
5 , the initial and final ap-

proximations to y(t5). This process is continued until we obtain an approximation
to y(tN) = y(b).

The program PRCORM53 is based on the Adams-Bashforth Four-Step method
as predictor and one iteration of the Adams-Moulton Three-Step method as cor-
rector, with the starting values obtained from the Runge-Kutta method of order
4.

EXAMPLE 2 Table 5.10 lists the results obtained by using the program PRCORM53 for the
initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

with N = 10.

Table 5.10

Error
ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013

Other multistep methods can be derived using integration of interpolating poly-
nomials over intervals of the form [tj , ti+1] for j ≤ i − 1, where some of the data
points are omitted. Milne’s method is an explicit technique that results when a New-
ton Backward-Difference interpolating polynomial is integrated over [ti−3, ti+1].

5.4. PREDICTOR-CORRECTOR METHODS 245

[Milne’s Method]

wi+1 = wi−3 +
4h
3

[2f(ti, wi)− f(ti−1, wi−1) + 2f(ti−2, wi−2)],

where i = 3, 4, . . . , N − 1, with local error 14
45h

5y(5)(µi) for some µi in
(ti−3, ti+1).

This method is used as a predictor for an implicit method called Simpson’s
method. Its name comes from the fact that it can be derived using Simpson’s rule
for approximating integrals.

[Simpson’s Method]

wi+1 = wi−1 +
h

3
[f(ti+1, wi+1) + 4f(ti, wi) + f(ti−1, wi−1)],

where i = 1, 2, . . . , N − 1, with local error − 1
90h

5y(5)(µi) for some µi in
(ti−1, ti+1).

Although the local error involved with a predictor-corrector method of the
Milne-Simpson type is generally smaller than that of the Adams-Bashforth-Moulton
method, the technique has limited use because of round-off error problems, which
do not occur with the Adams procedure.

The Adams-Bashforth Four-Step Explicit method is available in Maple using
dsolve with the numeric and classical options. Enter the command

>eq:= D(y)(t)=y(t)-t^2+1;

to define the differential equation, and specify the initial condition with

>init:= y(0)=0.5;

The Adams-Bashforth method is activated with the command

>g:=dsolve({eq,init},numeric,method=classical[adambash],y(t),stepsize=0.2);

To approximate y(t) using g(t) at specific values of t, for example at t = 2.0, enter
the command

>g(2.0);

In a similar manner, the predictor-corrector method using the Adams-Bashforth
Four-Step Explicit method with the Adams-Moulton Three-Step Implicit method
is called using

>g:=dsolve({eq,init},numeric,method=classical[abmoulton],y(t),stepsize=0.2);

246CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXERCISE SET 5.4

1. Use all the Adams-Bashforth methods to approximate the solutions to the
following initial-value problems. In each case use exact starting values and
compare the results to the actual values.

(a) y′ = te3t−2y, for 0 ≤ t ≤ 1, with y(0) = 0 and h = 0.2; actual solution
y(t) = 1

5 te
3t − 1

25e
3t + 1

25e
−2t.

(b) y′ = 1 + (t − y)2, for 2 ≤ t ≤ 3, with y(2) = 1 and h = 0.2; actual
solution y(t) = t+ 1/(1− t).

(c) y′ = 1 +
y

t
, for 1 ≤ t ≤ 2, with y(1) = 2 and h = 0.2; actual solution

y(t) = t ln t+ 2t.

(d) y′ = cos 2t + sin 3t, for 0 ≤ t ≤ 1 with y(0) = 1 and h = 0.2; actual
solution y(t) = 1

2 sin 2t− 1
3 cos 3t+ 4

3 .

2. Use all the Adams-Moulton methods to approximate the solutions to the
Exercises 1(a), 1(c), and 1(d). In each case use exact starting values and
explicitly solve for wi+1. Compare the results to the actual values.

3. Use each of the Adams-Bashforth methods to approximate the solutions to
the following initial-value problems. In each case use starting values obtained
from the Runge-Kutta method of order 4. Compare the results to the actual
values.

(a) y′ =
y

t
−
(y
t

)2

, for 1 ≤ t ≤ 2, with y(1) = 1 and h = 0.1; actual

solution y(t) = t/(1 + ln t).

(b) y′ = 1 +
y

t
+
(y
t

)2

, for 1 ≤ t ≤ 3, with y(1) = 0 and h = 0.2; actual

solution y(t) = t tan(ln t).

(c) y′ = −(y+1)(y+3), for 0 ≤ t ≤ 2, with y(0) = −2 and h = 0.1; actual
solution y(t) = −3 + 2/(1 + e−2t).

(d) y′ = −5y+ 5t2 + 2t, for 0 ≤ t ≤ 1, with y(0) = 1/3 and h = 0.1; actual
solution y(t) = t2 + 1

3e
−5t.

4. Use the predictor-corrector method based on the Adams-Bashforth Four-Step
method and the Adams-Moulton Three-Step method to approximate the so-
lutions to the initial-value problems in Exercise 1.

5. Use the predictor-corrector method based on the Adams-Bashforth Four-Step
method and the Adams-Moulton Three-Step method to approximate the so-
lutions to the initial-value problem in Exercise 3.

5.4. PREDICTOR-CORRECTOR METHODS 247

6. The initial-value problem

y′ = ey, for 0 ≤ t ≤ 0.20, with y(0) = 1

has solution
y(t) = 1− ln(1− et).

Applying the Adams-Moulton Three-Step method to this problem is equiva-
lent to finding the fixed point wi+1 of

g(w) = wi +
h

24
[9ew + 19ewi − 5ewi−1 + ewi−2].

(a) With h = 0.01, obtain wi+1 by functional iteration for i = 2, . . . , 19 us-
ing exact starting values w0, w1, and w2. At each step use wi to initially
approximate wi+1.

(b) Will Newton’s method speed the convergence over functional iteration?

7. Use the Milne-Simpson Predictor-Corrector method to approximate the solu-
tions to the initial-value problems in Exercise 3.

8. Use the Milne-Simpson Predictor-Corrector method to approximate the solu-
tion to

y′ = −5y, for 0 ≤ t ≤ 2, with y(0) = e,

with h = 0.1. Repeat the procedure with h = 0.05. Are the answers consistent
with the local error?

248CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

5.5 Extrapolation Methods

Extrapolation was used in Section 4.5 for the approximation of definite integrals,
where we found that by correctly averaging relatively inaccurate trapezoidal ap-
proximations we could produce new approximations that are exceedingly accurate.
In this section we will apply extrapolation to increase the accuracy of approxi-
mations to the solution of initial-value problems. As we have previously seen, the
original approximations must have an error expansion of a specific form for the
procedure to be successful.

To apply extrapolation to solve initial-value problems, we use a technique based
on the Midpoint method:

wi+1 = wi−1 + 2hf(ti, wi), for i ≥ 1. (5.1)

This technique requires two starting values, since both w0 and w1 are needed before
the first midpoint approximation, w2, can be determined. As usual, we use the initial
condition for w0 = y(a) = α. To determine the second starting value, w1, we apply
Euler’s method. Subsequent approximations are obtained from Eq. (5.1). After a
series of approximations of this type are generated ending at a value t, an endpoint
correction is performed that involves the final two midpoint approximations. This
produces an approximation w(t, h) to y(t) that has the form

y(t) = w(t, h) +
∞∑

k=1

δkh
2k, (5.2)

where the δk are constants related to the derivatives of the solution y(t). The
important point is that the δk do not depend on the step size h.

To illustrate the extrapolation technique for solving

y′(t) = f(t, y), for a ≤ t ≤ b, with y(a) = α,

let us assume that we have a fixed step size h and that we wish to approximate
y(a+ h).

As the first step we let h0 = h/2 and use Euler’s method with w0 = α to
approximate y(a+ h0) = y(a+ h/2) as

w1 = w0 + h0f(a,w0).

We then apply the Midpoint method with ti−1 = a and ti = a + h0 = a + h/2 to
produce a first approximation to y(a+ h) = y(a+ 2h0),

w2 = w0 + 2h0f(a+ h0, w1).

The endpoint correction is applied to obtain the final approximation to y(a + h)
for the step size h0. This results in an O(h2

0) approximation to y(t1) given by

y1,1 =
1
2
[w2 + w1 + h0f(a+ 2h0, w2)].

5.5. EXTRAPOLATION METHODS 249

We save the first approximation y1,1 to y(t1) and discard the intermediate results,
w1 and w2.

To obtain a second approximation, y2,1, to y(t1), we let h1 = h/4 and use Euler’s
method with w0 = α to obtain an approximation w1 to y(a + h1) = y(a + h/4);
that is,

w1 = w0 + h1f(a,w0).

Next we produce an approximation w2 to y(a + 2h1) = y(a + h/2) and w3 to
y(a+ 3h1) = y(a+ 3h/4) given by

w2 = w0 + 2h1f(a+ h1, w1) and w3 = w1 + 2h1f(a+ 2h1, w2).

Then we produce the approximation w4 to y(a+ 4h1) = y(t1) given by

w4 = w2 + 2h1f(a+ 3h1, w3).

The endpoint correction is now applied to w3 and w4 to produce the improved
O(h2

1) approximation to y(t1),

y2,1 =
1
2
[w4 + w3 + h1f(a+ 4h1, w4)].

Because of the form of the error given in Eq. (5.2), the two approximations to
y(a+ h) have the property that

y(a+ h) = y1,1 + δ1

(
h

2

)2

+ δ2

(
h

2

)4

+ · · · = y1,1 + δ1
h2

4
+ δ2

h4

16
+ · · ·

and

y(a+ h) = y2,1 + δ1

(
h

4

)2

+ δ2

(
h

4

)4

+ · · · = y2,1 + δ1
h2

16
+ δ2

h4

256
+ · · · .

We can eliminate the O(h2) portion of this truncation error by averaging these two
formulas appropriately. Specifically, if we subtract the first from 4 times the second
and divide the result by 3, we have

y(a+ h) = y2,1 +
1
3
(y2,1 − y1,1)− δ2h

4

64
+ · · · .

So the approximation to y(t1) given by

y2,2 = y2,1 +
1
3
(y2,1 − y1,1)

has error of order O(h4).
Continuing in this manner, we next let h2 = h/6 and apply Euler’s method once,

followed by the Midpoint method five times. Then we use the endpoint correction
to determine the h2 approximation, y3,1, to y(a + h) = y(t1). This approximation
can be averaged with y2,1 to produce a second O(h4) approximation that we denote

250CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

y3,2. Then y3,2 and y2,2 are averaged to eliminate the O(h4) error terms and produce
an approximation with error of order O(h6). Higher-order formulas are generated
by continuing the process.

The only significant difference between the extrapolation performed here and
that used for Romberg integration in Section 4.4 results from the way the subdivi-
sions are chosen. In Romberg integration there is a convenient formula for represent-
ing the Composite Trapezoidal rule approximations that uses consecutive divisions
of the step size by the integers 1, 2, 4, 8, 16, 32, 64, This procedure permits
the averaging process to proceed in an easily followed manner. We do not have
a means for easily producing refined approximations for initial-value problems, so
the divisions for the extrapolation technique are chosen to minimize the number of
required function evaluations. The averaging procedure arising from this choice of
subdivision is not as elementary, but, other than that, the process is the same as
that used for Romberg integration.

The program EXTRAP54 uses the extrapolation technique with the sequence
of integers q0 = 2, q1 = 4, q2 = 6, q3 = 8, q4 = 12, q5 = 16, q6 = 24, q7 = 32. A
basic step size, h, is selected, and the method progresses by using hj = h/qj , for
each j = 0, . . . , 7, to approximate y(t+h). The error is controlled by requiring that
the approximations y1,1, y2,2, . . . be computed until |yi,i − yi−1,i−1| is less than a
given tolerance. If the tolerance is not achieved by i = 8, then h is reduced, and
the process is reapplied. Minimum and maximum values of h, hmin, and hmax,
respectively, are specified in the program to ensure control over the method.

If yi,i is found to be acceptable, then w1 is set to yi,i, and computations begin
again to determine w2, which will approximate y(t2) = y(a + 2h). The process is
repeated until the approximation wN to y(b) is determined.

EXAMPLE 1 Consider the initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

which has solution y(t) = (t+1)2−0.5et. The program EXTRAP54 applied to this
problem with h = 0.25, TOL = 10−10, hmax = 0.25, and hmin = 0.01 gives the
values in Table 5.11 as approximations to y(0.25).

Table 5.11

y1,1 = 0.9187011719
y2,1 = 0.9200379848 y2,2 = 0.9204835892
y3,1 = 0.9202873689 y3,2 = 0.9204868761 y3,3 = 0.9204872870
y4,1 = 0.9203747896 y4,2 = 0.9204871876 y4,3 = 0.9204872914 y4,4 = 0.9204872917
y5,1 = 0.9204372763 y5,2 = 0.9204872656 y5,3 = 0.9204872916 y5,4 = 0.9204872917 y5,5 = 0.9204872

We will also compute y1,1, y2,1, and y2,2 in Table 5.11 using Maple. Define f(t, y)
with the command

5.5. EXTRAPOLATION METHODS 251

>f:=(t,y)->y-t^2+1;

The variables a, b, α, and h are defined by

>a:=0; b:=2; alpha:=0.5; h:=0.25;

and t0 = t0 and w0 = w0 are initialized by

>t0:=a; w0:=alpha;

We use Euler’s method with h0 = h0 = h/2 = 0.125 to obtain w1 = w1 as 0.6875
with

>h0:=h/2;

>w1:=w0+h0*f(t0,w0);

We then use the Midpoint method to obtain w2 = w2 as 0.91796875 with

>t:=t0+h0;

>w2:=w0+2*h0*f(t,w1);

>t:=t0+2*h0;

The endpoint correction gives y1,1 = y11 = 0.9187011719 with

>y11:=(w2+w1+h0*f(t,w2))/2;

We then proceed to the next iteration, defining

>h1:=h/4;

and using Euler’s method

>w1:=w0+h1*f(t0,w0);

>t:=t0+h1;

to give w1 = 0.59375. We then use the Midpoint method three times to obtain

>w2:=w0+2*h1*f(t,w1); t:=t0+2*h1;

>w3:=w1+2*h1*f(t,w2); t:=t0+3*h1;

>w4:=w2+2*h1*f(t,w3); t:=t0+4*h1;

which produces w2 = 0.6987304688, w3 = 0.8041381836, and w4 = 0.9198532106.
We have w2 ≈ y(0.125), w3 ≈ y(0.1875), and w4 ≈ y(0.25), and we use the

endpoint correction to obtain y2,1 = y21 = 0.920037985 from

>y21:=(w4+w3+h1*f(t,w4))/2;

252CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Extrapolation gives the entry y2,2 = y22 = 0.9204835891 with the command

>y22:=y21+(h/4)^2*(y21-y11)/((h/2)^2-(h/4)^2);

The computations stopped with w1 = y5,5 because |y5,5 − y4,4| ≤ 10−10 and
y5,5 is accepted as the approximation to y(t1) = y(0.25). The complete set of
approximations accurate to the places listed is given in Table 5.12.

Table 5.12

ti yi = y(ti) wi hi k

0.25 0.9204872917 0.9204872917 0.25 5
0.50 1.4256393646 1.4256393646 0.25 5
0.75 2.0039999917 2.0039999917 0.25 5
1.00 2.6408590858 2.6408590858 0.25 5
1.25 3.3173285213 3.3173285212 0.25 4
1.50 4.0091554648 4.0091554648 0.25 3
1.75 4.6851986620 4.6851986619 0.25 3
2.00 5.3054719505 5.3054719505 0.25 3

5.5. EXTRAPOLATION METHODS 253

EXERCISE SET 5.5

1. The initial-value problem

y′ =
√

2− y2et, for 0 ≤ t ≤ 0.8, with y(0) = 0

has actual solution y(t) =
√

2 sin(et − 1). Use extrapolation with h = 0.1
to find an approximation for y(0.1) to within a tolerance of TOL = 10−5.
Compare the approximation to the actual value.

2. The initial-value problem

y′ = −y + 1− y

t
, for 1 ≤ t ≤ 2, with y(1) = 1

has actual solution y(t) = 1 + (e1−t − 1)/t. Use extrapolation with h = 0.2
to find an approximation for y(1.2) to within a tolerance of TOL = 0.00005.
Compare the approximation to the actual value.

3. Use the extrapolation program EXTRAP54 with TOL = 10−4 to approximate
the solutions to the following initial-value problems:

(a) y′ =
(y
t

)2

+
(y
t

)
, for 1 ≤ t ≤ 1.2, with y(1) = 1, hmax = 0.05, and

hmin = 0.02.

(b) y′ = sin t + e−t, for 0 ≤ t ≤ 1, with y(0) = 0, hmax = 0.25, and
hmin = 0.02.

(c) y′ = (y2 + y)t−1, for 1 ≤ t ≤ 3, with y(1) = −2, hmax = 0.5, and
hmin = 0.02.

(d) y′ = −ty + 4ty−1, for 0 ≤ t ≤ 1, with y(0) = 1, hmax = 0.25, and
hmin = 0.02.

4. Use the extrapolation program EXTRAP54 with tolerance TOL = 10−6,
hmax = 0.5, and hmin = 0.05 to approximate the solutions to the following
initial-value problems. Compare the results to the actual values.

(a) y′ =
y

t
− y2

t2
, for 1 ≤ t ≤ 4, with y(1) = 1; actual solution y(t) =

t/(1 + ln t).

(b) y′ = 1 +
y

t
+
(y
t

)2

, for 1 ≤ t ≤ 3, with y(1) = 0; actual solution

y(t) = t tan(ln t).

(c) y′ = −(y + 1)(y + 3), for 0 ≤ t ≤ 3, with y(0) = −2; actual solution
y(t) = −3 + 2(1 + e−2t)−1.

(d) y′ = (t + 2t3)y3 − ty, for 0 ≤ t ≤ 2, with y(0) = 1
3 ; actual solution

y(t) = (3 + 2t2 + 6et2)−1/2.

254CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

5. Let P (t) be the number of individuals in a population at time t, measured
in years. If the average birth rate b is constant and the average death rate d
is proportional to the size of the population (due to overcrowding), then the
growth rate of the population is given by the logistic equation

dP (t)
dt

= bP (t)− k[P (t)]2

where d = kP (t). Suppose P (0) = 50, 976, b = 2.9×10−2, and k = 1.4×10−7.
Find the population after 5 years.

5.6. ADAPTIVE TECHNIQUES 255

5.6 Adaptive Techniques

The appropriate use of varying step size was seen in Section 4.6 to produce integral
approximating methods that are efficient in the amount of computation required.
This might not be sufficient to favor these methods due to the increased compli-
cation of applying them, but they have another important feature. The step-size
selection procedure produces an estimate of the local error that does not require
the approximation of the higher derivatives of the function. These methods are
called adaptive because they adapt the number and position of the nodes used in
the approximation to keep the local error within a specified bound.

There is a close connection between the problem of approximating the value of a
definite integral and that of approximating the solution to an initial-value problem.
It is not surprising, then, that there are adaptive methods for approximating the
solutions to initial-value problems, and that these methods are not only efficient
but incorporate the control of error.

Any one-step method for approximating the solution, y(t), of the initial-value
problem

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α

can be expressed in the form

wi+1 = wi + hiφ(ti, wi, hi), for i = 0, 1, . . . , N − 1,

for some function φ.
An ideal difference-equation method, would have the property that given a tol-

erance ε > 0, the minimal number of mesh points would be used to ensure that
the global error, |y(ti) − wi|, would not exceed ε for any i = 0, 1, . . . , N . Having
a minimal number of mesh points and also controlling the global error of a differ-
ence method is, not surprisingly, inconsistent with the points being equally spaced
in the interval. In this section we examine techniques used to control the error of
a difference-equation method in an efficient manner by the appropriate choice of
mesh points.

Although we cannot generally determine the global error of a method, we saw
in Section 5.2 that there is often a close connection between the local error and
the global error. If a method has local error O(hn+1), then the global error of the
method is O(hn). By using methods of differing order we can predict the local error
and, using this prediction, choose a step size that will keep the global error in check.

To illustrate the technique, suppose that we have two approximation techniques.
The first is an nth-order method obtained from an nth-order Taylor method of the
form

y(ti+1) = y(ti) + hφ(ti, y(ti), h) +O(hn+1).

This method produces approximations

w0 = α

wi+1 = wi + hφ(ti, wi, h) for i > 0,

256CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

which satisfy, for some K and all relevant h and i,

|y(ti)− wi| < Khn.

In general, the method is generated by applying a Runge-Kutta modification to the
Taylor method, but the specific derivation is unimportant.

The second method is similar but of higher order. For example, let us suppose
it comes from an (n+ 1)st-order Taylor method of the form

y(ti+1) = y(ti) + hφ̃(ti, y(ti), h) +O(hn+2),

producing approximations

w̃0 = α

w̃i+1 = w̃i + hφ̃(ti, w̃i, h) for i > 0,

which satisfy, for some K̃ and all relevant h and i,

|y(ti)− w̃i| < K̃hn+1.

We assume now that at the point ti we have

wi = w̃i = z(ti),

where z(t) is the solution to the differential equation that does not satisfy the
original initial condition but instead satisfies the condition z(ti) = wi. The typical
difference between y(t) and z(t) is shown in Figure 5.3.

Figure 5.3

t

y

a ti ti11

wi

wi11

z(ti11)

z(ti)

y(ti11)

a

y(t)

z(t)

Local
error

Global
error

5.6. ADAPTIVE TECHNIQUES 257

Applying the two methods to the differential equation with the fixed step size
h produces two approximations, wi+1 and w̃i+1, whose differences from y(ti + h)
represent global errors but whose differences from z(ti + h) represent local errors.

Now consider

z(ti + h)− wi+1 = (w̃i+1 − wi+1) + (z(ti + h)− w̃i+1).

The term on the left side of this equation is O(hn+1), the local error of the nth
order method, but the second term on the right side is O(hn+2), the local error of
the (n + 1)st order method. This implies that the dominant portion on the right
side comes from the first term; that is,

z(ti + h)− wi+1 ≈ w̃i+1 − wi+1 = O(hn+1).

So, a constant K exists with

Khn+1 = |z(ti + h)− wi+1| ≈ |w̃i+1 − wi+1|,
and K can be approximated by

K ≈ |w̃i+1 − wi+1|
hn+1

. (5.3)

Let us now return to the global error associated with the problem we really
want to solve,

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α,

and consider the adjustment to the step size needed if this global error is expected
to be bounded by the tolerance ε . Using a multiple q of the original step size implies
that we need to ensure that

|y(ti + qh)− wi+1(using the new step size qh)| < K(qh)n < ε.

This implies, from Eq. (5.3), that for the approximations wi+1 and w̃i+1 using the
original step size h we have

Kqnhn ≈ |w̃i+1 − wi+1|
hn+1

qnhn =
qn|w̃i+1 − wi+1|

h
< ε.

Solving this inequality for q tells us how we should choose the new step size, qh, to
ensure that the global error is within the bound ε :

q <

[
εh

|w̃i+1 − wi+1|
]1/n

.

One popular technique that uses this inequality for error control is the Runge-
Kutta-Fehlberg method. It uses a Runge-Kutta method of order 5,

w̃i+1 = wi +
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 − 9
50
k5 +

2
55
k6,

258CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

to estimate the local error in a Runge-Kutta method of order 4,

wi+1 = wi +
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 − 1
5
k5,

where the coefficient equations are

k1 = hf(ti, wi),

k2 = hf

(
ti +

h

4
, wi +

1
4
k1

)
,

k3 = hf

(
ti +

3h
8
, wi +

3
32
k1 +

9
32
k2

)
,

k4 = hf

(
ti +

12h
13

, wi +
1932
2197

k1 − 7200
2197

k2 +
7296
2197

k3

)
,

k5 = hf

(
ti + h,wi +

439
216

k1 − 8k2 +
3680
513

k3 − 845
4104

k4

)
,

k6 = hf

(
ti +

h

2
, wi − 8

27
k1 + 2k2 − 3544

2565
k3 +

1859
4104

k4 − 11
40
k5

)
.

An advantage of this method is that only six evaluations of f are required per
step, whereas arbitrary Runge-Kutta methods of order 4 and 5 used together would
require (see Table 5.7) at least four evaluations of f for the fourth-order method
and an additional six for the fifth-order method.

In the theory of error control, an initial value of h at the ith step was used to
find the first values of wi+1 and w̃i+1, which led to the determination of q for that
step. Then the calculations were repeated with the step size h replaced by qh. This
procedure requires twice the number of functional evaluations per step as without
error control. In practice, the value of q to be used is chosen somewhat differently
in order to make the increased functional-evaluation cost worthwhile. The value of
q determined at the ith step is used for two purposes:

• When q < 1, to reject the initial choice of h at the ith step and repeat the
calculations using qh, and

• When q ≥ 1, to accept the computed value at the ith step using the step size
h and to change the step size to qh for the (i+ 1)st step.

Because of the penalty in terms of functional evaluations that must be paid
if many steps are repeated, q tends to be chosen conservatively. In fact, for the
Runge-Kutta-Fehlberg method with n = 4, the usual choice is

q =
(

εh

2|w̃i+1 − wi+1|
)1/4

≈ 0.84
(

εh

|w̃i+1 − wi+1|
)1/4

.

The program RKFVSM55, which implements the Runge-Kutta-Fehlberg method,
incorporates a technique to eliminate large modifications in step size. This is done

5.6. ADAPTIVE TECHNIQUES 259

to avoid spending too much time with very small step sizes in regions with irreg-
ularities in the derivatives of y, and to avoid large step sizes, which may result in
skipping sensitive regions nearby. In some instances the step-size-increase proce-
dure is omitted completely and the step-size-decrease procedure is modified to be
incorporated only when needed to bring the error under control.

EXAMPLE 1 The Runge-Kutta-Fehlberg method will be used to approximate the solution to the
initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

which has solution y(t) = (t+ 1)2 − 0.5et. The input consists of tolerance, TOL =
10−5, a maximum step size, hmax = 0.25, and a minimum step size, hmin = 0.01.
The results from the program RKFVSM55 are shown in Table 5.13. The column
labelled qi in this table shows the step-size multiplier at each step. Notice that this
multiplier has no effect when the step size reaches 0.25, the maximum permissible
step size, nor at the final step when the step size has been adjusted to determine
an approximation at 2, the right endpoint.

Table 5.13

ti yi = y(ti) wi hi qi |yi − wi|
0.0000000 0.5000000 0.5000000 0 0 0.0000000
0.2500000 0.9204873 0.9204886 0.2500000 0.9462099 0.0000013
0.4865522 1.3964884 1.3964910 0.2365522 1.0263307 0.0000026
0.7293332 1.9537446 1.9537488 0.2427810 1.0390018 0.0000042
0.9793332 2.5864198 2.5864260 0.2500000 1.0716655 0.0000062
1.2293332 3.2604520 3.2604605 0.2500000 1.1954111 0.0000085
1.4793332 3.9520844 3.9520955 0.2500000 1.6205073 0.0000111
1.7293332 4.6308127 4.6308268 0.2500000 1.3538945 0.0000141
1.9793332 5.2574687 5.2574861 0.2500000 1.0366443 0.0000173
2.0000000 5.3054720 5.3054896 0.0206668 0.0000177

An implementation of the Runge-Kutta-Fehlberg method is available in Maple
using the dsolve command with the numeric option. Consider the initial value
problem of Example 1. The command

>g:=dsolve({D(y)(t)=y(t)-t*t+1,y(0)=0.5},y(t),numeric);

uses the Runge-Kutta-Fehlberg method. We can approximate y(2) in our example
by using

>g(2.0);

260CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

which gives
[t = 2.0, y(t) = 5.30547195840019459]

The Runge-Kutta-Fehlberg method is popular for error control because at each
step it provides, at little additional cost, two approximations that can be com-
pared and related to the local error. Predictor-corrector techniques always generate
two approximations at each step, so they are natural candidates for error-control
adaptation.

To demonstrate the procedure, we construct a variable-step-size predictor-corrector
method using the explicit Adams-Bashforth Four-Step method as predictor and the
implicit Adams-Moulton Three-Step method as corrector.

The Adams-Bashforth Four-Step method comes from the equation

y(ti+1) = y(ti) +
h

24
[55f(ti, y(ti))− 59f(ti−1y(ti−1))

+ 37f(ti−2, y(ti−2))− 9f(ti−3, y(ti−3))] +
251
720

y(5)(µ̂i)h5

for some µi in (ti−3, ti+1). Suppose we assume that the approximations w0, w1, . . . , wi

are all exact and, as in the case of the one-step methods, we let z represent the
solution to the differential equation satisfying the initial condition z(ti) = wi. Then

z(ti+1)− w(0)
i+1 =

251
720

z(5)(µ̂i)h5 for some µ̂i in (ti−3, ti). (5.4)

A similar analysis of the Adams-Moulton Three-Step method leads to the local
error

z(ti+1)− wi+1 = − 19
720

z(5)(µ̃i)h5 for some µ̃i in (ti−2, ti+1). (5.5)

To proceed further, we must make the assumption that for small values of h,

z(5)(µ̂i) ≈ z(5)(µ̃i),

and the effectiveness of the error-control technique depends directly on this assump-
tion.

If we subtract Eq. (5.5) from Eq. (5.4), and assume that z(5)(µ̂i) ≈ z(5)(µ̃i), we
have

wi+1 − w(0)
i+1 =

h5

720
[
251z(5)(µ̂i) + 19z(5)(µ̃i)

] ≈ 3
8
h5z(5)(µ̃i),

so
z(5)(µ̃i) ≈ 8

3h5

(
wi+1 − w(0)

i+1

)
.

Using this result to eliminate the term involving h5z(5)(µ̃i) from Eq. (5.5) gives
the approximation to the error

|z(ti+1)− wi+1| ≈ 19h5

720
· 8
3h5

∣∣wi+1 − w(0)
i+1

∣∣ =
19
∣∣wi+1 − w(0)

i+1

∣∣
270

.

This expression was derived under the assumption that w0, w1, . . . , wi are the
exact values of y(t0), y(t1), . . . , y(ti), respectively, which means that this is an ap-
proximation to the local error. As in the case of the one-step methods, the global

5.6. ADAPTIVE TECHNIQUES 261

error is of order one degree less, so for the function y that is the solution to the
original initial-value problem,

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α,

the global error can be estimated by

|y(ti+1)− wi+1| ≈ |z(ti+1)− wi+1|
h

≈ 19
∣∣wi+1 − w(0)

i+1

∣∣
270h

.

Suppose we now reconsider the situation with a new step size qh generating new
approximations ŵ(0)

i+1 and ŵi+1. To control the global error to within ε, we want to
choose q so that

|z(ti + qh)− ŵi+1 (using the step size qh)|
qh

< ε.

But from Eq. (5.5),

|z(ti + qh)− ŵi+1(using qh)|
qh

=
19
720

∣∣∣z(5)(µ̃i)
∣∣∣ q4h4 ≈ 19

720

[
8

3h5

∣∣wi+1 − w(0)
i+1

∣∣
]
q4h4,

so we need to choose q with

19
720

[
8

3h5

∣∣wi+1 − w(0)
i+1

∣∣
]
q4h4 =

19
270

∣∣wi+1 − w(0)
i+1

∣∣
h

q4 < ε.

Consequently, we need the change in step size from h to qh, where q satisfies

q <

(
270
19

hε∣∣wi+1 − w(0)
i+1

∣∣

)1/4

≈ 2

(
hε∣∣wi+1 − w(0)

i+1

∣∣

)1/4

.

A number of approximation assumptions have been made in this development,
so in practice q is chosen conservatively, usually as

q = 1.5

(
hε∣∣wi+1 − w(0)

i+1

∣∣

)1/4

.

A change in step size for a multistep method is more costly in terms of functional
evaluations than for a one-step method, since new equally-spaced starting values
must be computed. As a consequence, it is also common practice to ignore the
step-size change whenever the global error is between ε/10 and ε; that is, when

ε

10
< |y(ti+1)− wi+1| ≈ 19

270h

∣∣∣wi+1 − w(0)
i+1

∣∣∣ < ε.

In addition, q is generally given an upper bound to ensure that a single unusu-
ally accurate approximation does not result in too large a step size. The program

262CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

VPRCOR56 incorporates this safeguard with an upper bound of four times the
previous step size.

It should be emphasized that since the multistep methods require equal step
sizes for the starting values, any change in step size necessitates recalculating new
starting values at that point. In the program VPRCOR56, this is done by incorpo-
rating RKO4M53, the Runge-Kutta method of order 4, as a subroutine.

EXAMPLE 2 Table 5.14 lists the results obtained using the program VPRCOR56 to find approx-
imations to the solution of the initial-value problem

y′ = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

which has solution y(t) = (t + 1)2 − 0.5et. Included in the input is the tolerance,
TOL = 10−5, maximum step size, hmax = 0.25, and minimum step size, hmin =
0.01. In the fifth column of the table we list the estimate to the error,

σi =
19

270h

∣∣∣wi − w(0)
i

∣∣∣ ≈ |y(ti)− wi|.

Table 5.14

ti yi = y(ti) wi hi σi |yi − wi|
0.1257017 0.7002323 0.7002318 0.1257017 4.051× 10−6 0.0000005
0.2514033 0.9230960 0.9230949 0.1257017 4.051× 10−6 0.0000011
0.3771050 1.1673894 1.1673877 0.1257017 4.051× 10−6 0.0000017
0.5028066 1.4317502 1.4317480 0.1257017 4.051× 10−6 0.0000022
0.6285083 1.7146334 1.7146306 0.1257017 4.610× 10−6 0.0000028
0.7542100 2.0142869 2.0142834 0.1257017 5.210× 10−6 0.0000035
0.8799116 2.3287244 2.3287200 0.1257017 5.913× 10−6 0.0000043
1.0056133 2.6556930 2.6556877 0.1257017 6.706× 10−6 0.0000054
1.1313149 2.9926385 2.9926319 0.1257017 7.604× 10−6 0.0000066
1.2570166 3.3366642 3.3366562 0.1257017 8.622× 10−6 0.0000080
1.3827183 3.6844857 3.6844761 0.1257017 9.777× 10−6 0.0000097
1.4857283 3.9697541 3.9697433 0.1030100 7.029× 10−6 0.0000108
1.5887383 4.2527830 4.2527711 0.1030100 7.029× 10−6 0.0000120
1.6917483 4.5310269 4.5310137 0.1030100 7.029× 10−6 0.0000133
1.7947583 4.8016639 4.8016488 0.1030100 7.029× 10−6 0.0000151
1.8977683 5.0615660 5.0615488 0.1030100 7.760× 10−6 0.0000172
1.9233262 5.1239941 5.1239764 0.0255579 3.918× 10−8 0.0000177
1.9488841 5.1854932 5.1854751 0.0255579 3.918× 10−8 0.0000181
1.9744421 5.2460056 5.2459870 0.0255579 3.918× 10−8 0.0000186
2.0000000 5.3054720 5.3054529 0.0255579 3.918× 10−8 0.0000191

5.6. ADAPTIVE TECHNIQUES 263

EXERCISE SET 5.6

1. The initial-value problem

y′ =
√

2− y2et, for 0 ≤ t ≤ 0.8, with y(0) = 0

has actual solution y(t) =
√

2 sin(et − 1).

(a) Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−4 to
find w1. Compare the approximate solution to the actual solution.

(b) Use the Adams Variable-Step-Size Predictor-Corrector method with tol-
erance TOL = 10−4 and starting values from the Runge-Kutta method
of order 4 to find w4. Compare the approximate solution to the actual
solution.

2. The initial-value problem

y′ = −y + 1− y

t
, for 1 ≤ t ≤ 2, with y(1) = 1

has actual solution y(t) = 1 + (e1−t − 1)t−1.

(a) Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−3

to find w1 and w2. Compare the approximate solutions to the actual
solution.

(b) Use the Adams Variable-Step-Size Predictor-Corrector method with tol-
erance TOL = 0.002 and starting values from the Runge-Kutta method
of order 4 to find w4 and w5. Compare the approximate solutions to the
actual solution.

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−4 to ap-
proximate the solution to the following initial-value problems.

(a) y′ =
(y
t

)2

+
y

t
, for 1 ≤ t ≤ 1.2, with y(1) = 1, hmax = 0.05, and

hmin = 0.02.

(b) y′ = sin t + e−t, for 0 ≤ t ≤ 1, with y(0) = 0, hmax = 0.25, and
hmin = 0.02.

(c) y′ = (y2 + y)t−1, for 1 ≤ t ≤ 3, with y(1) = −2, hmax = 0.5, and
hmin = 0.02.

(d) y′ = −ty + 4ty−1, for 0 ≤ t ≤ 1, with y(0) = 1, hmax = 0.2, and
hmin = 0.01.

4. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10−6, hmax =
0.5, and hmin = 0.05 to approximate the solutions to the following initial-
value problems. Compare the results to the actual values.

264CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

(a) y′ =
y

t
− y2

t2
, for 1 ≤ t ≤ 4, with y(1) = 1; actual solution y(t) =

t/(1 + ln t).

(b) y′ = 1 +
y

t
+
(y
t

)2

, for 1 ≤ t ≤ 3, with y(1) = 0; actual solution

y(t) = t tan(ln t).

(c) y′ = −(y + 1)(y + 3), for 0 ≤ t ≤ 3, with y(0) = −2; actual solution
y(t) = −3 + 2(1 + e−2t)−1.

(d) y′ = (t + 2t3)y3 − ty, for 0 ≤ t ≤ 2, with y(0) = 1
3 ; actual solution

y(t) = (3 + 2t2 + 6et2)−1/2.

5. Use the Adams Variable-Step-Size Predictor-Corrector method with TOL =
10−4 to approximate the solutions to the initial-value problems in Exercise 3.

6. Use the Adams Variable-Step-Size Predictor-Corrector method with tolerance
TOL = 10−6, hmax = 0.5, and hmin = 0.02 to approximate the solutions to
the initial-value problems in Exercise 4.

7. An electrical circuit consists of a capacitor of constant capacitance C = 1.1
farads in series with a resistor of constant resistance R0 = 2.1 ohms. A voltage
E(t) = 110 sin t is applied at time t = 0. When the resistor heats up, the
resistance becomes a function of the current i,

R(t) = R0 + ki, where k = 0.9,

and the differential equation for i becomes
(

1 +
2k
R0

i

)
di

dt
+

1
R0C

i =
1

R0C

dE
dt
.

Find the current i after 2 s, assuming i(0) = 0.

5.7. METHODS FOR SYSTEMS OF EQUATIONS 265

5.7 Methods for Systems of Equations

The most common application of numerical methods for approximating the solu-
tion of initial-value problems concerns not a single problem, but a linked system of
differential equations. Why, then, have we spent the majority of this chapter con-
sidering the solution of a single equation? The answer is simple: to approximate the
solution of a system of initial-value problems, we successively apply the techniques
that we used to solve a single problem. As is so often the case in mathematics, the
key to the methods for systems can be found by examining the easier problem and
then logically modifying it to treat the more complicated situation.

An mth-order system of first-order initial-value problems has the form

du1

dt
= f1(t, u1, u2, . . . , um),

du2

dt
= f2(t, u1, u2, . . . , um),

...
dum

dt
= fm(t, u1, u2, . . . , um),

for a ≤ t ≤ b, with the initial conditions

u1(a) = α1, u2(a) = α2, . . . , um(a) = αm.

The object is to findm functions u1, u2, . . . , um that satisfy the system of differential
equations together with all the initial conditions.

Methods to solve systems of first-order differential equations are generalizations
of the methods for a single first-order equation presented earlier in this chapter.
For example, the classical Runge-Kutta method of order 4 given by

w0 = α,

k1 = hf(ti, wi),

k2 = hf

(
ti +

h

2
, wi +

1
2
k1

)
,

k3 = hf

(
ti +

h

2
, wi +

1
2
k2

)
,

k4 = hf(ti+1, wi + k3),

and

wi+1 = wi +
1
6
[k1 + 2k2 + 2k3 + k4],

for each i = 0, 1, . . . , N − 1, is used to solve the first-order initial-value problem

y′ = f(t, y), for a ≤ t ≤ b, with y(a) = α.

266CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

It is generalized as follows.
Let an integer N > 0 be chosen and set h = (b − a)/N . Partition the interval

[a, b] into N subintervals with the mesh points

tj = a+ jh for each j = 0, 1, . . . , N.

Use the notation wij for each j = 0, 1, . . . , N and i = 1, 2, . . . ,m to denote
an approximation to ui(tj); that is,wij approximates the ith solution ui(t) of the
system at the jth mesh point tj . For the initial conditions, set

w1,0 = α1, w2,0 = α2, . . . , wm,0 = αm.

Figure 5.4 gives an illustration of this notation.

Figure 5.4

y

t

w11
w12
w13

y

t

w23
w22

w21

a 5 t0 t1 t2 t3

y

t

wn3wn2

wn1

a 5 t0 t1 t2 t3 a 5 t0 t1 t2 t3

u1(a) 5 a1

u2(a) 5 a2

u2(t)

u1(t)

un(t)

un(a) 5 an

Suppose that the values w1,j , w2,j , . . . , wm,j have been computed. We obtain
w1,j+1, w2,j+1, . . ., wm,j+1 by first calculating, for each i = 1, 2, . . . ,m,

k1,i = hfi(tj , w1,j , w2,j , . . . , wm,j),

and then finding, for each i,

k2,i = hfi

(
tj +

h

2
, w1,j +

1
2
k1,1, w2,j +

1
2
k1,2, . . . , wm,j +

1
2
k1,m

)
.

We next determine all the terms

k3,i = hfi

(
tj +

h

2
, w1,j +

1
2
k2,1, w2,j +

1
2
k2,2, . . . , wm,j +

1
2
k2,m

)

and, finally, calculate all the terms

k4,i = hfi(tj + h,w1,j + k3,1, w2,j + k3,2, . . . , wm,j + k3,m).

Combining these values gives

wi,j+1 = wi,j +
1
6
[k1,i + 2k2,i + 2k3,i + k4,i]

5.7. METHODS FOR SYSTEMS OF EQUATIONS 267

for each i = 1, 2, . . .m.
Note that all the values k1,1, k1,2, . . . , k1,m must be computed before any of the

terms of the form k2,i can be determined. In general, each kl,1, kl,2, . . . , kl,m must be
computed before any of the expressions kl+1,i. The program RKO4SY57 implements
the Runge-Kutta method of order four for systems of differential equations.

EXAMPLE 1 Kirchhoff’s Law states that the sum of all instantaneous voltage changes around
a closed electrical circuit is zero. This implies that the current, I(t), in a closed
circuit containing a resistance of R ohms, a capacitance of C farads, an inductance
of L henrys, and a voltage source of E(t) volts must satisfy the equation

LI ′(t) +RI(t) +
1
C

∫
I(t) dt = E(t).

The currents I1(t) and I2(t) in the left and right loops, respectively, of the circuit
shown in Figure 5.5 are the solutions to the system of equations

2I1(t) + 6[I1(t)− I2(t)] + 2I ′1(t) = 12,
1

0.5

∫
I2(t) dt+ 4I2(t) + 6[I2(t)− I1(t)] = 0.

Figure 5.5

4 Ω

2 Ω

2 H

0.5 F

12 V 6 Ω
I2(t)I1(t)

Suppose that the switch in the circuit is closed at time t = 0. This implies that
I1(0) and I2(0) = 0. Solve for I ′1(t) in the first equation, differentiate the second
equation, and substitute for I ′1(t) to get

I ′1 = f1(t, I1, I2) = −4I1 + 3I2 + 6, with I1(0) = 0,
I ′2 = f2(t, I1, I2) = 0.6I ′1 − 0.2I2 = −2.4I1 + 1.6I2 + 3.6, with I2(0) = 0.

The exact solution to this system is

I1(t) = −3.375e−2t + 1.875e−0.4t + 1.5,
I2(t) = −2.25e−2t + 2.25e−0.4t.

268CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

We will apply the Runge-Kutta method of order four to this system with h = 0.1.
Since w1,0 = I1(0) = 0 and w2,0 = I2(0) = 0,

k1,1 = hf1(t0, w1,0, w2,0) = 0.1 f1(0, 0, 0) = 0.1[−4(0) + 3(0) + 6] = 0.6,
k1,2 = hf2(t0, w1,0, w2,0) = 0.1 f2(0, 0, 0) = 0.1[−2.4(0) + 1.6(0) + 3.6] = 0.36,

k2,1 = hf1

(
t0 +

1
2
h,w1,0 +

1
2
k1,1, w2,0 +

1
2
k1,2

)
= 0.1 f1(0.05, 0.3, 0.18)

= 0.1[−4(0.3) + 3(0.18) + 6] = 0.534,

k2,2 = hf2

(
t0 +

1
2
h,w1,0 +

1
2
k1,1, w2,0 +

1
2
k1,2

)
= 0.1 f2(0.05, 0.3, 0.18)

= 0.1[−2.4(0.3) + 1.6(0.18) + 3.6] = 0.3168.

Generating the remaining entries in a similar manner produces

k3,1 = (0.1)f1(0.05, 0.267, 0.1584) = 0.54072,
k3,2 = (0.1)f2(0.05, 0.267, 0.1584) = 0.321264,
k4,1 = (0.1)f1(0.1, 0.54072, 0.321264) = 0.4800912,

and

k4,2 = (0.1)f2(0.1, 0.54072, 0.321264) = 0.28162944.

As a consequence,

I1(0.1) ≈ w1,1 = w1,0 +
1
6
[k1,1 + 2k2,1 + 2k3,1 + k4,1]

= 0 +
1
6
[0.6 + 2(0.534) + 2(0.54072) + 0.4800912] = 0.5382552

and

I2(0.1) ≈ w2,1 = w2,0 +
1
6
[k1,2 + 2k2,2 + 2k3,2 + k4,2] = 0.3196263.

The remaining entries in Table 5.15 are generated in a similar manner.

Table 5.15

tj w1,j w2,j |I1(tj)− w1,j | |I2(tj)− w2,j |
0.0 0 0 0 0
0.1 0.5382550 0.3196263 0.8285× 10−5 0.5803× 10−5

0.2 0.9684983 0.5687817 0.1514× 10−4 0.9596× 10−5

0.3 1.310717 0.7607328 0.1907× 10−4 0.1216× 10−4

0.4 1.581263 0.9063208 0.2098× 10−4 0.1311× 10−4

0.5 1.793505 1.014402 0.2193× 10−4 0.1240× 10−4

5.7. METHODS FOR SYSTEMS OF EQUATIONS 269

Maple’s command dsolve can be used to solve systems of first-order differential
equations. The system in Example 1 is defined with

>sys2:=D(u1)(t)=-4*u1(t)+3*u2(t)+6,D(u2)(t)=-2.4*u1(t)+1.6*u2(t)+3.6;

and the initial conditions with

>init2:=u1(0)=0,u2(0)=0;

The system is solved with the command

>sol2:=dsolve({sys2,init2},{u1(t),u2(t)});

to obtain

sol2 :=
{
u2(t) =

9
4
e(−2/5 t) − 9

4
e(−2 t), u1(t) =

15
8
e(−2/5 t) − 27

8
e(−2 t) +

3
2

}

To isolate the solution in function form, use

>r1:=rhs(sol2[2]);

r1 :=
15
8
e(−2/5 t) − 27

8
e(−2 t) +

3
2

and

>r2:=rhs(sol2[1]);

which gives a similar response. To evaluate u1(0.5) and u2(0.5), use

>evalf(subs(t=0.5,r1));evalf(subs(t=0.5,r2);

which gives u1(0.5) = 1.793527048 and u2(0.5) = 1.014415451.
The command dsolve will fail if an explicit solution cannot be found. In that

case we can use the numeric option in dsolve. We can apply the Runge-Kutta
method for systems to the problem in Example 1 with the commands

>sys:=D(u1)(t)=-4*u1(t)+3*u2(t)+6,D(u2)(t)=-2.4*u1(t)+1.6*u2(t)+3.6;
>init:=u1(0)=0,u2(0)=0;

The procedure is called with

>g:=dsolve({sys,init},numeric, method=classical[rk4],

{u1(t),u2(t)},stepsize=0.1);

To obtain approximations to u1(0.5) and u2(0.5) we use

>g(0.5);

270CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

which gives

u1(0.5) = 1.79350749012028298 and u2(t) = 1.01440241676988330.

We can also use the numeric option in dsolve to apply the Runge-Kutta-
Fehlberg technique. In fact, this is the standard numeric technique, so the command

>g:=dsolve({sys,init},numeric);

returns the procedure

g := proc(rkf45 x) . . . end proc

To approximate the solutions at t = 0.5, enter

>g(0.5);

to obtain

u1(t) = 1.79352716981717686 and u2(t) = 1.01441553295146902.

Many important physical problems—for example, electrical circuits and vibrat-
ing systems— involve initial-value problems whose equations have order higher than
1. New techniques are not required for solving these problems, since by relabeling
the variables we can reduce a higher-order differential equation into a system of
first-order differential equations and then apply one of the methods we have al-
ready discussed.

A general mth-order initial-value problem has the form

y(m)(t) = f
(
t, y, y′, . . . , y(m−1)

)
,

for a ≤ t ≤ b, with initial conditions

y(a) = α1, y
′(a) = α2, . . . , y

(m−1)(a) = αm.

To convert this into a system of first-order differential equations, define

u1(t) = y(t), u2(t) = y′(t), . . . , um(t) = y(m−1)(t).

Using this notation, we obtain the first-order system

du1

dt
=
dy

dt
= u2,

du2

dt
=
dy′

dt
= u3,

...

dum−1

dt
=
dy(m−2)

dt
= um,

5.7. METHODS FOR SYSTEMS OF EQUATIONS 271

and

dum

dt
=
dy(m−1)

dt
= y(m) = f

(
t, y, y′, . . . , y(m−1)

)
= f(t, u1, u2, . . . , um),

with initial conditions

u1(a) = y(a) = α1, u2(a) = y′(a) = α2, . . . , um(a) = y(m−1)(a) = αm.

EXAMPLE 2 Consider the second-order initial-value problem

y′′ − 2y′ + 2y = e2t sin t, for 0 ≤ t ≤ 1, with y(0) = −0.4 and y′(0) = −0.6.

Let u1(t) = y(t) and u2(t) = y′(t). This transforms the equation into the system

u′1(t) = u2(t),
u′2(t) = e2t sin t− 2u1(t) + 2u2(t),

with initial conditions u1(0) = −0.4, and u2(0) = −0.6.
The Runge-Kutta fourth-order method will be used to approximate the solution

to this problem using h = 0.1. The initial conditions give w1,0 = −0.4 and w2,0 =
−0.6. The Runge-Kutta coefficient equations with j = 0 give

k1,1 = hf1(t0, w1,0, w2,0) = hw2,0 = −0.06,

k1,2 = hf2(t0, w1,0, w2,0) = h[e2t0 sin t0 − 2w1,0 + 2w2,0] = −0.04,

k2,1 = hf1

(
t0 +

h

2
, w1,0 +

1
2
k1,1, w2,0 +

1
2
k1,2

)
= h[w2,0 +

1
2
k1,2] = −0.062,

k2,2 = hf2

(
t0 +

h

2
, w1,0 +

1
2
k1,1, w2,0 +

1
2
k1,2

)

= h

[
e2(t0+0.05) sin(t0 + 0.05)− 2

(
w1,0 +

1
2
k1,1

)
+ 2

(
w2,0 +

1
2
k1,2

)]

= −0.032476448,

k3,1 = h

[
w2,0 +

1
2
k2,2

]
= −0.061628322,

k3,2 = h

[
e2(t0+0.05) sin(t0 + 0.05)− 2

(
w1,0 +

1
2
k2,1

)
+ 2

(
w2,0 +

1
2
k2,2

)]

= −0.031524092,
k4,1 = h [w2,0 + k3,2] = −0.063152409,

and

k4,2 = h
[
e2(t0+0.1) sin(t0 + 0.1)− 2(w1,0 + k3,1) + 2(w2,0 + k3,2)

]
= −0.021786373.

272CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

So

w1,1 = w1,0 +
1
6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) = −0.46173334 and

w2,1 = w2,0 +
1
6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = −0.63163124.

The value w1,1 approximates u1(0.1) = y(0.1) = 0.2e2(0.1)(sin 0.1 − 2 cos 0.1),
and w2,1 approximates u2(0.1) = y′(0.1) = 0.2e2(0.1)(4 sin 0.1− 3 cos 0.1).

The set of values w1,j and w2,j , for j = 0, 1, . . . , 10, obtained using the Runge-
Kutta method of order four, are presented in Table 5.16 and are compared to the
actual values of u1(t) = 0.2e2t(sin t − 2 cos t) and u2(t) = u′1(t) = 0.2e2t(4 sin t −
3 cos t).

Table 5.16

tj y(tj) = u1(tj) w1,j y′(tj) = u2(tj) w2,j |y(tj)− w1,j | |y′(tj)− w2,j |
0.0 −0.40000000 −0.40000000 −0.60000000 −0.60000000 0 0
0.1 −0.46173297 −0.46173334 −0.6316304 −0.63163124 3.7× 10−7 7.75× 10−7

0.2 −0.52555905 −0.52555988 −0.6401478 −0.64014895 8.3× 10−7 1.01× 10−6

0.3 −0.58860005 −0.58860144 −0.6136630 −0.61366381 1.39× 10−6 8.34× 10−7

0.4 −0.64661028 −0.64661231 −0.5365821 −0.53658203 2.03× 10−6 1.79× 10−7

0.5 −0.69356395 −0.69356666 −0.3887395 −0.38873810 2.71× 10−6 5.96× 10−7

0.6 −0.72114849 −0.72115190 −0.1443834 −0.14438087 3.41× 10−6 7.75× 10−7

0.7 −0.71814890 −0.71815295 0.2289917 0.22899702 4.05× 10−6 2.03× 10−6

0.8 −0.66970677 −0.66971133 0.7719815 0.77199180 4.56× 10−6 5.30× 10−6

0.9 −0.55643814 −0.55644290 1.534764 1.5347815 4.76× 10−6 9.54× 10−6

1.0 −0.35339436 −0.35339886 2.578741 2.5787663 4.50× 10−6 1.34× 10−5

We can use dsolve from Maple on those higher-order equations that can be
solved exactly. The nth derivative y(n)(t) is specified in Maple by (D@@n)(y)(t).
To define the differential equation of Example 2, use

>def2:=(D@@2)(y)(t)-2*D(y)(t)+2*y(t)=exp(2*t)*sin(t);

and to specify the initial conditions use

>init2:=y(0)=-0.4, D(y)(0)=-0.6;

The solution is obtained by the command

>sol2:=dsolve({def2,init2},y(t));

5.7. METHODS FOR SYSTEMS OF EQUATIONS 273

as
sol2 := y(t) =

1
5
e(2t)(sin(t)− 2 cos(t))

We isolate the solution in function form using

>g:=rhs(sol2);

To obtain y(1.0) = g(1.0) = −0.3533943574, enter

>evalf(subs(t=1.0,g));

which gives the result −.3533943574.
Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve

command with the numeric option. We enter the command

>g:=dsolve({def2,init2},y(t),numeric);

with the Maple response

g := proc(rkf45 x) . . . end proc

274CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

We can approximate y(1.0) using the command

>g(1.0);

to give
[
t = 1.0, y(t) = −.353394140089434705,

∂

∂t
y(t) = 2.57874755316308502

]

Other one-step approximation methods can be extended to systems. If the
Runge-Kutta-Fehlberg method is extended, then each component of the numerical
solution w1j , w2j , . . ., wmj must be examined for accuracy. If any of the components
fail to be sufficiently accurate, the entire numerical solution must be recomputed.

The multistep methods and predictor-corrector techniques are also extended
easily to systems. Again, if error control is used, each component must be accurate.
The extension of the extrapolation technique to systems can also be done, but the
notation becomes quite involved.

5.7. METHODS FOR SYSTEMS OF EQUATIONS 275

EXERCISE SET 5.7

1. Use the Runge-Kutta method for systems to approximate the solutions of the
following systems of first-order differential equations and compare the results
to the actual solutions.

(a) u′1 = 3u1 + 2u2 − (2t2 + 1)e2t, for 0 ≤ t ≤ 1 with u1(0) = 1;
u′2 = 4u1 + u2 + (t2 + 2t− 4)e2t, for 0 ≤ t ≤ 1 with u2(0) = 1;
h = 0.2; actual solutions u1(t) = 1

3e
5t − 1

3e
−t + e2t and u2(t) =

1
3e

5t + 2
3e

−t + t2e2t.

(b) u′1 = −4u1 − 2u2 + cos t+ 4 sin t, for 0 ≤ t ≤ 2 with u1(0) = 0;
u′2 = 3u1 + u2 − 3 sin t, for 0 ≤ t ≤ 2 with u2(0) = −1;
h = 0.1; actual solutions u1(t) = 2e−t− 2e−2t +sin t and u2(t) =
−3e−t + 2e−2t.

(c) u′1 = u2, for 0 ≤ t ≤ 2 with u1(0) = 1;
u′2 = −u1 − 2et + 1, for 0 ≤ t ≤ 2 with u2(0) = 0;
u′3 = −u1 − et + 1, for 0 ≤ t ≤ 2 with u3(0) = 1;
h = 0.5; actual solutions u1(t) = cos t + sin t − et + 1, u2(t) =
− sin t+ cos t− et, and u3(t) = − sin t+ cos t.

(d) u′1 = u2 − u3 + t, for 0 ≤ t ≤ 1 with u1(0) = 1;
u′2 = 3t2, for 0 ≤ t ≤ 1 with u2(0) = 1;
u′3 = u2 + e−t, for 0 ≤ t ≤ 1 with u3(0) = −1;
h = 0.1; actual solutions u1(t) = −0.05t5 + 0.25t4 + t + 2 − e−t,
u2(t) = t3 + 1, and u3(t) = 0.25t4 + t− e−t.

2. Use the Runge-Kutta method for systems to approximate the solutions of the
following higher-order differential equations and compare the results to the
actual solutions.

(a) y′′ − 2y′ + y = tet − t, for 0 ≤ t ≤ 1 with y(0) = y′(0) = 0 and
h = 0.1; actual solution y(t) = 1

6 t
3et − tet + 2et − t− 2.

(b) t2y′′−2ty′ +2y = t3 ln t, for 1 ≤ t ≤ 2 with y(1) = 1, y′(1) = 0, and
h = 0.1; actual solution y(t) = 7

4 t+ 1
2 t

3 ln t− 3
4 t

3.

(c) y′′′ + 2y′′ − y′ − 2y = et, for 0 ≤ t ≤ 3 with y(0) = 1, y′(0) =
2, y′′(0) = 0, and h = 0.2; actual solution y(t) = 43

36e
t + 1

4e
−t −

4
9e

−2t + 1
6 te

t.

(d) t3y′′′ − t2y′′ + 3ty′ − 4y = 5t3 ln t + 9t3, for 1 ≤ t ≤ 2 with y(1) =
0, y′(1) = 1, y′′(1) = 3, and h = 0.1; actual solution y(t) = −t2 +
t cos(ln t) + t sin(ln t) + t3 ln t.

3. Change the Adams Fourth-Order Predictor-Corrector method to obtain ap-
proximate solutions to systems of first-order equations.

276CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

4. Repeat Exercise 1 using the method developed in Exercise 3.

5. The study of mathematical models for predicting the population dynamics of
competing species has its origin in independent works published in the early
part of this century by A. J. Lotka and V. Volterra. Consider the problem of
predicting the population of two species, one of which is a predator, whose
population at time t is x2(t), feeding on the other, which is the prey, whose
population is x1(t). We will assume that the prey always has an adequate
food supply and that its birth rate at any time is proportional to the number
of prey alive at that time; that is, birth rate (prey) is k1x1(t). The death rate
of the prey depends on both the number of prey and predators alive at that
time. For simplicity, we assume death rate (prey) = k2x1(t)x2(t). The birth
rate of the predator, on the other hand, depends on its food supply, x1(t),
as well as on the number of predators available for reproduction purposes.
For this reason, we assume that the birth rate (predator) is k3x1(t)x2(t). The
death rate of the predator will be taken as simply proportional to the number
of predators alive at the time; that is, death rate (predator) = k4x2(t).

Since x′1(t) and x′2(t) represent the change in the prey and predator popu-
lations, respectively, with respect to time, the problem is expressed by the
system of nonlinear differential equations

x′1(t) = k1x1(t)− k2x1(t)x2(t) and x′2(t) = k3x1(t)x2(t)− k4x2(t).

Solve this system for 0 ≤ t ≤ 4, assuming that the initial population of the
prey is 1000 and of the predators is 500 and that the constants are k1 =
3, k2 = 0.002, k3 = 0.0006, and k4 = 0.5. Is there a stable solution to this
population model? If so, for what values x1 and x2 is the solution stable?

6. In Exercise 5 we considered the problem of predicting the population in a
predator-prey model. Another problem of this type is concerned with two
species competing for the same food supply. If the numbers of species alive
at time t are denoted by x1(t) and x2(t), it is often assumed that, although
the birth rate of each of the species is simply proportional to the number
of species alive at that time, the death rate of each species depends on the
population of both species. We will assume that the population of a particular
pair of species is described by the equations

dx1(t)
dt

= x1(t)[4− 0.0003x1(t)− 0.0004x2(t)]

and

dx2(t)
dt

= x2(t)[2− 0.0002x1(t)− 0.0001x2(t)].

If it is known that the initial population of each species is 10,000, find the
solution to this system for 0 ≤ t ≤ 4. Is there a stable solution to this
population model? If so, for what values of x1 and x2 is the solution stable?

5.8. STIFF DIFFERENTIAL EQUATIONS 277

5.8 Stiff Differential Equations

All the methods for approximating the solution to initial-value problems have er-
ror terms that involve a higher derivative of the solution of the equation. If the
derivative can be reasonably bounded, then the method will have a predictable er-
ror bound that can be used to estimate the accuracy of the approximation. Even if
the derivative grows as the steps increase, the error can be kept in relative control,
provided that the solution also grows in magnitude. Problems frequently arise, how-
ever, where the magnitude of the derivative increases, but the solution does not.
In this situation, the error can grow so large that it dominates the calculations.
Initial -value problems for which this is likely to occur are called stiff equations
and are quite common, particularly in the study of vibrations, chemical reactions,
and electrical circuits. Stiff systems derive their name from the motion of spring
and mass systems that have large spring constants.

Stiff differential equations are characterized as those whose exact solution has
a term of the form e−ct, here c is a large positive constant. This is usually only a
part of the solution, called the transient solution, the more important portion of the
solution is called the steady-state solution. A transient portion of a stiff equation
will rapidly decay to zero as t increases, but since the nth derivative of this term
has magnitude cne−ct, the derivative does not decay as quickly. In fact, since the
derivative in the error term is evaluated not at t, but at a number between zero
and t, the derivative terms may increase as t increases—and very rapidly indeed.
Fortunately, stiff equations can generally be predicted from the physical problem
from which the equation is derived, and with care the error can be kept under
control. The manner in which this is done is considered in this section.

EXAMPLE 1 The system of initial-value problems

u′1 = 9u1 + 24u2 + 5 cos t− 1
3

sin t, with u1(0) =
4
3

u′2 = −24u1 − 51u2 − 9 cos t+
1
3

sin t, with u2(0) =
2
3

has the unique solution

u1(t) = 2e−3t − e−39t +
1
3

cos t,

u2(t) = −e−3t + 2e−39t − 1
3

cos t.

The transient term e−39t in the solution causes this system to be stiff. Applying the
Runge-Kutta Fourth-Order method for systems gives results listed in Table 5.17.
Accurate approximations occur when h = 0.05. Increasing the step-size to h = 0.1,
however, leads to the disastrous results shown in the table.

278CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

Table 5.17

w1(t) w1(t) w2(t) w2(t)
t u1(t) h = 0.05 h = 0.1 u2(t) h = 0.05 h = 0.1

0.1 1.793061 1.712219 −2.645169 −1.032001 −0.8703152 7.844527
0.2 1.423901 1.414070 −18.45158 −0.8746809 −0.8550148 38.87631
0.3 1.131575 1.130523 −87.47221 −0.7249984 −0.7228910 176.4828
0.4 0.9094086 0.9092763 −934.0722 −0.6082141 −0.6079475 789.3540
0.5 0.7387877 9.7387506 −1760.016 −0.5156575 −0.5155810 3520.00
0.6 0.6057094 0.6056833 −7848.550 −0.4404108 −0.4403558 15697.84
0.7 0.4998603 0.4998361 −34989.63 −0.3774038 −0.3773540 69979.87
0.8 0.4136714 0.4136490 −155979.4 −0.3229535 −0.3229078 311959.5
0.9 0.3416143 0.3415939 −695332.0 −0.2744088 −0.2743673 1390664.
1.0 0.2796748 0.2796568 −3099671. −0.2298877 −0.2298511 6199352.

Although stiffness is usually associated with systems of differential equations,
the approximation characteristics of a particular numerical method applied to a
stiff system can be predicted by examining the error produced when the method is
applied to a simple test equation,

y′ = λy, with y(0) = α,

where λ is a negative real number. The solution to this equation contains the
transient solution eλt and the steady-state solution is zero, so the approximation
characteristics of a method are easy to determine. (A more complete discussion of
the round-off error associated with stiff systems requires examining the test equation
when λ is a complex number with negative real part.)

Suppose that we apply Euler’s method to the test equation. Letting h = (b −
a)/N and tj = jh, for j = 0, 1, 2, . . . , N , implies that

w0 = α

and

wj+1 = wj + h(λwj) = (1 + hλ)wj ,

so

wj+1 = (1 + hλ)j+1w0 = (1 + hλ)j+1α, for j = 0, 1, . . . , N − 1. (5.6)

Since the exact solution is y(t) = αeλt, the absolute error is

|y(tj)− wj | = |ejhλ − (1 + hλ)j | |α| = |(ehλ)j − (1 + hλ)j | |α|,

5.8. STIFF DIFFERENTIAL EQUATIONS 279

and the accuracy is determined by how well the term 1 + hλ approximates ehλ.
When λ < 0, the exact solution, (ehλ)j , decays to zero as j increases, but, by
Eq. (5.6), the approximation will have this property only if |1 + hλ| < 1. This
effectively restricts the step size h for Euler’s method to satisfy |1 +hλ| < 1, which
in turn implies that h < 2/|λ|.

Suppose now that a round-off error δ0 is introduced in the initial condition for
Euler’s method,

w0 = α+ δ0.

At the jth step the round-off error is

δj = (1 + hλ)jδ0.

If λ < 0, the condition for the control of the growth of round-off error is the same
as the condition for controlling the absolute error: h < 2/|λ|.

The situation is similar for other one-step methods. In general, a function Q ex-
ists with the property that the difference method, when applied to the test equation,
gives

wj+1 = Q(hλ)wj .

The accuracy of the method depends upon how well Q(hλ) approximates ehλ, and
the error will grow without bound if |Q(hλ)| > 1.

The problem of determining when a method is stable is more complicated in
the case of multistep methods, due to the interplay of previous approximations
at each step. Explicit multistep methods tend to have stability problems, as do
predictor-corrector methods, since they involve explicit techniques. In practice, the
techniques used for stiff systems are implicit multistep methods. Generally, wi+1

is obtained by iteratively solving a nonlinear equation or nonlinear system, often
by Newton’s method. To illustrate the procedure, consider the following implicit
technique.

[Implicit Trapezoidal Method]

w0 = α

wj+1 = wj +
h

2
[f(tj+1, wj+1) + f(tj , wj)]

where j = 0, 1, . . . , N − 1.

To determine w1 using this technique, we apply Newton’s method to find the
root of the equation

0 = F (w) = w − w0 − h

2
[f(t0, w0) + f(t1, w)] = w − α− h

2
[f(a, α) + f(t1, w)].

280CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

To approximate this solution, select w(0)
1 (usually as w0) and generate w

(k)
1 by

applying Newton’s method to obtain

w
(k)
1 = w

(k−1)
1 − F (w(k−1)

1)

F ′(w(k−1)
1)

= w
(k−1)
1 − w

(k−1)
1 − α− h

2 [f(a, α) + f(t1, w
(k−1)
1)]

1− h
2 fy(t1, w

(k−1)
1)

until |w(k)
1 −w(k−1)

1 | is sufficiently small. Normally only three or four iterations are
required.

Once a satisfactory approximation for w1 has been determined, the method is
repeated to find w2 and so on. This is the procedure incorporated in TRAPNT58,
which implements this technique.

Alternatively, the Secant method can be used in the Implicit Trapezoidal method
in place of Newton’s method, but then two distinct initial approximations to wj+1

are required. To determine these, the usual practice is to let w(0)
j+1 = wj and obtain

w
(1)
j+1 from some explicit multistep method. When a system of stiff equations is

involved, a generalization is required for either Newton’s or the Secant method.
These topics are considered in Chapter 10.

EXAMPLE 2 The stiff initial-value problem

y′ = 5e5t(y − t)2 + 1, for 0 ≤ t ≤ 1, with y(0) = −1

has solution y(t) = t−e−5t. To show the effects of stiffness, the Trapezoidal method
and the Runge-Kutta fourth-order method are applied both with N = 4, giving
h = 0.25, and with N = 5, giving h = 0.20. The Trapezoidal method performs
well in both cases, using M = 10 and TOL = 10−6, as does Runge-Kutta with
h = 0.2, as shown in Table 5.18. However, for h = 0.25 the Runge-Kutta method
gives inaccurate results, as shown in Table 5.19.

Table 5.18

Runge–Kutta Method Trapezoidal Method

h = 0.2 h = 0.2
ti wi |y(ti)− wi| wi |y(ti)− wi|
0.0 −1.0000000 0 −1.0000000 0
0.2 −0.1488521 1.9027× 10−2 −0.1414969 2.6383× 10−2

0.4 0.2684884 3.8237× 10−3 0.2748614 1.0197× 10−2

0.6 0.5519927 1.7798× 10−3 0.5539828 3.7700× 10−3

0.8 0.7822857 6.0131× 10−4 0.7830720 1.3876× 10−3

1.0 0.9934905 2.2845× 10−4 0.9937726 5.1050× 10−4

5.8. STIFF DIFFERENTIAL EQUATIONS 281

Table 5.19

Runge–Kutta Method Trapezoidal Method

h = 0.25 h = 0.25
ti wi |y(ti)− wi| wi |y(ti)− wi|
0.0 −1.0000000 0 −1.0000000 0
0.25 0.4014315 4.37936× 10−1 0.0054557 4.1961× 10−2

0.5 3.4374753 3.01956 0.4267572 8.8422× 10−3

0.75 1.44639× 1023 1.44639× 1023 0.7291528 2.6706× 10−3

1.0 Overflow 0.9940199 7.5790× 10−4

282CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

EXERCISE SET 5.8

1. Solve the following stiff initial-value problems using Euler’s method and com-
pare the results with the actual solution.

(a) y′ = −9y, for 0 ≤ t ≤ 1, with y(0) = e and h = 0.1; actual solution
y(t) = e1−9t.

(b) y′ = −20(y − t2) + 2t, for 0 ≤ t ≤ 1, with y(0) = 1
3 and h = 0.1;

actual solution y(t) = t2 + 1
3e

−20t.

(c) y′ = −20y + 20 sin t + cos t, for 0 ≤ t ≤ 2, with y(0) = 1 and
h = 0.25; actual solution y(t) = sin t+ e−20t.

(d) y′ =
50
y
− 50y, for 0 ≤ t ≤ 1, with y(0) =

√
2 and h = 0.1; actual

solution y(t) = (1 + e−100t)1/2.

2. Repeat Exercise 1 using the Runge-Kutta Fourth-Order method.

3. Repeat Exercise 1 using the Adams Fourth-Order Predictor-Corrector method.

4. Repeat Exercise 1 using the Trapezoidal method with a tolerance of 10−5.

5. The Backward Euler One-Step method is defined by

wi+1 = wi + hf(ti+1, wi+1) for i = 0, 1, . . . , N − 1.

Repeat Exercise 1 using the Backward Euler method incorporating Newton’s
method to solve for wi+1.

6. In Exercise 11 of Section 5.2, the differential equation

dp(t)
dt

= rb(1− p(t))

was obtained as a model for studying the proportion p(t) of nonconformists
in a society whose birth rate was b and where r represented the rate at which
offspring would become nonconformists when at least one of their parents was
a conformist. That exercise requiredthat an approximation for p(t) be found
by using Euler’s method for integral values of t when given p(0) = 0.01, b =
0.02, and r = 0.1, and then the approximation for p(50) be compared with the
actual value. Use the Trapezoidal method to obtain another approximation
for p(50), again assuming that h = 1 year.

5.9. SURVEY OF METHODS AND SOFTWARE 283

5.9 Survey of Methods and Software

In this chapter we have considered methods to approximate the solutions to initial-
value problems for ordinary differential equations. We began with a discussion of the
most elementary numerical technique, Euler’s method. This procedure is not suffi-
ciently accurate to be of use in applications, but it illustrates the general behavior
of the more powerful techniques, without the accompanying algebraic difficulties.
The Taylor methods were then considered as generalizations of Euler’s method.
They were found to be accurate but cumbersome because of the need to determine
extensive partial derivatives of the defining function of the differential equation.
The Runge-Kutta formulas simplified the Taylor methods, while not significantly
increasing the error. To this point we had considered only one-step methods, tech-
niques that use only data at the most recently computed point.

Multistep methods are discussed in Section 5.4, where Explicit methods of
Adams-Bashforth type and implicit methods of Adams-Moulton type were consid-
ered. These culminate in predictor-corrector methods, which use an explicit method,
such as an Adams-Bashforth, to predict the solution and then apply a corresponding
implicit method, like an Adams-Moulton, to correct the approximation.

Section 5.7 illustrated how these techniques can be used to solve higher-order
initial-value problems and systems of initial-value problems.

The more accurate adaptive methods are based on the relatively uncomplicated
one-step and multistep techniques. In particular, we saw in Section 5.6 that the
Runge-Kutta-Fehlberg method is a one-step procedure that seeks to select mesh
spacing to keep the local error of the approximation under control. The Variable
Step-Size Predictor-Corrector method also presented in Section 5.6 is based on
the four-step Adams-Bashforth method and three-step Adams-Moulton method.
It also changes the step size to keep the local error within a given tolerance. The
Extrapolation method discussed in Section 5.5 is based on a modification of the
Midpoint method and incorporates extrapolation to maintain a desired accuracy of
approximation.

The final topic in the chapter concerned the difficulty that is inherent in the
approximation of the solution to a stiff equation, a differential equation whose exact
solution contains a portion of the form e−λt, where λ is a positive constant. Special
caution must be taken with problems of this type, or the results can be overwhelmed
by roundoff error.

Methods of the Runge-Kutta-Fehlberg type are generally sufficient for nonstiff
problems when moderate accuracy is required. The extrapolation procedures are
recommended for nonstiff problems where high accuracy is required. Extensions of
the Implicit Trapezoidal method to variable-order and variable step-size implicit
Adams-type methods are used for stiff initial-value problems.

The ISML Library includes
two subroutines for approximating the solutions of initial-value problems. One

is a variable step-size subroutine similar to the Runge-Kutta-Fehlberg method but
based on fifth- and sixth- order formulas. The other subroutine is designed for stiff
systems and uses implicit multistep methods of order up to 12. The NAG Library
contains a Runge-Kutta type formula with a variable step size. A variable order,

284CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

variable-step-size backward-difference method for stiff systems is also available.
The netlib Library includes several subroutines for approximating the solu-

tions of initial-value problems in the package ODE, located on the Internet at
http://www.netlib.org/ode. The subroutine dverk.f is based on the Runge-Kutta-
Verner fifth- and sixth-order methods. The subroutine rkf45.f is based on the Runge-
Kutta-Fehlberg fourth- and fifth-order methods as described in Section 5.6. For stiff
ordinary differential equation initial-value problems the subroutine epsode.f based
on variable coefficient backward differentiation formula can be used.

Many books specialize in the numerical solution of initial-value problems. Two
classics are by Henrici [He1] and Gear [Ge1]. Other books that survey the field
are by Botha and Pinder [BP], Ortega and Poole [OP], Golub and Ortega [GO],
Shampine [Sh], and Dormand [Do]. Two books by Hairer, Nörsett, and Warner
provide comprehensive discussions on nonstiff [HNW1] and stiff [HNW2] problems.
The book by Burrage [Bur] describes parallel and sequential methods.

Chapter 6

Direct Methods for Solving
Linear Systems

6.1 Introduction

Systems of equations are used to represent physical problems that involve the in-
teraction of various properties. The variables in the system represent the properties
being studied, and the equations describe the interaction between the variables.
The system is easiest to study when the equations are all linear. Often the number
of equations is the same as the number of variables, for only in this case is it likely
that a unique solution will exist.

Although not all physical problems can be reasonably represented using a linear
system with the same number of equations as unknowns, the solutions to many
problems either have this form or can be approximated by such a system. In fact,
this is quite often the only approach that can give quantitative information about
a physical problem.

In this chapter we consider direct methods for approximating the solution of a
system of n linear equations in n unknowns. A direct method is one that gives the
exact solution to the system, if it is assumed that all calculations can be performed
without round-off error effects. This assumption is idealized. We will need to con-
sider quite carefully the role of finite-digit arithmetic error in the approximation
to the solution to the system and how to arrange the calculations to minimize its
effect.

6.2 Gaussian Elimination

If you have studied linear algebra or matrix theory, you probably have been in-
troduced to Gaussian elimination, the most elementary method for systematically
determining the solution of a system of linear equations. Variables are eliminated
from the equations until one equation involves only one variable, a second equation

285

286 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

involves only that variable and one other, a third has only these two and one ad-
ditional, and so on. The solution is found by solving for the variable in the single
equation, using this to reduce the second equation to one that now contains a single
variable, and so on, until values for all the variables are found.

Three operations are permitted on a system of equations (En).

[Operations on Systems of Equations]

1. Equation Ei can be multiplied by any nonzero constant λ, with the
resulting equation used in place of Ei. This operation is denoted
(λEi)→ (Ei).

2. Equation Ej can be multiplied by any constant λ, and added to equation
Ei, with the resulting equation used in place of Ei. This operation is
denoted (Ei + λEj)→ (Ei).

3. Equations Ei and Ej can be transposed in order. This operation is
denoted (Ei)↔ (Ej).

By a sequence of the operations just given, a linear system can be transformed
to a more easily solved linear system with the same solutions. The sequence of
operations is illustrated in the next example.

EXAMPLE 1 The four equations

E1: x1 + x2 + 3x4 = 4,
E2: 2x1 + x2 − x3 + x4 = 1,
E3: 3x1 − x2 − x3 + 2x4 = −3,
E4: −x1 + 2x2 + 3x3 − x4 = 4,

will be solved for x1, x2, x3, and x4. First use equation E1 to eliminate the unknown
x1 from E2, E3, and E4 by performing (E2− 2E1)→ (E2), (E3− 3E1)→ (E3), and
(E4 + E1)→ (E4). The resulting system is

E1: x1 + x2 + 3x4 = 4,
E2: − x2 − x3 − 5x4 = −7,
E3: − 4x2 − x3 − 7x4 = −15,
E4: 3x2 + 3x3 + 2x4 = 8,

where, for simplicity, the new equations are again labeled E1, E2, E3, and E4.
In the new system, E2 is used to eliminate x2 from E3 and E4 by (E3−4E2)→

(E3) and (E4 + 3E2)→ (E4), resulting in

E1: x1 + x2 + 3x4 = 4,
E2: − x2 − x3 − 5x4 = −7,
E3: 3x3 + 13x4 = 13,
E4: − 13x4 = −13.

6.2. GAUSSIAN ELIMINATION 287

The system of equations is now in triangular (or reduced) form and can be
solved for the unknowns by a backward-substitution process.Noting that E4 implies
x4 = 1, we can solve E3 for x3:

x3 =
1
3
(13− 13x4) =

1
3
(13− 13) = 0.

Continuing, E2 gives

x2 = −(−7 + 5x4 + x3) = −(−7 + 5 + 0) = 2,

and E1 gives
x1 = 4− 3x4 − x2 = 4− 3− 2 = −1.

The solution is, therefore, x1 = −1, x2 = 2, x3 = 0, and x4 = 1. It is easy to verify
that these values solve the original system of equations.

When performing the calculations of Example 1, we did not need to write out
the full equations at each step or to carry the variables x1, x2, x3, and x4 through
the calculations, since they always remained in the same column. The only variation
from system to system occurred in the coefficients of the unknowns and in the values
on the right side of the equations. For this reason, a linear system is often replaced
by a matrix, a rectangular array of elements in which not only is the value of
an element important, but also its position in the array. The matrix contains all
the information about the system that is necessary to determine its solution in a
compact form.

The notation for an n×m (n by m) matrix will be a capital letter, such as A,
for the matrix and lowercase letters with double subscripts, such as aij , to refer to
the entry at the intersection of the ith row and jth column; that is,

A = [aij] =




a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
an1 an2 · · · anm


 .

EXAMPLE 2 The matrix

A =
[

2 −1 7
3 1 0

]

is a 2×3 matrix with a11 = 2, a12 = −1, a13 = 7, a21 = 3, a22 = 1, and a23 = 0.

The 1×n matrix A = [a11 a12 · · · a1n] is called an n-dimensional row vector,
and an n× 1 matrix

A =




a11

a21

...
an1




288 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

is called an n-dimensional column vector. Usually the unnecessary subscript is
omitted for vectors and a boldface lowercase letter is used for notation. So,

x =




x1

x2

...
xn




denotes a column vector, and y = [y1 y2 · · · yn] denotes a row vector.
A system of n linear equations in the n unknowns x1, x2, . . . , xn has the form

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
an1x1 + an2x2 + · · ·+ annxn = bn.

An n×(n+1) matrix can be used to represent this linear system by first constructing

A = [aij] =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann


 and b =




b1
b2
...
bn




and then combining these matrices to form the augmented matrix:

[A,b] =




a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
an1 an2 · · · ann bn


 ,

where the vertical dotted line is used to separate the coefficients of the unknowns
from the values on the right-hand side of the equations.

Repeating the operations involved in Example 1 with the matrix notation results
in first considering the augmented matrix:




1 1 0 3 4
2 1 −1 1 1
3 −1 −1 2 −3
−1 2 3 −1 4


 .

Performing the operations as described in that example produces the matrices



1 1 0 3 4
0 −1 −1 −5 −7
0 −4 −1 −7 −15
0 3 3 2 8


 and




1 1 0 3 4
0 −1 −1 −5 −7
0 0 3 13 13
0 0 0 −13 −13


 .

6.2. GAUSSIAN ELIMINATION 289

The latter matrix can now be transformed into its corresponding linear system
and solutions for x1, x2, x3, and x4 obtained. The procedure involved in this process
is called Gaussian Elimination with Backward Substitution.

The general Gaussian elimination procedure applied to the linear system

E1: a11x1 + a12x2 + · · · + a1nxn = b1,

E2: a21x1 + a22x2 + · · · + a2nxn = b2,

...
En: an1x1 + an2x2 + · · · + annxn = bn,

is handled in a similar manner. First form the augmented matrix Ã:

Ã = [A,b] =




a11 a12 · · · a1n a1,n+1

a21 a22 · · · a2n a2,n+1

...
...

...
...

an1 an2 · · · ann an,n+1


 ,

where A denotes the matrix formed by the coefficients and the entries in the (n+1)st
column are the values of b; that is, ai,n+1 = bi for each i = 1, 2, . . . , n.

Suppose that a11
= 0. To convert the entries in the first column, below a11,
to zero, we perform the operations (Ek −mk1E1) → (Ek) for each k = 2, 3 . . . , n
for an appropriate multiplier mk1. We first designate the diagonal element in the
column, a11 as the pivot element. The multiplier for the kth row is defined
by mk1 = ak1/a11. Performing the operations (Ek − mk1E1) → (Ek) for each
k = 2, 3, . . . , n eliminates (that is, change to zero) the coefficient of x1 in each of
these rows:



a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
an1 an2 · · · ann bn




E2 −m21E1 → E2

E3 −m31E1 → E3

...
En −mn1E1 → En




a11 a12 · · · a1n b1
0 a22 · · · a2n b2
...

...
...

...
0 an2 · · · ann bn


 .

Although the entries in rows 2, 3, . . . , n are expected to change, for ease of notation,
we again denote the entry in the ith row and the jth column by aij .

If the pivot element a22
= 0, we form the multipliers mk2 = ak2/a22 and perform
the operations (Ek −mk2E2)→ Ek for each k = 3, . . . , n obtaining



a11 a12 · · · a1n b1
0 a22 · · · a2n b2
...

...
...

...
0 an2 · · · ann bn



E3 −m32E2 → E3

...
En −mn2E2 → En




a11 a12 · · · a1n b1
0 a22 · · · a2n b2
...

...
...

...
0 0 · · · ann bn




We then follow this sequential procedure for the rows i = 3 . . . , n − 1. Define
the multiplier mki = aki/aii and perform the operation

(Ek −mkiEi)→ (Ek)

290 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

for each k = i + 1, i + 2, . . . , n, provided the pivot element aii is nonzero. This
eliminates xi in each row below the ith for all values of i = 1, 2, . . . , n − 1. The
resulting matrix has the form

˜̃A =




a11 a12 · · · a1n a1,n+1

0 a22 · · · a2n a2,n+1

...
...

0 0 ann an,n+1


 ,

where, except in the first row, the values of aij are not expected to agree with those

in the original matrix Ã. The matrix ˜̃A represents a linear system with the same
solution set as the original system. Since the new linear system is triangular,

a11x1 + a12x2 + · · · + a1nxn = a1,n+1,
a22x2 + · · · + a2nxn = a2,n+1,

...
...

annxn = an,n+1,

backward substitution can be performed. Solving the nth equation for xn gives

xn =
an,n+1

ann
.

Then solving the (n − 1)st equation for xn−1 and using the known value for xn

yields

xn−1 =
an−1,n+1 − an−1,nxn

an−1,n−1
.

Continuing this process, we obtain

xi =
ai,n+1 − (ai,i+1xi+1 + · · ·+ ai,nxn)

aii
=
ai,n+1 −

∑n
j=i+1 aijxj

aii

for each i = n− 1, n− 2, . . . , 2, 1.
The procedure will fail if at the ith step the pivot element aii is zero, for then

either the multipliers mki = aki/aii are not defined (this occurs if aii = 0 for some
i < n) or the backward substitution cannot be performed (if ann = 0). This does
not necessarily mean that the system has no solution, but rather that the technique
for finding the solution must be altered. An illustration is given in the following
example.

EXAMPLE 3 Consider the linear system

E1: x1 − x2 + 2x3 − x4 = −8,
E2: 2x1 − 2x2 + 3x3 − 3x4 = −20,
E3: x1 + x2 + x3 = −2,
E4: x1 − x2 + 4x3 + 3x4 = 4.

6.2. GAUSSIAN ELIMINATION 291

The augmented matrix is



1 −1 2 −1 −8
2 −2 3 −3 −20
1 1 1 0 −2
1 −1 4 3 4


 .

Performing the operations

(E2 − 2E1)→ (E2), (E3 − E1)→ (E3), and (E4 − E1)→ (E4),

we have the matrix 


1 −1 2 −1 −8
0 0 −1 −1 −4
0 2 −1 1 6
0 0 2 4 12


 .

The element a22 in this matrix is zero, so the procedure cannot continue in its
present form. But operations of the form (Ei)↔ (Ep) are permitted, so a search is
made of the elements a32 and a42 for the first nonzero element. Since a32
= 0, the
operation (E2)↔ (E3) is performed to obtain a new matrix:




1 −1 2 −1 −8
0 2 −1 1 6
0 0 −1 −1 −4
0 0 2 4 12


 .

The variable x2 is already eliminated from E3 and E4, so the computations continue
with the operation (E4 + 2E3)→ (E4), giving




1 −1 2 −1 −8
0 2 −1 1 6
0 0 −1 −1 −4
0 0 0 2 4


 .

Finally, the backward substitution is applied:

x4 =
4
2

= 2, x3 =
[−4− (−1)x4]

−1
= 2,

x2 =
[6− ((−1)x3 + x4)]

2
= 3, x1 =

[−8− ((−1)x2 + 2x3 + (−1)x4)]
1

= −7.

To define matrices and perform Gaussian elimination using Maple, you must
first access the linear algebra library using the command

>with(linalg);

292 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

To define the the initial augmented matrix in Example 3, which we will call AA,
use the command

>AA:=matrix(4,5,[1,-1,2,-1,-8,2,-2,3,-3,-20,1,1,1,0,-2,1,-1,4,3,4]);

The first two parameters, 4 and 5, give the number of rows and columns, respec-
tively, and the last parameter is a list, by rows, of the entries of AA. The function
addrow(AA,i,j,m) performs the operation (Ej + mEi) → (Ej) and the function
swaprow(AA,i,j) performs the operation (Ei)↔ (Ej). So, the sequence of opera-
tions

>AA:=addrow(AA,1,2,-2);
>AA:=addrow(AA,1,3,-1);
>AA:=addrow(AA,1,4,-1);
>AA:=swaprow(AA,2,3);
>AA:=addrow(AA,3,4,2);

gives the final reduction, which is again called AA. Alternatively, the single com-
mand AA:=gausselim(AA); returns the reduced matrix. A final operation,

>x:=backsub(AA);

produces the solution x := [−7, 3, 2, 2].
Example 3 illustrates what is done if one of the pivot elements is zero. If the

ith pivot element is zero,the ith column of the matrix is searched from the ith row
downward for the first nonzero entry, and a row interchange is performed to obtain
the new matrix. Then the procedure continues as before. If no nonzero entry is
found the procedure stops, and the linear system does not have a unique solution; it
might have no solution or an infinite number of solutions. The program GAUSEL61
implements Gaussian Elimination with Backward Substitution and incorporates
row interchanges when required.

The computations in the program are performed using only one n × (n + 1)
array for storage. This is done by replacing, at each step, the previous value of aij

by the new one. In addition, the multipliers are stored in the locations of aki known
to have zero values—that is, when i < n and k = i + 1, i + 2, . . . , n. Thus, the
original matrix A is overwritten by the multipliers below the main diagonal and by
the nonzero entries of the final reduced matrix on and above the main diagonal. We
will see in Section 6.5 that these values can be used to solve other linear systems
involving the original matrix A.

Both the amount of time required to complete the calculations and the subse-
quent round-off error depend on the number of floating-point arithmetic operations
needed to solve a routine problem. In general, the amount of time required to per-
form a multiplication or division on a computer is approximately the same and is
considerably greater than that required to perform an addition or subtraction. Even
though the actual differences in execution time depend on the particular computing
system being used, the count of the additions/subtractions are kept separate from
the count of the multiplications/divisions because of the time differential. The total

6.2. GAUSSIAN ELIMINATION 293

number of arithmetic operations depends on the size n, as follows:

Multiplications/divisions:
n3

3
+ n2 − n

3
.

Additions/subtractions:
n3

3
+
n2

2
− 5n

6
.

For large n, the total number of multiplications and divisions is approximately
n3/3, that is, O(n3), as is the total number of additions and subtractions. The
amount of computation, and the time required to perform it, increases with n in
approximate proportion to n3/3, as shown in Table 6.1.

Table 6.1

n Multiplications/Divisions Additions/Subtractions

3 17 11
10 430 375
50 44, 150 42, 875
100 343, 300 338, 250

294 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

EXERCISE SET 6.2

1. Obtain a solution by graphical methods of the following linear systems, if
possible.

(a) x1 + 2x2 = 3,
x1 − x2 = 0.

(b) x1 + 2x2 = 0,
x1 − x2 = 0.

(c) x1 + 2x2 = 3,
2x1 + 4x2 = 6.

(d) x1 + 2x2 = 3,
−2x1 − 4x2 = 6.

(e) x1 + 2x2 = 0,
2x1 + 4x2 = 0.

(f) 2x1 + x2 = −1,
x1 + x2 = 2,
x1 − 3x2 = 5.

(g) 2x1 + x2 = −1,
4x1 + 2x2 = −2,
x1 − 3x2 = 5.

(h) 2x1 + x2 + x3 = 1,
2x1 + 4x2 − x3 = −1.

2. Use Gaussian elimination and two-digit rounding arithmetic to solve the fol-
lowing linear systems. Do not reorder the equations. (The exact solution to
each system is x1 = 1, x2 = −1, x3 = 3.)

(a) 4x1 − x2 + x3 = 8,
2x1 + 5x2 + 2x3 = 3,
x1 + 2x2 + 4x3 = 11.

(b) 4x1 + x2 + 2x3 = 9,
2x1 + 4x2 − x3 = −5,
x1 + x2 − 3x3 = −9.

3. Use Gaussian elimination to solve the following linear systems, if possible,
and determine whether row interchanges are necessary:

(a) x1 − x2 + 3x3 = 2,
3x1 − 3x2 + x3 = −1,
x1 + x2 = 3.

(b) 2x1 − 1.5x2 + 3x3 = 1,
−x1 + 2x3 = 3,
4x1 − 4.5x2 + 5x3 = 1.

(c) 2x1 = 3,
x1 + 1.5x2 = 4.5,

−3x2 + 0.5x3 = −6.6,
2x1 − 2x2 + x3 + x4 = 0.8.

(d) x1 − 1
2x2 + x3 = 4,

2x1 − x2 − x3 + x4 = 5,
x1 + x2 = 2,
x1 − 1

2x2 + x3 + x4 = 5.

(e) x1 + x2 + x4 = 2,
2x1 + x2 − x3 + x4 = 1,
4x1 − x2 − 2x3 + 2x4 = 0,
3x1 − x2 − x3 + 2x4 = −3.

(f) x1 + x2 + x4 = 2,
2x1 + x2 − x3 + x4 = 1,
−x1 + 2x2 + 3x3 − x4 = 4,
3x1 − x2 − x3 + 2x4 = −3.

6.2. GAUSSIAN ELIMINATION 295

4. Use Maple with Digits set to 7 and Gaussian elimination to solve the follow-
ing linear systems.

(a) 1
4x1 + 1

5x2 + 1
6x3 = 9,

1
3x1 + 1

4x2 + 1
5x3 = 8,

1
2x1 + x2 + 2x3 = 8.

(b) 3.333x1 + 15920x2 − 10.333x3 = 15913,
2.222x1 + 16.71x2 + 9.612x3 = 28.544,

1.5611x1 + 5.1791x2 + 1.6852x3 = 8.4254.

(c) x1 + 1
2x2 + 1

3x3 + 1
4x4 = 1

6 ,
1
2x1 + 1

3x2 + 1
4x3 + 1

5x4 = 1
7 ,

1
3x1 + 1

4x2 + 1
5x3 + 1

6x4 = 1
8 ,

1
4x1 + 1

5x2 + 1
6x3 + 1

7x4 = 1
9 .

(d) 2x1 + x2 − x3 + x4 − 3x5 = 7,
x1 + 2x3 − x4 + x5 = 2,

− 2x2 − x3 + x4 − x5 = −5,
3x1 + x2 − 4x3 + 5x5 = 6,
x1 − x2 − x3 − x4 + x5 = 3.

5. Given the linear system

2x1 − 6αx2 = 3,
3αx1 − x2 = 3

2 .

(a) Find value(s) of α for which the system has no solutions.

(b) Find value(s) of α for which the system has an infinite number of solu-
tions.

(c) Assuming a unique solution exists for a given α, find the solution.

6. Given the linear system

x1 − x2 + αx3 = −2,
−x1 + 2x2 − αx3 = 3,
αx1 + x2 + x3 = 2.

(a) Find value(s) of α for which the system has no solutions.

(b) Find value(s) of α for which the system has an infinite number of solu-
tions.

(c) Assuming a unique solution exists for a given α, find the solution.

296 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

7. Suppose that in a biological system there are n species of animals and m
sources of food. Let xj represent the population of the jth species for each
j = 1, . . . , n; bi represent the available daily supply of the ith food; and aij

represent the amount of the ith food consumed on the average by a member
of the jth species. The linear system

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

represents an equilibrium where there is a daily supply of food to precisely
meet the average daily consumption of each species.

(a) Let

A = [aij] =




1 2 0 3
1 0 2 2
0 0 1 1


 ,

x = (xj) = [1000, 500, 350, 400], and b = (bi) = [3500, 2700, 900]. Is
there sufficient food to satisfy the average daily consumption?

(b) What is the maximum number of animals of each species that could be
individually added to the system with the supply of food still meeting
the consumption?

(c) If species 1 became extinct, how much of an individual increase of each
of the remaining species could be supported?

(d) If species 2 became extinct, how much of an individual increase of each
of the remaining species could be supported?

8. A Fredholm integral equation of the second kind is an equation of the form

u(x) = f(x) +
∫ b

a

K(x, t)u(t) dt,

where a and b and the functions f and K are given. To approximate the
function u on the interval [a, b], a partition x0 = a < x1 < · · · < xm−1 <
xm = b is selected and the equations

u(xi) = f(xi) +
∫ b

a

K(xi, t)u(t) dt, for each i = 0, . . . ,m,

are solved for u(x0), u(x1), . . . , u(xm). The integrals are approximated using
quadrature formulas based on the nodes x0, . . . , xm. In our problem, a = 0,
b = 1, f(x) = x2, and K(x, t) = e|x−t|.

6.2. GAUSSIAN ELIMINATION 297

(a) Show that the linear system

u(0) = f(0) + 1
2 [K(0, 0)u(0) +K(0, 1)u(1)],

u(1) = f(1) + 1
2 [K(1, 0)u(0) +K(1, 1)u(1)]

must be solved when the Trapezoidal rule is used.

(b) Set up and solve the linear system that results when the Composite
Trapezoidal rule is used with n = 4.

(c) Repeat part (b) using the Composite Simpson’s rule.

298 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

6.3 Pivoting Strategies

If all the calculations could be done using exact arithmetic, we could nearly end the
chapter with the previous section. We now know how many calculations are needed
to perform Gaussian elimination on a system,and from this we should be able to
determine whether our computational device can solve our problem in reasonable
time. In a practical situation, however, we do not have exact arithmetic, and the
large number of arithmetic computations, on the order of O(n3), makes the con-
sideration of computational round-off error necessary. In fact, as we will see in our
next example, even for certain very small systems round-off error can dominate the
calculations. In this section we will see how the calculations in Gaussian elimination
can be arranged to reduce the effect of this error.

In deriving the Gaussian elimination method, we found that a row interchange
is needed when one of the pivot elements, aii, is zero. This row interchange has
the form (Ei)↔ (Ep), where p is the smallest integer greater than i with api
= 0.
To reduce the round-off error associated with finite-digit arithmetic, it is often
necessary to perform row interchanges even when the pivot elements are not zero.

If aii is small in magnitude compared to aki, the magnitude of the multiplier

mki =
aki

aii

will be much larger than 1. A round-off error introduced in the computation of one
of the terms ail is multiplied by mki when computing akl, compounding the original
error. Also, when performing the backward substitution for

xi =
ai,n+1 −

∑n
j=i+1 aij

aii

with a small value of aii, any round-off error in the numerator is dramatically
increased when dividing by aii. An illustration of this difficulty is given in the
following example.

EXAMPLE 1 The linear system

E1: 0.003000x1 + 59.14x2 = 59.17,
E2: 5.291x1 − 6.130x2 = 46.78

has the solution x1 = 10.00 and x2 = 1.000. Suppose Gaussian elimination is
performed on this system using four-digit arithmetic with rounding.

The first pivot element, a11 = 0.003000, is small, and its associated multiplier,

m21 =
5.291

0.003000
= 1763.6̄,

rounds to the large number 1764. Performing (E2−m21E1)→ (E2) and the appro-
priate rounding gives

0.003000x1 + 59.14x2 = 59.17
−104300x2 ≈ −104400

6.3. PIVOTING STRATEGIES 299

instead of the precise values

0.003000x1 + 59.14x2 = 59.17
−104309.376̄x2 = −104309.376̄.

The disparity in the magnitudes of m21a13 and a23 has introduced round-off error,
but the error has not yet been propagated. Backward substitution yields

x2 ≈ 1.001,

which is a close approximation to the actual value, x2 = 1.000. However, because
of the small pivot a11 = 0.003000,

x1 ≈ 59.17− (59.14)(1.001)
0.003000

= −10.00

contains the small error of 0.001 multiplied by 59.14/0.003000 ≈ 20000. This ruins
the approximation to the actual value x1 = 10.00. (See Figure 6.1.)

Figure 6.1

x1

E1

E2

10210

Approximation
(210, 1.001) Exact solution

(10, 1)

x2

This is clearly a contrived example and the graph demonstrate why the error
can so easily occur, but for only slightly larger systems it is much more difficult to
predict in advance when devastating round-off error can occur.

Example 1 shows how difficulties arise when the pivot element aii is small rela-
tive to the entries akj for i ≤ k ≤ n and i ≤ j ≤ n. To avoid this problem, pivoting
is performed by selecting an element apq for the pivot that has a larger magnitude
than app and interchanging the ith and pth rows.

The simplest strategy is to select, at the ith step, the element in the same
column that is below the diagonal and has the largest absolute value; that is, to
determine the smallest p ≥ i such that

|api| = max
i≤k≤n

|aki|

and perform (Ei)↔ (Ep). In this case no interchange of columns is used.

300 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

EXAMPLE 2 Reconsider the system

E1: 0.003000x1 + 59.14x2 = 59.17,
E2: 5.291x1 − 6.130x2 = 46.78.

The pivoting procedure just described results in first finding

max{|a11|, |a21|} = max{|0.003000|, |5.291|} = |5.291| = |a21|.

The operation (E2)↔ (E1) is then performed to give the system

E1: 5.291x1 − 6.130x2 = 46.78,
E2: 0.003000x1 + 59.14x2 = 59.17.

The multiplier for this system is

m21 =
a21

a11
= 0.0005670,

and the operation (E2 −m21E1)→ (E2) reduces the system to

5.291x1 − 6.130x2 = 46.78,
59.14x2 ≈ 59.14.

The four-digit answers resulting from the backward substitution are the correct
values, x1 = 10.00 and x2 = 1.000.

The technique just described is called partial pivoting, or maximal column
pivoting, and is implemented in the program GAUMPP62.

Although partial pivoting is sufficient for many linear systems, situations do
arise when it is inadequate. For example, the linear system

E1: 30.00x1 + 591400x2 = 591700,
E2: 5.291x1 − 6.130x2 = 46.78

is the same as that in Examples 1 and 2 except that all entries in the first equation
have been multiplied by 104. Partial pivoting with four-digit arithmetic leads to the
same results as obtained in Example 1 since no row interchange would be performed.
A technique known as scaled partial pivoting is needed for this system. The first
step in this procedure is to define a scale factor sk for each row:

sk = max
1≤j≤n

|akj |.

The appropriate row interchange to place zeros in the first column is determined
by choosing the first integer p with

|ap1|
sp

= max
1≤k≤n

|ak1|
sk

6.3. PIVOTING STRATEGIES 301

and performing (E1) ↔ (Ep). The effect of scaling is to ensure that the largest
element in each row has a relative magnitude of 1 before the comparison for row
interchange is performed.

In a similar manner, before eliminating variable xi using the operations

Ek −mkiEi → Ek for k = i+ 1, . . . , n

we select the smallest integer p ≥ i with

|api|
sp

= max
i≤k≤n

|aki|
sk

and perform the row interchange Ei ↔ Ep if i
= p. We must note that the scale
factors s1, . . . , sn are computed only once at the start of the procedure and must
also be interchanged when row interchanges are performed.

In the program GAUSPP63 the scaling is done only for comparison purposes,
so the division by scaling factors produces no round-off error in the system.

EXAMPLE 3 Applying scaled partial pivoting to the system in Example 1 gives

s1 = max{|30.00|, |591400|} = 591400 and s2 = max{|5.291|, |−6.130|} = 6.130.

Consequently,

|a11|
s1

=
30.00

591400
= 0.5073× 10−4 and

|a21|
s2

=
5.291
6.130

= 0.8631

and the interchange (E1) ↔ (E2) is made. Applying Gaussian elimination to the
new system produces the correct results: x1 = 10.00 and x2 = 1.000.

EXAMPLE 4 Use scaled partial pivoting to solve the linear system using three-digit rounding
arithmetic.

2.11x1 − 4.21x2 + 0.921x3 = 2.01,
4.01x1 + 10.2x2 − 1.12x3 = −3.09,
1.09x1 + 0.987x2 + 0.832x3 = 4.21.

To obtain three-digit rounding arithmetic, enter

>Digits:=3;

We have s1 = 4.21, s2 = 10.2, and s3 = 1.09. So

|a11|
s1

=
2.11
4.21

= 0.501,
|a21|
s1

=
4.01
10.2

= 0.393, and
|a31|
s3

=
1.09
1.09

= 1.

The augmented matrix AA is defined by

>AA:=matrix(3,4,[2.11,-4.21,0.921,2.01,4.01,10.2,-1.12,-3.09,1.09,
0.987,0.832,4.21]);

302 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

which gives

AA :=




2.11 −4.21 .921 2.01
4.01 10.2 −1.12 −3.09
1.09 .987 .832 4.21


 .

Since |a31|/s3 is largest, we perform (E1)↔ (E3) using

>AA:=swaprow(AA,1,3);

to obtain

AA :=




1.09 .987 .832 4.21
4.01 10.2 −1.12 −3.09
2.11 −4.21 .921 2.01


 .

We compute the multipliers m21 = 3.68 and m31 = 1.94 using

>m21:=4.01/1.09;

and

>m31:=2.11/1.09;

We perform the first two eliminations using

>AA:=addrow(AA,1,2,-m21);

and

>AA:=addrow(AA,1,3,-m31);

to obtain

AA :=




1.09 .987 .832 4.21
0 6.57 −4.18 −18.6
0 −6.12 −.689 −6.16


 .

Since
|a22|
s2

=
6.57
10.2

= 0.644 <
|a32|
s3

=
6.12
4.21

= 1.45,

we perform

>AA:=swaprow(AA,2,3);

giving

AA :=




1.09 .987 .832 4.21
0 −6.12 −.689 −6.16
0 6.57 −4.18 −18.6


 .

The multiplier m32 = −1.07 is computed by

6.3. PIVOTING STRATEGIES 303

>m32:=6.57/(-6.12);

The elimination step

>AA:=addrow(AA,2,3,-m32);

gives

AA :=




1.09 .987 .832 4.21
0 −6.12 −.689 −6.16
0 .02 −4.92 −25.2


 .

We cannot use backsub because of the entry .02 in the (3, 2) position. This entry is
nonzero due to rounding, but we can remedy this minor problem using the command

>AA[3,2]:=0;

which replaces the entry .02 with a 0. To see this enter

>evalm(AA);

which displays the matrix AA. Finally,

>x:=backsub(AA);

gives the solution
x := [−.431 .430 5.12] .

The scaled partial pivoting procedure adds a total of

3
2
n(n− 1) comparisons

and
n(n+ 1)

2
− 1 divisions

to the Gaussian elimination procedure. The time required to perform a comparison
is slightly more than that of an addition/subtraction. The total time to perform
the basic Gaussian elimination procedure is the time required for approximately
n3/3 multiplications/divisions and n3/3 additions/subtractions. So scaled partial
pivoting does not add significantly to the computational time required to solve a
system for large values of n.

If a system has computation difficulties that scaled partial pivoting cannot re-
solve, maximal (also called total or full) pivoting can be used. Maximal pivoting at
the ith step searches all the entries akj , for k = i, i+1, . . . , n and j = i, i+1, . . . , n,
to find the entry with the largest magnitude. Both row and column interchanges are

304 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

performed to bring this entry to the pivot position. The additional time required
to incorporate maximal pivoting into Gaussian elimination is

n(n− 1)(2n+ 5)
6

comparisons.

This approximately doubles the amount of addition/subtraction time over ordinary
Gaussian elimination.

6.3. PIVOTING STRATEGIES 305

EXERCISE SET 6.3

1. Use standard Gaussian elimination to find the row interchanges that are re-
quired to solve the following linear systems.

(a) x1 − 5x2 + x3 = 7
10x1 + 20x3 = 6
5x1 − x3 = 4

(b) x1 + x2 − x3 = 1
x1 + x2 + 4x3 = 2

2x1 − x2 + 2x3 = 3

(c) 2x1 − 3x2 + 2x3 = 5
−4x1 + 2x2 − 6x3 = 14

2x1 + 2x2 + 4x3 = 8

(d) x2 + x3 = 6
x1 − 2x2 − x3 = 4
x1 − x2 + x3 = 5

2. Repeat Exercise 1 using Gaussian elimination with partial pivoting.

3. Repeat Exercise 1 using Gaussian elimination with scaled partial pivoting.

4. Repeat Exercise 1 using Gaussian elimination with complete pivoting.

5. Use Gaussian elimination and three-digit chopping arithmetic to solve the fol-
lowing linear systems, and compare the approximations to the actual solution.

(a) 0.03x1 + 58.9x2 = 59.2
5.31x1 − 6.10x2 = 47.0
Actual solution x1 = 10, x2 = 1.

(b) 58.9x1 + 0.03x2 = 59.2
−6.10x1 + 5.31x2 = 47.0
Actual solution x1 = 1, x2 = 10.

(c) 3.03x1 − 12.1x2 + 14x3 = −119
−3.03x1 + 12.1x2 − 7x3 = 120

6.11x1 − 14.2x2 + 21x3 = −139
Actual solution x1 = 0, x2 = 10, x3 = 1

7 .

(d) 3.3330x1 + 15920x2 + 10.333x3 = 7953
2.2220x1 + 16.710x2 + 9.6120x3 = 0.965
−1.5611x1 + 5.1792x2 − 1.6855x3 = 2.714
Actual solution x1 = 1, x2 = 0.5, x3 = −1.

(e) 1.19x1 + 2.11x2 − 100x3 + x4 = 1.12
14.2x1 − 0.122x2 + 12.2x3 − x4 = 3.44

100x2 − 99.9x3 + x4 = 2.15
15.3x1 + 0.110x2 − 13.1x3 − x4 = 4.16

Actual solution x1 = 0.17682530, x2 = 0.01269269, x3 = −0.02065405,
x4 = −1.18260870.

306 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(f) πx1 − ex2 +
√

2x3 − √
3x4 =

√
11

π2x1 + ex2 − e2x3 + 3
7x4 = 0√

5x1 − √
6x2 + x3 − √

2x4 = π

π3x1 + e2x2 − √
7x3 + 1

9x4 =
√

2

Actual solution x1 = 0.78839378, x2 = −3.12541367, x3 = 0.16759660,
x4 = 4.55700252.

6. Repeat Exercise 5 using three-digit rounding arithmetic.

7. Repeat Exercise 5 using Gaussian elimination with partial pivoting.

8. Repeat Exercise 5 using Gaussian elimination with scaled partial pivoting.

9. Suppose that
2x1 + x2 + 3x3 = 1
4x1 + 6x2 + 8x3 = 5
6x1 + αx2 + 10x3 = 5

with |α| < 10. For which of the following values of α will there be no row
interchange required when solving this system using scaled partial pivoting?

(a) α = 6 (b) α = 9 (c) α = −3

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 307

6.4 Linear Algebra and Matrix Inversion

Early in this chapter we illustrated the convenience of matrix notation for the
study of linear systems of equations, but there is a wealth of additional material in
linear algebra that finds application in the study of approximation techniques. In
this section we introduce some basic notation and results that are needed for both
theory and application. All the topics discussed here should be familiar to anyone
who has studied matrix theory at the undergraduate level. This section could be
omitted, but it is advisable to read the section to see the results from linear algebra
that will be frequently called upon for service.

Two matrices A and B are equal if both are of the same size, say, n×m, and
if aij = bij for each i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

This definition means, for example, that

[
2 −1 7
3 1 0

]

=



2 3
−1 1

7 0




since they differ in dimension.
If A and B are n×m matrices and λ is a real number, then the sum of A and

B, denoted A+B, is the n×m matrix whose entries are aij + bij , and the scalar
product of λ and A, denoted λA, is the n×m matrix whose entries are λaij .

If A is an n×m matrix and B is an m× p matrix, the matrix product of A
and B, denoted AB, is an n× p matrix C whose entries cij are given by

cij =
m∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ aimbmj ,

for each i = 1, 2, . . . n and j = 1, 2, . . . , p.
The computation of cij can be viewed as the multiplication of the entries of

the ith row of A with corresponding entries in the jth column of B, followed by a
summation; that is,

[ai1, ai2, . . . , aim]




b1j

b2j

...
bmj


 = [cij],

where

cij = ai1b1j + ai2b2j + · · ·+ aimbmj =
m∑

k=1

aikbkj .

This explains why the number of columns of A must equal the number of rows of
B for the product AB to be defined.

308 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

EXAMPLE 1 Let

A =




2 1 −1
3 1 2
0 −2 −3


 , B =




3 2
−1 1

6 4


 ,

C =
[

2 1 0
−1 3 2

]
, and D =




1 −1 1
2 −1 2
3 0 3


 .

Then,

AD =




1 −3 1
11 −4 11
−13 2 −13



=



−1 −2 −6

1 −3 −10
6 −3 −12


 = DA.

Further,

BC =




4 9 4
−3 2 2

8 18 8


 and CB =

[
5 5
6 9

]

are not even the same size. Finally,

AB =



−1 1
20 15
−16 −14




but BA cannot be computed.

A square matrix has the same number of rows as columns. A diagonal matrix
is a square matrix D = [dij] with dij = 0 whenever i
= j. The identity matrix of
order n, In = [δij], is a diagonal matrix with entries

δij =

{
1, if i = j,

0, if i
= j.

When the size of In is clear, this matrix is generally written simply as I. For
example, the identity matrix of order three is

I =




1 0 0
0 1 0
0 0 1


 .

If A is any n× n matrix, then AI = IA = A.
An n× n upper-triangular matrix U = [uij] has, for each j = 1, 2, . . . , n, the

entries
uij = 0, for each i = j + 1, j + 2, . . . , n;

and a lower-triangular matrix L = [lij] has, for each j = 1, 2, . . . , n, the entries

lij = 0, for each i = 1, 2, . . . , j − 1.

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 309

(A diagonal matrix is both upper and lower triangular.)
In Example 1 we found that, in general, AB
= BA, even when both products

are defined. However, the other arithmetic properties associated with multiplication
do hold. For example, when A,B, and C are matrices of the appropriate size and
λ is a scalar, we have

A(BC) = (AB)C, A(B + C) = AB +AC, and λ(AB) = (λA)B = A(λB).

Certain n × n matrices have the property that another n × n matrix, which
we will denote A−1, exists with AA−1 = A−1A = I. In this case A is said to
be nonsingular, or invertible, and the matrix A−1 is called the inverse of A. A
matrix without an inverse is called singular, or noninvertible.

EXAMPLE 2 Let

A =




1 2 −1
2 1 0
−1 1 2


 and B =

1
9



−2 5 −1

4 −1 2
−3 3 3


 .

Since

AB =




1 2 −1
2 1 0
−1 1 2


 · 1

9



−2 5 −1

4 −1 2
−3 3 3


 =




1 0 0
0 1 0
0 0 1




and

BA =
1
9



−2 5 −1

4 −1 2
−3 3 3


 ·




1 2 −1
2 1 0
−1 1 2


 =




1 0 0
0 1 0
0 0 1


 ,

A and B are nonsingular with B = A−1 and A = B−1.

The reason for introducing this matrix operation at this time is that the linear
system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
...

an1x1 + an2x2 + · · ·+ annxn = bn,

can be viewed as the matrix equation Ax = b, where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann


 , x =




x1

x2

...
xn


 , and b =




b1
b2
...
bn


 .

If A is a nonsingular matrix, then the solution x to the linear system Ax =
b is given by x = A−1(Ax) = A−1b. In general, however, it is more difficult

310 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

to determine A−1 than it is to solve the system Ax = b, because the number
of operations involved in determining A−1 is larger. Even so, it is useful from a
conceptual standpoint to describe a method for determining the inverse of a matrix.

EXAMPLE 3 To determine the inverse of the matrix

A =




1 2 −1
2 1 0
−1 1 2


 ,

let us first consider the product AB, where B is an arbitrary 3× 3 matrix.

AB =




1 2 −1
2 1 0
−1 1 2





b11 b12 b13
b21 b22 b23
b31 b32 b33




=




b11 + 2b21 − b31 b12 + 2b22 − b32 b13 + 2b23 − b33
2b11 + b21 2b12 + b22 2b13 + b23

−b11 + b21 + 2b31 −b12 + b22 + 2b32 −b13 + b23 + 2b33


 .

If B = A−1, then AB = I, so we must have

b11 + 2b21 − b31 = 1, b12 + 2b22 − b32 = 0, b13 + 2b23 − b33
2b11 + b21 = 0, 2b12 + b22 = 1, 2b13 + b23
−b11 + b21 + 2b31 = 0, −b12 + b22 + 2b32 = 0, −b13 + b23 + 2b33

Notice that the coefficients in each of the systems of equations are the same; the only
change in the systems occurs on the right side of the equations. As a consequence,
the computations can be performed on the larger augmented matrix, formed by
combining the matrices for each of the systems




1 2 −1 1 0 0
2 1 0 0 1 0
−1 1 2 0 0 1


 .

First, performing (E2 − 2E1)→ (E1) and (E3 + E1)→ (E3) gives



1 2 −1 1 0 0
0 −3 2 −2 1 0
0 3 1 1 0 1


 .

Next, performing (E3 +E2)→ (E3) produces



1 2 −1 1 0 0
0 −3 2 −2 1 0
0 0 3 −1 1 1


 .

Backward substitution is performed on each of the three augmented matrices,



1 2 −1 1
0 −3 2 −2
0 0 3 −1


 ,



1 2 −1 0
0 −3 2 1
0 0 3 1


 ,



1 2 −1 0
0 −3 2 0
0 0 3 1


 ,

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 311

to eventually give

b11 = − 2
9 , b12 = 5

9 , b13 = − 1
9 ,

b21 = 4
9 , b22 = − 1

9 , and b23 = 2
9 ,

b31 = − 1
3 , b32 = 1

3 , b33 = 1
3 .

These are the entries of A−1:

A−1 =



− 2

9
5
9 − 1

9
4
9 − 1

9
2
9

− 1
3

1
3

1
3


 =

1
9



−2 5 −1

4 −1 2
−3 3 3


 . (6.1)

The transpose of an n×m matrix A = [aij] is the m× n matrix At = [aji]. A
square matrix A is symmetric if A = At.

EXAMPLE 4 The matrices

A =




7 2 0
3 5 −1
0 5 −6


 , B =

[
2 4 7
3 −5 −1

]
, C =




6 4 −3
4 −2 0
−3 0 1




have transposes

At =




7 3 0
2 5 5
0 −1 −6


 , Bt =




2 3
4 −5
7 −1


 , Ct =




6 4 −3
4 −2 0
−3 0 1


 .

The matrix C is symmetric, since Ct = C. The matrices A and B are not symmetric.

The following operations involving the transpose of a matrix hold whenever the
operation is possible.

[Transpose Facts]

(i) (At)t = A.

(ii) (A+B)t = At +Bt.

(iii) (AB)t = BtAt.

(iv) If A−1 exists, (A−1)t = (At)−1.

The determinant of a square matrix is a number that can be useful in deter-
mining the existence and uniqueness of solutions to linear systems. We denote the
determinant of a matrix A by detA, but it is also common to use the notation |A|.

312 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

[Determinant of a Matrix]

(i) If A = [a] is a 1× 1 matrix, then det A = a.

(ii) If A is an n × n matrix, the minor Mij is the determinant of the
(n−1)× (n−1) submatrix of A obtained by deleting the ith row and
jth column of the matrix A.

Then the determinant of A is given either by

detA =
n∑

j=1

(−1)i+jaijMij for any i = 1, 2, . . . , n,

or by

detA =
n∑

i=1

(−1)i+jaijMij for any j = 1, 2, . . . , n.

To calculate the determinant of a general n×n matrix by expanding by minors
requires O(n!) multiplications/divisions and additions/subtractions. Even for rela-
tively small values of n, the number of calculations becomes unwieldy. Fortunately,
the precise value of the determinant is seldom needed, and there are efficient ways
to approximate its value.

Although it appears that there are 2n different definitions of det A, depending
on which row or column is chosen, all definitions give the same numerical result. The
flexibility in the definition is used in the following example. It is most convenient
to compute det A across the row or down the column with the most zeros.

EXAMPLE 5 Let

A =




2 −1 3 0
4 −2 7 0
−3 −4 1 5

6 −6 8 0


 .

To compute det A, it is easiest to expand about the fourth column:

detA = −a14M14 + a24M24 − a34M34 + a44M44 = −5M34

= −5 det




2 −1 3
4 −2 7
6 −6 8




= −5
{

2 det
[−2 7
−6 8

]
− (−1) det

[
4 7
6 8

]
+ 3det

[
4 −2
6 −6

]}

= −5{(2(−16 + 42)− (−1)(32− 42) + 3(−24 + 12)} = −30.
(6.2)

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 313

The following properties of determinants are useful in relating linear systems
and Gaussian elimination to determinants.

[Determinant Facts] Suppose A is an n× n matrix:

(i) If any row or column of A has only zero entries, then detA = 0.

(ii) If Ã is obtained from A by the operation (Ei)↔ (Ek), with i
= k,
then det Ã = −det A.

(iii) If A has two rows or two columns the same, then detA = 0.

(iv) If Ã is obtained from A by the operation (λEi) → (Ei), then
det Ã = λdetA.

(v) If Ã is obtained from A by the operation (Ei + λEk) → (Ei) with
i
= k, then det Ã = detA.

(vi) If B is also an n× n matrix, then detAB = detAdetB.

(vii) detAt = detA.
(viii) If A−1 exists, then detA−1 =

1
detA

.

(ix) If A is an upper triangular, lower triangular, or diagonal matrix,
then

detA = a11 · a22 · · · ann.

EXAMPLE 6 We will compute the determinant of the matrix

A =




2 1 −1 1
1 1 0 3
−1 2 3 −1

3 −1 −1 2




using Determinant Facts (ii), (iv), and (vi) and Maple. Matrix A is defined by

>A:=matrix(4,4,[2,1,-1,1,1,1,0,3,-1,2,3,-1,3,-1,-1,2]);

The sequence of operations in Table 6.2 produces the matrix

A8 =




1 1
2 − 1

2
1
2

0 1 1 5
0 0 3 13
0 0 0 −13


 .

By fact (ix), detA8 = (1)(1)(3)(−13) = −39, so detA = −detA8 = −39.

314 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

Table 6.2

Operation Maple Effect

1
2E1 → E1 A1:= mulrow(A,1,0.5) detA1 = 1

2 detA

E2 − E1 → E2 A2:= addrow(A1,1,2,-1) detA2 = detA1 = 1
2 detA

E3 + E1 → E3 A3:= addrow(A2,1,3,1) detA3 = detA2 = 1
2 detA

E4 − 3E1 → E4 A4:= addrow(A3,1,4,-3) detA4 = detA3 = 1
2 detA

2E2 → E2 A5:= mulrow(A,2,2) detA5 = 2detA4 = detA

E3 − 5
2E2 → E3 A6:= addrow(A,2,3,-2.5) detA6 = detA5 = detA

E4 + 5
2E2 → E4 A7:= addrow(A,2,4,2.5) detA7 = detA6 = detA

E3 ↔ E4 A8:= swaprow(A,3,4) detA8 = −detA7 = −detA

The key result relating nonsingularity, Gaussian elimination, linear systems, and
determinants is that the following statements are equivalent.

[Equivalent Statements about an n× n Matrix A]

(i) The equation Ax = 0 has the unique solution x = 0.

(ii) The system Ax = b has a unique solution for any n-dimensional
column vector b.

(iii) The matrix A is nonsingular; that is, A−1 exists.

(iv) det A
= 0.

(v) Gaussian elimination with row interchanges can be performed on
the system Ax = b for any n-dimensional column vector b.

Maple can be used to perform the arithmetic operations on matrices. Ma-
trix addition is done with matadd(A,B) or evalm(A+B). Scalar multiplication is
defined by scalarmul(A,C) or evalm(C*A). Matrix multiplication is done using
multiply(A,B) or evalm(A&*B). The matrix operation of transposition is achieved
with transpose(A), matrix inversion with inverse(A), and the determinant with
det(A).

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 315

EXERCISE SET 6.4

1. Compute the following matrix products.

(a)




1 0 0
−1 1 0

2 3 1


 ·




1 0 0
2 2 0
1 −1 1


 (b)




1 0 0
2 1 0
−2 −1 1


 ·




1 −1 2
0 1 3
0 0 2




(c)




1 0 0
0 1 0
0 −2 1


 ·




1 0 0
2 1 0
−3 0 1


 (d)




2 −1 4
0 −1 2
0 0 3


 ·




3 −3 4
0 1 1
0 0 2




2. For the matrices given below:

i. Find the transpose of the matrix.

ii. Determine which matrices are nonsingular and compute their inverses.

(a)




4 2 6
3 0 7
−2 −1 −3


 (b)




1 2 0
2 1 −1
3 1 1




(c)




4 0 0
0 0 0
0 0 3




(d)




1 1 −1 1
1 2 −4 −2
2 1 1 5
−1 0 −2 −4




(e)




4 0 0 0
6 7 0 0
9 11 1 0
5 4 1 1


 (f)




2 0 1 2
1 1 0 2
2 −1 3 1
3 −1 4 3




3. Compute the determinants of the matrices in Exercise 2 and the determinants
of the inverse matrices of those that are nonsingular.

4. Consider the four 3× 3 linear systems having the same coefficient matrix:

2x1 − 3x2 + x3 = 2, 2x1 − 3x2 + x3 = 6,
x1 + x2 − x3 = −1, x1 + x2 − x3 = 4,
−x1 + x2 − 3x3 = 0, −x1 + x2 − 3x3 = 5,

2x1 − 3x2 + x3 = 0, 2x1 − 3x2 + x3 = −1,
x1 + x2 − x3 = 1, x1 + x2 − x3 = 0,
−x1 + x2 − 3x3 = −3, −x1 + x2 − 3x3 = 0.

316 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(a) Solve the linear systems by applying Gaussian elimination to the aug-
mented matrix




2 −3 1 2 6 0 −1
1 1 −1 −1 4 1 0
−1 1 −3 0 5 −3 0


 .

(b) Solve the linear systems by finding and multiplying by the inverse of

A =




2 −3 1
1 1 −1
−1 1 −3


 .

(c) Which method requires more operations?

5. Show that the following statements are true or provide counterexamples to
show they are not.

(a) The product of two symmetric matrices is symmetric.

(b) The inverse of a nonsingular symmetric matrix is a nonsingular sym-
metric matrix.

(c) If A and B are n× n matrices, then (AB)t = AtBt.

6. (a) Show that the product of two n × n lower triangular matrices is lower
triangular.

(b) Show that the product of two n× n upper triangular matrices is upper
triangular.

(c) Show that the inverse of a nonsingular n× n lower triangular matrix is
lower triangular.

7. The solution by Cramer’s rule to the linear system

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3

has

x1 =
1
D

det



b1 a12 a13

b2 a22 a23

b3 a32 a33


 ≡ D1

D
,

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 317

x2 =
1
D

det



a11 b1 a13

a21 b2 a23

a31 b3 a33


 ≡ D2

D
,

and

x3 =
1
D

det



a11 a12 b1
a21 a22 b2
a31 a32 b3


 ≡ D3

D
,

where

D = det



a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

(a) Use Cramer’s rule to find the solution to the linear system

2x1 + 3x2 − x3 = 4,
x1 − 2x2 + x3 = 6,
x1 − 12x2 + 5x3 = 10.

(b) Show that the linear system

2x1 + 3x2 − x3 = 4,
x1 − 2x2 + x3 = 6,
−x1 − 12x2 + 5x3 = 9

does not have a solution. Compute D1, D2, and D3.

(c) Show that the linear system

2x1 + 3x2 − x3 = 4,
x1 − 2x2 + x3 = 6,
−x1 − 12x2 + 5x3 = 10

has an infinite number of solutions. Compute D1, D2, and D3.

(d) Suppose that a 3 × 3 linear system with D = 0 has solutions. Explain
why we must also have D1 = D2 = D3 = 0.

8. In a paper entitled “Population Waves,” Bernadelli [Ber] hypothesizes a type
of simplified beetle, which has a natural life span of 3 years. The female of
this species has a survival rate of 1

2 in the first year of life, has a survival rate
of 1

3 from the second to third years, and gives birth to an average of six new
females before expiring at the end of the third year. A matrix can be used to
show the contribution an individual female beetle makes, in a probabilistic

318 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

sense, to the female population of the species by letting aij in the matrix
A = [aij] denote the contribution that a single female beetle of age j will
make to the next year’s female population of age i; that is,

A =




0 0 6
1
2 0 0
0 1

3 0


 .

(a) The contribution that a female beetle makes to the population 2 years
hence is determined from the entries of A2, of 3 years hence from A3,
and so on. Construct A2 and A3, and try to make a general statement
about the contribution of a female beetle to the population in n years’
time for any positive integral value of n.

(b) Use your conclusions from part (a) to describe what will occur in future
years to a population of these beetles that initially consists of 6000
female beetles in each of the three age groups.

(c) Construct A−1 and describe its significance regarding the population of
this species.

9. The study of food chains is an important topic in the determination of the
spread and accumulation of environmental pollutants in living matter. Sup-
pose that a food chain has three links. The first link consists of vegetation of
types v1, v2, . . . , vn, which provide all the food requirements for herbivores of
species h1, h2, . . . , hm in the second link. The third link consists of carnivorous
animals c1, c2, . . . , ck, which depend entirely on the herbivores in the second
link for their food supply. The coordinate aij of the matrix

A =




a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
an1 an2 · · · anm




represents the total number of plants of type vi eaten by the herbivores in
the species hj , whereas bij in

B =




b11 b12 · · · b1k

b21 b22 · · · b2k

...
...

...
bm1 bm2 · · · bmk




describes the number of herbivores in species hi that are devoured by the
animals of type cj .

(a) Show that the number of plants of type vi that eventually end up in
the animals of species cj is given by the entry in the ith row and jth
column of the matrix AB.

6.4. LINEAR ALGEBRA AND MATRIX INVERSION 319

(b) What physical significance is associated with the matrices A−1, B−1,
and (AB)−1 = B−1A−1?

10. In Section 3.6 we found that the parametric form (x(t), y(t)) of the cubic
Hermite polynomials through (x(0), y(0)) = (x0, y0) and (x(1), y(1)) =
(x1, y1) with guidepoints (x0 +α0, y0 +β0) and (x1−α1, y1−β1), respectively,
is given by

x(t) = [2(x0−x1)+ (α0 +α1)]t3 + [3(x1−x0) − α1− 2α0]t2 + α0t + x0

and

y(t) = [2(y0 − y1) + (β0 + β1)]t3 + [3(y1 − y0) − β1 − 2β0]t2 + β0t + y0.

The Bézier cubic polynomials have the form

x̂(t) = [2(x0−x1)+3(α0+α1)]t3 + [3(x1−x0) − 3(α1+2α0)]t2 + 3α0t + x0

and

ŷ(t) = [2(y0−y1)+3(β0+β1)]t3 + [3(y1−y0) − 3(β1+2β0)]t2 + 3β0t + y0.

(a) Show that the matrix

A =




7 4 4 0
−6 −3 −6 0

0 0 3 0
0 0 0 1




maps the Hermite polynomial coefficients onto the Bézier polynomial
coefficients.

(b) Determine a matrix B that maps the Bézier polynomial coefficients onto
the Hermite polynomial coefficients.

11. Consider the 2 × 2 linear system (A + iB)(x + iy) = c + id with complex
entries in component form:

(a11 + ib11)(x1 + iy1) + (a12 + ib12)(x2 + iy2) = c1 + id1,
(a21 + ib21)(x1 + iy1) + (a22 + ib22)(x2 + iy2) = c2 + id2.

(a) Use the properties of complex numbers to convert this system to the
equivalent 4× 4 real linear system

Real part: Ax − By = c,
Imaginary part: Bx + Ay = d.

(b) Solve the linear system

(1− 2i)(x1 + iy1) + (3 + 2i)(x2 + iy2) = 5 + 2i,
(2 + i)(x1 + iy1) + (4 + 3i)(x2 + iy2) = 4 − i.

320 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

6.5 Matrix Factorization

Gaussian elimination is the principal tool for the direct solution of linear systems
of equations, so it should come as no surprise to learn that it can be used for
other purposes. In this section we will see that the steps used to solve a system
of the form Ax = b by Gaussian Elimination can be used to factor the matrix
A into a product of matrices that are easier to manipulate. The factorization is
particularly useful when it has the form A = LU , where L is lower triangular
and U is upper triangular. Although not all matrices have this type of repre-
sentation, many do that occur frequently in the application of numerical tech-
niques.

In Section 6.2 we found that Gaussian elimination applied to an arbitrary non-
singular system requires O(n3) operations to determine x. However, to solve a linear
system that involves an upper-triangular system requires only backward substitu-
tion, which takes O(n2) operations. The situation is similar for lower-triangular
systems. So if A has been factored into the triangular form A = LU , then we
can solve for x more easily by using a two-step process. First we let y = Ux and
solve the system Ly = b for y. Since L is lower triangular, determining y from
this equation requires only O(n2) operations. Once y is known, the upper trian-
gular system Ux = y requires only an additional O(n2) operations to determine
the solution x. This means that the total number of operations needed to solve
the system Ax = b is reduced from O(n3) to O(n2). In systems greater than
100 by 100, this can reduce the amount of calculation by more than 99%, since
1002 = 10, 000 = (0.01)(1, 000, 000) = (0.01)(100)3.

Not surprisingly, the reductions from the factorization do not come free; de-
termining the specific matrices L and U requires O(n3) operations. But once the
factorization is determined, systems involving the matrix A can be solved in this
simplified manner for any number of vectors b.

EXAMPLE 1 The linear system

x1 + x2 + 3x4 = 4,
2x1 + x2 − x3 + x4 = 1,
3x1 − x2 − x3 + 2x4 = −3,
−x1 + 2x2 + 3x3 − x4 = 4

was considered in Section 6.2. The sequence of operations (E2−2E1)→ (E2), (E3−
3E1)→ (E3), (E4 − (−1)E1)→ (E4), (E3 − 4E2)→ (E3), (E4 − (−3)E2)→ (E4)
converts the system to one that has the upper triangular form

x1 + x2 + 3x4 = 4,
− x2 − x3 − 5x4 = −7,

3x3 + 13x4 = 13,
− 13x4 = −13.

Let U be the upper triangular matrix with these coefficients as its entries and L be
the lower triangular matrix with 1s along the diagonal and the multipliers mkj as

6.5. MATRIX FACTORIZATION 321

entries below the diagonal. Then we have the factorization

A =




1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1


 =




1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1







1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13


 = LU.

This factorization permits us to easily solve any system involving the matrix A. For
example, to solve




1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1







1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13






x1

x2

x3

x4


 =




8
7
14
−7


 ,

we first introduce the substitution y = Ux. Then Ly = b; that is,



1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1






y1
y2
y3
y4


 =




8
7

14
−7


 .

This system is solved for y by a simple forward substitution process:

y1 = 8,
2y1 + y2 = 7, so y2 = 7− 2y1 = −9

3y1 + 4y2 + y3 = 14, so y3 = 14− 3y1 − 4y2 = 26
−y1 − 3y2 + y4 = −7, so y4 = −7 + y1 + 3y2 = −26.

We then solve Ux = y for x, the solution of the original system; that is,



1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13






x1

x2

x3

x4


 =




8
−9
26
−26


 .

Using backward substitution we obtain x4 = 2, x3 = 0, x2 = −1, x1 = 3.

In the factorization of A = LU , we generate the first column of L and the first
row of U using the equations

l11u11 = a11

and, for each j = 2, 3, . . . , n,

lj1 =
aj1

u11
and u1j =

a1j

l11
.

For each i = 2, 3, . . . , n− 1, we select the diagonal entries uii and lii and generate
the remaining entries in the ith column of L and the ith row of U . The required
equations are

liiuii = aii −
i−1∑
k=1

likuki;

322 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

and, for each j = i+ 1, . . . , n,

lji =
1
uii

[
aji −

i−1∑
k=1

ljkuki

]
and uij =

1
lii

[
aij −

i−1∑
k=1

likukj

]
.

Finally, lnn and unn are selected to satisfy

lnnunn = ann −
n−1∑
k=1

lnkukn.

A general procedure for factoring matrices into a product of triangular matrices
is performed in the program LUFACT64. Although new matrices L and U are
constructed, the values generated replace the corresponding entries of A that are
no longer needed. Thus, the new matrix has entries aij = lij for each i = 2, 3, . . . , n
and j = 1, 2, . . . , i−1 and aij = uij for each i = 1, 2, . . . , n and j = i+1, i+2, . . . , n.

The factorization is particularly useful when a number of linear systems involv-
ing A must be solved, since the bulk of the operations need to be performed only
once. To solve LUx = b, we first solve Ly = b for y. Since L is lower triangular,
we have

y1 =
b1
l11

and

yi =
1
lii

[
bi −

i−1∑
j=1

lijyj

]
, for each i = 2, 3, . . . , n.

Once y is calculated by this forward substitution process, the upper triangular
system Ux = y is solved by backward substitution using the equations

xn =
yn

unn
and xi =

1
uii


yi −

n∑
j=i+1

uijxj


 .

In the previous discussion we assumed that A is such that a linear system of the
form Ax = b can be solved using Gaussian elimination that does not require row
interchanges. From a practical standpoint, this factorization is useful only when
row interchanges are not required to control the round-off error resulting from the
use of finite-digit arithmetic. Although many systems we encounter when using
approximation methods are of this type, factorization modifications must be made
when row interchanges are required. We begin the discussion with the introduction
of a class of matrices that are used to rearrange, or permute, rows of a given matrix.

An n× n permutation matrix P is a matrix with precisely one entry whose
value is 1 in each column and each row and all of whose other entries are 0.

EXAMPLE 2 The matrix

P =




1 0 0
0 0 1
0 1 0




6.5. MATRIX FACTORIZATION 323

is a 3× 3 permutation matrix. For any 3× 3 matrix A, multiplying on the left by
P has the effect of interchanging the second and third rows of A:

PA =




1 0 0
0 0 1
0 1 0





a11 a12 a13

a21 a22 a23

a31 a32 a33


 =



a11 a12 a13

a31 a32 a33

a21 a22 a23


 .

Similarly, multiplying on the right by P interchanges the second and third columns
of A.

There are two useful properties of permutation matrices that relate to Gaussian
elimination. The first of these is illustrated in the previous example and states that
if k1, . . . , kn is a permutation of the integers 1, . . . , n and the permutation matrix
P = [pij] is defined by

pij =

{
1, if j = ki

0, otherwise,

then

PA =




ak1,1 ak1,2 · · · ak1,n

ak2,1 ak2,2 · · · ak2,n

...
...

...
akn,1 akn,2 · · · akn,n


 .

The second is that if P is a permutation matrix, then P−1 exists and P−1 = P t.

EXAMPLE 3 Since a11 = 0, the matrix

A =




0 1 −1 1
1 1 −1 2
−1 −1 1 0

1 2 0 2




does not have an LU factorization. However, using the row interchange (E1) ↔
(E2), followed by (E3 + E1)→ E3 and (E4 − E1)→ E4, produces




1 1 −1 2
0 1 −1 1
0 0 0 2
0 1 1 0


 .

Then the row interchange (E3) ↔ (E4), followed by (E3 − E2) → E3, gives the
matrix

U =




1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2


 .

324 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

The permutation matrix associated with the row interchanges (E1) ↔ (E2) and
(E3)↔ (E4) is

P =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

Gaussian elimination can be performed on PA without row interchanges to give
the LU factorization

PA =




1 0 0 0
0 1 0 0
1 1 1 0
−1 0 0 1







1 1 −1 −2
0 1 −1 1
0 0 2 −1
0 0 0 2


 = LU.

So

A = P−1(LU) = P t(LU) = (P tL)U =




0 1 0 0
1 0 0 0
−1 0 0 1

1 1 1 0







1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2


 .

Maple has the command LUdecomp to compute a factorization of the form A =
PLU of the matrix A. If the matrix A has been created, the function call

>U:=LUdecomp(A,P=’G’,L=’H’);

returns the upper triangular matrix U as the value of the function and returns the
lower triangular matrix L in H and the permutation matrix P in G.

6.5. MATRIX FACTORIZATION 325

EXERCISE SET 6.5

1. Solve the following linear systems.

(a)




1 0 0
2 1 0
−1 0 1






2 3 −1
0 −2 1
0 0 3





x1

x2

x3


 =




2
−1

1




(b)




2 0 0
−1 1 0

3 2 −1






1 1 1
0 1 2
0 0 1





x1

x2

x3


 =



−1

3
0




2. Factor the following matrices into the LU decomposition with lii = 1 for all
i.

(a)




2 −1 1
3 3 9
3 3 5


 (b)




1.012 −2.132 3.104
−2.132 4.096 −7.013

3.104 −7.013 0.014




(c)




2 0 0 0
1 1.5 0 0
0 −3 0.5 0
2 −2 1 1




(d)




2.1756 4.0231 −2.1732 5.1967
−4.0231 6.0000 0 1.1973
−1.0000 −5.2107 1.1111 0

6.0235 7.0000 0 −4.1561




3. Obtain factorizations of the form A = P tLU for the following matrices.

(a) A =




0 2 3
1 1 −1
0 −1 1


 (b) A =




1 2 −1
1 2 3
2 −1 4




(c) A =




1 −2 3 0
3 −6 9 3
2 1 4 1
1 −2 2 −2


 (d) A =




1 −2 3 0
1 −2 3 1
1 −2 2 −2
2 1 3 −1




4. Suppose A = P tLU, where P is a permutation matrix, L is a lower-triangular
matrix with 1s on the diagonal, and U is an upper-triangular matrix.

(a) Count the number of operations needed to compute P tLU for a given
matrix A.

326 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(b) Show that if P contains k row interchanges, then

detP = detP t = (−1)k.

(c) Use detA = detP t detLdetU = (−1)k detU to count the number of
operations for determining detA by factoring.

(d) Compute detA and count the number of operations when

A =




0 2 1 4 −1 3
1 2 −1 3 4 0
0 1 1 −1 2 −1
2 3 −4 2 0 5
1 1 1 3 0 2
−1 −1 2 −1 2 0



.

6.6. TECHNIQUES FOR SPECIAL MATRICES 327

6.6 Techniques for Special Matrices

Although this chapter has been concerned primarily with the effective application of
Gaussian elimination for finding the solution to a linear system of equations, many
of the results have wider application. It might be said that Gaussian elimination is
the hub about which the chapter revolves, but the wheel itself is of equal interest
and has application in many forms in the study of numerical methods. In this
section we consider some matrices that are of special types, forms that will be used
in other chapters of the book.

The n× n matrix A is said to be strictly diagonally dominant when

|aii| >
n∑

j=1,
j 	=i

|aij |

holds for each i = 1, 2, . . . , n.

EXAMPLE 1 Consider the matrices

A =




7 2 0
3 5 −1
0 5 −6


 and B =




6 4 −3
4 −2 0
−3 0 1


 .

The nonsymmetric matrix A is strictly diagonally dominant, since |7| > |2| + |0|,
|5| > |3| + |−1|, and |−6| > |0| + |5|. The symmetric matrix B is not strictly
diagonally dominant, because, for example, in the first row the absolute value of
the diagonal element is |6| < |4|+ |−3| = 7. It is interesting to note that At is not
strictly diagonally dominant, since the middle row of At is 2 5 5, nor, of course, is
Bt since Bt = B.

[Strictly Diagonally Dominant Matrices] A strictly diagonally dominant ma-
trix A has an inverse. Moreover, in this case, Gaussian elimination can be
performed on any linear system of the form Ax = b to obtain its unique so-
lution without row or column interchanges, and the computations are stable
with respect to the growth of round-off error.

A matrix A is positive definite if it is symmetric and if xtAx > 0 for every
n-dimensional column vector x
= 0. Using the definition to determine whether a
matrix is positive definite can be difficult. Fortunately, there are more easily verified
criteria for identifying members that are and are not of this important class.

328 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

[Positive Definite Matrix Properties] If A is an n×n positive definite matrix,
then

(i) A has an inverse;

(ii) aii > 0 for each i = 1, 2, . . . , n;

(iii) max1≤k,j≤n |akj | ≤ max1≤i≤n |aii|;
(iv) (aij)2 < aiiajj for each i
= j.

Our definition of positive definite requires the matrix to be symmetric, but
not all authors make this requirement. For example, Golub and Van Loan [GV], a
standard reference in matrix methods, requires only that xtAx > 0 for each nonzero
vector x. Matrices we call positive definite are called symmetric positive definite in
[GV]. Keep this discrepancy in mind if you are using material from other sources.

The next result parallels the strictly diagonally dominant results presented pre-
viously.

[Positive Definite Matrix Equivalences] The following are equivalent for any
n× n symmetric matrix A:

(i) A is positive definite.

(ii) Gaussian elimination without row interchanges can be performed on
the linear system Ax = b with all pivot elements positive. (This ensures
that the computations are stable with respect to the growth of round-off
error.)

(iii) A can be factored in the form LLt, where L is lower triangular with
positive diagonal entries.

(iv) A can be factored in the form LDLt, where L is lower triangular with
1s on its diagonal and D is a diagonal matrix with positive diagonal
entries.

(v) For each i = 1, 2, . . . , n, we have

det




a11 a12 · · · a1i

a21 a22 · · · a2i

...
...

...
ai1 ai2 · · · aii


 > 0.

6.6. TECHNIQUES FOR SPECIAL MATRICES 329

Maple also has a useful command to determine the positive definiteness of a
matrix. The command

>definite(A,positive_def);

returns true or false as an indication. Consistent with our definition, symmetry is
required for a true result to be produced.

The factorization in part (iv) can be obtained by Choleski’s factorization method.
Set l11 =

√
a11 and generate the remainder of the first column of L using the equa-

tion
lj1 =

aj1

l11
for each j = 2, 3, . . . , n.

For each i = 2, 3, . . . , n− 1, determine the ith column of L by

lii =

(
aii −

i−1∑
k=1

l2ik

)1/2

and, for each j = i+ 1, i+ 2, . . . , n,
by

lji =
1
lii

(
aji −

i−1∑
k=1

ljklik

)
.

Finally,

lnn =

(
ann −

n−1∑
k=1

l2nk

)1/2

.

These equations can be derived by writing out the system associated with A = LLt.
Choleski’s method gives the LLt factorization and can be implemented using the
program CHOLFC65.

The Choleski factorization of A is computed in Maple using the statement

>L:=cholesky(A);

In a similar manner to the general LU factorization, the factorization A = LDLt

uses the equations d1 = a11 and lj1 = aj1/d1 for each j = 2, 3, . . . , n, to generate
the first column of L. For each i = 2, 3, . . . , n− 1, compute di and the ith column
of L as follows:

di = aii −
i−1∑
j=1

l2ijdj

and

lji =
1
di

[
aji −

i−1∑
k=1

ljklikdk

]

330 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

for each j = i+ 1, i+ 2, . . . , n. The last entry in D is

dn = ann −
n−1∑
j=1

l2njdj .

The LDLt factorization can be accomplished with the program LDLFCT66.

EXAMPLE 2 The matrix

A =




4 −1 1
−1 4.25 2.75

1 2.75 3.5




is positive definite. The factorization LDLt of A is

A = LDLt =




1 0 0
−0.25 1 0

0.25 0.75 1






4 0 0
0 4 0
0 0 1






1 −0.25 0.25
0 1 0.75
0 0 1


 ,

and Choleski’s method produces the factorization

A = LLt =




2 0 0
−0.5 2 0

0.5 1.5 1






2 −0.5 0.5
0 2 1.5
0 0 1


 .

We can solve the linear system Ax = b when A is positive definite by using
Choleski’s method to factor A into the form LLt. Then LLtx = y, and to solve
this system we first let y = Ltx. The linear system Ly = b is solved using forward
substitution, as

y1 =
b1
l11

and, for i = 2, 3, . . . , n,

yi =
1
lii


bi −

i−1∑
j=1

lijyj


 .

Then the solution to the original system is obtained by using backward substi-
tution to solve Ltx = y with the equations

xn =
yn

lnn

and, for i = n− 1, n− 2, . . . , 1,

xi =
1
lii

[
yi −

n∑
j=i+1

ljixj

]
.

If Ax = b is to be solved and the factorization A = LDLt is known, then we
let y = DLtx and solve the system Ly = b using forward substitution

y1 = b1

6.6. TECHNIQUES FOR SPECIAL MATRICES 331

and, for i = 2, 3, . . . , n,

yi = bi −
i−1∑
j=1

lijyj .

The system Dz = y is solved as

zi =
yi

di
, for each i = 1, 2, . . . , n.

Then the system Ltx = z is solved by backward substitution

xn = zn

and, for i = n− 1, n− 2, . . . , 1,

xi = zi −
n∑

j=i+1

ljixj .

Any symmetric matrix A for which Gaussian elimination can be applied without
row interchanges can be factored into the form LDLt. In this general case, L is lower
triangular with 1’s on its diagonal, and D is the diagonal matrix with the Gaussian
elimination pivots on its diagonal. This result is widely applied, since symmetric
matrices are common and easily recognized.

The last matrices considered are band matrices. In many applications the band
matrices are also strictly diagonally dominant or positive definite. This combination
of properties is very useful.

An n×n matrix is called a band matrix if integers p and q, with 1 < p, q < n,
exist with the property that aij = 0 whenever p ≤ j − i or q ≤ i− j. The number
p describes the number of diagonals above, and including, the main diagonal on
which nonzero entries may lie. The number q describes the number of diagonals
below, and including, the main diagonal on which nonzero entries may lie. The
bandwidth of the band matrix is w = p + q − 1, which tells us how many of the
diagonals can contain nonzero entries. The 1 is subtracted from the sum of p and q
since both of these numbers count the main diagonal.

For example, the matrix

A =




7 2 1 0
3 5 −3 −2
0 4 6 −1
0 0 5 8




is a band matrix with p = 3 and q = 2, so it has bandwidth 3 + 2− 1 = 4.
Band matrices concentrate all their nonzero entries about the diagonal. Two

special cases of band matrices that occur often have p = q = 2 and p = q = 4.
Matrices of bandwidth three that occur when p = q = 2 are called tridiagonal,

332 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

because they have the form

A =




α1 γ1 0 0
β2 α2 γ2

0 β3 α3 0
γn−1

0 0 βn αn



.

Since the entries of tridiagonal matrices are predominantly zero, it is common to
avoid the double subscript notation by relabeling the entries as indicated.

Tridiagonal matrices will appear in Chapter 11 in connection with the study of
piecewise linear approximations to boundary-value problems. The case of p = q = 4
will also be used in that chapter for the solution of boundary-value problems, when
the approximating functions assume the form of cubic splines.

The factorization methods can be simplified considerably in the case of band
matrices, because a large number of zeros appear in regular patterns. It is par-
ticularly interesting to observe the form the Crout (where uii = 1) and Doolittle
(where lii = 1) methods assume in this case. To illustrate the situation, suppose a
tridiagonal matrix

A =




α1 γ1 0 0
β2 α2 γ2

0 β3 α3 0
γn−1

0 0 βn αn



,

can be factored into the triangular matrices L and U in the Crout form

L =




l1 0 0
β2 l2

0 β3 l3
0

0 0 βn ln




and U =




1 u1 0 0
0 1 u2

1 0
un−1

0 0 1



.

The entries are given by the following equations:

l1 = α1 and u1 =
γ1

l1
;

for each i = 2, 3, . . . , n− 1,

li = αi − βiui−1 and ui =
γi

li
;

and
ln = αn − βnun−1.

The linear system Ax = LUx = b is solved using the equations

y1 =
b1
l1

6.6. TECHNIQUES FOR SPECIAL MATRICES 333

and, for each i = 2, 3, . . . , n,

yi =
1
li

[
bi − βiyi−1

]
,

which determines y in the linear system Ly = b. The linear system Ux = y is
solved using the equations

xn = yn

and, for each i = n− 1, n− 2, . . . , 1,

xi = yi − uixi+1.

The Crout factorization of a tridiagonal matrix can be performed with the program
CRTRLS67.

EXAMPLE 3 To illustrate the procedure for tridiagonal matrices, consider the tridiagonal system
of equations

2x1 − x2 = 1,
−x1 + 2x2 − x3 = 0,

− x2 + 2x3 − x4 = 0,
− x3 + 2x4 = 1,

whose augmented matrix is



2 −1 0 0 1
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 1


 .

The LU factorization is given by



2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


 =




2 0 0 0
−1 3

2 0 0
0 −1 4

3 0
0 0 −1 5

4







1 − 1
2 0 0

0 1 − 2
3 0

0 0 1 − 3
4

0 0 0 1


 = LU.

Solving the system Ly = b gives y = (1
2 ,

1
3 ,

1
4 , 1)t, and the solution of Ux = y is

x = (1, 1, 1, 1)t.

The tridiagonal factorization can be applied whenever li
= 0 for each i =
1, 2, . . . , n. Two conditions, either of which ensure that this is true, are that the
coefficient matrix of the system is positive definite or that it is strictly diagonally
dominant. An additional condition that ensures this method can be applied is as
follows.

334 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

[Nonsingular Tridiagonal Matrices] Suppose that A is tridiagona1 with βi
= 0
and γi
= 0 for each i = 2, 3, . . . , n − 1. If |α1| > |γ1|, |αn| > |βn|, and
|αi| ≥ |βi| + |γi| for each i = 2, 3, . . . , n − 1, then A is nonsingular, and the
values of li are nonzero for each i = 1, 2, . . . , n.

6.6. TECHNIQUES FOR SPECIAL MATRICES 335

EXERCISE SET 6.6

1. Determine which of the following matrices are (i) symmetric, (ii) singular,
(iii) strictly diagonally dominant, (iv) positive definite.

(a)
[

2 1
1 3

]
(b)

[−2 1
1 −3

]

(c)




2 1 0
0 3 0
1 0 4


 (d)




2 1 0
0 3 2
1 2 4




(e)




4 2 6
3 0 7
−2 −1 −3


 (f)




2 −1 0
−1 4 2

0 2 2




(g)




4 0 0 0
6 7 0 0
9 11 1 0
5 4 1 1


 (h)




2 3 1 2
−2 4 −1 5

3 7 1.5 1
6 −9 3 7




2. Find a factorizaton of the form A = LDLt for the following symmetric ma-
trices:

(a) A =




2 −1 0
−1 2 −1

0 −1 2


 (b) A =




4 1 1 1
1 3 −1 1
1 −1 2 0
1 1 0 2




(c) A =




4 1 −1 0
1 3 −1 0
−1 −1 5 2

0 0 2 4


 (d) A =




6 2 1 −1
2 4 1 0
1 1 4 −1
−1 0 −1 3




3. Find a factorization of the form A = LLt for the matrices in Exercise 2.

4. Use the factorization in Exercise 2 to solve the following linear systems.

(a) 2x1 − x2 = 3,
−x1 + 2x2 − x3 = −3,

−x2 + 2x3 = 1.

(b) 4x1 + x2 + x3 + x4 = 0.65,
x1 + 3x2 − x3 + x4 = 0.05,
x1 − x2 + 2x3 = 0,
x1 + x2 + 2x4 = 0.5.

336 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

(c) 4x1 + x2 − x3 = 7,
x1 + 3x2 − x3 = 8,
−x1 − x2 + 5x3 + 2x4 = −4,

2x3 + 4x4 = 6.

(d) 6x1 + 2x2 + x3 − x4 = 0,
2x1 + 4x2 + x3 = 7,
x1 + x2 + 4x3 − x4 = −1,
−x1 − x3 + 3x4 = −2.

5. Use Crout factorization for tridiagonal systems to solve the following linear
systems.

(a) x1 − x2 = 0,
− 2x1 + 4x2 − 2x3 = −1,

− x2 + 2x3 = 1.5.

(b) 3x1 + x2 = −1,
2x1 + 4x2 + x3 = 7,

2x2 + 5x3 = 9.

(c) 2x1 − x2 = 3,
− x1 + 2x2 − x3 = −3,

− x2 + 2x3 = 1.

(d) 0.5x1 + 0.25x2 = 0.35,
0.35x1 + 0.8x2 + 0.4x3 = 0.77,

0.25x2 + x3 + 0.5x4 = −0.5,
x3 − 2x4 = −2.25.

6. Let A be the 10×10 tridiagonal matrix given by aii = 2, ai,i+1 = ai,i−1 = −1,
for each i = 2, . . . , 9, and a11 = a10,10 = 2, a12 = a10,9 = −1. Let b be the
10-dimensional column vector given by b1 = b10 = 1 and bi = 0 for each
i = 2, 3, . . . , 9. Solve Ax = b using the Crout factorization for tridiagonal
systems.

7. Suppose that A and B are positive definite n× n matrices.

(a) Is −A positive definite?

(b) Is At positive definite?

(c) Is A+B positive definite?

(d) Is A2 positive definite?

(e) Is A−B positive definite?

8. Let

A =




1 0 −1
0 1 1
−1 1 α


 .

Find all values of α for which

6.6. TECHNIQUES FOR SPECIAL MATRICES 337

(a) A is singular.

(b) A is strictly diagonally dominant.

(c) A is symmetric.

(d) A is positive definite.

9. Let

A =



α 1 0
β 2 1
0 1 2




Find all values of α and β for which

(a) A is singular.

(b) A is strictly diagonally dominant.

(c) A is symmetric.

(d) A is positive definite.

10. Suppose A and B commute; that is, AB = BA. Must At and Bt also com-
mute?

11. In a paper by Dorn and Burdick [DB], it is reported that the average wing
length that resulted from mating three mutantvarieties of fruit flies (Drosophila
melanogaster) can be expressed in the symmetric matrix form

A =




1.59 1.69 2.13
1.69 1.31 1.72
2.13 1.72 1.85


 ,

where aij denotes the average wing length of an offspring resulting from the
mating of a male of type i with a female of type j.

(a) What physical significance is associated with the symmetry of this ma-
trix?

(b) Is this matrix positive definite? If so, prove it; if not, find a nonzero
vector x for which xtAx ≤ 0.

338 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

6.7 Survey of Methods and Software

In this chapter we have looked at direct methods for solving linear systems. A
linear system consists of n equations in n unknowns expressed in matrix notation
as Ax = b. These techniques use a finite sequence of arithmetic operations to
determine the exact solution of the system subject only to roundoff error. We found
that the linear system Ax = b has a unique solution if and only if A−1 exists, which
is equivalent to detA
= 0. The solution of the linear system is the vector x = A−1b.

Pivoting techniques were introduced to minimize the effects of roundoff error,
which can dominate the solution when using direct methods. We studied partial
pivoting, scaled partial pivoting, and total pivoting. We recommend the partial or
scaled partial pivoting methods for most problems since these decrease the effects
of roundoff error without adding much extra computation. Total pivoting should
be used if roundoff error is suspected to be large. In Section 7.6 we will see some
procedures for estimating this roundoff error.

Gaussian elimination with minor modifications was shown to yield a factoriza-
tion of the matrix A into LU , where L is lower triangular with 1s on the diagonal
and U is upper triangular. This process is called Doolittle’s factorization. Not all
nonsingular matrices can be factored this way, but a permutation of the rows will
always give a factorization of the form PA = LU , where P is the permutation
matrix used to rearrange the rows of A. The advantage of the factorization is that
the work is reduced when solving linear systems Ax = b with the same coefficient
matrix A and different vectors b.

Factorizations take a simpler form when the matrix A is positive definite. For
example, the Choleski factorization has the form A = LLt, where L is lower tri-
angular. A symmetric matrix that has an LU factorization can also be factored in
the form A = LDLt, where D is diagonal and L is lower triangular with 1s on the
diagonal. With these factorizations, manipulations involving A can be simplified.
If A is tridiagonal, the LU factorization takes a particularly simple form, with L
having 1s on the main diagonal and 0s elsewhere, except on the diagonal immedi-
ately below the main diagonal. In addition, U has its only nonzero entries on the
main diagonal and one diagonal above.

The direct methods are the methods of choice for most linear systems. For
tridiagonal, banded, and positive definite matrices, the special methods are recom-
mended. For the general case, Gaussian elimination or LU factorization methods,
which allow pivoting, are recommended. In these cases, the effects of roundoff error
should be monitored. In Section 7.6 we discuss estimating errors in direct methods.

Large linear systems with primarily 0 entries occurring in regular patterns can
be solved efficiently using an iterative procedure such as those discussed in Chapter
7. Systems of this type arise naturally, for example, when finite-difference techniques
are used to solve boundary-value problems, a common application in the numerical
solution of partial-differential equations.

It can be very difficult to solve a large linear system that has primarily nonzero
entries or one where the 0 entries are not in a predictable pattern. The matrix
associated with the system can be placed in secondary storage in partitioned form
and portions read into main memory only as needed for calculation. Methods that

6.7. SURVEY OF METHODS AND SOFTWARE 339

require secondary storage can be either iterative or direct, but they generally require
techniques from the fields of data structures and graph theory. The reader is referred
to [BuR] and [RW] for a discussion of the current techniques.

The software for matrix operations and the direct solution of linear systems
implemented in IMSL and NAG is based on LAPACK, a subroutine package in
the public domain. There is excellent documentation available with it and from the
books written about it.

Accompanying LAPACK is a set of lower-level operations called Basic Linear
Algebra Subprograms (BLAS). Level 1 of BLAS generally consists of vector-vector
operations with input data and operation counts of O(n). Level 2 consists of the
matrix-vector operations with input data and operation counts of O(n2). Level 3
consists of the matrix-matrix operations with input data and operation counts of
O(n3).

The subroutines in LAPACK for solving linear systems first factor the matrix
A. The factorization depends on the type of matrix in the following way:

• General matrix PA = LU ;

• Positive definite matrix A = LLt;

• Symmetric matrix A = LDLt;

• Tridiagonal matrix A = LU (in banded form).

Linear systems are then solved based on factorization. It is also possible to
compute determinants and inverses and to estimate the round-off error involved.

Many of the subroutines in LINPACK, and its successor LAPACK, can be im-
plemented using MATLAB. A nonsingular matrix A is factored using the command

[L,U, P] = lu(A)

into the form PA = LU , where P is the permutation matrix defined by performing
partial pivoting to solve a linear system involving A. If the nonsingular matrix A
and the vector b have been defined in MATLAB, the command

x = A\b
solves the linear system by first using the PA = LU factoring command. Then it
solves the lower-triangular system Lz = b for z using its command,

z = L\b
This is followed by a solution to the upper-triangular system Ux = z using the
command

x = U\z
Other MATLAB commands include computing the inverse, transpose, and deter-
minant of matrix A by issuing the commands inv(A), A′, and det(A), respectively.

Further information on the numerical solution of linear systems and matrices
can be found in Golub and Van Loan [GV], Forsythe and Moler [FM], and Stewart
[St]. The use of direct techniques for solving large sparse systems is discussed in
detail in George and Liu [GL] and in Pissanetzky [Pi]. Coleman and Van Loan [CV]
consider the use of BLAS, LINPACK, and MATLAB.

340 CHAPTER 6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

Chapter 7

Iterative Methods for
Solving Linear Systems

7.1 Introduction

The previous chapter considered the approximation of the solution of a linear system
using direct methods, techniques that would produce the exact solution if all the
calculations were performed using exact arithmetic. In this chapter we describe
some popular iterative techniques which require an initial approximation to the
solution. These methods will not be expected to return the exact solution even if
all the calculations could be performed using exact arithmetic. In many instances,
however, they are more effective than the direct methods, since they can require far
less computational effort and round-off error is reduced. This is particularly true
when the matrix is sparse—that is, when it has a high percentage of zero entries.

Some additional material from linear algebra is needed to describe the conver-
gence of the iterative methods. Principally, we need to have a measure of how close
two vectors are to one another, since the object of an iterative method is to deter-
mine an approximation that is within a certain tolerance of the exact solution. In
Section 7.2, the notion of a norm is used to show how various forms of distance be-
tween vectors can be described. We will also see how this concept can be extended
to describe the norm of—and, consequently, the distance between—matrices. In
Section 7.3, matrix eigenvalues and eigenvectors are described, and we consider the
connection between these concepts and the convergence of an iterative method.

Section 7.4 describes the elementary Jacobi and Gauss-Seidel iterative methods.
By analyzing the size of the largest eigenvalue of a matrix associated with an itera-
tive method, we can determine conditions that predict the likelihood of convergence
of the method. In Section 7.5 we introduce the SOR method. This is a commonly
applied iterative technique, since it reduces the approximation errors faster than
the Jacobi and Gauss-Seidel methods.

The conjugate gradient method is presented in Section 7.6. This method, with

341

342CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

preconditioning, is the technique most often used for sparse, positive-definite ma-
trices.

The final section in the chapter discusses some of the concerns that should be
addressed when applying either an iterative or direct technique for approximating
the solution to a linear system.

7.2 Convergence of Vectors

The distance between the real numbers x and y is |x−y|. In Chapter 2 we saw that
the stopping techniques for the iterative root-finding techniques used this measure
to estimate the accuracy of approximate solutions and to determine when an ap-
proximation was sufficiently accurate. The iterative methods for solving systems of
equations use similar logic, so the first step is to determine a way to measure the
distance between n-dimensional vectors, since this is the form that is taken by the
solution to a system of equations.

Let
n denote the set of all n-dimensional column vectors with real number
coefficients. It is a space-saving convenience to use the transpose notation presented
in Section 6.4 when such a vector is represented in terms of its components. For
example, the vector

x =




x1

x2

...
xn




is generally written x = (x1, x2, . . . , xn)t.

[Vector Norm on
n] A vector norm on
n is a function, ‖ · ‖, from
n into

 with the following properties:

(i) ‖x‖ ≥ 0 for all x ∈
n,

(ii) ‖x‖ = 0 if and only if x = (0, 0, . . . , 0)t ≡ 0,

(iii) ‖αx‖ = |α|‖x‖ for all α ∈
 and x ∈
n,

(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈
n.

For our purposes, we need only two specific norms on
n. (A third is presented
in Exercise 2.)

The l2 and l∞ norms for the vector x = (x1, x2, . . . , xn)t are defined by

‖x‖2 =

{
n∑

i=1

x2
i

}1/2

and ‖x‖∞ = max
1≤i≤n

|xi|.

7.2. CONVERGENCE OF VECTORS 343

The l2 norm is called the Euclidean norm of the vector x, since it represents
the usual notion of distance from the origin in case x is in
1 ≡
,
2, or
3. For
example, the l2 norm of the vector x = (x1, x2, x3)t gives the length of the straight
line joining the points (0, 0, 0) and (x1, x2, x3); that is, the length of the shortest
path between those two points. Figure 7.1 shows the boundary of those vectors in

2 and
3 that have l2 norm less than 1. Figure 7.2 gives a similar illustration for
the l∞ norm.

Figure 7.1

x2

x1

x2x1

x3

(0, 1)

(1, 0)(21, 0)

(0, 21)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

The vectors in R2

with l2 norm less
than 1 are inside
this figure.

The vectors in the
first octant of R3

with l2 norm less
than 1 are inside
this figure.

Figure 7.2

344CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

(21, 0)

(21, 1) (0, 1) (1, 1)

(1, 0)

(1, 21)(0, 21)(21, 21)

(0, 0, 1)

(1, 0, 1)

(0, 1, 0)

(1, 1, 0)

(0, 1, 1)

The vectors in the first
octant of R3 with l norm

less than 1 are inside
this figure.

The vectors in R2 with
l norm less than 1 are

inside this figure.

(1, 0, 0)

x2

x1

x2

x3

x1

(1, 1, 1)

EXAMPLE 1 The vector x = (−1, 1,−2)t in
3 has norms

‖x‖2 =
√

(−1)2 + (1)2 + (−2)2 =
√

6 and ‖x‖∞ = max{|−1|, |1|, |−2|} = 2.

Showing that ‖x‖∞ = max1≤i≤n |xi| satisfies the conditions necessary for a norm
on
n follows directly from the truth of similar statements concerning absolute
values of real numbers. In the case of the l2 norm, it is also easy to demonstrate
the first three of the required properties, but the fourth,

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2,
is more difficult to show. To demonstrate this inequality we need the Cauchy-
Buniakowsky-Schwarz inequality, which states that for any x = (x1, x2, . . . , xn)t

and y = (y1, y2, . . . , yn)t,

n∑
i=1

|xiyi| ≤
{

n∑
i=1

x2
i

}1/2{ n∑
i=1

y2
i

}1/2

.

With this it follows that ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 since

‖x + y‖22 =
n∑

i=1

x2
i + 2

n∑
i=1

xiyi +
n∑

i=1

y2
i ≤

n∑
i=1

x2
i + 2

n∑
i=1

|xiyi|+
n∑

i=1

y2
i

≤
n∑

i=1

x2
i + 2

{
n∑

i=1

x2
i

}1/2{ n∑
i=1

y2
i

}1/2

+
n∑

i=1

y2
i = (‖x‖2 + ‖y‖2)2 .

7.2. CONVERGENCE OF VECTORS 345

The norm of a vector gives a measure for the distance between the vector and
the origin, so the distance between two vectors is the norm of the difference of the
vectors.

[Distance Between Vectors] If x = (x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn)t

are vectors in
n, the l2 and l∞ distances between x and y are defined by

‖x− y‖2 =

{
n∑

i=1

(xi − yi)2
}1/2

and ‖x− y‖∞ = max
1≤i≤n

|xi − yi|.

EXAMPLE 2 The linear system

3.3330x1 + 15920x2 − 10.333x3 = 15913,
2.2220x1 + 16.710x2 + 9.6120x3 = 28.544,
1.5611x1 + 5.1791x2 + 1.6852x3 = 8.4254

has solution (x1, x2, x3)t = (1.0000, 1.0000, 1.0000)t. If Gaussian elimination is per-
formed in five-digit rounding arithmetic using partial pivoting, the solution obtained
is

x̃ = (x̃1, x̃2, x̃3)
t = (1.2001, 0.99991, 0.92538)t.

Measurements of the accuracy of the approximation x̃ to x are given by

‖x− x̃‖∞ = max{|1.0000− 1.2001|, |1.0000− 0.99991|, |1.0000− 0.92538|}
= max{0.2001, 0.00009, 0.07462} = 0.2001

and

‖x− x̃‖2 =
[
(1.0000− 1.2001)2 + (1.0000− 0.99991)2 + (1.0000− 0.92538)2

]1/2

=
[
(0.2001)2 + (0.00009)2 + (0.07462)2

]1/2
= 0.21356.

Although the components x̃2 and x̃3 are good approximations to x2 and x3, the
component x̃1 is a poor approximation to x1, and |x1− x̃1| dominates both norms.

The distance concept in
n is used to define a limit of a sequence of vectors. A
sequence {x(k)}∞k=1 of vectors in
n is said to converge to x with respect to the
norm ‖ · ‖ if, given any ε > 0, there exists an integer N(ε) such that

‖x(k) − x‖ < ε for all k ≥ N(ε).

346CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

EXAMPLE 3 Let x(k) ∈
4 be defined by

x(k) =
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)t =
(

1, 2 +
1
k
,

3
k2
, e−k sin k

)t

.

We have

lim
k→∞

1 = 1, lim
k→∞

(2 + 1/k) = 2, lim
k→∞

3/k2 = 0, and lim
k→∞

e−k sin k = 0.

So for any given ε an integer N(ε) can be found so that the largest of |x(k)
1 − 1|,

|x(k)
2 − 2|, |x(k)

3 − 0|, and |x(k)
4 − 0| is less than ε. This implies that the sequence

{x(k)} converges to (1, 2, 0, 0)t with respect to ‖ · ‖∞.

In Example 3 we implicitly used the fact that a sequence of vectors {x(k)}∞k=1

converges in the norm ‖ · ‖∞ to the vector x if and only if for each i = 1, 2, . . . , n
the sequence {x(k)

i }∞k=1 converges to xi, the ith component of x. This makes the
determination of convergence for the norm ‖ · ‖∞ relatively easy.

To show directly that the sequence in Example 3 converges to (1, 2, 0, 0)t with
respect to the l2 norm is quite complicated. However, suppose that j is an index
with the property that

‖x‖∞ = max
i=1,...,n

|xi| = |xj |.
Then

‖x‖2∞ = |xj |2 = x2
j ≤

n∑
i=1

x2
i = ‖x‖22

and also

‖x‖22 =
n∑

i=1

x2
i ≤

n∑
i=1

x2
j = nx2

j = n‖x‖2∞.

These inequalities imply that the sequence of vectors {x(k)} also converges to x in

n with respect to ‖ · ‖2 if and only if limk→∞ x

(k)
i = xi for each i = 1, 2, . . . , n,

since this is when the sequence converges in the l∞ norm.
In fact, it can be shown that all norms on
n are equivalent with respect to

convergence; that is, if ‖ · ‖ and ‖ · ‖′ are any two norms on
n and {x(k)}∞k=1 has
the limit x with respect to ‖ · ‖, then {x(k)}∞k=1 has the limit x with respect to
‖ · ‖′. Since a vector sequence converges in the l∞ norm precisely when each of its
component sequences converges, we have the following.

[Vector Sequence Convergence] The following statements are equivalent:

(i) The sequence of vectors {x(k)} converges to x in some norm.

(ii) The sequence of vectors {x(k)} converges to x in every norm.

(iii) limk→∞ x
(k)
i = xi, the ith component of x, for each i = 1, 2, . . . , n.

7.2. CONVERGENCE OF VECTORS 347

In the subsequent sections, we will need methods for determining the distance
between n× n matrices. This again requires the use of a norm.

[Matrix Norm] A matrix norm on the set of all n×n matrices is a real-valued
function, ‖ · ‖, defined on this set, satisfying for all n × n matrices A and B
and all real numbers α:

(i) ‖A‖ ≥ 0,

(ii) ‖A‖ = 0, if and only if A is O, the matrix with all zero entries,

(iii) ‖αA‖ = |α|‖A‖,
(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖,
(v) ‖AB‖ ≤ ‖A‖‖B‖.

A distance between n× n matrices A and B with respect to this matrix
norm is ‖A−B‖. Although matrix norms can be obtained in various ways, the only
norms we consider are those that are natural consequences of a vector norm.

[Natural Matrix Norm] If ‖ · ‖ is a vector norm on
n, the natural matrix
norm on the set of n× n matrices given by ‖ · ‖ is defined by

‖A‖ = max
‖x‖=1

‖Ax‖.

As a consequence, the matrix norms we will consider have the forms

‖A‖2 = max
‖x‖2=1

‖Ax‖2, (the l2 norm)

and
‖A‖∞ = max

‖x‖∞=1
‖Ax‖∞, (the l∞ norm).

When n = 2 these norms have the geometric representations shown in Figures 7.3
and 7.4.

Figure 7.3

348CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

ix i2 5 1

Ax for
ix i2 5 1

iAi2
1

1

21

21

x2

x1

x2

x1 1 22122

3

Ax

1

21

23

x

Figure 7.4

ix i 5 1

Ax for
ix i 5 1

iAi

Ax 1

121

21

x2

x1

x2

x11

2

2122

1

2

x

22

21

The l∞ norm of a matrix has a representation with respect to the entries of the
matrix that makes it particularly easy to compute. The l2 norm of a matrix is not
as easily determined, but in the next section we will discover an alternative method
for finding this norm.

[l∞ Norm of a Matrix]

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

7.2. CONVERGENCE OF VECTORS 349

EXAMPLE 4 If

A =




1 2 −1
0 3 −1
5 −1 1


 ,

then

3∑
j=1

|a1j | = |1|+ |2|+ |−1| = 4,
3∑

j=1

|a2j | = |0|+ |3|+ |−1| = 4,

and
3∑

j=1

|a3j | = |5|+ |−1|+ |1| = 7.

So
‖A‖∞ = max{4, 4, 7} = 7.

350CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

EXERCISE SET 7.2

1. Find ‖x‖∞ and ‖x‖2 for the following vectors.

(a) x =
(
3,−4, 0, 3

2

)t (b) x = (2, 1,−3, 4)t

(c) x = (sin k, cos k, 2k)t for a fixed positive integer k

(d) x = (4/(k + 1), 2/k2, k2e−k)t for a fixed positive integer k

2. (a) Verify that ‖ · ‖1 is a norm for
n (called the l1 norm), where

‖x‖1 =
n∑

i=1

|xi|.

(b) Find ‖x‖1 for the vectors given in Exercise 1.

3. Show that the following sequences are convergent, and find their limits.

(a) x(k) = (1/k, e1−k,−2/k2)t

(b) x(k) =
(
e−k cos k, k sin(1/k), 3 + k−2

)t

(c) x(k) =
(
ke−k2

, (cos k)/k,
√
k2 + k − k)t

(d) x(k) = (e1/k, (k2 + 1)/(1− k2), (1/k2)(1 + 3 + 5 + · · ·+ (2k − 1)))t

4. Find ‖ · ‖∞ for the following matrices.

(a)
[

10 15
0 1

]
(b)

[
10 0
15 1

]

(c)




2 −1 0
−1 2 −1

0 −1 2


 (d)




4 −1 7
−1 4 0
−7 0 4




5. The following linear systems Ax = b have x as the actual solution and x̃ as
an approximate solution. Compute ‖x− x̃‖∞ and ‖Ax̃− b‖∞.

(a)
1
2
x1 +

1
3
x2 =

1
63
,

1
3
x1 +

1
4
x2 =

1
168

,

x =
(

1
7
,−1

6

)t

,

x̃ = (0.142,−0.166)t.

7.2. CONVERGENCE OF VECTORS 351

(b) x1 + 2x2 + 3x3 = 1,
2x1 + 3x2 + 4x3 = −1,
3x1 + 4x2 + 6x3 = 2,
x = (0,−7, 5)t,
x̃ = (−0.33,−7.9, 5.8)t.

(c) x1 + 2x2 + 3x3 = 1,
2x1 + 3x2 + 4x3 = −1,
3x1 + 4x2 + 6x3 = 2,
x = (0,−7, 5)t,
x̃ = (−0.2,−7.5, 5.4)t.

(d) 0.04x1 + 0.01x2 − 0.01x3 = 0.06,
0.2x1 + 0.5x2 − 0.2x3 = 0.3,
x1 + 2x2 + 4x3 = 11,

x = (1.827586, 0.6551724, 1.965517)t,
x̃ = (1.8, 0.64, 1.9)t.

6. The l1 matrix norm, defined by ‖A‖1 = max
‖x‖1=1

‖Ax‖1, can be computed using

the formula

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |,

where the l1 vector norm is defined in Exercise 2. Find the l1 norm of the
matrices in Exercise 4.

7. Show by example that ‖·‖∞©, defined by ‖A‖∞© = max
1≤i,j≤n

|aij |, does not define

a matrix norm.

8. Show that ‖ · ‖1©, defined by

‖A‖1© =
n∑

i=1

n∑
j=1

|aij |,

is a matrix norm. Find ‖ · ‖1© for the matrices in Exercise 4.

9. Show that if ‖ · ‖ is a vector norm on
n, then ‖A‖ = max‖x‖=1 ‖Ax‖ is a
matrix norm.

352CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

7.3 Eigenvalues and Eigenvectors

An n ×m matrix can be considered as a function that uses matrix multiplication
to take m-dimensional vectors into n-dimensional vectors. So an n × n matrix A
takes the set of n-dimensional vectors into itself. In this case certain nonzero vectors
have x and Ax parallel, which means that a constant λ exists with Ax = λx, or
that (A− λI)x = 0. There is a close connection between these numbers λ and the
likelihood that an iterative method will converge. We will consider this connection
in this section.

For a square n × n matrix A, the characteristic polynomial of A is defined
by

p(λ) = det(A− λI).
Because of the way the determinant of a matrix is defined, p is an nth-degree

polynomial and, consequently, has at most n distinct zeros, some of which may be
complex. These zeros of p are called the eigenvalues of the matrix A.

If λ is an eigenvalue, then det(A − λI) = 0, and the equivalence result at the
end of Section 6.4 implies that A− λI is a singular matrix. As a consequence, the
linear system defined by (A− λI)x = 0 has a solution other than the zero vector.
If (A − λI)x = 0 and x
= 0, then x is called an eigenvector of A corresponding
to the eigenvalue λ.

If x is an eigenvector associated with the eigenvalue λ, then Ax = λx, so the
matrix A takes the vector x into a scalar multiple of itself. When λ is a real number
and λ > 1, A has the effect of stretching x by a factor of λ. When 0 < λ < 1, A
shrinks x by a factor of λ. When λ < 0, the effects are similar, but the direction is
reversed (see Figure 7.5).

Figure 7.5

Ax

x

Ax 5 lx

(a) l . 1 (b) 1 . l . 0 (c) l , 21 (d) 21 , l , 0

x
x x

Ax
Ax

Ax

EXAMPLE 1 Let

A =
[

0 −1
2 3

]
.

To compute the eigenvalues of A, consider

p(λ) = det(A− λI) = det
[

0− λ −1
2 3− λ

]
= −λ(3− λ) + 2 = (λ− 1)(λ− 2).

7.3. EIGENVALUES AND EIGENVECTORS 353

The eigenvalues of A are λ1 = 1 and λ2 = 2.
An eigenvector x
= 0 of A associated with λ1 = 1 is a solution of the system

(A− 1 · I)x = 0, so
[

0
0

]
=
[−1 −1

2 2

]
·
[
x1

x2

]
and x2 = −x1.

Any nonzero value of x1 produces an eigenvector for the eigenvalue λ1 = 1. For
example, when x1 = 1 we have the eigenvector (1,−1)t.

Similarly, an eigenvector x
= 0 of A associated with λ2 = 2 is a solution of the
system (A− 2 · I)x = 0, so

[
0
0

]
=
[−2 −1

2 1

]
·
[
x1

x2

]
and x2 = −2x1.

When x1 = 1 we have the eigenvector (1,−2)t for the eigenvalue λ2 = 2.

EXAMPLE 2 Let

A =




1 0 2
0 1 −1
−1 1 1


 .

To compute the eigenvalues of A, consider

p(λ) = det(A− λI) = det




1− λ 0 2
0 1− λ −1
−1 1 1− λ


 = (1− λ)(λ2 − 2λ+ 4).

The eigenvalues of A are the solutions of p(λ) = 0 : λ1 = 1, λ2 = 1 +
√

3i, and
λ3 = 1 − √3i. Notice that there are two complex conjugate eigenvalues for this
matrix.

An eigenvector x of A associated with λ1 = 1 is a solution of the system (A −
λ1I)x = 0: 


0 0 2
0 0 −1
−1 1 0


 ·



x1

x2

x3


 =




0
0
0


 .

Thus
2x3 = 0, −x3 = 0, and − x1 + x2 = 0,

which implies that

x3 = 0, x2 = x1, and x1 is arbitrary.

The choice x1 = 1 produces the eigenvector (1, 1, 0)t with ‖(1, 1, 0)‖∞ = 1, corre-
sponding to the eigenvalue λ1 = 1. The choice x1 =

√
2

2 produces an eigenvector
corresponding to λ1 with

∥∥∥∥
(

1
2

√
2,

1
2

√
2, 0

)∥∥∥∥
2

= 1.

354CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Since λ2 and λ3 are complex numbers, their corresponding eigenvectors are also
complex. To find an eigenvector for λ2, we solve the system




1− (1 +
√

3i) 0 2
0 1− (1 +

√
3i) −1

−1 1 1− (1 +
√

3i)





x1

x2

x3


 =




0
0
0


 .

One solution to this system is the vector
(
−2

3

√
3i,

1
3

√
3i, 1

)t

.

Similarly, the vector (
2
3

√
3i,−1

3

√
3i, 1

)t

is an eigenvector corresponding to the eigenvalue λ3 = 1−√3i.

Maple provides a number of methods to compute the eigenvalues and eigenvec-
tors of a matrix. To find the eigenvalues we can use the function Eigenvals For
the matrix in Example 2 we enter

>with(linalg);
>A:=matrix(3,3,[1,0,2,0,1,-1,-1,1,1]);
>evalf(Eigenvals(A));

[1.000000000 + 1.732050807I, 1.000000000− 1.732050807I, 1.000000000]

This computes the eigenvalues

λ2 = 1 +
√

3i, λ3 = 1−
√

3i, λ1 = 1.

To compute both the eigenvalues and eigenvectors, we can use the Maple function
eigenvects. For example,

>eigenvects(A);

produces the output

[1 + I
√

3, 1, {[−2, 1,−I
√

3]}], [1− I
√

3, 1, {[−2, 1, I
√

3]}], [1, 1, {[1, 1, 0]}]
The first set of bracketed information states that the eigenvalue 1 +

√
3i is an

eigenvalue of multiplicity 1 and that an associated eigenvector is (−2, 1,−√3i)t.
The other sets of bracketed information tell the multiplicity and eigenvectors for
the eigenvalues 1−√3i and 1.

Any nonzero multiple of an eigenvector is also an eigenvector, so multiplying
each coordinate by (

√
3/3)i gives the previously determined eigenvector of λ2 =

1 +
√

3i, which was (
−2

3

√
3i,

1
3

√
3i, 1

)t

.

7.3. EIGENVALUES AND EIGENVECTORS 355

A similar manner multiplication will give use the previously determined eigenvectors
for the eigenvalues λ3 = 1−√3i and λ1 = 1.

The notions of eigenvalues and eigenvectors are introduced here for a specific
computational convenience, but these concepts arise frequently in the study of
physical systems. In fact, they are of sufficient interest that Chapter 9 is devoted
to their numerical approximation.

The spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A.

(Note: For complex λ = α+ βi, we have |λ| = (α2 + β2)1/2.)

EXAMPLE 3 For the matrix considered in Example 2,

ρ(A) = max{1, |1 +
√

3i|, |1−
√

3i|} = max{1, 2, 2} = 2.

The spectral radius is closely related to the norm of a matrix.

[l2 Matrix Norm Characterization] If A is an n× n matrix, then

(i) ‖A‖2 = [ρ(AtA)]1/2;

(ii) ρ(A) ≤ ‖A‖ for any natural norm.

The first part of this result is the computational method for determining the l2
norm of matrices that we mentioned at the end of the previous section.

EXAMPLE 4 If

A =




1 1 0
1 2 1
−1 1 2


 ,

then

AtA =




1 1 −1
1 2 1
0 1 2






1 1 0
1 2 1
−1 1 2


 =




3 2 −1
2 6 4
−1 4 5


 .

To calculate ρ(AtA), we need the eigenvalues of AtA:

0 = det(AtA− λI) = det




3− λ 2 −1
2 6− λ 4
−1 4 5− λ




= −λ3 + 14λ2 − 42λ = −λ(λ2 − 14λ+ 42).

So the eigenvalues are

λ = 0, λ = 7 +
√

7, and λ = 7−
√

7.

356CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Hence

‖A‖2 =
√
ρ(AtA) =

√
max{0, 7−

√
7, 7 +

√
7} =

√
7 +
√

7 ≈ 3.106.

The operations in Example 4 can also be performed using Maple:

>with(linalg);
>A:=matrix(3,3,[1,1,0,1,2,1,-1,1,2]);
>B:=transpose(A);
>C:=multiply(A,B);
>evalf(Eigenvals(C));

giving
[0.3195356929 10−8, 4.354248691, 9.645751310]

Since ‖A‖2 =
√
ρ(AtA) =

√
ρ(C), we have

‖A‖2 =
√

9.645751310 = 3.105760987.

Maple also permits us to obtain ‖A‖2 =
√

7 +
√

7 directly with the command

>norm(A,2);

The l∞ norm of A can be determined with norm(A) or norm (A,infinity). For
the matrix A in Example 4 we have ‖A‖∞ = 4.

In studying iterative matrix techniques, it is of particular importance to know
when powers of a matrix become small (that is, when all of the entries approach
zero). We call an n× n matrix A convergent if for each i = 1, 2, . . . , n and j = 1,
2, . . . , n we have

lim
k→∞

(Ak)ij = 0.

EXAMPLE 5 Let

A =

[
1
2 0
1
4

1
2

]
.

Computing powers of A, we obtain:

A2 =

[
1
4 0
1
4

1
4

]
, A3 =

[
1
8 0
3
16

1
8

]
, A4 =

[
1
16 0
1
8

1
16

]
,

and, in general,

Ak =

[(
1
2

)k 0
k

2k+1

(
1
2

)k

]
.

Since

lim
k→∞

(
1
2

)k

= 0 and lim
k→∞

k

2k+1
= 0,

A is a convergent matrix. Note that ρ(A) = 1
2 , since 1

2 is the only eigenvalue of
A.

7.3. EIGENVALUES AND EIGENVECTORS 357

The following important connection exists between the spectral radius of a ma-
trix and the convergence of the matrix.

[Convergent Matrix Equivalences] The following are equivalent statements:

(i) A is a convergent matrix.

(ii) limn→∞ ‖An‖ = 0, for some natural norm.

(iii) limn→∞ ‖An‖ = 0, for all natural norms.

(iv) ρ(A) < 1.

(v) limn→∞Anx = 0, for every x.

358CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

EXERCISE SET 7.3

1. Compute the eigenvalues and associated eigenvectors of the following matri-
ces.

(a)
[

2 −1
−1 2

]
(b)

[
0 1
1 1

]

(c)

[
0 1

2
1
2 0

]
(d)

[
1 1
−2 −2

]

(e)




2 1 0
1 2 0
0 0 3


 (f)



−1 2 0

0 3 4
0 0 7




(g)




2 1 1
2 3 2
1 1 2


 (h)




3 2 −1
1 −2 3
2 0 4




2. Find the spectral radius for each matrix in Exercise 1.

3. Show that

A1 =

[
1 0
1
4

1
2

]

is not convergent, but

A2 =

[
1
2 0
16 1

2

]

is convergent.

4. Which of the matrices in Exercise 1 are convergent?

5. Find the ‖ · ‖2 norms of the matrices in Exercise 1.

6. Show that if λ is an eigenvalue of a matrix A and ‖ · ‖ is a vector norm, then
an eigenvector x associated with λ exists with ‖x‖ = 1.

7. Find matrices A and B for which ρ(A+B) > ρ(A) + ρ(B). (This shows that
ρ(A) cannot be a matrix norm.)

8. Show that if A is symmetric, then ‖A‖2 = ρ(A).

9. Let λ be an eigenvalue of the n × n matrix A and x
= 0 be an associated
eigenvector.

7.3. EIGENVALUES AND EIGENVECTORS 359

(a) Show that λ is also an eigenvalue of At.

(b) Show that for any integer k ≥ 1, λk is an eigenvalue of Ak with eigen-
vector x.

(c) Show that if A−1 exists, then 1/λ is an eigenvalue of A−1 with eigen-
vector x.

(d) Let α
= λ be given. Show that if (A − αI)−1 exists, then 1/(λ − α) is
an eigenvalue of (A− αI)−1 with eigenvector x.

10. In Exercise 8 of Section 6.4, we assumed that the contribution a female bee-
tle of a certain type made to the future years’ beetle population could be
expressed in terms of the matrix

A =




0 0 6
1
2 0 0
0 1

3 0


 ,

where the entry in the ith row and jth column represents the probabilistic
contribution of a beetle of age j onto the next year’s female population of age
i.

(a) Does the matrix A have any real eigenvalues? If so, determine them and
any associated eigenvectors.

(b) If a sample of this species was needed for laboratory test purposes that
would have a constant proportion in each age group from year to year,
what criteria could be imposed on the initial population to ensure that
this requirement would be satisfied?

360CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

7.4 The Jacobi and Gauss-Seidel Methods

In this section we describe the elementary Jacobi and Gauss-Seidel iterative meth-
ods. These are classic methods that date to the late eighteenth century, but they
find current application in problems where the matrix is large and has mostly zero
entries in predictable locations. Applications of this type are common, for example,
in the study of large integrated circuits and in the numerical solution of boundary-
value problems and partial-differential equations.

An iterative technique for solving the n × n linear system Ax = b starts with
an initial approximation x(0) to the solution x and generates a sequence of vectors
{x(k)}∞k=1 that converges to x. These iterative techniques involve a process that
converts the system Ax = b into an equivalent system of the form x = Tx + c for
some n× n matrix T and vector c.

After the initial vector x(0) is selected, the sequence of approximate solution
vectors is generated by computing

x(k) = Tx(k−1) + c

for each k = 1, 2, 3,
The following result provides an important connection between the eigenvalues

of the matrix T and the expectation that the iterative method will converge.

[Convergence and the Spectral Radius] The sequence

x(k) = Tx(k−1) + c

converges to the unique solution of x = Tx + c for any x(0) in
n if and only
if ρ(T) < 1.

EXAMPLE 1 The linear system Ax = b given by

E1: 10x1 − x2 + 2x3 = 6,
E2: −x1 + 11x2 − x3 + 3x4 = 25,
E3: 2x1 − x2 + 10x3 − x4 = −11,
E4: 3x2 − x3 + 8x4 = 15

has solution x = (1, 2,−1, 1)t. To convert Ax = b to the form x = Tx + c, solve
equation Ei for xi obtaining

x1 =
1
10
x2 − 1

5
x3 +

3
5
,

x2 =
1
11
x1 +

1
11
x3 − 3

11
x4 +

25
11
,

x3 = −1
5
x1 +

1
10
x2 +

1
10
x4 − 11

10
,

x4 = −3
8
x2 +

1
8
x3 +

15
8
.

7.4. THE JACOBI AND GAUSS-SEIDEL METHODS 361

Then Ax = b has the form x = Tx + c, with

T =




0
1
10

−1
5

0

1
11

0
1
11

− 3
11

−1
5

1
10

0
1
10

0 −3
8

1
8

0




and c =




3
5
25
11

−11
10

15
8




.

For an initial approximation, suppose x(0) = (0, 0, 0, 0)t. Then x(1) is given by

x
(1)
1 =

1
10
x

(0)
2 − 1

5
x

(0)
3 +

3
5

= 0.6000,

x
(1)
2 =

1
11
x

(0)
1 +

1
11
x

(0)
3 − 3

11
x

(0)
4 +

25
11

= 2.2727,

x
(1)
3 = −1

5
x

(0)
1 +

1
10
x

(0)
2 +

1
10
x

(0)
4 − 11

10
= −1.1000,

x
(1)
4 = −3

8
x

(0)
2 +

1
8
x

(0)
3 +

15
8

= 1.8750.

Additional iterates, x(k) = (x(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4)t, are generated in a similar manner

and are presented in Table 7.1. The decision to stop after 10 iterations was based
on the criterion

‖x(10) − x(9)‖∞ = 8.0× 10−4 < 10−3.

Since we know that x = (1, 2,−1, 1)t, we have ‖x(10) − x‖∞ ≈ 0.0002.

Table 7.1

k 0 1 2 3 4 5 6 7 8 9 10

x
(k)
1 0.000 0.6000 1.0473 0.9326 1.0152 0.9890 1.0032 0.9981 1.0006 0.9997 1.0001

x
(k)
2 0.0000 2.2727 1.7159 2.053 1.9537 2.0114 1.9922 2.0023 1.9987 2.0004 1.9998

x
(k)
3 0.0000 −1.1000 −0.8052 −1.0493 −0.9681 −1.0103 −0.9945 −1.0020 −0.9990 −1.0004 −0.9998

x
(k)
4 0.0000 1.8750 0.8852 1.1309 0.9739 1.0214 0.9944 1.0036 0.9989 1.0006 0.9998

Example 1 uses the Jacobi iterative method. It consists of solving the ith
equation in Ax = b for xi to obtain, provided aii
= 0,

xi =
n∑

j=1
j 	=i

(
−aijxj

aii

)
+

bi
aii
, for i = 1, 2, . . . , n,

362CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

and generating each x(k)
i from components of x(k−1), for k ≥ 1, by

x
(k)
i =

∑n
j=1
j 	=i

(
−aijx

(k−1)
j

)
+ bi

aii
, for i = 1, 2, . . . , n. (7.1)

The method is written in the form x(k) = Tx(k−1) + c by splitting A into its
diagonal and off-diagonal parts. To see this, let D be the diagonal matrix whose
diagonal entries are those of A, −L be the strictly lower-triangular part of A, and
−U be the strictly upper triangular part of A. With this notation,

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann




is split into

A =



a11 0 0
0 a22

0
0 0 ann


−




0 0
−a21

−an1 −an,n−1 0




−




0 −a12 −a1n

−an−1,n

0 0




= D − L− U.

The equation Ax = b or (D − L− U)x = b is then transformed into

Dx = (L+ U)x + b,

and, if D−1 exists—that is, if aii
= 0 for each i—then

x = D−1(L+ U)x +D−1b.

This results in the matrix form of the Jacobi iterative technique:

x(k) = Tjx(k−1) + cj ,

where Tj = D−1(L+ U) and cj = D−1b.
The program JACITR71 implements the Jacobi method. If aii = 0 for some i

and the system is nonsingular, a reordering of the equations is performed so that
no aii = 0. To speed convergence, the equations should be arranged so that aii is
as large as possible.

A likely improvement on the Jacobi method can be seen by reconsidering Eq.(7.1).
In this equation all the components of x(k−1) are used to compute each of the

7.4. THE JACOBI AND GAUSS-SEIDEL METHODS 363

x
(k)
i . Since the components x(k)

1 , . . . , x
(k)
i−1 of x(k) have already been computed and

are probably better approximations to the actual solutions x1, . . . , xi−1 than are
x

(k−1)
1 , . . . , x

(k−1)
i−1 , we can compute x(k)

i using these most recently calculated values.
That is, we can use

x
(k)
i =

−∑i−1
j=1

(
aijx

(k)
j

)
−∑n

j=i+1

(
aijx

(k−1)
j

)
+ bi

aii
, (7.2)

for each i = 1, 2, . . . , n. This modification is called the Gauss-Seidel iterative
technique and is illustrated in the following example.

EXAMPLE 2 In Example 1 we used the Jacobi method to solve the linear system

10x1 − x2 + 2x3 = 6,
−x1 + 11x2 − x3 + 3x4 = 25,
2x1 − x2 + 10x3 − x4 = −11,

3x2 − x3 + 8x4 = 15.

Using the Gauss-Seidel method as described in Eq. (7.2) gives the equations

x
(k)
1 =

1
10
x

(k−1)
2 − 1

5
x

(k−1)
3 +

3
5
,

x
(k)
2 =

1
11
x

(k)
1 +

1
11
x

(k−1)
3 − 3

11
x

(k−1)
4 +

25
11
,

x
(k)
3 = −1

5
x

(k)
1 +

1
10
x

(k)
2 +

1
10
x

(k−1)
4 − 11

10
,

x
(k)
4 = −3

8
x

(k)
2 +

1
8
x

(k)
3 +

15
8
.

Letting x(0) = (0, 0, 0, 0)t, we generate the Gauss-Seidel iterates in Table 7.2. Since

‖x(5) − x(4)‖∞ = 0.0008 < 10−3,

x(5) is accepted as a reasonable approximation to the solution. Note that Jacobi’s
method in Example 1 required twice as many iterations for the same accuracy.

Table 7.2

k 0 1 2 3 4 5

x
(k)
1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001
x

(k)
2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000
x

(k)
3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000
x

(k)
4 0.0000 0.8789 0.9844 0.9983 0.9999 1.0000

To write the Gauss-Seidel method in matrix form, multiply both sides of Eq.(7.2)
by aii and collect all kth iterate terms, to give

ai1x
(k)
1 + ai2x

(k)
2 + · · ·+ aiix

(k)
i = −ai,i+1x

(k−1)
i+1 − · · · − ainx

(k−1)
n + bi,

364CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

for each i = 1, 2, . . . , n. Writing all n equations gives

a11x
(k)
1 = −a12x

(k−1)
2 − a13x

(k−1)
3 − · · · − a1nx

(k−1)
n + b1,

a21x
(k)
1 + a22x

(k)
2 = −a23x

(k−1)
3 − · · · − a2nx

(k−1)
n + b2,

...
an1x

(k)
1 + an2x

(k)
2 + · · ·+ annx

(k)
n = bn.

With the definitions of D, L, and U that we used previously, we have the Gauss-
Seidel method represented by

(D − L)x(k) = Ux(k−1) + b

or, if (D − L)−1 exists, by

x(k) = Tgx(k−1) + cg, for each k = 1, 2, . . . ,

where Tg = (D − L)−1U and cg = (D − L)−1b. Since

det(D − L) = a11 · a22 · · · ann,

the lower-triangular matrix D − L is nonsingular precisely when aii
= 0 for each
i = 1, 2, . . . , n. The Gauss-Seidel method is performed by the program GSEITR72.

The preceding discussion and the results of Examples 1 and 2 seem to imply that
the Gauss-Seidel method is superior to the Jacobi method. This is almost always
true, but there are linear systems for which the Jacobi method converges and the
Gauss-Seidel method does not. However, if A is strictly diagonally dominant, then
for any b and any choice of x(0), the Jacobi and Gauss-Seidel methods will both
converge to the unique solution of Ax = b.

7.4. THE JACOBI AND GAUSS-SEIDEL METHODS 365

EXERCISE SET 7.4

1. Find the first two iterations of the Jacobi method for the following linear
systems, using x(0) = 0:

(a) 3x1 − x2 + x3 = 1,
3x1 + 6x2 + 2x3 = 0,
3x1 + 3x2 + 7x3 = 4.

(b) 10x1 − x2 = 9,
−x1 + 10x2 − 2x3 = 7,

−2x2 + 10x3 = 6.

(c) 10x1 + 5x2 = 6,
5x1 + 10x2 − 4x3 = 25,

−4x2 + 8x3 − x4 = −11,
−x3 + 5x4 = −11.

(d) 4x1 + x2 − x3 + x4 = −2,
x1 + 4x2 − x3 − x4 = −1,
−x1 − x2 + 5x3 + x4 = 0,
x1 − x2 + x3 + 3x4 = 1.

(e) 4x1 + x2 + x3 + x5 = 6,
−x1 − 3x2 + x3 + x4 = 6,
2x1 + x2 + 5x3 − x4 − x5 = 6,
−x1 − x2 − x3 + 4x4 = 6,

2x2 − x3 + x4 + 4x5 = 6.

(f) 4x1 − x2 − x4 = 0,
−x1 + 4x2 − x3 − x5 = 5,

−x2 + 4x3 − x6 = 0,
−x1 + 4x4 − x5 = 6,

−x2 − x4 + 4x5 − x6 = −2,
−x3 − x5 + 4x6 = 6.

2. Repeat Exercise 1 using the Gauss-Seidel method.

3. Use the Jacobi method to solve the linear systems in Exercise 1, with TOL =
10−3 in the l∞ norm.

4. Repeat Exercise 3 using the Gauss-Seidel method.

5. The linear system

x1 − x3 = 0.2,

−1
2
x1 + x2 − 1

4
x3 = −1.425,

x1 − 1
2
x2 + x3 = 2.

has the solution (0.9,−0.8, 0.7)t.

(a) Is the coefficient matrix

A =




1 0 −1
− 1

2 1 − 1
4

1 − 1
2 1




366CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

strictly diagonally dominant?

(b) Compute the spectral radius of the Jacobi matrix Tj .

(c) Use the Jacobi iterative method to approximate the solution to the
linear system with a tolerance of 10−2 and a maximum of 300 iterations.

(d) What happens in part (c) when the system is changed to

x1 − 2x3 = 0.2,

−1
2
x1 + x2 − 1

4
x3 = −1.425,

x1 − 1
2
x2 + x3 = 2.

6. Repeat Exercise 5 using the Gauss-Seidel method.

7. Show that if A is strictly diagonally dominant, then ‖Tj‖∞ < 1.

7.5. THE SOR METHOD 367

7.5 The SOR Method

The SOR method is similar to the Jacobi and Gauss-Seidel methods, but it uses a
scaling factor to more rapidly reduce the approximation error. In contrast to the
classic methods discussed in the previous section, the SOR technique is a more
recent innovation.

The SOR technique is one of a class of relaxation methods that compute ap-
proximations x(k) by the formula

x
(k)
i = (1− ω)x(k−1)

i +
ω

aii


bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j


 ,

where ω is the scaling factor.
When ω = 1, we have the Gauss-Seidel method. When 0 < ω < 1, the procedures

are called under-relaxation methods and can be used to obtain convergence of
some systems that are not convergent by the Gauss-Seidel method.

When 1 < ω, the procedures are called over-relaxation methods, which are
used to accelerate the convergence for systems that are convergent by the Gauss-
Seidel technique. These methods are abbreviated SOR for Successive Over-
Relaxation and are used for solving the linear systems that occur in the numerical
solution of certain partial-differential equations.

To determine the matrix form of the SOR method, we rewrite the preceding
equation as

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi,

so that in vector form we have

(D − ωL)x(k) = [(1− ω)D + ωU]x(k−1) + ωb.

If (D − ωL)−1 exists, then

x(k) = Tωx(k−1) + cω,

where Tω = (D − ωL)−1[(1 − ω)D + ωU] and cω = ω(D − ωL)−1b. The SOR
technique can be applied using the program SORITR73.

EXAMPLE 1 The linear system Ax = b given by

4x1 + 3x2 = 24,
3x1 + 4x2 − x3 = 30,

−x2 + 4x3 = −24

has the solution (3, 4,−5)t. The Gauss-Seidel method and the SOR method with
ω = 1.25 will be used to solve this system, using x(0) = (1, 1, 1)t for both methods.

368CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

For each k = 1, 2, . . ., the equations for the Gauss-Seidel method are

x
(k)
1 = −0.75x(k−1)

2 + 6,

x
(k)
2 = −0.75x(k)

1 + 0.25x(k−1)
3 + 7.5,

x
(k)
3 = 0.25x(k)

2 − 6,

and the equations for the SOR method with ω = 1.25 are

x
(k)
1 = −0.25x(k−1)

1 − 0.9375x(k−1)
2 + 7.5,

x
(k)
2 = −0.9375x(k)

1 − 0.25x(k−1)
2 + 0.3125x(k−1)

3 + 9.375,

x
(k)
3 = 0.3125x(k)

2 − 0.25x(k−1)
3 − 7.5.

The first seven iterates for each method are listed in Tables 7.3 and 7.4. To be
accurate to seven decimal places, the Gauss-Seidel method required 34 iterations,
as opposed to only 14 iterations for the SOR method with ω = 1.25.

Table 7.3
Gauss-Seidel

k 0 1 2 3 4 5 6 7

x
(k)
1 1 5.250000 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.0134110
x

(k)
1 1 3.812500 3.8828125 3.9267578 3.9542236 3.9713898 3.9821186 3.9888241
x

(k)
1 1 −5.046875 −5.0292969 −5.0183105 −5.0114441 −5.0071526 −5.0044703 −5.0027940

Table 7.4
SOR with ω = 1.25

k 0 1 2 3 4 5 6 7

x
(k)
1 1 6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498
x

(k)
2 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586
x

(k)
3 1 −6.6501465 −4.6004238 −5.0966863 −4.9734897 −5.0057135 −4.9982822 −5.0003486

The obvious question to ask is how the appropriate value of ω is chosen. Al-
though no complete answer to this question is known for the general n × n linear
system, the following result can be used in certain situations.

7.5. THE SOR METHOD 369

[SOR Method Convergence] If A is a positive definite matrix and 0 < ω < 2,
then the SOR method converges for any choice of initial approximate solution
vector x(0).
If, in addition, A is tridiagonal, then ρ(Tg) = [ρ(Tj)]2 < 1, and the optimal
choice of ω for the SOR method is

ω =
2

1 +
√

1− [ρ(Tj)]2
.

With this choice of ω, we have ρ(Tω) = ω − 1.

EXAMPLE 2 The matrix

A =




4 3 0
3 4 −1
0 −1 4




given in Example 1 is positive definite and tridiagonal. Since

Tj = D−1(L+U) =




1
4

0 0

0
1
4

0

0 0
1
4







0 −3 0
−3 0 1

0 1 0


 =




0 −0.75 0
−0.75 0 0.25

0 0.25 0


 ,

we have
det(Tj − λI) = −λ(λ2 − 0.625) and ρ(Tj) =

√
0.625.

Hence, the optimal choice of ω is

ω =
2

1 +
√

1− [ρ(Tj)]2
=

2
1 +
√

1− 0.625
≈ 1.24.

This explains the rapid convergence obtained in Example 1 by using ω = 1.25.

370CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

EXERCISE SET 7.5

1. Find the first two iterations of the SOR method with ω = 1.1 for the following
linear systems, using x(0) = 0:

(a) 3x1 − x2 + x3 = 1,
3x1 + 6x2 + 2x3 = 0,
3x1 + 3x2 + 7x3 = 4.

(b) 10x1 − x2 = 9,
−x1 + 10x2 − 2x3 = 7,

−2x2 + 10x3 = 6.

(c) 10x1 + 5x2 = 6,
5x1 + 10x2 − 4x3 = 25,

−4x2 + 8x3 − x4 = −11,
− x3 + 5x4 = −11.

(d) 4x1 + x2 − x3 + x4 = −2,
x1 + 4x2 − x3 − x4 = −1,
−x1 − x2 + 5x3 + x4 = 0,
x1 − x2 + x3 + 3x4 = 1.

(e) 4x1 + x2 + x3 + x5 = 6,
−x1 − 3x2 + x3 + x4 = 6,
2x1 + x2 + 5x3 − x4 − x5 = 6,
−x1 − x2 − x3 + 4x4 = 6,

2x2 − x3 + x4 + 4x5 = 6.

(f) 4x1 − x2 − x4 = 0,
−x1 + 4x2 − x3 − x5 = 5,

−x2 + 4x3 − x6 = 0,
−x1 + 4x4 − x5 = 6,

−x2 − x4 + 4x5 − x6 = −2,
−x3 − x5 + 4x6 = 6.

2. Use the SOR method with ω = 1.2 to solve the linear systems in Exercise 1
with a tolerance TOL = 10−3 in the l∞ norm.

3. For those matrices in Exercise 1 that are both tridiagonal and positive definite,
use the SOR method with the optimal choice of ω.

4. Suppose that an object can be at any one of n+ 1 equally spaced points x0,
x1, . . . , xn. When an object is at location xi, it is equally likely to move to
either xi−1 or xi+1 and cannot directly move to any other location. Consider
the probabilities {Pi}ni=0 that an object starting at location xi will reach the
left endpoint x0 before reaching the right endpoint xn. Clearly, P0 = 1 and
Pn = 0. Since the object can move to xi only from xi−1 or xi+1 and does so
with probability 1

2 for each of these locations,

Pi =
1
2
Pi−1 +

1
2
Pi+1, for each i = 1, 2, . . . , n− 1.

7.5. THE SOR METHOD 371

f 1

f 2

f 3

f 4

f 5

F1

F2 F3

10,000 N

d k
1 3

2

4

(a) Show that



1 − 1
2 0 0

− 1
2 1 − 1

2

0 − 1
2 1

0

− 1
2 1 − 1

2

0 0 − 1
2 1







P1

P2

...
Pn−1


 =




1
2

0
...
0


 .

(b) Solve this system using n = 10, 50, and 100.

(c) Change the probabilities to α and 1 − α for movement to the left and
right, respectively, and derive the linear system similar to the one in
part (a).

(d) Repeat part (b) with α = 1
3 .

5. The forces on the bridge truss shown here satisfy the equations in the following
table:

Joint Horizontal Component Vertical Component

1© −F1 +
√

2
2 f1 + f2 = 0

√
2

2 f1 − F2 = 0

2© −
√

2
2 f1 +

√
3

2 f4 = 0 −
√

2
2 f1 − f3 + 1

2f4 = 0

3© −f2 + f5 = 0 f3 − 10, 000 = 0

4© −
√

3
2 f4 − f5 = 0 1

2f4 − F3 = 0

372CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

This linear system can be placed in the matrix form



−1 0 0
√

2
2 1 0 0 0

0 −1 0
√

2
2 0 0 0 0

0 0 −1 0 0 0 1
2 0

0 0 0 −
√

2
2 0 −1 1

2 0
0 0 0 0 −1 0 0 1
0 0 0 0 0 1 0 0

0 0 0 −
√

2
2 0 0

√
3

2 0

0 0 0 0 0 0 −
√

3
2 −1







F1

F2

F3

f1
f2
f3
f4
f5




=




0
0
0
0
0

10,000
0
0




.

(a) Explain why the system of equations was reordered.

(b) Approximate the solution of the resulting linear system to within 10−2

in the l∞ norm using as initial approximation the vector all of whose
entries are 1s and (i) the Gauss-Seidel method, (ii) the Jacobi method,
and (iii) the SOR method with ω = 1.25.

7.6. ERROR BOUNDS AND ITERATIVE REFINEMENT 373

7.6 Error Bounds and Iterative Refinement

This section considers the errors in approximation that are likely to occur when
solving linear systems by both direct and iterative methods. There is no univer-
sally superior technique for approximating the solution to linear systems, but some
methods will give better results than others when certain conditions are satisfied
by the matrix.

It seems intuitively reasonable that if x̃ is an approximation to the solution x
of Ax = b and the residual vector, defined by b − Ax̃, has the property that
‖b−Ax̃‖ is small, then ‖x− x̃‖ should be small as well. This is often the case, but
certain systems, which occur quite often in practice, fail to have this property.

EXAMPLE 1 The linear system Ax = b given by
[

1 1
1.0001 2

] [
x1

x2

]
=
[

3
3.0001

]

has the unique solution x = (1, 1)t. The poor approximation x̃ = (3, 0)t has the
residual vector

b−Ax̃ =
[

3
3.0001

]
−
[

1 2
1.0001 2

] [
3
0

]
=
[

0
−0.0002

]
,

so ‖b − Ax̃‖∞ = 0.0002. Although the norm of the residual vector is small, the
approximation x̃ = (3, 0)t is obviously quite poor; in fact, ‖x− x̃‖∞ = 2.

The difficulty in Example 1 is explained quite simply by noting that the solution
to the system represents the intersection of the lines

l1: x1 + 2x2 = 3 and l2: 1.0001x1 + 2x2 = 3.0001.

The point (3, 0) lies on l1, and the lines are nearly parallel. This implies that
(3, 0) also lies close to l2, even though it differs significantly from the solution of
the system, which is the intersection point (1, 1). (See Figure 7.6.)

Figure 7.6

x2

x1

(1, 1)

(3, 20.0001) l2

l1

1

2

(3, 0)

41

374CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Example 1 was clearly constructed to show the difficulties that might—and, in
fact, do—arise. Had the lines not been nearly coincident, we would expect a small
residual vector to imply an accurate approximation. In the general situation, we
cannot rely on the geometry of the system to give an indication of when problems
might occur. We can, however, obtain this information by considering the norms of
the matrix and its inverse.

[Residual Vector Error Bounds] If x̃ is an approximation to the solution of
Ax = b and A is a nonsingular matrix, then for any natural norm,

‖x− x̃‖ ≤ ‖b−Ax̃‖ · ‖A−1‖
and

‖x− x̃‖
‖x‖ ≤ ‖A‖ · ‖A−1‖‖b−Ax̃‖

‖b‖ , provided x
= 0 and b
= 0.

This implies that ‖A−1‖ and ‖A‖·‖A−1‖ provide an indication of the connection
between the residual vector and the accuracy of the approximation. In general, the
relative error ‖x−x̃‖/‖x‖ is of most interest, and this error is bounded by the prod-
uct of ‖A‖ ·‖A−1‖ with the relative residual for this approximation, ‖b−Ax̃‖/‖b‖.
Any convenient norm can be used for this approximation; the only requirement is
that it be used consistently throughout.

The condition number, K(A), of the nonsingular matrix A relative to a norm
‖ · ‖ is

K(A) = ‖A‖ · ‖A−1‖.
With this notation, we can reexpress the inequalities in the previous result as

‖x− x̃‖ ≤ K(A)
‖b−Ax̃‖
‖A‖ and

‖x− x̃‖
‖x‖ ≤ K(A)

‖b−Ax̃‖
‖b‖ .

For any nonsingular matrix A and natural norm ‖ · ‖,

1 = ‖I‖ = ‖A ·A−1‖ ≤ ‖A‖ · ‖A−1‖ = K(A).

A matrix A is well-behaved (called well-conditioned) if K(A) is close to 1 and is
not well-behaved (called ill-conditioned) when K(A) is significantly greater than
1. Conditioning in this instance refers to the relative security that a small residual
vector implies a correspondingly accurate approximate solution.

EXAMPLE 2 The matrix for the system considered in Example 1 was

A =
[

1 2
1.0001 2

]
,

7.6. ERROR BOUNDS AND ITERATIVE REFINEMENT 375

which has ‖A‖∞ = 3.0001. This norm would not be considered large. However,

A−1 =
[−10000 10000

5000.5 −5000

]
, so ‖A−1‖∞ = 20000,

and for the infinity norm, K(A) = (20000)(3.0001) = 60002. The size of the condi-
tion number for this example should certainly keep us from making hasty accuracy
decisions based on the residual of an approximation.

In Maple the condition number K∞ for the matrix in Example 2 can be com-
puted as follows:

>with(linalg);
>A:=matrix(2,2,[1,2,1.0001,2]);
>cond(A);

60002.00000

The residual of an approximation can also be used to improve the accuracy of
the approximation. Suppose that x̃ is an approximation to the solution of the linear
system Ax = b and that r = b−Ax is the residual associated with x̃. Consider ỹ,
the approximate solution to the system Ay = r. Then

ỹ ≈ A−1r = A−1(b−Ax̃) = A−1b−A−1Ax̃ = x− x̃.

So
x ≈ x̃ + ỹ.

This new approximation x̃ + ỹ is often much closer to the solution of Ax = b than
is x̃, and ỹ is easy to determine since it involves the same matrix, A, as the original
system. This technique is called iterative refinement, or iterative improvement ,
and is illustrated in the following example. To increase accuracy, the residual vector
is computed using double-digit arithmetic. The method can also be implemented
with the program ITREF74.

EXAMPLE 3 The linear system given by



3.3330 15920 −10.333
2.2220 16.710 9.6120
1.5611 5.1791 1.6852





x1

x2

x3


 =




15913
28.544
8.4254




has the exact solution x = (1, 1, 1)t.
Using Gaussian elimination and five-digit rounding arithmetic leads successively

to the augmented matrices



3.3330 15920 −10.333 15913
0 −10596 16.501 10580
0 −7451.4 6.5250 −7444.9




376CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

and 


3.3330 15920 −10.333 15913
0 −10596 16.501 −10580
0 0 −5.0790 −4.7000


 .

The approximate solution to this system is

x̃ = (1.2001, 0.99991, 0.92538)t.

When computed in 10-digit arithmetic, the residual vector corresponding to x̃
is

r = b−Ax̃

=




15913
28.544
8.4254


−




3.3330 15920 −10.333
2.2220 16.710 9.6120
1.5611 5.1791 1.6852






1.20001
0.99991
0.92538




=




15913
28.544
8.4254


−




15913.00518
28.26987086
8.611560367


 =



−0.00518

0.27413
−0.18616


 .

Using five-digit arithmetic and Gaussian elimination, the approximate solution
ỹ to the equation Ay = r is

ỹ = (−0.20008, 8.9987× 10−5, 0.074607)t

and we have a much better approximation to the system Ax = b,

x̃ + ỹ = (1.2001, 0.99991, 0.92538)t + (−0.20008, 8.9987× 10−5, 0.074607)t

= (1.0000, 1.0000, 0.99999)t,

than we had with the original approximation x̃ = (1.2001, 0.99991, 0.92538)t. If
we were continuing the iteration processes, we would, of course, use x̃ + ỹ as our
starting values rather than x̃.

7.6. ERROR BOUNDS AND ITERATIVE REFINEMENT 377

EXERCISE SET 7.6

1. Compute the condition numbers of the following matrices relative to ‖ · ‖∞.

(a)

[
1
2

1
3

1
3

1
4

]
(b)

[
3.9 1.6
6.8 2.9

]

(c)
[

1 2
1.0001 2

]
(d)

[
1.003 58.09
5.550 321.8

]

(e)




1 −1 −1
0 1 −1
0 0 −1


 (f)




0.04 0.01 −0.01
0.2 0.5 −0.2
1 2 4




2. The following linear systems Ax = b have x as the actual solution and x̃ as
an approximate solution. Using the results of Exercise 1, compute ‖x− x̃‖∞
and

K∞(A)
‖b−Ax̃‖∞
‖A‖∞ .

(a)
1
2
x1 +

1
3
x2 =

1
63
,

1
3
x1 +

1
4
x2 =

1
168

,

x =
(

1
7
,−1

6

)t

,

x̃ = (0.142,−0.166)t.

(b) 3.9x1 + 1.6x2 = 5.5,
6.8x1 + 2.9x2 = 9.7,
x = (1, 1)t,
x̃ = (0.98, 1.1)t.

(c) x1 + 2x2 = 3,
1.0001x1 + 2x2 = 3.0001,
x = (1, 1)t,
x̃ = (0.96, 1.02)t

(d) 1.003x1 + 58.09x2 = 68.12,
5.550x1 + 321.8x2 = 377.3,
x = (10, 1)t,
x̃ = (−10, 1)t

(e) x1 − x2 − x3 = 2π,
x2 − x3 = 0,
−x3 = π.

x = (0,−π,−π)t,
x̃ = (−0.1,−3.15,−3.14)t

(f) 0.04x1 + 0.01x2 − 0.01x3 = 0.06,
0.2x1 + 0.5x2 − 0.2x3 = 0.3,
x1 + 2x2 + 4x3 = 11,

x = (1.827586, 0.6551724, 1.965517)t,
x̃ = (1.8, 0.64, 1.9)t

378CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

3. The linear system
[

1 2
1.0001 2

] [
x1

x2

]
=
[

3
3.0001

]

has solution (1, 1)t. Change A slightly to
[

1 2
0.9999 2

]

and consider the linear system
[

1 2
0.9999 2

] [
x1

x2

]
=
[

3
3.0001

]
.

Compute the new solution using five-digit rounding arithmetic, and compare
the change in A to the change in x.

4. The linear system Ax = b given by
[

1 2
1.00001 2

] [
x1

x2

]
=
[

3
3.00001

]

has solution (1, 1)t. Use seven-digit rounding arithmetic to find the solution
of the perturbed system

[
1 2

1.000011 2

] [
x1

x2

]
=
[

3.00001
3.00003

]
,

and compare the change in A and b to the change in x.

5. (i) Use Gaussian elimination and three-digit rounding arithmetic to approxi-
mate the solutions to the following linear systems. (ii) Then use one iteration
of iterative refinement to improve the approximation, and compare the ap-
proximations to the actual solutions.

(a) 0.03x1 + 58.9x2 = 59.2
5.31x1 − 6.10x2 = 47.0
Actual solution (10, 1)t.

(b) 3.3330x1 + 15920x2 + 10.333x3 = 7953
2.2220x1 + 16.710x2 + 9.6120x3 = 0.965
−1.5611x1 + 5.1792x2 − 1.6855x3 = 2.714
Actual solution (1, 0.5,−1)t.

(c) 1.19x1 + 2.11x2 − 100x3 + x4 = 1.12
14.2x1 − 0.122x2 + 12.2x3 − x4 = 3.44

100x2 − 99.9x3 + x4 = 2.15
15.3x1 + 0.110x2 − 13.1x3 − x4 = 4.16
Actual solution (0.17682530, 0.01269269,−0.02065405,−1.18260870)t.

7.6. ERROR BOUNDS AND ITERATIVE REFINEMENT 379

(d) πx1 − ex2 +
√

2x3 − √
3x4 =

√
11

π2x1 + ex2 − e2x3 +
3
7
x4 = 0√

5x1 − √
6x2 + x3 − √

2x4 = π

π3x1 + e2x2 − √
7x3 +

1
9
x4 =

√
2

Actual solution (0.78839378,−3.12541367, 0.16759660, 4.55700252)t.

6. Repeat Exercise 5 using four-digit rounding arithmetic.

7. (a) Use Maple with Digits set to 7 to solve the following linear system
using Gaussian elimination.

1
3
x1 − 1

3
x2 − 1

3
x3 − 1

3
x4 − 1

3
x5 = 1

1
3
x2 − 1

3
x3 − 1

3
x4 − 1

3
x5 = 0

1
3
x3 − 1

3
x4 − 1

3
x5 = −1

1
3
x4 − 1

3
x5 = 2

1
3
x5 = 7

(b) Compute the condition number of the matrix for the system relative to
‖ · ‖∞.

(c) Find the exact solution to the linear system.

8. The n× n Hilbert matrix, H(n), defined by

H
(n)
ij =

1
i+ j − 1

, 1 ≤ i, j ≤ n

is an ill-conditioned matrix that arises in solving for the coefficients of least
squares polynomials (see Section 8.3).

(a) Show that

[H(4)]−1 =




16 −120 240 −140
−120 1200 −2700 1680

240 −2700 6480 −4200
−140 1680 −4200 2800


 ,

and compute K∞(H(4)).

(b) Show that

[H(5)]−1 =




25 −300 1050 −1400 630
−300 4800 −18900 26880 −12600
1050 −18900 79380 −117600 56700
−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100




380CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

and compute K∞(H(5)).

(c) Solve the linear system

H(4)



x1

x2

x3

x4


 =




1
0
0
1




using Maple with Digits set to 3, and compare the actual error to the
residual vector error bound.

9. (a) Use Maple with Digits set to 4 to compute the inverse H−1 of the 3×3
Hilbert matrix H.

(b) Use Maple with Digits set to 4 to compute Ĥ = (H−1)−1.

(c) Determine ‖H − Ĥ‖∞.

7.7. THE CONJUGATE GRADIENT METHOD 381

7.7 The Conjugate Gradient Method

The conjugate gradient method of Hestenes and Stiefel [HS] was originally devel-
oped as a direct method designed to solve an n× n positive definite linear system.
As a direct method it is generally inferior to Gaussian elimination with pivoting
since both methods require n major steps to determine a solution, and the steps of
the conjugate gradient method are more computationally expensive than those in
Gaussian elimination.

However, the conjugate gradient method is very useful when employed as an it-
erative approximation method for solving large sparse systems with nonzero entries
occurring in predictable patterns. These problems frequently arise in the solution
of boundary-value problems. When the matrix has been preconditioned to make
the calculations more effective, good results are obtained in only about

√
n steps.

Employed in this way, the method is preferred over Gaussian elimination and the
previously-discussed iterative methods.

Throughout this section we assume that the matrix A is positive definite. We
will use the inner product notation

〈x,y〉 = xty, (7.3)

where x and y are n-dimensional vectors. We will also need some additional stan-
dard results from linear algebra. A review of this material is found in Section 9.2.

The next result follows easily from the properties of transposes.

[Inner Product Properties]
For any vectors x, y, and z and any real number α, we have

(i) 〈x,y〉 = 〈y,x〉;
(ii) 〈αx,y〉 = 〈x, αy〉 = α〈x,y〉;
(iii) 〈x + z,y〉 = 〈x,y〉+ 〈z,y〉;
(iv) 〈x,x〉 ≥ 0;

(v) 〈x,x〉 = 0 if and only if x = 0.

When A is positive definite, 〈x, Ax〉 = xtAx > 0 unless x = 0. Also, since A is
symmetric, we have xtAy = xtAty = (Ax)ty, so in addition to the inner product
results, we have for each x and y,

〈x, Ay〉 = 〈Ax,y〉. (7.4)

The following result is a basic tool in the development of the conjugate gradient
method.

382CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

[Minimization Condition]
The vector x∗ is a solution to the positive definite linear system Ax = b if
and only if x∗ minimizes

g(x) = 〈x, Ax〉 − 2〈x,b〉.

In addition, for any x and v
= 0 the function g(x + tv) has its minimum
when t = 〈v,b−Ax〉/〈v, Av〉.

To begin the conjugate gradient method, we choose x, an approximate solution
to Ax∗ = b, and v
= 0, which gives a search direction in which to move away from
x to improve the approximation. Let r = b−Ax be the residual vector associated
with x and

t =
〈v,b−Ax〉
〈v, Av〉 =

〈v, r〉
〈v, Av〉 .

If r
= 0 and if v and r are not orthogonal, then x + tv gives a smaller value for
g than g(x) and is presumably closer to x∗ than is x. This suggests the following
method.

Let x(0) be an initial approximation to x∗, and let v(1)
= 0 be an initial search
direction. For k = 1, 2, 3, . . . , we compute

tk =
〈v(k),b−Ax(k−1)〉
〈v(k), Av(k)〉 ,

x(k) = x(k−1) + tkv(k)

and choose a new search direction v(k+1). The object is to make this selection so
that the sequence of approximations {x(k)} converges rapidly to x∗.

To choose the search directions, we view g as a function of the components of
x = (x1, x2, . . . , xn)t. Thus,

g(x1, x2, . . . , xn) = 〈x, Ax〉 − 2〈x,b〉 =
n∑

i=1

n∑
j=1

aijxixj − 2
n∑

i=1

xibi.

Taking partial derivatives with respect to the component variables xk gives

∂g

∂xk
(x) = 2

n∑
i=1

akixi − 2bk.

Therefore, the gradient of g is

∇g(x) =
(
∂g

∂x1
(x),

∂g

∂x2
(x), . . . ,

∂g

∂xn
(x)

)t

= 2(Ax− b) = −2r,

where the vector r is the residual vector for x.

7.7. THE CONJUGATE GRADIENT METHOD 383

From multivariable calculus, we know that the direction of greatest decrease in
the value of g(x) is the direction given by −∇g(x); that is, in the direction of the
residual r. The method that chooses

v(k+1) = r(k) = b−Ax(k)

is called the method of steepest descent. Although we will see in Section 10.4 that
this method has merit for nonlinear systems and optimization problems, it is not
used for linear systems because of slow convergence.

An alternative approach uses a set of nonzero direction vectors {v(1), . . . ,v(n)}
that satisfy

〈v(i), Av(j)〉 = 0, if i
= j.

This is called anA-orthogonality condition, and the set of vectors {v(1), . . . ,v(n)}
is said to be A-orthogonal. It is not difficult to show that a set of A-orthogonal
vectors associated with the positive definite matrix A is linearly independent. (See
Exercise 13(a).) This set of search directions gives

tk =
〈v(k),b−Ax(k−1)〉
〈v(k), Av(k)〉 =

〈v(k), r(k−1)〉
〈v(k), Av(k)〉

and x(k) = x(k−1) + tkv(k).
The following result shows that this choice of search directions gives convergence

in at most n-steps, so as a direct method it produces the exact solution, assuming
that the arithmetic is exact.

[A-orthogonality Convergence]
Let {v(1), . . . ,v(n)} be an A-orthogonal set of nonzero vectors associated with
the positive definite matrix A, and let x(0) be arbitrary. Define

tk =
〈v(k),b−Ax(k−1)〉
〈v(k), Av(k)〉 and x(k) = x(k−1) + tkv(k),

for k = 1, 2, . . . , n. Then, assuming exact arithmetic, Ax(n) = b.

EXAMPLE 1 Consider the positive definite matrix

A =




4 3 0
3 4 −1
0 −1 4


 .

Let v(1) = (1, 0, 0)t, v(2) = (−3/4, 1, 0)t, and v(3) = (−3/7, 4/7, 1)t. By direct

384CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

calculation,

〈v(1), Av(2)〉 = v(1)tAv(2) = (1, 0, 0)




4 3 0
3 4 −1
0 −1 4





− 3

4
1
0


 = 0,

〈v(1), Av(3)〉 = (1, 0, 0)




4 3 0
3 4 −1
0 −1 4





− 3

7
4
7
1


 = 0,

and

〈v(2), Av(3)〉 =
(
−3

4
, 1, 0

)


4 3 0
3 4 −1
0 −1 4





− 3

7
4
7
1


 = 0.

Thus, {v(1),v(2),v(3)} is an A-orthogonal set.
The linear system




4 3 0
3 4 −1
0 −1 4





x1

x2

x3


 =




24
30
−24


 ,

has the exact solution x∗ = (3, 4,−5)t. To approximate this solution, let x(0) =
(0, 0, 0)t. Since b = (24, 30,−24)t, we have

r(0) = b−Ax(0) = b = (24, 30,−24)t,

so
〈v(1), r(0)〉 = v(1)tr(0) = 24, 〈v(1), Av(1)〉 = 4, and t0 =

24
4

= 6.

Thus,
x(1) = x(0) + t0v(1) = (0, 0, 0)t + 6(1, 0, 0)t = (6, 0, 0)t.

Continuing, we have

r(1) = b−Ax(1) = (0, 12,−24)t; t1 =
〈v(2), r(1)〉
〈v(2), Av(2)〉 =

12
7/4

=
48
7

;

x(2) = x(1) + t1v(2) = (6, 0, 0)t +
48
7

(
−3

4
, 1, 0

)t

=
(

6
7
,
48
7
, 0
)t

;

r(2) = b−Ax(2) =
(

0, 0,−120
7

)
; t2 =

〈v(3), r(2)〉
〈v(3), Av(3)〉 =

−120/7
24/7

= −5;

and

x(3) = x(2) + t2v(3) =
(

6
7
,
48
7
, 0
)t

+ (−5)
(
−3

7
,
4
7
, 1
)t

= (3, 4,−5)t.

Since we applied the technique n = 3 times, this is the actual solution.

7.7. THE CONJUGATE GRADIENT METHOD 385

Before discussing how to determine the A-orthogonal set, we will continue the
development. The use of an A-orthogonal set {v(1), . . . ,v(n)} of direction vectors
gives what is called a conjugate direction method. The following result concerns the
orthogonality of the residual vectors r(k) and the direction vectors v(j).

[Orthogonal Residual Vectors]
The residual vectors r(k), where k = 1, 2, . . . , n, for a conjugate direction
method, satisfy the equations

〈r(k),v(j)〉 = 0, for each j = 1, 2, . . . , k.

The conjugate gradient method of Hestenes and Stiefel chooses the search di-
rections {v(k)} during the iterative process so that the residual vectors {r(k)} are
mutually orthogonal. To construct the direction vectors {v(1),v(2), . . .} and the ap-
proximations {x(1),x(2), . . .}, we start with an initial approximation x(0) and use
the steepest descent direction r(0) = b−Ax(0) as the first search direction v(1).

Assume that the conjugate directions v(1), . . . ,v(k−1) and the approximations
x(1), . . . ,x(k−1) have been computed with

x(k−1) = x(k−2) + tk−1v(k−1),

where
〈v(i), Av(j)〉 = 0 and 〈r(i), r(j)〉 = 0, for i
= j.

If x(k−1) is the solution to Ax = b, we are done. Otherwise, r(k−1) = b−Ax(k−1)
=
0 and the orthogonality implies that 〈r(k−1),v(i)〉 = 0, for i = 1, 2, . . . , k − 1. We
then use r(k−1) to generate v(k) by setting

v(k) = r(k−1) + sk−1v(k−1).

We want to choose sk−1 so that

〈v(k−1), Av(k)〉 = 0.

Since
Av(k) = Ar(k−1) + sk−1Av(k−1)

and
〈v(k−1), Av(k)〉 = 〈v(k−1), Ar(k−1)〉+ sk−1〈v(k−1), Av(k−1)〉,

we will have 〈v(k−1), Av(k)〉 = 0 when

sk−1 = − 〈v
(k−1), Ar(k−1)〉

〈v(k−1), Av(k−1)〉 .

It can also be shown that with this choice of sk−1 we have 〈v(k), Av(i)〉 = 0, for
each i = 1, 2, . . . , k − 2. Thus, {v(1), . . .v(k)} is an A-orthogonal set.

386CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Having chosen v(k), we compute

tk =
〈v(k), r(k−1)〉
〈v(k), Av(k)〉 =

〈r(k−1) + sk−1v(k−1), r(k−1)〉
〈v(k), Av(k)〉

=
〈r(k−1), r(k−1)〉
〈v(k), Av(k)〉 + sk−1

〈v(k−1), r(k−1)〉
〈v(k), Av(k)〉 .

By the orthogonality result, 〈v(k−1), r(k−1)〉 = 0, so

tk =
〈r(k−1), r(k−1)〉
〈v(k), Av(k)〉 . (7.5)

Thus,
x(k) = x(k−1) + tkv(k).

To compute r(k), we multiply by A and subtract b to obtain

Ax(k) − b = Ax(k−1) − b + tkAv(k)

or
r(k) = r(k−1) − tkAv(k).

Thus,

〈r(k), r(k)〉 = 〈r(k−1), r(k)〉 − tk〈Av(k), r(k)〉 = −tk〈r(k), Av(k)〉.
Further, from Eq. (7.5),

〈r(k−1), r(k−1)〉 = tk〈v(k), Av(k)〉,
so

sk = − 〈v
(k), Ar(k)〉

〈v(k), Av(k)〉 = − 〈r
(k), Av(k)〉
〈v(k), Av(k)〉

=
(1/tk)〈r(k), r(k)〉

(1/tk)〈r(k−1), r(k−1)〉 =
〈r(k), r(k)〉

〈r(k−1), r(k−1)〉 .

In summary, we have the formulas:

r(0) = b−Ax(0); v(1) = r(0);

and, for k = 1, 2, . . . , n,

tk =
〈r(k−1), r(k−1)〉
〈v(k), Av(k)〉 ,

x(k) = x(k−1) + tkv(k),

r(k) = r(k−1) − tkAv(k),

sk =
〈r(k), r(k)〉

〈r(k−1), r(k−1)〉 ,

v(k+1) = r(k) + skv(k). (7.6)

7.7. THE CONJUGATE GRADIENT METHOD 387

We will now extend the conjugate gradient method to include preconditioning. If
the matrix A is ill-conditioned, the conjugate gradient method is highly susceptible
to rounding errors. So, although the exact answer should be obtained in n steps,
this is not usually the case. As a direct method the conjugate gradient method is
not as good as Gaussian elimination with pivoting. The main use of the conjugate
gradient method is as an iterative method applied to a better-conditioned system.
In this case an acceptable approximate solution is often obtained in about

√
n steps.

To apply the method to a better-conditioned system, we want to select a non-
singular conditioning matrix C so that

Ã = C−1A(C−1)t

is better conditioned. To simplify the notation, we will use the matrix C−t to refer
to (C−1)t.

Consider the linear system
Ãx̃ = b̃,

where x̃ = Ctx and b̃ = C−1b. Then

Ãx̃ = (C−1AC−t)(Ctx) = C−1Ax.

Thus, we could solve Ãx̃ = b̃ for x̃ and then obtain x by multiplying by C−t.
However, instead of rewriting equations (7.6) using r̃(k), ṽ(k), t̃k, x̃(k), and s̃k, we
incorporate the preconditioning implicitly.

Since
x̃(k) = Ctx(k),

we have

r̃(k) = b̃− Ãx̃(k) = C−1b− (C−1AC−t)Ctx(k) = C−1(b−Ax(k)) = C−1r(k).

Let ṽ(k) = Ctv(k) and w(k) = C−1r(k). Then

s̃k =
〈r̃(k), r̃(k)〉

〈r̃(k−1), r̃(k−1)〉 =
〈C−1r(k), C−1r(k)〉

〈C−1r(k−1), C−1r(k−1)〉 ,

so

s̃k =
〈w(k),w(k)〉

〈w(k−1),w(k−1)〉 . (7.7)

Thus,

t̃k =
〈r̃(k−1), r̃(k−1)〉
〈ṽ(k), Ãṽ(k)〉 =

〈C−1r(k−1), C−1r(k−1)〉
〈Ctv(k), C−1AC−tCtv(k)〉 =

〈w(k−1),w(k−1)〉
〈Ctv(k), C−1Av(k)〉

and

t̃k =
〈w(k−1),w(k−1)〉
〈v(k), Av(k)〉 . (7.8)

Further,

x̃(k) = x̃(k−1) + t̃kṽ(k), so Ctx(k) = Ctx(k−1) + t̃kC
tv(k)

388CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

and

x(k) = x(k−1) + t̃kv(k). (7.9)

Continuing,

r̃(k) = r̃(k−1) − t̃kÃṽ(k),

so

C−1r(k) = C−1r(k−1) − t̃kC−1AC−tṽ(k), r(k) = r(k−1) − t̃kAC−tCtv(k),

and

r(k) = r(k−1) − t̃kAv(k). (7.10)

Finally,

ṽ(k+1) = r̃(k) + s̃kṽ(k) and Ctv(k+1) = C−1r(k) + s̃kC
tv(k),

so

v(k+1) = C−tC−1r(k) + s̃kv(k) = C−tw(k) + s̃kv(k). (7.11)

The preconditioned conjugate gradient method is based on using equations
(7.7)–(11) in the order (7.8), (7.9), (7.10), (7.7), and (7.11). The next example
illustrates the calculations in an easy problem.

EXAMPLE 2 The linear system Ax = b given by

4x1 + 3x2 = 24,
3x1 + 4x2 − x3 = 30,

− x2 + 4x3 = −24

has solution (3, 4,−5)t and was considered in Example 1 of Section 7.5. In that
example, both the Gauss-Seidel method and SOR method were used. We will use
the conjugate gradient method with no preconditioning, so C = C−1 = I. Let
x(0) = (0, 0, 0)t. Then

r(0) = b−Ax(0) = b = (24, 30,−24)t;

w = C−1r(0) = (24, 30,−24)t;

v(1) = C−tw = (24, 30,−24)t;
α = 〈w,w〉 = 2052.

7.7. THE CONJUGATE GRADIENT METHOD 389

We start the first iteration with k = 1. Then

u = Av(1) = (186.0, 216.0,−126.0)t;

t1 =
α

〈v(1),u〉 = 0.1469072165;

x(1) = x(0) + t1v(1) = (3.525773196, 4.407216495,−3.525773196)t;
r(1) = r(0) − t1u = (−3.32474227,−1.73195876,−5.48969072)t;
w = C−1r(1) = r(1);
β = 〈w,w〉 = 44.19029651;

s1 =
β

α
= 0.02153523222;

v(2) = C−tw + s1v(1) = (−2.807896697,−1.085901793,−6.006536293)t.

Set
α = β = 44.19029651.

We are now ready to begin the second iteration. We have

u = Av(2) = (−14.48929217,−6.760760967,−22.94024338)t;
t2 = 0.2378157558;

x(2) = (2.858011121, 4.148971939,−4.954222164)t;

r(2) = (0.121039698,−0.124143281,−0.034139402)t;

w = C−1r(2) = r(2);
β = 0.03122766148;
s2 = 0.0007066633163;

v(3) = (0.1190554504,−0.1249106480,−0.03838400086)t.

Set
α = β = 0.03122766148.

Finally, the third iteration gives

u = Av(3) = (0.1014898976,−0.1040922099,−0.0286253554)t;
t3 = 1.192628008;

x(3) = (2.999999998, 4.000000002,−4.999999998)t;

r(3) = (0.36× 10−8, 0.39× 10−8,−0.141× 10−8)t.

Since x(3) is nearly the exact solution, rounding error did not significantly effect
the result. In Example 1 of Section 7.5, the Gauss-Seidel method required 34 itera-
tions, and the SOR method, with ω = 1.25, required 14 iterations for an accuracy
of 10−7. It should be noted, however, that in this example, we are really comparing
a direct method to iterative methods.

390CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

The next example illustrates the effect of preconditioning on a poorly condi-
tioned matrix. In this example and subsequently, we use D−1/2 to represent the
diagonal matrix whose entries are the reciprocals of the square roots of the diago-
nal entries of the coefficient matrix A.

EXAMPLE 3 The linear system Ax = b with

A =




0.2 0.1 1 1 0
0.1 4 −1 1 −1
1 −1 60 0 −2
1 1 0 8 4
0 −1 −2 4 700




and b =




1
2
3
4
5




has the solution

x∗ = (7.859713071, 0.4229264082,−0.07359223906,−0.5406430164, 0.01062616286)t.

The matrix A is symmetric and positive definite but is ill-conditioned with condition
number K∞(A) = 13961.71. We will use tolerance 0.01 and compare the results
obtained from the Jacobi, Gauss-Seidel, and SOR (with ω = 1.25) iterative methods
and from the conjugate gradient method with C−1 = I. Then we precondition
by choosing C−1 as D−1/2, the diagonal matrix whose diagonal entries are the
reciprocal of the positive square roots of the diagonal entries of the positive definite
matrix A. The results are presented in Table 7.5. The preconditioned conjugate
gradient method gives the most accurate approximation with the smallest number
of iterations.

Table 7.5

Method Number x(k) ‖x∗ − x(k)‖∞
of Iterations

Jacobi 49 (7.86277141, 0.42320802,−0.07348669, 0.00305834

−0.53975964, 0.01062847)t

Gauss-Seidel 15 (7.83525748, 0.42257868,−0.07319124, 0.02445559

−0.53753055, 0.01060903)t

SOR(ω = 1.25) 7 (7.85152706, 0.42277371,−0.07348303, 0.00818607

−0.53978369, 0.01062286)t

Conjugate Gradient 5 (7.85341523, 0.42298677,−0.07347963, 0.00629785

−0.53987920, 0.008628916)t

Conjugate Gradient 4 (7.85968827, 0.42288329,−0.07359878, 0.00009312

(Preconditioned) −0.54063200, 0.01064344)t

The preconditioned conjugate gradient method is often used in the solution
of large linear systems in which the matrix is sparse and positive definite. These

7.7. THE CONJUGATE GRADIENT METHOD 391

systems must be solved to approximate solutions to boundary-value problems in
ordinary-differential equations (Sections 11.3, 11.5, 11.6). The larger the system,
the more impressive the conjugate gradient method becomes since it significantly
reduces the number of iterations required. In these systems, the preconditioning
matrix C is approximately equal to L in the Choleski factorization LLt of A. Gen-
erally, small entries in A are ignored and Choleski’s method is applied to obtain
what is called an incomplete LLt factorization of A. Thus, C−tC−1 ≈ A−1 and a
good approximation is obtained. More information about the conjugate gradient
method can be found in Kelley [Kelley].

392CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

EXERCISE SET 7.7

1. The linear system

x1 +
1
2
x2 =

5
21
,

1
2
x1 +

1
3
x2 =

11
84

has solution (x1, x2)t = (1/6, 1/7)t.

(a) Solve the linear system using Gaussian elimination with two-digit round-
ing arithmetic.

(b) Solve the linear system using the conjugate gradient method (C =
C−1 = I) with two-digit rounding arithmetic.

(c) Which method gives the better answer?

(d) Choose C−1 = D−1/2. Does this choice improve the conjugate gradient
method?

2. The linear system

0.1x1 + 0.2x2 = 0.3,
0.2x1 + 113x2 = 113.2

has solution (x1, x2)t = (1, 1)t. Repeat the directions for Exercise 1 on this
linear system.

3. The linear system

x1 +
1
2
x2 +

1
3
x3 =

5
6
,

1
2
x1 +

1
3
x2 +

1
4
x3 =

5
12
,

1
3
x1 +

1
4
x2 +

1
5
x3 =

17
60

has solution (1,−1, 1)t.

(a) Solve the linear system using Gaussian elimination with three-digit
rounding arithmetic.

(b) Solve the linear system using the conjugate gradient method with three-
digit rounding arithmetic.

(c) Does pivoting improve the answer in (a)?

(d) Repeat part (b) using C−1 = D−1/2. Does this improve the answer in
(b)?

7.7. THE CONJUGATE GRADIENT METHOD 393

4. Repeat Exercise 3 using single-precision arithmetic on a computer.

5. Perform only two steps of the conjugate gradient method with C = C−1 = I
on each of the following linear systems. Compare the results to those obtained
in Exercises 1 and 2 of Section 7.4 and Exercise 1 of Section 7.5.

(a) 3x1 − x2 + x3 = 1,
−x1 + 6x2 + 2x3 = 0,
x1 + 2x2 + 7x3 = 4.

(b) 10x1 − x2 = 9,
−x1 + 10x2 − 2x3 = 7,

− 2x2 + 10x3 = 6.

(c) 10x1 + 5x2 = 6,
5x1 + 10x2 − 4x3 = 25,
− 4x2 + 8x3 − x4 = −11,

− x3 + 5x4 = −11.

(d) 4x1 + x2 − x3 + x4 = −2,
x1 + 4x2 − x3 − x4 = −1,
−x1 − x2 + 5x3 + x4 = 0,
x1 − x2 + x3 + 3x4 = 1.

(e) 4x1 + x2 + x3 + x5 = 6,
x1 + 3x2 + x3 + x4 = 6,
x1 + x2 + 5x3 − x4 − x5 = 6,

x2 − x3 + 4x4 = 6,
x1 − x3 + + 4x5 = 6.

(f) 4x1 − x2 − x4 = 0,
−x1 + 4x2 − x3 − x5 = 5,

− x2 + 4x3 − x6 = 0,
−x1 + 4x4 − x5 = 6,

− x2 − x4 + 4x5 − x6 = −2,
− x3 − x5 + 4x6 = 6.

6. Repeat Exercise 5 using C−1 = D−1/2.

7. Repeat Exercise 5 with TOL = 10−3 in the l∞ norm. Compare the results to
those obtained in Exercises 3 and 4 of Section 7.4 and Exercise 2 of Section
7.5.

8. Repeat Exercise 7 using C−1 = D−1/2.

394CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

9. Use (i) the Jacobi Method, (ii) the Gauss-Seidel method, (iii) the SOR method
with ω = 1.3, and (iv) the conjugate gradient method and preconditioning
with C−1 = D−1/2 to find solutions to the linear system Ax = b to within
10−5 in the l∞ norm.

(a)

ai,j =




4, when j = i and i = 1, 2, . . . , 16,

−1, when




j = i+ 1 and i = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15,
j = i− 1 and i = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16,
j = i+ 4 and i = 1, 2, . . . , 12,
j = i− 4 and i = 5, 6, . . . , 16,

0, otherwise

and

b = (1.902207, 1.051143, 1.175689, 3.480083, 0.819600,−0.264419,
− 0.412789, 1.175689, 0.913337,−0.150209,−0.264419, 1.051143,

1.966694, 0.913337, 0.819600, 1.902207)t

(b)

ai,j =




4, when j = i and i = 1, 2, . . . , 25,

−1, when




j = i+ 1 and i =

{
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14,
16, 17, 18, 19, 21, 22, 23, 24,

j = i− 1 and i =

{
2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15,
17, 18, 19, 20, 22, 23, 24, 25,

j = i+ 5 and i = 1, 2, . . . , 20,
j = i− 5 and i = 6, 7, . . . , 25,

0, otherwise

and

b = (1, 0,−1, 0, 2, 1, 0,−1, 0, 2, 1, 0,−1, 0, 2, 1, 0,−1, 0, 2, 1, 0,−1, 0, 2)t

(c)

ai,j =




2i, when j = i and i = 1, 2, . . . , 40,

−1, when

{
j = i+ 1 and i = 1, 2, . . . , 39,
j = i− 1 and i = 2, 3, . . . , 40,

0, otherwise

and bi = 1.5i− 6, for each i = 1, 2, . . . , 40

7.7. THE CONJUGATE GRADIENT METHOD 395

10. Solve the linear system in Exercise 4(b) of Section 7.5 using the conjugate
gradient method with C−1 = I.

11. Let

A1 =




4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 4


 , −I =



−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1


 ,

and 0 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

Form the 16× 16 matrix A in partitioned form,

A =



A1 −I 0 0
−I A1 −I 0
0 −I A1 −I
0 0 −I A1


 .

Let b = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6)t.

(a) Solve Ax = b using the conjugate gradient method with tolerance 0.05.

(b) Solve Ax = b using the preconditioned conjugate gradient method with
C−1 = D−1/2 and tolerance 0.05.

(c) Is there any tolerance for which the methods of part (a) and part (b)
require a different number of iterations?

12. Use the transpose properties given in Section 6.4 to show the Inner Product
Properties given on the opening page of the Section.

13. (a) Show that an A-orthogonal set of nonzero vectors associated with a
positive definite matrix is linearly independent.

(b) Show that if {v(1),v(2), . . . ,v(n)} is a set of A-orthogonal nonzero vec-
tors in IR and ztv(i) = 0, for each i = 1, 2, . . . , n, then z = 0.

396CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

7.8 Survey of Methods and Software

In this chapter we have studied iterative techniques to approximate the solution
of linear systems. We began with the Jacobi method and the Gauss-Seidel method
to introduce the iterative methods. Both methods require an arbitrary initial ap-
proximation x(0) and generate a sequence of vectors x(i+1) using an equation of the
form

x(i+1) = Tx(i) + c.

It was noted that the method will converge if and only if the spectral radius of
the iteration matrix ρ(T) < 1, and the smaller the spectral radius, the faster the
convergence. Analysis of the residual vectors of the Gauss-Seidel technique led to
the SOR iterative method, which involves a parameter ω to speed convergence. The
preconditioned conjugate gradient method was introduced in Section 7.7.

These iterative methods and modifications are used extensively in the solution
of linear systems which arise in the numerical solution of boundary value problems
and partial differential equations (see Chapters 11 and 12). These systems are often
very large, on the order of 10000 equations in 10000 unknowns, and are sparse with
their nonzero entries in predictable positions. The iterative methods are also useful
for other large sparse systems and are easily adapted for efficient use on parallel
computers.

Almost all commercial and public domain packages that contain iterative meth-
ods for the solution of a linear system of equations require a preconditioner to be
used with the method. Faster convergence of iterative solvers is often achieved by
using a preconditioner. A preconditioner produces an equivalent system of equa-
tions that hopefully exhibits better convergence characteristics than the original
system. The IMSL Library has a preconditioned conjugate gradient method. The
NAG Library has several subroutines for the iterative solution of linear systems.
All of the subroutines are based on Krylov subspaces. Saad [Sa2] has a detailed
description of Krylov subspace methods. The packages LINPACK and LAPACK
contain only direct methods for the solution of linear systems; however, the pack-
ages do contain many subroutines that are used by the iterative solvers. The public
domain packages IML++, ITPACK, SLAP, and Templates, contain iterative meth-
ods. MATLAB contains several iterative methods that are also based on Krylov
subspaces. For example, the command x =PCG(A, b) executes the preconditioned
conjugate gradient method to solve the linear system Ax = b. Some optional input
parameters for PCG are, TOL a tolerance for convergence, MAXIT the maximum
number of iterations, and M a preconditioner.

The concepts of condition number and poorly conditioned matrices were intro-
duced in Section 7.6. Many of the subroutines for solving a linear system or for
factoring a matrix into an LU factorization include checks for ill-conditioned ma-
trices and also give an estimate of the condition number. LAPACK, LINPACK, the
IMSL Library, and the NAG Library have subroutines that improve on a solution to
a linear system that is poorly conditioned. The subroutines test the condition num-
ber and then use iterative refinement to obtain the most accurate solution possible
given the precision of the computer.

7.8. SURVEY OF METHODS AND SOFTWARE 397

More information on the use of iterative methods for solving linear systems can
be found in Varga [Var], Young [Y], Hageman and Young [HY], and in the recent
book by Axelsson [Ax]. Iterative methods for large sparse systems are discussed in
Barrett et al [BBEPVR], Hackbusch [Hac], Kelley [Kelley], and Saad [Sa2].

398CHAPTER 7. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Chapter 8

Approximation Theory

8.1 Introduction

Approximation theory involves two types of problems. One arises when a function
is given explicitly, but we wish to find a “simpler” type of function, such as a
polynomial, for representation. The other problem concerns fitting functions to
given data and finding the “best” function in a certain class that can be used to
represent the data. We will begin the chapter with this problem.

8.2 Discrete Least Squares Approximation

Consider the problem of estimating the values of a function at non-tabulated points,
given the experimental data in Table 8.1.

Table 8.1

xi yi xi yi

1 1.3 6 8.8
2 3.5 7 10.1
3 4.2 8 12.5
4 5.0 9 13.0
5 7.0 10 15.6

Figure 8.1

399

400 CHAPTER 8. APPROXIMATION THEORY

x

y

16

14

12

10

8

6

4

2

8642 10

Interpolation requires a function that assumes the value of yi at xi for each
i = 1, 2, . . . , 10. Figure 8.1 on the following page shows a graph of the values in
Table 8.1. From this graph, it appears that the actual relationship between x and
y is linear. However, it is likely that no line precisely fits the data, because of
errors in the data. In this case, it is unreasonable to require that the approximating
function agree exactly with the given data; in fact, such a function would introduce
oscillations that should not be present. For example, the graph of the ninth-degree
interpolating polynomial for the data shown in Figure 8.2 is obtained using Maple
with the commands

>p:=interp([1,2,3,4,5,6,7,8,9,10],[1.3,3.5,4.2,5.0,7.0,8.8,10.1,
12.5,13.0,15.6],x);
>plot({p},x=1..10);

Figure 8.2

8.2. DISCRETE LEAST SQUARES APPROXIMATION 401

x

y

16

14

12

10

8

6

4

2

8642 10

This polynomial is clearly a poor predictor of information between a number of the
data points.

A better approach for a problem of this type would be to find the “best” (in
some sense) approximating line, even if it did not agree precisely with the data at
the points.

Let a1xi + a0 denote the ith value on the approximating line and yi the ith
given y-value. Then, assuming that there are no errors in the x-values in the data,
|yi − (a1xi + a0)| gives a measure for the error at the ith point when we use this
approximating line. The problem of finding the equation of the best linear approxi-
mation in the absolute sense requires that values of a0 and a1 be found to minimize

E∞(a0, a1) = max
1≤i≤10

{|yi − (a1xi + a0)|}.

This is commonly called a minimax problem and cannot be handled by elementary
techniques. Another approach to determining the best linear approximation involves
finding values of a0 and a1 to minimize

E1(a0, a1) =
10∑

i=1

|yi − (a1xi + a0)| .

This quantity is called the absolute deviation. To minimize a function of two
variables, we need to set its partial derivatives to zero and simultaneously solve the
resulting equations. In the case of the absolute deviation, we would need to find a0

and a1 with

0 =
∂

∂a0

10∑
i=1

|yi − (a1xi + a0)| and 0 =
∂

∂a1

10∑
i=1

|yi − (a1xi + a0)| .

402 CHAPTER 8. APPROXIMATION THEORY

The difficulty with this procedure is that the absolute-value function is not dif-
ferentiable at zero, and solutions to this pair of equations cannot necessarily be
obtained.

The least squares approach to this problem involves determining the best
approximating line when the error involved is the sum of the squares of the dif-
ferences between the y-values on the approximating line and the given y-values.
Hence, constants a0 and a1 must be found that minimize the total least squares
error :

E2(a0, a1) =
10∑

i=1

|yi − (a1xi + a0)|2 =
10∑

i=1

(yi − (a1xi + a0))
2
.

The least squares method is the most convenient procedure for determining best
linear approximations, and there are also important theoretical considerations that
favor this method. The minimax approach generally assigns too much weight to a
bit of data that is badly in error, whereas the absolute deviation method does not
give sufficient weight to a point that is badly out of line. The least squares approach
puts substantially more weight on a point that is out of line with the rest of the
data but will not allow that point to dominate the approximation.

The general problem of fitting the best least squares line to a collection of data
{(xi, yi)}mi=1 involves minimizing the total error

E2(a0, a1) =
m∑

i=1

(yi − (a1xi + a0))2

with respect to the parameters a0 and a1. For a minimum to occur, we need

0 =
∂

∂a0

m∑
i=1

(yi − (a1xi − a0))
2 = 2

m∑
i=1

(yi − a1xi − a0)(−1)

and

0 =
∂

∂a1

m∑
i=1

(yi − (a1xi + a0))
2 = 2

m∑
i=1

(yi − a1xi − a0)(−xi)

These equations simplify to the normal equations

a0

m∑
i=1

xi + a1

m∑
i=1

x2
i =

m∑
i=1

xiyi and a0 ·m+ a1

m∑
i=1

xi =
m∑

i=1

yi.

The solution to this system is as follows.

8.2. DISCRETE LEAST SQUARES APPROXIMATION 403

[Linear Least Squares]
The linear least squares solution for a given collection of data {(xi, yi)}mi=1

has the form y = a1x+ a0, where

a0 =

(∑m
i=1 x

2
i

)
(
∑m

i=1 yi)− (
∑m

i=1 xiyi) (
∑m

i=1 xi)

m (
∑m

i=1 x
2
i)− (

∑m
i=1 xi)

2

and

a1 =
m (

∑m
i=1 xiyi)− (

∑m
i=1 xi) (

∑m
i=1 yi)

m (
∑m

i=1 x
2
i)− (

∑m
i=1 xi)

2 .

EXAMPLE 1 Consider the data presented in Table 8.1. To find the least squares line approxi-
mating this data, extend the table as shown in the third and fourth columns of
Table 8.2, and sum the columns.

Table 8.2

xi yi x2
i xiyi P (xi) = 1.538xi − 0.360

1 1.3 1 1.3 1.18
2 3.5 4 7.0 2.72
3 4.2 9 12.6 4.25
4 5.0 16 20.0 5.79
5 7.0 25 35.0 7.33
6 8.8 36 52.8 8.87
7 10.1 49 70.7 10.41
8 12.5 64 100.0 11.94
9 13.0 81 117.0 13.48
10 15.6 100 156.0 15.02

55 81.0 385 572.4 E =
∑10

i=1(yi − P (xi))2 ≈ 2.34

Solving the normal equations produces

a0 =
385(81)− 55(572.4)

10(385)− (55)2
= −0.360 and a1 =

10(572.4)− 55(81)
10(385)− (55)2

= 1.538.

So P (x) = 1.538x − 0.360. The graph of this line and the data points are shown
in Figure 8.3. The approximate values given by the least squares technique at the
data points are in the final column in Table 8.2.

Figure 8.3

404 CHAPTER 8. APPROXIMATION THEORY

x

y

16

14

12

10

8

6

4

2

8642 10

y 5 1.538x 2 0.360

The problem of approximating a set of data, {(xi, yi) | i = 1, 2, . . . ,m}, with an
algebraic polynomial

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

of degree n < m− 1 using least squares is handled in a similar manner. It requires
choosing the constants a0, a1, . . . , an to minimize the total least squares error :

E2 =
m∑

i=1

(yi − Pn(xi))2.

For E2 to be minimized, it is necessary that ∂E2/∂aj = 0 for each j = 0, 1, . . . , n.
This gives n+ 1 normal equations in the n+ 1 unknowns, aj ,

a0

m∑
i=1

x0
i + a1

m∑
i=1

x1
i + a2

m∑
i=1

x2
i + · · ·+ an

m∑
i=1

xn
i =

m∑
i=1

yix
0
i ,

a0

m∑
i=1

x1
i + a1

m∑
i=1

x2
i + a2

m∑
i=1

x3
i + · · ·+ an

m∑
i=1

xn+1
i =

m∑
i=1

yix
1
i ,

...

a0

m∑
i=1

xn
i + a1

m∑
i=1

xn+1
i + a2

m∑
i=1

xn+2
i + · · ·+ an

m∑
i=1

x2n
i =

m∑
i=1

yix
n
i .

The normal equations will have a unique solution, provided that the xi are
distinct.

8.2. DISCRETE LEAST SQUARES APPROXIMATION 405

EXAMPLE 2 Fit the data in the first two rows of Table 8.3 with the discrete least squares
polynomial of degree 2. For this problem, n = 2,m = 5, and the three normal
equations are

5a0 + 2.5a1 + 1.875a2 = 8.7680,
2.5a0 + 1.875a1 + 1.5625a2 = 5.4514,

1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015.

Table 8.3

i 1 2 3 4 5

xi 0 0.25 0.50 0.75 1.00
yi 1.0000 1.2840 1.6487 2.1170 2.7183

P (xi) 1.0051 1.2740 1.6482 2.1279 2.7129
yi − P (xi) −0.0051 0.0100 0.0004 −0.0109 0.0054

We can solve this linear system using Maple. We first define the equations

>eq1:=5*a0+2.5*a1+1.875*a2=8.7680;
>eq2:=2.5*a0+1.875*a1+1.5625*a2=5.4514;
>eq3:=1.875*a0+1.5625*a1+1.3828*a2=4.4015;

To solve the system we enter

>solve({eq1,eq2,eq3},{a0,a1,a2});

which gives, with Digits set to 5,

a0 = 1.0051, a1 = 0.86468, and a2 = 0.84316.

Thus, the least squares polynomial of degree 2 fitting the preceding data is
P2(x) = 1.0051+0.86468x+0.84316x2, whose graph is shown in Figure 8.4. At the
given values of xi, we have the approximations shown in Table 8.3.

Figure 8.4

406 CHAPTER 8. APPROXIMATION THEORY

y 5 1.0051 1 0.86468x 1 0.84316x2

0.25 0.50 0.75 1.00

1

2

y

x

The total error,
5∑

i=1

(yi − P (xi))2 = 2.76× 10−4,

is the least that can be obtained by using a polynomial of degree at most 2.

8.2. DISCRETE LEAST SQUARES APPROXIMATION 407

EXERCISE SET 8.2

1. Compute the linear least squares polynomial for the data of Example 2.

2. Compute the least squares polynomial of degree 2 for the data of Example 1
and compare the total error E2 for the two polynomials.

3. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the
following table. Compute the error E2 in each case. Graph the data and the
polynomials.

xi 1.0 1.1 1.3 1.5 1.9 2.1
yi 1.84 1.96 2.21 2.45 2.94 3.18

4. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the
following table. Compute the error E2 in each case. Graph the data and the
polynomials.

xi 0 0.15 0.31 0.5 0.6 0.75
yi 1.0 1.004 1.031 1.117 1.223 1.422

5. Given the following data

xi 4.0 4.2 4.5 4.7 5.1 5.5 5.9 6.3 6.8 7.1
yi 102.56 113.18 130.11 142.05 167.53 195.14 224.87 256.73 299.50 326.72

(a) Construct the least squares polynomial of degree 1 and compute the
error.

(b) Construct the least squares polynomial of degree 2 and compute the
error.

(c) Construct the least squares polynomial of degree 3 and compute the
error.

6. Repeat Exercise 5 for the following data.

xi 0.2 0.3 0.6 0.9 1.1 1.3 1.4 1.6
yi 0.050446 0.098426 0.33277 0.72660 1.0972 1.5697 1.8487 2.5015

408 CHAPTER 8. APPROXIMATION THEORY

7. Hooke’s law states that when a force is applied to a spring constructed of
uniform material, the length of the spring is a linear function of the force that
is applied, as shown in the accompanying figure.

E

l

l

F

14

12

10

8

6

42

2

6

4
k(l 2 E) 5 F(l)

(a) Suppose that E = 5.3 in. and that measurements are made of the length
l in inches for applied weights F (l) in pounds, as given in the following
table. Find the least squares approximation for k.

F (l) l

2 7.0
4 9.4
6 12.3

(b) Additional measurements are made, giving the following additional data.
Use these data to compute a new least squares approximation for k.
Which of (a) or (b) best fits the total experimental data?

F (l) l

3 8.3
5 11.3
8 14.4
10 15.9

8.2. DISCRETE LEAST SQUARES APPROXIMATION 409

8. To determine a relationship between the number of fish and the number of
species of fish in samples taken for a portion of the Great Barrier Reef, P. Sale
and R. Dybdahl [SD] fit a linear least squares polynomial to the following
collection of data, which were collected in samples over a 2-year period. Let
x be the number of fish in the sample and y be the number of species in the
sample and determine the linear least squares polynomial for these data.

x y x y x y
13 11 29 12 60 14
15 10 30 14 62 21
16 11 31 16 64 21
21 12 36 17 70 24
22 12 40 13 72 17
23 13 42 14 100 23
25 13 55 22 130 34

9. The following table lists the college grade-point averages of 20 mathematics
and computer science majors, together with the scores that these students
received on the mathematics portion of the ACT (American College Testing
Program) test while in high school. Plot these data, and find the equation of
the least squares line for this data. Do you think that the ACT scores are a
reasonable predictor of college grade-point averages?

ACT Grade-point ACT Grade-point
Score Average Score Average

28 3.84 29 3.75
25 3.21 28 3.65
28 3.23 27 3.87
27 3.63 29 3.75
28 3.75 21 1.66
33 3.20 28 3.12
28 3.41 28 2.96
29 3.38 26 2.92
23 3.53 30 3.10
27 2.03 24 2.81

410 CHAPTER 8. APPROXIMATION THEORY

8.3 Continuous Least Squares Approximation

Suppose f ∈ C[a, b] and we want a polynomial of degree at most n,

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
n∑

k=0

akx
k,

to minimize the error

E(a0, a1, . . . , an) =
∫ b

a

(f(x)− Pn(x))2 dx =
∫ b

a

(
f(x)−

n∑
k=0

akx
k

)2

dx.

A necessary condition for the numbers a0, a1, . . . , an to minimize the total error
E is that

∂E

∂aj
(a0, a1, . . . , an) = 0 for each j = 0, 1, . . . , n.

We can expand the integrand in this expression to

E =
∫ b

a

(f(x))2 dx− 2
n∑

k=0

ak

∫ b

a

xkf(x) dx+
∫ b

a

(
n∑

k=0

akx
k

)2

dx,

so
∂E

∂aj
(a0, a1, . . . , an) = −2

∫ b

a

xjf(x) dx+ 2
n∑

k=0

ak

∫ b

a

xj+k dx.

for each j = 0, 1, . . . , n. Setting these to zero and rearranging, we obtain the (n+1)
linear normal equations

n∑
k=0

ak

∫ b

a

xj+k dx =
∫ b

a

xjf(x) dx, for each j = 0, 1, . . . , n,

which must be solved for the n+ 1 unknowns a0, a1, . . . , an. The normal equations
have a unique solution provided that f ∈ C[a, b].

EXAMPLE 1 Find the least squares approximating polynomial of degree 2 for the function f(x) =
sinπx on the interval [0, 1].

The normal equations for P2(x) = a2x
2 + a1x+ a0 are

a0

∫ 1

0

1 dx+ a1

∫ 1

0

x dx+ a2

∫ 1

0

x2 dx =
∫ 1

0

sinπx dx,

a0

∫ 1

0

x dx+ a1

∫ 1

0

x2 dx+ a2

∫ 1

0

x3 dx =
∫ 1

0

x sinπx dx,

a0

∫ 1

0

x2 dx+ a1

∫ 1

0

x3 dx+ a2

∫ 1

0

x4 dx =
∫ 1

0

x2 sinπx dx.

8.3. CONTINUOUS LEAST SQUARES APPROXIMATION 411

Performing the integration yields

a0 +
1
2
a1 +

1
3
a2 =

2
π
,

1
2
a0 +

1
3
a1 +

1
4
a2 =

1
π
,

1
3
a0 +

1
4
a1 +

1
5
a2 =

π2 − 4
π3

.

These three equations in three unknowns can be solved to obtain

a0 =
12π2 − 120

π3
≈ −0.050465 and a1 = −a2 =

720− 60π2

π3
≈ 4.12251.

Consequently, the least squares polynomial approximation of degree 2 for f(x) =
sinπx on [0, 1] is P2(x) = −4.12251x2 +4.12251x−0.050465. (See Figure 8.5.)

Figure 8.5

x

y

f (x) 5 sin px

P2(x)

0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

Example 1 illustrates the difficulty in obtaining a least squares polynomial ap-
proximation. An (n+ 1)× (n+ 1) linear system for the unknowns a0, . . . , an must
be solved, and the coefficients in the linear system are of the form

∫ b

a

xj+k dx =
bj+k+1 − aj+k+1

j + k + 1
.

The matrix in the linear system is known as a Hilbert matrix, which is a classic
example for demonstrating round-off error difficulties.

Another disadvantage to the technique used in Example 1 is similar to the
situation that occurred when the Lagrange polynomials were first introduced in
Section 3.2. We often don’t know the degree of the approximating polynomial that
is most appropriate, and the calculations to obtain the best nth-degree polynomial
do not lessen the amount of work required to obtain the best polynomials of higher

412 CHAPTER 8. APPROXIMATION THEORY

degree. Both disadvantages are overcome by resorting to a technique that reduces
the n+ 1 equations in n+ 1 unknowns to n+ 1 equations, each of which contains
only one unknown. This simplifies the problem to one that can be easily solved,
but the technique requires some new concepts.

The set of functions {φ0, φ1, . . . , φn} is said to be linearly independent on
[a, b] if, whenever

c0φ0(x) + c1φ1(x) + · · ·+ cnφn(x) = 0 for all x ∈ [a, b],

we have c0 = c1 = · · · = cn = 0. Otherwise the set of functions is said to be linearly
dependent.

Linearly independent sets of functions are basic to our discussion and, since the
functions we are using for approximations are polynomials, the following result is
fundamental.

[Linearly Independent Sets of Polynomials]
If φj(x), for each j = 0, 1, . . . , n, is a polynomial of degree j, then {φ0, . . . , φn}
is linearly independent on any interval [a, b].

The situation illustrated in the following example demonstrates a fact that holds
in a much more general setting. Let

∏
n be the set of all polynomials of degree

at most n. If {φ0(x), φ1(x), . . . , φn(x)} is any collection of linearly independent
polynomials in

∏
n, then each polynomial in

∏
n can be written uniquely as a linear

combination of {φ0(x), φ1(x), . . . , φn(x)}.

EXAMPLE 2 Let φ0(x) = 2, φ1(x) = x−3, and φ2(x) = x2 +2x+7. Then {φ0, φ1, φ2} is linearly
independent on any interval [a, b]. SupposeQ(x) = a0+a1x+a2x

2.We will show that
there exist constants c0, c1, and c2 such that Q(x) = c0φ0(x) + c1φ1(x) + c2φ2(x).
Note first that

1 =
1
2
φ0(x), x = φ1(x) + 3 = φ1(x) +

3
2
φ0(x),

and

x2 = φ2(x)− 2x− 7 = φ2(x)− 2
(
φ1(x) +

3
2
φ0(x)

)
− 7

(
1
2
φ0(x)

)

= φ2(x)− 2φ1(x)− 13
2
φ0(x).

Hence,

Q(x) = a0

(
1
2
φ0(x)

)
+ a1

(
φ1(x) +

3
2
φ0(x)

)
+ a2

(
φ2(x)− 2φ1(x)− 13

2
φ0(x)

)

=
(

1
2
a0 +

3
2
a1 − 13

2
a2

)
φ0(x) + (a1 − 2a2)φ1(x) + a2φ2(x),

so any quadratic polynomial can be expressed as a linear combination of φ0(x), φ1(x),
and φ2(x).

8.3. CONTINUOUS LEAST SQUARES APPROXIMATION 413

To discuss general function approximation requires the introduction of the no-
tions of weight functions and orthogonality. An integrable function w is called a
weight function on the interval I if w(x) ≥ 0 for all x in I, but w is not identi-
cally zero on any subinterval of I.

The purpose of a weight function is to assign varying degrees of importance to
approximations on certain portions of the interval. For example, the weight function

w(x) =
1√

1− x2

places less emphasis near the center of the interval (−1, 1) and more emphasis when
|x| is near 1 (see Figure 8.6). This weight function will be used in the next section.

Figure 8.6

w(x)

121

1

x

Suppose {φ0, φ1, . . . , φn} is a set of linearly independent functions on [a, b], w
is a weight function for [a, b], and, for f ∈ C[a, b], a linear combination

P (x) =
n∑

k=0

akφk(x)

is sought to minimize the error

E(a0, . . . , an) =
∫ b

a

w(x)

(
f(x)−

n∑
k=0

akφk(x)

)2

dx.

This problem reduces to the situation considered at the beginning of this section
in the special case when w(x) ≡ 1 and φk(x) = xk for each k = 0, 1, . . . , n.

The normal equations associated with this problem are derived from the fact
that for each j = 0, 1, . . . , n,

0 =
∂E

∂aj
(a0, . . . , an) = 2

∫ b

a

w(x)

(
f(x)−

n∑
k=0

akφk(x)

)
φj(x) dx.

The system of normal equations can be written
∫ b

a

w(x)f(x)φj(x) dx =
n∑

k=0

ak

∫ b

a

w(x)φk(x)φj(x) dx, for each j = 0, 1, . . . , n.

414 CHAPTER 8. APPROXIMATION THEORY

If the functions φ0, φ1, . . . , φn can be chosen so that

∫ b

a

w(x)φk(x)φj(x) dx =

{
0, when j
= k,
αk > 0, when j = k,

(8.1)

for some positive numbers α0, α1, . . . , αn, then the normal equations reduce to

∫ b

a

w(x)f(x)φj(x) dx = aj

∫ b

a

w(x)[φj(x)]2 dx = ajαj

for each j = 0, 1, . . . , n, and are easily solved as

aj =
1
αj

∫ b

a

w(x)f(x)φj(x) dx.

Hence the least squares approximation problem is greatly simplified when the func-
tions φ0, φ1, . . . , φn are chosen to satisfy Eq. (8.1).

The set of functions {φ0, φ1, . . . , φn} is said to be orthogonal for the interval
[a, b] with respect to the weight function w if for some positive numbers α0, α1, . . . ,
αn, ∫ b

a

w(x)φj(x)φk(x) dx =

{
0, when j
= k,
αk > 0, when j = k.

If, in addition, αk = 1 for each k = 0, 1, . . . , n, the set is said to be orthonormal.
This definition, together with the remarks preceding it, implies the following.

[Least Squares for Orthogonal Functions]
If {φ0, φ1, . . . , φn} is an orthogonal set of functions on an interval [a, b] with
respect to the weight function w, then the least squares approximation to f
on [a, b] with respect to w is

P (x) =
n∑

k=0

akφk(x),

where

ak =

∫ b

a
w(x)φk(x)f(x) dx∫ b

a
w(x)(φk(x))2 dx

=
1
αk

∫ b

a

w(x)φk(x)f(x) dx.

The next result, which is based on the Gram-Schmidt process, describes a re-
cursive procedure for constructing orthogonal polynomials on [a, b] with respect to
a weight function w.

8.3. CONTINUOUS LEAST SQUARES APPROXIMATION 415

[Recursive Generation of Orthogonal Polynomials]
The set of polynomials {φ0(x), φ1(x), . . . , φn(x)} defined in the following way
is linearly independent and orthogonal on [a, b] with respect to the weight
function w.

φ0(x) ≡ 1, φ1(x) = x−B1,

where

B1 =

∫ b

a
xw(x)(φ0(x))

2
dx∫ b

a
w(x)(φ0(x))

2
dx

,

and when k ≥ 2,

φk(x) = (x−Bk)φk−1(x)− Ckφk−2(x),

where

Bk =

∫ b

a
xw(x)(φk−1(x))

2
dx∫ b

a
w(x)(φk−1(x))

2
dx

and Ck =

∫ b

a
xw(x)φk−1(x)φk−2(x) dx∫ b

a
w(x)(φk−2(x))

2
dx

.

Moreover, for any polynomial Qk(x) of degree k < n,

∫ b

a

w(x)φn(x)Qk(x) dx = 0.

EXAMPLE 3 The set of Legendre polynomials, {Pn(x)}, is orthogonal on [−1, 1] with respect
to the weight function w(x) ≡ 1. The classical definition of the Legendre polyno-
mials requires that Pn(1) = 1 for each n, and a recursive relation can be used to
generate the polynomials when n ≥ 2. This normalization will not be needed in our
discussion, and the least squares approximating polynomials generated in either
case are essentially the same. Using the recursive procedure, P0(x) ≡ 1, so

B1 =

∫ 1

−1
x dx∫ 1

−1
dx

= 0 and P1(x) = (x−B1)P0(x) = x.

Also,

B2 =

∫ 1

−1
x3 dx∫ 1

−1
x2 dx

= 0 and C2 =

∫ 1

−1
x2 dx∫ 1

−1
1 dx

=
1
3
,

so
P2(x) = (x−B2)P1(x)− C2P0(x) = (x− 0)x− 1

3
· 1 = x2 − 1

3
.

Higher-degree Legendre polynomials are derived in the same manner. The Maple
integration command int can be used to compute Bk and Ck. For example,

>B3:=int(x*(x^2-1/3)^2,x=-1..1)/int((x^2-1/3)^2,x=-1..1);
>C3:=int(x*(x^2-1/3)*x,x=-1..1)/int(x^2,x=-1..1);

416 CHAPTER 8. APPROXIMATION THEORY

gives B3 = 0 and C3 = 4
15 . Thus,

P3(x) = xP2(x)− 4
15
P1(x) = x3 − 1

3
x− 4

15
x = x3 − 3

5
x.

The next two Legendre polynomials are P4(x) = x4 − 6
7x

2 + 3
35 and P5(x) =

x5 − 10
9 x

3 + 5
21x. Figure 8.7 shows the graphs of these polynomials. In general, we

have, for each n ≥ 1, the recursive relationship

Pn+1(x) = xPn(x)− n2

4n2 − 1
Pn−1(x). (8.2)

Figure 8.7

Pn(x)

x

P1(x)

P2(x)

P3(x)

P4(x)
P5(x)

1

21

21

20.5

0.5

1

8.3. CONTINUOUS LEAST SQUARES APPROXIMATION 417

EXERCISE SET 8.3

1. Find the linear least squares polynomial approximation to f(x) on the indi-
cated interval in each case.

(a) f(x) = x2 + 3x+ 2, [0, 1]; (b) f(x) = x3, [0, 2];

(c) f(x) =
1
x

, [1, 3]; (d) f(x) = ex, [0, 2];

(e) f(x) =
1
2

cosx+
1
3

sin 2x, [0, 1]; (f) f(x) = x lnx, [1, 3].

2. Find the least squares polynomial approximation of degree 2 to the functions
and intervals in Exercise 1.

3. Find the linear least squares polynomial approximation on the interval [−1, 1]
for the following functions.

(a) f(x) = x2 − 2x+ 3 (b) f(x) = x3

(c) f(x) =
1

x+ 2
(d) f(x) = ex

(e) f(x) =
1
2

cosx+
1
3

sin 2x (f) f(x) = ln(x+ 2)

4. Find the least squares polynomial approximation of degree 2 on the interval
[−1, 1] for the functions in Exercise 3.

5. Compute the error E for the approximations in Exercise 3.

6. Compute the error E for the approximations in Exercise 4.

7. Use the Gram-Schmidt process to construct φ0(x), φ1(x), φ2(x), and φ3(x)
for the following intervals.

(a) [0, 1] (b) [0, 2] (c) [1, 3]

8. Repeat Exercise 1 using the results of Exercise 7.

9. Repeat Exercise 2 using the results of Exercise 7.

10. Use the Gram-Schmidt procedure to calculate L1, L2, and L3, where {L0(x),
L1(x), L2(x), L3(x)} is an orthogonal set of polynomials on (0,∞) with re-
spect to the weight functions w(x) = e−x and L0(x) ≡ 1. The polynomials
obtained from this procedure are called the Laguerre polynomials.

418 CHAPTER 8. APPROXIMATION THEORY

11. Use the Laguerre polynomials calculated in Exercise 10 to compute the least
squares polynomials of degree 1, 2, and 3 on the interval (0,∞) with respect
to the weight function w(x) = e−x for the following functions.

(a) f(x) = x2 (b) f(x) = e−x

(c) f(x) = x3 (d) f(x) = e−2x

12. Show that if {φ0, φ1, . . . , φn} is an orthogonal set of functions on [a, b] with re-
spect to the weight function w, then {φ0, φ1, . . . , φn} is a linearly independent
set.

13. Suppose {φ0(x), φ1(x), . . . , φn(x)} is a linearly independent set in
∏

n. Show
that for any element Q(x) ∈ ∏

n there exist unique constants c0, c1, . . . , cn
such that

Q(x) =
n∑

k=o

ckφk(x).

8.4. CHEBYSHEV POLYNOMIALS 419

8.4 Chebyshev Polynomials

The Chebyshev polynomials {Tn(x)} are orthogonal on (−1, 1) with respect to
the weight function w(x) = (1 − x2)−1/2. Although they can be derived by the
method in the previous section, it is easier to give a definition and then show that
they are the polynomials that satisfy the required orthogonality properties.

For x ∈ [−1, 1], define

Tn(x) = cos(n arccosx) for each n ≥ 0.

It is not obvious from this definition that Tn(x) is a nth degree polynomial in x,
but we will now show that it is. First note that

T0(x) = cos 0 = 1 and T1(x) = cos(arccosx) = x.

For n ≥ 1 we introduce the substitution θ = arccosx to change this equation to

Tn(x) =Tn(θ(x)) ≡ Tn(θ) = cos(nθ), where θ ∈ [0, π].

A recurrence relation is derived by noting that

Tn+1(θ) = cos(nθ + θ) = cos(nθ) cos θ − sin(nθ) sin θ

and

Tn−1(θ) = cos(nθ − θ) = cos(nθ) cos θ + sin(nθ) sin θ.

Adding these equations gives

Tn+1(θ) + Tn−1(θ) = 2 cos(nθ) cos θ.

Returning to the variable x and solving for Tn+1(x) we have, for each n ≥ 1,

Tn+1(x) = 2 cos(n arccosx) · x− Tn−1(x) = 2Tn(x) · x− Tn−1(x).

Since T0(x) and T1(x) are both polynomials in x, Tn+1(x) will be a polynomial in
x for each n.

[Chebyshev Polynomials] T0(x) = 1, T1(x) = x,

and, for n ≥ 1, Tn+1(x) is the polynomial of degree n+ 1 given by

Tn+1(x) = 2xTn(x)− Tn−1(x).

420 CHAPTER 8. APPROXIMATION THEORY

The recurrence relation implies that Tn(x) is a polynomial of degree n, and it
has leading coefficient 2n−1, when n ≥ 1. The next three Chebyshev polynomials
are

T2(x) = 2xT1(x)− T0(x) = 2x2 − 1,

T3(x) = 2xT2(x)− T1(x) = 4x3 − 3x,

and

T4(x) = 2xT3(x)− T2(x) = 8x4 − 8x2 + 1.

The graphs of T1, T2, T3, and T4 are shown in Figure 8.8. Notice that each of
the graphs is symmetric to either the origin or the y-axis, and that each assumes a
maximum value of 1 and a minimum value of −1 on the interval [−1, 1].

Figure 8.8

x

T1(x)

T2(x)

T3(x) T4(x)
1

1

21

21

Tn(x)

To show the orthogonality of the Chebyshev polynomials, consider
∫ 1

−1

w(x)Tn(x)Tm(x) dx =
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
∫ 1

−1

cos(n arccosx) cos(m arccosx)√
1− x2

dx.

Reintroducing the substitution θ = arccosx gives

dθ = − 1√
1− x2

dx

8.4. CHEBYSHEV POLYNOMIALS 421

and
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = −
∫ 0

π

cos(nθ) cos(mθ) dθ =
∫ π

0

cos(nθ) cos(mθ) dθ.

Suppose n
= m. Since

cos(nθ) cos(mθ) =
1
2

(cos(n+m)θ + cos(n−m)θ) ,

we have
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
1
2

∫ π

0

cos((n+m)θ) dθ +
1
2

∫ π

0

cos((n−m)θ) dθ

=
[

1
2(n+m)

sin ((n+m)θ) +
1

2(n−m)
sin(n−m)θ

]π

0

= 0.

By a similar technique, it can also be shown that

∫ 1

−1

(Tn(x))2√
1− x2

dx =
π

2
for each n ≥ 1.

One of the important results about the Chebyshev polynomials concerns their
zeros and extrema. These are easily verified by substitution into the polynomials
and their derivatives.

[Zeros and Extrema of Chebyshev Polynomials]
The Chebyshev polynomial Tn(x), of degree n ≥ 1, has n simple zeros in
[−1, 1] at

xk = cos
(

2k − 1
2n

π

)
for each k = 1, 2, . . . , n.

Moreover, Tn assumes its absolute extrema at

x′k = cos
(
kπ

n

)
with Tn (x′k) = (−1)k for each k = 0, 1, . . . , n.

The monic Chebyshev polynomial (polynomial with leading coefficient 1), T̃n(x),
is derived from the Chebyshev polynomial, Tn(x), by dividing by the leading coef-
ficient, 2n−1, when n ≥ 1. So

T̃0(x) = 1, and T̃n(x) = 21−nTn(x) for each n ≥ 1.

These polynomials satisfy the recurrence relation

T̃2(x) = xT̃1(x)− 1
2
T̃0(x); T̃n+1(x) = xT̃n(x)− 1

4
T̃n−1(x),

422 CHAPTER 8. APPROXIMATION THEORY

for each n ≥ 2. Because T̃n is a multiple of Tn, the zeros of T̃n also occur at

xk = cos
(

2k − 1
2n

π

)
for each k = 1, 2, . . . , n,

and the extreme values of T̃n occur at

x′k = cos
(
kπ

n

)
with T̃n(x′k) =

(−1)k

2n−1
for each k = 0, 1, 2, . . . , n.

Let Π̃n denote the set of all monic polynomials of degree n. The following
minimization property distinguishes the polynomials T̃n(x) from the other members
of Π̃n.

[Minimum Property of Monic Chebyshev Polynomials] The polynomial T̃n(x),
when n ≥ 1, has the property that

1
2n−1

= max
x∈[−1,1]

|T̃n(x)| ≤ max
x∈[−1,1]

|Pn(x)| for all Pn ∈ Π̃n.

Moreover, equality can occur only if Pn = T̃n.

This result is used to answer the question of where to place interpolating nodes
to minimize the error in Lagrange interpolation. The error form for the Lagrange
polynomial applied to the interval [−1, 1] states that if x0, . . . , xn are distinct num-
bers in the interval [−1, 1] and if f ∈ Cn+1[−1, 1], then, for each x ∈ [−1, 1], a
number ξ(x) exists in (−1, 1) with

f(x)− P (x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0) · · · (x− xn),

where P (x) is the Lagrange interpolating polynomial. Suppose that we want to
minimize this error for all values of x in [−1, 1]. We have no control over ξ(x), so
to minimize the error by shrewd placement of the nodes x0, . . . , xn is equivalent to
choosing x0, . . . , xn to minimize the quantity

|(x− x0)(x− x1) · · · (x− xn)|
throughout the interval [−1, 1].

Since (x − x0)(x − x1) · · · (x − xn) is a monic polynomial of degree n + 1, the
minimum is obtained when

(x− x0)(x− x1) · · · (x− xn) = T̃n+1(x).

When xk is chosen to be the (k + 1)st zero of T̃n+1, that is, when xk is

xk+1 = cos
2k + 1

2(n+ 1)
π,

8.4. CHEBYSHEV POLYNOMIALS 423

the maximum value of |(x− x0)(x− x1) · · · (x− xn)| is minimized. Since

max
x∈[−1,1]

∣∣∣T̃n+1(x)
∣∣∣ =

1
2n

this also implies that

1
2n

= max
x∈[−1,1]

|(x− x1) (x− x2) · · · (x− xn+1)|

≤ max
x∈[−1,1]

|(x− x0)(x− x1) · · · (x− xn)| ,

for any choice of x0, x1, . . . , xn in the interval [−1, 1].

[Minimizing Lagrange Interpolation Error]
If P (x) is the interpolating polynomial of degree at most n with nodes at the
roots of Tn+1(x), then, for any f ∈ Cn+1[−1, 1],

max
x∈[−1,1]

|f(x)− P (x)| ≤ 1
2n(n+ 1)!

max
x∈[−1,1]

∣∣∣f (n+1)(x)
∣∣∣ .

The technique for choosing points to minimize the interpolating error can be
easily extended to a general closed interval [a, b] by using the change of variable

x̃ =
1
2

((b− a)x+ a+ b)

to transform the numbers xk in the interval [−1, 1] into the corresponding numbers
in the interval [a, b], as shown in the next example.

EXAMPLE 1 Let f(x) = xex on [0, 1.5]. Two interpolation polynomials of degree at most 3 will
be constructed. First, the equally spaced nodes x0 = 0, x1 = 0.5, x2 = 1, and
x3 = 1.5 are used. The methods in Section 3.2 give this interpolating po1ynomial
as

P3(x) = 1.3875x3 + 0.057570x2 + 1.2730x.

For the second interpolating polynomial we will use the nodes given by the zeros
of the Chebyshev polynomial T̃4. First we shift these zeros xk = cos((2k + 1)/8)π,
for k = 0, 1, 2, and 3, from [−1, 1] to [0, 1.5], using the linear transformation

x̃k =
1
2
((1.5− 0)xk + (1.5 + 0)) = 0.75 + 0.75xk

to obtain

x̃0 = 1.44291, x̃1 = 1.03701, x̃2 = 0.46299, and x̃3 = 0.05709.

For these nodes, the interpolation polynomial of degree at most 3 is

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x− 0.014352.

424 CHAPTER 8. APPROXIMATION THEORY

Table 8.4

x f(x) = xex P3(x) |xex − P3(x)| P̃3(x) |xex − P̃3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.0120 1.231 0.0140
0.75 1.588 1.572 0.0160 1.571 0.0170
0.85 1.989 1.976 0.0130 1.974 0.0150
1.15 3.632 3.650 0.0180 3.644 0.0120
1.25 4.363 4.391 0.0280 4.382 0.0190
1.35 5.208 5.237 0.0290 5.224 0.0160

Table 8.4 lists various values of x, together with the values of f(x), P3(x), and
P̃3(x). Although the error using P3(x) is less than using P̃3(x) near the middle of the
table, the maximum error involved with using P̃3(x), which is P̃3(1.25) = 0.019, is
considerably less than the maximium error using P3(x), which is P3(1.35) = 0.029.
(See Figure 8.9.)

Figure 8.9

P3(x)
,

y 5 xex

0.5 1.0 1.5

6

5

4

3

2

1

y

x

8.4. CHEBYSHEV POLYNOMIALS 425

EXERCISE SET 8.4

1. Use the zeros of T̃3 to construct an interpolating polynomial of degree 2 for
the following functions on the interval [−1, 1].

(a) f(x) = ex (b) f(x) = sinx

(c) f(x) = ln(x+ 2) (d) f(x) = x4

2. Find a bound for the maximum error of the approximation in Exercise 1 on
the interval [−1, 1].

3. Use the zeros of T̃4 to construct an interpolating polynomial of degree 3 for
the functions in Exercise 1.

4. Repeat Exercise 2 for the approximations computed in Exercise 3.

5. Use the zeros of T̃3 and transformations of the given interval to construct an
interpolating polynomial of degree 2 for the following functions.

(a) f(x) =
1
x

, [1, 3]
(b) f(x) = e−x, [0, 2]

(c) f(x) =
1
2

cosx+
1
3

sin 2x, [0, 1] (d) f(x) = x lnx, [1, 3]

6. Use the zeros of T̃4 to construct an interpolating polynomial of degree 3 for
the functions in Exercise 5.

7. Show that for any positive integers i and j with i > j we have

Ti(x)Tj(x) =
1
2
[Ti+j(x) + Ti−j(x)].

8. Show that for each Chebyshev polynomial Tn(x) we have

∫ 1

−1

[Tn(x)]2√
1− x2

dx =
π

2
.

426 CHAPTER 8. APPROXIMATION THEORY

8.5 Rational Function Approximation

The class of algebraic polynomials has some distinct advantages for use in approxi-
mation. There is a sufficient number of polynomials to approximate any continuous
function on a closed interval to within an arbitrary tolerance, polynomials are easily
evaluated at arbitrary values, and the derivatives and integrals of polynomials exist
and are easily determined. The disadvantage of using polynomials for approxima-
tion is their tendency for oscillation. This often causes error bounds in polynomial
approximation to significantly exceed the average approximation error, since error
bounds are determined by the maximum approximation error. We now consider
methods that spread the approximation error more evenly over the approximation
interval.

A rational function r of degree N has the form

r(x) =
p(x)
q(x)

,

where p(x) and q(x) are polynomials whose degrees sum to N .
Since every polynomial is a rational function (simply let q(x) ≡ 1), approxima-

tion by rational functions gives results with no greater error bounds than approxi-
mation by polynomials. However, rational functions whose numerator and denom-
inator have the same or nearly the same degree generally produce approximation
results superior to polynomial methods for the same amount of computational ef-
fort. Rational functions have the added advantage of permitting efficient approxi-
mation of functions with infinite discontinuities near the interval of approximation.
Polynomial approximation is generally unacceptable in this situation.

Suppose r is a rational function of degree N = n+m of the form

r(x) =
p(x)
q(x)

=
p0 + p1x+ · · ·+ pnx

n

q0 + q1x+ · · ·+ qmxm

that is used to approximate a function f on a closed interval I containing zero. For
r to be defined at zero requires that q0
= 0. In fact, we can assume that q0 = 1,
for if this is not the case we simply replace p(x) by p(x)/q0 and q(x) by q(x)/q0.
Consequently, there are N +1 parameters q1, q2, . . . , qm, p0, p1, . . . , pn available for
the approximation of f by r.

The Padé approximation technique chooses the N + 1 parameters so that
f (k)(0) = r(k)(0) for each k = 0, 1, . . . , N . Padé approximation is the extension
of Taylor polynomial approximation to rational functions. In fact, when n = N and
and m = 0, the Padé approximation is the Nth Taylor polynomial expanded about
zero—that is, the Nth Maclaurin polynomial.

Consider the difference

f(x)− r(x) = f(x)− p(x)
q(x)

=
f(x)q(x)− p(x)

q(x)
=
f(x)

∑m
i=0 qix

i −∑n
i=0 pix

i

q(x)

and suppose f has the Maclaurin series expansion f(x) =
∑∞

i=0 aix
i. Then

f(x)− r(x) =
∑∞

i=0 aix
i
∑m

i=0 qix
i −∑n

i=0 pix
i

q(x)
. (8.3)

8.5. RATIONAL FUNCTION APPROXIMATION 427

The object is to choose the constants q1, q2, . . . , qm and p0, p1, . . . , pn so that

f (k)(0)− r(k)(0) = 0 for each k = 0, 1, . . . , N.

This is equivalent to f−r having a zero of multiplicity N+1 at 0. As a consequence,
we choose q1, q2, . . . , qm and p0, p1, . . . , pn so that the numerator on the right side
of Eq. (8. 3),

(a0 + a1x+ · · ·)(1 + q1x+ · · ·+ qmx
m)− (p0 + p1x+ · · ·+ pnx

n),

has no terms of degree less than or equal to N .
To make better use of summation notation we define pn+1 = pn+2 = · · · = pN =

0 and qm+1 = qm+2 = · · · = qN = 0. The coefficient of xk is then
(

k∑
i=0

aiqk−i

)
− pk,

and the rational function for Padé approximation results from the solution of the
N + 1 linear equations

k∑
i=0

aiqk−i = pk, k = 0, 1, . . . , N

in the N + 1 unknowns q1, q2, . . . , qm, p0, p1, . . . , pn.
The Padé technique can be implemented using the program PADEMD81.

EXAMPLE 1 To find the Padé approximation of degree 5 with n = 3 and m = 2 to

e−x =
∞∑

i=0

(−1)i

i!
xi.

requires choosing p0, p1, p2, p3, q1, and q2 so that the coefficients of xk for k = 0,
1, . . . , 5 are zero in the expression

(
1− x+

x2

2
− x3

6
+ · · ·

)(
1 + q1x+ q2x

2
)− (p0 + p1x+ p2x

2 + p3x
3
)
.

Expanding and collecting terms produces

x5: − 1
120

+
1
24
q1 − 1

6
q2 = 0; x2:

1
2
− q1 + q2 = p2;

x4:
1
24

− 1
6
q1 +

1
2
q2 = 0; x1: −1 + q1 = p1;

x3: −1
6

+
1
2
q1 − q2 = p3; x0: 1 = p0.

To solve the linear system in Maple we use the following:

428 CHAPTER 8. APPROXIMATION THEORY

>eq1:=-1+q1=p1;
>eq2:=1/2-q1+q2=p2;
>eq3:=-1/6+1/2*q1-q2=p3;
>eq4:=1/24-1/6*q1+1/2*q2=0;
>eq5:=-1/120+1/24*q1-1/6*q2=0;
>solve({eq1,eq2,eq3,eq4,eq5},{q1,q2,p1,p2,p3});

which gives

p0 = 1, p1 = −3
5
, p2 =

3
20
, p3 = − 1

60
, q1 =

2
5
, and q2 =

1
20
.

So the Padé approximation is

r(x) =
1− 3

5x+ 3
20x

2 − 1
60x

3

1 + 2
5x+ 1

20x
2

.

Maple can also be used to compute a Padé approximation directly. We first
compute the Maclaurin series with the call

>series(exp(-x),x);

to obtain

1− x+
1
2
x2 − 1

6
x3 +

1
24
x4 − 1

120
x5 +O(x6)

The Padé approximation with n = 3 and m = 2 is computed using the command

>g:=convert(%,ratpoly,3,2);

where the % refers to the result of the preceding calculation, that is, the Maple
statement series(exp(-x),x), which gives the Maclaurin series for e−x. The result
is

g :=
1− 3

5x+ 3
20x

2 − 1
60x

3

1 + 2
5x+ 1

20x
2

.

We can then compute the approximations, such as g(0.8), by entering

>evalf(subs(x=0.8,g));

to get .4493096647.
Table 8.5 lists values of r(x) and P5(x), the fifth Maclaurin polynomial. The

Padé approximation is clearly superior in this example.

8.5. RATIONAL FUNCTION APPROXIMATION 429

Table 8.5

x e−x P5(x) |e−x − P5(x)| r(x) |e−x − r(x)|
0.2 0.81873075 0.81873067 8.64× 10−8 0.81873075 7.55× 10−9

0.4 0.67032005 0.67031467 5.38× 10−6 0.67031963 4.11× 10−7

0.6 0.54881164 0.54875200 5.96× 10−5 0.54880763 4.00× 10−6

0.8 0.44932896 0.44900267 3.26× 10−4 0.44930966 1.93× 10−5

1.0 0.36787944 0.36666667 1.21× 10−3 0.36781609 6.33× 10−5

It is interesting to compare the number of arithmetic operations required for
calculations of P5(x) and r(x) in Example 1. Using nested multiplication, P5(x)
can be expressed as

P5(x) =
((((

− 1
120

x+
1
24

)
x− 1

6

)
x+

1
2

)
x− 1

)
x+ 1.

Assuming that the coefficients of 1, x, x2, x3, x4, and x5 are represented as dec-
imals, a single calculation of P5(x) in nested form requires five multiplications and
five additions/subtractions. Using nested multiplication, r(x) is expressed as

r(x) =

((− 1
60x+ 3

20

)
x− 3

5

)
x+ 1(

1
20x+ 2

5

)
x+ 1

,

so a single calculation of r(x) requires five multiplications, five additions/subtractions,
and one division. Hence, computational effort appears to favor the polynomial ap-
proximation. However, by reexpressing r(x) by continued division, we can write

r(x) =
1− 3

5x+ 3
20x

2 − 1
60x

3

1 + 2
5x+ 1

20x
2

=
− 1

3x
3 + 3x2 − 12x+ 20
x2 + 8x+ 20

= −1
3
x+

17
3

+

(− 152
3 x− 280

3

)
x2 + 8x+ 20

= −1
3
x+

17
3

+
− 152

3(
x2+8x+20

x+
35
19

)

or

r(x) = −1
3
x+

17
3
−

152
3

x+
117
19 +

3125
361

(x+
35
19)



.

Written in this form, a single calculation of r(x) requires one multiplication, five
addition/subtractions, and two divisions. If the amount of computation required for
division is approximately the same as for multiplication, the computational effort

430 CHAPTER 8. APPROXIMATION THEORY

required for an evaluation of P5(x) significantly exceeds that required for an eval-
uation of r(x). Expressing a rational function approximation in this form is called
continued-fraction approximation. This is a classical approximation technique of
current interest because of its computational efficiency. It is, however, a specialized
technique—one we will not discuss further.

Although the rational function approximation in Example 1 gave results superior
to the polynomial approximation of the same degree, the approximation has a
wide variation in accuracy; the approximation at 0.2 is accurate to within 8 ×
10−9, whereas, at 1.0, the approximation and the function agree only to within
7 × 10−5.This accuracy variation is expected, because the Padé approximation is
based on a Taylor polynomial representation of e−x, and the Taylor representation
has a wide variation of accuracy in [0.2, 1.0].

To obtain more uniformly accurate rational function approximations, we use the
set of Chebyshev polynomials, a class that exhibits more uniform behavior. The
general Chebyshev rational function approximation method proceeds in the same
manner as Padé approximation, except that each xk term in the Padé approximation
is replaced by the kth-degree Chebyshev polynomial Tk. An introduction to this
technique and more detailed references can be found in Burden and Faires [BF],
pp. 523–527.

8.5. RATIONAL FUNCTION APPROXIMATION 431

EXERCISE SET 8.5

1. Determine all Padé approximations for f(x) = e2x of degree 2. Compare the
results at xi = 0.2i, for i = 1, 2, 3, 4, 5, with the actual values f(xi).

2. Determine all Padé approximations for f(x) = x ln(x+1) of degree 3. Compare
the results at xi = 0.2i, for i = 1, 2, 3, 4, 5, with the actual values f(xi).

3. Determine the Padé approximation of degree 5 with n = 2 and m = 3 for
f(x) = ex. Compare the results at xi = 0.2i, for i = 1, 2, 3, 4, 5, with those
from the fifth Maclaurin polynomial.

4. Repeat Exercise 3 using instead the Padé approximation of degree 5 with
n = 3 and m = 2.

5. Determine the Padé approximation of degree 6 with n = m = 3 for f(x) =
sinx. Compare the results at xi = 0.1i, for i = 0, 1, . . . , 5, with the exact
results and with the results of the sixth Maclaurin polynomial.

6. Determine the Padé approximations of degree 6 with (a) n = 2,m = 4 and
(b) n = 4,m = 2 for f(x) = sinx. Compare the results at each xi to those
obtained in Exercise 5.

7. Table 8.5 lists results of the Padé approximation of degree 5 with n = 3 and
m = 2, the fifth Maclaurin polynomial, and the exact values of f(x) = e−x

when xi = 0.2i, for i = 1, 2, 3, 4, and 5. Compare these results with those
produced from the other Padé approximations of degree 5.

(a) n = 0,m = 5 (b) n = 1,m = 4

(c) n = 3,m = 2 (d) n = 4,m = 1

8. Express the following rational functions in continued-fraction form.

(a)
x2 + 3x+ 2
x2 − x+ 1

(b)
4x2 + 3x− 7

2x3 + x2 − x+ 5

(c)
2x3 − 3x2 + 4x− 5

x2 + 2x+ 4
(d)

2x3 + x2 − x+ 3
3x3 + 2x2 − x+ 1

9. To accurately approximate sinx and cosx for inclusion in a mathematical
library, we first restrict their domains. Given a real number x, divide by π to
obtain the relation

|x| = Mπ + s, where M is an integer and |s| ≤ π

2
.

432 CHAPTER 8. APPROXIMATION THEORY

(a) Show that sinx = sgn(x)(−1)M sin s.

(b) Construct a rational approximation to sin s using n = m = 4. Estimate
the error when 0 ≤ |s| ≤ π

2 .

(c) Design an implementation of sinx using parts (a) and (b).

(d) Repeat part (c) for cosx using the fact that cosx = sin(x+ π
2).

10. To accurately approximate f(x) = ex for inclusion in a mathematical library,
we first restrict the domain of f . Given a real number x, divide by ln

√
10 to

obtain the relation
x = M ln

√
10 + s,

where M is an integer and s is a real number satisfying |s| ≤ 1
2 ln
√

10.

(a) Show that ex = es10M/2.

(b) Construct a rational function approximation for es using n = m = 3.
Estimate the error when 0 ≤ |s| ≤ 1

2 ln
√

10.

(c) Design an implementation of ex using the results of part (a) and (b)
and the approximations

1
ln
√

10
= 0.8685889638 and

√
10 = 3.162277660.

8.6. TRIGONOMETRIC POLYNOMIAL APPROXIMATION 433

8.6 Trigonometric Polynomial Approximation

Trigonometric functions are used to approximate functions that have periodic be-
havior, functions with the property that for some constant T , f(x + T) = f(x)
for all x. We can generally transform the problem so that T = 2π and restrict the
approximation to the interval [−π, π].

For each positive integer n, the set Tn of trigonometric polynomials of degree
less than or equal to n is the set of all linear combinations of {φ0, φ1, . . . , φ2n−1},
where

φ0(x) =
1
2
,

φk(x) = cos kx, for each k = 1, 2, . . . , n,

and

φn+k(x) = sin kx, for each k = 1, 2, . . . , n− 1.

(Some sources include an additional function in the set, φ2n(x) = sinnx.)
The set {φ0, φ1, . . . , φ2n−1} is orthogonal on [−π, π] with respect to the weight

function w(x) ≡ 1.This follows from a demonstration similar to that which shows
that the Chebyshev polynomials are orthogonal on [−1, 1]. For example, if k
= j
and j
= 0,

∫ π

−π

φn+k(x)φj(x) dx =
∫ π

−π

sin kx cos jx dx.

The trigonometric identity

sin kx cos jx =
1
2

sin(k + j)x+
1
2

sin(k − j)x

can now be used to give
∫ π

−π

φn+k(x)φj(x) dx =
1
2

∫ π

−π

(sin(k + j)x+ sin(k − j)x) dx

=
1
2

[− cos(k + j)x
k + j

− cos(k − j)x
k − j

]π

−π

= 0,

since cos(k + j)π = cos(k + j)(−π) and cos(k − j)π = cos(k − j)(−π). The result
also holds when k = j, for in this case we have sin(k − j)x = sin 0 = 0.

Showing orthogonality for the other possibilities from {φ0, φ1, . . . , φ2n−1} is sim-
ilar and uses the appropriate trigonometric identities from the collection

sin jx cos kx =
1
2
(sin(j + k)x+ sin(j − k)x),

sin jx sin kx =
1
2
(cos(j − k)x− cos(j + k)x),

cos jx cos kx =
1
2
(cos(j + k)x+ cos(j − k)x),

434 CHAPTER 8. APPROXIMATION THEORY

to convert the products into sums.
Given f ∈ C[−π, π], the continuous least squares approximation by functions

in Tn is defined by

Sn(x) =
1
2
a0 +

2n−1∑
k=1

akφk(x),

where

ak =
1
π

∫ π

−π

f(x)φk(x) dx for each k = 0, 1, . . . , 2n− 1.

The limit of Sn(x) as n→∞ is called the Fourier series of f(x). Fourier series are
used to describe the solution of various ordinary and partial-differential equations
that occur in physical situations.

EXAMPLE 1 To determine the trigonometric polynomial from Tn that approximates

f(x) = |x| for − π < x < π

requires finding

a0 =
1
π

∫ π

−π

|x| dx = − 1
π

∫ 0

−π

x dx+
1
π

∫ π

0

x dx =
2
π

∫ π

0

x dx = π,

ak =
1
π

∫ π

−π

|x| cos kx dx =
2
π

∫ π

0

x cos kx dx

=
2
πk2

(
(−1)k − 1

)
, for each k = 1, 2, . . . , n,

and the coefficients an+k. The coefficients an+k in the Fourier expansion are com-
monly denoted bk; that is, bk = an+k for k = 1, 2, . . . , n − 1. In our example, we
have

bk =
1
π

∫ π

−π

|x| sin kx dx = 0, for each k = 1, 2, . . . , n− 1,

since the integrand is an odd function. The trigonometric polynomial from Tn

approximating f is, therefore,

Sn(x) =
π

2
+

2
π

n∑
k=1

(−1)k − 1
k2

cos kx.

The first few trigonometric polynomials for f(x) = |x| are shown in Figure 8.10.

Figure 8.10

8.6. TRIGONOMETRIC POLYNOMIAL APPROXIMATION 435

x

y

q2q p2p

q

p y 5 uxu

y 5 S3(x) 5 q 2

y 5 S1(x) 5 S2(x) 5 q 2

y 5 S0(x) 5 q

4
p cos 3xcos x 2

4
p

4
9p

cos x

The Fourier series for f(x) = |x| is

S(x) = lim
n→∞Sn(x) =

π

2
+

2
π

∞∑
k=1

(−1)k − 1
k2

cos kx.

Since | cos kx| ≤ 1 for every k and x, the series converges and S(x) exists for all
real numbers x.

There is a discrete analog to Fourier series that is useful for the least squares
approximation and interpolation of large amounts of data when the data are given at
equally spaced points. Suppose that a collection of 2m paired data points {(xj , yj)}2m−1

j=0

is given, with the first elements in the pairs equally partitioning a closed interval.
For convenience, we assume that the interval is [−π, π] and that, as shown in Fig-
ure 8.11,

xj = −π +
(
j

m

)
π for each j = 0, 1, . . . , 2m− 1.

If this were not the case, a linear transformation could be used to change the data
into this form.

Figure 8.11

2p 5 x0 p 5 x2m0 5 xm

The goal is to determine the trigonometric polynomial, Sn(x), in Tn that mini-
mizes

E(Sn) =
2m−1∑
j=0

(yj − Sn(xj))
2
.

436 CHAPTER 8. APPROXIMATION THEORY

That is, we want to choose the constants a0, a1, . . . , an and b1, b2, . . . , bn−1 to min-
imize the total error

E(Sn) =
2m−1∑
j=0

[
yj −

(
a0

2
+ an cosnxj +

n−1∑
k=1

(ak cos kxj + bk sin kxj)

)]2

.

The determination of the constants is simplified by the fact that the set is
orthogonal with respect to summation over the equally spaced points {xj}2m−1

j=0 in
[−π, π]. By this we mean that, for each k
= l,

2m−1∑
j=0

φk(xj)φl(xj) = 0.

The orthogonality follows from the fact that if r and m are positive integers with
r < 2m, we have (See Burden and Faires [BF], p. 532, for a verification)

2m−1∑
j=0

cos rxj = 0 and
2m−1∑
j=0

sin rxj = 0.

To obtain the constants ak for k = 0, 1, . . . , n and bk for k = 1, 2, . . . , n − 1 in
the summation

Sn(x) =
a0

2
+ an cosnx+

n−1∑
k=1

(ak cos kx+ bk sin kx),

we minimize the least squares sum

E(a0, . . . , an, b1, . . . , bn−1) =
2m−1∑
j=0

(yj − Sn(xj))
2

by setting to zero the partial derivatives of E with respect to the ak’s and the bk’s.
This implies that

ak =
1
m

2m−1∑
j=0

yj cos kxj , for each k = 0, 1, . . . , n,

and

bk =
1
m

2m−1∑
j=0

yj sin kxj , for each k = 1, 2, . . . , n− 1.

EXAMPLE 2 Let f(x) = x4−3x3 +2x2− tanx(x−2). To find the discrete least squares approxi-
mation S3 for the data {(xj , yj)}9j=0, where xj = j/5 and yj = f(xj), first requires
a transformation from [0, 2] to [−π, π]. The required linear transformation is

zj = π(xj − 1),

8.6. TRIGONOMETRIC POLYNOMIAL APPROXIMATION 437

and the transformed data are of the form
{(
zj , f

(
1 +

zj

π

))}9

j=0
.

Consequently, the least squares trigonometric polynomial is

S3(z) =
a0

2
+ a3 cos 3z +

2∑
k=1

(ak cos kz + bk sin kz),

where

ak =
1
5

9∑
j=0

f
(
1 +

zj

π

)
cos kzj , for k = 0, 1, 2, 3,

and

bk =
1
5

9∑
j=0

f
(
1 +

zj

π

)
sin kzj , for k = 1, 2.

Evaluating these sums produces the approximation

S3(z) = 0.76201 + 0.77177 cos z + 0.017423 cos 2z + 0.0065673 cos 3z
− 0.38676 sin z + 0.047806 sin 2z.

Converting back to the variable x gives

S3(x) = 0.76201 + 0.77177 cos π(x− 1) + 0.017423 cos 2π(x− 1)
+ 0.0065673 cos 3π(x− 1)
− 0.38676 sinπ(x− 1) + 0.047806 sin 2π(x− 1).

Table 8.6 lists values of f(x) and S3(x).

Table 8.6

x f(x) S3(x) |f(x)− S3(x)|
0.125 0.26440 0.24060 2.38× 10−2

0.375 0.84081 0.85154 1.07× 10−2

0.625 1.36150 1.36248 9.74× 10−4

0.875 1.61282 1.60406 8.75× 10−3

1.125 1.36672 1.37566 8.94× 10−3

1.375 0.71697 0.71545 1.52× 10−3

1.625 0.07909 0.06929 9.80× 10−3

1.875 −0.14576 −0.12302 2.27× 10−2

438 CHAPTER 8. APPROXIMATION THEORY

EXERCISE SET 8.6

1. Find the continuous least squares trigonometric polynomial S2(x) for f(x) =
x2 on [−π, π].

2. Find the continuous least squares trigonometric polynomial Sn(x) for f(x) =
x on [−π, π].

3. Find the continuous least squares trigonometric polynomial S3(x) for f(x) =
ex on [−π, π].

4. Find the general continuous least squares trigonometric polynomial Sn(x) for
f(x) = ex on [−π, π].

5. Find the general continuous least squares trigonometric polynomial Sn(x) for

f(x) =

{
0, if −π < x ≤ 0,
1, if 0 < x < π.

6. Find the general continuous least squares trigonometric polynomial Sn(x) for

f(x) =

{
−1, if −π < x < 0.
1, if 0 ≤ x ≤ π.

7. Determine the discrete least squares trigonometric polynomial Sn(x) on the
interval [−π, π] for the following functions, using the given values of m and
n:

(a) f(x) = cos 2x, m = 4, n = 2 (b) f(x) = cos 3x, m = 4, n = 2

(c) f(x) = sin
1
2
x+ 2 cos

1
3
x, m = 6, n = 3

(d) f(x) = x2 cosx, m = 6, n = 3

8. Compute the error E(Sn) for each of the functions in Exercise 7.

9. Determine the discrete least squares trigonometric polynomial S3(x), using
m = 4 for f(x) = ex cos 2x on the interval [−π, π]. Compute the error E(S3).

10. Repeat Exercise 9 using m = 8. Compare the values of the approximating
polynomials with the values of f at the points ξj = −π+0.2jπ, for 0 ≤ j ≤ 10.
Which approximation is better?

11. Show that for any continuous odd function f defined on the interval [−a, a],
we have

∫ a

−a
f(x) dx = 0.

8.6. TRIGONOMETRIC POLYNOMIAL APPROXIMATION 439

12. Show that for any continuous even function f defined on the interval [−a, a],
we have

∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx.

13. Show that the functions φ0(x) = 1/2, φ1(x) = cosx, . . . , φn(x) = cosnx, φn+1(x) =
sinx, . . . , φ2n−1(x) = sin(n − 1)x,are orthogonal on [−π, π] with respect to
w(x) ≡ 1.

14. In Example 1 the Fourier series was determined for f(x) = |x|. Use this
series and the assumption that it represents f at zero to find the value of the
convergent infinite series

∞∑
k=0

1
(2k + 1)2

.

440 CHAPTER 8. APPROXIMATION THEORY

8.7 Fast Fourier Transforms

The interpolatory trigonometric polynomial on the 2m data points {(xj , yj)}2m−1
j=0 is

the least squares polynomial from Tm for this collection of points. The least squares
trigonometric polynomial Sn(x), when n < m, was found in Section 8.6 to be

Sn(x) =
a0

2
+ an cosnx+

n−1∑
k=1

(ak cos kx+ bk sin kx),

where

ak =
1
m

2m−1∑
j=0

yj cos kxj for each k = 0, 1, . . . , n (8.4)

and

bk =
1
m

2m−1∑
j=0

yj sin kxj for each k = 1, 2, . . . , n− 1. (8.5)

We can use this form with n = m for interpolation if we make a minor modification.
For interpolation, we balance the system by replacing the term am with am/2. The
interpolatory polynomial then has the form

Sm(x) =
a0 + am cosmx

2
+

m−1∑
k=1

(ak cos kx+ bk sin kx),

where the coefficients ak and bk are given in Eqs. (8.4) and (8.5).
The interpolation of large amounts of equally-spaced data by trigonometric

polynomials can produce very accurate results. It is the appropriate approxima-
tion technique in areas involving digital filters, antenna field patterns, quantum
mechanics, optics, and certain simulation problems. Until the middle of the 1960s,
the method had not been extensively applied due to the number of arithmetic cal-
culations required for the determination of the constants in the approximation. The
interpolation of 2m data points requires approximately (2m)2 multiplications and
(2m)2 additions by the direct calculation technique. The approximation of many
thousands of data points is not unusual in areas requiring trigonometric interpola-
tion, so the direct methods for evaluating the constants require multiplication and
addition operations numbering in the millions. The computation time for this many
calculations is prohibitive, and the round-off error would generally dominate the
approximation.

In 1965 a paper by Cooley and Tukey [CT] described an alternative method
of calculating the constants in the interpolating trigonometric polynomial. This
method requires only O(m log2m) multiplications and O(m log2m) additions, pro-
vided m is chosen in an appropriate manner. For a problem with thousands of data
points, this reduces the number of calculations from millions to thousands.The
method had actually been discovered a number of years before the Cooley-Tukey
paper appeared but had gone unnoticed by most researchers until that time. ([Brigh,
pp.8–9] contains a short, but interesting, historical summary of the method.)

8.7. FAST FOURIER TRANSFORMS 441

The method described by Cooley and Tukey is generally known as the Fast
Fourier Transform (FFT) method and led to a revolution in the use of inter-
polatory trigonometric polynomials. The method consists of organizing the problem
so that the number of data points being used can be easily factored, particularly
into powers of 2.

The relationship between the number of data points 2m and the degree of the
trigonometric polynomial used in the fast Fourier transform procedure allows some
notational simplification. The nodes are given, for each j = 0, 1, . . . , 2m− 1, by

xj = −π +
(
j

m

)
π

and the coefficients, for each k = 0, 1, . . . ,m, as

ak =
1
m

2m−1∑
j=0

yj cos kxj and bk =
1
m

2m−1∑
j=0

yj sin kxj .

For notational convenience, b0 and bm have been added to the collection, but both
are zero and do not contribute to the sum.

Instead of directly evaluating the constants ak and bk, the fast Fourier transform
procedure computes the complex coefficients ck in the formula

F (x) =
1
m

2m−1∑
k=0

cke
ikx,

where

ck =
2m−1∑
j=0

yje
πijk/m, for each k = 0, 1, . . . , 2m− 1. (8.6)

Once the constants ck have been determined, ak and bk can be recovered. To
do this we need Euler’s formula, which states that for all real numbers z we have

eiz = cos z + i sin z,

where the complex number i satisfies i2 = −1. Then, for each k = 0, 1, . . . ,m,

1
m
cke

−iπk =
1
m

2m−1∑
j=0

yje
πijk/me−iπk =

1
m

2m−1∑
j=0

yje
ik(−π+(πj/m))

=
1
m

2m−1∑
j=0

yj(cos kxj + i sin kxj),

so
1
m
cke

−iπk = ak + ibk.

The operation reduction feature of the fast Fourier transform results from calcu-
lating the coefficients ck in clusters. The following example gives a simple illustration
of the technique.

442 CHAPTER 8. APPROXIMATION THEORY

EXAMPLE 1 Consider the construction of the trigonometric interpolating polynomial of degree 2
for the data {(x0, y0), (x1, y1), (x2, y2), (x3, y3)}, where m = 2 and xj = −π+(j/2)π
for j = 0, 1, 2, 3. The polynomial is given by

S2(x) =
a0 + a2 cos 2x

2
+ a1 cosx+ b1 sinx,

where the coefficients are

a0 =
1
2
(y0 cos 0 + y1 cos 0 + y2 cos 0 + y3 cos 0) =

1
2
(y0 + y1 + y2 + y3),

a1 =
1
2
(y0 cosx0 + y1 cosx1 + y2 cosx2 + y3 cosx3),

a2 =
1
2
(y0 cos 2x0 + y1 cos 2x1 + y2 cos 2x2 + y3 cos 2x3),

b1 =
1
2
(y0 sinx0 + y1 sinx1 + y2 sinx2 + y3 sinx3).

Introducing the complex coefficients defined in Eq. (8. 6) we have

c0 = y0e
0 + y1e

0 + y2e
0 + y3e

0,
c1 = y0e

0 + y1e
πi/2 + y2e

πi + y3e
3πi/2,

c2 = y0e
0 + y1e

πi + y2e
2πi + y3e

3πi,
c3 = y0e

0 + y1e
3πi/2 + y2e

3πi + y3e
9πi/2,

and ak + ibk = 1
2e

−kπick for k = 0, 1, 2, 3. Thus

a0 =
1
2
Re(c0), a1 =

1
2
Re(c1e−πi),

a2 =
1
2
Re(c2e−2πi), b1 =

1
2
Im(c1e−πi).

If we let δ = eπi/2 we can rewrite the equations as the matrix equation


c0
c1
c2
c3


 =




1 1 1 1
1 δ δ2 δ3

1 δ2 δ4 δ6

1 δ3 δ6 δ9






y0
y1
y2
y3


 .

Since δ4 = 1, δ5 = δ, δ6 = δ2, δ7 = δ3, δ8 = δ4 = 1, δ9 = δ5 = δ, we have


c0
c1
c2
c3


 =




1 1 1 1
1 δ δ2 δ3

1 δ2 1 δ2

1 δ3 δ2 δ






y0
y1
y2
y3


 .

Factoring the matrix product gives


c0
c1
c2
c3


 =




1 1 0 0
0 0 1 1
1 δ2 0 0
0 0 1 δ2







1 1 0 0
0 0 δ3 δ3

1 δ2 0 0
0 0 1 δ2







1 0 0 0
0 0 1 0
0 δ 0 0
0 0 0 δ






y0
y1
y2
y3


 ,

8.7. FAST FOURIER TRANSFORMS 443

and since δ2 = eπi = cosπ + i sinπ = −1 we have



c0
c1
c2
c3


 =




1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1







1 1 0 0
0 0 δ3 δ3

1 −1 0 0
0 0 1 −1







1 0 0 0
0 0 1 0
0 δ 0 0
0 0 0 δ






y0
y1
y2
y3


 .

Computing (c0, c1, c2, c3)t using the factored form requires 2 multiplications by δ,
2 by δ3, and 4 by δ2 = −1. In addition, each matrix multiplication requires 4
additions. Hence we have a total of 8 multiplications and 4 additions. The original
product required 16 multiplications and 12 additions.

In general, the number of multiplications is reduced from 4m2 to 3m+m log2m
when the fast Fourier transform is applied. In Example 2, we have m = 2 which
reduced the number of multiplications from 4 · 22 = 16 to 3 · 2 + 2 log2 2 = 8.
This perhaps does not seem significant, but if the example had instead used m =
128 points, it would have reduced the multiplications from 4 · 1282 = 65536 to
3 · 128 + 128 log2 128 = 384 + 128 · 7 = 1280.

The program FFTRNS82 performs the fast Fourier transform when m = 2p for
some positive integer p. Modifications to the technique can be made when m takes
other forms.

EXAMPLE 2 Let f(x) = x4−3x3+2x2−tanx(x−2). To determine the trigonometric interpolating
polynomial of degree 4 for the data {(xj , yj)}7j=0 where xj = j/4 and yj = f(xj)
requires a transformation of the interval [0, 2] to [−π, π]. The linear transformation
is given by

zj = π(xj − 1)

so that the input data to the fast Fourier transform method is

{
zj , f

(
1 +

zj

π

)}7

j=0
.

The interpolating polynomial in z is

S4(z) = 0.761979 + 0.771841 cos z + 0.0173037 cos 2z
+ 0.00686304 cos 3z − 0.000578545 cos 4z
− 0.386374 sin z + 0.0468750 sin 2z − 0.0113738 sin 3z.

The trigonometric polynomial S4(x) on [0, 2] is obtained by substituting z =
π(x − 1) into S4(z). The graphs of y = f(x) and y = S4(x) are shown in Figure
8.12. Values of f(x) and S4(x) are given in Table 8.7.

444 CHAPTER 8. APPROXIMATION THEORY

Table 8.7

x f(x) S4(x) |f(x)− S4(x)|
0.125 0.26440 0.25001 1.44× 10−2

0.375 0.84081 0.84647 5.66× 10−3

0.625 1.36150 1.35824 3.27× 10−3

0.875 1.61282 1.61515 2.33× 10−3

1.125 1.36672 1.36471 2.02× 10−3

1.375 0.71697 0.71931 2.33× 10−3

1.625 0.07909 0.07496 4.14× 10−3

1.875 −0.14576 −0.13301 1.27× 10−2

Figure 8.12

y 5 f (x)

y 5 S4(x)

1 2

1

2

x

y

8.7. FAST FOURIER TRANSFORMS 445

EXERCISE SET 8.7

1. Determine the trigonometric interpolating polynomial S2(x) of degree 2 on
[−π, π] for the following functions, and graph f(x)− S2(x).

(a) f(x) = π(x− π) (b) f(x) = x(π − x)

(c) f(x) = |x|
(d) f(x) =

{
−1, if −π ≤ x ≤ 0
1, if 0 < x ≤ π

2. Determine the trigonometric interpolating polynomial of degree 4 for f(x) =
x(π − x) on the interval [−π, π].

(a) Use direct calculation. (b) Use fast Fourier transforms.

3. Use the fast Fourier transform method to compute the trigonometric interpo-
lating polynomial of degree 4 on [−π, π] for the following functions.

(a) f(x) = π(x− π) (b) f(x) = |x|

(c) f(x) = cosπx− 2 sinπx (d) f(x) = x cosx2 + ex cos ex

4. (a) Determine the trigonometric interpolating polynomial S4(x) of degree
4 for f(x) = x2 sinx on the interval [0, 1].

(b) Compute
∫ 1

0
S4(x) dx.

(c) Compare the integral in part (b) to
∫ 1

0
x2 sinx dx.

5. Use the approximations obtained in Exercise 3 to approximate the following
integrals, and compare your results to the actual values.

(a)
∫ π

−π

π(x− π) dx (b)
∫ π

−π

|x| dx

(c)
∫ π

−π

(cosπx− 2 sinπx) dx (d)
∫ π

−π

(x cosx2 + ex cos ex) dx

6. Use FFTRNS82 to determine the trigonometric interpolating polynomial of
degree 16 for f(x) = x2 cosx on [−π, π].

446 CHAPTER 8. APPROXIMATION THEORY

8.8 Survey of Methods and Software

In this chapter we have considered approximating data and functions with elemen-
tary functions. The elementary functions used were polynomials, rational functions,
and trigonometric polynomials. We considered two types of approximations, discrete
and continuous. Discrete approximations arise when approximating a finite set of
data with an elementary function. Continuous approximations are used when the
function to be approximated is known.

Discrete least squares techniques are recommended when the function is spec-
ified by giving a set of data that may not exactly represent the function. Least
squares fit of data can take the form of a linear or other polynomial approximation
or even an exponential form. These approximations are computed by solving sets
of normal equations, as given in Section 8.2.

If the data are periodic, a trigonometric least squares fit may be appropriate.
Because of the orthonormality of the trigonometric basis functions, the least squares
trigonometric approximation does not require the solution of a linear system. For
large amounts of periodic data, interpolation by trigonometric polynomials is also
recommended. An efficient method of computing the trigonometric interpolating
polynomial is given by the fast Fourier transform.

When the function to be approximated can be evaluated at any required ar-
gument, the approximations seek to minimize an integral instead of a sum. The
continuous least squares polynomial approximations were considered in Section
8.3. Efficient computation of least squares polynomials lead to orthonormal sets
of polynomials, such as the Legendre and Chebyshev polynomials. Approximation
by rational functions was studied in Section 8.5, where Padé approximation as a
generalization of the Maclaurin polynomial was presented. This method allows a
more uniform method of approximation than polynomials. Continuous least squares
approximation by trigonometric functions was discussed in Section 8.6, especially
as it relates to Fourier series.

The IMSL Library and the NAG Libraries provide subroutines for least squares
approximation of data. The approximation can be by polynomials, cubic splines,
or a users’ choice of basis functions. Chebyshev polynomials are also used in the
constructions to minimize round-off error and enhance accuracy, and Fast Fourier
transformations are available.

The netlib library contains the subroutine polfit.f under the package slatec to
compute the polynomial least squares approximation to a discrete set of points.
The subroutine pvalue.f can be used to evaluate the polynomial from polfit.f and
any of its derivatives at a given point.

For further information on the general theory of approximation theory see Powell
[Po], Davis [Da], or Cheney [Ch]. A good reference for methods of least squares is
Lawson and Hanson [LH], and information about Fourier transforms can be found
in Van Loan [Van] and in Briggs and Hanson [BH].

Chapter 9

Approximating Eigenvalues

9.1 Introduction

Eigenvalues and eigenvectors were introduced in Chapter 7 in connection with the
convergence of iterative methods for approximating the solution to a linear system.
To determine the eigenvalues of an n×n matrix A, we construct the characteristic
polynomial

p(λ) = det(A− λI)
and then determine its zeros. Finding the determinant of an n× n matrix is com-
putationally expensive, and finding good approximations to the roots of p(λ) is
also difficult. In this chapter we will explore other means for approximating the
eigenvalues of a matrix.

9.2 Isolating Eigenvalues

In Chapter 7 we found that an iterative technique for solving a linear system will
converge if all the eigenvalues associated with the problem have magnitude less
than 1 but cannot be expected to converge if there are eigenvalues with magnitude
greater than 1. The exact values of the eigenvalues in this case are not of primary
importance.

Even when we need to know the eigenvalues, the fact that many of the techniques
for their approximation are iterative implies that determining regions in which they
lie is a first step in the direction of determining the approximation, since it provides
us with the initial approximation that iterative methods need.

Before proceeding with the techniques for approximating eigenvalues, we need
some more results from linear algebra to help us isolate them. We will give here
all the additional linear algebra that will be used in this chapter so that it is in
one place for ease of reference. For more complete results we recommend Applied
Linear Algebra by Noble and Daniel [ND]. The first definitions and results parallel
those in Section 8.3 for sets of polynomials.

447

448 CHAPTER 9. APPROXIMATING EIGENVALUES

The set of nonzero vectors {v(1),v(2),v(3), . . . ,v(k)} is said to be linearly in-
dependent if the only collection of constants α1, α2, · · · αk for which

0 = α1v(1) + α2v(2) + α3v(3) + · · ·+ αkv(k),

is α1 = α2 = α3 = · · · = αk = 0. A set of vectors that is not linearly independent
is called linearly dependent.

[Unique Representation of Vectors]
If {v(1),v(2),v(3), . . . ,v(n)} is a set of n linearly independent vectors in
n,
then for every vector x in
n a unique set of constants β1, β2, . . . , βn exists
with

x = β1v(1) + β2v(2) + β3v(3) + · · ·+ βnv(n).

Any collection of n linearly independent vectors in
n is called a basis for
n.

EXAMPLE 1 Let v(1) = (1, 0, 0)t,v(2) = (−1, 1, 1)t, and v(3) = (0, 4, 2)t. If α1, α2, and α3 are
numbers with

0 = α1v(1) + α2v(2) + α3v(3),

then

(0, 0, 0)t = α1(1, 0, 0)t + α2(−1, 1, 1)t + α3(0, 4, 2)t

= (α1 − α2, α2 + 4α3, α2 + 2α3)t,

so
α1 − α2 = 0, α2 + 4α3 = 0, and α2 + 2α3 = 0.

Since the only solution to this system is α1 = α2 = α3 = 0, the set {v(1),v(2),v(3)}
is linearly independent in
3 and is a basis for
3. A vector x = (x1, x2, x3)t in
3

can be written as
x = β1v(1) + β2v(2) + β3v(3)

by choosing

β1 = x1 − x2 + 2x3, β2 = 2x3 − x2, and β3 =
1
2
(x2 − x3).

The next result will be used in the following section to develop the Power method
for approximating eigenvalues.

9.2. ISOLATING EIGENVALUES 449

[Linear Independence of Eigenvectors]
If A is a matrix and λ1, . . . , λk are distinct eigenvalues of A with associated
eigenvectors x(1),x(2), . . . ,x(k), then {x(1),x(2), . . . ,x(k)} is linearly indepen-
dent.

A set of vectors {v(1),v(2), . . . ,v(n)} is orthogonal if (v(i))tv(j) = 0 for all i
=
j. If, in addition, (v(i))tv(i) = 1 for all i = 1, 2, . . . , n, then the set is orthonormal.

Since xtx = ‖x‖22, a set of orthogonal vectors {v(1),v(2), . . . ,v(n)} is orthonor-
mal if and only if

‖v(i)‖2 = 1 for each i = 1, 2, . . . , n.

[Linear Independence of Orthogonal Vectors]
Any orthogonal set of vectors that does not contain the zero vector is linearly
independent.

EXAMPLE 2 The vectors v(1) = (0, 4, 2)t, v(2) = (−1,− 1
5 ,

2
5)t, and v(3) = (1

6 ,− 1
6 ,

1
3)t form an

orthogonal set. For these vectors we have

‖v(1)‖2 = 2
√

5, ‖v(2)‖2 =
1
5

√
30, and ‖v(3)‖2 =

1
6

√
6.

The vectors

u(1) =
v(1)

‖v(1)‖2 =
(

0,
2
5

√
5,

1
5

√
5
)t

, u(2) =
v(2)

‖v(2)‖2 =
(
−1

6

√
30,− 1

30

√
30,

1
15

√
30
)t

,

and

u(3) =
v(3)

‖v(3)‖2 =
(

1
6

√
6,−1

6

√
6,

1
3

√
6
)t

form an orthonormal set, since they inherit orthogonality from v(1),v(2), and v(3),
and, in addition,

‖u(1)‖2 = ‖u(2)‖2 = ‖u(3)‖2 = 1.

An n× n matrix Q is orthogonal if Q−1 = Qt. This terminology follows from
the fact that the columns of an orthogonal matrix form an orthogonal—in fact,
orthonormal—set of vectors.

450 CHAPTER 9. APPROXIMATING EIGENVALUES

EXAMPLE 3 The orthogonal matrix Q formed from the orthonormal set of vectors found in
Example 2 is

Q = [u(1),u(2),u(3)] =




0 − 1
6

√
30 1

6

√
6

2
5

√
5 − 1

30

√
30 − 1

6

√
6

1
5

√
5 1

15

√
30 1

3

√
6


 .

Note that

QQt =




0 − 1
6

√
30 1

6

√
6

2
5

√
5 − 1

30

√
30 − 1

6

√
6

1
5

√
5 1

15

√
30 1

3

√
6


 ·




0 2
5

√
5 1

5

√
5

− 1
6

√
30 − 1

30

√
30 1

15

√
30

1
6

√
6 − 1

6

√
6 1

3

√
6


 =




1 0 0
0 1 0
0 0 1


 .

It is also true that QtQ = I, so Qt = Q−1.

Two n×n matrices A and B are similar if a matrix S exists with A = S−1BS.
The important feature of similar matrices is that they have the same eigenvalues.
The next result follows from observing that if λx = Ax = S−1BSx, then BSx =
λSx. Also, if x
= 0 and S is nonsingular, then Sx
= 0, so Sx is an eigenvector of
B corresponding to its eigenvalue λ.

The Maple command issimilar(A,B) returns true if A and B are similar and
false otherwise.

[Eigenvalues and Eigenvectors of Similar Matrices]
Suppose A and B are similar n × n matrices and λ is an eigenvalue of A
with associated eigenvector x. Then λ is also an eigenvalue of B. And, if
A = S−1BS, then Sx is an eigenvector associated with λ and the matrix B.

The determination of eigenvalues is easy for a triangular n×n matrix A, because
in this case λ is a solution to the equation

0 = det(A− λI) = (a11 − λ) · (a22 − λ) · · · (ann − λ)

if and only if λ = aii for some i. The next result provides a relationship, called a
similarity transformation, between arbitrary matrices and triangular matrices.

[Schur’s Theorem]
Let A be an arbitrary n× n matrix. A nonsingular matrix U exists with the
property that

T = U−1AU,

where T is an upper-triangular matrix whose diagonal entries consist of the
eigenvalues of A.

9.2. ISOLATING EIGENVALUES 451

Schur’s Theorem ensures that the triangular matrix T exists, but the proof of
Schur’s theorem does not provide a constructive means for determining T . In most
instances, the similarity transformation is difficult to determine. The restriction to
symmetric matrices reduces the complication since in this case the transformation
matrix is orthogonal.

[Eigenvalues of Symmetric Matrices]
Suppose that A is an n× n symmetric matrix.

(i) If D is the diagonal matrix whose diagonal entries are the eigen-
values of A, then there exists an orthogonal matrix Q such that

D = Q−1AQ = QtAQ.

(ii) There exist n eigenvectors of A that form an orthonormal set and
are the columns of the orthogonal matrix Q described in (i).

(iii) The eigenvalues are all real numbers.

(iv) A is positive definite if and only if all the eigenvalues of A are
positive.

The final result of the section concerns bounds for the approximation of eigen-
values.

[Gerschgorin Circle Theorem]
Let A be an n×n matrix and Ri denote the circle in the complex plane with
center aii and radius

∑n
j=1
j 	=i

|aij |; that is,

Ri =



z ∈ C

∣∣∣∣∣ |z − aii| ≤
n∑

j=1
j 	=i

|aij |



,

where C denotes the set of complex numbers. The eigenvalues of A are con-
tained within R = ∪n

i=1Ri. Moreover, the union of any k of these circles that
do not intersect the remaining n− k contain precisely k (counting multiplici-
ties) of the eigenvalues.

452 CHAPTER 9. APPROXIMATING EIGENVALUES

EXAMPLE 4 For the matrix

A =




4 1 1
0 2 1
−2 0 9


 ,

the circles in the Gerschgorin Theorem are (see Figure 9.1):

R1 =
{
z ∈ C

∣∣∣∣ |z − 4| ≤ 2
}
, R2 =

{
z ∈ C

∣∣∣∣ |z − 2| ≤ 1
}
,

and

R3 =
{
z ∈ C

∣∣∣∣ |z − 9| ≤ 2
}
.

Since R1 and R2 are disjoint from R3, there are two eigenvalues within R1∪R2 and
one within R3. Moreover, since ρ(A) = max1≤i≤3 |λi|, we have 7 ≤ ρ(A) ≤ 11.

Figure 9.1

Imaginary
axis

Real axis
1 2 3 4 5 6 7 8 9 10 11

1

2

21

22

Two eigenvalues One eigenvalue

9.2. ISOLATING EIGENVALUES 453

EXERCISE SET 9.2

1. Find the eigenvalues and associated eigenvectors for the following 3 × 3 ma-
trices. Is there a set of three linearly independent eigenvectors?

(a) A =




2 −3 6
0 3 −4
0 2 −3


 (b) A =




1 0 0
−1 0 1
−1 −1 2




(c) A =




2 0 1
0 2 0
1 0 2


 (d) A =




2 −1 −1
−1 2 −1
−1 −1 2




(e) A =




1 1 1
1 1 0
1 0 1


 (f) A =




2 1 1
1 2 1
1 1 2




2. The matrices in Exercise 1(c), (d), (e), and (f) are symmetric.

(a) Are any positive definite?

(b) Consider the positive definite matrices in part (a). Construct an or-
thogonal matrix Q for which QtAQ = D, a diagonal matrix, using the
eigenvectors found in Exercise 1.

3. Use the Gerschgorin Circle Theorem to determine bounds for the eigenvalues
of the following matrices.

(a)




1 0 0
−1 0 1
−1 −1 2


 (b)




4 −1 0
−1 4 −1
−1 −1 4




(c)




3 2 1
2 3 0
1 0 3


 (d)




4.75 2.25 −0.25
2.25 4.75 1.25
−0.25 1.25 4.75




(e)



−4 0 1 3

0 −4 2 1
1 2 −2 0
3 1 0 −4


 (f)




1 0 −1 1
2 2 −1 1
0 1 3 −2
1 0 1 4




4. Show that any four vectors in
3 are linearly dependent.

5. Show that a set {v1, . . . ,vk} of nonzero orthogonal vectors is linearly inde-
pendent.

454 CHAPTER 9. APPROXIMATING EIGENVALUES

6. Let Q be an orthogonal matrix.

(a) Show that the columns of Q form an orthogonal set of vectors.

(b) Show that ‖Q‖2 = ‖Qt‖2 = 1.

7. Let {v1, . . . ,vn} be a set of nonzero orthonormal vectors in
n and x ∈
n.
Show that

x =
n∑

k=1

ckvk, where ck = vt
kx.

8. Show that if A is an n× n matrix with n distinct eigenvalues, then A has n
linearly independent eigenvectors.

9. In Exercise 11 of Section 6.6, a symmetric matrix

A =




1.59 1.69 2.13
1.69 1.31 1.72
2.13 1.72 1.85




was used to describe the average wing lengths of fruit flies that were offspring
resulting from the mating of three mutants of the flies. The entry aij repre-
sents the average wing length of a fly that is the offspring of a male fly of type
i and a female fly of type j.

(a) Find the eigenvalues and associated eigenvectors of this matrix.

(b) Use a result in this section to answer the question posed in part (b) of
Exercise 11, Section 6.6: Is this matrix positive definite?

9.3. THE POWER METHOD 455

9.3 The Power Method

The Power method is an iterative technique used to determine the dominant eigen-
value of a matrix—that is, the eigenvalue with the largest magnitude. By modifying
the method slightly it can also be used to determine other eigenvalues. One useful
feature of the Power method is that it produces not only an eigenvalue, but an asso-
ciated eigenvector. In fact, the Power method is often applied to find an eigenvector
for an eigenvalue that is determined by some other means.

To apply the Power method, we must assume that the n × n matrix A has n
eigenvalues, λ1, λ2, . . . , λn, with an associated collection of linearly independent
eigenvectors, {v(1),v(2),v(3), . . . ,v(n)}. Moreover, we assume that A has precisely
one eigenvalue, λ1, that is largest in magnitude, and that |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥
|λn| ≥ 0.

If x is any vector in
n, the fact that {v(1),v(2),v(3), . . . ,v(n)} is linearly inde-
pendent implies that constants β1, β2, . . . , βn exist with

x =
n∑

j=1

βjv(j).

Multiplying both sides of this equation successively by A, A2, . . . , Ak gives

Ax =
n∑

j=1

βjAv(j) =
n∑

j=1

βjλjv(j),

A2x =
n∑

j=1

βjλjAv(j) =
n∑

j=1

βjλ
2
jv

(j),

...

Akx =
n∑

j=1

βjλ
k
j v

(j).

If λk
1 is factored from each term on the right side of the last equation, then

Akx = λk
1

n∑
j=1

βj

(
λj

λ1

)k

v(j).

Since |λ1| > |λj | for all j = 2, 3, . . . , n, we have limk→∞ (λj/λ1)k = 0, and

lim
k→∞

Akx = lim
k→∞

λk
1β1v(1).

This sequence converges to zero if |λ1| < 1 and diverges if |λ1|>1, provided, of
course, that β1
= 0. In neither situation will this limit permit us to determine λ1.
However, advantage can be made of this relationship by scaling the powers of Akx
in an appropriate manner to ensure that the limit is finite and nonzero. The scaling
begins by choosing x to be a unit vector x(0) relative to ‖ · ‖∞ and a component
x

(0)
p0 of x(0) with

x(0)
p0

= 1 = ‖x(0)‖∞.

456 CHAPTER 9. APPROXIMATING EIGENVALUES

Let y(1) = Ax(0) and define µ(1) = y
(1)
p0 . With this notation,

µ(1) = y(1)
p0

=
y
(1)
p0

x
(0)
p0

=
β1λ1v

(1)
p0 +

∑n
j=2 βjλjv

(j)
p0

β1v
(1)
p0 +

∑n
j=2 αjv

(j)
p0

= λ1

[
β1v

(1)
p0 +

∑n
j=2 βj(λj/λ1)v

(j)
p0

β1v
(1)
p0 +

∑n
j=2 βjv

(j)
p0

]
.

Then let p1 be the least integer such that∣∣∣y(1)
p1

∣∣∣ = ‖y(1)‖∞
and define

x(1) =
1

y
(1)
p1

y(1) =
1

y
(1)
p1

Ax(0).

This continues with each iteration, calculating x(m−1), y(m), µ(m), and y(m)
pm−1 . The

scalar sequence µ(m) will converge to λ1, and the vector sequence x(m−1) will con-
verge to an eigenvector of A associated with λ1.

Choosing the least integer, pm, for which |y(m)
pm | = ‖y(m)‖∞ will generally en-

sure that this index eventually becomes invariant. The rate at which {µ(m)}∞m=1

converges to λ1 is determined by the ratios |λj/λ1|m for j = 2, 3, . . . , n and, in
particular, by |λ2/λ1|m; that is, the convergence is of order O(|λ2/λ1|m). Hence,
there is a constant k such that for large m

|µ(m) − λ1| ≈ k
∣∣∣∣
λ2

λ1

∣∣∣∣
m

,

which implies that

lim
m→∞

∣∣µ(m+1) − λ1

∣∣∣∣µ(m) − λ1

∣∣ ≈
∣∣∣∣
λ2

λ1

∣∣∣∣ < 1.

The sequence {µ(m)} converges linearly to λ1, so Aitken’s ∆2 procedure can be
used to speed the convergence.

In actuality, it is not necessary for the matrix to have n distinct eigenvalues for
the Power method to converge. If the matrix has a unique dominant eigenvalue, λ1,
with multiplicity r greater than 1 and v(1), v(2), . . . ,v(r) are linearly independent
eigenvectors associated with λ1, the procedure will still converge to λ1. The sequence
of vectors {x(m)}∞m=0 will in this case converge to an eigenvector of λ1 with l∞ norm
1 which depends on the choice of the initial vector x(0) and is a linear combination
of v(1), v(2), . . . ,v(r).

The Power method has the disadvantage that it is unknown at the outset
whether the matrix has a single dominant eigenvalue, and when this is not the
case, the method may not give convergence to an eigenvalue. Even when there is
a single dominant eigenvalue, it is not known how x(0) should be chosen to ensure
that its representation will contain a nonzero contribution from the eigenvector
associated with that eigenvalue.

The program POWERM91 implements the Power method.

EXAMPLE 1 The matrix

A =



−4 14 0
−5 13 0
−1 0 2




9.3. THE POWER METHOD 457

has eigenvalues λ1 = 6, λ2 = 3, and λ3 = 2, so the Power method will converge.
In this example we present some Maple commands to illustrate the Power method.
To access the linear algebra library, enter

>with(linalg);

We define the matrix A and the vector x(0) = (1, 1, 1)t by

>A:=matrix(3,3,[-4,14,0,-5,13,0,-1,0,2]);

and

>x0:=vector(3,[1,1,1]);

The command

>y1:=multiply(A,x);

gives y(1) = Ax(0) = (10, 8, 1)t. Thus, ‖y(1)‖∞ = 10 and µ(1) = y
(1)
1 = 10.

We compute x(1) with

>x1:=0.1*y1;

We continue with computing y(2) by

>y2:=multiply(A,x1);

to obtain

y(2) = Ax(1) = A(1, 0.8, 0.1)t = (7.2, 5.4,−0.8)t,

µ(2) = y
(2)
1 = 7.2, and x(2) =

1
7.2

y(2) = (1, 0.75,−0.1)t.

Continuing in this manner leads to the values in Table 9.1. In the last column of
the table are the terms of the sequence µ̂(m) generated by the Aitken’s ∆2 method
applied to µ(m).

458 CHAPTER 9. APPROXIMATING EIGENVALUES

Table 9.1

m (x(m))t µ(m) µ̂(m)

0 (1, 1, 1)
1 (1, 0.8, 0.1) 10 6.266667
2 (1, 0.75,−0.111) 7.2 6.062473
3 (1, 0.730769,−0.188034) 6.5 6.015054
4 (1, 0.722200,−0.220850) 6.230769 6.004202
5 (1, 0.718182,−0.235915) 6.111000 6.000855
6 (1, 0.716216,−0.243095) 6.054546 6.000240
7 (1, 0.715247,−0.246588) 6.027027 6.000058
8 (1, 0.714765,−0.248306) 6.013453 6.000017
9 (1, 0.714525,−0.249157) 6.006711 6.000003
10 (1, 0.714405− 0.249579) 6.003352 6.000000
11 (1, 0.714346,−0.249790) 6.001675
12 (1, 0.714316,−0.249895) 6.000837

An approximation to the dominant eigenvalue, 6, at this stage is µ̂(10) = 6.000000
with approximate unit eigenvector (1, 0.714316,−0.249895)t. Although the approx-
imation to the eigenvalue is correct to the places listed, the eigenvector approxima-
tion is considerably less accurate to the true eigenvector, (1, 0.714286,−0.25)t.

When A is symmetric, a variation in the choice of the vectors x(m) and y(m)

and scalars µ(m) can be made to significantly improve the rate of convergence
of the sequence {µ(m)}∞m=1 to the dominant eigenvalue λ1. First, select x(0) with
‖x(0)‖2 = 1. For each m = 1, 2, . . . , define

µ(m) =
(
x(m−1)

)t

Ax(m−1) and x(m) =
1

‖Ax(m−1)‖2Ax(m−1).

The rate of convergence of the Power method is O((λ2/λ1)m), but with this modi-
fication the rate of convergence for symmetric matrices is O((λ2/λ1)2m). The pro-
gram SYMPWR92 implements the Symmetric Power method in this way.

EXAMPLE 2 The matrix

A =




4 −1 1
−1 3 −2

1 −2 3




is symmetric with eigenvalues λ1 = 6, λ2 = 3, and λ3 = 1. Tables 9.2 and 9.3 list,
respectively, the first ten iterations of the Power method and the Symmetric Power
method, assuming, in each case, that y(0) = x(0) = (1, 0, 0)t.

9.3. THE POWER METHOD 459

Table 9.2

m y(m) µ(m) x(m)

0 (1, 0, 0)t

1 (4,−1, 1)t 4 (1,−0.25, 0.25)t

2 (4.5,−2.25, 2.25)t 4.5 (1,−0.5, 0.5)t

3 (5,−3.5, 3.5)t 5 (1,−0.7, 0.7)t

4 (5.4,−4.5, 4.5)t 5.4 (1,−0.833̄, 0.833̄)t

5 (5.666̄,−5.1666̄, 5.1666̄)t 5.666̄ (1,−0.911765, 0.911765)t

6 (5.823529,−5.558824, 5.558824)t 5.823529 (1,−0.954545, 0.954545)t

7 (5.909091,−5.772727, 5.772727)t 5.909091 (1,−0.976923, 0.976923)t

8 (5.953846,−5.884615, 5.884615)t 5.953846 (1,−0.988372, 0.988372)t

9 (5.976744,−5.941861, 5.941861)t 5.976744 (1,−0.994163, 0.994163)t

10 (5.988327,−5.970817, 5.970817)t 5.988327 (1,−0.997076, 0.997076)t

Notice the significant improvement that the Symmetric Power method provides.
The approximations to the eigenvectors produced in the Power method are con-
verging to (1,−1, 1)t, a vector with ‖(1,−1, 1)t‖∞ = 1. In the Symmetric Power
method the convergence is to the parallel vector (

√
3/3,−√3/3,

√
3/3)t, since we

have ‖√3/3,−√3/3,
√

3/3)t‖2 = 1.

The following Maple commands are needed to compute the first three rows of
Table 9.3:

>with(linalg):
>A:=matrix(3,3,[4,-1,1,-1,3,-2,1,-2,3]);
>x0:=vector(3,[1,0,0]);
>y1:=multiply(A,x0);
>n1:=evalf(norm(y1,2));
>x1:=1/n1*y1: evalm(x1);
>mu1:=innerprod(x0,y1);
>y2:=multiply(A,x1);

This gives the vector y(2) = (4.242640690,−2.121320345, 2.121320345)t. To find
x(2) we use the Maple commands

>n2:=norm(y2,2);
>x2:=1/n2*y2: evalm(x2);

which gives x(2) = (0.8164965809,−0.4082482905, 0.4082482905)t. The approxi-
mate eigenvalue µ(2) = 5 is found by

>mu2:=innerprod(x1,y2);

460 CHAPTER 9. APPROXIMATING EIGENVALUES

We can then form y3, n3, x3, and mu3 to complete the fourth row of the table.

Table 9.3

m y(m) µ(m) x(m)

0 (1, 0, 0)t (1, 0, 0)t

1 (4,−1, 1)t 4 (0.942809,−0.235702, 0.235702)t

2 (4.242641,−2.121320, 2.121320 5 (0.816497,−0.408248, 0.408248)t

3 (4.082483,−2.857738, 2.857738)t 5.666667 (0.710669,−0.497468, 0.497468)t

4 (3.837613,−3.198011, 3.198011)t 5.909091 (0.646997,−0.539164, 0.539164)t

5 (3.666314,−3.342816, 3.342816)t 5.976744 (0.612836,−0.558763, 0.558763)t

6 (3.568871,−3.406650, 3.406650)t 5.994152 (0.595247,−0.568190, 0.568190)t

7 (3.517370,−3.436200, 3.436200)t 5.998536 (0.586336,−0.572805, 0.572805)t

8 (3.490952,−3.450359, 3.450359)t 5.999634 (0.581852,−0.575086, 0.575086)t

9 (3.477580,−3.457283, 3.457283)t 5.999908 (0.579603,−0.576220, 0.576220)t

10 (3.470854,−3.460706, 3.460706)t 5.999977 (0.578477,−0.576786, 0.576786)t

The Inverse Power Method is a modification of the Power method that is
used to determine the eigenvalue of A closest to a specified number q.

Suppose that the matrix A has eigenvalues λ1, . . . , λn with linearly independent
eigenvectors v(1), v(2), . . . ,v(n). The results in Exercise 8 of Section 7.3 imply that
the eigenvalues of (A− qI)−1, where q
= λi for each i = 1, 2, . . . , n, are

1
λ1 − q ,

1
λ2 − q , . . . ,

1
λn − q

with eigenvectors v(1), v(2), . . . ,v(n). Applying the Power method to (A − qI)−1

gives

y(m) = (A− qI)−1x(m−1),

µ(m) = y(m)
pm−1

=
y
(m)
pm−1

x
(m−1)
pm−1

=

∑n
j=1 βj

1
(λj − q)m

v
(j)
pm−1

∑n
j=1 βj

1
(λj − q)m−1

v
(j)
pm−1

,

and

x(m) =
y(m)

y
(m)
pm

,

where, at each step, pm represents the smallest integer for which |y(m)
pm | = ‖y(m)‖∞.

The sequence {µ(m)} converges to 1/(λk − q), where

1
|λk − q| = max

1≤i≤n

1
|λi − q| ,

9.3. THE POWER METHOD 461

and λk ≈ q + 1/µ(m) is the eigenvalue of A closest to q.
The choice of q determines the convergence, provided that 1/(λk−q) is a unique

dominant eigenvalue of (A− qI)−1 (although it may be a multiple eigenvalue). The
closer q is to an eigenvalue λk, the faster the convergence since the convergence is
of order

O

(∣∣∣∣
(λ− q)−1

(λk − q)−1

∣∣∣∣
m)

= O

(∣∣∣∣
λk − q
λ− q

∣∣∣∣
m)

,

where λ represents the eigenvalue of A that is second closest to q.
The vector y(m) is obtained from the equation

(A− qI)y(m) = x(m−1).

Gaussian elimination with pivoting can be used to solve this linear system.
Although the Inverse Power method requires the solution of an n × n linear

system at each step, the multipliers can be saved to reduce the computation. The
selection of q can be based on the Gerschgorin Theorem or on another means of
approximating an eigenvalue.

One choice of q comes from the initial approximation to the eigenvector x(0):

q =
x(0)tAx(0)

x(0)tx(0)
.

This choice of q results from the observation that if x is an eigenvector of A with
respect to the eigenvalue λ, then Ax = λx. So xtAx = λxtx and

λ =
xtAx
xtx

=
xtAx
‖x‖22

If q is close to an eigenvalue, the convergence will be quite rapid. In fact, this method
is often used to approximate an eigenvector when an approximate eigenvalue q is
obtained by this or by some other technique.

Since the convergence of the Inverse Power method is linear, Aitken’s ∆2 proce-
dure can be used to speed convergence. The following example illustrates the fast
convergence of the Inverse Power method if q is close to an eigenvalue.

EXAMPLE 3 The matrix

A =



−4 14 0
−5 13 0
−1 0 2




was considered in Example 1. The Power method gave the approximation µ(12) =
6.000837 using x(0) = (1, 1, 1)t.

The following Maple commands generate the first two rows of Table 9.4 for the
Inverse Power method:

>with(linalg);
>A:=matrix(3,3,[-4,14,0,-5,13,0,-1,0,2]);
>x0:=vector(3,[1,1,1]);

462 CHAPTER 9. APPROXIMATING EIGENVALUES

To compute

q =
x(0)tAx(0)

x(0)tx(0)
=

19
3

= 6.333333,

we use the command

>q:=evalf(innerprod(x0,A,x0)/innerprod(x0,x0));

The identity matrix I3 is given by

>I3:=matrix(3,3,[1,0,0,0,1,0,0,0,1]):

We form A− qI with

>AQ:=A-q*I3;

giving the matrix

−10.33333333 14 0

−5 6.666666667 0
−1 0 −4.333333333




We form the augmented matrix M = [AQ,x(0)] using

>M:=augment(AQ,x0);

and perform Gaussian elimination with

>N:=gausselim(M);

We obtain y(1) = (−6.599999864,−4.799999898, 1.292307661)t with the command

>y1:=backsub(N);

Then we find x(1) and µ(1):

>x1:=1/(-6.599999864)*y1;
>mu1:=q+1/(-6.599999864);

Table 9.4

m x(m) µ(m) µ̂(m)

0 (1, 1, 1)t

1 (1, 0.720727,−0.194042)t 6.183183 6.000116
2 (1, 0.715518,−0.245052)t 6.017244 6.000004
3 (1, 0.714409,−0.249522)t 6.001719 6.000004
4 (1, 0.714298,−0.249953)t 6.000175 6.000003
5 (1, 0.714287,−0.250000)t 6.000021
6 (1, 0.714286,−0.249999)t 6.000005

9.3. THE POWER METHOD 463

The results of applying the program INVPOW93 for the Inverse Power method
with this value of q are listed in Table 9.4, and the right column lists the results of
Aitken’s ∆2 method applied to the µ(m).

Numerous techniques are available for obtaining approximations to the other
eigenvalues of a matrix once an approximation to the dominant eigenvalue has
been computed. We will restrict our presentation to deflation techniques. These
techniques involve forming a new matrix B whose eigenvalues are the same as those
of A, except that the dominant eigenvalue of A is replaced by the eigenvalue 0 in
B. The following result justifies the procedure.

[Eigenvalues and Eigenvectors of Deflated Matrices] Suppose λ1, λ2, . . . , λn

are eigenvalues of A with associated eigenvectors v(1), v(2), . . . ,v(n) and that
λ1 has multiplicity 1. If x is a vector with xtv(1) = 1, then

B = A− λ1v(1)xt

has eigenvalues 0, λ2, λ3, . . . , λn with associated eigenvectors v(1), w(2),
w(3), . . . ,w(n), where v(i) and w(i) are related by the equation

v(i) = (λi − λ1)w(i) + λ1(xtw(i))v(1),

for each i = 2, 3, . . . , n.

Wielandt’s deflation results from defining

x =
1

λ1v
(1)
i

(ai1, ai2, . . . , ain)t,

where v
(1)
i is a nonzero coordinate of the eigenvector v(1) and the values ai1,

ai2, . . . , ain are the entries in the ith row of A. With this definition,

xtv(1) =
1

λ1v
(1)
i

(ai1, ai2, . . . , ain)(v(1)
1 , v

(1)
2 , . . . , v(1)

n)t =
1

λ1v
(1)
i

n∑
j=1

aijv
(1)
j ,

where the sum is the ith coordinate of the product Av(1). Since Av(1) = λ1v(1), we
have

n∑
j=1

aijv
(1)
j = λ1v

(1)
i , so xtv(1) =

1

λ1v
(1)
i

(λ1v
(1)
i) = 1.

Hence, x satisfies the hypotheses of the result concerning the eigenvalues of deflated
matrices. Moreover, the ith row of B = A−λ1v(1)xt consists entirely of zero entries.

If λ
= 0 is an eigenvalue with associated eigenvector w, the relation Bw = λw
implies that the ith coordinate of w must also be zero. Consequently, the ith column

464 CHAPTER 9. APPROXIMATING EIGENVALUES

of the matrix B makes no contribution to the product Bw = λw. Thus, the matrix
B can be replaced by an (n−1)×(n−1) matrix B′, obtained by deleting the ith row
and column from B. The matrix B′ has eigenvalues λ2, λ3, . . . , λn. If |λ2| > |λ3|,
the Power method is reapplied to the matrix B′ to determine this new dominant
eigenvalue and an eigenvector, w(2)′ , associated with λ2, with respect to the matrix
B′. To find the associated eigenvector w(2) for the matrix B, insert a zero coordinate
between the coordinates w(2)′

i−1 and w(2)′

i of the (n−1)-dimensional vector w(2)′ and
then calculate v(2) by using the result for deflated matrices. This deflation technique
can be performed using the program WIEDEF94.

EXAMPLE 4 From Example 2, we know that the matrix

A =




4 −1 1
−1 3 −2

1 −2 3




has eigenvalues λ1 = 6, λ2 = 3, and λ3 = 1. Assuming that the dominant eigenvalue
λ1 = 6 and associated unit eigenvector v(1) = (1,−1, 1)t have been calculated, the
procedure just outlined for obtaining λ2 proceeds as follows:

x =
1
6




4
−1

1


 =

(
2
3
,−1

6
,
1
6

)t

,

v(1)xt =




1
−1

1


 [2

3 , − 1
6 ,

1
6

]
=




2
3 − 1

6
1
6

− 2
3

1
6 − 1

6
2
3 − 1

6
1
6


 ,

and

B = A− λ1v(1)xt =




4 −1 1
−1 3 −2

1 −2 3


− 6




2
3 − 1

6
1
6

− 2
3

1
6 − 1

6
2
3 − 1

6
1
6




=




0 0 0
3 2 −1
−3 −1 2


 .

Deleting the first row and column gives

B′ =
[

2 −1
−1 2

]
,

which has eigenvalues λ2 = 3 and λ3 = 1. For λ2 = 3, the eigenvector w(2)′ can be
obtained by solving the second-order linear system

(B′ − 3I)w(2)′ = 0, resulting in w(2)′ = (1,−1)t.

9.3. THE POWER METHOD 465

Adding a zero for the first component gives w(2) = (0, 1,−1)t and

v(2) = (3− 6)(0, 1,−1)t + 6
[(

2
3
,−1

6
,
1
6

)
(0, 1,−1)t

]
(1,−1, 1)t = (−2,−1, 1)t.

Although deflation can be used to successively find approximations to all the
eigenvalues and eigenvectors of a matrix, the process is susceptible to round-off
error. Techniques based on similarity transformations are presented in the next two
sections. These are generally preferable when approximations to all the eigenvalues
are needed.

466 CHAPTER 9. APPROXIMATING EIGENVALUES

EXERCISE SET 9.3

1. Find the first three iterations obtained by the Power method applied to the
following matrices.

(a)




2 1 1
1 2 1
1 1 2




Use x(0) = (1,−1, 2)t.

(b)




1 1 1
1 1 0
1 0 1




Use x(0) = (−1, 0, 1)t.

(c)




1 −1 0
−2 4 −2

0 −1 2




Use x(0) = (−1, 2, 1)t.
(d)




4 1 1 1
1 3 −1 1
1 −1 2 0
1 1 0 2




Use x(0) = (1,−2, 0, 3)t.

(e)




5 −2 − 1
2

3
2

−2 5 3
2 − 1

2− 1
2

3
2 5 −2

3
2 − 1

2 −2 5




Use x(0) = (1, 1, 0,−3)t.

(f)




−4 0 1
2

1
2

1
2 −2 0 1

2
1
2

1
2 0 0

0 1 1 4




Use x(0) = (0, 0, 0, 1)t.

2. Repeat Exercise 1 using the Inverse Power method.

3. Find the first three iterations obtained by the Symmetric Power method ap-
plied to the following matrices.

(a)




2 1 1
1 2 1
1 1 2




Use x(0) = (1,−1, 2)t.

(b)




1 1 1
1 1 0
1 0 1




Use x(0) = (−1, 0, 1)t.

(c)




4.75 2.25 −0.25
2.25 4.75 1.25
−0.25 1.25 4.75




Use x(0) = (0, 1, 0)t.
(d)




4 1 −1 0
1 3 −1 0
−1 −1 5 2

0 0 2 4




Use x(0) = (0, 1, 0, 0)t.

(e)




4 1 1 1
1 3 −1 1
1 −1 2 0
1 1 0 2




Use x(0) = (1, 0, 0, 0)t.

(f)




5 −2 − 1
2

3
2

−2 5 3
2 − 1

2− 1
2

3
2 5 −2

3
2 − 1

2 −2 5




Use x(0) = (1, 1, 0,−3)t.

9.3. THE POWER METHOD 467

4. Use the Power method and Wielandt deflation to approximate the second
most dominant eigenvalues for the matrices in Exercise 1, iterating until
‖x(m) − x(m−1)‖∞ < 10−4 or until the number of iterations exceeds 25.

5. Use the Power method and Aitken’s ∆2 technique to approximate the domi-
nant eigenvalue for the matrices in Exercise 1, iterating until ‖x(m)−x(m−1)‖∞ <
10−4 or until the number of iterations exceeds 25.

6. Use the Symmetric Power method to approximate the dominant eigenvalue
for the matrices given in Exercise 3, iterating until ‖x(m) − x(m−1)‖2 < 10−4

or until the number of iterations exceeds 25.

7. Use the Inverse Power method on the matrices in Exercise 1, iterating until
‖x(m) − x(m−1)‖∞ < 10−4 or until the number of iterations exceeds 25.

8. Show that the ith row of B = A − λ1v(1)xt is zero, where λ1 is the largest
value of A in absolute value, v(1) is the associated eigenvector of A for λ1,
and x = 1/λ1v

(1)
i (ai1, ai2, . . . , ain)t.

9. Following along the line of Exercise 8 in Section 6.4 and Exercise 10 in Sec-
tion 7.3, suppose that a species of beetle has a life span of 4 years and that a
female in the first year has a survival rate of 1

2 , in the second year a survival
rate of 1

4 , and in the third year a survival rate of 1
8 . Suppose additionally that

a female gives birth, on the average, to two new females in the third year and
to four new females in the fourth year. The matrix describing a single female’s
contribution in one year to the female population in the succeeding year is

A =




0 0 2 4
1
2 0 0 0
0 1

4 0 0
0 0 1

8 0


 ,

where again the entry in the ith row and jth column denotes the probabilistic
contribution that a female of age j makes on the next year’s female population
of age i.

(a) Use the Gerschgorin Circle Theorem to determine a region in the com-
plex plane containing all the eigenvalues of A.

(b) Use the Power method to determine the dominant eigenvalue of the
matrix and its associated eigenvector.

(c) Use deflation to determine any remaining eigenvalues and eigenvectors
of A.

(d) Find the eigenvalues of A by using the characteristic polynomial of A
and the Newton-Raphson method.

(e) What is your long-range prediction for the population of these beetles?

468 CHAPTER 9. APPROXIMATING EIGENVALUES

10. A linear dynamical system can be represented by the equations

dx
dt

(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t),

where A is an n×n variable matrix, B is an n×r variable matrix, C is anm×n
variable matrix, D is an m× r variable matrix, x is an n-dimensional vector
variable, y is an m-dimensional vector variable, and u is an r-dimensional
vector variable. For the system to be stable, the matrix A must have all its
eigenvalues with nonpositive real part for all t.

(a) Is the system stable if

A(t) =



−1 2 0
−2.5 −7 4

0 0 −5


?

(b) Is the system stable if

A(t) =



−1 1 0 0

0 −2 1 0
0 0 −5 1
−1 −1 −2 −3


?

9.4. HOUSEHOLDER’S METHOD 469

9.4 Householder’s Method

In the next section we use the QR method to reduce a symmetric tridiagonal ma-
trix to a nearly diagonal matrix to which it is similar. The diagonal entries of the
reduced matrix are approximations to the eigenvalues of both matrices. In this sec-
tion, we consider the associated problem of reducing an arbitrary symmetric matrix
to a similar tridiagonal matrix using a method devised by Alton Householder. Al-
though there is a clear connection between the problems we are solving in these two
sections, Householder’s method has wide application in areas other than eigenvalue
approximation.

Householder’s method is used to find a symmetric tridiagonal matrix B that is
similar to a given symmetric matrix A. Schur’s Theorem ensures that a symmetric
matrix A is similar to a diagonal matrixD, since an orthogonal matrix Q exists with
the property that D = Q−1AQ = QtAQ. However, the matrix Q (and consequently
D) is generally difficult to compute, and Householder’s method offers a compromise.

Let w be in
n with wtw = 1. The n× n matrix

P = I − 2wwt

is called a Householder transformation.
Householder transformations are used to selectively zero out blocks of entries in

vectors or in columns of matrices in a manner that is extremely stable with respect
to round-off error. An important property of Householder transformations follows.
(See Exercise 3.)

[Householder Transformations] If P = I − 2wwt is a Householder transfor-
mation, then P is symmetric and orthogonal, so P−1 = P .

Householder’s method begins by determining a transformation P (1) with the
property that A(2) = P (1)AP (1) has

a
(2)
j1 = 0 for each j = 3, 4, . . . , n.

By symmetry, this also implies that a(2)
1j = 0 for each j = 3, 4, . . . , n.

The vector w = (w1, w2, . . . , wn)t is chosen so that wtw = 1, and so that the
matrix

A(2) = P (1)AP (1) = (I − 2wwt)A(I − 2wwt)

has the same entry as A in the first row and column, and has zeros for all the entries
in the first column from rows 3 through n. That is,

a
(2)
11 = a11 and a

(2)
j1 = 0 for each j = 3, 4, . . . , n.

470 CHAPTER 9. APPROXIMATING EIGENVALUES

This imposes n conditions on the n unknowns w1, w2, . . . , wn. Setting w1 = 0
ensures that a(2)

11 = a11. Then we want

P (1) = I − 2wwt

to satisfy
P (1)(a11, a21, a31, . . . , an1)t = (a11, α, 0, . . . , 0)t, (9.1)

where α will be chosen later. To simplify notation, we define the vectors ŵ and ŷ
in
n−1 by

ŵ = (w2, w3, . . . , wn)t, and ŷ = (a21, a31, . . . , an1)t,

and let P̂ be the (n− 1)× (n− 1) Householder transformation

P̂ = In−1 − 2ŵŵt.

Equation (9.1) can then be rewritten as

P (1)




a11

a21

a31

...
an1




=




1 0 · · · 0
0

P̂

0



·



a11

y


 =



a11

P̂ ŷ


 =




a11

α
0
...
0




with
P̂ ŷ = (In−1 − 2ŵŵt)ŷ = ŷ − 2ŵtŷŵ = (α, 0, . . . , 0)t. (9.2)

Let r = ŵtŷ. Then

(α, 0, . . . , 0)t = (a21 − 2rw2, a31 − 2rw3, . . . , an1 − 2rwn)t.

Equating components gives

α = a21 − 2rw2, and 0 = aj1 − 2rwj for each j = 3, . . . , n.

Thus,

2rw2 = a21 − α, and 2rwj = aj1 for each j = 3, . . . , n. (9.3)

Squaring both sides of each of the equations and summing gives

4r2
n∑

j=2

w2
j = (a21 − α)2 +

n∑
j=3

a2
j1.

Since wtw = 1 and w1 = 0, we have
∑n

j=2 w
2
j = 1 and

4r2 =
n∑

j=2

a2
j1 − 2αa21 + α2. (9.4)

9.4. HOUSEHOLDER’S METHOD 471

Equation (9.2) and the fact that P is orthogonal imply that

α2 = (α, 0, . . . , 0)(α, 0, . . . , 0)t = (P̂ ŷ)tP̂ ŷ = ŷtP̂ tP̂ ŷ = ŷtŷ.

Thus,

α2 =
n∑

j=2

a2
j1,

which, when substituted into Eq. (9.4), gives

2r2 =
n∑

j=2

a2
j1 − αa21.

To ensure that 2r2 = 0 only if a21 = a31 = · · · = an1 = 0, we choose

α = −(sign a21)




n∑
j=2

a2
j1




1/2

which implies that

2r2 =
n∑

j=2

a2
j1 + |a21|




n∑
j=2

a2
j1




1/2

.

With this choice of α and 2r2, we solve the equations in (9.3) to obtain

w2 =
a21 − α

2r
and wj =

aj1

2r
, for each j = 3, . . . , n.

To summarize the choice of P (1), we have

α = −(sign a21)




n∑
j=2

a2
j1




1/2

, r =
(

1
2
α2 − 1

2
a21α

)1/2

,

w1 = 0, w2 =
a21 − α

2r
, wj =

aj1

2r
for each j = 3, . . . , n.

With this choice,

A(2) = P (1)AP (1) =




a
(2)
11 a

(2)
12 0 · · · 0

a
(2)
21 a

(2)
22 a

(2)
23 · · · a

(2)
2n

0 a
(2)
32 a

(2)
33 · · · a

(2)
3n

...
...

...
...

0 a
(2)
n2 a

(2)
n3 · · · a

(2)
nn



.

472 CHAPTER 9. APPROXIMATING EIGENVALUES

Having found P (1) and computed A(2), the process is repeated for k = 2,
3, . . . , n− 2 as follows:

α = −sgn
(
a
(k)
k+1,k

)
n∑

j=k+1

(a(k)
jk)2




1/2

, r =
(

1
2
α2 − 1

2
αa

(k)
k+1,k

)1/2

,

w
(k)
1 = w

(k)
2 = · · · = w

(k)
k = 0, w

(k)
k+1 =

a
(k)
k+1,k − α

2r

w
(k)
j =

a
(k)
jk

2r
, for each j = k + 2, k + 3, . . . , n,

P (k) = I − 2w(k) ·
(
w(k)

)t

, and A(k+1) = P (k)A(k)P (k),

where

A(k+1) =




a
(k+1)
11 a

(k+1)
12 0 0

a
(k+1)
21

0 0 0

a
(k+1)
k+1,k a

(k+1)
k+1,k+1 a

(k+1)
k+1,k+2 · · · a

(k+1)
k+1,n

0

0 0 a
(k+1)
n,k+1 a

(k+1)
nn




.

Continuing in this manner, the tridiagonal and symmetric matrix A(n−1) is
formed, where

A(n−1) = P (n−2)P (n−3) · · ·P (1)AP (1) · · ·P (n−3)P (n−2).

The program HSEHLD95 performs Householder’s method in this manner on a
symmetric matrix.

EXAMPLE 1 The 4× 4 matrix

A =




4 1 −2 2
1 2 0 1
−2 0 3 −2

2 1 −2 −1




9.4. HOUSEHOLDER’S METHOD 473

is symmetric. For the first application of a Householder transformation:

α = −(1)




4∑
j=2

a2
j1




1/2

= −3, r =
(

1
2
(−3)2 − 1

2
(1)(−3)

)1/2

=
√

6,

w =
(

0,
1
3

√
6,−1

6

√
6,

1
6

√
6
)
,

P (1) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


− 2

(
1
6

√
6
)2




0
2
−1

1


 · (0, 2,−1, 1)

=




1 0 0 0
0 − 1

3
2
3 − 2

3

0 2
3

2
3

1
3

0 − 2
3

1
3

2
3


 ,

and

A(2) =




4 −3 0 0
−3 10

3 1 4
3

0 1 5
3 − 4

3

0 4
3 − 4

3 −1


 .

Continuing to the second iteration,

α = −5
3
, r =

2
3

√
5, w =

(
0, 0, 2

√
5,

1
5

√
5
)t

,

P (2) =




1 0 0 0
0 1 0 0
0 0 − 3

5 − 4
5

0 0 − 4
5

3
5


 .

and the symmetric tridiagonal matrix is

A(3) =




4 −3 0 0
−3 10

3 − 5
3 0

0 − 5
3 − 33

25
68
75

0 0 68
75

149
75


 .

In the next section, we will examine how the QR method can then be applied
to A(n−1) to determine its eigenvalues, which are the same as those of the original
matrix A.

474 CHAPTER 9. APPROXIMATING EIGENVALUES

EXERCISE SET 9.4

1. Use Householder’s method to place the following matrices in tridiagonal form.

(a)




12 10 4
10 8 −5
4 −5 3


 (b)




2 −1 −1
−1 2 −1
−1 −1 2




(c)




1 1 1
1 1 0
1 0 1


 (d)




4.75 2.25 −0.25
2.25 4.75 1.25
−0.25 1.25 4.75




2. Use Householder’s Method to place the following matrices in tridiagonal form.

(a)




4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4


 (b)




5 −2 −0.5 1.5
−2 5 1.5 −0.5
−0.5 1.5 5 −2

1.5 −0.5 −2 5




(c)




8 0.25 0.5 2 −1
0.25 −4 0 1 2
0.5 0 5 0.75 −1
2 1 0.75 5 −0.5
−1 2 −1 −0.5 6




(d)




2 −1 −1 0 0
−1 3 0 −2 0
−1 0 4 2 1

0 −2 2 8 3
0 0 1 3 9




3. Suppose that P = I − 2wwt is a Householder transformation.

(a) Show that P is symmetric.

(b) Show that P is orthogonal.

9.5. THE QR METHOD 475

9.5 The QR Method

To apply the QR method we begin with a symmetric matrix in tridiagonal form;
that is, the only nonzero entries in the matrix lie either on the main diagonal or
on the subdiagonals directly above or below the diagonal. If this is not the form of
the symmetric matrix, the first step is to apply Householder’s method to compute
a symmetric, tridiagonal matrix similar to the given matrix.

If A is a symmetric tridiagonal matrix, we can simplify the notation somewhat
by labeling the entries of A as follows:

A =




a1 b2 0 0

b2 a2 b3

0 b3 a3 0

bn

0 0 bn an



.

If b2 = 0 or bn = 0, then the 1 × 1 matrix [a1] or [an] immediately produces an
eigenvalue a1 or an of A. When bj = 0 for some j, where 2 < j < n, the problem
can be reduced to considering, instead of A, the smaller matrices



a1 b2 0 0
b2 a2 b3

0 b3 a3 0
bj−1

0 0 bj−1 aj−1




and




aj bj+1 0 0
bj+1 aj+1 bj+2

0 bj+2 aj+2 0
bn

0 0 bn an



.

If none of the bj are zero, the QR method proceeds by forming a sequence of
matrices A = A(1), A(2), A(3), . . ., as follows:

• A(1) = A is factored as a product A(1) = Q(1)R(1), where Q(1) is orthogonal
and R(1) is upper triangular.

• A(2) is defined as A(2) = R(1)Q(1).

In general, for i ≥ 2, A(i) is factored as a product A(i) = Q(i)R(i) of an orthog-
onal matrix Q(i) and an upper triangular matrix R(i). Then A(i+1) is defined by
the product of R(i) and Q(i) in the reverse direction A(i+1) = R(i)Q(i). Since Q(i)

is orthogonal,

A(i+1) = R(i)Q(i) = (Q(i)t

A(i))Q(i) = Q(i)t

A(i)Q(i),

and A(i+1) is symmetric with the same eigenvalues as A(i). By the way we define R(i)

and Q(i), we can also ensure that A(i+1) is tridiagonal and has the same eigenvalues
as the original matrix A. The success of the procedure is a result of the fact that,
for increasing values of i, A(i+1) tends to a diagonal matrix with the eigenvalues of
A along the diagonal.

476 CHAPTER 9. APPROXIMATING EIGENVALUES

To describe the construction of the factoring matrices Q(i) and R(i), we need
the notion of a rotation matrix. A rotation matrix P is an orthogonal matrix that
differs from the identity matrix in at most four elements. These four elements are
of the form

pii = pjj = cos θ and pij = −pji = sin θ
for some θ and some i
= j.

For any rotation matrix P , the matrix AP differs from A only in the ith and
jth columns and the matrix PA differs from A only in the ith and jth rows. For
any i
= j, the angle θ can be chosen so that the product PA has a zero entry for
(PA)ij . In addition, P is orthogonal, since by its definition PP t = I.

The factorization of A(1) into A(1) = Q(1)R(1) uses a product of n− 1 rotation
matrices of this type to construct

R(1) = PnPn−1 · · ·P2A
(1).

We first choose the rotation matrix P2 to have

p11 = p22 = cos θ2 and p12 = −p21 = sin θ2,

where
sin θ2 =

b2√
b22 + a2

1

and cos θ2 =
a1√
b22 + a2

1

.

Then the matrix
A

(1)
2 = P2A

(1)

has a zero in the (2, 1) position, that is, in the second row and first column, since
the (2, 1) entry in A(1)

2 is

(− sin θ2)a1 + (cos θ2)b2 =
−b2a1√
b22 + a2

1

+
a1b2√
b22 + a2

1

= 0.

Since the multiplication P2A
(1) affects both rows 1 and 2 of A(1), the new

matrix does not necessarily retain zero entries in positions (1, 3), (1, 4), . . . , and
(1, n). However, A(1) is tridiagonal, so the (1, 4), . . . , (1, n) entries of A(1)

2 are zero.
So only the (1, 3)-entry, the one in the first row and third column, can become
nonzero.

In general, the matrix Pk is chosen so that the (k, k−1) entry in A(1)
k = PkA

(1)
k−1

is 0, which results in the (k − 1, k + 1) entry becoming nonzero. The matrix A
(1)
k

has the form

A
(1)
k =




z1 q1 r1 0 0
0
0

0 zk−1 qk−1 rk−1

0 xk yk 0
bk+1 ak+1 bk+2 0

0
bn

0 0 bn an




9.5. THE QR METHOD 477

and Pk+1 has the form

Pk+1 =




Ik−1 O O

ck+1 sk+1

O O
−sk+1 ck+1

O
↑

Column k

O In−k−1




← Row k

where O denotes the appropriately dimensioned matrix with all zero entries.
The constants ck+1 = cos θk+1 and sk+1 = sin θk+1 in Pk+1 are chosen so that

the (k + 1, k) entry in A(1)
k+1 is zero; that is,

sk+1xk − ck+1bk+1 = 0.

Since c2k+1 + s2k+1 = 1, the solution to this equation is

sk+1 =
bk+1√
b2k+1 + x2

k

and ck+1 =
xk√

b2k+1 + x2
k

,

and A(1)
k+1 has the form

A
(1)
k+1 =




z1 q1 r1 0 0
0
0

0 zk qk rk

0 xk+1 yk+1 0
bk+2 ak+2 bk+3 0

0
bn

0 0 bn an




Proceeding with this construction in the sequence P2, . . . , Pn produces the upper
triangular matrix

R(1) ≡ PnPn−1 · · ·P2A =A(1)
n =




z1 q1 r1 0 0

0

0

rn−2

zn−1 qn−1

0 0 xn




.

478 CHAPTER 9. APPROXIMATING EIGENVALUES

The orthogonal matrix Q(1) is defined as Q(1) = P t
2P

t
3 · · ·P t

n, so

A(2) = R(1)Q(1) = R(1)P t
2P

t
3 · · ·P t

n−1 = PnPn−1 · · ·P2AP
t
2P

t
3 · · ·P t

n.

The matrix A(2) is tridiagonal, and, in general, the entries off the diagonal will
be smaller in magnitude than the corresponding entries in A(1). The process is
repeated to construct A(3), A(4), and so on.

If the eigenvalues of A have distinct moduli with |λ1| > |λ2| > · · · > |λn|, then
the rate of convergence of the entry b(i+1)

j+1 to zero in the matrix A(i+1) depends on

the ratio |λj+1/λj |, and this determines the rate at which the entry a(i+1)
j converges

to the jth eigenvalue λj . Thus, the rate of convergence can be slow if |λj+1/λj | is
close to 1.

To accelerate the convergence, a shifting technique is employed similar to that
used with the Inverse Power method. A constant σ is selected close to an eigenvalue
of A. This modifies the factorization to choosing Q(i) and R(i) so that

A(i) − σI = Q(i)R(i).

Correspondingly, the matrix A(i+1) is defined to be

A(i+1) = R(i)Q(i) + σI.

With this modification, the rate of convergence of b(i+1)
j+1 to zero depends on the

ratio ∣∣∣∣
λj+1 − σ
λj − σ

∣∣∣∣ ,

which can result in a significant improvement over the original rate of convergence
of a(i+1)

j to λj if σ is close to λj+1 but not close to λj .

The shift σ is computed at each step as the eigenvalue closest to a(i)
n of the 2×2

matrix [
a
(i)
n−1 b

(i)
n

b
(i)
n a

(i)
n

]
.

With this shift, b(i+1)
n converges to zero and a(i+1)

n converges to the eigenvalue λn.
If b(i+1)

j converges to zero for some j
= n, the splitting technique mentioned at the
beginning of the section is employed. The shifts are accumulated and added to the
approximation after convergence is obtained. The program QRSYMT96 performs
the QR method for symmetric tridiagonal matrices in this way.

EXAMPLE 1 Let

A =




3 1 0
1 3 1
0 1 3


 =



a
(1)
1 b

(1)
2 0

b
(1)
2 a

(1)
2 b

(1)
3

0 b
(1)
3 a

(1)
3


 .

9.5. THE QR METHOD 479

To find the acceleration parameter for shifting requires finding the eigenvalues of
[
a
(1)
2 b

(1)
3

b
(1)
3 a

(1)
3

]
=
[

3 1
1 3

]
,

which are µ1 = 4 and µ2 = 2. The choice of eigenvalue closest to a(1)
3 = 3 in this

case is arbitrary, and we choose σ1 = µ2 = 2 as the first shift. Then



d1 b
(1)
2 0

b
(1)
2 d2 b

(1)
3

0 b
(1)
3 d3


 =




1 1 0
1 1 1
0 1 1


 .

Continuing the computation gives

x1 = 1, y1 = 1, z1 =
√

2, c2 =
1
2
√

2, s2 =
1
2
√

2,

q1 =
√

2, x2 = 0, r1 =
1
2
√

2, and y2 =
1
2
√

2,

so

A
(1)
2 =



√

2
√

2 1
2

√
2

0 0
√

2
0 1 1


 .

Further,

z2 = 1, c3 = 0, s3 = 1, q2 = 1, and x3 = −1
2

√
2,

so

R(1) = A
(1)
3 =



√

2
√

2 1
2

√
2

0 1 1
0 0 − 1

2

√
2


 .

To compute A(2), we have

z3 = −1
2

√
2, a

(2)
1 = 2, b

(2)
2 =

1
2

√
2, a

(2)
2 = 1, b

(2)
3 = −1

2

√
2, and a

(2)
3 = 0,

so

A(2) = R(1)Q(1) =




2 1
2

√
2 0

1
2

√
2 1 − 1

2

√
2

0 − 1
2

√
2 0


 .

One iteration of the QR method is complete. Since neither b(2)2 =
√

2/2 nor b(2)3 =
−√2/2 is small, another iteration of the QR method will be performed. For this
iteration we calculate the eigenvalues 1

2 ± 1
2

√
3 of the matrix

[
a
(2)
2 b

(2)
3

b
(2)
3 a

(2)
3

]
=
[

1 − 1
2

√
2

− 1
2

√
2 0

]
,

480 CHAPTER 9. APPROXIMATING EIGENVALUES

and choose σ2 = 1
2 − 1

2

√
3, the closest eigenvalue to a

(2)
3 = 0. Completing the

calculations gives

A(3) =




2.6720277 0.37597448 0
0.37597448 1.4736080 0.030396964
0 0.030396964 −0.047559530


 .

If b(3)3 = 0.030396964 is sufficiently small, then the approximation to the eigenvalue
λ3 is 1.5864151, the sum of a(3)

3 and the shifts

σ1 + σ2 = 2 +
(

1
2
− 1

2

√
3
)

=
5
2
− 1

2

√
3.

Deleting the third row and column gives

A(3) =
[

2.6720277 0.37597448
0.37597448 1.4736080

]
,

which has eigenvalues µ1 = 2.7802140 and µ2 = 1.3654218. Adding the shifts gives
the approximations

λ1 ≈ 4.4141886 and λ2 ≈ 2.9993964.

Since the actual eigenvalues of the matrix A are 4.41420, 3.00000, and 1.58579, the
QR method gave four digits of accuracy in only two iterations.

9.5. THE QR METHOD 481

EXERCISE SET 9.5

1. Apply two iterations of the QR method to the following matrices.

(a)




2 −1 0
−1 2 −1

0 −1 2


 (b)




3 1 0
1 4 2
0 2 1




(c)




4 −1 0
−1 3 −1

0 −1 2




(d)




1 1 0 0
1 2 −1 0
0 −1 3 1
0 0 1 4




(e)



−2 1 0 0

1 −3 −1 0
0 −1 1 1
0 0 1 3


 (f)




0.5 0.25 0 0
0.25 0.8 0.4 0
0 0.4 0.6 0.1
0 0 0.1 1




2. Use the QR method to determine all the eigenvalues of the following matrices.
Iterate until all the off-diagonal elements have magnitude less than 10−5.

(a)




2 −1 0
−1 −1 −2

0 −2 3


 (b)




3 1 0
1 4 2
0 2 3




(c)




4 2 0 0 0
2 4 2 0 0
0 2 4 2 0
0 0 2 4 2
0 0 0 2 4




(d)




5 −1 0 0 0
−1 4.5 0.2 0 0

0 0.2 1 −0.4 0
0 0 −0.4 3 1
0 0 0 1 3




3. Use the QR method given in QRSYMT96 with TOL = 10−5 to determine all
the eigenvalues for the matrices given in Exercise 1.

4. Use the Inverse Power method given in INVPWR93 with TOL = 10−5 to
determine the eigenvectors of the matrices in Exercise 1.

5. (a) Show that the rotation matrix
[

cos θ − sin θ
sin θ cos θ

]
applied to the vector

x = (x1, x2)t has the geometric effect of rotating x through the angle θ
without changing its magnitude with respect to ‖ · ‖2.

(b) Show that the magnitude of x with respect to ‖ · ‖∞ can be changed by
a rotation matrix.

482 CHAPTER 9. APPROXIMATING EIGENVALUES

6. Let P be the rotation matrix with pii = pjj = cos θ, pij = −pji = sin θ for
j < i. Show that for any n× n matrix A:

(AP)pq =




apq, if q
= i, j,
(cos θ)apj + (sin θ)api, if q = j,
(cos θ)api − (sin θ)apj , if q = i,

(PA)pq =




apq, if p
= i, j,
(cos θ)ajq − (sin θ)aiq, if p = j,
(sin θ)ajq + (cos θ)aiq, if p = i.

7. Jacobi’s method for a symmetric matrix A is described by

A1 = A, A2 = P1A1P
t
1 ,

and, in general,
Ai+1 = PiAiP

t
i .

The matrix Ai+1 tends to a diagonal matrix, where Pi is a rotation matrix
chosen to eliminate a large off-diagonal element in Ai. Suppose aj,k and ak,j

are to be set to 0, where j
= k. If ajj
= akk, then

(Pi)jj = (Pi)kk =

√
1
2

(
1 +

b√
c2 + b2

)
,

(Pi)kj =
c

2(Pi)jj

√
c2 + b2

= −(Pi)jk,

where
c = 2ajksgn(ajj − akk) and b = |ajj − akk|,

or if ajj = akk,

(Pi)jj = (Pi)kk =
√

2
2

and

(Pi)kj = −(Pi)jk =
√

2
2
.

Jacobi’s method is invoked by setting a21 = 0 and then setting a31, a32, a41,
a42, a43, . . . , an,1, . . . , an,n−1 in turn to zero.This is repeated until a matrix
Ak is computed with

n∑
i=1

n∑
j=1
j 	=i

|a(k)
ij |

sufficiently small. The eigenvalues of A can then be approximated by the
diagonal entries of Ak. Repeat Exercise 3 using the Jacobi method.

9.6. SURVEY OF METHODS AND SOFTWARE 483

9.6 Survey of Methods and Software

This chapter discussed the approximation of eigenvalues and eigenvectors. The Ger-
schgorin circles give a crude approximation to the location of the eigenvalues of a
matrix. The Power method can be used to find the dominant eigenvalue and an
associated eigenvector for an arbitrary matrix A. If A is symmetric, the Symmetric
Power method gives faster convergence to the dominant eigenvalue and an associ-
ated eigenvector. The Inverse Power method will find the eigenvalue closest to a
given value and an associated eigenvector. This method is often used to refine an
approximate eigenvalue and to compute an eigenvector once an eigenvalue has been
found by some other technique.

Deflation methods, such as Wielandt deflation, obtain other eigenvalues once the
dominant eigenvalue is known. These methods are used if only a few eigenvalues
are required since they are susceptible to roundoff error. The Inverse Power method
should be used to improve the accuracy of approximate eigenvalues obtained from
a deflation technique.

Methods based on similarity transformations, such as Householder’s method,
are used to convert a symmetric matrix into a similar matrix that is tridiagonal
(or upper Hessenberg if the matrix is not symmetric). Techniques such as the QR
method can then be applied to the tridiagonal (or upper-Hessenberg) matrix to
obtain approximations to all the eigenvalues. The associated eigenvectors can be
found by using an iterative method, such as the Inverse Power method, or by mod-
ifying the QR method to include the approximation of eigenvectors. We restricted
our study to symmetric matrices and presented the QR method only to compute
eigenvalues for the symmetric case.

The subroutines in the IMSL and NAG libraries are based on those contained in
EISPACK and LAPACK, packages that were discussed in Section 1.5. In general,
the subroutines transform a matrix into the appropriate form for the QR method or
one of its modifications, such as the QL method. The subroutines approximate all
the eigenvalues and can approximate an associated eigenvector for each eigenvalue.
There are special routines that find all the eigenvalues within an interval or region
or that find only the largest or smallest eigenvalue. Subroutines are also available
to determine the accuracy of the eigenvalue approximation and the sensitivity of
the process to roundoff error.

The Maple procedure Eigenvals(A) computes the eigenvalues of A by first
balancing and then transforming A to upper Hessenberg form. The QR method
is then applied to obtain all eigenvalues and eigenvectors. The tridiagonal form is
used for a symmetric matrix. Maple has the command QRdecomp to compute the
QR factorization of a matrix. If the matrix A has been created the function call

>R:=QRdecomp(A,Q=’G’);

returns the upper triangular matrix R as the value of the function and returns the
orthonormal matrix Q in G.

The MATLAB procedure eig computes the eigenvalues and, optionally, eigen-
vectors of A by using the EISPACK routines. It uses BALANC to balance the

484 CHAPTER 9. APPROXIMATING EIGENVALUES

matrix, ORTHES to transform the matrix to upper Hessenberg, and finally a mod-
ified HQR2 routine to find the eigenvalues and, optionally, the eigenvectors of a
real upper Hessenberg matrix by the QR method. MATLAB also has a procedure
eigs that computes a selected number of eigenvalues and eigenvectors. The proce-
dure eigs is based on the implicitly restarted Arnoldi method by Sorensen [Sor].
The software package contained in Netlib, ARPACK [ARP] to solve large sparse
eigenvalue problems, is also based on the implicitly restarted Arnoldi method. The
implicitly restarted Arnoldi method is a Krylov subspace method that finds a se-
quence of Krylov subspaces that converge to a subspace containing the eigenvalues.

The books by Wilkinson [Wil2] and Wilkinson and Reinsch [WR] are classics in
the study of eigenvalue problems. Stewart [St] is also a good source of information
on the general problem, and Parlett [Par] considers the symmetric problem. A study
of the nonsymmetric problem can be found in Saad [Sa1].

Chapter 10

Solutions of Systems of
Nonlinear Equations

10.1 Introduction

A large part of the material in this book has involved the solution of systems
of equations. Even so, to this point, the methods have been appropriate only for
systems of linear equations, equations in the variables x1, x2, . . . , xn of the form

ai1x1 + ai2x2 + · · ·+ ainxn = bi

for i = 1, 2, . . . , n. If you have wondered why we have not considered more general
systems of equations, the reason is simple. It is much harder to approximate the
solutions to a system of general, or nonlinear, equations.

Solving a system of nonlinear equations is a problem that is avoided when pos-
sible, customarily by approximating the nonlinear system by a system of linear
equations. When this is unsatisfactory, the problem must be tackled directly. The
most straightforward method of approach is to adapt the methods from Chapter 2
that approximate the solutions of a single nonlinear equation in one variable to
apply when the single-variable problem is replaced by a vector problem that incor-
porates all the variables.

The principal tool in Chapter 2 was Newton’s method, a technique that is gener-
ally quadratically convergent. This is the first technique we modify to solve systems
of nonlinear equations. Newton’s method, as modified for systems of equations, is
quite costly to apply, so in Section 10.3 we describe how a modified Secant method
can be used to obtain approximations more easily, although with a loss of the
extremely rapid convergence that Newton’s method provides.

Section 10.4 describes the method of Steepest Descent. This technique is only
linearly convergent, but it does not require the accurate starting approximations
needed for more rapidly converging techniques. It is often used to find a good initial
approximation for Newton’s method or one of its modifications.

485

486CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

In Section 10.5, we give an introduction to continuation methods, which use
a parameter to move from a problem with an easily determined solution to the
solution of the original nonlinear problem.

A system of nonlinear equations has the form

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
...

fn(x1, x2, . . . , xn) = 0,

where each function fi can be thought of as mapping a vector x = (x1, x2, . . . , xn)t

of the n-dimensional space
n into the real line
. A geometric representation of a
nonlinear system when n = 2 is given in Figure 10.1.

Figure 10.1

x1

x2

z 5 f1(x1, x2)
z 5 f2(x1, x2)

z

x1

x2

f1(x1, x2) 5 0
and

f2(x1, x2) 5 0

A general system of n nonlinear equations in n unknowns can be alternatively
represented by defining a function F, mapping
n into
n, by

F(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))t
.

If vector notation is used to represent the variables x1, x2, . . . , xn, the nonlinear
system assumes the form

F(x) = 0.

The functions f1, f2, . . . , fn are the coordinate functions of F.

10.1. INTRODUCTION 487

EXAMPLE 1 The 3× 3 nonlinear system

3x1 − cos(x2x3)− 1
2

= 0,

x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0

can be placed in the form F(x) = 0 by first defining the three coordinate functions
f1, f2, and f3 from
3 to
 as

f1(x1, x2, x3) = 3x1 − cos(x2x3)− 1
2
,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
1
3
(10π − 3)

and then defining F from
3 →
3 by

F(x) = F(x1, x2, x3)

= (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3))t

=
(

3x1 − cos(x1x2)− 1
2
, x2

1 − 81(x2 + 0.1)2 + sinx3 + 1.06,

e−x1x2 + 20x3 +
1
3
(10π − 3)

)t

.

Before discussing the solution of a system of nonlinear equations, we need some
results concerning continuity and differentiability of functions from
n into
 and

n into
n. These results parallel those given in Section 1.2 for a function from

into
.

Let f be a function defined on a set D ⊂
n and mapping
n into
. The
function f has the limit L at x0, written

lim
x→x0

f(x) = L,

if, given any number ε > 0, a number δ > 0 exists with the property that

|f(x)− L| < ε whenever x ∈ D and 0 < ‖x− x0‖ < δ.

Any convenient norm can be used to satisfy the condition in this definition. The
specific value of δ will depend on the norm chosen, but the existence and value of
the limit L is independent of the norm.

The function f from
n into
 is continuous at x0 ∈ D provided limx→x0 f(x)
exists and is f(x0). In addition, f is continuous on a set D provided f is contin-
uous at every point of D. This is expressed by writing f ∈ C(D).

488CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

We define the limit and continuity concepts for functions from
n into
n by
considering the coordinate functions from
n into
.

Let F be a function from D ⊂
n into
n and suppose F has the representation

F(x) = (f1(x), f2(x), . . . , fn(x))t
.

We define the limit of F from
n to
n as

lim
x→x0

F(x) = L = (L1, L2, . . . , Ln)t

if and only if limx→x0 fi(x) = Li for each i = 1, 2, . . . , n.
The function F is continuous at x0 ∈ D provided limx→x0 F(x) exists and is

F(x0). In addition, F is continuous on the set D if F is continuous at each x in
D.

Maple provides the function fsolve to solve systems of equations. For example,
the nonlinear system

x1 + cos(x1x2x3) = 1,
(1− x1)1/4 + x2 + 0.05x2

3 − 0.15x3 = 1,
−x2

1 − 0.1x2
2 + 0.01x2 + x3 = 1

has a solution x1 = 0, x2 = 0.1, and x3 = 1.0. The system can be solved with the
following commands:

>f1:=x1+cos(x1*x2*x3)=1;
>f2:=(1-x1)^0.25+x2+0.05*x3^2-0.15*x3=1;
>f3:=-x1^2-0.1*x2^2+0.01*x2+x3=1;
>fsolve({f1,f2,f3},{x1,x2,x3},{x1=-1..1,x2=0..1,x3=0.5..1.5});

The first three commands define the system, and the last command invokes the
procedure fsolve, which gives the answer

x1 = 0, x2 = 0.1, and x3 = 1.

In general, fsolve(eqns,vars,options) solves the system of equations repre-
sented by the parameter eqns for the variables represented by the parameter vars
under optional parameters represented by options. Under options we specify a
region in which the routine is required to search for a solution. This specification
is not mandatory, and Maple determines its own search space if the options are
omitted.

10.2 Newton’s Method for Systems

Newton’s method for approximating the solution p to the single nonlinear equation

f(x) = 0

10.2. NEWTON’S METHOD FOR SYSTEMS 489

requires an initial approximation p0 to p and generates a sequence defined by

pk = pk−1 − f(pk−1)
f ′(pk−1)

, for k ≥ 1.

To modify Newton’s method to find the vector solution p to the vector equation

F(x) = 0,

we first need to determine an initial approximation vector p(0). We must then decide
how to modify the single-variable Newton’s method to a vector function method
that will have the same convergence properties but not require division, since this
operation is undefined for vectors. We must also replace the derivative of f in the
single-variable version of Newton’s method with something that is appropriate for
the vector function F.

The derivative f ′ of the single-variable function f describes how the values of the
function change relative to changes in the independent variable. The vector function
F has n different variables, x1, x2, . . . , xn, and n different component functions,
f1, f2, . . . , fn, each of which can change as any one of the variables change. The
appropriate derivative modification from the single-variable Newton’s method to
the vector form must involve all these n2 possible changes, and the natural way to
represent n2 items is by an n× n matrix. Each change in a component function fi

with respect to the change in the variable xj is described by the partial derivative

∂fi

∂xj
,

and the n× n matrix that replaces the derivative that occurs in the single-variable
case is

J(x) =




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

...
∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xn




.

The matrix J(x) is called the Jacobian matrix and has a number of applications
in analysis. It might, in particular, be familiar due to its application in the multiple
integration of a function of several variables over a region that requires a change
of variables to be performed, for example, when changing a multiple integral from
rectangular to spherical coordinates.

Newton’s method for systems replaces the derivative in the single-variable case
with the n× n Jacobian matrix in the vector situation and substitutes multiplying
by the reciprocal of the derivative with multiplying by the inverse of the Jacobian
matrix. As a consequence, Newton’s method for finding the solution p to the non-
linear system of equations represented by the vector equation F(x) = 0 has the
form

p(k) = p(k−1) − [J(p(k−1))]−1F(p(k−1)), for k ≥ 1,

490CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

given the initial approximation p(0) to the solution p. A weakness in Newton’s
method for systems arises from the necessity of inverting the matrix J(p(k−1))
at each iteration. In practice, explicit computation of the inverse of J(p(k−1)) is
avoided by performing the operation in a two-step manner. First, a vector y(k−1)

is found that will satisfy

J(p(k−1))y(k−1) = −F(p(k−1)).

After this has been accomplished, the new approximation, p(k), is obtained by
adding y(k−1) to p(k−1). The general implementation of Newton’s method for sys-
tems of nonlinear equations can be performed using the program NWTSY101.

EXAMPLE 1 The nonlinear system

3x1 − cos(x2x3)− 1
2

= 0,

x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0

has an approximate solution at (0.5, 0,−0.52359877)t. Newton’s method will be
used to obtain this approximation when the initial approximation is p(0) = (0.1, 0.1,−0.1)t,
and

F(x1, x2, x3) = (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3))
t

where

f1(x1, x2, x3) = 3x1 − cos(x2x3)− 1
2
,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06,

and

f3(x1, x2, x3) = e−x1x2 + 20x3 +
1
3
(10π − 3).

The Jacobian matrix, J(x), for this system is

J(x1, x2, x3) =




3 x3 sinx2x3 x2 sinx2x3

2x1 −162(x2 + 0.1) cosx3

−x2e
−x1x2 −x1e

−x1x2 20




and 

p
(k)
1

p
(k)
2

p
(k)
3


 =



p
(k−1)
1

p
(k−1)
2

p
(k−1)
3


+



y
(k−1)
1

y
(k−1)
2

y
(k−1)
3


 ,

10.2. NEWTON’S METHOD FOR SYSTEMS 491

where


y
(k−1)
1

y
(k−1)
2

y
(k−1)
3


 = −

(
J(p(k−1)

1 , p
(k−1)
2 , p

(k−1)
3)

)−1

F
(
p
(k−1)
1 , p

(k−1)
2 , p

(k−1)
3

)
.

Thus, at the kth step, the linear system J(p(k−1))y(k−1) = −F(p(k−1)) must be
solved, where

J(p(k−1)) =




3 p
(k−1)
3 sin p(k−1)

2 p
(k−1)
3 p

(k−1)
2 sin p(k−1)

2 p
(k−1)
3

2p(k−1)
1 −162(p(k−1)

2 + 0.1) cos p(k−1)
3

−p(k−1)
2 e−p

(k−1)
1 p

(k−1)
2 −p(k−1)

1 e−p
(k−1)
1 p

(k−1)
2 20




and

F(p(k−1)) =




3p(k−1)
1 − cos p(k−1)

2 p
(k−1)
3 − 1

2

(p(k−1)
1)2 − 81(p(k−1)

2 + 0.1)2 + sin p(k−1)
3 + 1.06

e−p
(k−1)
1 p

(k−1)
2 + 20p(k−1)

3 + 1
3 (10π − 3)


 .

To define the nonlinear system in Maple we use the command

> pi:=evalf(Pi);

which gives the response
π := 3.141592654

We need to have Maple load its linear algebra package, with the command

> with(linalg):

We define the function F(x1, x2, x3) with

> F:=(x1,x2,x3)->[3*x1-cos(x2*x3)-0.5,x1^2-81*(x2+0.1)^2+sin(x3)+1.06,
exp(-x1*x2)+20*x3+(10*pi-3)/3];

To create the Jacobian we use the command

> jacobian(F(x1,x2,x3),[x1,x2,x3]);

which produces the matrix



3 sin(x2x3)x3 sin(x2x3)x2
2x1 −162x2− 16.2 cos(x3)

−x2e(−x1x2) −x1e(−x1x2) 20




492CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

We want to copy the matrix and use it to form a matrix-valued function. To do
this use the “copy” command under “edit” to copy the matrix. Then place A :=
(x1,x2,x3)-> on the current line. To retrieve the copied matrix use the “paste”
command under “edit” with the cursor to the right of ->. Then add a semicolon at
the end of the line and press “enter” to obtain the following:

> A:=(x1,x2,x3)->matrix([[3, sin(x2*x3)*x3, sin(x2*x3)*x2],[2*x1,
-162*x2-16.2, cos(x3)], [-x2*exp(-x1*x2), -x1*exp(-x1*x2), 20]]);

The initial vector p(0) is defined by

> x:=vector(3,[0.1,0.1,-0.1]);

giving
x := [.1, .1,−.1]

We evaluate the entries in the Jacobian with the command

> A0:=A(x[1],x[2],x[3]);

which produces

A0 :=




3 .0009999833334 −.0009999833334
.2 −32.4 .9950041653

−.09900498337 −.09900498337 20




We obtain v = −F(p(0)) with

> v:=-f(x[1],x[2],x[3]);

v := [1.199950000, 2.269833417,−8.462025344]

To solve the linear system J(p(0))y(0) = −F(p(0)) requires the commands

> M:=augment(A0,v);

M :=




3 .0009999833334 −.0009999833334 1.199950000
.2 −32.4 .9950041653 2.269833417

−.09900498337 −.09900498337 20 −8.462025344




> N:=gausselim(M);




3. .0009999833334 −.0009999833334 1.199950000
0 −32.40006667 .9950708309 2.189836750
0 0 19.99692737 −8.429114261




and

10.2. NEWTON’S METHOD FOR SYSTEMS 493

> y:=backsub(N);

giving
y := [.3998696727,−.08053315145,−.4215204719]

We obtain x(1) by adding y to x(0), giving

x(1) = (0.4998696727, 0.01946684855,−0.5215204719)t.

Now we use the values of x(1) to generate x(2), and so on. The results of the first
5 steps of this iterative procedure are shown in Table 10.1.

Table 10.1

k p
(k)
1 p

(k)
2 p

(k)
3 ||p(k) − p(k−1)||∞

0 0.10000000 0.10000000 −0.10000000
1 0.49986967 0.01946684 −0.52152047 0.422
2 0.50001424 0.00158859 −0.52355696 1.79× 10−2

3 0.50000011 0.00001244 −0.52359845 1.58× 10−3

4 0.50000000 0.00000000 −0.52359877 1.24× 10−5

5 0.50000000 0.00000000 −0.52359877 8.04× 10−10

The previous example illustrates that Newton’s method can converge very rapidly
once an approximation is obtained that is near the true solution. However, it is
not always easy to determine starting values that will lead to a solution,and the
method is computationally expensive. In the next section, we consider a method
for overcoming the latter weakness. Good starting values can usually be found by
the method discussed in Section 10.4.

Initial approximation to the solutions of 2×2 and often 3×3 nonlinear systems
can also be obtained using the graphing facilities of Maple. Suppose we want to use
Maple to approximate the solutions to the nonlinear system

x2
1 − x2

2 + 2x2 = 0,
2x1 + x2

2 − 6 = 0.

We first define the equations with

> eq1:=x1^2-x2^2+2*x2=0: eq2:=2*x1+x2^2-6=0:

We now need to tell Maple to include its graphing package with the command

> with(plots);

To obtain the graph for the region when x1 and x2 are in [−8, 8] we use

494CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

> implicitplot({eq1,eq2},x1=-8..8,x2=-8..8);

Figure 10.2 shows the Maple plots with the equations added for clarity. From
the graph see that there are four solutions, at approximately (−5,−4)t, (2,−1)t,
(0.5, 2)t, and (−2, 3)t. These could be used as initial approximations in Newton’s
method for systems.

Figure 10.2

x 28 24

28

8

4

24

84 1

x 2

Alternatively, we could solve the second equation for x1 in terms of x2:

x1 = (6− x2
2)/2,

and substitute this into the first equation to produce the single-variable equation

((6− x2
2)/2)2 − x2

2 + 2x2 = 0.

This equation has the solutions given by

> fsolve(((6-x2^2)/2)^2-x2^2+2*x2,x2);

as
−3.965896582, −1.334532188, 2.179355824, 3.121072946.

The corresponding values of x1 = (6− x2
2)/2 are, respectively,

−4.864167850, 2.109511920, .625204096, −1.870548167.

The problem is more difficult in three dimensions. Consider the nonlinear system

2x1 − 3x2 + x3 − 4 = 0,
2x1 + x2 − x3 + 4 = 0,
x2

1 + x2
2 + x2

3 − 4 = 0.

Define three equations using the Maple commands

10.2. NEWTON’S METHOD FOR SYSTEMS 495

>eq1:=2*x1-3*x2+x3-4=0;
>eq2:=2*x1+x2-x3+4=0;
>eq3:=x1^2+x2^2+x3^2-4=0;

The third equation describes a sphere of radius 2 and center (0, 0, 0), so x1,x2,
and x3 are in [−2, 2]. The Maple commands to obtain the graph in this case are

>with(plots);
>implicitplot3d({eq1,eq2,eq3},x1=-2..2,x2=-2..2,x3=-2..2);

Various three-dimensional plotting options are available in Maple for isolating
a solution to the nonlinear system. For example, we can rotate the graph to better
view the sections of the surfaces. Then we can zoom into regions where the inter-
sections lie and alter the display form of the axes for a more accurate view of the
intersection’s coordinates. For this problem one reasonable initial approximation is
(x1, x2, x3)t = (−0.5,−1.5, 1.5)t.

496CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

EXERCISE SET 10.2

1. Give an example of a function F :
2 →
2 that is continuous at each point
of
2 except at (1, 0).

2. Give an example of a function F :
3 →
3 that is continuous at each point
of
3 except at (1, 2, 3).

3. Use the graphing facilities in Maple to approximate solutions to the following
nonlinear systems.

(a) x1(1− x1) + 4x2 = 12,
(x1 − 2)2 + (2x2 − 3)2 = 25.

(b) 5x2
1 − x2

2 = 0,
x2 − 0.25(sinx1 + cosx2) = 0.

(c) 15x1 + x2
2 − 4x3 = 13,

x2
1 + 10x2 − x3 = 11,

x3
2 − 25x3 = −22.

(d) 10x1 − 2x2
2 + x2 − 2x3 − 5 = 0,

8x2
2 + 4x2

3 − 9 = 0,
8x2x3 + 4 = 0.

4. Use Newton’s method with x(0) = 0 to compute x(2) for each of the following
nonlinear systems.

(a) 4x2
1 − 20x1 +

1
4
x2

2 + 8 = 0,
1
2
x1x

2
2 + 2x1 − 5x2 + 8 = 0.

(b) sin(4πx1x2)− 2x2 − x1 = 0,(
4π − 1

4π

)
(e2x1 − e) + 4ex2

2 − 2ex1 = 0.

(c) 3x1 − cos(x2x3)− 1
2

= 0,

4x2
1 − 625x2

2 + 2x2 − 1 = 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0.

(d) x2
1 + x2 − 37 = 0,
x1 − x2

2 − 5 = 0,
x1 + x2 + x3 − 3 = 0.

5. Use the answers obtained in Exercise 3 as initial approximations for Newton’s
method and iterate until ‖x(k) − x(k−1)‖∞ < 10−6.

10.2. NEWTON’S METHOD FOR SYSTEMS 497

6. The nonlinear system

x2
1 − x2

2 + 2x2 = 0,
2x1 + x2

2 − 6 = 0.

was considered on page XXX, where it was speculated that the system has four
solutions near (−5,−4)t, (2,−1)t, (0.5, 2)t, and (−2, 3)t. Use these points as
initial approximations for Newton’s method and iterate until ‖x(k)−x(k−1)‖∞ <
10−6. Do the results justify using the stated points as initial approximations?

7. The nonlinear system

2x1 − 3x2 + x3 − 4 = 0,
2x1 + x2 − x3 + 4 = 0,
x2

1 + x2
2 + x2

3 −4 = 0.

was considered on page XXX, where it was speculated that the system has a
solution near (−0.5,−1.5, 1.5)t.

(a) Use this point as an initial approximation for Newton’s method and
iterate until ‖x(k) − x(k−1)‖∞ < 10−6.

(b) Solve the first two equations for x1and x3 in terms of x2.

(c) Substitute the results of part (b) into the third equation to obtain a
quadratic equation in x2.

(d) Solve the quadratic equation in part (c) by the quadratic formula.

(e) Of the solutions in parts (a) and (d), which is closer to the initial ap-
proximation (−0.5,−1.5, 1.5)t?

8. The nonlinear system

3x1 − cos(x2x3)− 1
2

= 0,

x2
1 − 625x2

2 −
1
4

= 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0

has a singular Jacobian matrix at the solution. Apply Newton’s method with
x(0) = (1, 1−1)t. Note that convergence may be slow or may not occur within
a reasonable number of iterations.

9. The nonlinear system

4x1 − x2 + x3 = x1x4,

−x1 + 3x2 − 2x3 = x2x4,

x1 − 2x2 + 3x3 = x3x4,

x2
1 + x2

2 + x2
3 = 1

has six solutions.

498CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

(a) Show that if (x1, x2, x3, x4)t is a solution then (−x1,−x2,−x3, x4)t is a
solution.

(b) Use Newton’s method three times to approximate all solutions. Iterate
until

∥∥x(k)− x(k−1)
∥∥
∞ < 10−5.

10. In Exercise 6 of Section 5.7, we considered the problem of predicting the
population of two species that compete for the same food supply. In the
problem, we made the assumption that the populations could be predicted
by solving the system of equations

dx1

dt
(t) = x1(t) (4− 0.0003x1(t)− 0.0004x2(t))

and
dx2

dt
(t) = x2(t) (2− 0.0002x1(t)− 0.0001x2(t)) .

In this exercise, we would like to consider the problem of determining equi-
librium populations of the two species. The mathematical criteria that must
be satisfied in order for the populations to be at equilibrium is that, simulta-
neously,

dx1

dt
(t) = 0 and

dx2

dt
(t) = 0.

This occurs when the first species is extinct and the second species has a
population of 20,000 or when the second species is extinct and the first species
has a population of 13,333. Can an equilibrium occur in any other situation?

11. The amount of pressure required to sink a large, heavy object in a soft homo-
geneous soil that lies above a hard base soil can be predicted by the amount
of pressure required to sink smaller objects in the same soil. Specifically, the
amount of pressure p required to sink a circular plate of radius r a distance
d in the soft soil, where the hard base soil lies a distance D > d below the
surface, can be approximated by an equation of the form

p = k1e
k2r + k3r,

where k1, k2, and k3 are constants, with k2 > 0, depending on d and the
consistency of the soil but not on the radius of the plate. (See [Bek], pp. 89–
94.)

(a) Find the values of k1, k2, and k3 if we assume that a plate of radius
1 in. requires a pressure of 10 lb/in.2 to sink 1 ft in a muddy field, a
plate of radius 2 in. requires a pressure of 12 lb/in.2 to sink 1 ft, and a
plate of radius 3 in. requires a pressure of 15 lb/in.2 to sink this distance
(assuming that the mud is more than 1 ft deep).

(b) Use your calculations from part (a) to predict the minimal size of circu-
lar plate that would be required to sustain a load of 500 lb on this field
with sinkage of less than 1 ft.

10.3. QUASI-NEWTON METHODS 499

10.3 Quasi-Newton Methods

A significant weakness of Newton’s method for solving systems of nonlinear equa-
tions lies in the requirement that, at each iteration, a Jacobian matrix be computed
and an n× n linear system solved that involves this matrix. To illustrate the mag-
nitude of this weakness, let us consider the amount of computation associated with
one iteration of Newton’s method. The Jacobian matrix associated with a system
of n nonlinear equations written in the form F(x) = 0 requires that the n2 partial
derivatives of the n component functions of F be determined and evaluated. In
most situations, the exact evaluation of the partial derivatives is inconvenient, and
in many applications it is impossible. This difficulty can generally be overcome by
using finite-difference approximations to the partial derivatives. For example,

∂fj

∂xk

(
x(i)

)
≈ fj

(
x(i) + hek

)− fj

(
x(i)

)
h

,

where h is small in absolute value and ek is the vector whose only nonzero entry is a
1 in the kth coordinate. This approximation, however, still requires that at least n2

scalar functional evaluations be performed to approximate the Jacobian matrix and
does not decrease the amount of calculation, in general O(n3), required for solving
the linear system involving this approximate Jacobian. The total computational
effort for just one iteration of Newton’s method is, consequently,at least n2 + n
scalar functional evaluations (n2 for the evaluation of the Jacobian matrix and n for
the evaluation of F) together with O(n3) arithmetic operations to solve the linear
system. This amount of computational effort is prohibitive except for relatively
small values of n and easily evaluated scalar functions.

In this section, we consider a generalization of the Secant method to systems
of nonlinear equations, in particular, a technique known as Broyden’s method.
The method requires only n scalar functional evaluations per iteration and also
reduces the number of arithmetic calculations to O(n2). It belongs to a class of
methods known as least-change secant updates that produce algorithms called quasi-
Newton. These methods replace the Jacobian matrix in Newton’s method with an
approximation matrix that is updated at each iteration. The disadvantage to the
method is that the quadratic convergence of Newton’s method is lost. It is replaced
by superlinear convergence, which implies that

lim
i→∞

‖p(i+1) − p‖
‖p(i) − p‖ = 0,

where p denotes the solution to F(x) = 0, and p(i) and p(i+1) are consecutive
approximations to p. In most applications, the reduction to superlinear convergence
is a more than acceptable trade-off for the decrease in the amount of computation.

An additional disadvantage of quasi-Newton methods is that, unlike Newton’s
method, they are not self-correcting. Newton’s method, for example, will generally
correct for round-off error with successive iterations, but unless special safeguards
are incorporated, Broyden’s method will not.

To describe Broyden’s method, suppose that an initial approximation p(0) is
given to the solution p of F(x) = 0. We calculate the next approximation p(1) in

500CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

the same manner as Newton’s method, or, if it is inconvenient to determine J(p(0))
exactly, we can use difference equations to approximate the partial derivatives. To
compute p(2), however, we depart from Newton’s method and examine the Secant
method for a single nonlinear equation. The Secant method uses the approximation

f ′(p1) ≈ f(p1)− f(p0)
p1 − p0

as a replacement for f ′(p1) in Newton’s method. For nonlinear systems, p(1)−p(0)

is a vector, and the corresponding quotient is undefined. However, the method
proceeds similarly in that we replace the matrix J(p(1)) in Newton’s method by a
matrix A1 with the property that

A1

(
p(1) − p(0)

)
= F

(
p(1)

)
− F

(
p(0)

)
.

Any nonzero vector in
n can be written as the sum of a multiple of p(1)−p(0)

and a multiple of a vector in the orthogonal complement of p(1) − p(0). So, to
uniquely define the matrix A1, we need to specify how it acts on the orthogonal
complement of p(1) −p(0). Since no information is available about the change in F
in a direction orthogonal to p(1) − p(0), we require simply that no change occur,
that is, that

A1z = J
(
p(0)

)
z whenever

(
p(1) − p(0)

)t

z = 0.

Thus, any vector orthogonal to p(1)−p(0) is unaffected by the update from J(p(0)),
which was used to compute p(1), to A1, which is used in the determination of p(2).

These conditions uniquely define A1 as

A1 = J
(
p(0)

)
+

[
F
(
p(1)

)− F
(
p(0)

)− J (p(0)
) (

p(1) − p(0)
)] (

p(1) − p(0)
)t

‖p(1) − p(0)‖22
.

It is this matrix that is used in place of J(p(1)) to determine p(2):

p(2) = p(1) −A−1
1 F

(
p(1)

)
.

Once p(2) has been determined, the method can be repeated to determine p(3),
with A1 used in place of A0 ≡ J(p(0)) and with p(2) and p(1) in place of p(1)

and p(0), respectively. In general, once p(i) has been determined, p(i+1) can be
computed by

Ai = Ai−1 +
yi −Ai−1si

‖si‖22
st
i

and

p(i+1) = p(i) −A−1
i F

(
p(i)

)
,

10.3. QUASI-NEWTON METHODS 501

where the notation si = p(i)−p(i−1) and yi = F(p(i))−F(p(i−1)) is introduced to
simplify the equations.

If the method is performed as outlined, the number of scalar functional evalu-
ations is reduced from n2 + n to n (those required for evaluating F(p(i))), but the
method still requires O(n3) calculations to solve the associated n×n linear system

Aiyi = −F
(
p(i)

)
.

Employing the method in this form would not be justified because of the reduction
to superlinear convergence from the quadratic convergence of Newton’s method.
A significant improvement can be incorporated by employing a matrix-inversion
formula.

[Sherman-Morrison Formula] If A is a nonsingular matrix and x and y are
vectors with ytA−1x
= −1, then A+ xyt is nonsingular and

(
A+ xyt

)−1 = A−1 − A−1xytA−1

1 + ytA−1x
.

This formula permits A−1
i to be computed directly from A−1

i−1, eliminating the
need for a matrix inversion with each iteration.By letting A = Ai−1, x = (yi −
Ai−1si)/‖si‖22, and y = si, the Sherman-Morrison formula implies that

A−1
i =

(
Ai−1 +

yi −Ai−1si

‖si‖22
st
i

)−1

= A−1
i−1 −

A−1
i−1

(
yi −Ai−1si

‖si‖22
st
i

)
A−1

i−1

1 + st
iA

−1
i−1

(
yi −Ai−1si

‖si‖22

)

= A−1
i−1 −

(A−1
i−1yi − si)st

iA
−1
i−1

‖si‖22 + st
iA

−1
i−1yi − ‖si‖22

= A−1
i−1 +

(
si −A−1

i−1yi

)
st
iA

−1
i−1

st
iA

−1
i−1yi

.

This computation involves only matrix-vector multiplication at each step and
therefore requires only O(n2) arithmetic calculations. The calculation of Ai is by-
passed, as is the necessity of solving the linear system. The program BROYM102
implements Broyden’s method in this manner.

502CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

EXAMPLE 1 The nonlinear system

3x1 − cos(x2x3)− 1
2

= 0,

x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0

was solved by Newton’s method in Example 1 of Section 10.2. The Jacobian matrix
for this system is

J(x1, x2, x3) =




3 x3 sinx2x3 x2 sinx2x3

2x1 −162(x2 + 0.1) cosx3

−x2e
−x1x2 −x1e

−x1x2 20


 .

Let p(0) = (0.1, 0.1,−0.1)t, and

F(x1, x2, x3) = (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3))
t

where

f1(x1, x2, x3) = 3x1 − cos(x2x3)− 1
2
,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06,

and

f3(x1, x2, x3) = e−x1x2 + 20x3 +
1
3
(10π − 3).

Then

F
(
p(0)

)
=



−1.199950
−2.269833
8.462025


 .

Since

A0 = J
(
p
(0)
1 , p

(0)
2 , p

(0)
3

)

=




3 9.999836× 10−4 −9.999833× 10−4

0.2 −32.4 0.9950042
−9.900498× 10−2 −9.900498× 10−2 20


 ,

10.3. QUASI-NEWTON METHODS 503

we have

A−1
0 = J

(
p
(0)
1 , p

(0)
2 , p

(0)
3

)−1

=




0.33333312 1.023852× 10−5 1.615701× 10−5

2.108607× 10−3 −3.086883× 10−2 1.535836× 10−3

1.660520× 10−3 −1.527577× 10−4 5.000768× 10−2


 ,

p(1) = p(0) −A−1
0 F

(
p(0)

)
=




0.4998697
1.946685× 10−2

−0.5215205


 ,

F
(
p(1)

)
=



−3.394465× 10−4

−0.3443879
3.188238× 10−2


 ,

y1 = F
(
p(1)

)
− F

(
p(0)

)
=




1.199611
1.925445
−8.430143


 ,

s1 =




0.3998697
−8.053315× 10−2

−0.4215204


 ,

st
1A

−1
0 y1 = 0.3424604,

A−1
1 = A−1

0 +
(

1
0.3424604

)[(
s1 −A−1

0 y1

)
st
1A

−1
0

]

=




0.3333781 1.11050× 10−5 8.967344× 10−6

−2.021270× 10−3 −3.094849× 10−2 2.196906× 10−3

1.022214× 10−3 −1.650709× 10−4 5.010986× 10−2


 ,

and

p(2) = p(1) −A−1
1 F

(
p(1)

)
=




0.4999863
8.737833× 10−3

−0.5231746


 .

Additional iterations are listed in Table 10.2. The fifth iteration of Broyden’s
method is slightly less accurate than was the fourth iteration of Newton’s method
given in the example at the end of the preceding section.

504CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

Table 10.2

k p
(k)
1 p

(k)
2 p

(k)
3 ||p(k) − p(k−1)||2

0 0.1000000 0.1000000 −0.1000000
1 0.4998697 1.946685× 10−2 −0.5215205 5.93× 10−1

2 0.4999863 8.737833× 10−3 −0.5231746 2.83× 10−2

3 0.5000066 8.672215× 10−4 −0.5236918 7.89× 10−3

4 0.5000005 6.087473× 10−5 −0.5235954 8.12× 10−4

5 0.5000002 −1.445223× 10−6 −0.5235989 6.24× 10−5

10.3. QUASI-NEWTON METHODS 505

EXERCISE SET 10.3

1. Use Broyden’s method with x(0) = 0 to compute x(2) for each of the following
nonlinear systems.

(a) 4x2
1 − 20x1 +

1
4
x2

2 + 8 = 0,
1
2
x1x

2
2 + 2x1 − 5x2 + 8 = 0.

(b) sin(4πx1x2) − 2x2 − x1 = 0,(
4π − 1

4π

)
(e2x1 − e) + 4ex2

2 − 2ex1 = 0.

(c) 3x1 − cos(x2x3)− 1
2

= 0,

4x2
1 − 625x2

2 + 2x2 − 1 = 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0.

(d) x2
1 + x2 − 37 = 0,
x1 − x2

2 − 5 = 0,
x1 + x2 + x3 − 3 = 0.

2. Use Broyden’s method to approximate solutions to the nonlinear systems in
Exercise 1, iterating until ‖x(k)−x(k−1)‖∞ < 10−6. The initial approximations
x(0) in Exercise 1 may not lead to convergence. If not, use a different value
of x(0).

3. Use Broyden’s method to find a solution to the following nonlinear systems,
iterating until ‖x(k) − x(k−1)‖∞ < 10−6.

(a) 3x2
1 − x2

2 = 0
3x1x

2
2 − x3

1 − 1 = 0
Use x(0) = (1, 1)t.

(b) ln(x2
1 + x2

2)− sin(x1x2) = ln 2 + lnπ
ex1−x2 + cos(x1x2) = 0

Use x(0) = (2, 2)t.

(c) x3
1 + x2

1x2 − x1x3 + 6 = 0
ex1 + ex2 − x3 = 0

x2
2 − 2x1x3 = 4

Use x(0) = (−1,−2, 1)t.

(d) 6x1 − 2 cos(x2x3)− 1 = 0
9x2 +

√
x2

1 + sinx3 + 1.06 + 0.9 = 0
60x3 + 3e−x1x2 + 10π − 3 = 0

Use x(0) = (0, 0, 0)t.

506CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

4. The nonlinear system

3x1 − cos(x2x3)− 1
2

= 0,

x2
1 − 625x2

2 −
1
4

= 0,

e−x1x2 + 20x3 +
1
3
(10π − 3) = 0

has a singular Jacobian matrix at the solution. Apply Broyden’s method with
x(0) = (1, 1−1)t. Note that convergence may be slow or may not occur within
a reasonable number of iterations.

5. The nonlinear system

4x1 − x2 + x3 = x1x4,

−x1 + 3x2 − 2x3 = x2x4,

x1 − 2x2 + 3x3 = x3x4,

x2
1 + x2

2 + x2
3 = 1

has six solutions, and, as shown in Exercise 9 of Section 10.2, (−x1,−x2,−x3, x4)
is a solution whenever (x1, x2, x3, x4) is a solution. Use Broyden’s method to
approximate these solutions. Iterate until

∥∥x(k)− x(k−1)
∥∥
∞ < 10−5.

6. Show that if 0
= y ∈
n and z ∈
n, then z = z1 + z2, where

z1 =
ytz
‖y‖22

y

is parallel to y and z2 = z− z1 is orthogonal to y.

7. It can be shown that if A−1 exists and x, y ∈
n, then (A + xyt)−1 exists
if and only if ytA−1x
= −1.Use this result to show the Sherman-Morrison
formula: If A−1 exists and ytA−1x
= −1, then (A+ xyt)−1 exists, and

(
A+ xyt

)−1 = A−1 − A−1xytA−1

1 + ytA−1x
.

8. Let

A1 = J
(
p(0)

)
+

[
F
(
p(1)

)− F
(
p(0)

)− J (p(0)
) (

p(1) − p(0)
)] (

p(1) − p(0)
)t

‖p(1) − p(0)‖22
.

(a) Show that A1

(
p(1) − p(0)

)
= F

(
p(1)

)− F
(
p(0)

)
.

(b) Show that A1z = JF
(
p(0)

)
z whenever

(
p(1) − p(0)

)t
z = 0.

10.4. THE STEEPEST DESCENT METHOD 507

10.4 The Steepest Descent Method

The advantage of the Newton and quasi-Newton methods for solving systems of
nonlinear equations is their speed of convergence once a sufficiently accurate ap-
proximation is known. A weakness of these methods is that an accurate initial
approximation to the solution is needed to ensure convergence. The method of
Steepest Descent will generally converge only linearly to the solution, but it is
global in nature, that is, nearly any starting value will give convergence. As a con-
sequence, it is often used to find sufficiently accurate starting approximations for
the Newton-based techniques.

The method of Steepest Descent determines a local minimum for a multivari-
able function of the form g :
n →
. The method is valuable quite apart from
providing starting values for solving nonlinear systems, but we will consider only
this application.

The connection between the minimization of a function from
n to
 and the
solution of a system of nonlinear equations is due to the fact that a system of the
form

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
...

fn(x1, x2, . . . , xn) = 0,

has a solution at x = (x1, x2, . . . , xn)t precisely when the function g defined by

g(x1, x2, . . . , xn) =
n∑

i=1

[fi(x1, x2, . . . , xn)]2

has the minimal value zero.
The method of Steepest Descent for finding a local minimum for an arbitrary

function g from
n into
 can be intuitively described as follows:

• Evaluate g at an initial approximation p(0) = (p(0)
1 , p

(0)
2 , . . . , p

(0)
n)t.

• Determine a direction from p(0) that results in a decrease in the value of g.

• Move an appropriate amount in this direction and call the new value p(1).

• Repeat the steps with p(0) replaced by p(1).

Before describing how to choose the correct direction and the appropriate dis-
tance to move in this direction, we need to review some results from calculus. The
Extreme Value Theorem implies that a differentiable single-variable function can
have a relative minimum only when the derivative is zero. To extend this result to
multivariable functions, we need the following definition.

If g :
n →
, we define the gradient of g at x = (x1, x2, . . . , xn)t, ∇g(x), by

∇g(x) =
(
∂g

∂x1
(x),

∂g

∂x2
(x), . . . ,

∂g

∂xn
(x)

)t

.

508CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

The gradient for a multivariable function is analogous to the derivative of a
single variable function in the sense that a differentiable multivariable function can
have a relative minimum at x only when the gradient at x is the zero vector.

The gradient has another important property connected with the minimization
of multivariable functions. Suppose that v = (v1, v2, . . . , vn)t is a vector in
n with

‖v‖22 =
n∑

i=1

v2
i = 1.

The directional derivative of g at x in the direction of v is defined by

Dvg(x) = lim
h→0

1
h

[g(x + hv)− g(x)] = v · ∇g(x).

The directional derivative of g at x in the direction of v measures the change in the
value of the function g relative to the change in the variable in the direction of v.

A standard result from the calculus of multivariable functions states that the di-
rection that produces the maximum magnitude for the directional derivative occurs
when v is chosen to be parallel to ∇g(x), provided that ∇g(x)
= 0. The direction
of greatest decrease in the value of g at x is the direction given by −∇g(x). (See
Figure 10.3 for an illustration when g is a function of two variables.)

Figure 10.3

z

x1

x2

(x1, x2, g(x1, x2))

z 5 g(x1, x2)

x 5 (x1, x2)t

2=g(x)

Steepest descent direction

The object is to reduce g(x) to its minimal value of zero, so given the initial
approximation p(0), we choose

p(1) = p(0) − α∇g
(
p(0)

)
(10.1)

for some constant α > 0.

10.4. THE STEEPEST DESCENT METHOD 509

The problem now reduces to choosing α so that g(p(1)) will be significantly less
than g(p(0)). To determine an appropriate choice for the value α, we consider the
single-variable function

h(α) = g
(
p(0) − α∇g(p(0))

)
.

The value of α that minimizes h is the value needed for Eq. (10.1).
Finding a minimal value for h directly would require differentiating h and then

solving a root-finding problem to determine the critical points of h. This procedure
is generally too costly. Instead, we choose three numbers α1 < α2 < α3 that, we
hope, are close to where the minimum value of h(α) occurs. Then we construct the
quadratic polynomial P (x) that interpolates h at α1, α2, and α3. We define α̂ in
[α1, α3] so that P (α̂) is a minimum in [α1, α3] and use P (α̂) to approximate the min-
imal value of h(α). Then α̂ is used to determine the new iterate for approximating
the minimal value of g:

p(1) = p(0) − α̂∇g
(
p(0)

)
.

Since g(p(0)) is available, we first choose α1 = 0 to minimize the computation. Next
a number α3 is found with h(α3) < h(α1). (Since α1 does not minimize h, such a
number α3 does exist.) Finally, α2 is chosen to be α3/2.

The minimum value α̂ of P (x) on [α1, α3] occurs either at the only critical point
of P or at the right endpoint α3, because, by assumption, P (α3) = h(α3) < h(α1) =
P (α1). The critical point is easily determined since P (x) is a quadratic polynomial.

The program STPDC103 applies the method of Steepest Descent to approximate
the minimal value of g(x). To begin each iteration, the value 0 is assigned to α1,
and the value 1 is assigned to α3. If h(α3) ≥ h(α1), then successive divisions of α3

by 2 are performed and the value of α3 is reassigned until h(α3)<h(α1).
To employ the method to approximate the solution to the system

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
...

fn(x1, x2, . . . , xn) = 0,

we simply replace the function g with
∑n

i=1 f
2
i .

EXAMPLE 1 To find a reasonable starting approximation to the solution of the nonlinear system

f1(x1, x2, x3) = 3x1 − cos(x2x3)− 1
2

= 0,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
1
3
(10π − 3) = 0,

we use the Steepest Descent method with p(0) = (0, 0, 0)t.

510CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

Let g(x1, x2, x3) = [f1(x1, x2, x3)]2 + [f2(x1, x2, x3)]2 + [f3(x1, x2, x3)]2. Then

∇g(x1, x2, x3) ≡ ∇g(x) =
(

2f1(x)
∂f1
∂x1

(x) + 2f2(x)
∂f2
∂x1

(x) + 2f3(x)
∂f3
∂x1

(x),

2f1(x)
∂f1
∂x2

(x) + 2f2(x)
∂f2
∂x2

(x) + 2f3(x)
∂f3
∂x2

(x),

2f1(x)
∂f1
∂x3

(x) + 2f2(x)
∂f2
∂x3

(x) + 2f3(x)
∂f3
∂x3

(x)
)

= 2J(x)tF(x).

For p(0) = (0, 0, 0)t, we have

g
(
p(0)

)
= 111.975 and z0 = ‖∇g

(
p(0)

)
‖2 = 419.554.

Let
z =

1
z0
∇g

(
p(0)

)
= (−0.0214514,−0.0193062, 0.999583)t.

With α1 = 0, we have g1 = g(p(0) − α1z) = g(p(0)) = 111.975. We arbitrarily let
α3 = 1 so that

g3 = g
(
p(0) − α3z

)
= 93.5649.

Since g3 < g1 we accept α3 as is and set α2 = 0.5. Thus,

g2 = g
(
p(0) − α2z

)
= 2.53557.

We now form the Newton’s forward divided-difference interpolating polynomial

P (α) = g1 + h1α+ h3α(α− α2)

that interpolates
g
(
p(0) − α∇g(p(0))

)
= g

(
p(0) − αz

)

at α1 = 0, α2 = 0.5, and α3 = 1 as shown in Table 10.3.

Table 10.3

First Second
Divided Divided

Differences Difference

α1 = 0 g1 = 111.975

α2 = 0.5 g2 = 2.53557 h1 =
g2 − g1
α2 − α1

= −218.878

α3 = 1 g3 = 93.5649 h2 =
g3 − g2
α3 − α2

= 182.059 h3 =
h2 − h1

α3 − α1
= 400.937

10.4. THE STEEPEST DESCENT METHOD 511

Thus,
P (α) = 111.975− 218.878α+ 400.937α(α− 0.5).

Now P ′(α) = 0 when α = α0 = 0.522959. Since g0 = g(p(0) − α0z) = 2.32762 is
smaller than g1 and g3, we set

p(1) = p(0) − α0z = p(0) − 0.522959z = (0.0112182, 0.0100964,−0.522741)t,

and
g
(
p(1)

)
= 2.32762.

Now we repeat the process starting at p(1) instead of p(0). Table 10.4 contains the re-
mainder of the results. A true solution to the nonlinear system is (0.5, 0,−0.5235988)t,
so p(2) would likely be adequate as an initial approximation for Newton’s method
or Broyden’s method.

Table 10. 4

k p
(k)
1 p

(k)
2 p

(k)
3 g(p(k)

1 , p
(k)
2 , p

(k)
3)

0 0.0 0.0 0.0 111.975
1 0.0112182 0.0100964 −0.522741 2.32762
2 0.137860 −0.205453 −0.522059 1.27406
3 0.266959 0.00551102 −0.558494 1.06813
4 0.272734 −0.00811751 −0.522006 0.468309

512CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

EXERCISE SET 10.4

1. Use the method of Steepest Descent to approximate the solutions of the fol-
lowing nonlinear systems, iterating until ‖x(k) − x(k−1)‖∞ < 0.05.

(a) 4x2
1 − 20x1 +

1
4
x2

2 + 8 = 0
1
2
x1x

2
2 + 2x1 − 5x2 + 8 = 0

(b) 3x2
1 − x2

2 = 0
3x1x

2
2 − x3

1 − 1 = 0

(c) ln(x2
1 + x2

2)− sin(x1x2) = ln 2 + lnπ
ex1−x2 + cos(x1x2) = 0

(d) sin(4πx1x2) − 2x2 − x1 = 0(
4π − 1

4π

)
(e2x1 − e) + 4ex2

2 − 2ex1 = 0

2. Use the results in Exercise 1 and Newton’s method to approximate the solu-
tions of the nonlinear systems in Exercise 1, iterating until ‖x(k)−x(k−1)‖∞ <
10−6.

3. Use the method of Steepest Descent to approximate the solutions of the fol-
lowing nonlinear systems, iterating until ‖x(k) − x(k−1)‖∞ < 0.05.

(a) 15x1 + x2
2 − 4x3 = 13

x2
1 + 10x2 − x3 = 11

x3
2 − 25x3 = −22

(b) 10x1 − 2x2
2 + x2 − 2x3 − 5 = 0

8x2
2 + 4x2

3 − 9 = 0
8x2x3 + 4 = 0

(c) x3
1 + x2

1x2 − x1x3 + 6 = 0
ex1 + ex2 − x3 = 0

x2
2 − 2x1x3 = 4

(d) x1 + cos(x1x2x3) − 1 = 0
(1− x1)1/4 + x2 + 0.05x2

3 − 0.15x3 − 1 = 0
−x2

1 − 0.1x2
2 + 0.01x2 + x3 − 1 = 0

4. Use the results of Exercise 3 and Newton’s method to approximate the solu-
tions of the nonlinear systems in Exercise 3, iterating until ‖x(k)−x(k−1)‖∞ <
10−6.

5. Use the method of Steepest Descent to approximate minima for the following
functions, iterating until ‖x(k) − x(k−1)‖∞ < 0.005.

(a) g(x1, x2) = cos(x1 + x2) + sinx1 + cosx2

(b) g(x1, x2) = 100(x2
1 − x2)2 + (1− x1)2

10.4. THE STEEPEST DESCENT METHOD 513

(c) g(x1, x2, x3) = x2
1 + 2x2

2 + x2
3 − 2x1x2 + 2x1 − 2.5x2 − x3 + 2

(d) g(x1, x2, x3) = x4
1 + 2x4

2 + 3x4
3 + 1.01

6. (a) Show that the quadratic polynomial that interpolates the function

h(α) = g
(
p(0) − α∇g(p(0))

)

at α = 0, α2, and α3 is

P (α) = g
(
p(0)

)
+ h1α+ h3α(α− α2)

where

h1 =
g
(
p(0) − α2z

)− g (p(0)
)

α2
,

h2 =
g
(
p(0) − α3z

)− g (p(0) − α2z
)

α3 − α2
, and h3 =

h2 − h1

α3

(b) Show that the only critical point of P occurs at

α0 = 0.5
(
α2 − h1

h3

)
.

514CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

10.5 Homotopy and Continuation Methods

Homotopy, or continuation, methods for nonlinear systems embed the problem to
be solved within a collection of problems. Specifically, to solve a problem of the
form

F(x) = 0,

which has the unknown solution x∗, we consider a family of problems described
using a parameter λ that assumes values in [0, 1]. A problem with a known solution
x(0) corresponds to λ = 0, and the problem with the unknown solution x(1) ≡ x∗

corresponds to λ = 1.
For example, suppose x(0) is an initial approximation to the solution of F(x∗) =

0. Define
G : [0, 1]× IRn → IRn

by

G(λ,x) = λF(x) + (1− λ) [F(x)− F(x(0))] = F(x) + (λ− 1)F(x(0)).

We will determine, for various values of λ, a solution to

G(λ,x) = 0.

When λ = 0, this equation assumes the form

0 = G(0,x) = F(x)− F(x(0)),

and x(0) is a solution. When λ = 1, the equation assumes the form

0 = G(1,x) = F(x),

and x(1) = x∗ is a solution.
The function G, with the parameter λ, provides us with a family of functions

that can lead from the known value x(0) to the solution x(1) = x∗. The function
G is called a homotopy between the function G(0,x) = F(x) − F(x(0)) and the
function G(1,x) = F(x).

The continuation problem is to:

Determine a way to proceed from the known solution x(0) of G(0,x) = 0
to the unknown solution x(1) = x∗ of G(1,x) = 0 that solves F(x) = 0.

We first assume that x(λ) is the unique solution to the equation

G(λ,x) = 0, (10.2)

for each λ ∈ [0, 1]. The set {x(λ) | 0 ≤ λ ≤ 1 } can be viewed as a curve in IRn from
x(0) to x(1) = x∗ parameterized by λ. A continuation method finds a sequence of
steps along this curve corresponding to {x(λk)}mk=0, where λ0 = 0 < λ1 < · · · <
λm = 1.

10.5. HOMOTOPY AND CONTINUATION METHODS 515

If the functions λ→ x(λ) and G are differentiable, then differentiating Eq. (10.2)
with respect to λ gives

0 =
∂G(λ,x(λ))

∂λ
+
∂G(λ,x(λ))

∂x
x′(λ),

and solving for x′(λ) gives

x′(λ) = −
[
∂G(λ,x(λ))

∂x

]−1
∂G(λ,x(λ))

∂λ
.

This is a a system of differential equations with the initial condition x(0).
Since

G(λ,x(λ)) = F(x(λ)) + (λ− 1)F(x(0)),

we can determine both

∂G
∂x

(λ,x(λ)) =




∂f1
∂x1

(x(λ))
∂f1
∂x2

(x(λ)) . . .
∂f1
∂xn

(x(λ))

∂f2
∂x1

(x(λ))
∂f2
∂x2

(x(λ)) . . .
∂f2
∂xn

(x(λ))

...
∂fn

∂x1
(x(λ))

∂fn

∂x2
(x(λ)) . . .

∂fn

∂xn
(x(λ))




= J(x(λ)),

the Jacobian matrix, and

∂G(λ,x(λ))
∂λ

= F(x(0)).

Therefore, the system of differential equations becomes

x′(λ) = −[J(x(λ))]−1F(x(0)), for 0 ≤ λ ≤ 1,

with the initial condition x(0).
The following theorem (see [OR, pp. 230–231]) gives conditions under which the

continuation method is feasible.

[Homotopy Convergence]
Let F(x) be continuously differentiable for x ∈ IRn. Suppose that the Jacobian
matrix J(x) is nonsingular for all x ∈ IRn and that a constant M exists with
‖J(x)−1‖ ≤ M , for all x ∈ IRn. Then, for any x(0) in IRn, there exists a
unique function x(λ), such that

G(λ,x(λ)) = 0,

for all λ in [0, 1]. Moreover, x(λ) is continuously differentiable and

x′(λ) = −J(x(λ))−1F(x(0)), for each λ ∈ [0, 1].

516CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

The following example shows the form of the system of differential equations
associated with a nonlinear system of equations.

EXAMPLE 1 Consider the nonlinear system

f1(x1, x2, x3) = 3x1 − cos(x2x3)− 0.5 = 0,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
10π − 3

3
= 0.

The Jacobian matrix is

J(x) =




3 x3 sinx2x3 x2 sinx2x3

2x1 −162(x2 + 0.1) cosx3

−x2e
−x1x2 −x1e

−x1x2 20


 .

Let x(0) = (0, 0, 0)t, so that

F(x(0)) =



−1.5
0.25

10π/3


 .

The system of differential equations is



x′1(λ)
x′2(λ)
x′3(λ)


 = −




3 x3 sinx2x3 x2 sinx2x3

2x1 −162(x2 + 0.1) cosx3

−x2e
−x1x2 −x1e

−x1x2 20



−1 

−1.5
0.25

10π/3


 .

with initial conditions x1(0) = 0, x2(0) = 0, and x3(0) = 0.

In general, the system of differential equations that we need to solve for our
continuation problem has the form

dx1

dλ
= φ1(λ, x1, x2, . . . , xn),

dx2

dλ
= φ2(λ, x1, x2, . . . , xn),

...
dxn

dλ
= φn(λ, x1, x2, . . . , xn),

where 


φ1(λ, x1, . . . , xn)
φ2(λ, x1, . . . , xn)

...
φn(λ, x1, . . . , xn)


 = −J(x1, . . . , xn)−1




f1(x(0))
f2(x(0))

...
fn(x(0))


 . (10.3)

10.5. HOMOTOPY AND CONTINUATION METHODS 517

To use the Runge-Kutta method of order four to solve this system, we first
choose an integer N > 0 and let h = (1− 0)/N . Partition the interval [0, 1] into N
subintervals with the mesh points

λj = jh, for each j = 0, 1, . . . , N.

We use the notation wij , for each j = 0, 1, . . . , N and i = 1, . . . , n, to denote an
approximation to xi(λj). For the initial conditions, set

w1,0 = x1(0), w2,0 = x2(0), . . . , wn,0 = xn(0).

Suppose w1,j , w2,j , . . ., wn,j have been computed. We obtain w1,j+1, w2,j+1,
. . ., wn,j+1 using the equations

k1,i = hφi(λj , w1,j , w2,j , . . . , wn,j), for each i = 1, 2, . . . , n;

k2,i = hφi

(
λj +

h

2
, w1,j +

1
2
k1,1, w2,j +

1
2
k1,2, . . . , wn,j +

1
2
k1,n

)
,

for each i = 1, 2, . . . , n;

k3,i = hφi

(
λj +

h

2
, w1,j +

1
2
k2,1, w2,j +

1
2
k2,2, . . . , wn,j +

1
2
k2,n

)
,

for each i = 1, 2, . . . , n;
k4,i = hφi(λj + h,w1,j + k3,1, w2,j + k3,2, . . . , wn,j + k3,n),

for each i = 1, 2, . . . , n;

and, finally

wi,j+1 = wi,j +
1
6

(k1,i + 2k2,i + 2k3,i + k4,i) , for each i = 1, 2, . . . , n.

We use the vector notation

k1 =




k1,1

k1,2

...
k1,n


 , k2 =




k2,1

k2,2

...
k2,n


 , k3 =




k3,1

k3,2

...
k3,n


 , k4 =




k4,1

k4,2

...
k4,n


 , and wj =




w1,j

w2,j

...
wn,j




to simplify the presentation.

518CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

Eq. (10.3) gives us x(0) = x(λ0) = w0, and for each j = 0, 1, . . . , N ,

k1 = h




φ1(λj , w1,j , . . . , wn,j)
φ2(λj , w1,j , . . . , wn,j)

...
φn(λj , w1,j , . . . , wn,j)


 = h [−J(w1,j , . . . , wn,j)]

−1 F(x(0))

= h [−J(wj)]
−1 F(x(0));

k2 = h

[
−J

(
wj +

1
2
k1

)]−1

F(x(0));

k3 = h

[
−J

(
wj +

1
2
k2

)]−1

F(x(0));

k4 = h [−J (wj + k3)]
−1 F(x(0));

and

x(λj+1) = x(λj) +
1
6

(k1 + 2k2 + 2k3 + k4) = wj +
1
6

(k1 + 2k2 + 2k3 + k4) .

Finally, x(λn) = x(1) is our approximation to x∗.

EXAMPLE 2 We will approximate the solution to

f1(x1, x2, x3) = 3x1 − cos(x2x3)− 0.5 = 0,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

f3(x1, x2, x3) = e−x1,x2 + 20x3 +
10π − 3

3
= 0.

The Jacobian matrix is

J(x) =




3 x3 sinx2x3 x2 sinx2x3

2x1 −162(x2 + 0.1) cosx3

−x2e
−x1x2 −x1e

−x1x2 20


 .

Let x(0) = (0, 0, 0)t, so that

F (x(0)) = (−1.5, 0.25, 10π/3)t.

10.5. HOMOTOPY AND CONTINUATION METHODS 519

With N = 4 and h = 0.25, we have

k1 = h[−J(x(0))]−1F (x(0)) = 0.25




3 0 0
0 −16.2 1
0 0 20



−1 

−1.5
0.25

10π/3




= (0.125,−0.004222203325,−0.1308996939)t;
k2 = h[−J(0.0625,−0.002111101663,−0.06544984695)]−1(−1.5, 0.25, 10π/3)t

= 0.25




3 −0.9043289149 × 10−5 −0.2916936196 × 10−6

0.125 −15.85800153 0.9978589232
0.002111380229 −0.06250824706 20




−1 


−1.5
0.25

10π/3




= (0.1249999773,−0.003311761993,−0.1309232406)t;
k3 = h[−J(0.06249998865,−0.001655880997,−0.0654616203)]−1(−1.5, 0.25, 10π/3)t

= (0.1249999844,−0.003296244825,−0.130920346)t;
k4 = h[−J(0.1249999844,−0.003296244825,−0.130920346)]−1(−1.5, 0.25, 10π/3)t

= (0.1249998945,−0.00230206762,−0.1309346977)t;

and

x(λ1) = w1 = w0 +
1
6
[k1 + 2k2 + 2k3 + k4]

= (0.1249999697,−0.00329004743,−0.1309202608)t.

Continuing, we have

x(λ2) = w2 = (0.2499997679,−0.004507400128,−0.2618557619)t,

x(λ3) = w3 = (0.3749996956,−0.003430352103,−0.3927634423)t,

and

x(λ4) = x(1) = w4 = (0.4999999954, 0.126782× 10−7,−0.5235987758)t.

The results obtained here are very accurate, since the actual solution is approxi-
mately (0.5, 0,−0.52359877)t.

In the Runge-Kutta method of order four, the calculation of each wj requires
four matrix inversions, one each when computing k1, k2, k3, and k4. Thus, using N
steps requires 4N matrix inversions. By comparison, Newton’s method requires one
matrix inversion per iteration. Therefore, the work involved for the Runge-Kutta
method is roughly equivalent to 4N iterations of Newton’s method.

An alternative is to use a Runge-Kutta method of order two, such as the modified
Euler method or even Euler’s method, to decrease the number of inversions. Another
possibility is to use smaller values of N . The following example illustrates these
ideas.

EXAMPLE 3 Table 10.6 summarizes a comparison of Euler’s method, the Midpoint method, and
the Runge-Kutta method of order four applied to the problem in Example 2 with
initial approximation x(0) = (0, 0, 0)t.

520CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

The continuation method can be used as a stand-alone method not requiring a
particularly good choice of x(0). However, the method can also be used to give an
initial approximation for Newton’s or Broyden’s method. For example,

Table 10.6

Method N x(1) Number of Inversions

Euler 1 (0.5,−0.0168888133,−0.5235987755)t 1
Euler 4 (0.499999379,−0.004309160698,−0.523679652)t 4

Midpoint 1 (0.4999966628,−0.00040240435,−0.523815371)t 2

Midpoint 4 (0.500000066,−0.00001760089,−0.5236127761)t 8

Runge-Kutta 1 (0.4999989843,−0.1676151× 10−5,−0.5235989561)t 4

Runge-Kutta 4 (0.4999999954, 0.126782× 10−7,−0.5235987750)t 16

the result obtained in Example 2 using Euler’s method and N = 2 might easily be
sufficient to start the more efficient Newton’s or Broyden’s methods and be better
for this purpose than the continuation methods, which require more calculation.

We note that in the Runge-Kutta methods, the steps similar to

ki = h[−J(x(λi) + αi−1ki−1)]−1F(x(0))

can be written as solving the linear system

J (x(λi) + αi−1ki−1)ki = −hF(x(0)),

for ki.

10.5. HOMOTOPY AND CONTINUATION METHODS 521

EXERCISE SET 10.5

1. The nonlinear system

f1(x1, x2) = x2
1 − x2

2 + 2x2 = 0,

f2(x1, x2) = 2x1 + x2
2 − 6 = 0

has two solutions, (0.625204094, 2.179355825)t and (2.109511920,−1.334532188)t.
Use the continuation method and Euler’s method with N = 2 to approximate
the solutions where

(a) x(0) = (0, 0)t

(b) x(0) = (1, 1)t

(c) x(0) = (3,−2)t

2. Repeat Exercise 1 using the Runge-Kutta method of order four with N = 1.

3. Use the continuation method and Euler’s method with N = 2 on the following
nonlinear systems.

(a) 4x2
1 − 20x1 +

1
4
x2

2 + 8 = 0,
1
2
x1x

2
2 + 2x1 − 5x2 + 8 = 0.

(b) sin(4πx1x2)− 2x2 − x1 = 0,(
4π − 1

4π

)
(e2x1 − e) + 4ex2

2 − 2ex1 = 0.

(c) 3x1 − cos(x2x3)− 1
2

= 0,

4x2
1 − 625x2

2 + 2x2 − 1 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0.

(d) x2
1 + x2 − 37 = 0,
x1 − x2

2 − 5 = 0,
x1 + x2 + x3 − 3 = 0.

4. Use the continuation method and the Runge-Kutta method of order four with
N = 1 on Exercise 5 of Section 10.2 using x(0) = 0. Are the answers here
comparable to the results of Exercise 5 of Section 10.2, or are they suitable
initial approximations for Newton’s method?

5. Repeat Exercise 4 using the initial approximation obtained in Exercise 3 of
Section 10.2.

522CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

6. Use the continuation method and the Runge-Kutta method of order four with
N = 1 on Exercise 4 of Section 10.2. Are the results as good as those obtained
there?

7. Repeat Exercise 5 using N = 2.

8. Repeat Exercise 9 of Section 10.2 using the continuation method and the
Runge-Kutta method of order four with N = 1.

9. Repeat Exercise 8 of Section 10.2 using the continuation method and the
Runge-Kutta method of order four with N = 2.

10.6. SURVEY OF METHODS AND SOFTWARE 523

10.6 Survey of Methods and Software

In this chapter we considered methods to approximate solutions to nonlinear sys-
tems

f1(x1, x2, . . . , xn) =0,
f2(x1, x2, . . . , xn) =0,

...
fn(x1, x2, . . . , xn) =0.

Newton’s method for systems requires a good initial approximation (x(0)
1 , x

(0)
2 , . . . , x

(0)
n)t

and generates a sequence

x(k) = x(k−1) − J(x(k−1))−1F(x(k−1)),

that converges rapidly to a solution x if x(0) is sufficiently close to p. However,
Newton’s method requires evaluating, or approximating, n2 partial derivatives and
solving an n by n linear system at each step, which requires O(n3) computations.

Broyden’s method reduces the amount of computation at each step without
significantly degrading the speed of convergence. This technique replaces the Ja-
cobian matrix J with a matrix Ak−1 whose inverse is directly determined at each
step. This reduces the arithmetic computations from O(n3) to O(n2). Moreover,
the only scalar function evaluations required are in evaluating the fi, saving n2

scalar function evaluations per step. Broyden’s method also requires a good initial
approximation.

The Steepest Descent method was presented as a way to obtain good initial ap-
proximations for Newton’s and Broyden’s methods. Although Steepest Descent does
not give a rapidly convergent sequence, it does not require a good initial approxi-
mation. The Steepest Descent method approximates a minimum of a multivariable
function g. For our application we choose

g(x1, x2, . . . , xn) =
n∑

i=1

[fi(x1, x2, . . . , xn)]2.

The minimum value of g is 0, which occurs when the functions fi are simultaneously
0.

Homotopy and continuation methods are also used for nonlinear systems and
are the subject of current research (see [AG]). In these methods, a given problem

F(x) = 0

is embedded in a one-parameter family of problems using a parameter λ that as-
sumes values in [0, 1]. The original problem corresponds to λ = 1, and a problem
with a known solution corresponds to λ = 0. For example, the set of problems

G(λ,x) = λF(x) + (1− λ)(F(x)− F(x0)) = 0, for 0 ≤ λ ≤ 1,

524CHAPTER 10. SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS

with fixed x0 ∈ IRn forms a homotopy. When λ = 0, the solution is x(λ = 0) = x0.
The solution to the original problem corresponds to x(λ = 1). A continuation
method attempts to determine x(λ = 1) by solving the sequence of problems cor-
responding to λ0 = 0 < λ1 < λ2 < · · · < λm = 1. The initial approximation to the
solution of

λiF(x) + (1− λi)(F(x)− F(x0)) = 0

would be the solution, x(λ = λi−1), to the problem

λi−1F(x) + (1− λi−1)(F(x)− F(x0)) = 0.

The package Hompack in Netlib solves a system of nonlinear equations by using
various homotopy methods.

The methods in the IMSL and NAG libraries are based on two subroutines con-
tained in MINPACK, a public-domain package. Both methods use the Levenberg-
Marquardt method, which is a weighted average of Newton’s method and the Steep-
est Descent method. The weight is biased toward the Steepest Descent method until
convergence is detected, at which time the weight is shifted toward the more rapidly
convergent Newton’s method. One subroutine uses a finite-difference approximation
to the Jacobian, and the other requires a user-supplied subroutine to compute the
Jacobian.

A comprehensive treatment of methods for solving nonlinear systems of equa-
tions can be found in Ortega and Rheinbolt [OR] and in Dennis and Schnabel
[DS2]. Recent developments on iterative methods can be found in Argyros and Szi-
darovszky [AS], and information on the use of continuation methods is available in
Allgower and Georg [AG].

Chapter 11

Boundary-Value Problems
for Ordinary Differential
Equations

11.1 Introduction

The differential equations in Chapter 5 are of first order and have one initial condi-
tion to satisfy. Later in the chapter we saw that the techniques could be extended
to systems of equations and then to higher-order equations, but all the specified
conditions must be on the same endpoint. These are initial-value problems. In this
chapter we show how to approximate the solution to two-point boundary-value
problems, differential equations where conditions are imposed at different points.
For first-order differential equations only one condition is specified, so there is no
distinction between initial-value and boundary-value problems.

The differential equations whose solutions we will approximate are of second
order, specifically of the form

y′′ = f(x, y, y′), for a ≤ x ≤ b,
with the boundary conditions on the solution prescribed by

y(a) = α and y(b) = β,

for some constants α and β. Such a problem has a unique solution provided that:

• The function f and its partial derivatives with respect to y and y′ are con-
tinuous;

• The partial derivative of f with respect to y is positive; and

• The partial derivative of f with respect to y′ is bounded.

These are all reasonable conditions for boundary-value problems representing
physical problems.

525

526CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

11.2 The Linear Shooting Method

A boundary-value problem is linear when the function f has the form

f(x, y, y′) = p(x)y′ + q(x)y + r(x).

Linear problems occur frequently in applications and are much easier to solve
than nonlinear equations. This is because adding any solution to the inhomoge-
neous differential equation

y′′ − p(x)y′ − q(x)y = r(x)

to the complete solution of the homogeneous differential equation

y′′ − p(x)y′ − q(x)y = 0

gives all the solutions to the inhomogeneous problem. The solutions of the ho-
mogeneous problem are easier to determine than are those of the inhomogeneous.
Moreover, to show that a linear problem has a unique solution, we need only show
that p, q, and r are continuous and that the values of q are positive.

To approximate the unique solution to the linear boundary-value problem, let
us first consider the two initial-value problems

y′′ = p(x)y′ + q(x)y + r(x), for a ≤ x ≤ b, where y(a) = α and y′(a) = 0, (11.1)

and

y′′ = p(x)y′ + q(x)y, for a ≤ x ≤ b, where y(a) = 0 and y′(a) = 1, (11.2)

both of which have unique solutions. Let y1(x) denote the solution to Eq. (11.1),
y2(x) denote the solution to Eq. (11.2), and assume that y(b)
= 0. (The situation
when y2(b) = 0 is considered in Exercise 8.) Then,

y(x) = y1(x) +
β − y1(b)
y2(b)

y2(x) (11.3)

is the unique solution to the linear boundary-value problem

y′′ = p(x)y′ + q(x)y + r(x), for a ≤ x ≤ b, with y(a) = α and y(b) = β. (11.4)

To verify this, first note that

y′′ − p(x)y′ − q(x)y = y′′1 − p(x)y′1 − q(x)y1 +
β − y1(b)
y2(b)

[y′′2 − p(x)y′2 − q(x)y2]

= r(x) +
β − y1(b)
y2(b)

· 0 = r(x).

Moreover,

y(a) = y1(a) +
β − y1(b)
y2(b)

y2(a) = y1(a) +
β − y1(b)
y2(b)

· 0 = α

11.2. THE LINEAR SHOOTING METHOD 527

and

y(b) = y1(b) +
β − y1(b)
y2(b)

y2(b) = y1(b) + β − y1(b) = β.

The Linear Shooting method is based on the replacement of the boundary-value
problem by the two initial-value problems, (11.1) and (11.2). Numerous methods are
available from Chapter 5 for approximating the solutions y1(x) and y2(x), and once
these approximations are available, the solution to the boundary-value problem is
approximated using the weighted sum in Eq. (11.3). Graphically, the method has
the appearance shown in Figure 11.1.

Figure 11.1

x

y

y2(x)

y1(x)

y(x) 5 y1(x) 1
b 2 y1(b)

y2(b)
y2(x)

a b

a

b

The program LINST111 incorporates the Runge-Kutta method of order 4 to
find the approximations to y1(x) and y2(x), but any technique for approximating
the solutions to initial-value problems can be substituted. The program has the
additional feature of obtaining approximations for the derivative of the solution to
the boundary-value problem in addition to the solution of the problem itself.

EXAMPLE 1 The boundary-value problem

y′′ = − 2
x
y′ +

2
x2
y+

sin(lnx)
x2

, for 1 ≤ x ≤ 2, where y(1) = 1 and y(2) = 2,

has the exact solution

y = c1x+
c2
x2
− 3

10
sin(lnx)− 1

10
cos(lnx),

where
c2 =

1
70

(8− 12 sin(ln 2)− 4 cos(ln 2)) and c1 =
11
10
− c2.

528CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

Applying the Linear Shooting method to this problem requires approximating
the solutions to the initial-value problems

y′′1 = − 2
x
y′1+

2
x2
y1+

sin(lnx)
x2

, for 1 ≤ x ≤ 2, where y1(1) = 1 and y′1(1) = 0,

and

y′′2 = − 2
x
y′2 +

2
x2
y2, for 1 ≤ x ≤ 2, where y2(1) = 0 and y′2(1) = 1.

We will use the Runge-Kutta method of order 4 within Maple to solve both
differential equations. The first second-order equation is written as a system of two
first-order differential equations u′1 = f1(x, u1, u2) and u′2 = f2(x, u1, u2). We define
the system and initial conditions with

>sys1:=D(u1)(x)=u2(x), D(u2)(x)=-2*u2(x)/x+2*u1(x)/x^2+sin(ln(x))/x^2;
>init1:=u1(1)=1,u2(1)=0;

The Runge-Kutta method of order 4 is invoked with the command

>g1:=dsolve({sys1,init1},numeric,method=classical[rk4],{u1(x),u2(x)},stepsize=0.1);

The next second-order differential equation is defined as a system of of two
first-order differential equations by

>sys2:=D(u1)(x)=u2(x), D(u2)(x)=-2*u2(x)/x+2*u1(x)/x^2;
>init2:=u1(1)=0,u2(1)=2;

and the Runge-Kutta method of order 4 is invoked with the command

>g2:=dsolve({sys2,init2},numeric,method=classical[rk4],{u1(x),u2(x)},stepsize=0.1);

We form the combination

y(x) = y1(x) +
2− y1(2)
y2(2)

y2(x)

using the Maple code

>c:=(2-rhs(g1(2)[2]))/rhs(g2(2)[2]));
>for i from 1 to 10 do
>x:=1+0.1*i;
> w[i]:=rhs(g1(x)[2])+c*rhs(g2(x)[2]);
>od;

This gives the results presented in the fourth column of Table 11.1. The value
listed as u1,i approximates y1(xi), the value of v1,i approximates y2(xi), and wi

approximates y(xi).

11.2. THE LINEAR SHOOTING METHOD 529

and gives the values of u1,i in the second column of Table 11.1.

Table 11.1

i xi u1,i v1,i wi y(xi) |y(xi)− wi|
0 1.0 1.00000000 0.00000000 1.00000000 1.00000000
1 1.1 1.00896058 0.09117986 1.09262916 1.09262930 1.43× 10−7

2 1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34× 10−7

3 1.3 1.06674375 0.23608704 1.28338227 1.28338236 9.78× 10−8

4 1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02× 10−8

5 1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06× 10−8

6 1.6 1.21248371 0.40311695 1.58239245 1.58239246 1.08× 10−8

7 1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43× 10−10

8 1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05× 10−9

9 1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41× 10−9

10 2.0 1.46472815 0.58332538 2.00000000 2.00000000

The accurate results in this example are due to the fact that the Runge-Kutta
method of order 4 gives O(h4) approximations to the solutions of the initial-value
problems. Unfortunately, there can be round-off error problems hidden in this tech-
nique. If y1(x) rapidly increases as x goes from a to b, then u1,N ≈ y1(b) will be
large. Should β be small in magnitude compared to u1,N , the term (β−u1,N)/v1,N

will be approximately −u1,N/v1,N . So the approximations

y(xi) ≈ wi = u1,i −
(
β − u1,N

v1,N

)
v1,i,≈ u1,i −

(
u1,N

v1,N

)
v1,i

allow the possibility of a loss of significant digits due to cancellation. However, since
u1,i is an approximation to y1(xi), the behavior of y1 can be easily monitored, and
if u1,i increases rapidly from a to b, the shooting technique can be employed in the
other direction—that is, solving instead the initial-value problems

y′′ = p(x)y′ + q(x)y+ r(x), for a ≤ x ≤ b, where y(b) = β and y′(b) = 0,

and

y′′ = p(x)y′ + q(x)y, for a ≤ x ≤ b, where y(b) = 0 and y′(b) = 1.

If the reverse shooting technique still gives cancellation of significant digits and
if increased precision does not yield greater accuracy, other techniques must be
employed. In general, however, if u1,i and v1,i are O(hn) approximations to y1(xi)
and y2(xi), respectively, for each i = 0, 1, . . . , N , then w1,i will be an O(hn) ap-
proximation to y(xi).

530CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

EXERCISE SET 11.2

1. The boundary-value problem

y′′ = 4(y − x), for 0 ≤ x ≤ 1 with y(0) = 0 and y(1) = 2

has the solution y(x) = e2(e4−1)−1(e2x−e−2x)+x. Use the Linear Shooting
method to approximate the solution and compare the results to the actual
solution.

(a) With h = 1
2

(b) With h = 1
4

2. The boundary-value problem

y′′ = y′+2y+cosx, for 0 ≤ x ≤ π

2
with y(0) = −0.3 and y

(π
2

)
= −0.1

has the solution y(x) = − 1
10 (sinx+3 cosx). Use the Linear Shooting method

to approximate the solution and compare the results to the actual solution.

(a) With h =
π

4
(b) With h =

π

8
.

3. Use the Linear Shooting method to approximate the solution to the following
boundary-value problems.

(a) y′′ = −3y′ + 2y + 2x + 3, for 0 ≤ x ≤ 1 with y(0) = 2 and y(1) = 1;
use h = 0.1.

(b) y′′ = − 4
x
y′+

2
x2
y − 2 lnx

x2
, for 1 ≤ x ≤ 2 with y(1) = −1

2
and y(2) =

ln 2; use h = 0.05.

(c) y′′ = −(x+1)y′ +2y+(1−x2)e−x, for 0 ≤ x ≤ 1 with y(0) = −1 and
y(1) = 0; use h = 0.1.

(d) y′′ =
y′

x
+

3
x2
y +

lnx
x
− 1, for 1 ≤ x ≤ 2 with y(1) = y(2) = 0; use

h = 0.1.

4. Although q(x) < 0 in the following boundary-value problems, unique solutions
exist and are given. Use the Linear Shooting method to approximate the
solutions to the following problems and compare the results to the actual
solutions.

(a) y′′ + y = 0, for 0 ≤ x ≤ π

4
with y(0) = 1 and y

(π
4

)
= 1; use h =

π

20
;

actual solution y(x) = cosx+ (
√

2− 1) sinx.

11.2. THE LINEAR SHOOTING METHOD 531

(b) y′′ + 4y = cosx, for 0 ≤ x ≤ π

4
with y(0) = 0 and y

(π
4

)
= 0; use

h =
π

20
; actual solution y(x) = −1

3
cos 2x−

√
2

6
sin 2x+

1
3

cosx.

(c) y′′ = − 4
x
y′ − 2

x2
y +

2
x2

lnx, for 1 ≤ x ≤ 2 with y(1) =
1
2

and

y(2) = ln 2; use h = 0.05; actual solution y(x) =
4
x
− 2
x2

+ lnx− 3
2
.

(d) y′′ = 2y′ − y + xex − x, for 0 ≤ x ≤ 2 with y(0) = 0 and y(2) = −4;

use h = 0.2; actual solution y(x) =
1
6
x3ex − 5

3
xex + 2ex − x− 2.

5. Use the Linear Shooting method to approximate the solution y = e−10x to
the boundary-value problem

y′′ = 100y, for 0 ≤ x ≤ 1 with y(0) = 1 and y(1) = e−10.

Use h = 0.1 and 0.05.

6. Write the second-order initial-value problems (11.1) and (11.2) as first-order
systems, and derive the equations necessary to solve the systems using the
fourth-order Runge-Kutta method for systems.

7. Let u represent the electrostatic potential between two concentric metal spheres
of radii R1 and R2 (R1 < R2), such that the potential of the inner sphere
is kept constant at V1 volts and the potential of the outer sphere is 0 volts.
The potential in the region between the two spheres is governed by Laplace’s
equation, which, in this particular application, reduces to

d2u

dr2
+

2
r

du

dr
= 0, for R1 ≤ r ≤ R2 with u(R1) = V1 and u(R2) = 0.

Suppose R1 = 2 in., R2 = 4 in., and V1 = 110 volts.

(a) Approximate u(3) using the Linear Shooting method.

(b) Compare the results of part (a) with the actual potential u(3), where

u(r) =
V1R1

r

(
R2 − r
R2 −R1

)
.

8. Show that if y2 is the solution to y′′ = p(x)y′ + q(x)y and y2(a) = y2(b) = 0,
then y2 ≡ 0.

9. Consider the boundary-value problem

y′′ + y = 0, for 0 ≤ x ≤ b with y(0) = 0 and y(b) = B.

Find choices for b and B so that the boundary-value problem has

532CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

(a) No solution;

(b) Exactly one solution;

(c) Infinitely many solutions.

10. Explain what happens when you attempt to apply the instructions in Exer-
cise 9 to the boundary-value problem

y′′ − y = 0, for 0 ≤ x ≤ b with y(0) = 0 and y(b) = B.

11.3. LINEAR FINITE DIFFERENCE METHODS 533

11.3 Linear Finite Difference Methods

The Shooting method discussed in Section 11.2 often has round-off error difficulties.
The methods we present in this section have better rounding characteristics, but
they generally require more computation to obtain a specified accuracy.

Methods involving finite differences for solving boundary-value problems replace
each of the derivatives in the differential equation with an appropriate difference-
quotient approximation of the type considered in Section 4.9. The particular differ-
ence quotient is chosen to maintain a specified order of error.

The finite-difference method for the linear second-order boundary-value prob-
lem,

y′′ = p(x)y′ + q(x)y+ r(x), for a ≤ x ≤ b, where y(a) = α and y(b) = β,

requires that difference-quotient approximations be used for approximating both y′

and y′′. First, we select an integer N > 0 and divide the interval [a, b] into (N + 1)
equal subintervals whose endpoints are the mesh points xi = a + ih, for i = 0,
1, . . . , N + 1, where h = (b− a)/(N + 1).

At the interior mesh points, xi, for i = 1, 2, . . . , N , the differential equation to
be approximated is

y′′(xi) = p(xi)y′(xi) + q(xi)y(xi) + r(xi). (11.5)

Expanding y(x) in a third-degree Taylor polynomial about xi evaluated at xi+1

and xi−1, we have, assuming that y ∈ C4[xi−1, xi+1],

y(xi+1) = y(xi + h) = y(xi) + hy′(xi) +
h2

2
y′′(xi) +

h3

6
y′′′(xi) +

h4

24
y(4)(ξ+i),

for some ξ+i in (xi, xi+1), and

y(xi−1) = y(xi − h) = y(xi)− hy′(xi) +
h2

2
y′′(xi)− h3

6
y′′′(xi) +

h4

24
y(4)(ξ−i),

for some ξ−i in (xi−1, xi). If these equations are added, we have

y(xi+1) + y(xi−1) = 2y(xi) + h2y′′(xi) +
h4

24

[
y(4)

(
ξ+i
)

+ y(4)
(
ξ−i
)]
,

and a simple algebraic manipulation gives

y′′(xi) =
1
h2

[y(xi+1)− 2y(xi) + y(xi−1)]− h2

24

[
y(4)

(
ξ+i
)

+ y(4)
(
ξ−i
)]
.

The Intermediate Value Theorem can be used to simplify this even further.

534CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

[Centered-Difference Formula for y′′(xi)]

y′′(xi) =
1
h2

[y(xi+1)− 2y(xi) + y(xi−1)]− h2

12
y(4)(ξi),

for some ξi in (xi−1, xi+1).

A centered-difference formula for y′(xi) is obtained in a similar manner.

[Centered-Difference Formula for y′(xi)]

y′(xi) =
1
2h

[y(xi+1)− y(xi−1)]− h2

6
y′′′(ηi),

for some ηi in (xi−1, xi+1).

The use of these centered-difference formulas in Eq. (11.5) results in the equation

y(xi+1)− 2y(xi) + y(xi−1)
h2

= p(xi)
[
y(xi+1)− y(xi−1)

2h

]
+ q(xi)y(xi)

+ r(xi)− h2

12
[2p(xi)y′′′(ηi)− y(4)(ξi)].

A Finite-Difference method with truncation error of order O(h2) results from
using this equation together with the boundary conditions y(a) = α and y(b) = β
to define

w0 = α, wN+1 = β,

and
(

2wi − wi+1 − wi−1

h2

)
+ p(xi)

(
wi+1 − wi−1

2h

)
+ q(xi)wi = −r(xi)

for each i = 1, 2, . . . , N .
In the form we will consider, the equation is rewritten as

−
(

1 +
h

2
p(xi)

)
wi−1 +

(
2 + h2q(xi)

)
wi −

(
1− h

2
p(xi)

)
wi+1 = −h2r(xi),

and the resulting system of equations is expressed in the tridiagonal N ×N matrix

11.3. LINEAR FINITE DIFFERENCE METHODS 535

form Aw = b,where

A =




2 + h2q(x1) −1 +
h

2
p(x1) 0 0

−1− h

2
p(x2) 2 + h2q(x2) −1 +

h

2
p(x2)

0 0

−1 +
h

2
p(xN−1)

0 0 −1− h

2
p(xN) 2 + h2q(xN)




,

w =




w1

w2

...
wN−1

wN



, and b =




−h2r(x1) +
(

1 +
h

2
p(x1)

)
w0

−h2r(x2)
...

−h2r(xN−1)

−h2r(xN) +
(

1− h

2
p(xN)

)
wN+1




.

This system has a unique solution provided that p, q, and r are continuous on
[a, b], that q(x) ≥ 0 on [a, b], and that h < 2/L, where L = maxa≤x≤b |p(x)|.

The program LINFD112 implements the Linear Finite-Difference method.

EXAMPLE 1 The Linear Finite-Difference method will be used to approximate the solution to
the linear boundary-value problem

y′′ = − 2
x
y′ +

2
x2
y+

sin(lnx)
x2

, for 1 ≤ x ≤ 2, where y(1) = 1 and y(2) = 2,

which was also approximated by the Shooting method in Example 1 of Section 11.2.
For this example, we use the same spacing as in Example 1 of Section 11.2.

To use Maple to apply the Linear Finite-Difference method, first we need to
access the linear algebra library with the command

>with(linalg);

Then we define the endpoints of the interval, the boundary conditions, N , and h.

>a:=1; b:=2; alpha:=1; beta:=2; N:=9; h:=(b-a)/(N+1);

The mesh points are defined in the following loop:

>for i from 1 to N do
>x[i]:=a+i*h;
>od;

536CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

The functions p(x), q(x),and r(x) are defined by

>p:=x->-2/x;
>q:=x->2/x^2;
>r:=x->sin(ln(x))/x^2;

We initialize the 9× 10 array A as the zero matrix.

>A:=matrix(9,10,0);

Then we generate the nonzero entries with the following statements:

>A[1,1]:=2+h*h*evalf(q(x[1]));
>A[1,2]:=-1+h*evalf(p(x[1]))/2;
>A[1,N+1]:=-h*h*evalf(r(x[1]))+(1+h*p(x[1])/2)*alpha;
>for i from 2 to N-1 do
>A[i,i-1]:=-1-h*evalf(p(x[i]))/2;
>A[i,i]:=2+h*h*evalf(q(x[i]));
>A[i,i+1]:=-1+h*evalf(p(x[i]))/2;
>A[i,N+1]:=-h*h*evalf(r(x[i]));
>od;
>A[N,N-1]:=-1-h*evalf(p(x[N]))/2;
>A[N,N]:=2+h*h*evalf(q(x[N]));
>A[N,N+1]:=-h*h*evalf(r(x[N]))+(1-h*p(x[N])/2)*beta;

We now apply Gaussian elimination to solve the 9× 9 linear system for the values
w1, w2, . . . , w9.

>C:=gausselim(A);
>w:=backsub(C);

The ith component, wi, of the vector w gives the approximation to y(ti) for each
i = 1, 2, . . . , n. The complete results are presented in Table 11.2.

11.3. LINEAR FINITE DIFFERENCE METHODS 537

Table 11.2

i xi wi y(xi) |wi − y(xi)|
0 1.0 1.00000000 1.00000000
1 1.1 1.09260052 1.09262930 2.88× 10−5

2 1.2 1.18704313 1.18708484 4.17× 10−5

3 1.3 1.28333687 1.28338236 4.55× 10−5

4 1.4 1.38140204 1.38144595 4.39× 10−5

5 1.5 1.48112026 1.48115942 3.92× 10−5

6 1.6 1.58235990 1.58239246 3.26× 10−5

7 1.7 1.68498902 1.68501396 2.49× 10−5

8 1.8 1.78888175 1.78889853 1.68× 10−5

9 1.9 1.89392110 1.89392951 8.41× 10−6

10 2.0 2.00000000 2.00000000

Note that these results are considerably less accurate than those obtained in
Example 1 of Section 11.2 and listed in Table 11.1. This is because the method
used in Section 11.2 involved a Runge-Kutta technique with error of order O(h4),
whereas the difference method used here has error of order O(h2).

To obtain a difference method with greater accuracy, we can proceed in a number
of ways. Using fifth-order Taylor series for approximating y′′(xi) and y′(xi) results
in an error term involving h4. However, this requires using multiples not only of
y(xi+1) and y(xi−1), but also y(xi+2) and y(xi−2) in the approximation formulas
for y′′(xi) and y′(xi). This leads to difficulty at i = 0 and i = N . Moreover, the
resulting system of equations is not in tridiagonal form, and the solution to the
system requires many more calculations.

Instead of obtaining a difference method with a higher-order error term in this
manner, it is generally more satisfactory to consider a reduction in step size. In
addition, the Richardson’s extrapolation technique can be used effectively for this
method, since the error term is expressed in even powers of h with coefficients
independent of h, provided y is sufficiently differentiable.

EXAMPLE 2 Richardson’s extrapolation for approximating the solution to the boundary-value
problem

y′′ = − 2
x
y′+

2
x2
y+

sin(lnx)
x2

, for 1 ≤ x ≤ 2, where y(1) = 1 and y(2) = 2,

with h = 0.1, 0.05, and 0.025, gives the results listed in Table 11.3. The first ex-
trapolation is

Ext1i =
4wi(h = 0.05)− wi(h = 0.1)

3
;

the second extrapolation is

Ext2i =
4wi(h = 0.025)− wi(h = 0.05)

3
;

538CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

Table 11.3

i xi wi(h = 0.1) wi(h = 0.05) wi(h = 0.025) Ext1i Ext2i Ext3i

0 1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
1 1.1 1.09260052 1.09262207 1.09262749 1.09262925 1.09262930 1.09262930
2 1.2 1.18704313 1.18707436 1.18708222 1.18708477 1.18708484 1.18708484
3 1.3 1.28333687 1.28337094 1.28337950 1.28338230 1.28338236 1.28338236
4 1.4 1.38140204 1.38143493 1.38144319 1.38144589 1.38144595 1.38144595
5 1.5 1.48112026 1.48114959 1.48115696 1.48115937 1.48115941 1.48115942
6 1.6 1.58235990 1.58238429 1.58239042 1.58239242 1.58239246 1.58239246
7 1.7 1.68498902 1.68500770 1.68501240 1.68501393 1.68501396 1.68501396
8 1.8 1.78888175 1.78889432 1.78889748 1.78889852 1.78889853 1.78889853
9 1.9 1.89392110 1.89392740 1.89392898 1.89392950 1.89392951 1.89392951
10 2.0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000

and the final extrapolation is

Ext3i =
16Ext2i − Ext1i

15
.

All the results of Ext3i are correct to the decimal places listed. In fact, if sufficient
digits are maintained, this approximation gives results that agree with the exact
solution with a maximum error of 6.3× 10−11.

11.3. LINEAR FINITE DIFFERENCE METHODS 539

EXERCISE SET 11.3

1. The boundary-value problem

y′′ = 4(y − x), for 0 ≤ x ≤ 1 with y(0) = 0 and y(1) = 2

has the solution y(x) = e2(e4 − 1)−1(e2x − e−2x) + x. Use the Linear Finite-
Difference method to approximate the solution and compare the results to
the actual solution.

(a) With h = 1
2

(b) With h = 1
4 .

(c) Use extrapolation to approximate y(1/2).

2. The boundary-value problem

y′′ = y′ + 2y + cosx, for 0 ≤ x ≤ π

2
with y(0) = −0.3 and y

(π
2

)
= −0.1

has the solution y(x) = − 1
10 (sinx+ 3 cosx). Use the Linear Finite-Difference

method to approximate the solution and compare the results to the actual
solution.

(a) With h =
π

4
(b) With h =

π

8

(c) Use extrapolation to approximate y(π/4).

3. Use the Linear Finite-Difference method to approximate the solution to the
following boundary-value problems.

(a) y′′ = −3y′ + 2y + 2x + 3, for 0 ≤ x ≤ 1 with y(0) = 2 and y(1) = 1;
use h = 0.1.

(b) y′′ = − 4
x
y′+

2
x2
y− 2

x2
lnx, for 1 ≤ x ≤ 2 with y(1) = −1

2
and y(2) =

ln 2; use h = 0.05.

(c) y′′ = −(x+1)y′ +2y+(1−x2)e−x, for 0 ≤ x ≤ 1 with y(0) = −1 and
y(1) = 0; use h = 0.1.

(d) y′′ =
y′

x
+

3
x2
y +

lnx
x
− 1, for 1 ≤ x ≤ 2 for y(1) = y(2) = 0; use

h = 0.1.

4. Although q(x) < 0 in the following boundary-value problems, unique solutions
exist and are given. Use the Linear Finite-Difference method to approximate
the solutions and compare the results to the actual solutions.

540CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

(a) y′′ + y = 0, for 0 ≤ x ≤ π

4
with y(0) = 1 and y

(π
4

)
= 1; use h =

π

20
;

actual solution y(x) = cosx+ (
√

2− 1) sinx.

(b) y′′ + 4y = cosx, for 0 ≤ x ≤ π

4
with y(0) = 0 and y

(π
4

)
= 0; use

h =
π

20
; actual solution y(x) = −1

3
cos 2x−

√
2

6
sin 2x+

1
3

cosx.

(c) y′′ = − 4
x
y′− 2

x2
y+

2 lnx
x2

, for 1 ≤ x ≤ 2 with y(1) =
1
2

and y(2) = ln 2;

use h = 0.05; actual solution y(x) =
4
x
− 2
x2

+ lnx− 3
2
.

(d) y′′ = 2y′ − y + xex − x, for 0 ≤ x ≤ 2 with y(0) = 0 and y(2) = −4;

use h = 0.2; actual solution y(x) =
1
6
x3ex − 5

3
xex + 2ex − x− 2.

5. Use the Linear Finite-Difference method to approximate the solution y =
e−10x to the boundary-value problem

y′′ = 100y, for 0 ≤ x ≤ 1 with y(0) = 1 and y(1) = e−10.

Use h = 0.1 and 0.05. Can you explain the consequences?

6. Repeat Exercise 3(a) and (b) using the extrapolation discussed in Example 2.

7. The deflection of a uniformly loaded, long rectangular plate under an axial
tension force is governed by a second-order differential equation. Let S rep-
resent the axial force and q, the intensity of the uniform load. The deflection
w along the elemental length is given by

w′′(x)− S

D
w(x) =

−ql
2D

x+
q

2D
x2, for 0 ≤ x ≤ l with w(0) = w(l) = 0,

where l is the length of the plate and D is the flexual rigidity of the plate.
Let q = 200 lb/in.2, S = 100 lb/in., D = 8.8 × 107 lb/in., and l = 50 in.
Approximate the deflection at 1-in. intervals.

8. The boundary-value problem governing the deflection of a beam with sup-
ported ends subject to uniform loading is

w′′(x) =
S

EI
w(x) +

q

2EI
x(x− l), for 0 < x < l with w(0) = 0 and w(l) = 0.

Suppose the beam is a W10-type steel I-beam with the following character-
istics: length l = 120 in., intensity of uniform load q = 100 lb/ft, modulus
of elasticity E = 3.0 × 107 lb/in.2, stress at ends S = 1000 lb, and central
moment of inertia I = 625 in.4.

(a) Approximate the deflection w(x) of the beam every 6 in.

11.3. LINEAR FINITE DIFFERENCE METHODS 541

(b) The actual relationship is given by

w(x) = c1e
ax + c2e

−ax + b(x− l)x+ c,

where c1 = 7.7042537×104, c2 = 7.9207462×104, a = 2.3094010×10−4,
b = −4.1666666× 10−3, and c = −1.5625× 105. Is the maximum error
on the interval within 0.2 in.?

(c) State law requires that max0<x<l w(x) < 1/300. Does this beam meet
state code?

542CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

11.4 The Nonlinear Shooting Method

The shooting technique for the nonlinear second-order boundary-value problem

y′′ = f(x, y, y′), for a ≤ x ≤ b, where y(a) = α and y(b) = β, (11.6)

is similar to the linear shooting method, except that the solution to a nonlin-
ear problem cannot be expressed as a linear combination of the solutions to two
initial-value problems. Instead, we approximate the solution to the boundary-value
problem by using the solutions to a sequence of initial-value problems involving a
parameter t. These problems have the form

y′′ = f(x, y, y′), for a ≤ x ≤ b, where y(a) = α and y′(a) = t. (11.7)

We do this by choosing the parameters t = tk in a manner to ensure that

lim
k→∞

y(b, tk) = y(b) = β,

where y(x, tk) denotes the solution to the initial-value problem (11.7) with t = tk
and y(x) denotes the solution to the boundary-value problem (11.6).

This technique is called a shooting method, by analogy to the procedure of firing
objects at a stationary target.(See Figure 11.2.)

Figure 11.2

x

y

a

a

b
y(b, t0) (b, y(b, t0))

(b, b)

y(x, t0)

(a, a)
Slope t0

b

We start with a parameter t0 that determines the initial elevation at which the
object is fired from the point (a, α) along the curve described by the solution to the
initial-value problem:

y′′ = f(x, y, y′), for a ≤ x ≤ b, where y(a) = α and y′(a) = t0.

If y(b, t0) is not sufficiently close to β, we correct our approximation by choosing
elevations t1, t2, and so on, until y(b, tk) is sufficiently close to “hitting” β. (See
Figure 11.3.)

Figure 11.3

11.4. THE NONLINEAR SHOOTING METHOD 543

x

y

y(b, t0)
y(b, t1)

y(b, t2)

y(b, t3)

y(x, t0)
y(x, t1)

y(x, t2)

y(x, t3)

a b

a (a, a)

b

The problem is to determine the parameter t in the initial-value problem so that

y(b, t)− β = 0.

Since this is a nonlinear equation of the type considered in Chapter 2, a number
of methods are available. To employ the Secant method to solve the problem, we
choose initial approximations t0 and t1 to t and then generate the remaining terms
of the sequence by using the following procedure.

[Secant Method Solution] Suppose that t0 and t1 are initial approximations
to the parameter t that solves the nonlinear equation y(b, t)−β = 0. For each
successive k = 2, 3, . . ., solve the initial-value problem

y′′ = f(x, y, y′), for a ≤ x ≤ b, where y(a) = α,

with y′(a) = tk−2 to find y(b, tk−2) and with y′(a) = tk−1 to find y(b, tk−1).
Define

tk = tk−1 − (y(b, tk−1)− β)(tk−1 − tk−2)
y(b, tk−1)− y(b, tk−2)

.

Then repeat the process with tk−1 replacing tk−2 and tk replacing tk−1.

To use the more powerful Newton’s method to generate the sequence {tk}, only
one initial approximation, t0, is needed. However, the iteration has the form

tk = tk−1 − y(b, tk−1)− β
(dy/dt)(b, tk−1)

,

544CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

and requires the knowledge of (dy/dt)(b, tk−1). This presents a difficulty, since an
explicit representation for y(b, t) is not known; we know only the values y(b, t0),
y(b, t1), . . . , y(b, tk−1).

To overcome this difficulty, first rewrite the initial-value problem, emphasizing
that the solution depends on both x and t:

y′′(x, t) = f(x, y(x, t), y′(x, t)), for a ≤ x ≤ b, where y(a, t) = α and y′(a, t) = t,

retaining the prime notation to indicate differentiation with respect to x. Since
we are interested in determining (dy/dt)(b, t) when t = tk−1, we take the partial
derivative with respect to t. This implies that

∂y′′

∂t
(x, t) =

∂f

∂t
(x, y(x, t), y′(x, t))

=
∂f

∂x
(x, y(x, t), y′(x, t))

∂x

∂t
+
∂f

∂y
(x, y(x, t), y′(x, t))

∂y

∂t
(x, t)

+
∂f

∂y′
(x, y(x, t), y′(x, t))

∂y′

∂t
(x, t).

But x and t are independent, so
∂x

∂t
= 0 and we have

∂y′′

∂t
(x, t) =

∂f

∂y
(x, y(x, t), y′(x, t))

∂y

∂t
(x, t) +

∂f

∂y′
(x, y(x, t), y′(x, t))

∂y′

∂t
(x, t)

(11.8)
for a ≤ x ≤ b. The initial conditions give

∂y

∂t
(a, t) = 0 and

∂y′

∂t
(a, t) = 1.

If we simplify the notation by using z(x, t) to denote (∂y/∂t)(x, t) and assume
that the order of differentiation of x and t can be reversed, Eq. (11.8) becomes the
linear initial-value problem

z′′(x, t) =
∂f

∂y
(x, y, y′)z(x, t) +

∂f

∂y′
(x, y, y′)z′(x, t), for a ≤ x ≤ b,

where z(a, t) = 0 and z′(a, t) = 1. Newton’s method therefore requires that two
initial-value problems be solved for each iteration.

11.4. THE NONLINEAR SHOOTING METHOD 545

[Newton’s Method Solution] Suppose that t0 is an initial approximation to
the parameter t that solves the nonlinear equation y(b, t) − β = 0. For each
successive k = 1, 2, . . . , solve the initial-value problems

y′′ = f(x, y, y′), for a ≤ x ≤ b, where y(a) = α and y′(a) = tk−1

and

z′′ = fy(x, y, y′)z + fy′(x, y, y′)z′, for a ≤ x ≤ b,
where z(a, t) = 0 andz′(a, t) = 1.

Then define

tk = tk−1 − y(b, tk−1)− β
z(b, tk−1)

and repeat the process with tk replacing tk−1.

In practice, none of these initial-value problems is likely to be solved exactly; in-
stead the solutions are approximated by one of the methods discussed in Chapter 5.
The program NLINS113 uses the Runge-Kutta method of order 4 to approximate
both solutions required for Newton’s method.

EXAMPLE 1 Consider the boundary-value problem

y′′ =
1
8
(32 + 2x3 − yy′), for 1 ≤ x ≤ 3, where y(1) = 17 and y(3) =

43
3
,

which has the exact solution y(x) = x2 + 16/x.
Applying the Shooting method to this problem requires approximating the so-

lutions to the initial-value problems

y′′ =
1
8
(32 + 2x3 − yy′), for 1 ≤ x ≤ 3, where y(1) = 17 and y′(1) = tk,

and

z′′ =
∂f

∂y
z+

∂f

∂y′
z′ = −1

8
(y′z+yz′), for 1 ≤ x ≤ 3, where z(1) = 0 and z′(1) = 1,

at each step in the iteration.
We will use the Runge-Kutta method of order 4 within Maple to solve both

differential equations. We write the second-order equation as a system of two first-
order differential equations, with

>sys1:=D(u1)(x)-u2(x),Du2(x)=(32+2*x^3-u1(x)*u2(x))/8;

546CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

giving

sys1 := D(u1)(x) = u2(x),D(u2)(x) = 4 +
1
4
x3 − 1

8
U1(x)U2(x)

Define a, b, N , α, and β by

>a:=1; b:=3; N:=20; h:=(b-a)/N; alpha:=17; beta:=43/3;

For the initial value of t0 we use

>tk:=(beta-alpha)/(b-a);

and define the initial conditions by

>init1:=u1(1)=alpha,u2(1)=tk;

The Runge-Kutta method of order 4 for solving this system is invoked by

>g1:=dsolve({sys1,init1},numeric, method=classical[rk4],{u1(x),u2(x)},stepsize=h);

We use the values from the Runge-Kutta method to solve the second initial-value
problem written as a system of two first-order differential equations, and set up the
system as follows:

>fy:=(x,v1,v2)->-v2/8;
>fyp:=(x,v1,v2)->-v1/8;
>u1:=0;
>u2:=1;

Since we need to use the approximations to y and y1 at ti, the Runge-Kutta method
cannot be called from Maple. We must generate our own code for the computation.
We will include only the values from z(xi, t0).

> for i from 1 to N do
> x:=a+(i-1)*h;
> k11:=h*u2;
> k12:=h*fy(x,rhs(g1(x)[2]),rhs(g1(x)[3]))*u1+h*fyp(x,rhs(g1(x)[2]),rhs(g1(x)[3]))*u2;
> k21:=h*(u2+k12/2);
> k22:=h*fy(x+h/2,rhs(g1(x)[2]),rhs(g1(x)[3]))*(u1+k11/2)+h*fyp(x+h/2,rhs(g1(x)[2]),rhs
> k31:=h*(u2+k22/2);
> k32:=h*fy(x+h/2,rhs(g1(x)[2]),rhs(g1(x)[3]))*(u1+k21/2)+h*fyp(x+h/2,rhs(g1(x)[2]),rhs
> k41:=h*(u2+k32);
> k42:=h*fy(x+h,rhs(g1(x)[2]),rhs(g1(x)[3]))*(u1+k31)+h*fyp(x+h,rhs(g1(x)[2]),rhs(g1(x)
> uu1:=u1+(k11+2*k21+2*k31+k41)/6;
> uu2:=u2+(k12+2*k22+2*k32+k42)/6;
> u1:=uu1;
> u2:=uu2;
> od;

11.4. THE NONLINEAR SHOOTING METHOD 547

We make our test for convergence on |y(b, t0)− β| with

>abs(rhs(g1(b)[2])-beta);

which gives 6.14586912. This is not sufficient, and we need at least one more itera-
tion. So we compute t1 = −16.20583517 with

>tk1:=tk-(rhs(g1(b)[2])-beta)/u1;

and repeat the entire process.
If the stopping technique requires |w1,N (tk)− y(3)| ≤ 10−5, this problem takes

four iterations and uses t4 = −14.000203. The results obtained for this value of t
are shown in Table 11.4.

Table 11.4

xi w1,i y(xi) |w1,i − y(xi)| xi w1,i y(xi) |w1,i − y(xi)|
1.0 17.000000 17.000000 2.0 12.000023 12.000000 2.32× 10−5

1.1 15.755495 15.755455 4.06× 10−5 2.1 12.029066 12.029048 1.84× 10−5

1.2 14.773389 14.773333 5.60× 10−5 2.2 12.112741 12.112727 1.40× 10−5

1.3 13.997752 13.997692 5.94× 10−5 2.3 12.246532 12.246522 1.01× 10−5

1.4 13.388629 13.388571 5.71× 10−5 2.4 12.426673 12.426667 6.68× 10−6

1.5 12.916719 12.916667 5.23× 10−5 2.5 12.650004 12.650000 3.61× 10−6

1.6 12.560046 12.560000 4.64× 10−5 2.6 12.913847 12.913845 9.17× 10−7

1.7 12.301805 12.301765 4.02× 10−5 2.7 13.215924 13.215926 1.43× 10−6

1.8 12.128923 12.128889 3.14× 10−5 2.8 13.554282 13.554286 3.46× 10−6

1.9 12.031081 12.031053 2.84× 10−5 2.9 13.927236 13.927241 5.21× 10−6

3.0 14.333327 14.333333 6.69× 10−6

Although Newton’s method used with the shooting technique requires the so-
lution of an additional initial-value problem, it will generally be faster than the
Secant method. Both methods are only locally convergent, since they require good
initial approximations.

548CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

EXERCISE SET 11.4

1. Use the Nonlinear Shooting method with h = 0.5 to approximate the solution
to the boundary-value problem

y′′ = −(y′)2−y+lnx, for 1 ≤ x ≤ 2 with y(1) = 0 and y(2) = ln 2.

Compare your results to the actual solution y = lnx.

2. Use the Nonlinear Shooting method with h = 0.25 to approximate the solution
to the boundary-value problem

y′′ = 2y3, for − 1 ≤ x ≤ 0 with y(−1) =
1
2

and y(0) =
1
3
.

Compare your results to the actual solution y(x) = 1/(x+ 3).

3. Use the Nonlinear Shooting method to approximate the solution to the fol-
lowing boundary-value problems, iterating until |w1,n−β| ≤ 10−4. The actual
solution is given for comparison to your results.

(a) y′′ = y3 − yy′, for 1 ≤ x ≤ 2 with y(1) = 1
2 and y(2) = 1

3 ; use h = 0.1
and compare the results to y(x) = (x+ 1)−1.

(b) y′′ = 2y3 − 6y − 2x3, for 1 ≤ x ≤ 2 with y(1) = 2 and y(2) = 5
2 ; use

h = 0.1 and compare the results to y(x) = x+ x−1.

(c) y′′ = y′ + 2(y − lnx)3 − x−1, for 2 ≤ x ≤ 3 with y(2) = 1
2 + ln 2 and

y(3) = 1
3 +ln 3; use h = 0.1 and compare the results to y(x) = x−1+lnx.

(d) y′′ =
[
x2(y′)2 − 9y2 + 4x6

]
/x5, for 1 ≤ x ≤ 2 with y(1) = 0 and

y(2) = ln 256; use h = 0.05 and compare the results to y(x) = x3 lnx.

4. Use the Secant method with t0 = (β−α)/(b−a) and t1 = t0+(β−y(b, t0))/(b−
a) to solve the problems in Exercises 3(a) and 3(c) and compare the number
of iterations required with that of Newton’s method.

5. The Van der Pol equation,

y′′ − µ(y2 − 1)y′ + y = 0, for µ > 0,

governs the flow of current in a vacuum tube with three internal elements.
Let µ = 1

2 , y(0) = 0, and y(2) = 1. Approximate the solution y(t) for t = 0.2i,
where 1 ≤ i ≤ 9.

11.5. NONLINEAR FINITE-DIFFERENCE METHODS 549

11.5 Nonlinear Finite-Difference Methods

The difference method for the general nonlinear boundary-value problem

y′′ = f(x, y, y′), for a ≤ x ≤ b, where y(a) = α and y(b) = β,

is similar to the method applied to linear problems in Section 11.3. Here, however,
the system of equations will not be linear, so an iterative process is required to
solve it.

As in the linear case, we divide [a, b] into (N + 1) equal subintervals whose
endpoints are at xi = a + ih for i = 0, 1, . . . , N + 1. Assuming that the exact
solution has a bounded fourth derivative allows us to replace y′′(xi) and y′(xi) in
each of the equations by the appropriate centered-difference formula to obtain, for
each i = 1, 2, . . . , N ,

y(xi+1)− 2y(xi) + y(xi−1)
h2

= f

(
xi, y(xi),

y(xi+1)− y(xi−1)
2h

− h2

6
y′′′(ηi)

)
+
h2

12
y(4)(ξi),

for some ξi and ηi in the interval (xi−i, xi+1).
The difference method results when the error terms are deleted and the bound-

ary conditions are added. This produces the N ×N nonlinear system

2w1 − w2 + h2f

(
x1, w1,

w2 − α
2h

)
− α = 0,

−w1 + 2w2 − w3 + h2f

(
x2, w2,

w3 − w1

2h

)
= 0,

...

−wN−2 + 2wN−1 − wN + h2f

(
xN−1, wN−1,

wN − wN−2

2h

)
= 0,

−wN−1 + 2wN + h2f

(
xN , wN ,

β − wN−1

2h

)
− β = 0.

To approximate the solution to this system, we use Newton’s method for nonlin-
ear systems, as discussed in Section 10.2. A sequence of iterates {(w(k)

1 , w
(k)
2 , . . . , w

(k)
N)t}

is generated that converges to the solution of system, provided that the initial ap-
proximation (w(0)

1 , w(0)
2 , . . . , w

(0)
N)t is sufficiently close to the true solution, (w1, w2, . . . , wN)t.

Newton’s method for nonlinear systems requires solving, at each iteration, an
N×N linear system involving the Jacobian matrix. In our case, the Jacobian matrix
is tridiagonal, and Crout factorization can be applied. The initial approximations
w

(0)
i to wi for each i = 1, 2, . . . , N , are obtained by passing a straight line through

(a, α) and (b, β) and evaluating at xi.
Since a good initial approximation may be required, an upper bound for k should

be specified and, if exceeded, a new initial approximation or a reduction in step size
considered.

The program NLFDM114 can be used to employ the Nonlinear Finite-Difference
method.

550CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

EXAMPLE 1 We apply the Nonlinear Finite-Difference method, with h = 0.1, to the nonlinear
boundary-value problem

y′′ =
1
8
(
32 + 2x3 − yy′) , for 1 ≤ x ≤ 3, where y(1) = 17 and y(3) =

43
3
.

To use Maple, we first access the linear algebra library

>with(linalg);

and then define a, b, α, β, N , h, and w = 0 by

>a:=1; b:=3; alpha:=17; beta:=43/3; N:=19; h:=(b-a)/(N+1);
>w:=vector(19,0);

We define xi and initialize wi by passing a straight line through (a, α) and (b, β)
and evaluating at xi. We also define and initialize the 19× 19 matrix A as the zero
matrix and u as the 19-dimensional zero vector.

>for i from 1 to N do
>x[i]:=a+i*h;
>w[i]:=alpha+i*(beta-alpha)/(b-a)*h;
>od;
>A:=matrix(19,19,0);
>u:=vector(19,0);

The functions f(x, y, y′), fy(x, y, y′), and fy′(x, y, y′) are defined by

>f:=(x,y,yp)->(32+2*x^3-y*yp)/8;
>fy:=(x,y,yp)->-yp/8;
>fyp:=(x,y,yp)->-y/8;

The nonzero entries of A and the right-hand side, u, of the linear system are gen-
erated as follows:

>A[1,1]:=2+h*h*evalf(fy(x[1],w[1],(w[2]-alpha)/(2*h)));
>A[1,2]:=-1+h*evalf(fyp(x[1],w[1],(w[2]-alpha)/(2*h)))/2;
>u[1]:=-(2*w[1]-w[2]-alpha+h*h*evalf(f(x[1],w[1],
(w[2]-alpha)/(2*h))));
>for i from 2 to N-1 do
>A[i,i-1]:=-1-h*evalf(fyp(x[i],w[i],(w[i+1]-w[i-1])/(2*h)))/2;
>A[i,i+1]:=-1+h*evalf(fyp(x[i],w[i],(w[i+1]-w[i-1])/(2*h)))/2;
>A[i,i]:=2+h*h*evalf(fy(x[i],w[i],(w[i+1]-w[i-1])/(2*h)));

>u[i]:=-(-w[i-1]+2*w[i]-w[i+1]+h*h*evalf(f(x[i],w[i],
(w[i+1]-w[i-1])/(2*h))));
>od;

11.5. NONLINEAR FINITE-DIFFERENCE METHODS 551

>A[N,N-1]:=-1-h*evalf(fyp(x[N],w[N],(beta-w[N-1])/(2*h)))/2;
>A[N,N]:=2+h*h*evalf(fy(x[N],w[N],(beta-w[N-1])/(2*h)));
>u[N]:=-(-w[N-1]+2*w[N]-beta+h*h*evalf(f(x[N],w[N],
(beta-w[N-1])/(2*h))));

The augmented matrix for the linear system is formed by

>B:=augment(A,u);

Then we use the Gaussian elimination of Maple with the command

>M:=gausselim(B);

and obtain the solution to the linear system with the command

>v:=backsub(M);

The first iteration for w(xi) is given by

>z:=w+v;
>w:=evalm(z);

We continue to iterate the process until values of successive iterates differ by less
than 10−8. This is accomplished with four iterations and produces the results in
Table 11.5. The problem in this example is the same as that considered for the
Nonlinear Shooting method, Example 1 of Section 11.4.

Table 11.5

xi wi y(xi) |wi − y(xi)| xi wi y(xi) |wi − y(xi)|
1.0 17.000000 17.000000 2.0 11.997915 12.000000 2.085× 10−3

1.1 15.754503 15.755455 9.520× 10−4 2.1 12.027142 12.029048 1.905× 10−3

1.2 14.771740 14.773333 1.594× 10−3 2.2 12.111020 12.112727 1.707× 10−3

1.3 13.995677 13.997692 2.015× 10−3 2.3 12.245025 12.246522 1.497× 10−3

1.4 13.386297 13.388571 2.275× 10−3 2.4 12.425388 12.426667 1.278× 10−3

1.5 12.914252 12.916667 2.414× 10−3 2.5 12.648944 12.650000 1.056× 10−3

1.6 12.557538 12.560000 2.462× 10−3 2.6 12.913013 12.913846 8.335× 10−4

1.7 12.299326 12.301765 2.438× 10−3 2.7 13.215312 13.215926 6.142× 10−4

1.8 12.126529 12.128889 2.360× 10−3 2.8 13.553885 13.554286 4.006× 10−4

1.9 12.028814 12.031053 2.239× 10−3 2.9 13.927046 13.927241 1.953× 10−4

3.0 14.333333 14.333333

Richardson’s extrapolation can also be used for the Nonlinear Finite-Difference
method. Table 11.6 lists the results when this method is applied to Example 1

552CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

using h = 0.1, 0.05, and 0.025, with four iterations in each case. The notation is
the same as in Example 2 of Section 11.3, and the values of Ext3i are all accurate
to the places listed, with an actual maximum error of 3.68 × 10−10. The values of
wi(h = 0.1) are omitted from the table since they were listed previously.

Table 11.6

xi wi(h = 0.05) wi(h = 0.025) Ext1i Ext2i Ext3i

1.0 17.00000000 17.00000000 17.00000000 17.00000000 17.00000000
1.1 15.75521721 15.75539525 15.75545543 15.75545460 15.75545455
1.2 14.77293601 14.77323407 14.77333479 14.77333342 14.77333333
1.3 13.99718996 13.99756690 13.99769413 13.99769242 13.99769231
1.4 13.38800424 13.38842973 13.38857346 13.38857156 13.38857143
1.5 12.91606471 12.91651628 12.91666881 12.91666680 12.91666667
1.6 12.55938618 12.55984665 12.56000217 12.56000014 12.56000000
1.7 12.30115670 12.30161280 12.30176684 12.30176484 12.30176471
1.8 12.12830042 12.12874287 12.12899094 12.12888902 12.12888889
1.9 12.03049438 12.03091316 12.03105457 12.03105275 12.03105263
2.0 11.99948020 11.99987013 12.00000179 12.00000011 12.00000000
2.1 12.02857252 12.02892892 12.02902924 12.02904772 12.02904762
2.2 12.11230149 12.11262089 12.11272872 12.11272736 12.11272727
2.3 12.24614846 12.24642848 12.24652299 12.24652182 12.24652174
2.4 12.42634789 12.42658702 12.42666773 12.42666673 12.42666667
2.5 12.64973666 12.64993420 12.65000086 12.65000005 12.65000000
2.6 12.91362828 12.91379422 12.91384683 12.91384620 12.91384615
2.7 13.21577275 13.21588765 13.21592641 13.21592596 13.21592593
2.8 13.55418579 13.55426075 13.55428603 13.55428573 13.55428571
2.9 13.92719268 13.92722921 13.92724153 13.92724139 13.92724138
3.0 14.33333333 14.33333333 14.33333333 14.33333333 14.33333333

11.5. NONLINEAR FINITE-DIFFERENCE METHODS 553

EXERCISE SET 11.5

1. Use the Nonlinear Finite-Difference method with h = 0.5 to approximate the
solution to the boundary-value problem

y′′ = −(y′)2−y+lnx, for 1 ≤ x ≤ 2 with y(1) = 0 and y(2) = ln 2.

Compare your results to the actual solution y = lnx.

2. Use the Nonlinear Finite-Difference method with h = 0.25 to approximate
the solution to the boundary-value problem

y′′ = 2y3, for − 1 ≤ x ≤ 0 with y(−1) = 1
2 and y(0) = 1

3 .

Compare your results to the actual solution y(x) = 1/(x+ 3).

3. Use the Nonlinear Finite-Difference method to approximate the solution to
the following boundary-value problems, iterating until successive iterations
differ by less than 10−4. The actual solution is given for comparison to your
results.

(a) y′′ = y3 − yy′, for 1 ≤ x ≤ 2 with y(1) = 1
2 and y(2) = 1

3 ; use h = 0.1
and compare the results to y(x) = (x+ 1)−1.

(b) y′′ = 2y3 − 6y − 2x3, for 1 ≤ x ≤ 2 with y(1) = 2 and y(2) = 5
2 ; use

h = 0.1 and compare the results to y(x) = x+ x−1.

(c) y′′ = y′ + 2(y − lnx)3 − x−1, for 2 ≤ x ≤ 3 with y(2) = 1
2 + ln 2 and

y(3) = 1
3 +ln 3; use h = 0.1 and compare the results to y(x) = x−1+lnx.

(d) y′′ = (x2(y′)2 − 9y2 + 4x6)/x5, for 1 ≤ x ≤ 2 with y(1) = 0 and
y(2) = ln 256; use h = 0.05 and compare the results to y(x) = x3 lnx.

4. Repeat Exercise 3(a) and (b) using extrapolation.

5. In Exercise 8 of Section 11.3 the deflection of beam with supported ends
subject to uniform loading was approximated. Using a more appropriate rep-
resentation of curvature gives the differential equation

[
1 + (w′(x))2

]−3/2
w′′(x) =

S

EI
w(x) +

q

2EI
x(x− l), for 0 < x < l.

Approximate the deflection w(x) of the beam every 6 in. and compare the
results to those of Exercise 8 of Section 11.3.

554CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

11.6 Variational Techniques

The Shooting method for approximating the solution to a boundary-value problem
replaced it with initial-value problems. The finite-difference method replaced the
continuous operation of differentiation with the discrete operation of finite differ-
ences. The Rayleigh-Ritz method is a variational technique that attacks the problem
from a third approach. The boundary-value problem is first reformulated as a prob-
lem of choosing, from the set of all sufficiently differentiable functions satisfying the
boundary conditions, the function to minimize a certain integral. Then the set of
feasible functions is reduced in size and a function in this reduced set is found that
minimizes the integral. This gives an approximation to the solution to the original
minimization problem and, as a consequence, an approximation to the solution to
the boundary-value problem.

To describe the Rayleigh-Ritz method, we consider approximating the solu-
tion to a linear two-point boundary-value problem from beam-stress analysis. This
boundary-value problem is described by the differential equation

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x) for 0 ≤ x ≤ 1,

with the boundary conditions

y(0) = y(1) = 0.

This differential equation describes the deflection y(x) of a beam of length 1 with
variable cross section given by q(x). The deflection is due to the added stresses p(x)
and f(x).

As is the case with many boundary-value problems that describe physical phe-
nomena, the solution to the beam equation satisfies a variational property. The
solution to the beam equation is the function that minimizes a certain integral over
all functions in the set C2

0 [0, 1], where we define

C2
0 [0, 1] =

{
u ∈ C2[0, 1] | u(0) = u(1) = 0.

}

Details concerning this connection can be found in Spline Analysis by Schultz
[Schu], pp. 88–89.

[Variational Property for the Beam Equation] The function y ∈ C2
0 [0, 1] is the

unique solution to the boundary-value problem

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x), for 0 ≤ x ≤ 1,

if and only if y is the unique function in C2
0 [0, 1] that minimizes the integral

I[u] =
∫ 1

0

{
p(x) [u′(x)]2 + q(x) [u(x)]2 − 2f(x)u(x)

}
dx.

11.6. VARIATIONAL TECHNIQUES 555

The Rayleigh-Ritz method approximates the solution y by minimizing the in-
tegral, not over all the functions in C2

0 [0, 1], but over a smaller set of functions
consisting of linear combinations of certain basis functions φ1, φ2, . . . , φn. The ba-
sis functions are chosen to be linearly independent and to satisfy

φi(0) = φi(1) = 0, for each i = 1, 2, . . . , n.

An approximation φ(x) =
∑n

i=1 ciφi(x) to the solution y(x) is obtained by finding
constants c1, c2, . . . , cn to minimize I[φ(x)] = I[

∑n
i=1 ciφi(x)].

From the variational property,

I[φ(x)] = I

[
n∑

i=1

ciφi(x)

]

=
∫ 1

0


p(x)

[
n∑

i=1

ciφ
′
i(x)

]2

+ q(x)

[
n∑

i=1

ciφi(x)

]2

− 2f(x)
n∑

i=1

ciφi(x)


 dx,

and, for a minimum to occur, it is necessary to have

∂I

∂cj
[φ(x)] = 0, for each j = 1, 2, . . . , n.

Differentiating with respect to the coefficients gives

∂I

∂cj
[φ(x)] =

∫ 1

0

[
2p(x)

n∑
i=1

ciφ
′
i(x)φ

′
j(x) + 2q(x)

n∑
i=1

ciφi(x)φj(x)− 2f(x)φj(x)

]
dx,

so

0 =
n∑

i=1

[∫ 1

0

{p(x)φ′i(x)φ′j(x) + q(x)φi(x)φj(x)} dx
]
ci −

∫ 1

0

f(x)φj(x) dx,

for each j = 1, 2, . . . , n. These normal equations produce an n × n linear system
Ac = b in the variables c1, c2, . . . , cn, where the symmetric matrix A is given by

aij =
∫ 1

0

[p(x)φ′i(x)φ
′
j(x) + q(x)φi(x)φj(x)] dx,

and the vector b has the coordinates

bi =
∫ 1

0

f(x)φi(x) dx.

The most elementary choice of basis functions involves piecewise linear polyno-
mials. The first step is to form a partition of [0, 1] by choosing points x0, x1, . . . , xn+1

with
0 = x0 < x1 < · · · < xn < xn+1 = 1.

556CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

Let hi = xi+1−xi for each i = 0, 1, . . . , n, and define the basis functions φ1(x), φ2(x),
. . . , φn(x) by

φi(x) =




0, for 0 ≤ x ≤ xi−1,
1

hi−1
(x− xi−1), for xi−1 < x ≤ xi,

1
hi

(xi+1 − x), for xi < x ≤ xi+1,

0, for xi+1 < x ≤ 1,

(11.9)

for each i = 1, 2, . . . , n. (See Figure 11.4.)

Figure 11.4

fi(x)

x

fi

xi21 xi xi11

0

1

1

Since the functions φi are piecewise linear, the derivatives φ′i, while not contin-
uous, are constant on the open subinterval (xj , xj+1) for each j = 0, 1, . . . , n. Thus,
we have

φ′i(x) =




0, for 0 < x < xi−1,
1

hi−1
, for xi−1 < x < xi,

− 1
hi
, for xi < x < xi+1,

0, for xi+1 < x < 1,

for each i = 1, 2, . . . , n. Because φi and φ′i are nonzero only on (xi−1, xi+1),

φi(x)φj(x) ≡ 0 and φ′i(x)φ
′
j(x) ≡ 0,

except when j is i − 1, i, or i + 1. As a consequence, the linear system reduces to
an n× n tridiagonal linear system. The nonzero entries in A are

aii =
∫ 1

0

{p(x)[φ′i(x)]2 + q(x)[φi(x)]2} dx

=
∫ xi

xi−1

(
1

hi−1

)2

p(x) dx+
∫ xi+1

xi

(−1
hi

)2

p(x) dx

+
∫ xi

xi−1

(
1

hi−1

)2

(x− xi−1)2q(x) dx+
∫ xi+1

xi

(
1
hi

)2

(xi+1 − x)2q(x) dx,

11.6. VARIATIONAL TECHNIQUES 557

for each i = 1, 2, . . . , n;

ai,i+1 =
∫ 1

0

{p(x)φ′i(x)φ′i+1(x) + q(x)φi(x)φi+1(x)} dx

=
∫ xi+1

xi

−
(

1
hi

)2

p(x) dx+
∫ xi+1

xi

(
1
hi

)2

(xi+1 − x)(x− xi)q(x) dx,

for each i = 1, 2, . . . , n− 1; and

ai,i−1 =
∫ 1

0

{p(x)φ′i(x)φ′i−1(x) + q(x)φi(x)φi−1(x)} dx

=
∫ xi

xi−1

−
(

1
hi−1

)2

p(x) dx+
∫ xi

xi−1

(
1

hi−1

)2

(xi − x)(x− xi−1)q(x) dx,

for each i = 2, . . . , n. The entries in b are

bi =
∫ 1

0

f(x)φi(x) dx

=
∫ xi

xi−1

1
hi−1

(x− xi−1)f(x) dx+
∫ xi+1

xi

1
hi

(xi+1 − x)f(x) dx,

for each i = 1, 2, . . . , n.
There are six types of integrals to be evaluated

Q1,i =
(

1
hi

)2 ∫ xi+1

xi

(xi+1 − x)(x− xi)q(x) dx, for each i = 1, 2, . . . , n− 1,

Q2,i =
(

1
hi−1

)2 ∫ xi

xi−1

(x− xi−1)2q(x) dx, for each i = 1, 2, . . . , n,

Q3,i =
(

1
hi

)2 ∫ xi+1

xi

(xi+1 − x)2q(x) dx, for each i = 1, 2, . . . , n,

Q4,i =
(

1
hi−1

)2 ∫ xi

xi−1

p(x) dx, for each i = 1, 2, . . . , n+ 1,

Q5,i =
1

hi−1

∫ xi

xi−1

(x− xi−1)f(x) dx, for each i = 1, 2, . . . , n,

and

Q6,i =
1
hi

∫ xi+1

xi

(xi+1 − x)f(x) dx, for each i = 1, 2, . . . , n.

Once the values of these integrals have been determined we have

ai,i = Q4,i +Q4,i+1 +Q2,i +Q3,i, for each i = 1, 2, . . . , n,
ai,i+1 = −Q4,i+1 +Q1,i, for each i = 1, 2, . . . , n− 1,
ai,i−1 = −Q4,i +Q1,i−1, for each i = 2, 3, . . . , n,

558CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

and

bi = Q5,i +Q6,i, for each i = 1, 2, . . . , n.

The entries in c are the unknown coefficients c1, c2, . . . , cn, from which the Rayleigh-
Ritz approximation φ(x) =

∑n
i=1 ciφi(x) is constructed.

A practical difficulty with this method is the necessity of evaluating 6n inte-
grals. The integrals can be evaluated either directly or by a quadrature formula
such as Simpson’s method. An alternative approach for the integral evaluation is to
approximate each of the functions p, q, and f with its piecewise linear interpolat-
ing polynomial and then integrate the approximation. Consider, for example, the
integral Q1,i. The piecewise linear interpolation of q is

Pq(x) =
n+1∑
i=0

q(xi)φi(x),

where φ1, . . . , φn are defined in Eq. (11.9) and

φ0(x) =



x1 − x
x1

, if 0 ≤ x ≤ x1,

0, elsewhere,
and φn+1(x) =



x− xn

1− xn
, if xn ≤ x ≤ 1,

0, elsewhere.

Since the interval of integration is [xi, xi+1], the piecewise polynomial Pq(x)
reduces to

Pq(x) = q(xi)φi(x) + q(xi+1)φi+1(x).

This is the first-degree interpolating polynomial studied in Section 3.2, with error

|q(x)− Pq(x)| = O(h2
i), when xi ≤ x ≤ xi+1,

if q ∈ C2[xi, xi+1]. For i = 1, 2, . . . , n− 1, the approximation to Q1,i is obtained by
integrating the approximation to the integrand

Q1,i =
(

1
hi

)2 ∫ xi+1

xi

(xi+1 − x)(x− xi)q(x) dx

≈
(

1
hi

)2 ∫ xi+1

xi

(xi+1 − x)(x− xi)
[
q(xi)(xi+1 − x)

hi
+
q(xi+1)(x− xi)

hi

]
dx

=
hi

12
[q(xi) + q(xi+1)],

with ∣∣∣∣Q1,i − hi

12
[q(xi) + q(xi+1)]

∣∣∣∣ = O(h3
i).

Approximations to the other integrals are derived in a similar manner and given by

Q2,i ≈ hi−1

12
[3q(xi) + q(xi−1)] , Q3,i ≈ hi

12
[3q(xi) + q(xi+1)] ,

Q4,i ≈ hi−1

2
[p(xi) + p(xi−1)] , Q5,i ≈ hi−1

6
[2f(xi) + f(xi−1)] ,

11.6. VARIATIONAL TECHNIQUES 559

and

Q6,i ≈ hi

6
[2f(xi) + f(xi+1)].

The program PLRRG115 sets up the tridiagonal linear system and incorpo-
rates Crout factorization for tridiagonal systems to solve the system. The integrals
Q1,i, . . . , Q6,i can be computed by one of the methods just discussed. Because of
the elementary nature of the following example, the integrals were found directly.

EXAMPLE 1 Consider the boundary-value problem

−y′′ + π2y = 2π2 sin(πx), for 0 ≤ x ≤ 1, where y(0) = y(1) = 0.

Let hi = h = 0.1, so that xi = 0.1i for each i = 0, 1, . . . , 9. The integrals are

Q1,i = 100
∫ 0.1i+0.1

0.1i

(0.1i+ 0.1− x)(x− 0.1i)π2 dx =
π2

60
,

Q2,i = 100
∫ 0.1i

0.1i−0.1

(x− 0.1i+ 0.1)2π2 dx =
π2

30
,

Q3,i = 100
∫ 0.1i+0.1

0.1i

(0.1i+ 0.1− x)2π2 dx =
π2

30
,

Q4,i = 100
∫ 0.1i

0.1i−0.1

dx = 10,

Q5,i = 10
∫ 0.1i

0.1i−0.1

(x− 0.1i+ 0.1)2π2 sinπx dx

= −2π cos 0.1πi+ 20 [sin(0.1πi)− sin ((0.1i− 0.1)π)] ,

and

Q6,i = 10
∫ 0.1i+0.1

0.1i

(0.1i+ 0.1− x)2π2 sinπx dx

= 2π cos 0.1πi− 20 [sin ((0.1i+ 0.1)π)− sin(0.1πi)] .

The linear system Ac = b has

ai,i = 20 +
π2

15
, for each i = 1, 2, . . . , 9,

ai,i+1 = −10 +
π2

60
, for each i = 1, 2, . . . , 8,

ai,i−1 = −10 +
π2

60
, for each i = 2, 3, . . . , 9,

and

bi = 40 sin(0.1πi)[1− cos 0.1π], for each i = 1, 2, . . . , 9.

560CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

The solution to the tridiagonal linear system is

c9 = 0.3102866742, c6 = 0.9549641893, c3 = 0.8123410598,
c8 = 0.5902003271, c5 = 1.004108771, c2 = 0.5902003271,
c7 = 0.8123410598, c4 = 0.9549641893, c1 = 0.3102866742,

and the piecewise linear approximation is

φ(x) =
9∑

i=1

ciφi(x).

The actual solution to the boundary-value problem is

y(x) = sinπx.

Table 11.7 lists the error in the approximation at xi for each i = 1, . . . , 9.

Table 11.7

i xi φ(xi) y(xi) |φ(xi)− y(xi)|
1 0.1 0.3102866742 0.3090169943 0.00127
2 0.2 0.5902003271 0.5877852522 0.00242
3 0.3 0.8123410598 0.8090169943 0.00332
4 0.4 0.9549641896 0.9510565162 0.00391
5 0.5 1.0041087710 1.0000000000 0.00411
6 0.6 0.9549641893 0.9510565162 0.00391
7 0.7 0.8123410598 0.8090169943 0.00332
8 0.8 0.5902003271 0.5877852522 0.00242
9 0.9 0.3102866742 0.3090169943 0.00127

The tridiagonal matrix A given by the piecewise linear basis functions is positive
definite, so the linear system is stable with respect to round-off error and

|φ(x)− y(x)| = O(h2), when 0 ≤ x ≤ 1.

The use of piecewise-linear basis functions results in an approximate solution
that is continuous but not differentiable on [0, 1]. A more complicated set of basis
functions is required to construct an approximation that has two continuous deriva-
tives. These basis functions are similar to the cubic interpolatory splines discussed
in Section 3.5.

Recall that the cubic interpolatory spline S on the five nodes x0, x1, x2, x3, and
x4 for a function f is defined as follows:

(a) S is a cubic polynomial, denoted by Sj , on [xj , xj+1], for j = 0, 1, 2, 3. (This
gives 16 selectable constants for S, 4 for each cubic.)

11.6. VARIATIONAL TECHNIQUES 561

(b) S(xj) = f(xj), for j = 0, 1, 2, 3, 4 (5 specified conditions).

(c) Sj+1(xj+1) = Sj(xj+1), for j = 0, 1, 2 (3 specified conditions).

(d) S′
j+1(xj+1) = S′

j(xj+1), for j = 0, 1, 2 (3 specified conditions).

(e) S′′
j+1(xj+1) = S′′

j (xj+1), for j = 0, 1, 2 (3 specified conditions).

(f) One of the following boundary conditions is satisfied:

(i) Free: S′′(x0) = S′′(x4) = 0 (2 specified conditions).

(ii) Clamped: S′(x0) = f ′(x0) and S′(x4) = f ′(x4) (2 specified conditions).

Since uniqueness of solution requires the number of constants in (a), 16, to equal
the number of conditions in (b) through (f), only one of the boundary conditions
in (f) can be specified for the interpolatory cubic splines.

The cubic spline functions we will use for our basis functions are called B-
splines, or bell-shaped splines. These differ from interpolatorysplines in that both
sets of boundary conditions in (f) are satisfied. This requires the relaxation of two
of the conditions in (b) through (e). Since the spline must have two continuous
derivatives on [x0, x4], we must delete two of the interpolation conditions from the
description of the interpolatory splines. In particular, we modify condition (b) to

(b′) S(xj) = f(xj) for j = 0, 2, 4.

The basic B-spline S shown in Figure 11.5 uses the equally spaced nodes x0 = −2,
x1 = −1, x2 = 0, x3 = 1, and x4 = 2. It satisfies the interpolatory conditions

(b′). S(x0) = 0, S(x2) = 1, S(x4) = 0;

as well as both sets of conditions

(i) S′′(x0) = S′′(x4) = 0 and (ii) S′(x0) = S′(x4) = 0.

Figure 11.5

x

S

1 22122

S(x)

1

562CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

As a consequence, S ∈ C2(−∞,∞).

S(x) =




0, for x ≤ −2,
1
4 (2 + x)3, for −2 ≤ x ≤ −1,
1
4

[
(2 + x)3 − 4(1 + x)3

]
, for −1 < x ≤ 0,

1
4

[
(2− x)3 − 4(1− x)3] , for 0 < x ≤ 1,

1
4 (2− x)3, for 1 < x ≤ 2,

0, for 2 < x.

(11.10)

To construct the basis functions φi in C2
0 [0, 1] we first partition [0, 1] by choosing

a positive integer n and defining h = 1/(n + 1). This produces the equally-spaced
nodes xi = ih, for each i = 0, 1, . . . , n+1.We then define the basis functions {φi}n+1

i=0

as

φi(x) =




S
(

x
h

)− 4S
(

x+h
h

)
, for i = 0,

S
(

x−h
h

)− S (x+h
h

)
, for i = 1,

S
(

x−ih
h

)
, for 2 ≤ i ≤ n− 1,

S
(

x−nh
h

)− S
(

x−(n+2)h
h

)
, for i = n,

S
(

x−(n+1)h
h

)
− 4S

(
x−(n+2)h

h

)
, for i = n+ 1.

It is not difficult to show that {φi}n+1
i=0 is a linearly independent set of cubic splines

satisfying φi(0) = φi(1) = 0, for each i = 0, 1, . . . , n, n + 1. The graphs of φi, for
2 ≤ i ≤ n− 1, are shown in Figure 11.6 and the graphs of φ0, φ1, φn, and φn+1 are
in Figure 11.7.

Figure 11.6

x

fi(x)

fi when i 5 1, 2, . . . , n 2 1

xixi21xi22 xi11 xi12

1

Figure 11.7

11.6. VARIATIONAL TECHNIQUES 563

x

xx

x

f0(x)

f0

x1 x2

f1(x)

fn

f1

x1 x2 x3

fn(x)

xn22

1

fn11(x)

fn11

xn21 xn

x3

1

1 1

1 xn21 xn 1

Since φi(x) and φ′i(x) are nonzero only for xi−2 ≤ x ≤ xi+2, the matrix in the
Rayleigh-Ritz approximation is a band matrix with bandwidth at most seven:

A =




a00 a01 a02 a03 0 0
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24 a25

a30 a31 a32 a33 a34 a35 a36

0 0
an−2,n+1

an−1,n+1

an,n+1

0 0 an+1,n−2 an+1,n−1 an+1,n an+1,n+1




,

(11.11)
where

aij =
∫ 1

0

{p(x)φ′i(x)φ′j(x) + q(x)φi(x)φj(x)} dx,
for each i = 0, 1, . . . , n+ 1 and j = 0, 1, . . . , n+ 1. The vector b has the entries

bi =
∫ 1

0

f(x)φi(x) dx.

The matrix A is positive definite, so the linear system Ac = b can be quickly
and stably solved by Choleski’s method or by Gaussian elimination. The program
CSRRG116 constructs the cubic spline approximation described by the Rayleigh-
Ritz technique.

EXAMPLE 2 Consider the boundary-value problem

−y′′ + π2y = 2π2 sin(πx), for 0 ≤ x ≤ 1, where y(0) = y(1) = 0.

564CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

In Example 1 we let h = 0.1 and generated approximations using piecewise-linear
basis functions. Here we let n = 3, so that h = 0.25. The cubic spline basis functions
are

φ0(x) =




12x− 72x2 + 112x3, for 0 ≤ x ≤ 0.25
2− 12x+ 24x2 − 16x3, for 0.25 < x ≤ 0.5
0, otherwise

φ1(x) =




6x− 32x3, for 0 ≤ x ≤ 0.25
− 5

4 + 21x− 60x2 + 48x3, for 0.25 < x ≤ 0.5
27
4 − 27x+ 36x2 − 16x3, for 0.5 < x ≤ 0.75
0, otherwise

φ2(x) =




16x3, for 0 ≤ x ≤ 0.25
1− 12x+ 48x2 − 48x3, for 0 < x ≤ 0.5
−11 + 60x− 96x2 + 48x3, for 0.5 < x ≤ 0.75
16− 48x+ 48x2 − 16x3, for 0.75 < x ≤ 1
0, otherwise

φ3(x) =




− 1
4 + 3x− 12x2 + 16x3, for 0.25 < x ≤ 0.5

31
4 − 45x+ 84x2 − 48x3, for 0.5 < x ≤ 0.75
−26 + 90x− 96x2 + 32x3, for 0.75 < x ≤ 1
0, otherwise

and

φ4(x) =




−2 + 12x− 24x2 + 16x3, for 0.5 < x ≤ 0.75
52− 204x+ 264x2 − 112x3, for 0.75 ≤ x ≤ 1
0, otherwise

11.6. VARIATIONAL TECHNIQUES 565

The entries in the matrix A are generated as follows

a00 =
∫ 1

0

{
p(x) [φ′0(x)]

2 + q(x) [φ0(x)]
2
}
dx

=
∫ 0.5

0

{
[φ′0(x)]

2 + π2 [φ0(x)]
2
}
dx = 6.5463531

a01 = a10 =
∫ 1

0

{p(x)φ′0(x)φ′1(x) + q(x)φ0(x)φ1(x)} dx

=
∫ 0.5

0

{
φ′0(x)φ

′
1(x) + π2φ0(x)φ1(x)

}
dx = 4.0764737

a02 = a20 =
∫ 1

0

{p(x)φ′0(x)φ′2(x) + q(x)φ0(x)φ2(x)} dx

=
∫ 0.5

0

{
φ′0(x)φ

′
2(x) + π2φ0(x)φ2(x)

}
dx = −1.3722239

a03 = a30 =
∫ 1

0

{p(x)φ′0(x)φ′3(x) + q(x)φ0(x)φ3(x)} dx

=
∫ 0.5

0.25

{
φ′0(x)φ

′
3(x) + π2φ0(x)φ3(x)

}
dx = −0.73898482

a11 =
∫ 1

0

{
p(x) [φ′1(x)]

2 + q(x) [φ1(x)]
2
}
dx

=
∫ 0.75

0

{
[φ′1(x)]

2 + π2 [φ1(x)]
2
}
dx = 10.329086

a12 = a21 =
∫ 1

0

{p(x)φ′1(x)φ′2(x) + q(x)φ1(x)φ2(x)} dx

=
∫ 0.75

0

{
φ′1(x)φ

′
2(x) + π2φ1(x)φ2(x)

}
dx = 0.26080684

a13 = a31 =
∫ 1

0

{p(x)φ′1(x)φ′3(x) + q(x)φ1(x)φ3(x)} dx

=
∫ 0.75

0.25

{
φ′1(x)φ

′
3(x) + π2φ1(x)φ3(x)

}
dx = −1.6678178

a14 = a41 =
∫ 1

0

{p(x)φ′1(x)φ′4(x) + q(x)φ1(x)φ4(x)} dx

=
∫ 0.75

0.5

{
φ′1(x)φ

′
4(x) + π2φ1(x)φ4(x)

}
dx = −0.73898482

a22 =
∫ 1

0

{
p(x) [φ′2(x)]

2 + q(x) [φ2(x)]
2
}
dx

=
∫ 1

0

{
[φ′2(x)]

2 + π2 [φ2(x)]
2
}
dx = 8.6612683

a23 = a32 =
∫ 1

0

{p(x)φ′2(x)φ′3(x) + q(x)φ2(x)φ3(x)} dx

=
∫ 1

0.25

{
φ′2(x)φ

′
3(x) + π2φ2(x)φ3(x)

}
dx = 0.26080684

566CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

a24 = a42 =
∫ 1

0

{p(x)φ′2(x)φ′4(x) + q(x)φ2(x)φ4(x)} dx

=
∫ 1

0.5

{
φ′2(x)φ

′
4(x) + π2φ2(x)φ4(x)

}
dx = −1.3722239

a33 =
∫ 1

0

{
p(x) [φ′3(x)]

2 + q(x) [φ3(x)]
2
}
dx

=
∫ 1

0.25

{
[φ′3(x)]

2 + π2 [φ3(x)]
2
}
dx = 10.329086

a34 = a43 =
∫ 1

0

{p(x)φ′3(x)φ′4(x) + q(x)φ3(x)φ4(x)} dx

=
∫ 1

0.5

{
φ′3(x)φ

′
4(x) + π2φ3(x)φ4(x)

}
dx = 4.0764737

a44 =
∫ 1

0

{
p(x) [φ′4(x)]

2 + q(x) [φ4(x)]
2
}
dx

=
∫ 1

0.5

{
[φ′4(x)]

2 + π2 [φ4(x)]
2
}
dx = 6.5463531

and

b0 =
∫ 1

0

f(x)φ0(x) dx =
∫ 0.5

0

(
2π2 sinπx

)
φ0(x) dx = 1.0803542

b1 =
∫ 1

0

f(x)φ1(x) dx =
∫ 0.75

0

(
2π2 sinπx

)
φ1(x) dx = 4.7202512

b2 =
∫ 1

0

f(x)φ2(x) dx =
∫ 1

0

(
2π2 sinπx

)
φ2(x) dx = 6.6754433

b3 =
∫ 1

0

f(x)φ3(x) dx =
∫ 1

0.25

(
2π2 sinπx

)
φ3(x) dx = 4.7202512

b4 =
∫ 1

0

f(x)φ4(x) dx =
∫ 1

0.5

(
2π2 sinπx

)
φ4(x) dx = 1.08035418

The solution to the system Ac = b is c0 = 0.00060266150, c1 = 0.52243908,
c2 = 0.73945127, c3 = 0.52243908, and c4 = 0.00060264906. Evaluating φ(x) =∑4

i=0 ciφi(x) at each xj , for 0 ≤ j ≤ 4, gives the results in Table 11.8. Notice that
these results using h = 0.25 are superior to the piecewise-linear results given in
Example 1, where we used h = 0.1.

11.6. VARIATIONAL TECHNIQUES 567

Table 11.8

i xi φ(xi) y(xi) |φ(xi)− y(xi)|
0 0 0 0 0
1 0.25 0.70745256 0.70710678 0.00034578
2 0.5 1.0006708 1 0.0006708
3 0.75 0.70745256 0.70710678 0.00034578
4 1 0 0 0

The integrations should be performed in two steps, as was done in the Piecewise
Linear method. First, construct cubic spline interpolatory polynomials for p, q, and
f using the methods presented in Section 3.5. Then approximate the integrands by
products of cubic splines or derivatives of cubic splines. Since these integrands are
piecewise polynomials, they can be integrated exactly on each subinterval and then
summed.

In general, this technique produces approximations φ(x) to y(x) that satisfy

[∫ 1

0

|y(x)− φ(x)|2dx
]1/2

= O(h4), 0 ≤ x ≤ 1.

568CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

EXERCISE SET 11.6

1. Use the Piecewise Linear method to approximate the solution to the boundary-
value problem

y′′ +
π2

4
y =

π2

16
cos

π

4
x, for 0 ≤ x ≤ 1 with y(0) = y(1) = 0

using x0 = 0, x1 = 0.3, x2 = 0.7, x3 = 1 and compare the results to the actual

solution y(x) = −1
3

cos
π

2
x−
√

2
6

sin
π

2
x+

1
3

cos
π

4
x.

2. Use the Piecewise Linear method to approximate the solution to the boundary-
value problem

− d

dx
(xy′) + 4y = 4x2 − 8x+ 1, for 0 ≤ x ≤ 1 with y(0) = y(1) = 0

using x0 = 0, x1 = 0.4, x2 = 0.8, x3 = 1 and compare the results to the actual
solution y(x) = x2 − x.

3. Use the Piecewise Linear method to approximate the solutions to the following
boundary-value problems and compare the results to the actual solution:

(a) −x2y′′ − 2xy′ + 2y = −4x2, for 0 ≤ x ≤ 1 with y(0) = y(1) = 0; use
h = 0.1; actual solution y(x) = x2 − x.

(b) − d

dx
(exy′) + exy = x+ (2− x)ex, for 0 ≤ x ≤ 1 with y(0) = y(1) = 0;

use h = 0.1; actual solution y(x) = (x− 1)(e−x − 1).

(c) − d

dx
(e−xy′) + e−xy = (x − 1) − (x + 1)e−(x−1), for 0 ≤ x ≤ 1 with

y(0) = y(1) = 0; use h = 0.05; actual solution y(x) = x(ex − e).

(d) −(x + 1)y′′ − y′ + (x + 2)y = [2 − (x + 1)2]e ln 2 − 2ex, for 0 ≤ x ≤ 1
with y(0) = y(1) = 0; use h = 0.05; actual solution y(x) = ex ln(x +
1)− (e ln 2)x.

4. Use the Cubic Spline method with n = 3 to approximate the solution to
each of the following boundary-value problems and compare the results to
the actual solutions.

(a) y′′ +
π2

4
y =

π2

16
cos

π

4
x, for 0 ≤ x ≤ 1 with y(0) = 0 and y(1) = 0

(b) − d

dx
(xy′)+4y = 4x2−8x+1, for 0 ≤ x ≤ 1 with y(0) = 0 and y(1) = 0.

5. Repeat Exercise 3 using the Cubic Spline method.

11.6. VARIATIONAL TECHNIQUES 569

6. Show that the boundary-value problem

− d

dx
(p(x)y′)+q(x)y = f(x), for 0 ≤ x ≤ 1 with y(0) = α and y(1) = β,

can be transformed by the change of variable

z = y − βx− (1− x)α

into the form

− d

dx
(p(x)z′) + q(x)z = F (x), 0 ≤ x ≤ 1, z(0) = 0, z(1) = 0.

7. Use Exercise 6 and the Piecewise Linear method with n = 9 to approximate
the solution to the boundary-value problem

−y′′ + y = x, for 0 ≤ x ≤ 1 with y(0) = 1 and y(1) = 1 + e−1.

8. Repeat Exercise 7 using the Cubic Spline method.

9. Show that the boundary-value problem

− d

dx
(p(x)y′)+q(x)y = f(x), for a ≤ x ≤ b with y(a) = α and y(b) = β,

can be transformed into the form

− d

dw
(p(w)z′)+q(w)z = F (w), for 0 ≤ w ≤ 1 with z(0) = 0 and z(1) = 0,

by a method similar to that given in Exercise 6.

10. Show that the set of piecewise linear basis functions is linearly independent
on [0, 1].

11. Use the definition of positive definite to show that the matrix given by the
piecewise linear basis functions satisfies this condition.

570CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

11.7 Survey of Methods and Software

In this chapter we discussed methods for approximating solutions to boundary-value
problems. For the linear boundary-value problem

y′′ = p(x)y′ + q(x)y + r(x), a ≤ x ≤ b, y(a) = α, y(b) = β,

we considered both a linear shooting method and a finite-difference method to
approximate the solution. The shooting method uses an initial-value technique to
solve the problems

y′′ = p(x)y′ + q(x)y + r(x), a ≤ x ≤ b, y(a) = α, y′(a) = 0,

and
y′′ = p(x)y′ + q(x)y, a ≤ x ≤ b, y(a) = 0, y′(a) = 1.

A weighted average of these solutions produces a solution to the linear boundary-
value problem.

In the finite-difference method, we replaced y′′ and y′ with difference approxi-
mations and solved a linear system. Although the approximations may not be as
accurate as the shooting method, there is less sensitivity to roundoff error. Higher-
order difference methods are available, or extrapolation can be used to improve
accuracy.

For the nonlinear boundary problem

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y(b) = β,

we also presented two methods. The nonlinear shooting method requires the solution
of the initial-value problem

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y′(a) = t,

for an initial choice of t. We improved the choice by using Newton’s method to
approximate the solution, t, to y(b, t) = β. This method required solving two initial-
value problems at each iteration. The accuracy is dependent on the choice of method
for solving the initial-value problems.

The finite-difference method for the nonlinear equation requires the replacement
of y′′ and y′ by difference quotients, which results in a nonlinear system. This system
is solved using Newton’s method. Higher-order differences or extrapolation can be
used to improve accuracy. Finite-difference methods tend to be less sensitive to
roundoff error than shooting methods.

The Rayleigh-Ritz-Galerkin method was illustrated by approximating the solu-
tion to the boundary-value problem

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x), 0 ≤ x ≤ 1, y(0) = y(1) = 0.

A piecewise-linear approximation or a cubic spline approximation can be obtained.

11.7. SURVEY OF METHODS AND SOFTWARE 571

Most of the material concerning second-order boundary-value problems can be
extended to problems with boundary conditions of the form

α1y(a) + β1y
′(a) = α and α2y(b) + β2y

′(b) = β,

where |α1|+ |β1|
= 0 and |α2|+ |β2|
= 0, but some of the techniques become quite
complicated. The reader who is interested in problems of this type is advised to
consider a book specializing in boundary-value problems, such as [K,H].

The IMSL and NAG libraries contain methods for boundary-value problems.
There are Finite-Difference methods and Shooting methods that are based on their
adaptations of variable-step-size Runge-Kutta methods.

The subroutines MUSL and MUSN in the ODE package contained in the Netlib
library solve the linear and nonlinear two-point boundary-value problems, respec-
tively. Both routines are based on multiple shooting methods.

Further information on the general problems involved with the numerical solu-
tion to two-point boundary-value problems can be found in Keller [K,H] and Bailey,
Shampine and Waltman [BSW]. Roberts and Shipman [RS] focuses on the shoot-
ing methods for the two-point boundary-value problem, and Pryce [Pr] restricts
attention to Sturm-Liouville problems. The book by Ascher, Mattheij, and Russell
[AMR] has a comprehensive presentation of multiple shooting and parallel shooting
methods.

572CHAPTER 11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION

Chapter 12

Numerical Methods for
Partial-Differential Equations

12.1 Introduction

Physical problems that involve more than one variable are often expressed using
equations involving partial derivatives. In this chapter, we present a brief introduc-
tion to some of the techniques available for approximating the solution to partial-
differential equations involving two variables by showing how these techniques can
be applied to certain standard physical problems.

The partial-differential equation we will consider in Section 12.2 is an elliptic
equation known as the Poisson equation:

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y).

In this equation we assume that f describes the input to the problem on a plane
region R with boundary S. Equations of this type arise in the study of various
time-independent physical problems such as the steady-state distribution of heat
in a plane region, the potential energy of a point in a plane acted on by gravi-
tational forces in the plane, and two-dimensional steady-state problems involving
incompressible fluids.

Additional constraints must be imposed to obtain a unique solution to the Pois-
son equation. For example, the study of the steady-state distribution of heat in a
plane region requires that f(x, y) ≡ 0, resulting in a simplification to

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0,

which is called Laplace’s equation. If the temperature within the region is deter-
mined by the temperature distribution on the boundary of the region,

the constraints are called the Dirichlet boundary conditions, given by

u(x, y) = g(x, y)

573

574CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

for all (x, y) on S, the boundary of the region R. (See Figure 12.1.)

Figure 12.1

x

y

R

(x, y): Temperature is
held constant
at g(x, y) degrees

In Section 12.3 we consider the numerical solution to a problem involving a
parabolic partial-differential equation of the form

∂u

∂t
(x, t)− α2 ∂

2u

∂x2
(x, t) = 0.

The physical problem considered here concerns the flow of heat along a rod of length
l (see Figure 12.2), which has a uniform temperature within each cross-sectional
element. This requires the rod to be perfectly insulated on its lateral surface. The
constant α is independent of the position in the rod and is determined by the
heat-conductive properties of the material of which the rod is composed.

Figure 12.2

xl0

One of the typical sets of constraints for a heat-flow problem of this type is to
specify the initial heat distribution in the rod,

u(x, 0) = f(x),

and to describe the behavior at the ends of the rod. For example, if the ends are
held at constant temperatures U1 and U2, the boundary conditions have the form

u(0, t) = U1 and u(l, t) = U2,

and the heat distribution approaches the limiting temperature distribution

lim
t→∞u(x, t) = U1 +

U2 − U1

l
x.

12.2. FINITE-DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS 575

If, instead, the rod is insulated so that no heat flows through the ends, the boundary
conditions are

∂u

∂x
(0, t) = 0 and

∂u

∂x
(l, t) = 0,

resulting in a constant temperature in the rod as the limiting case. The parabolic
partial-differential equation is also of importance in the study of gas diffusion; in
fact, it is known in some circles as the diffusion equation.

The problem studied in Section 12.4 is the one-dimensional wave equation,
which is an example of a hyperbolic partial-differential equation. Suppose an elas-
tic string of length l is stretched between two supports at the same horizontal level
(see Figure 12.3).

Figure 12.3

u(x, t)

x, for a fixed time tl

If the string is set to vibrate in a vertical plane, the vertical displacement u(x, t)
of a point x at time t satisfies the partial-differential equation

α2 ∂
2u

∂x2
(x, t) =

∂2u

∂t2
(x, t), for 0 < x < l and 0 < t,

provided that damping effects are neglected and the amplitude is not too large. To
impose constraints on this problem, assume that the initial position and velocity of
the string are given by

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x), for 0 ≤ x ≤ l.

If the endpoints are fixed, we also have u(0, t) = 0 and u(l, t) = 0.
Other physical problems involving the hyperbolic partial-differential equation

occur in the study of vibrating beams with one or both ends clamped, and in the
transmission of electricity on a long line where there is some leakage of current to
the ground.

12.2 Finite-Difference Methods for Elliptic Prob-
lems

The elliptic partial-differential equation we consider is the Poisson equation,

∇2u(x, y) ≡ ∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y)

576CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

on R = {(x, y) | a < x < b, c < y < d}, with

u(x, y) = g(x, y) for (x, y) ∈ S,
where S denotes the boundary of R. If f and g are continuous on their domains,
then this equation has a unique solution.

The method used here is an adaptation of the Finite-Difference method for
linear boundary-value problems, which was discussed in Section 11.3. The first step
is to choose integers n and m and define step sizes h and k by h = (b − a)/n and
k = (d − c)/m. Partition the interval [a, b] into n equal parts of width h and the
interval [c, d] into m equal parts of width k. We provide a grid on the rectangle R by
drawing vertical and horizontal lines through the points with coordinates (xi, yj),
where

xi = a+ ih and yj = c+ jk

for each i = 0, 1, . . . , n and j = 0, 1, . . . ,m (see Figure 12.4).

Figure 12.4

. .
 .

x

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

ym 5 d

y0 5 c

x0 5 a b 5 xnx1 x2 x3 x4

y1

y2

y

. . .

. . .

The lines x = xi and y = yj are grid lines, and their intersections are the
mesh points of the grid.For each mesh point in the interior of the grid, we use the
Taylor polynomial in the variable x about xi to generate the centered-difference
formula

∂2u

∂x2
(xi, yj) =

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)
h2

− h2

12
∂4u

∂x4
(ξi, yj),

for some ξi in (xi−1, xi+1) and the Taylor polynomial in the variable y about yj to
generate the centered-difference formula

∂2u

∂y2
(xi, yj) =

u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)
k2

− k2

12
∂4u

∂y4
(xi, ηj),

for some ηj in (yj−1, yj+1).

12.2. FINITE-DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS 577

Using these formulas in the Poisson equation produces the following equations

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)
h2

+
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

k2

= f(xi, yj) +
h2

12
∂4u

∂x4
(ξi, yj) +

k2

12
∂4u

∂y4
(xi, ηj),

for each i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1. The boundary conditions give

u(xi, y0) = g(xi, y0) and u(xi, ym) = g(xi, ym),

for each i = 1, 2, . . . , n− 1, and for each j = 0, 1, . . . ,m,

u(x0, yj) = g(x0, yj) and u(xn, yj) = g(xn, yj).

In difference-equation form, this results in the Finite-Difference method for the
Poisson equation, with error of order O(h2 + k2).

[Elliptic Finite-Difference Method]

2

[(
h

k

)2

+ 1

]
wij−(wi+1,j+wi−1,j)−

(
h

k

)2

(wi,j+1+wi,j−1) = −h2f(xi, yj),

for each i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1, and

w0j = g(x0, yj), wnj = g(xn, yj), wi0 = g(xi, y0), and wim = g(xi, ym)

for each i = 1, 2, . . . , n − 1 and j = 0, 1, . . . ,m, where wij approximates
u(xi, yj).

The typical equation involves approximations to u(x, y) at the points

(xi−1, yj), (xi, yj), (xi+1, yj), (xi, yj−1), and (xi, yj+1).

Reproducing the portion of the grid where these points are located (see Figure 12.5)
shows that each equation involves approximations in a star-shaped region about
(xi, yj).

Figure 12.5

578CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

x

y

d

c

a bxi21 xi xi11

yj21

yj

yj11

x

x
x xx

If we use the information from the boundary conditions, whenever appropriate,
in the system given by the Finite-Difference method (that is, at all points (xi, yj)
that are adjacent to a boundary mesh point), we have an (n−1)(m−1)×(n−1)(m−
1) linear system with the unknowns being the approximations wij to u(xi, yj) at
the interior mesh points. The linear system involving these unknowns is expressed
for

Figure 12.6

x1 x2 x3 x4x0

y5

y4

y3

y2

y1

y0

P1 P2 P3

P4 P5 P6

P7 P8 P9

P10 P11 P12

x

y

matrix calculations more efficiently if the interior mesh points are relabelled by
letting

Pl = (xi, yj) and wl = wij ,

where l = i+(m− 1− j)(n− 1) for each i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1.
This, in effect, labels the mesh points consecutively from left to right and top to
bottom. For example, with n = 4 and m = 5, the relabelling results in a grid whose

12.2. FINITE-DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS 579

points are shown in Figure 12.6. Labelling the points in this manner ensures that
the system needed to determine the wij is a banded matrix with band width at
most 2n− 1.

EXAMPLE 1 Consider the problem of determining the steady-state heat distribution in a thin
square metal plate 0.5 meters on a side. Two adjacent boundaries are held at 0◦C,
and the heat on the other boundaries increases linearly from 0◦C at one corner to
100◦C where the sides meet. If we place the sides with the zero boundary conditions
along the x- and y-axes, the problem is expressed as

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0,

for (x, y) in the set R = {(x, y) | 0 < x < 0.5; 0 < y < 0.5}, with the boundary
conditions

u(0, y) = 0, u(x, 0) = 0, u(x, 0.5) = 200x, u(0.5, y) = 200y.

Figure 12.7

u(0, y) 5 0

u(x, 0) 5 0 0.5

0.5
u(x, 0.5) 5 200x

u(0.5, y) 5 200y

P1 P2 P3

P4 P5 P6

P7 P8 P9

y

x

If n = m = 4, the problem has the grid given in Figure 12.7, and the difference
equation is

4wi,j − wi+1,j − wi−1,j − wi,j−1 − wi,j+1 = 0,

for each i = 1, 2, 3, and j = 1, 2, 3.

580CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

Expressing this in terms of the relabelled interior grid points wi = u(Pi) implies
that the equations at the points Pi are

P1: 4w1 − w2 − w4 = w0,3 + w1,4,
P2: 4w2 − w3 − w1 − w5 = w2,4,
P3: 4w3 − w2 − w6 = w4,3 + w3,4,
P4: 4w4 − w5 − w1 − w7 = w0,2,
P5: 4w5 − w6 − w4 − w2 − w8 = 0,
P6: 4w6 − w5 − w3 − w9 = w4,2,
P7: 4w7 − w8 − w4 = w0,1 + w1,0,
P8: 4w8 − w9 − w7 − w5 = w2,0,
P9: 4w9 − w8 − w6 = w3,0 + w4,1,

where the right sides of the equations are obtained from the boundary conditions.
In fact, the boundary conditions imply that w1,0 = w2,0 = w3,0 = w0,1 = w0,2 =
w0,3 = 0, w1,4 = w4,1 = 25, w2,4 = w4,2 = 50, and w3,4 = w4,3 = 75.

The linear system associated with this problem has the form



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4







w1

w2

w3

w4

w5

w6

w7

w8

w9




=




25
50

150
0
0

50
0
0

25




.

The values of w1, w2, . . . , w9 found by applying the Gauss-Seidel method to this
matrix are given in Table 12.1.

Table 12.1

i 1 2 3 4 5 6 7 8 9

wi 18.75 37.50 56.25 12.50 25.00 37.50 6.25 12.50 18.75

These answers are exact, since the true solution, u(x, y) = 400xy, has

∂4u

∂x4
=
∂4u

∂y4
= 0,

so the error is zero at each step.

12.2. FINITE-DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS 581

For simplicity, the Gauss-Seidel iterative procedure is used in the program
POIFD121, but it is generally advisable to use a direct technique such as Gaussian
elimination when the system is small, on the order of 100 or less, since the positive
definiteness ensures stability with respect to round-off errors. For large systems,
an iterative method should be used. If the SOR method is used, the choice of the
optimal ω in this situation comes from the fact that when A is decomposed into its
diagonal D and upper- and lower-triangular parts U and L,

A = D − L− U,

and B is the matrix for the Jacobi method,

B = D−1(L+ U),

then the spectral radius of B is

ρ(B) =
1
2

[
cos

(π
m

)
+ cos

(π
n

)]
.

The value of ω is, consequently,

ω =
2

1 +
√

1− [ρ(B)]2
=

4

2 +
√

4− [cos
(

π
m

)
+ cos

(
π
n

)]2 .

EXAMPLE 2 Consider Poisson’s equation

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = xey, for 0 < x < 2 and 0 < y < 1,

with the boundary conditions

u(0, y) = 0, u(2, y) = 2ey, for 0 ≤ y ≤ 1,
u(x, 0) = x, u(x, 1) = ex, for 0 ≤ x ≤ 2.

We will use the Finite-Difference method to approximate the exact solution
u(x, y) = xey with n = 6 and m = 5. The stopping criterion for the Gauss-Seidel
method in the program POIFD121 requires that consecutive approximations satisfy

∣∣∣w(l)
ij − w(l−1)

ij

∣∣∣ ≤ 10−10,

for each i = 1, . . . , 5 and j = 1, . . . , 4. The solution to the difference equation was
accurately obtained, and the procedure stopped at l = 61. The results, along with
the correct values, are presented in Table 12.2.

582CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

Table 12.2

i j xi yi w
(61)
i,j u(xi, yi) |u(xi, yj)− w(61)

i,j |
1 1 0.3333 0.2000 0.40726 0.40713 1.30× 10−4

1 2 0.3333 0.4000 0.49748 0.49727 2.08× 10−4

1 3 0.3333 0.6000 0.60760 0.60737 2.23× 10−4

1 4 0.3333 0.8000 0.74201 0.74185 1.60× 10−4

2 1 0.6667 0.2000 0.81452 0.81427 2.55× 10−4

2 2 0.6667 0.4000 0.99496 0.99455 4.08× 10−4

2 3 0.6667 0.6000 1.2152 1.2147 4.37× 10−4

2 4 0.6667 0.8000 1.4840 1.4837 3.15× 10−4

3 1 1.0000 0.2000 1.2218 1.2214 3.64× 10−4

3 2 1.0000 0.4000 1.4924 1.4918 5.80× 10−4

3 3 1.0000 0.6000 1.8227 1.8221 6.24× 10−4

3 4 1.0000 0.8000 2.2260 2.2255 4.51× 10−4

4 1 1.3333 0.2000 1.6290 1.6285 4.27× 10−4

4 2 1.3333 0.4000 1.9898 1.9891 6.79× 10−4

4 3 1.3333 0.6000 2.4302 2.4295 7.35× 10−4

4 4 1.3333 0.8000 2.9679 2.9674 5.40× 10−4

5 1 1.6667 0.2000 2.0360 2.0357 3.71× 10−4

5 2 1.6667 0.4000 2.4870 2.4864 5.84× 10−4

5 3 1.6667 0.6000 3.0375 3.0369 6.41× 10−4

5 4 1.6667 0.8000 3.7097 3.7092 4.89× 10−4

12.2. FINITE-DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS 583

EXERCISE SET 12.2

1. Use the Finite-Difference method to approximate the solution to the elliptic
partial-differential equation

∂2u

∂x2
+
∂2u

∂y2
= 4, 0 < x < 1, 0 < y < 2;

u(x, 0) = x2, u(x, 2) = (x− 2)2, 0 ≤ x ≤ 1;
u(0, y) = y2, u(1, y) = (y − 1)2, 0 ≤ y ≤ 2.

Use h = k = 1
2 and compare the results to the actual solution u(x, y) =

(x− y)2.
2. Use the Finite-Difference method to approximate the solution to the elliptic

partial-differential equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 1 < x < 2, 0 < y < 1;

u(x, 0) = 2 lnx, u(x, 1) = ln(x2 + 1), 1 ≤ x ≤ 2;
u(1, y) = ln(y2 + 1), u(2, y) = ln(y2 + 4), 0 ≤ y ≤ 1.

Use h = k = 1
3 and compare the results to the actual solution u(x, y) =

ln(x2 + y2).

3. Use the Finite-Difference method to approximate the solutions to the follow-
ing elliptic partial-differential equations:

(a)
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < 1, 0 < y < 1;

u(x, 0) = 0, u(x, 1) = x, 0 ≤ x ≤ 1;
u(0, y) = 0, u(1, y) = y, 0 ≤ y ≤ 1.

Use h = k = 0.2 and compare the results with the solution u(x, y) = xy.

(b)
∂2u

∂x2
+
∂2u

∂y2
= −(cos (x+ y) + cos (x− y)), 0 < x < π, 0 < y <

π

2
;

u(0, y) = cos y, u(π, y) = − cos y, 0 ≤ y ≤ π

2
,

u(x, 0) = cosx, u
(
x,
π

2

)
= 0, 0 ≤ x ≤ π.

Use h = π/5 and k = π/10 and compare the results with the solution
u(x, y) = cosx cos y.

(c)
∂2u

∂x2
+
∂2u

∂y2
= (x2 + y2)exy, 0 < x < 2, 0 < y < 1;

u(0, y) = 1, u(2, y) = e2y, 0 ≤ y ≤ 1;
u(x, 0) = 1, u(x, 1) = ex, 0 ≤ x ≤ 2.

Use h = 0.2 and k = 0.1, and compare the results with the solution
u(x, y) = exy.

584CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

(d)
∂2u

∂x2
+
∂2u

∂y2
=

x

y
+
y

x
, 1 < x < 2, 1 < y < 2;

u(x, 1) = x lnx, u(x, 2) = x ln(4x2), 1 ≤ x ≤ 2;
u(1, y) = y ln y, u(2, y) = 2y ln(2y), 1 ≤ y ≤ 2.

Use h = k = 0.1 and compare the results with the solution u(x, y) =
xy lnxy.

4. Repeat Exercise 3(a) using extrapolation with h0 = 0.2, h1 = h0/2, and
h2 = h0/4.

5. A coaxial cable is made of a 0.1-in.-square inner conductor and a 0.5-in.-
square outer conductor. The potential at a point in the cross section of the
cable is described by Laplace’s equation. Suppose the inner conductor is kept
at 0 volts and the outer conductor is kept at 110 volts. Find the potential
between the two conductors by placing a grid with horizontal mesh spacing
h = 0.1 in. and vertical mesh spacing k = 0.1 in. on the region

D = {(x, y)|0 ≤ x, y ≤ 0.5}.

Approximate the solution to Laplace’s equation at each grid point, and use
the two sets of boundary conditions to derive a linear system to be solved by
the Gauss-Seidel method.

6. A 6-cm × 5-cm rectangular silver plate has heat being uniformly generated at
each point at the rate q = 1.5 cal/cm3 · s. Let x represent the distance along
the edge of the plate of length 6 cm and ybe the distance along the edge of
the plate of length 5 cm. Suppose the temperature u along the edges is kept
at the following temperatures:

u(x, 0) = x(6− x), u(x, 5) = 0, 0 ≤ x ≤ 6,
u(0, y) = y(5− y), u(6, y) = 0, 0 ≤ y ≤ 5,

where the origin lies at a corner of the plate with coordinates (0, 0) and
the edges lie along the positive x- and y-axes. The steady-state temperature
u = u(x, y) satisfies Poisson’s equation:

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = − q

K
, 0 < x < 6, 0 < y < 5,

where K, the thermal conductivity, is 1.04 cal/cm · deg · s. Use the Finite-
Difference method with h = 0.4 and k = 1

3 to approximate the temperature
u(x, y).

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 585

12.3 Finite-Difference Methods for Parabolic Prob-
lems

The parabolic partial-differential equation we will study is the heat or diffusion
equation

∂u

∂t
(x, t) = α2 ∂

2u

∂x2
(x, t), for 0 < x < l and t > 0,

subject to the conditions

u(0, t) = u(l, t) = 0 for t > 0, and u(x, 0) = f(x) for 0 ≤ x ≤ l.

The approach we use to approximate the solution to this problem involves finite
differences similar to those in Section 12.2. First select an integer m > 0 and define
h = l/m. Then select a time-step size k. The grid points for this situation are
(xi, tj), where xi = ih, for i = 0, 1, . . . ,m, and tj = jk, for j = 0, 1,

We obtain the Difference method by using the Taylor polynomial in t to form
the difference quotient

∂u

∂t
(xi, tj) =

u(xi, tj + k)− u(xi, tj)
k

− k

2
∂2u

∂t2
(xi, µj),

for some µj in (tj , tj+1), and the Taylor polynomial in x to form the difference
quotient

∂2u

∂x2
(xi, tj) =

u(xi + h, tj)− 2u(xi, tj) + u(xi − h, tj)
h2

− h2

12
∂4u

∂x4
(ξi, tj),

for some ξi in (xi−1, xi+1).
The parabolic partial-differential equation implies that at the interior gridpoint

(xi, tj) we have
∂u

∂t
(xi, tj)− α2 ∂

2u

∂x2
(xi, tj) = 0,

so the Difference method using the two difference quotients is

wi,j+1 − wij

k
− α2wi+1,j − 2wij + wi−1,j

h2
= 0,

where wij approximates u(xi, tj). The error for this difference equation is

τij =
k

2
∂2u

∂t2
(xi, µj)− α2h

2

12
∂4u

∂x4
(ξi, tj).

Solving the difference equation for wi,j+1 gives

wi,j+1 =
(

1− 2α2k

h2

)
wij + α2 k

h2
(wi+1,j + wi−1,j),

for each i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . ,.

586CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

Since the initial condition u(x, 0) = f(x) implies that wi0 = f(xi), for each
i = 0, 1, . . . ,m, these values can be used in the difference equation to find the
value of wi1 for each i = 1, 2, . . . ,m − 1. The additional conditions u(0, t) = 0
and u(l, t) = 0 imply that w01 = wm1 = 0, so all the entries of the form wi1 can
be determined. If the procedure is reapplied once all the approximations wi1, are
known, the values of wi2, wi3, . . . , wi,m−1 can be obtained in a similar manner.

The explicit nature of the Difference method implies that the (m− 1)× (m− 1)
matrix associated with this system can be written in the tridiagonal form

A =




(1− 2λ) λ 0 0
λ (1− 2λ) λ

0 0
λ

0 0 λ (1− 2λ)



,

where λ = α2(k/h2). If we let

w(0) = (f(x1), f(x2), . . . , f(xm−1))t

and

w(j) = (w1j , w2j , . . . , wm−1,j)t, for each j = 1, 2, . . . ,

then the approximate solution is given by

w(j) = Aw(j−1), for each j = 1, 2,

So w(j) is obtained from w(j−1) by a simple matrix multiplication. This is known
as the Forward-Difference method, and it is of order O(k + h2).

The Forward-Difference method involves, at a typical step, the mesh points

(xi−1, tj), (xi, tj), (xi, tj+1), and (xi+1, tj),

and uses approximations at the points marked with×’s in Figure 12.8. The Forward-
Difference method is an explicit method since all the approximations can be found
directly based on the information from the initial and boundary conditions. These
conditions give us values at (x0, t0), (x1, t0), and (x2, t0) from which we get an
approximation at (x1, t1). Adding the initial condition at (x3, t0) gives us an ap-
proximation at (x2, t1), and so on across the row. Once the entries in the first row
have been determined, we can use the new approximations to get approximations
at (x1, t2) through (xm−1, t1), the entries in the second row. Then we move up to
the next row, and so on.
Figure 12.8

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 587

x

tj

tj11

xi21

xi
xi11

l

x
x xx

Forward-
difference
method

t

EXAMPLE 1 Consider the heat equation

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = 0, for 0 < x < 1 and 0 ≤ t,

with boundary conditions

u(0, t) = u(1, t) = 0, for 0 < t,

and initial conditions

u(x, 0) = sin(πx), for 0 ≤ x ≤ 1.

It is easily verified that the solution to this problem is u(x, t) = e−π2t sin(πx). The
solution at t = 0.5 will be approximated using the Forward-Difference method, first
with h = 0.1 and k = 0.0005, giving λ = 0.05, and then with h = 0.1 and k = 0.01,
giving λ = 1.

To use Maple for the calculations we first access the linear algebra library.

>with(linalg);

We define l, α, m, h, and the function f(x) with the commands

>l:=1; alpha:=1; m:=10; h:=l/m; k:=0.0005;
>f:=x->sin(Pi*x);

We then define and initialize the (m−1)×(m−1) matrix A and (m−1)-dimensional
vectors w and u with

>A:=matrix(m-1,m-1,0);
>w:=vector(m-1,0);
>u:=vector(m-1,0);

588CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

The vector w(0) is defined by

>for i from 1 to m-1 do
>w[i]:=evalf(f(i*h));
>od;

and we define λ and the nonzero entries of A with

>lambda:=alpha^2*k/h^2;
>A[1,1]:=1-2*lambda;
>A[1,2]:=lambda;
>for i from 2 to m-2 do

>A[i,i-1]:=lambda;
>A[i,i+1]:=lambda;
>A[i,i]:=1-2*lambda;
>od;
>A[m-1,m-2]:=lambda;
>A[m-1,m-1]:=1-2*lambda;

Since k = 0.0005, to obtain w(1000) we raise A to the 1000th power, and then
multiply w(0) by B.

>B:=A^1000;
>u:=multiply(B,w);

When k = 0.01, we repeat the process to obtain w(50) by raising A to the 50th
power, and then multiplying w(0) by B. The results are summarized in Table 12.3.

Table 12.3

wi,1000 wi,50

xi u(xi, 0.5) k = 0.0005 |u(xi, 0.5)− wi,1000| k = 0.01 |u(xi, 0.5)− wi,50|
0.0 0 0 0
0.1 0.00222241 0.00228652 6.411× 10−5 8.19876× 107 8.199× 107

0.2 0.00422728 0.00434922 1.219× 10−4 −1.55719× 108 1.557× 108

0.3 0.00581836 0.00598619 1.678× 10−4 2.13833× 108 2.138× 108

0.4 0.00683989 0.00703719 1.973× 10−4 −2.50642× 108 2.506× 108

0.5 0.00719188 0.00739934 2.075× 10−4 2.62685× 108 2.627× 108

0.6 0.00683989 0.00703719 1.973× 10−4 −2.49015× 108 2.490× 108

0.7 0.00581836 0.00598619 1.678× 10−4 2.11200× 108 2.112× 108

0.8 0.00422728 0.00434922 1.219× 10−4 −1.53086× 108 1.531× 108

0.9 0.00222241 0.00228652 6.511× 10−5 8.03604× 107 8.036× 107

1.0 0 0 0

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 589

An error of order O(k + h2) is expected in Example 1. This is obtained with
h = 0.1 and k = 0.0005, but it is certainly not obtained when h = 0.1 and k = 0.01.
To explain the difficulty, we must look at the stability of the Forward-Difference
method.

If the error e(0) = (e(0)1 , e
(0)
2 , . . . , e

(0)
m−1)

t is made in representing the initial data
w(0) = (f(x1), f(x2), . . . , f(xm−1))t, or in any particular step (the choice of the
initial step is simply for convenience), an error of Ae(0) propagates in w(1) since

w(1) = A(w(0) + e(0)) = Aw(0) +Ae(0).

This process continues. At the nth time step, the error in w(n) due to e(0) is Ane(0).
The method is consequently conditionally stable, that is, stable precisely when these
errors do not grow as n increases. But this is true if and only if ‖Ane(0)‖ ≤ ‖e(0)‖
for all n. Hence we must have ‖An‖ ≤ 1, a condition that requires that the spectral
radius ρ(An) = (ρ(A))n ≤ 1. The Forward-Difference method is therefore stable
only if ρ(A) ≤ 1.

The eigenvalues of A are

µi = 1− 4λ
(

sin
(
iπ

2m

))2

, for each i = 1, 2, . . . ,m− 1,

so the condition for stability consequently reduces to determining whether

ρ(A) = max
1≤i≤m−1

∣∣∣∣∣1− 4λ
(

sin
(
iπ

2m

))2
∣∣∣∣∣ ≤ 1,

which simplifies to

0 ≤ λ
(

sin
(
iπ

2m

))2

≤ 1
2
, for each i = 1, 2, . . . ,m− 1.

Since stability requires that this inequality condition hold as h→ 0 or, equiva-
lently, as m→∞, the fact that

lim
m→∞

[
sin

(
(m− 1)π

2m

)]2

= 1

means that stability will occur only if 0 ≤ λ ≤ 1
2 . Since λ = α2(k/h2), this inequality

requires that h and k be chosen so that

α2 k

h2
≤ 1

2
.

In Example 1 we have α = 1, so the condition is satisfied when h = 0.1 and
k = 0.0005. But when k was increased to 0.01 with no corresponding increase in h,
the ratio was

0.01
(0.1)2

= 1 >
1
2
,

590CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

and stability problems became apparent.
To obtain a more stable method, we consider an implicit-difference method that

results from using the backward-difference quotient for (∂u/∂t)(xi, tj) in the form

∂u

∂t
(xi, tj) =

u(xi, tj)− u(xi, tj−1)
k

+
k

2
∂2u

∂t2
(xi, µj),

for some µj in (tj−1, tj). Substituting this equation and the centered-difference
formula for ∂2u/∂x2 into the partial-differential equation gives

u(xi, tj)− u(xi, tj−1)
k

− α2u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)
h2

= −k
2
∂2u

∂t2
(xi, µj)− α2h

2

12
∂4u

∂x4
(ξi, tj),

for some ξi in (xi−1, xi+1). The difference method this produces is called the
Backward-Difference method for the heat equation.

[Backward-Difference Method]
wij − wi,j−1

k
− α2wi+1,j − 2wij + wi−1,j

h2
= 0,

for each i = 1, 2, . . . ,m− 1, and j = 1, 2,

The Backward-Difference method involves, at a typical step, the mesh points

(xi, tj), (xi, tj−1), (xi−1, tj), and (xi+1, tj),

and involves approximations at the points marked with ×’s in Figure 12. 9.

Figure 12.9

x

tj
tj21

xi21

xi
xi11

l

x
x xx

Backward-
difference
method

t

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 591

Since the boundary and initial conditions associated with the problem give
information at the circled mesh points, the figure shows that no explicit procedures
can be used to find the approximations in the Backward-Difference method. For
example, the initial conditions will give us values at (x0, t0), (x0, t1), (x1, t0), and
(x2, t0), but this information will not directly get us an approximation at (x1, t1)
or at (x2, t1).

If we again let λ denote the quantity α2(k/h2), the Backward-Difference method
becomes

(1 + 2λ)wij − λwi+1,j − λwi−1,j = wi,j−1,

for each i = 1, 2, . . . ,m−1, and j = 1, 2, Using the knowledge that wi0 = f(xi)
for each i = 1, 2, . . . ,m−1 and wmj = w0j = 0 for each j = 1, 2, . . . , this Difference
method has the matrix representation




(1 + 2λ) −λ 0 0
−λ
0 0

−λ
0 0 −λ (1 + 2λ)







w1j

w2j

...
wm−1,j


 =




w1,j−1

w2,j−1

...
wm−1,j−1


 ,

or Aw(j) = w(j−1).
Hence we must now solve a linear system to obtain w(j) from w(j−1). Since

λ > 0, the matrix A is positive definite and strictly diagonally dominant, as well
as being tridiagonal. To solve this system, we can use either Crout factorization
for tridiagonal linear systems or an iterative technique such as SOR or conjugate
gradient.

The program HEBDM122 uses Crout factorization, which is an acceptable
method unless m is large.

EXAMPLE 2 The Backward-Difference method with h = 0.1 and k = 0.01 will be used to ap-
proximate the solution to the heat equation

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = 0, 0 < x < 1, 0 < t,

subject to the constraints

u(0, t) = u(1, t) = 0, 0 < t, u(x, 0) = sinπx, 0 ≤ x ≤ 1,

which was considered in Example 1. To demonstrate the stability of the Backward-
Difference method, we again compare wi,50 to u(xi, 0.5), where i = 0, 1, . . . , 10.

To use Maple to obtain w(1) from w(0), we define l, α, m, h, k, the function
f(x), the initial matrix A and the vectors w and u by the same statements we used
in Example 1. Then we define λ and generate the nonzero entries of A with the
Maple commands

592CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

>lambda:=alpha^2*k/h^2;
>A[1,1]:=1+2*lambda;
>A[1,2]:=-lambda;
>for i from 2 to m-2 do
>A[i,i-1]:=-lambda;
>A[i,i+1]:=-lambda;
>A[i,i]:=1+2*lambda;
>od;
>A[m-1,m-2]:=-lambda;
>A[m-1,m-1]:=1+2*lambda;

We augment A with w(0) and use Gaussian elimination to compute v = w(1) by
solving the linear system Aw(1) = w(0)

>B:=augment(A,w);
>M:=gausselim(B);
>v:=backsub(M);

The final results are listed in Table 12.4. The results listed in the second column
should be compared with those in the third and fifth columns of Table 12.3.

Table 12.4

xi wi,50 u(xi, 0.5) |wi,50 − u(xi, 0.5)|
0.0 0 0
0.1 0.00289802 0.00222241 6.756× 10−4

0.2 0.00551236 0.00422728 1.285× 10−3

0.3 0.00758711 0.00581836 1.769× 10−3

0.4 0.00891918 0.00683989 2.079× 10−3

0.5 0.00937818 0.00719188 2.186× 10−3

0.6 0.00891918 0.00683989 2.079× 10−3

0.7 0.00758711 0.00581836 1.769× 10−3

0.8 0.00551236 0.00422728 1.285× 10−3

0.9 0.00289802 0.00222241 6.756× 10−4

1.0 0 0

The reason the Backward-Difference method does not have the stability prob-
lems of the Forward-Difference method can be seen by analyzing the eigenvalues of
the matrix A. For the Backward-Difference method the eigenvalues are

µi = 1 + 4λ
[
sin

(
iπ

2m

)]2

for each i = 1, 2, . . . ,m− 1;

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 593

and since λ > 0, we have µi > 1 for all i = 1, 2, . . . ,m − 1. This implies that
A−1 exists, since zero is not an eigenvalue of A. An error e(0) in the initial data
produces an error (A−1)ne(0) at the nth step. Since the eigenvalues of A−1 are the
reciprocals of the eigenvalues of A, the spectral radius of A−1 is bounded above
by 1 and the method is unconditionally stable, that is, stable independent of the
choice of λ = α2(k/h2). The error for the method is of order O(k+h2), provided the
solution of the differential equation satisfies the usual differentiability conditions.

The weakness in the Backward-Difference method results from the fact that the
error has a portion with order O(k), requiring that time intervals be made much
smaller than spatial intervals. It would clearly be desirable to have a procedure with
error of order O(k2 + h2). A method with this error term is derived by averaging
the Forward-Difference method at the jth step in t,

wi,j+1 − wij

k
− α2wi+1,j − 2wij + wi−1,j

h2
= 0,

which has error (k/2)(∂2u/∂t2)(xi, µj)+O(h2), and the Backward-Difference method
at the (j + 1)st step in t,

wi,j+1 − wij

k
− α2wi+1,j+1 − 2wi,j+1 + wi−1,j+1

h2
= 0,

which has error −(k/2)(∂2u/∂t2)(xi, ûj) +O(h2). If we assume that

∂2u

∂t2
(xi, µ̂j) ≈ ∂2u

∂t2
(xi, µj),

then the averaged-difference method,

wi,j+1 − wij

k
− α2

2

[
wi+1,j − 2wij + wi−1,j

h2
+
wi+1,j+1 − 2wi,j+1 + wi−1,j+1

h2

]
= 0,

has error of order O(k2 + h2), provided, of course, that the usual differentiability
conditions are satisfied. This is known as the Crank-Nicolson method and is
represented in the matrix form Aw(j+1) = Bw(j) for each j = 0, 1, 2, . . . , where

λ = α2 k

h2
, w(j) = (w1j , w2j , . . . , wm−1,j)t,

and the matrices A and B are given by

A =




(1 + λ) −λ
2 0 0

−λ
2

0

0

−λ
2

0 0 −λ
2 (1 + λ)




594CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

and

B =




(1− λ) λ
2 0 0

λ
2

0

0
λ
2

0 0 λ
2 (1− λ)




.

Since A is positive definite, strictly diagonal dominant, and tridiagonal, A is
nonsingular. Either Crout factorization for tridiagonal linear systems or the SOR
method can be used to obtain w(j+1) from w(j), for each j = 0, 1, 2, The pro-
gram HECNM123 incorporates Crout factorization into the Crank-Nicolson tech-
nique.

EXAMPLE 3 The Crank-Nicolson method will be used to approximate the solution to the problem
in Examples 1 and 2, consisting of the equation

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = 0, for 0 < x < 1 and 0 < t,

subject to the conditions

u(0, t) = u(1, t) = 0, 0 < t, and u(x, 0) = sin(πx), 0 ≤ x ≤ 1.

The choices m = 10, h = 0.1, k = 0.01, and λ = 1 are used, as they were in the
previous examples.

To use Maple to obtain w(1) from w(0). We first access the linear algebra library.

>with(linalg);

We define l, α, m, h, k and the function f(x) with the commands

>l:=1; alpha:=1; m:=10; h:=l/m; k:=0.01;
>f:=x -> sin(Pi*x);

and we define and initialize the (m − 1) × (m − 1) matrices A and B and the
(m− 1)-dimensional vectors w and u by

>A:=matrix(m-1,m-1,0);
>B:=matrix(m-1,m-1,0);
>w:=vector(m-1,0);
>u:=vector(m-1,0);

We then compute w(0) with

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 595

>for i from 1 to m-1 do
>w[i]:=evalf(f(i*h));
>od;

and we define λ and generate the nonzero entries of A and B by

>lambda:=alpha^2*k/h^2;
>A[1,1]:=1+lambda; B[1,1]:=1-lambda;
>A[1,2]:=-lambda/2; B[1,2]:=lambda/2;
>for i from 2 to m-2 do
>A[i,i-1]:=-lambda/2; B[i,i-1]:=lambda/2;
>A[i,i+1]:=-lambda/2; B[i,i+1]:=lambda/2;
>A[i,i]:=1+lambda; B[i,i]:=1-lambda;

>od;
>A[m-1,m-2]:=-lambda/2; B[m-1,m-2]:=lambda/2;
>A[m-1,m-1]:=1+lambda; B[m-1,m-1]:=1-lambda;

We need to form u = Bw = Bw(0) and the augmented matrix C = [A : u]

>u:=multiply(B,w);
>C:=augment(A,u);

Then we perform Gaussian elimination on the system Aw(1) = Bw(0) to compute
w(1):

>M:=gausselim(C);
>z:=backsub(M);

The vector z is w(1).
The results in Table 12.5 indicate the increase in accuracy of the Crank-Nicolson

method over the Backward-Difference method, the best of the two previously dis-
cussed techniques.

596CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

Table 12.5

xi wi,50 u(xi, 0.5) |wi,50 − u(xi, 0.5)|
0.0 0 0
0.1 0.00230512 0.00222241 8.271× 10−5

0.2 0.00438461 0.00422728 1.573× 10−4

0.3 0.00603489 0.00581836 2.165× 10−4

0.4 0.00709444 0.00683989 2.546× 10−4

0.5 0.00745954 0.00719188 2.677× 10−4

0.6 0.00709444 0.00683989 2.546× 10−4

0.7 0.00603489 0.00581836 2.165× 10−4

0.8 0.00438461 0.00422728 1.573× 10−4

0.9 0.00230512 0.00222241 8.271× 10−5

1.0 0 0

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 597

EXERCISE SET 12.3

1. Use the Backward-Difference method to approximate the solution to the fol-
lowing partial-differential equations.

(a)
∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < 2, 0 < t;

u(0, t) = u(2, t) = 0, 0 < t,

u(x, 0) = sin
π

2
x, 0 ≤ x ≤ 2.

Use m = 4, T = 0.1, and N = 2 and compare your answers to the actual
solution u(x, t) = e−(π2/4)t sin(πx/2).

(b)
∂u

∂t
− 1

16
∂2u

∂x2
= 0, 0 < x < 1, 0 < t;

u(0, t) = u(1, t) = 0, 0 < t,
u(x, 0) = 2 sin 2πx, 0 ≤ x ≤ 1.

Use m = 3, T = 0.1, and N = 2 and compare your answers to the actual
solution u(x, t) = 2e−(π2/4)t sin 2πx.

2. Repeat Exercise 1 using the Crank-Nicolson method.

3. Use the Forward-Difference method to approximate the solution to the fol-
lowing parabolic partial-differential equations.

(a)
∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < 2, 0 < t;

u(0, t) = u(2, t) = 0, 0 < t,
u(x, 0) = sin 2πx, 0 ≤ x ≤ 2.

Use h = 0.4 and k = 0.1, and compare your answers at t = 0.5 to the
actual solution u(x, t) = e−4π2t sin 2πx. Then use h = 0.4 and k = 0.05,
and compare the answers.

(b)
∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < π, 0 < t;

u(0, t) = u(π, t) = 0, 0 < t,
u(x, 0) = sinx, 0 ≤ x ≤ π.

Use h = π/10 and k = 0.05 and compare your answers to the actual
solution u(x, t) = e−t sinx at t = 0.5.

(c)
∂u

∂t
− 4
π2

∂2u

∂x2
= 0, 0 < x < 4, 0 < t;

u(0, t) = u(4, t) = 0, 0 < t,

u(x, 0) = sin
π

4
x
(
1 + 2 cos

π

4
x
)
, 0 ≤ x ≤ 4.

Use h = 0.2 and k = 0.04. Compare your answers to the actual solution
u(x, t) = e−t sin(π/2)x+ e−t/4 sin(π/4)x at t = 0.4.

598CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

(d)
∂u

∂t
− 1
π2

∂2u

∂x2
= 0, 0 < x < 1, 0 < 1;

u(0, t) = u(1, t) = 0, 0 < t,

u(x, 0) = cosπ
(
x− 1

2

)
, 0 ≤ x ≤ 1.

Use h = 0.1 and k = 0.04. Compare your answers to the actual solution
u(x, t) = e−t cosπ(x− 1

2) at t = 0.4.

4. Repeat Exercise 3 using the Backward-Difference method.

5. Repeat Exercise 3 using the Crank-Nicolson method.

6. Modify the Backward-Difference method to accommodate the parabolic partial-
differential equation

∂u

∂t
− ∂2u

∂x2
= F (x), 0 < x < l, 0 < t;

u(0, t) = u(l, t) = 0, 0 < t,

u(x, 0) = f(x), 0 ≤ x ≤ l.

7. Use the results of Exercise 6 to approximate the solution to

∂u

∂t
− ∂2u

∂x2
= 2, 0 < x < 1, 0 < t;

u(0, t) = u(1, t) = 0, 0 < t,

u(x, 0) = sinπx+ x(1− x),

with h = 0.1 and k = 0.01. Compare your answer to the actual solution
u(x, t) = e−π2t sinπx+ x(1− x) at t = 0.25.

8. Modify the Backward-Difference method to accommodate the parabolic partial-
differential equation

∂u

∂t
− α2 ∂

2u

∂x2
= 0, 0 < x < l, 0 < t;

u(0, t) = φ(t), u(l, t) = Ψ(t), 0 < t;
u(x, 0) = f(x), 0 ≤ x ≤ l,

where f(0) = φ(0) and f(l) = Ψ(0).

9. The temperature u(x, t) of a long, thin rod of constant cross section and
homogeneous conducting material is governed by the one-dimensional heat
equation. If heat is generated in the material, for example, by resistance to
current or nuclear reaction, the heat equation becomes

∂2u

∂x2
+
Kr

ρC
= K

∂u

∂t
, 0 < x < l, 0 < t,

12.3. FINITE-DIFFERENCE METHODS FOR PARABOLIC PROBLEMS 599

where l is the length, ρ is the density, C is the specific heat, and K is the
thermal diffusivity of the rod. The function r = r(x, t, u) represents the heat
generated per unit volume. Suppose that

l = 1.5 cm, K = 1.04 cal/cm · deg · s,
ρ = 10.6 g/cm3

, C = 0.056 cal/g · deg,

and
r(x, t, u) = 5.0 cal/cm3 · s.

If the ends of the rod are kept at 0◦ C, then

u(0, t) = u(l, t) = 0, t > 0.

Suppose the initial temperature distribution is given by

u(x, 0) = sin
πx

l
, 0 ≤ x ≤ l.

Use the results of Exercise 6 to approximate the temperature distribution
with h = 0.15 and k = 0.0225.

10. Sagar and Payne [SP] analyze the stress-strain relationships and material
properties of a cylinder subjected alternately to heating and cooling and con-
sider the equation

∂2T

∂r2
+

1
r

∂T

∂r
=

1
4K

∂T

∂t
,

1
2
< r < 1, 0 < T,

where T = T (r, t) is the temperature, r is the radial distance from the center
of the cylinder, t is time, and K is a diffusivity coefficient.

(a) Find approximations to T (r, 10) for a cylinder with outside radius 1,
given the initial and boundary conditions:

T (1, t) = 100 + 40t, 0 ≤ t ≤ 10,

T

(
1
2
, t

)
= t, 0 ≤ t ≤ 10,

T (r, 0) = 200(r − 0.5), 0.5 ≤ r ≤ 1.

Use a modification of the Backward-Difference method with K = 0.1,
k = 0.5, and h = ∆r = 0.1.

(b) Using the temperature distribution of part (a), calculate the strain I by
approximating the integral

I =
∫ 1

0.5

αT (r, t)r dr,

where α = 10.7 and t = 10. Use the Composite Trapezoidal method
with n = 5.

600CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

12.4 Finite-Difference Methods for Hyperbolic Prob-
lems

In this section we consider the numerical solution to the wave equation, an ex-
ample of a hyperbolic partial-differential equation. The wave equation is given
by the differential equation

∂2u

∂t2
(x, t)− α2 ∂

2u

∂x2
(x, t) = 0, for 0 < x < l and t > 0,

where α is a constant, subject to the boundary conditions

u(0, t) = u(l, t) = 0, for t > 0,

and the initial conditions

u(x, 0) = f(x), and
∂u

∂t
(x, 0) = g(x), for 0 ≤ x ≤ l.

Select an integer m > 0 and time-step size k > 0. With h = l/m, the mesh
points (xi, tj) are defined by

xi = ih and tj = jk,

for each i = 0, 1, . . . ,m and j = 0, 1, At any interior mesh point (xi, tj), the
wave equation becomes

∂2u

∂t2
(xi, tj)− α2 ∂

2u

∂x2
(xi, tj) = 0.

The Difference method is obtained using the centered-difference quotient for the
second partial derivatives given by

∂2u

∂t2
(xi, tj) =

u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)
k2

− k2

12
∂4u

∂t4
(xi, µj),

for some µj in (tj−1, tj+1) and

∂2u

∂x2
(xi, tj) =

u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)
h2

− h2

12
∂4u

∂x4
(ξi, tj),

for some ξi in (xi−1, xi+1). Substituting these into the wave equation gives

u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)
k2

− α2u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)
h2

=
1
12

[
k2 ∂

4u

∂t4
(xi, µj)− α2h2 ∂

4u

∂x4
(ξi, tj)

]
.

Neglecting the error term

τij =
1
12

[
k2 ∂

4u

∂t4
(xi, µj)− α2h2 ∂

4u

∂x4
(ξi, tj)

]

12.4. FINITE-DIFFERENCE METHODS FOR HYPERBOLIC PROBLEMS601

leads to the O(h2 + k2) difference equation

wi,j+1 − 2wij + wi,j−1

k2
− α2wi+1,j − 2wij + wi−1,j

h2
= 0.

With λ = αk/h, we can solve for wi,j+1, the most advanced time-step approxima-
tion, to obtain

wi,j+1 = 2(1− λ2)wij + λ2(wi+1,j + wi−1,j)− wi,j−1.

This equation holds for each i = 1, 2, . . . , (m− 1) and j = 1, 2, The boundary
conditions give

w0j = wmj = 0, for each j = 1, 2, 3, . . . ,

and the initial condition implies that

wi0 = f(xi), for each i = 1, 2, . . . ,m− 1.

Writing this set of equations in matrix form gives




w1,j+1

w2,j+1

...
wm−1,j+1


 =




2(1− λ2) λ2 0 0

λ2 2(1− λ2) λ2

0 0

λ2

0 0 λ2 2(1− λ2)







w1,j

w2,j

...
wm−1,j




−




w1,j−1

w2,j−1

...
wm−1,j−1


 .

To determine wi,j+1 requires values from the jth and (j − 1)st time steps. (See
Figure 12.10.)

Figure 12.10

x

tj

tj11

xi21

xi
xi11

l

x
x xx

t

xtj21

602CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

There is a minor starting problem since values for j = 0 are given in the initial
conditions, but values for j = 1, which are needed to compute wi2, must be obtained
from the initial-velocity condition

∂u

∂t
(x, 0) = g(x), for 0 ≤ x ≤ l.

One approach is to replace ∂u/∂t by a forward-difference approximation,

∂u

∂t
(xi, 0) =

u(xi, t1)− u(xi, 0)
k

− k

2
∂2u

∂t2
(xi, µ̃i),

for some µ̃i in (0, t1). Solving for u(xi, t1) gives

u(xi, t1) = u(xi, 0) + k
∂u

∂t
(xi, 0) +

k2

2
∂2u

∂t2
(xi, µ̃i)

= u(xi, 0) + kg(xi) +
k2

2
∂2u

∂t2
(xi, µ̃i).

As a consequence,

wi1 = wi0 + kg(xi), for each i = 1, . . . ,m− 1.

However, this gives an approximation that has error of only O(k), whereas the
general difference equation for the hyperbolic equation is O(h2 + k2). A better
approximation to u(xi, 0) can be obtained.

Consider the equation

u(xi, t1) = u(xi, 0) + k
∂u

∂t
(xi, 0) +

k2

2
∂2u

∂t2
(xi, 0) +

k3

6
∂3u

∂t3
(xi, ûi)

for some µ̂i in (0, t1), which comes from expanding u(xi, t1) in a second Maclaurin
polynomial in t.

If f ′′ exists, then

∂2u

∂t2
(xi, 0) = α2 ∂

2u

∂x2
(xi, 0) = α2 d

2f

dx2
(xi) = α2f ′′(xi)

and

u(xi, t1) = u(xi, 0) + kg(xi) +
α2k2

2
f ′′(xi) +

k3

6
∂3u

∂t3
(xi, µ̂i),

producing an approximation with error O(k2):

wi1 = wi0 + kg(xi) +
α2k2

2
f ′′(xi).

If f ′′(xi) is not readily available, we can use a centered-difference quotient to
write

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
− h2

12
f (4)(ξ̃i),

12.4. FINITE-DIFFERENCE METHODS FOR HYPERBOLIC PROBLEMS603

for some ξ̃i in (xi−1, xi+1). The approximation then becomes

u(xi, t1)− u(xi, 0)
k

= g(xi) +
kα2

2h2
[f(xi+1)− 2f(xi) + f(xi−1)] +O(k2 + h2k),

so

u(xi, t1) = u(xi, 0) + kg(xi) +
k2α2

2h2
[f(xi+1)− 2f(xi) + f(xi−1)] +O(k3 + h2k2).

Letting λ = kα/h gives

u(xi, t1) = u(xi, 0) + kg(xi) +
λ2

2
[f(xi+1)− 2f(xi) + f(xi−1)] +O(k3 + h2k2)

= (1− λ2)f(xi) +
λ2

2
f(xi+1) +

λ2

2
f(xi−1) + kg(xi) +O(k3 + h2k2).

The difference equation for the wave equation

wi1 = (1− λ2)f(xi) +
λ2

2
f(xi+1) +

λ2

2
f(xi−1) + kg(xi)

can be used to find wi1 for each i = 1, 2, . . . ,m− 1.
The program WVFDM124 uses this equation to find wi1. It is assumed that

there is an upper bound T for the value of t, to be used in the stopping technique,
and that k = T/N , where N is also given.

EXAMPLE 1 Consider the hyperbolic problem

∂2u

∂t2
(x, t)− 4

∂2u

∂x2
(x, t) = 0, for 0 < x < 1 and 0 < t,

with boundary conditions

u(0, t) = u(1, t) = 0, for 0 < t,

and initial conditions

u(x, 0) = 2 sin(3πx), 0 ≤ x ≤ 1, and
∂u

∂t
(x, 0) = −12 sin(2πx), for 0 ≤ x ≤ 1.

It is easily verified that the solution to this problem is

u(x, t) = 2 cos(6πt) sin(3πx)− 3
π

sin(4πt) sin(2πx).

The Finite-Difference method is used in this example with m = 10, T = 1, and
N = 20, which implies that h = 0.1, k = 0.05, and λ = 1.

To use Maple for this example, we first need to access the linear algebra library.

>with(linalg);

604CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

We define l, α, m, N , h, k, and the functions f(x) and g(x) with the commands

>l:=1; alpha:=2; m:=10; N:=20; h:=l/m; k:=0.05;
>f:=x->2*sin(3*Pi*x); g:=x->-12*sin(2*Pi*x);

and we define and initialize the m− 1 by m− 1 matrix A and the vectors w(0),
w(1), w(2), and u by

>A:=matrix(m-1,m-1,0);
>w0:=vector(m-1,0);
>w1:=vector(m-1,0);
>w2:=vector(m-1,0);
>u:=vector(m-1,0);

We compute w(0) = w0 with

>for i from 1 to m-1 do
>w0[i]:=evalf(f(i*h));
>od;

and define the constant λ by

>lambda:=alpha*k/h;

We use the O(h2) method to generate w(1) = w1 with the commands

>for i from 1 to m-1 do
>w1[i]:=(1-lambda^2)*evalf(f(i*h))+(evalf(f((i+1)*h))+
evalf(f((i-1)*h)))*lambda^2/2+k*evalf(g(i*h));
>od;

and generate the nonzero entries of A

>A[1,1]:=2*(1-lambda^2);
>A[1,2]:=lambda^2;
>for i from 2 to m-2 do
>A[i,i-1]:=lambda^2;
>A[i,i+1]:=lambda^2;
>A[i,i]:=2*(1-lambda^2);
>od;
>A[m-1,m-2]:=lambda^2;
>A[m-1,m-1]:=2*(1-lambda^2);

Each pass through the following loop gives u = Aw(i) = Aw1 and w2 = w(i+1) =
Aw(i) −w(i−1) and then prepares for the next pass.

12.4. FINITE-DIFFERENCE METHODS FOR HYPERBOLIC PROBLEMS605

>for i from 1 to N-1 do
>u:=multiply(A,w1);

>w2:=evalm(u - w0);
>w0:=evalm(w1);
>w1:=evalm(w2);
>od;

Table 12.6 lists the results of the approximation at the final time value, wiN , for
i = 0, 1, . . . , 10, which are correct to the places given.

Table 12.6
xi wi,20

0.0 0.0000000000
0.1 1.618033989
0.2 1.902113033
0.3 0.618033989
0.4 −1.175570505
0.5 −2.0000000000
0.6 −1.175570505
0.7 0.618033989
0.8 1.902113033
0.9 1.618033989
1.0 0.0000000000

606CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

EXERCISE SET 12.4

1. Use the Finite-Difference method with m = 4, N = 4, and T = 1.0 to
approximate the solution to the wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0, 0 < x < 1, 0 < t;

u(0, t) = u(1, t) = 0, 0 < t,

u(x, 0) = sinπx, 0 ≤ x ≤ 1,
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ 1,

and compare your results to the actual solution u(x, t) = cosπt sinπx at
t = 1.0.

2. Use the Finite-Difference method with m = 4, N = 4, and T = 0.5 to
approximate the solution to the wave equation

∂2u

∂t2
− 1

16π2

∂2u

∂x2
= 0, 0 < x < 0.5, 0 < t;

u(0, t) = u(0.5, t) = 0, 0 < t,

u(x, 0) = 0, 0 ≤ x ≤ 0.5,
∂u

∂t
(x, 0) = sin 4πx, 0 ≤ x ≤ 0.5,

and compare your results to the actual solution u(x, t) = sin t sin 4πx at t =
0.5.

3. Use the Finite-Difference method with

(a) h = π/10 and k = 0.05,

(b) h = π/20 and k = 0.1,

(c) h = π/20 and k = 0.05

to approximate the solution to the wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0, 0 < x < π, 0 < t;

u(0, t) = u(π, t) = 0, 0 < t,

u(x, 0) = sinx, 0 ≤ x ≤ π,
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ π.

Compare your results to the actual solution u(x, t) = cos t sinx at t = 0.5.

12.4. FINITE-DIFFERENCE METHODS FOR HYPERBOLIC PROBLEMS607

4. Use the Finite-Difference method with h = k = 0.1 to approximate the solu-
tion to the wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0, 0 < x < 1, 0 < t;

u(0, t) = u(1, t) = 0, 0 < t,

u(x, 0) = sin 2πx, 0 ≤ x ≤ 1,
∂u

∂t
(x, 0) = 2π sin 2πx, 0 ≤ x ≤ 1,

and compare your results to the actual solution u(x, t) = sin 2πx(cos 2πt +
sin 2πt), at t = 0.3.

5. Use the Finite-Difference method with h = k = 0.1 to approximate the solu-
tion to the wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0, 0 < x < 1, 0 < t;

u(0, t) = u(1, t) = 0, 0 < t,

u(x, 0) =

{
1, if 0 ≤ x ≤ 1

2 ,
−1, if 1

2 < x ≤ 1,

∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ 1.

6. The air pressure p(x, t) in an organ pipe is governed by the wave equation

∂2p

∂x2
=

1
c2
∂2p

∂t2
, 0 < x < l, 0 < t,

where l is the length of the pipe and c is a physical constant. If the pipe is
open, the boundary conditions are given by

p(0, t) = p0 and p(l, t) = p0.

If the pipe is closed at the end where x = l, the boundary conditions are

p(0, t) = p0 and
∂p

∂x
(l, t) = 0.

Assume that c = 1, l = 1, and the initial conditions are

p(x, 0) = p0 cos 2πx and
∂p

∂t
(x, 0) = 0, 0 ≤ x ≤ 1.

(a) Use the Finite-Difference method to approximate the pressure for an
open pipe with p0 = 0.9 at x = 1

2 for t = 0.5 and t = 1, using h = k =
0.1.

608CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

(b) Modify the Finite-Difference method for the closed-pipe problem with
p0 = 0.9, and approximate p(0.5, 0.5) and p(0.5, 1) using h = k = 0.1.

7. In an electric transmission line of length l that carries alternating current
of high frequency (called a lossless line), the voltage V and current i are
described by

∂2V

∂x2
= LC

∂2V

∂t2
, 0 < x < l, 0 < t,

∂2i

∂x2
= LC

∂2i

∂t2
, 0 < x < l, 0 < t,

where L is the inductance per unit length and C is the capacitance per unit
length. Suppose the line is 200 ft long and the constants C and L are given
by

C = 0.1 farads/ft and L = 0.3 henries/ft.

Suppose the voltage and current also satisfy

V (0, t) = V (200, t) = 0, 0 < t,

V (x, 0) = 110 sin
πx

200
, 0 ≤ x ≤ 200,

∂V

∂t
(x, 0) = 0, 0 ≤ x ≤ 200,

i(0, t) = i(200, t) = 0, 0 < t,

i(x, 0) = 5.5 cos
πx

200
, 0 ≤ x ≤ 200,

and

∂i

∂t
(x, 0) = 0, 0 ≤ x ≤ 200.

Use the Finite-Difference method to approximate the voltage and current at
t = 0.2 and t = 0.5 using h = 10 and k = 0.1.

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 609

12.5 Introduction to the Finite-Element Method

The Finite-Element method for partial-differential equations is similar to the
Rayleigh-Ritz method for approximating the solution to two-point boundary-value
problems. It was originally developed for use in civil engineering, but it is now used
for approximating the solutions to partial-differential equations that arise in all
areas of applied mathematics.

One advantage of the Finite-Element method over finite-difference methods is
the relative ease with which the boundary conditions of the problem are handled.
Many physical problems have boundary conditions involving derivatives and irreg-
ularly shaped boundaries. Boundary conditions of this type are difficult to handle
using finite-difference techniques, since each boundary condition involving a deriva-
tive must be approximated by a difference quotient at the grid points, and irregular
shaping of the boundary makes placing the grid points difficult. The Finite-Element
method includes the boundary conditions as integrals in a functional that is being
minimized, so the construction procedure is independent of the particular boundary
conditions of the problem.

In our discussion, we consider the partial-differential equation

∂

∂x

(
p(x, y)

∂u

∂x

)
+

∂

∂y

(
q(x, y)

∂u

∂y

)
+ r(x, y)u(x, y) = f(x, y),

with (x, y) in D, where D is a plane region with boundary S.
Boundary conditions of the form

u(x, y) = g(x, y)

are imposed on a portion, S1, of the boundary. On the remainder of the boundary,
S2, u(x, y) is required to satisfy

p(x, y)
∂u

∂x
(x, y) cos θ1 + q(x, y)

∂u

∂y
(x, y) cos θ2 + g1(x, y)u(x, y) = g2(x, y),

where θ1 and θ2 are the direction angles of the outward normal to the boundary
at the point (x, y). (See Figure 12.11.) Physical problems in the areas of solid
mechanics and elasticity have associated partial-differential equations of this type.
The solution to such a problem is typically the minimization of a certain functional,
involving integrals, over a class of functions determined by the problem.

Suppose p, q, r, and f are all continuous in D∪S, p and q have continuous first
partial derivatives, and g1 and g2 are continuous on S2. Suppose, in addition, that
p(x, y) > 0, q(x, y) > 0, r(x, y) ≤ 0, and g1(x, y) > 0.

Figure 12.11

610CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

x

y
Tangent

Normal

u1

u2

Then a solution to our problem uniquely minimizes the functional

I[w] =
∫ ∫

D

{
1
2

[
p(x, y)

(
∂w

∂x

)2

+ q(x, y)
(
∂w

∂y

)2

− r(x, y)w2

]
+ f(x, y)w

}
dx dy

+
∫
S2

{
−g2(x, y)w +

1
2
g1(x, y)w2

}
ds

over all twice continuously differentiable functions w ≡ w(x, y) that satisfy w(x, y) =
g(x, y) on S1. The Finite-Element method approximates this solution by minimizing
the functional I over a smaller class of functions, just as the Rayleigh-Ritz method
did for the boundary-value problem considered in Section 11.6.

The first step is to divide the region into a finite number of sections, or elements,
of a regular shape, either rectangles or triangles. (See Figure 12.12.)

Figure 12.12

The set of functions used for approximation is generally a set of piecewise poly-
nomials of fixed degree in x and y, and the approximation requires that the polyno-
mials be pieced together in such a manner that the resulting function is continuous

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 611

with an integrable or continuous first or second derivative on the entire region.
Polynomials of linear type in x and y,

φ(x, y) = a+ bx+ cy,

are commonly used with triangular elements, and polynomials of bilinear type in x
and y,

φ(x, y) = a+ bx+ cy + dxy,

are used with rectangular elements.
For our discussion, suppose that the region D has been subdivided into trian-

gular elements. The collection of triangles is denoted D, and the vertices of these
triangles are called nodes. The method seeks an approximation of the form

φ(x, y) =
m∑

i=1

γiφi(x, y),

where φ1, φ2, . . . , φm are linearly independent piecewise-linear polynomials and γ1,
γ2, . . . , γm are constants. Some of these constants, say, γn+1, γn+2, . . . , γm, are used
to ensure that the boundary condition

φ(x, y) = g(x, y)

is satisfied on S1, whereas the remaining constants γ1, γ2, . . . , γn are used to mini-
mize the functional I[

∑m
i=1 γiφi(x, y)].

Since the functional is of the form

I[φ(x, y)] = I

[
m∑

i=1

γiφi(x, y)

]

=
∫ ∫

D


1

2


p(x, y)

[
m∑

i=1

γi
∂φi

∂x
(x, y)

]2

+ q(x, y)

[
m∑

i=1

γi
∂φi

∂y
(x, y)

]2

− r(x, y)

[
m∑

i=1

γiφi(x, y)

]2

+ f(x, y)

m∑
i=1

γiφi(x, y)


 dy dx

+
∫
S2


−g2(x, y)

m∑
i=1

γiφi(x, y) +
1
2
g1(x, y)

[
m∑

i=1

γiφi(x, y)

]2

 ds,

for a minimum to occur, considering I as a function of γ1, γ2, . . . , γn, it is necessary
to have

∂I

∂γj
[φ(x, y)] = 0, for each j = 1, 2, . . . , n.

Performing the partial differentiation allows us to write this set of equations as
a linear system,

Ac = b,

612CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

where c = (γ1, . . . , γn)t and where A = [αij] and b = (β1, . . . , βn)t are defined by

αij =
∫ ∫

D

[
p(x, y)

∂φi

∂x
(x, y)

∂φj

∂x
(x, y) + q(x, y)

∂φi

∂y
(x, y)

∂φj

∂y
(x, y)

−r(x, y)φi(x, y)φj(x, y)
]
dx dy +

∫
S2

g1(x, y)φi(x, y)φj(x, y) ds,

for each i = 1, 2, . . . , n, and j = 1, 2, . . . ,m, and

βi = −
∫ ∫

D
f(x, y)φi(x, y) dx dy +

∫
S2

g2(x, y)φi(x, y) ds−
m∑

k=n+1

αikγk,

for each i = 1, . . . , n.
The particular choice of basis functions is important, since the appropriate

choice can often make the matrix A positive definite and banded. For our second-
order problem, we assume that D is polygonal and that S is a contiguous set of
straight lines. In this case, D = D.

To begin the procedure, we divide the region D into a collection of triangles T1,
T2, . . . , TM , with the ith triangle having three vertices, or nodes, denoted

V
(i)
j =

(
x

(i)
j , y

(i)
j

)
, for j = 1, 2, 3.

To simplify the notation, we write V (i)
j simply as Vj = (xj , yj) when working with

the fixed triangle Ti. With each vertex Vj we associate a linear polynomial

N
(i)
j (x, y) ≡ Nj(x, y) = aj + bjx+ cjy, where N

(i)
j (xk, yk) =

{
1, if j = k

0, if j
= k.

This produces linear systems of the form



1 x1 y1
1 x2 y2
1 x3 y3





aj

bj
cj


 =




0
1
0


 ,

with the element one occurring in the jth row in the vector on the right.
Let E1, . . . , En be a labeling of the nodes lying in D∪S. With each node Ek, we

associate a function φk that is linear on each triangle, has the value 1 at Ek, and
is 0 at each of the other nodes. This choice makes φk identical to N (i)

j on triangle

Ti when the node Ek is the vertex denoted V (i)
j .

EXAMPLE 1 Suppose that a finite-element problem contains the triangles T1 and T2 shown in
Figure 12.13. The linear function N (1)

1 (x, y) that assumes the value 1 at (1, 1) and
0 at both (0, 0) and (−1, 2) satisfies

a
(1)
1 + b

(1)
1 (1) + c

(1)
1 (1) = 1,

a
(1)
1 + b

(1)
1 (−1) + c

(1)
1 (2) = 0,

a
(1)
1 + b

(1)
1 (0) + c

(1)
1 (0) = 0,

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 613

so a(1)
1 = 0, b(1)1 = 2

3 , c
(1)
1 = 1

3 , and

N
(1)
1 (x, y) =

2
3
x+

1
3
y.

Figure 12.13

y

x

(21, 2)

(1, 1)

V (1)
2

V (1)
1

V (2)
1

V (2)
2

V (1)
3

T1

T2

2

121

V (2)
3

In a similar manner, the linear function N
(2)
1 (x, y) that assumes the value 1 at

(1, 1) and 0 at both (0, 0) and (1, 0) satisfies

a
(2)
1 + b

(2)
1 (1) + c

(2)
1 (1) = 1,

a
(2)
1 + b

(2)
1 (0) + c

(2)
1 (0) = 0,

a
(2)
1 + b

(2)
1 (1) + c

(2)
1 (0) = 0,

so a
(2)
1 = 0, b(2)1 = 0, and c

(2)
1 = 1. As a consequence, N (2)

1 (x, y) = y. Note that
on the common boundary of T1 and T2, we have N

(1)
1 (x, y) = N

(2)
1 (x, y), since

y = x.

Consider Figure 12.14, the upper left portion of the region shown in Figure 12.12.
We will generate the entries in the matrix A that correspond to the nodes shown
in this figure.

Figure 12.14

614CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

T1

T2

E1

E2

E3

E4

For simplicity, we assume that E1 is not one of the nodes on S2. The relationship
between the nodes and the vertices of the triangles for this portion is

E1 = V
(1)
3 = V

(2)
1 , E4 = V

(2)
2 , E3 = V

(1)
2 = V

(2)
3 , and E2 = V

(1)
1 .

Since φ1(x, y) and φ3(x, y) are both nonzero on T1 and T2, the entries α1,3 = α3,1

are computed by

α1,3 =
∫ ∫

D

[
p(x, y)

∂φ1

∂x

∂φ3

∂x
+ q(x, y)

∂φ1

∂y

∂φ3

∂y
− r(x, y)φ1φ3

]
dx dy

=
∫ ∫

T1

[
p(x, y)

∂φ1

∂x

∂φ3

∂x
+ q(x, y)

∂φ1

∂y

∂φ3

∂y
− r(x, y)φ1φ3

]
dx dy

+
∫ ∫

T2

[
p(x, y)

∂φ1

∂x

∂φ3

∂x
+ q(x, y)

∂φ1

∂y

∂φ3

∂y
− r(x, y)φ1φ3

]
dx dy.

On triangle T1 we have

φ1(x, y) = N
(1)
3 = a

(1)
3 + b

(1)
3 x+ c

(1)
3 y

and
φ3(x, y) = N

(1)
2 = a

(1)
2 + b

(1)
2 x+ c

(1)
2 y,

so
∂φ1

∂x
= b

(1)
3 ,

∂φ1

∂y
= c

(1)
3 ,

∂φ3

∂x
= b

(1)
2 , and

∂φ3

∂y
= c

(1)
2 .

Similarly, on T2 we have

φ1(x, y) = N
(2)
1 (x, y) = a

(2)
1 + b

(2)
1 x+ c

(2)
1 y

and
φ3(x, y) = N

(2)
3 (x, y) = a

(2)
3 + b

(2)
3 x+ c

(2)
3 y,

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 615

so

∂φ1

∂x
(x, y) = b

(2)
1 ,

∂φ1

∂y
(x, y) = c

(2)
1 ,

∂φ3

∂x
(x, y) = b

(2)
3 , and

∂φ3

∂y
(x, y) = c

(2)
3 .

Thus,

α13 = b
(1)
3 b

(1)
2

∫ ∫
T1

p(x, y) dx dy + c
(1)
3 c

(1)
2

∫ ∫
T1

q(x, y) dx dy

−
∫ ∫

T1

r(x, y)(a(1)
3 + b

(1)
3 x+ c

(1)
3 y)(a(1)

2 + b
(1)
2 x+ c

(1)
2 y) dx dy

+ b
(2)
1 b

(2)
3

∫ ∫
T2

p(x, y) dx dy + c
(2)
1 c

(2)
3

∫ ∫
T2

q(x, y) dx dy

−
∫ ∫

T2

r(x, y)(a(2)
1 + b

(2)
1 x+ c

(2)
1 y)(a(2)

3 + b
(2)
3 x+ c

(2)
3 y) dx dy.

All the double integrals over D reduce to double integrals over triangles. The
usual procedure is to compute all possible integrals over the triangles and accumu-
late them into the correct entry αij in A.

Similarly, the double integrals of the form
∫ ∫

D

f(x, y)φi(x, y) dx dy

are computed over triangles and then accumulated into the correct entry βi of b.
For example, to determine β1 we need

−
∫ ∫

D

f(x, y)φ1(x, y) dx dy = −
∫ ∫

T1

f(x, y)
[
a
(1)
3 + b

(1)
3 x+ c

(1)
3 y

]
dx dy

−
∫ ∫

T2

f(x, y)
[
a
(2)
1 + b

(2)
1 x+ c

(2)
1 y

]
dx dy.

Part of β1 is contributed by φ1 restricted to T1 and the remainder by φ1 restricted
to T2, since E1 is a vertex of both T1 and T2. In addition, nodes that lie on S2 have
line integrals added to their entries in A and b.

Consider the evaluation of the double integral
∫ ∫

T

F (x, y) dy dx

over the triangle T with vertices (x0, y0), (x1, y1) and (x2, y2). First, we define

∆ =
1
2

det




1 x1 y1
1 x2 y2
1 x3 y3


 .

Let (x3, y3), (x4, y4) and (x5, y5) be the midpoints of the sides of the triangle T and
let (x6, y6) be the centroid as shown in Figure 12.15.

Figure 12.15

616CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

(x2, y2)(x4, y4)

(x1, y1)

(x5, y5)(x3, y3)

(x6, y6)

(x0, y0)

We have

x3 =
1
2
(x0 + x1), y3 =

1
2
(y0 + y1),

x4 =
1
2
(x0 + x2), y4 =

1
2
(y0 + y2),

x5 =
1
2
(x1 + x2), y5 =

1
2
(y1 + y2),

x6 =
1
3
(x0 + x1 + x2), y6 =

1
3
(y0 + y1 + y2).

An O(h2) formula for the double integral is
∫ ∫

T

F (x, y) dy dx =
1
2
|∆|

{
1
20

(F (x0, y0) + F (x1, y1) + F (x2, y2))

+
2
15

(F (x3, y3) + F (x4, y4) + F (x5, y5)) +
9
20
F (x6, y6)

}

Note that if F (x, y) = 1, then the double integral evaluates to 1
2 |∆|, which is the

area of the triangle T .
We also need to compute the line integral

∫
L

G(x, y) dS,

where L is the line segment with endpoints (x0, y0) and (x1, y1). Let x = x(t) and
y = y(t) be a parameterization of L with (x0, y0) = (x(t0), y(t0)) and (x1, y1) =
(x(t1), y(t1)). Then

∫
L

G(x, y) ds =
∫ t1

t0

G(x(t), y(t))
√

[x′(t)]2 + [y′(t)]2 dt.

We can either evaluate the definite integral exactly or we use a method presented
in Chapter 4.

The program LINFE125 performs the Finite-Element method on a second-order
elliptic differential equation. In the program, all values of the matrix A and vector
b are initially set to zero and after all the integrations have been performed on all
the triangles these values are added to the appropriate entries in A and b.

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 617

EXAMPLE 2 The temperature, u(x, y), in a two-dimensional region D satisfies Laplace’s equa-
tion,

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0 on D.

Consider the region D shown in Figure 12.16 with boundary conditions given
by

u(x, y) = 4, for (x, y) on L3 or L4,
∂u

∂n
(x, y) = x, for (x, y) on L1,

∂u

∂n
(x, y) =

x+ y√
2
, for (x, y) on L2,

where ∂u/∂n denotes the directional derivative in the direction of the normal to
the boundary of the region D at the point (x, y).

Figure 12.16

(0, 0)

(0, 0.2)

(0.4, 0)

(0.2, 0.2)L1

L3

L2L4

For this example, S1 = L3 ∪ L4 and S2 = L1 ∪ L2. Our functions are

p(x, y) = 1, q(x, y) = 1, r(x, y) = 0, f(x, y) = 0

on D and its boundary. We also have

g(x, y) = 4, on S1,

g1(x, y) = 0, on S2,

g2(x, y) = x, on L1 and g2(x, y) =
x+ y√

2
on L2.

We first subdivide D into triangles with the labelling shown in Figure 12.17.

Figure 12.17

E3

E1

E2E7

E5 E4E6

T2

T6 T4

T5 T1 T3

618CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

The nodes are given by E1 = (0.1, 0.1), E2 = (0.2, 0.2), E3 = (0.3, 0.1), E4 =
(0.4, 0.0), E5 = (0.2, 0.0), E6 = (0.0, 0.0) and E7 = (0.0, 0.2). Since E4, E5, E6, and
E7 are on S1 and g(x, y) = 4, we have γ4 = γ5 = γ6 = γ7 = 4.

For each triangle Ti, when 1 ≤ i ≤ 6, we assign the three vertices

V
(i)
j = (x(i)

j , y
(i)
j) for j = 1, 2, 3

and calculate

∆i =
1
2

det




1 x
(i)
1 y

(i)
1

1 x
(i)
2 y

(i)
2

1 x
(i)
3 y

(i)
3




and obtain the functions

N
(i)
j (x, y) = a

(i)
j + b

(i)
j x+ c

(i)
j y.

For each i, we have ∆i = 0.02. Table 12.7 summarizes the assignments.

Table 12.7

i = 1 j = 1 v
(1)
1 = (0.1, 0.1) = E1 N

(1)
1 = 2− 10x

j = 2 v
(1)
2 = (0.2, 0.2) = E2 N

(1)
2 = −1 + 5x+ 5y

j = 3 v
(1)
3 = (0.2, 0.0) = E5 N

(1)
3 = 5x− 5y

i = 2 j = 1 v
(2)
1 = (0.1, 0.1) = E1 N

(2)
1 = 2− 10y

j = 2 v
(2)
2 = (0.0, 0.2) = E7 N

(2)
2 = −5x+ 5y

j = 3 v
(2)
3 = (0.2, 0.2) = E2 N

(2)
3 = −1 + 5x+ 5y

i = 3 j = 1 v
(3)
1 = (0.2, 0.2) = E2 N

(3)
1 = 1− 5x+ 5y

j = 2 v
(3)
2 = (0.3, 0.1) = E3 N

(3)
2 = −2 + 10x

j = 3 v
(3)
3 = (0.2, 0.0) = E5 N

(3)
3 = 2− 5x− 5y

i = 4 j = 1 v
(4)
1 = (0.3, 0.1) = E3 N

(4)
1 = 10y

j = 2 v
(4)
2 = (0.4, 0.0) = E4 N

(4)
2 = −1 + 5x− 5y

j = 3 v
(4)
3 = (0.2, 0.0) = E5 N

(4)
3 = 2− 5x− 5y

i = 5 j = 1 v
(5)
1 = (0.0, 0.2) = E7 N

(5)
1 = −5x+ 5y

j = 2 v
(5)
2 = (0.1, 0.1) = E1 N

(5)
2 = 10x

j = 3 v
(5)
3 = (0.0, 0.0) = E6 N

(5)
3 = 1− 5x− 5y

i = 6 j = 1 v
(6)
1 = (0.0, 0.0) = E6 N

(6)
1 = 1− 5x− 5y

j = 2 v
(6)
2 = (0.2, 0.0) = E5 N

(6)
2 = 5x− 5y

j = 3 v
(6)
3 = (0.1, 0.1) = E1 N

(6)
3 = 10y

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 619

For each triangle Ti, when 1 ≤ i ≤ 6, we calculate the double integrals

z
(i)
j,k = b

(i)
j b

(i)
k

∫ ∫
Ti

p(x, y) dy dx+ c
(i)
j c

(i)
k

∫ ∫
Ti

q(x, y) dy dx

−
∫ ∫

Ti

r(x, y)N (i)
j (x, y)N (i)

k (x, y) dy dx

= b
(i)
j b

(i)
k

1
2
|∆i|+ c

(i)
j c

(i)
k

1
2
|∆i| − 0 = 0.01

[
b
(i)
j b

(i)
k + c

(i)
j c

(i)
k

]

corresponding to the vertices j and k for each j = 1, 2, 3 and k = 1, . . . j. Further,
for each vertex j and triangle Ti we have the double integral

H
(i)
j = −

∫ ∫
Ti

f(x, y)N (i)
j (x, y) dy dx = 0 for j = 1, 2, 3.

We let l1 be the line from (0.4, 0.0) to (0.3, 0.1), l2 be the line from (0.3, 0.1) to
(0.2, 0.2), and l3 be the line from (0.2, 0.2) to (0.0, 0.2). We use the parametrization

l1: x = 0.4− t, y = t, for 0 ≤ t ≤ 0.1,
l2: x = 0.4− t, y = t, for 0.1 ≤ t ≤ 0.2,
l3: x = −t, y = 0.2, for −0.2 ≤ t ≤ 0.

The line integrals we calculate are over the edges of the triangle, which are on
S2 = L1 ∪ L2. Suppose triangle Ti has an edge ei on S2 from the vertex V

(i)
j to

V
(i)
k . The line integrals we need are denoted

J
(i)
k,j = J

(i)
j,k =

∫
ei

g1(x, y)N
(i)
j (x, y)N (i)

k (x, y) ds,

I
(i)
j =

∫
ei

g2(x, y)N
(i)
j (x, y) ds, and I

(i)
k =

∫
ei

g2(x, y)N
(i)
k (x, y) ds.

Since g1(x, y) = 0 on S2, we need to consider only the line integrals involving
g2(x, y).

Triangle T4 has an edge on L4 with vertices V (4)
2 = (0.4, 0.0) = E4 and V

(4)
1 =

(0.3, 0.1) = E3. Thus,

I
(4)
1 =

∫
l1

g2(x, y)N
(4)
1 (x, y) ds =

∫
l1

x+ y√
2

(10y) ds

=
∫ 0.1

0

0.4√
2
(10t)

√
(−1)2 + 1 dt =

∫ 0.1

0

4t dt = 0.02,

I
(4)
2 =

∫
l1

g2(x, y)N
(4)
2 (x, y) ds =

∫
l1

x+ y√
2

(−1 + 5x− 5y) ds

=
∫ 0.1

0

0.4√
2
(−1 + 2− 5t− 5t)

√
2 dt =

∫ 0.1

0

0.4(1− 10t) dt = 0.02.

620CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

Triangle T3 has an edge on L2 with vertices V (3)
2 = (0.3, 0.1) = E3 and V

(3)
1 =

(0.2, 0.2) = E2. Thus,

I
(3)
2 =

∫
l2

g2(x, y)N
(3)
2 (x, y) ds =

∫
l2

x+ y√
2

(−2 + 10x) ds

=
∫ 0.2

0.1

0.4√
2
(−2 + 4− 10t)

√
2 dt =

∫ 0.2

0.1

(0.8− 4t) dt = 0.02,

I
(3)
1 =

∫
l2

g2(x, y)N
(3)
1 (x, y) ds =

∫
l2

x+ y√
2

(1− 5x+ 5y) ds

=
∫ 0.2

0.1

0.4√
2
(1− 2 + 5t+ 5t)

√
2 dt =

∫ 0.2

0.1

(−0.4 + 4t) dt = 0.02.

Triangle T2 has an edge on L1 with vertices V (2)
3 = (0.2, 0.2) = E2 and V

(2)
2 =

(0.0, 0.2) = E7. Thus,

I
(2)
3 =

∫
l3

g2(x, y)N
(2)
3 (x, y) ds =

∫
l3

x(−1 + 5x+ 5y) ds

=
∫ 0

−0.2

(−t)(−1− 5t+ 1)
√

(−1)2 dt =
∫ 0

−0.2

5t2 dt = 0.013,

I
(2)
2 =

∫
l3

g2(x, y)N
(2)
2 (x, y) ds =

∫
l3

x(−5x+ 5y) ds

=
∫ 0

−0.2

(−t)(5t+ 1) dt =
∫ 0

−0.2

(−5t2 − t) dt = 0.006.

Assembling all the elements gives

α11 = z
(1)
1,1 + z

(2)
1,1 + z

(5)
2,2 + z

(6)
3,3

= (−10)20.01 + (−10)20.01 + (10)20.01 + (10)20.01 = 4

α12 = α21 = z
(1)
2,1 + z

(2)
3,1 = (−50)0.01 + (−50)0.01 = −1

α13 = α31 = 0
α22 = z

(1)
2,2 + z

(2)
3,3 + z

(3)
1,1 = (50)0.01 + (50)0.01 + (50)0.01 = 1.5

α23 = a32 = z
(3)
2,1 = (−50)0.01 = −0.5

α33 = z
(3)
2,2 + z

(4)
1,1 = (100)0.01 + (100)0.01 = 2

β1 = −z(1)
3,1γ5 − z(2)

2,1γ7 − z(5)
2,1γ7 − z(5)

3,2γ6 − z(6)
3,1γ6 − z(6)

3,2γ5

= −4(−50)0.01− 4(−50)0.01− 4(−50)0.01
− 4(−50)0.01− 4(−50)0.01− 4(−50)0.01 = 12

β2 = −z(1)
3,2γ5 − z(2)

3,2γ7 − z(3)
3,1γ5 + I

(3)
1 + I

(2)
3

= −4(25− 25)0.01− 4(−25 + 25)0.01− 4(25− 25)0.01
+ 0.02 + 0.013 = 0.03

β3 = −z(3)
3,2γ5 − z(4)

2,1γ4 − z(4)
3,1γ5 + I

(4)
1 + I

(3)
2

= −4(−50)0.01− 4(−50)0.01− 4(−50)0.01 + 0.02 + 0.02 = 6.04

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 621

Thus,

A =



α11 α12 α13

α21 α22 α23

α31 α32 α33


 =




4 −1 0
−1 1.5 −0.5

0 −0.5 2


 and b =



β1

β2

β3


 =




12
0.03
6.04




The linear system Ac = b, where

c =



γ1

γ2

γ3


 ,

has solution (4.00962963, 4.03851852, 4.02962963)t, which gives the approximate
solution φ(x, y) on the triangles

T1: φ(x, y) = 4.00962963(2− 10x) + 4.03851852(−1 + 5x+ 5y) + 4(5x− 5y),
T2: φ(x, y) = 4.00962963(2− 10y) + 4(−5x+ 5y) + 4.03851852(−1 + 5x+ 5y),
T3: φ(x, y) = 4.03851852(1− 5x− 5y) + 4.02962963(−2 + 10x) + 4(2− 5x− 5y),
T4: φ(x, y) = 4.02962963(10y) + 4(−1 + 5x− 5y) + 4(2− 5x− 5y),
T5: φ(x, y) = 4(−5x+ 5y) + 4.00962963(10x) + 4(1− 5x− 5y),
T6: φ(x, y) = 4(1− 5x− 5y) + 4(5x− 5y) + 4.00962963(10y).

The actual solution to the boundary-value problem is u(x, y) = xy+4. Table 12.8
compares the value of u to the value of φ at E1, E2, and E3.

Table 12.8

x y φ(x, y) u(x, y) |φ(x, y)− u(x, y)|
0.1 0.1 4.00962963 4.01 0.00037037
0.2 0.2 4.03851852 4.04 0.00148148
0.3 0.1 4.02962963 4.03 0.00037037

Typically, the error for elliptic second-order problems with smooth coefficient
functions is O(h2), where h is the maximum diameter of the triangular elements.
Piecewise bilinear basis functions on rectangular elements are also expected to
give O(h2) results, where h is the maximum diagonal length of the rectangular
elements. Other classes of basis functions can be used to give O(h4) results, but the
construction is more complex. Efficient error theorems for finite-element methods
are difficult to state and apply because the accuracy of the approximation depends
on the continuity properties of the solution and the regularity of the boundary.

622CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

EXERCISE SET 12.5

1. Use the Finite-Element method to approximate the solution to the following
partial-differential equation (see the figure):

∂

∂x

(
y2 ∂u

∂x
(x, y)

)
+

∂

∂y

(
y2 ∂u

∂y
(x, y)

)
− yu(x, y) = −x, (x, y) ∈ D,

u(x, 0.5) = 2x, 0 ≤ x ≤ 0.5, u(0, y) = 0, 0.5 ≤ y ≤ 1,

y2 ∂u

∂x
(x, y) cos θ1 + y2 ∂u

∂y
(x, y) cos θ2 =

√
2

2
(y − x) for (x, y) ∈ S2.

y

0.5

0.5

1

D
61

62

61

x

Let M = 2; T1 have vertices (0, 0.5), (0.25, 0.75), (0, 1); and T2 have vertices
(0, 0.5), (0.5, 0.5), and (0.25, 0.75).

2. Repeat Exercise 1, using instead the triangles

T1: (0, 0.75), (0, 1), (0.25, 0.75);
T2: (0.25, 0.5), (0.25, 0.75), (0.5, 0.5);
T3: (0, 0.5), (0, 0.75), (0.25, 0.75);
T4: (0, 0.5), (0.25, 0.5), (0.25, 0.75).

3. Use the Finite-Element method with the elements given in the accompanying
figure to approximate the solution to the partial-differential equation

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)− 12.5π2u(x, y) = −25π2 sin

5π
2
x sin

5π
2
y,

for 0 < x < 0.4 and 0 < y < 0.4, subject to the Dirichlet boundary condition

u(x, y) = 0.

Compare the approximate solution to the actual solution

u(x, y) = sin
5π
2
x sin

5π
2
y

12.5. INTRODUCTION TO THE FINITE-ELEMENT METHOD 623

at the interior vertices and at the points (0.125, 0.125), (0.125, 0.25), (0.25, 0.125),
and (0.25, 0.25).

0.4

0.3

0.2

0.1

0.40.30.20.1

4. Repeat Exercise 3 with f(x, y) = −25π2 cos
5π
2
x cos

5π
2
y, using the Neumann

boundary condition
∂u

∂n
(x, y) = 0.

The actual solution for this problem is

u(x, y) = cos
5π
2
x cos

5π
2
y.

5. A silver plate in the shape of a trapezoid (see the accompanying figure) has
heat being uniformly generated at each point at the rate q = 1.5cal/cm3·s. The
steady-state temperature u(x, y) of the plate satisfies the Poisson equation

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) =

−q
k
,

x

y

0 5

L1

L2

L3

L4

608

œ3

608

624CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

where k, the thermal conductivity, is 1.04cal/cm · deg · s. Assume that the
temperature is held at 15◦C on L2, that heat is lost on the slanted edges
L1 and L3 according to the boundary condition ∂u/∂n = 4, and that no
heat is lost on L4, that is, ∂u/∂n = 0. Use the Finite-Element method to
approximate the temperature of the plate at (1, 0), (4, 0), and (5

2 ,
√

3/2).

12.6. SURVEY OF METHODS AND SOFTWARE 625

12.6 Survey of Methods and Software

In this chapter, methods to approximate solutions to partial-differential equations
were considered. We restricted our attention to Poisson’s equation as an example of
an elliptic partial-differential equation, the heat or diffusion equation as an example
of a parabolic partial-differential equation, and the wave equation as an example
of a hyperbolic partial-differential equation. Finite-difference approximations were
discussed for these three examples.

Poisson’s equation on a rectangle required the solution of a large sparse linear
system, for which iterative techniques, such as the SOR or preconditioned con-
jugate gradient methods, are recommended. Three finite-difference methods were
presented for the heat equation. The Forward-Difference method had stability prob-
lems, so the Backward-Difference method and the Crank-Nicolson methods were
introduced. Although a tridiagonal linear system must be solved at each time
step with these implicit methods, they are more stable than the explicit Forward-
Difference method. The Finite-Difference method for the wave equation is explicit
and can also have stability problems for certain choice of time and space discretiza-
tions.

In the last section of the chapter, we presented an introduction to the Finite-
Element method for a self-adjoint elliptic partial-differential equation on a polyg-
onal domain. Although our methods will work adequately for the problems and
examples in the textbook, more powerful generalizations and modifications of these
techniques are required for commercial applications.

We mention two subroutines from the IMSL Library. One subroutine is used to
solve the partial-differential equation

∂u

∂t
= F

(
x, t, u,

∂u

∂x
,
∂2u

∂x2

)

with boundary conditions

α(x, t)u(x, t) + β(x, t)
∂u

∂x
(x, t) = γ(x, t).

The method is based on collocation at Gaussian points on the x-axis for each value
of t and uses cubic Hermite splines as basis functions.

The other subroutine is used to solve Poisson’s equation on a rectangle. The
method of solution is based on a choice of second- or fourth-order finite differences
on a uniform mesh.

The NAG Library has a number of subroutines for partial-differential equations.
One subroutine is used for Laplace’s equation on an arbitrary domain in the xy-
plane and another subroutine is used to solve a single parabolic partial-differential
equation by the method of lines.

There are specialized packages, such as NASTRAN, consisting of codes for the
Finite-Element method. These packages are popular in engineering applications.
The package FISHPACK in the Netlib library is used to solve separable elliptic
partial-differential equations. General codes for partial-differential equations are
difficult to write because of the problem of specifying domains other than common

626CHAPTER 12. NUMERICAL METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS

geometrical figures. Research in the area of solution of partial-differential equations
is currently very active.

We have only presented a small sample of the many techniques used for ap-
proximating the solutions to the problems involving partial-differential equations.
Further information on the general topic can be found in Lapidus and Pinder [LP],
Twizell [Tw], and the recent book by Morton and Mayers [MM]. Software informa-
tion can be found in Rice and Boisvert [RiB] and in Bank [Ban].

Books that focus on finite-difference methods include Strikwerda [Strik], Thomas
[Th], and Shashkov and Steinberg [ShS]. Strange and Fix [SF] and Zienkiewicz and
Morgan [ZM] are good sources for information on the finite-element method. Time-
dependent equations are treated in Schiesser [Schi] and in Gustafsson, Kreiss, and
Oliger [GKO], and Birkhoff and Lynch [BL] and Roache [Ro] discuss the solution
to elliptic problems.

Multigrid methods use coarse grid approximations and iterative techniques to
provide approximations on finer grids. References on these techniques include Briggs
[Brigg], Mc Cormick [Mc], and Bramble [Bram].

BIBLIOGRAPHY

[AG] Allgower, E. and K. Georg, Numerical continuation methods: an introduction, Springer-

Verlag, New York, 1990, 388 pp. QA377.A56.

[Am] Ames, W. F., Numerical methods for partial differential equations, (Third edition),

Academic Press, New York, 1992, 451 pp. QA374.A46.

[An] Anderson, E., et al., LAPACK user’s guide, (Second edition), SIAM Publications,
Philadelphia, PA, 1995, 325 pp. QA76.73.F25 L36.

[AS] Argyros, I. K. and F. Szidarovszky, The theory and applications of iteration methods,
CRC Press, Boca Raton, FL, 1993, 355 pp. QA297.8.A74.

[AMR] Ascher, U. M., R. M. M. Mattheij, and R. B. Russell, Numerical solution of boundary

value problems for ordinary differential equations, Prentice-Hall, Englewood Cliffs,
NJ, 1988, 595 pp. QA379.A83.

[Ax] Axelsson, O., Iterative solution methods, Cambridge University Press, New York,
1994, 654 pp. QA297.8.A94.

[AB] Axelsson, O. and V. A. Barker, Finite element solution of boundary value problems:
theory and computation, Academic Press, Orlando, FL, 1984, 432 pp. QA379.A9.

[BSW] Bailey, P. B., L. F. Shampine, and P. E. Waltman, Nonlinear two-point boundary-

value problems, Academic Press, New York, 1968, 171 pp. QA372.B27.

[BBEPVR] Barrett, R., et al., Templates for the solution of linear systems: building blocks for

iterative methods, SIAM Publications, Philadelphia, PA, 1994, 112 pp. QA297.8.T45.

[Bek] Bekker, M. G., Introduction to terrain vehicle systems, University of Michigan Press,
Ann Arbor, MI, 1969, 846 pp. TL243.B39.

[Ber] Bernadelli, H., Population waves, Journal of the Burma Research Society 31 (1941),
1–18, DS527.B85.

[Bra] Bramble, J.H., Multigrid methods, John Wiley & Sons, New York, 1993, 161 pp.
QA377.B73.

[Bre] Brent, R., Algorithms for minimization without derivatives, Prentice-Hall, Engle-

wood Cliffs, NJ, 1973, 195 pp. QA402.5.B74.

[Bri] Briggs, W. L., A multigrid tutorial, SIAM Publications, Philadelphia, PA, 1987, 88
pp. QA377.B75.

[BH] Briggs, W. L. and V. E. Henson, The DFT: an owner’s manual for the discrete
Fourier transform, SIAM Publications, Philadelphia, PA, 1995, 434 pp. QA403.5.B75.

Typeset by AMS-TEX

628

[Brigh] Brigham, E. O., The fast Fourier transform, Prentice-Hall, Englewood Cliffs, NJ,

1974, 252 pp. QA403.B74.

[BF] Burden, R. L., and J. D. Faires, Numerical Analysis, (Seventh edition), Brooks-Cole,
Pacific Grove, CA, 2001, 841 pp. QA297.B84 2001.

[Bur] Burrage, K., Parallel and sequential methods for ordinary differential equations, Ox-
ford University Press, New York, 1995, 446 pp. QA372.B883.

[CF] Chaitin-Chatelin, F. and Fraysse, V., Lectures on finite precision computations,
SIAM Publications, Philadelphia, PA, 1996, 235 pp. QA297.C417.

[Ch] Cheney, E. W., Introduction to approximation theory, McGraw-Hill, New York, 1966,

259 pp. QA221.C47.

[CC] Clenshaw, C. W. and C. W. Curtis, A method for numerical integration on an au-
tomatic computer, Numerische Mathematik 2 (1960), 197–205, QA241.N9.

[CT] Cooley, J. W. and J. W. Tukey, An algorithm for the machine calculation of com-
plex Fourier series, Mathematics of Computation 19, No. 90 (1965), 297–301,
QA1.M4144.

[Cr] Crowell, W. (ed.), Sources and development of mathematical software, Prentice-Hall,

Englewood Cliffs, NJ, 1984, 404 pp. QA76.95.S68.

[Da] Davis, P. J., Interpolation and Approximation, Dover, New York, 1975, 393 pp.
QA221.D33.

[DR] Davis, P. J. and P. Rabinowitz, Methods of numerical integration, Academic Press,
New York, 1975, 459 pp. QA299.3.D28.

[De] De Boor, C., A practical guide to splines, Springer-Verlag, New York, 1978, 392 pp.
QA1.A647 vol. 27.

[DS] Dennis, J. E., Jr. and R. B. Schnabel, Numerical methods for unconstrained opti-

mization and nonlinear equations, Prentice-Hall, Englewood Cliffs, NJ, 1983, 378 pp.
QA402.5.D44.

[Di] Dierckx, P., Curve and surface fitting with splines, Oxford University Press, New
York, 1993, 285 pp. QA297.6.D54.

[Do] Dormand, J. R., Numerical methods for differential equations: a computational ap-
proach, CRC Press, Boca Raton, FL, 1996, 368 pp. QA372.D67.

[DB] Dorn, G. L. and A. B. Burdick, On the recombinational structure of complementa-

tion relationships in the m-dy complex of the Drosophila melanogaster, Genetics 47
(1962), 503–518, QH431.G43.

629

[E] Engels, H., Numerical Quadrature and Cubature, Academic Press, New York, 1980,

441 pp. QA299.3.E5.

[FM] Forsythe, G. E. and C. B. Moler, Computer solution of linear algebraic systems,
Prentice-Hall, Englewood Cliffs, NJ, 1967, 148 pp. QA297.F57.

[G] Gear, C. W., Numerical initial-value problems in ordinary differential equations,
Prentice-Hall, Englewood Cliffs, NJ, 1971, 253 pp. QA372.G4.

[GL] George, A. and J. W. Liu, Computer solution of large sparse positive definite systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981, 324pp. QA188.G46.

[GO] Golub, G. H. and Ortega, J. M., Scientific computing: an introduction with parallel

computing, Academic Press, Boston, MA, 1993, 442 pp. QA76.58.G64.

[GV] Golub, G. H. and C. F. Van Loan, Matrix computations, (Second edition), John
Hopkins University Press, Baltimore, MD, 1989, 642 pp. QA188.G65.

[GKO] Gustafsson, B., H. Kreiss, and J. Oliger, Time dependent problems and difference
methods, John Wiley & Sons, New York, 1995, 642 pp. QA374.G974.

[Ha] Hackbusch, W., Iterative solution of large sparse systems of equations, Springer-
Verlag, New York, 1994, 429 pp. QA1.A647 vol. 95.

[HY] Hageman, L. A. and D. M. Young, Applied iterative methods, Academic Press, New

York, 1981, 386 pp. QA297.8.H34.

[HNW1] Hairer, E., S. P. Nörsett, and G. Wanner, Solving ordinary differential equations.

Vol. 1: Nonstiff equations, Springer-Verlag, New York, 1987, QA372.H16.

[HNW2] Hairer, E., S. P. Nörsett, and G. Wanner, Solving ordinary differential equations.
Vol. 2: Stiff and differential-algebraic problems, Springer-Verlag, New York, 1991,
QA372.H16.

[He] Henrici, P., Discrete variable methods in ordinary differential equations, John Wiley

& Sons, New York, 1962, 407 pp. QA372.H48.

[HS] Hestenes, M. R. and E. Steifel, Conjugate gradient methods in optimization, Journal

of Research of the National Bureau of Standards 49 (1952), 409–436, Q1.N34.

[Hi] Hildebrand, F. B., Introduction to numerical analysis, (Second edition), McGraw-
Hill, New York, 1974, 669 pp. QA297.H54.

[Ho] Householder, A. S., The numerical treatment of a single nonlinear equation, McGraw-
Hill, New York, 1970, 216 pp. QA218.H68.

[IK] Issacson, E. and H. B. Keller, Analysis of numerical methods, John Wiley & Sons,

New York, 1966, 541 pp. QA297.I8.

630

[K,H] Keller, H. B., Numerical methods for two-point boundary-value problems, Blaisdell,

Waltham, MA, 1968, 184 pp. QA372.K42.

[K,J] Keller, J. B., Probability of a shutout in racquetball, SIAM Review 26, No. 2 (1984),
267–268, QA1.S2.

[Ko] Köckler, N., Numerical methods and scientific computing: using software libraries
for problem solving, Oxford University Press, New York, 1994, 328 pp. TA345.K653.

[LP] Lapidus, L. and G. F. Pinder, Numerical solution of partial differential equations in
science and engineering, John Wiley & Sons, New York, 1982, 677 pp. Q172.L36.

[LH] Lawson, C. L. and Hanson, R. J., Solving least squares problems, SIAM Publications,

Philadelphia, PA, 1995, 337 pp. QA275.L38.

[M] McCormick, S. F., Multigrid methods, SIAM Publications, Philadelphia, PA, 1987,
282 pp. QA374.M84.

[MM] Morton, K. W. and D. F. Mayers, Numerical solution of partial differential equations:
an introduction, Cambridge University Press, New York, 1994, 227 pp. QA377.M69.

[ND] Noble, B. and J. W. Daniel, Applied linear algebra, (Second edition), Prentice-Hall,
Englewood Cliffs, NJ, 1977, 477 pp. QA184.N6.

[Or] Ortega, J. M., Numerical analysis; a second course, Academic Press, New York,

1972, 201 pp. QA297.O78.

[OR] Ortega, J. M. and W. C. Rheinboldt, Iterative solution of nonlinear equations in

several variables, Academic Press, New York, 1970, 572 pp. QA297.8.O77.

[Os] Ostrowski, A. M., Solution of equations and systems of equations, (Second edition),
Academic Press, New York, 1966, 338 pp. QA3.P8 vol. 9.

[Pa] Parlett, B., The symmetric eigenvalue problem, Prentice-Hall, Englewood Cliffs, NJ,
1980, 348 pp. QA188.P37.

[PF] Phillips, C. and T. L. Freeman, Parallel numerical algorithms, Prentice-Hall, New
York, 1992, 315 pp. QA76.9.A43 F74.

[PDUK] Piessens, R., E. de Doncker-Kapenga, C. W. Überhuber, and D. K. Kahaner, QUAD-

PACK: a subroutine package for automatic integration, Springer-Verlag, New York,
1983, 301 pp. QA299.3.Q36.

[Pi] Pissanetzky, S., Sparse matrix technology, Academic Press, New York, 1984, 321 pp.
QA188.P57.

[Po] Powell, M. J. D., Approximation theory and methods, Cambridge University Press,

Cambridge, 1981, 339 pp. QA221.P65.

631

[Ra] Rashevsky, N., Looking at history through mathematics, Massachusetts Institute of

Technology Press, Cambridge, MA, 1968, 199 pp. D16.25.R3.

[Ri] Rice, J. R., Numerical methods, software, and analysis: IMSL reference edition,
McGraw-Hill, New York, 1983, 661 pp. QA297.R49.

[Sa1] Saad, Y., Numerical methods for large eigenvalue problems, Halsted Press, New York,
1992, 346 pp. QA188.S18.

[Sa2] Saad, Y., Iterative methods for sparse linear systems, PWS-Kent Publishing, Boston,
MA, 1996, 447 pp. QA188.S17.

[SP] Sagar, V. and D. J. Payne, Incremental collapse of thick-walled circular cylinders

under steady axial tension and torsion loads and cyclic transient heating, Journal of
the Mechanics and Physics of Solids 21, No. 1 (1975), 39–54, TA350.J68.

[SD] Sale, P. F. and R. Dybdahl, Determinants of community structure for coral-reef
fishes in experimental habitat, Ecology 56 (1975), 1343–1355, QH540.E3.

[Scho] Schoenberg, I. J., Contributions to the problem of approximation of equidistant data
by analytic functions, Quarterly of Applied Mathematics 4, (1946), Part A, 45–99;

Part B, 112–141, QA1.A26.

[Schu] Schultz, M. H., Spline analysis, Prentice-Hall, Englewood Cliffs, NJ, 1973, 156 pp.
QA211.S33.

[Sh] Shampine, L. F., Numerical solution of ordinary differential equations, Chapman &
Hall, New York, 1994, 484 pp. QA372.S417.

[ShS] Shashkov, M. and S. Steinberg, Conservative finite-difference methods on general
grids, CRC Press, Boca Raton, FL, 1996, 359 pp. QA431.S484.

[Ste] Stewart, G. W., Introduction to matrix computations, Academic Press, New York,

1973, 441 pp. QA188.S7.

[SF] Strang, W. G. and G. J. Fix, An analysis of the finite element method, Prentice-Hall,
Englewood Cliffs, NJ, 1973, 306 pp. TA335.S77.

[Str] Strikwerda, J. C., Finite difference schemes and partial differential equations, Brooks/Cole
Publishing, Pacific Grove, CA, 1989, 386 pp. QA374.S88.

[StS] Stroud, A. H. and D. Secrest, Gaussian quadrature formulas, Prentice-Hall, Engle-
wood Cliffs, NJ, 1966, 374 pp. QA299.4.G4 S7.

[Sz] Szüsz, P., Math bite, Mathematics Magazine 68, No. 2 (1995), 97, QA1.N28.

[Th] Thomas, J. W., Numerical partial differential equations, Springer-Verlag, New York,

1995, 445 pp. QA377.T495.

632

[Tr] Traub, J. F., Iterative methods for the solution of equations, Prentice-Hall, Engle-

wood Cliffs, NJ, 1964, 310 pp. QA297.T7.

[Tw] Twizell, E. H., Computational methods for partial differential equations, Ellis Hor-
wood Ltd., Chichester, West Sussex, England, 1984, 276 pp. QA377.T95.

[Van] Van Loan, C. F., Computational frameworks for the fast Fourier transform, SIAM
Publications, Philadelphia, PA, 1992, 273 pp. QA403.5.V35.

[Var] Varga, R. S., Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962,
322 pp. QA263.V3.

[We] Wendroff, B., Theoretical numerical analysis, Academic Press, New York, 1966, 239

pp. QA297.W43.

[Wi1] Wilkinson, J. H., Rounding errors in algebraic processes, Prentice-Hall, Englewood
Cliffs, NJ, 1963, 161 pp. QA76.5.W53.

[Wi2] Wilkinson, J. H., The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965,
662 pp. QA218.W5.

[WR] Wilkinson, J. H. and C. Reinsch (eds.), Handbook for automatic computation. Vol. 2:
Linear algebra, Springer-Verlag, New York, 1971, 439 pp. QA251.W67.

[Y] Young, D. M., Iterative solution of large linear systems, Academic Press, New York,

1971, 570 pp. QA195.Y68.

[ZM] Zienkiewicz, O. C. and K. Morgan, Finite elements and approximation, John Wiley

& Sons, New York, 1983, 328 pp. QA297.5.Z53.

1.2 Answers for Numerical Methods 633

ANSWERS FOR NUMERICAL METHODS

Exercise Set 1.2 (Page 000)

1. For each part, f ∈ C[a, b] on the given interval. Since f(a) and f(b) are of opposite

sign, the Intermediate Value Theorem implies a number c exists with f(c) = 0.

3. For each part, f ∈ C[a, b], f ′ exists on (a, b), and f(a) = f(b) = 0. Rolle’s Theorem

implies that a number c exists in (a, b) with f ′(c) = 0. For part (d), we can use

[a, b] = [−1, 0] or [a, b] = [0, 2].

5. a. P2(x) = 0

b. R2(0.5) = 0.125; actual error = 0.125

c. P2(x) = 1 + 3(x− 1) + 3(x− 1)2

d. R2(0.5) = −0.125; actual error = −0.125

7. Since

P2(x) = 1 + x and R2(x) =
−2eξ(sin ξ + cos ξ)

6
x3

for some number ξ between x and 0, we have the following:

a. P2(0.5) = 1.5 and f(0.5) = 1.446889. An error bound is 0.093222 and |f(0.5)−
P2(0.5)| ≤ 0.0532

b. |f(x)− P2(x)| ≤ 1.252

c.
∫ 1

0
f(x) dx ≈ 1.5

d. | ∫ 1

0
f(x) dx−∫ 1

0
P2(x) dx| ≤

∫ 1

0
|R2(x)| dx ≤ 0.313, and the actual error is 0.122.

9. The error is approximately 8.86× 10−7.

June 29, 2002 1:10 P.M.

634 CHAPTER 1 Answers for Numerical Methods

11. a. P3(x) = 1
3x+ 1

6x
2 + 23

648x
3

b. We have

f (4)(x) =
−199
2592

ex/2 sin
x

3
+

61
3888

ex/2 cos
x

3
,

so

|f (4)(x)| ≤ |f (4)(0.60473891)| ≤ 0.09787176 for 0 ≤ x ≤ 1,

and

|f(x)− P3(x)| ≤ |f
(4)(ξ)|
4!

|x|4 ≤ 0.09787176
24

(1)4 = 0.004077990.

13. A bound for the maximum error is 0.0026.

15. a.

e−t2 =
∞∑

k=0

(−1)kt2k

k!

Use this series to integrate
2√
π

∫ x

0

e−t2 dt

and obtain the result.

b.

2√
π
e−x2

∞∑
k=0

2kx2k+1

1 · 3 · · · (2k + 1)
=

2√
π

[
1− x2 +

1
2
x4 − 1

6
x7 +

1
24
x8 + · · ·

]

·
[
x+

2
3
x3 +

4
15
x5 +

8
105

x7 +
16
945

x9 + · · ·
]

=
2√
π

[
x− 1

3
x3 +

1
10
x5 − 1

42
x7 +

1
216

x9 + · · ·
]

= erf (x)

c. 0.8427008 d. 0.8427069

June 29, 2002 1:10 P.M.

1.3 Answers for Numerical Methods 635

e. The series in part (a) is alternating, so for any positive integer n and positive x

we have the bound
∣∣∣∣erf(x)−

2√
π

n∑
k=0

(−1)kx2k+1

(2k + 1)k!

∣∣∣∣ <
x2n+3

(2n+ 3)(n+ 1)!
.

We have no such bound for the positive term series in part (b).

Exercise Set 1.3 (Page 000)

1. Absolute Error Relative Error
a. 0.001264 4.025× 10−4

b. 7.346× 10−6 2.338× 10−6

c. 2.818× 10−4 1.037× 10−4

d. 2.136× 10−4 1.510× 10−4

e. 2.647× 101 1.202× 10−3

f. 1.454× 101 1.050× 10−2

g. 420 1.042× 10−2

h. 3.343× 103 9.213× 10−3

3. Approximation Absolute Error Relative Error
a. 134 0.079 5.90× 10−4

b. 133 0.499 3.77× 10−3

c. 2.00 0.327 0.195
d. 1.67 0.003 1.79× 10−3

e. 1.80 0.154 0.0786
f. −15.1 0.0546 3.60× 10−3

g. 0.286 2.86× 10−4 10−3

h. 0.00 0.0215 1.00

5. Approximation Absolute Error Relative Error
a. 133.9 0.021 1.568× 10−4

b. 132.5 0.001 7.55× 10−6

c. 1.700 0.027 0.01614
d. 1.673 0 0
e. 1.986 0.03246 0.01662
f. −15.16 0.005377 3.548× 10−4

g. 0.2857 1.429× 10−5 5× 10−5

h. −0.01700 0.0045 0.2092

7.

June 29, 2002 1:10 P.M.

636 CHAPTER 1 Answers for Numerical Methods

Approximation Absolute Error Relative Error
a. 3.14557613 3.983× 10−3 1.268× 10−3

b. 3.14162103 2.838× 10−5 9.032× 10−6

9. b. The first formula gives −0.00658 and the second formula gives −0.0100. The true

three-digit value is −0.0116.

11.a. 39.375 ≤ volume ≤ 86.625 b. 71.5 ≤ surface area ≤ 119.5

Exercise Set 1.4 (Page 000)

1. x1 Absolute Error Relative Error x2 Absolute Error Relative Error

a. 92.26 0.01542 1.672 × 10−4 0.005419 6.273 × 10−7 1.157 × 10−4

b. 0.005421 1.264 × 10−6 2.333 × 10−4 −92.26 4.580 × 10−3 4.965 × 10−5

c. 10.98 6.875 × 10−3 6.257 × 10−4 0.001149 7.566 × 10−8 6.584 × 10−5

d. −0.001149 7.566 × 10−8 6.584 × 10−5 −10.98 6.875 × 10−3 6.257 × 10−4

3. a. −0.1000

b. −0.1010

c. Absolute error for part (a) is 2.331× 10−3 with relative error 2.387× 10−2.

Absolute error for part (b) is 3.331× 10−3 with relative error 3.411× 10−2.

5. Approximation Absolute Error Relative Error
a. and b. 3.743 1.011× 10−3 2.694× 10−3

c. and d, 3.755 1.889× 10−4 5.033× 10−4

7. a. The approximate sums are 1.53 and 1.54, respectively. The actual value is 1.549.

Significant round-off error occurs earlier with the first method.

June 29, 2002 1:10 P.M.

1.4 Answers for Numerical Methods 637

9. Approximation Absolute Error Relative Error
a. 2.715 3.282× 10−3 1.207× 10−3

b. 2.716 2.282× 10−3 8.394× 10−4

c. 2.716 2.282× 10−3 8.394× 10−4

d. 2.718 2.818× 10−4 1.037× 10−4

11. The rates of convergence are as follows.

a. O(h2) b. O(h) c. O(h2) d. O(h)

13. Since limn→∞ xn = limn→∞ xn+1 = x and xn+1 = 1 + 1
xn

, we have x = 1 + 1
x . This

implies that x = (1 +
√

5)/2. This number is called the golden ratio. It appears

frequently in mathematics and the sciences.

15.a. n = 50 b. n = 500

c. An accuracy of 10−4 cannot be obtained with Digits set to 10 in some earlier

versions of Maple. However, in Release 7 we get n = 5001.

June 29, 2002 1:10 P.M.

638 CHAPTER 2 Answers for Numerical Methods

Exercise Set 2.2 (Page 000)

1. p3 = 0.625

3. The Bisection method gives the following.

a. p7 = 0.5859 b. p8 = 3.002 c. p7 = 3.419

5. a.

Note: New Figure

x

y

-π

-2

2

ππ
22

π

y = x

y = 2 sin x

b. With [1, 2], we have p7 = 1.8984.

7. a. 2 b. − 2 c. − 1 d. 1

9.
√

3 ≈ p14 = 1.7320 using [1, 2]

11. A bound is n ≥ 12, and p12 = 1.3787.

13. Since −1 < a < 0 and 2 < b < 3, we have 1 < a+ b < 3 or 1/2 < 1/2(a+ b) < 3/2 in

all cases. Further,

f(x) < 0, for − 1 < x < 0 and 1 < x < 2;

f(x) > 0, for 0 < x < 1 and 2 < x < 3.

June 29, 2002 1:10 P.M.

2.3 Answers for Numerical Methods 639

Thus, a1 = a, f(a1) < 0, b1 = b, and f(b1) > 0.

a. Since a + b < 2, we have p1 = a+b
2 and 1/2 < p1 < 1. Thus, f(p1) > 0. Hence,

a2 = a1 = a and b2 = p1. The only zero of f in [a2, b2] is p = 0, so the convergence

will be to 0.

b. Since a + b > 2, we have p1 = a+b
2 and 1 < p1 < 3/2. Thus, f(p1) < 0. Hence,

a2 = p1 and b2 = b1 = b. The only zero of f in [a2, b2] is p = 2, so the convergence

will be to 2.

c. Since a + b = 2, we have p1 = a+b
2 = 1 and f(p1) = 0. Thus, a zero of f has

been found on the first iteration. The convergence is to p = 1.

Exercise Set 2.3 (Page 000)

1. a. p3 = 2.45454 b. p3 = 2.44444

3. Using the endpoints of the intervals as p0 and p1, we have the following.

a. p11 = 2.69065 b. p7 = −2.87939 c. p6 = 0.73909 d. p5 = 0.96433

5. Using the endpoints of the intervals as p0 and p1, we have the following.

a. p16 = 2.69060 b. p6 = −2.87938 c. p7 = 0.73908 d. p6 = 0.96433

7. For p0 = 0.1 and p1 = 3 we have p7 = 2.363171.

For p0 = 3 and p1 = 4 we have p7 = 3.817926.

For p0 = 5 and p1 = 6 we have p6 = 5.839252.

For p0 = 6 and p1 = 7 we have p9 = 6.603085.

9. For p0 = 1 and p1 = 2, we have p5 = 1.73205068, which compares to 14 iterations of

the Bisection method.

June 29, 2002 1:10 P.M.

640 CHAPTER 2 Answers for Numerical Methods

11 . For p0 = 0 and p1 = 1, the Secant method gives p7 = 0.589755. The closest point on

the graph is (0.589755, 0.347811).

13 . a. For p0 = −1 and p1 = 0, we have p17 = −0.04065850, and for p0 = 0 and p1 = 1,

we have p9 = 0.9623984.

b. For p0 = −1 and p1 = 0, we have p5 = −0.04065929, and for p0 = 0 and p1 = 1,

we have p12 = −0.04065929. The Secant method fails to find the zero in [0, 1].

15 . For p0 = 1
2 , p1 = π

4 , and tolerance of 10−100, the Secant method required 11 iterations,

giving the 100-digit answer

p11 = .73908513321516064165531208767387340401341175890075746496568063577328

46548835475945993761069317665319.

17 . For p0 = 0.1 and p1 = 0.2, the Secant method gives p3 = 0.16616, so the depth of the

water is 1− p3 = 0.83385 ft.

Exercise Set 2.4 (Page 000)

1. p2 = 2.60714

3. a. For p0 = 2, we have p5 = 2.69065.

b. For p0 = −3, we have p3 = −2.87939.

c. For p0 = 0, we have p4 = 0.73909.

d. For p0 = 0, we have p3 = 0.96434.

5. Newton’s method gives the following approximations:

With p0 = 1.5, p6 = 2.363171; with p0 = 3.5, p5 = 3.817926;

With p0 = 5.5, p4 = 5.839252; with p0 = 7, p5 = 6.603085.

June 29, 2002 1:10 P.M.

2.5 Answers for Numerical Methods 641

7. Newton’s method gives the following:

a. For p0 = 0.5 we have p13 = 0.567135.

b. For p0 = −1.5 we have p23 = −1.414325.

c. For p0 = 0.5 we have p22 = 0.641166.

d. For p0 = −0.5 we have p23 = −0.183274.

9. With p0 = 1.5, we have p3 = 1.73205081 which compares to 14 iterations of the

Bisection method and 5 iterations of the Secant method.

11 .a. p10 = 13.655776 b. p6 = 0.44743154

c. With p0 = 0, Newton’s method did not converge in 10 iterations. The initial

approximation p0 = 0.48 is sufficiently close to the solution for rapid convergence.

13 . Newton’s method gives p15 = 1.895488 for p0 = π
2 , and p19 = 1.895489 for p0 = 5π.

The sequence does not converge in 200 iterations for p0 = 10π. The results do not

indicate the fast convergence usually associated with Newton’s method.

15 . Using p0 = 0.75, Newton’s method gives p4 = 0.8423.

17 . The minimal interest rate is 6.67%.

19.a.
e

3
, t = 3 hours b. 11 hours and 5 minutesc. 21 hours and 14 minutes

Exercise Set 2.5 (Page 000)

1. The results are listed in the following table.

June 29, 2002 1:10 P.M.

642 CHAPTER 2 Answers for Numerical Methods

a. b. c. d.

q0 0.258684 0.907859 0.548101 0.731385
q1 0.257613 0.909568 0.547915 0.736087
q2 0.257536 0.909917 0.547847 0.737653
q3 0.257531 0.909989 0.547823 0.738469
q4 0.257530 0.910004 0.547814 0.738798
q5 0.257530 0.910007 0.547810 0.738958

3. Newton’s Method gives p6 = −0.1828876, and the improved value is q6 = −0.183387.

5. a. (i) Since |pn+1− 0| = 1
n+1 <

1
n = |pn− 0|, the sequence

{
1
n

}
converges linearly to

0. (ii) We need 1
n ≤ 0.05 or n ≥ 20. (iii) Aitken’s ∆2 method gives q10 = 0.045.

b. (i) Since |pn+1 − 0| = 1
(n+1)2 < 1

n2 = |pn − 0|, the sequence
{

1
n2

}
converges

linearly to 0. (ii) We need 1
n2 ≤ 0.05 or n ≥ 5. (iii) Aitken’s ∆2 method gives

q2 = 0.0363.

7. a. Since
|pn+1 − 0|
|pn − 0|2 =

10−2n+1

(10−2n)2
=

10−2n+1

10−2n+1 = 1,

the sequence is quadratically convergent.

b. Since
|pn+1 − 0|
|pn − 0|2 =

10−(n+1)k

(10−nk)2
=

10−(n+1)k

10−2nk = 102nk−(n+1)k

diverges, the sequence pn = 10−nk

does not converge quadratically.

Exercise Set 2.6 (Page 000)

1. a. For p0 = 1, we have p22 = 2.69065.

b. For p0 = 1, we have p5 = 0.53209; for p0 = −1, we have p3 = −0.65270, and for

p0 = −3, we have p3 = −2.87939.

June 29, 2002 1:10 P.M.

2.6 Answers for Numerical Methods 643

c. For p0 = 1, we have p4 = 1.12412; and for p0 = 0, we have p8 = −0.87605.

d. For p0 = 0, we have p10 = 1.49819.

3. The following table lists the initial approximation and the roots.

p0 p1 p2 Approximated Roots Complex Conjugate Roots

a. −1 0 1 p7 = −0.34532− 1.31873i −0.34532 + 1.31873i
0 1 2 p6 = 2.69065

b. 0 1 2 p6 = 0.53209
1 2 3 p9 = −0.65270
−2 −3 −2.5 p4 = −2.87939

c. 0 1 2 p5 = 1.12412
2 3 4 p12 = −0.12403 + 1.74096i −0.12403− 1.74096i
−2 0 −1 p5 = −0.87605

d. 0 1 2 p6 = 1.49819
−1 −2 −3 p10 = −0.51363− 1.09156i −0.51363 + 1.09156i
1 0 −1 p8 = 0.26454− 1.32837i 0.26454 + 1.32837i

5. a. The roots are 1.244, 8.847, and −1.091. The critical points are 0 and 6.

Figure 0 Placed Here

for Exercise 5a

b. The roots are 0.5798, 1.521, 2.332, and −2.432, and the critical points are 1,

2.001, and −1.5.

Note: New Figures

June 29, 2002 1:10 P.M.

644 CHAPTER 2 Answers for Numerical Methods

x

P(x)

-10 -4 -2-6-8

-100

100

80

60

40

20

104 6

P(x) = x 9x + 123 2_

x

P(x)

-2-4

-30

30

20

10

2 4

P(x) = x 2x 5x + 12x 5__ _24 3

7. Let c1 = (2 + 2
9

√
129)−1/3 and c2 = (2 + 2

9

√
129)1/3. The roots are c2 − 4

3c1, −1
2c2 +

2
3c1 + 1

2

√
3(c2 + 4

3c1)i, and −1
2c2 + 2

3c1 − 1
2

√
3(c2 + 4

3c1)i.

9. a. For p0 = 0.1 and p1 = 1 we have p14 = 0.23233.

b. For p0 = 0.55 we have p6 = 0.23235.

c. For p0 = 0.1 and p1 = 1 we have p8 = 0.23235.

d. For p0 = 0.1 and p1 = 1 we have p88 = 0.23035.

e. For p0 = 0, p1 = 0.25, and p2 = 1 we have p6 = 0.23235.

11. The minimal material is approximately 573.64895 cm2.

June 29, 2002 1:10 P.M.

3.2 Answers for Numerical Methods 645

Exercise Set 3.2 (Page 000)

1. a. (i) P1(x) = −0.29110731x + 1; P1(0.45) = 0.86900171; | cos 0.45 − P1(0.45)| =
0.03144539; (ii) P2(x) = −0.43108687x2−0.03245519x+1; P2(0.45) = 0.89810007;

| cos 0.45− P2(0.45)| = 0.0023470

b. (i) P1(x) = 0.44151844x + 1; P1(0.45) = 1.1986833; |√1.45 − P1(0.45)| =

0.00547616; (ii) P2(x) = −0.070228596x2+0.483655598x+1; P2(0.45) = 1.20342373;

|√1.45− P2(0.45)| = 0.00073573

c. (i) P1(x) = 0.78333938x; P1(0.45) = 0.35250272; | ln 1.45 − P1(0.45)| =

0.01906083; (ii) P2(x) = −0.23389466x2 + 0.92367618x; P2(0.45) = 0.36829061;

| ln 1.45− P2(0.45)| = 0.00327294

d. (i) P1(x) = 1.14022801x; P1(0.45) = 0.0.51310260; | tan 0.45 − P1(0.45)| =

0.03004754; (ii) P2(x) = 0.86649261x2 + 0.62033245x; P2(0.45) = 0.45461436;

| tan 0.45− P2(0.45)| = 0.02844071

3.

a. n x0, x1, . . . , xn Pn(8.4)

1 8.3, 8.6 17.87833
2 8.3, 8.6, 8.7 17.87716
3 8.3, 8.6, 8.7, 8.1 17.87714

b. n x0, x1, . . . , xn Pn(−1
3)

1 −0.5, −0.25 0.21504167
2 −0.5, −0.25, 0.0 0.16988889
3 −0.5, −0.25, 0.0, −0.75 0.17451852

c. n x0, x1, . . . , xn Pn(0.25)

1 0.2, 0.3 −0.13869287
2 0.2, 0.3, 0.4 −0.13259734
3 0.2, 0.3, 0.4, 0.1 −0.13277477

d. n x0, x1, . . . , xn Pn(0.9)

1 0.8, 1.0 0.44086280
2 0.8, 1.0, 0.7 0.43841352
3 0.8, 1.0, 0.7, 0.6 0.44198500

June 29, 2002 1:10 P.M.

646 CHAPTER 3 Answers for Numerical Methods

5.
√

3 ≈ P4

(
1
2

)
= 1.7083

7.

a. n Actual Error Error Bound

1 0.00118 0.00120
2 1.367× 10−5 1.452× 10−5

b. n Actual Error Error Bound

1 4.0523× 10−2 4.5153× 10−2

2 4.6296× 10−3 4.6296× 10−3

c. n Actual Error Error Bound

1 5.9210× 10−3 6.0971× 10−3

2 1.7455× 10−4 1.8128× 10−4

d. n Actual Error Error Bound

1 2.7296× 10−3 1.4080× 10−2

2 5.1789× 10−3 9.2215× 10−3

9. f(1.09) ≈ 0.2826. The actual error is 4.3 × 10−5, and an error bound is 7.4 × 10−6.

The discrepancy is due to the fact that the data are given to only four decimal places

and only four-digit arithmetic is used.

11. y = 4.25

13. The largest possible step size is 0.004291932, so 0.004 would be a reasonable choice.

15. The difference between the actual value and the computed value is 2
3 .

17. a.
x erf(x)

0.0 0
0.2 0.2227
0.4 0.4284
0.6 0.6039
0.8 0.7421
1.0 0.8427

June 29, 2002 1:10 P.M.

3.3 Answers for Numerical Methods 647

b. Linear interpolation with x0 = 0.2 and x1 = 0.4 gives erf(1
3) ≈ 0.3598. Quadratic

interpolation with x0 = 0.2, x1 = 0.4, and x2 = 0.6 gives erf(1
3) ≈ 0.3632. Since

erf(1/3) ≈ 0.3626, quadratic interpolation is more accurate.

Exercise Set 3.3 (Page 000)

1. Newton’s interpolatory divided-difference formula gives the following:

a. P1(x) = 16.9441 + 3.1041(x− 8.1);P1(8.4) = 17.87533

P2(x) = P1(x) + 0.06(x− 8.1)(x− 8.3);P2(8.4) = 17.87713

P3(x) = P2(x) +−0.00208333(x− 8.1)(x− 8.3)(x− 8.6);P3(8.4) = 17.87714

b. P1(x) = −0.1769446 + 1.9069687(x− 0.6);P1(0.9) = 0.395146

P2(x) = P1(x) + 0.959224(x− 0.6)(x− 0.7);P2(0.9) = 0.4526995

P3(x) = P2(x)− 1.785741(x− 0.6)(x− 0.7)(x− 0.8);P3(0.9) = 0.4419850

3. In the following equations we have s = 1
h (x− xn).

a. P1(s) = 1.101 + 0.7660625s; f(− 1
3) ≈ P1(−4

3) = 0.07958333

P2(s) = P1(s) + 0.406375s(s+ 1)/2; f(−1
3) ≈ P2(−4

3) = 0.1698889

P3(s) = P2(s) + 0.09375s(s+ 1)(s+ 2)/6; f(− 1
3) ≈ P3(−4

3) = 0.1745185

b. P1(s) = 0.2484244 + 0.2418235s; f(0.25) ≈ P1(−1.5) = −0.1143108

P2(s) = P1(s)− 0.04876419s(s+ 1)/2; f(0.25) ≈ P2(−1.5) = −0.1325973

P3(s) = P2(s)−0.00283891s(s+1)(s+2)/6; f(0.25) ≈ P3(−1.5) = −0.1327748

5. a. f(0.05) ≈ 1.05126

b. f(0.65) ≈ 1.91555

7. ∆3f(x0) = −6 and ∆4f(x0) = ∆5f(x0) = 0, so the interpolating polynomial has

degree 3.

June 29, 2002 1:10 P.M.

648 CHAPTER 3 Answers for Numerical Methods

9. ∆2P (10) = 1140.

11. The approximation to f(0.3) should be increased by 5.9375.

13. f [x0] = f(x0) = 1, f [x1] = f(x1) = 3, f [x0, x1] = 5

Exercise Set 3.4 (Page 000)

1. The coefficients for the polynomials in divided-difference form are given in the follow-

ing tables. For example, the polynomial in part (a) is

H3(x) = 17.56492+3.116256(x−8.3)+0.05948(x−8.3)2−0.00202222(x−8.3)2(x−8.6).

a. b. c. d.

17.56492 0.022363362 −0.02475 −0.62049958
3.116256 2.1691753 0.751 3.5850208
0.05948 0.01558225 2.751 −2.1989182

−0.00202222 −3.2177925 1 −0.490447
0 0.037205
0 0.040475

−0.0025277777
0.0029629628

3. a. We have sin 0.34 ≈ H5(0.34) = 0.33349.

b. The formula gives an error bound of 3.05× 10−14, but the actual error is 2.91×
10−6. The discrepancy is due to the fact that the data are given to only five

decimal places.

c. We have sin 0.34 ≈ H7(0.34) = 0.33350. Although the error bound is now

5.4 × 10−20, the accuracy of the given data dominates the calculations. This

result is actually less accurate than the approximation in part (b), since sin 0.34 =

0.333487.

5. For 2(a) we have an error bound of 5.9 × 10−8. The error bound for 2(c) is 0 since

f (n)(x) ≡ 0 for n > 3.

June 29, 2002 1:10 P.M.

3.5 Answers for Numerical Methods 649

7. The Hermite polynomial generated from these data is

H9(x) = 75x+ 0.222222x2(x− 3)− 0.0311111x2(x− 3)2

− 0.00644444x2(x− 3)2(x− 5) + 0.00226389x2(x− 3)2(x− 5)2

− 0.000913194x2(x− 3)2(x− 5)2(x− 8) + 0.000130527x2(x− 3)2(x− 5)2(x− 8)2

− 0.0000202236x2(x− 3)2(x− 5)2(x− 8)2(x− 13).

a. The Hermite polynomial predicts a position of H9(10) = 743 ft and a speed

of H ′
9(10) = 48 ft/s. Although the position approximation is reasonable, the

low-speed prediction is suspect.

b. To find the first time the speed exceeds 55 mi/h = 80.6 ft/s, we solve for the

smallest value of t in the equation 80.6 = H ′
9(x). This gives x ≈ 5.6488092.

c. The estimated maximum speed is H ′
9(12.37187) = 119.423 ft/s ≈ 81.425 mi/h.

Exercise Set 3.5 (Page 000)

1. S(x) = x on [0, 2]

3. The equations of the respective free cubic splines are given by

S(x) = Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3,

for x in [xi, xi+1] and the coefficients in the following tables.

a. i ai bi ci di

0 17.564920 3.13410000 0.00000000 0.00000000

b. i ai bi ci di

0 0.22363362 2.17229175 0.00000000 0.00000000

c. i ai bi ci di

0 −0.02475000 1.03237500 0.00000000 6.50200000
1 0.33493750 2.25150000 4.87650000 −6.50200000

June 29, 2002 1:10 P.M.

650 CHAPTER 3 Answers for Numerical Methods

d. i ai bi ci di

0 −0.62049958 3.45508693 0.00000000 −8.9957933
1 −0.28398668 3.18521313 −2.69873800 −0.94630333
2 0.00660095 2.61707643 −2.98262900 9.9420966

5. The equations of the respective clamped cubic splines are given by

s(x) = si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3,

for x in [xi, xi+1] and the coefficients in the following tables.

a. i ai bi ci di

0 17.564920 3.1162560 0.0600867 −0.00202222

b. i ai bi ci di

0 0.22363362 2.1691753 0.65914075 −3.2177925

c. i ai bi ci di

0 −0.02475000 0.75100000 2.5010000 1.0000000
1 0.33493750 2.18900000 3.2510000 1.0000000

d. i ai bi ci di

0 −0.62049958 3.5850208 −2.1498407 −0.49077413
1 −0.28398668 3.1403294 −2.2970730 −0.47458360
2 0.006600950 2.6666773 −2.4394481 −0.44980146

7. a. The equation of the spline is

S(x) = Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

on the interval [xi, xi+1], where the coefficients are given in the following table.
xi ai bi ci di

0 1.0 −0.7573593 0.0 −.6.627417
0.25 0.7071068 −2.0 −4.970563 6.627417
0.5 0.0 −3.242641 0.0 6.627417
0.75 −0.7071068 −2.0 4.970563 −6.627417

b.
∫ 1

0

S(x) dx = 0.000000 c. S′(0.5) = −3.24264, and S′′(0.5) = 0.0

June 29, 2002 1:10 P.M.

3.5 Answers for Numerical Methods 651

9. a. The equation of the spline is

s(x) = si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

on the interval [xi, xi+1], where the coefficients are given in the following table.
xi ai bi ci di

0 1.0 0.0 −5.193321 2.028118
0.25 0.7071068 −2.216388 −3.672233 4.896310
0.5 0.0 −3.134447 0.0 4.896310
0.75 −0.7071068 −2.216388 3.672233 2.028118

b.
∫ 1

0

s(x) dx = 0.000000 c. s′(0.5) = −3.13445, and s′′(0.5) = 0.0.

11. a = 2, b = −1, c = −3, d = 1

13. B = 1
4 , D = 1

4 , b = −1
2 , d = 1

4

15. Let f(x) = a + bx + cx2 + dx3. Clearly, f satisfies properties (a), (c), (d), (e) of the

definition and f interpolates itself for any choice of x0, . . . , xn. Since (ii) of (f) in the

definition holds, f must be its own clamped cubic spline. However, f ′′(x) = 2c+ 6dx

can be zero only at x = −c/3d. Thus, part (i) of (f) in the definition cannot hold at

two values x0 and xn, and f cannot be a natural cubic spline.

17.
xi ai bi ci di

1940 132165 1651.85 0.00000 2.64248
1950 151326 2444.59 79.2744 −4.37641
1960 179323 2717.16 −52.0179 2.00918
1970 203302 2279.55 8.25746 −0.381311
1980 226542 2330.31 −3.18186 0.106062

S(1930) = 113004, S(1965) = 191860, and S(2010) = 296451.

19. a. S(x) = Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 on [xi, xi+1], where

June 29, 2002 1:10 P.M.

652 CHAPTER 3 Answers for Numerical Methods

xi ai bi ci di

0 0 88.8 0 12.8
0.25 22.4 91.2 9.6 0
0.5 45.8 96.0 9.6 −4.8
1.0 95.6 102.0 2.4 −3.2
1.25

b. 1:10 13
40

c. Starting speed ≈ 40.54 mi/h. Ending speed ≈ 35.09 mi/h.

Exercise Set 3.6 (Page 000)

1. a. x(t) = −10t3 + 14t2 + t, y(t) = −2t3 + 3t2 + t

b. x(t) = −10t3 + 14.5t2 + 0.5t, y(t) = −3t3 + 4.5t2 + 0.5t

c. x(t) = −10t3 + 14t2 + t, y(t) = −4t3 + 5t2 + t

d. x(t) = −10t3 + 13t2 + 2t, y(t) = 2t

3. a. x(t) = −11.5t3 + 15t2 + 1.5t+ 1, y(t) = −4.25t3 + 4.5t2 + 0.75t+ 1

b. x(t) = −6.25t3 + 10.5t2 + 0.75t+ 1, y(t) = −3.5t3 + 3t2 + 1.5t+ 1

c. For t between (0, 0) and (4, 6) we have

x(t) = −5t3 + 7.5t2 + 1.5t, y(t) = −13.5t3 + 18t2 + 1.5t,

and for t between (4, 6) and (6, 1) we have

x(t) = −5.5t3 + 6t2 + 1.5t+ 4, y(t) = 4t3 − 6t2 − 3t+ 6.

d. For t between (0, 0) and (2, 1) we have

x(t) = −5.5t3 + 6t2 + 1.5t, y(t) = −0.5t3 + 1.5t,

June 29, 2002 1:10 P.M.

3.6 Answers for Numerical Methods 653

for t between (2, 1) and (4, 0) we have

x(t) = −4t3 + 3t2 + 3t+ 2, y(t) = −t3 + 1,

and for t between (4, 0) and (6,−1) we have

x(t) = −8.5t3 + 13.5t2 − 3t+ 4, y(t) = −3.25t3 + 5.25t2 − 3t.

June 29, 2002 1:10 P.M.

654 CHAPTER 4 Answers for Numerical Methods

Exercise Set 4.2 (Page 000)

1. The Midpoint rule gives the following approximations.

a. 0.1582031 b. − 0.2666667 c. 0.1743309 d. 0.1516327

e. − 0.6753247 f. − 0.1768200 g. 0.1180292 h. 1.8039148

3. The Trapezoidal rule gives the following approximations.

a. 0.265625 b. − 0.2678571 c. 0.2280741 d. 0.1839397

e. − 0.8666667 f. − 0.1777643 g. 0.2180895 h. 4.1432597

5. Simpson’s rule gives the following approximations.

a. 0.1940104 b. − 0.2670635 c. 0.1922453 d. 0.16240168

e. − 0.7391053 f. − 0.1768216 g. 0.1513826 h. 2.5836964

7. Formula (1) gives the following approximations.

a. 0.19386574 b. − 0.26706310 c. 0.19225309 d. 0.16140992

e. − 0.73642770 f. − 0.17682071 g. 0.15158524 h. 2.5857891

9. f(1) = 1
2

11. c0 = 1
4 , c1 = 3

4 , and x1 = 2
3

June 29, 2002 1:10 P.M.

4.3 Answers for Numerical Methods 655

13. (i) Midpoint rule (ii) Trapezoidal rule (iii) Simpson’s rule
a. 4.83393 5.43476 5.03420
b. −7.2× 10−7 1.6× 10−6 5.3× 10−8

Exercise Set 4.3 (Page 000)

1. The Composite Trapezoidal rule approximations are as follows.

a. 0.639900 b. 31.3653 c. 0.784241 d. − 6.42872

e. − 13.5760 f. 0.476977 g. 0.605498 h. 0.970926

3. The Composite Midpoint rule approximations are as follows.

a. 0.633096 b. 11.1568 c. 0.786700 d. − 6.11274

e. − 14.9985 f. 0.478751 g. 0.602961 h. 0.947868

5. a. The Composite Trapezoidal rule requires h < 0.000922295 and n ≥ 2168.

b. The Composite Simpson’s rule requires h < 0.037658 and n ≥ 54.

c. The Composite Midpoint rule requires h < 0.00065216 and n ≥ 3066.

7. a. The Composite Trapezoidal rule requires h < 0.04382 and n ≥ 46. The approxi-

mation is 0.405471.

b. The Composite Simpson’s rule requires h < 0.44267 and n ≥ 6. The approxima-

tion is 0.405466.

c. The Composite Midpoint rule requires h < 0.03098 and n ≥ 64. The approxi-

mation is 0.405460.

June 29, 2002 1:10 P.M.

656 CHAPTER 4 Answers for Numerical Methods

9. α = 1.5

11. a. 0.95449101, obtained using n = 14 in Composite Simpson’s rule.

b. 0.99729312, obtained using n = 20 in Composite Simpson’s rule.

13. The length of the track is approximately 9858 ft.

15. a. For p0 = 0.5 we have p6 = 1.644854 with n = 20.

b. For p0 = 0.5 we have p6 = 1.645085 with n = 40.

Exercise Set 4.4 (Page 000)

1. Romberg integration gives R3,3 as follows:

a. 0.1922593 b. 0.1606105 c. − 0.1768200 d. 0.08875677

e. 2.5879685 f. − 0.7341567 g. 0.6362135 h. 0.6426970

3. Romberg integration gives the following values:

a. 0.19225936 with n = 4 b. 0.16060279 with n = 5

c. − 0.17682002 with n = 4 d. 0.088755284 with n = 5

e. 2.5886286 with n = 6 f. − 0.73396918 with n = 6

g. 0.63621335 with n = 4 h. 0.64269908 with n = 5

June 29, 2002 1:10 P.M.

4.4 Answers for Numerical Methods 657

5. R33 = 11.5246

7. f(2.5) ≈ 0.43457

9. R31 = 5

11. Let N2(h) = N
(

h
3

)
+ 1

8

(
N
(

h
3

)−N(h)
)

and N3(h) = N2

(
h
3

)
+ 1

80

(
N2

(
h
3

)−N2(h)
)
.

Then N3(h) is an O(h6) approximation to M .

13. a. L’Hôpital’s Rule gives

lim
h→0

ln(2 + h)− ln(2− h)
h

= lim
h→0

Dh(ln(2 + h)− ln(2− h))
Dh(h)

= lim
h→0

(
1

2 + h
+

1
2− h

)
= 1,

so

lim
h→0

(
2 + h

2− h
)1/h

= lim
h→0

e
1
h [ln(2+h)−ln(2−h)] = e1 = e.

b. N(0.04) = 2.718644377221219, N(0.02) = 2.718372444800607,

N(0.01) = 2.718304481241685

c. Let N2(h) = 2N
(

h
2

) − N(h), N3(h) = N2

(
h
2

)
+ 1

3 [N2

(
h
2

) − N2(h)]. Then

N2(0.04) = 2.718100512379995, N2(0.02) = 2.718236517682763, and N3(0.04) =

2.718281852783685. N3(0.04) is anO(h3) approximation satisfying |e−N3(0.04)| ≤
0.5× 10−7.

d.

N(−h) =
(

2− h
2 + h

)1/−h

=
(

2 + h

2− h
)1/h

= N(h)

e. Let

e = N(h) +K1h+K2h
2 +K3h

3 + · · · .

Replacing h by −h gives

e = N(−h)−K1h+K2h
2 −K3h

3 + · · · ,

June 29, 2002 1:10 P.M.

658 CHAPTER 4 Answers for Numerical Methods

but N(−h) = N(h), so

e = N(h)−K1h+K2h
2 −K3h

3 + · · · .

Thus,

K1h+K3h
3 + · · · = −K1h−K3h

3 · · · ,

and it follows that K1 = K3 = K5 = · · · = 0 and

e = N(h) +K2h
2 +K4h

4 + · · · .

f. Let

N2(h) = N

(
h

2

)
+

1
3

(
N

(
h

2

)
−N(h)

)

and

N3(h) = N2

(
h

2

)
+

1
15

(
N2

(
h

2

)
−N2(h)

)
.

Then

N2(0.04) = 2.718281800660402, N2(0.02) = 2.718281826722043

and

N3(0.04) = 2.718281828459487.

N3(0.04) is an O(h6) approximation satisfying

|e−N3(0.04)| ≤ 0.5× 10−12.

Exercise Set 4.5 (Page 000)

1. Gaussian quadrature gives the following.

a. 0.1922687 b. 0.1594104 c. − 0.1768190 d. 0.08926302

e. 2.5913247 f. − 0.7307230 g. 0.6361966 h. 0.6423172

June 29, 2002 1:10 P.M.

4.6 Answers for Numerical Methods 659

3. Gaussian quadrature gives the following.

a. 0.1922594 b. 0.1606028 c. − 0.1768200 d. 0.08875529

e. 2.5886327 f. − 0.7339604 g. 0.6362133 h. 0.6426991

5. a = 1, b = 1, c = 1
3 , d = −1

3

Exercise Set 4.6 (Page 000)

1. Simpson’s rule gives the following.

a. S(1, 1.5) = 0.19224530, S(1, 1.25) = 0.039372434, S(1.25, 1.5) = 0.15288602,

and the actual value is 0.19225935.

b. S(0, 1) = 0.16240168, S(0, 0.5) = 0.028861071, S(0.5, 1) = 0.13186140, and the

actual value is 0.16060279.

c. S(0, 0.35) = −0.17682156, S(0, 0.175) = −0.087724382, S(0.175, 0.35) =−0.089095736,

and the actual value is −0.17682002.

d. S(0, π
4) = 0.087995669, S(0, π

8) = 0.0058315797, S(π
8 ,

π
4) = 0.082877624, and

the actual value is 0.088755285.

e. S(0, π
4) = 2.5836964, S(0, π

8) = 0.33088926, S(π
8 ,

π
4) = 2.2568121, and the

actual value is 2.5886286.

f. S(1, 1.6) = −0.73910533, S(1, 1.3) = −0.26141244, S(1.3, 1.6) = −0.47305351,

and the actual value is −0.73396917.

g. S(3, 3.5) = 0.63623873, S(3, 3.25) = 0.32567095, S(3.25, 3.5) = 0.31054412, and

the actual value is 0.63621334.

June 29, 2002 1:10 P.M.

660 CHAPTER 4 Answers for Numerical Methods

h. S(0, π
4) = 0.64326905, S(0, π

8) = 0.37315002, S(π
8 ,

π
4) = 0.26958270, and the

actual value is 0.64269908.

3. Adaptive quadrature gives the following.

a. 108.555281 b. − 1724.966983 c. − 15.306308 d. − 18.945949

5. Adaptive quadrature gives the following.
∫ 2

0.1

sin
1
x
dx = 1.1454 and

∫ 2

0.1

cos
1
x
dx = 0.67378.

Note: New Figures

x

y

-1

1

0.5

-0.5

2.01.0

y = sin
1_
x

x

y

-1

1

0.5

-0.5

2.01.0

y = cos
1_
x

Figure 0 Placed Here

for Exercise 5 (i) and (ii)

7.
∫ 2π

0
u(t) dt ≈ 0.00001

9.

June 29, 2002 1:10 P.M.

4.7 Answers for Numerical Methods 661

t c(t) s(t)

0.1 0.0999975 0.000523589
0.2 0.199921 0.00418759
0.3 0.299399 0.0141166
0.4 0.397475 0.0333568
0.5 0.492327 0.0647203
0.6 0.581061 0.110498
0.7 0.659650 0.172129
0.8 0.722844 0.249325
0.9 0.764972 0.339747
1.0 0.779880 0.438245

Exercise Set 4.7 (Page 000)

1. Composite Simpson’s rule with n = m = 4 gives these values.

a. 0.3115733 b. 0.2552526 c. 16.50864 d. 1.476684

3. Composite Simpson’s rule first with n = 4 and m = 8, then with n = 8 and m = 4,

and finally with n = m = 6 gives the following.

a. 0.5119875, 0.5118533, 0.5118722

b. 1.718857, 1.718220, 1.718385

c. 1.001953, 1.000122, 1.000386

d. 0.7838542, 0.7833659, 0.7834362

e. −1.985611, −1.999182, −1.997353

f. 2.004596, 2.000879, 2.000980

g. 0.3084277, 0.3084562, 0.3084323

h. −22.61612, −19.85408, −20.14117

June 29, 2002 1:10 P.M.

662 CHAPTER 4 Answers for Numerical Methods

5. Gaussian quadrature with n = m = 2 gives the following.

a. 0.3115733 b. 0.2552446 c. 16.50863 d. 1.488875

7. Gaussian quadrature with n = m = 3, n = 3 and m = 4, n = 4 and m = 3, and

n = m = 4 gives the following.

a. 0.5118655, 0.5118445, 0.5118655, 0.5118445, 2.1× 10−5, 1.3× 10−7, 2.1× 10−5,

1.3× 10−7

b. 1.718163, 1.718302, 1.718139, 1.718277, 1.2 × 10−4, 2.0 × 10−5, 1.4 × 10−4,

4.8× 10−6

c. 1.000000, 1.000000, 1.0000000, 1.000000, 0, 0, 0, 0

d. 0.7833333, 0.7833333, 0.7833333, 0.7833333, 0, 0, 0, 0

e. −1.991878, −2.000124, −1.991878, −2.000124, 8.1×10−3, 1.2×10−4, 8.1×10−3,

1.2× 10−4

f. 2.001494, 2.000080, 2.001388, 1.999984, 1.5×10−3, 8×10−5, 1.4×10−3, 1.6×10−5

g. 0.3084151, 0.3084145, 0.3084246, 0.3084245, 10−5, 5.5× 10−7, 1.1× 10−5, 6.4×
10−7

h. −12.74790, −21.21539, −11.83624, −20.30373, 7.0, 1.5, 7.9, 0.564

9. Gaussian quadrature with n = m = p = 2 gives the first listed value. The second is

the exact result.

a. 5.204036, e(e0.5 − 1)(e− 1)2 b. 0.08429784,
1
12

June 29, 2002 1:10 P.M.

4.9 Answers for Numerical Methods 663

c. 0.08641975,
1
14

d. 0.09722222,
1
12

e. 7.103932, 2 +
1
2
π2 f. 1.428074,

1
2
(e2 + 1)− e

11. Composite Simpson’s rule with n = m = 14 gives 0.1479103 and Gaussian quadrature

with n = m = 4 gives 0.1506823.

13. The area approximations are a. 1.0402528 and b. 1.0402523.

15. Gaussian quadrature with n = m = p = 4 gives 3.0521250. The exact result is

3.0521249.

Exercise Set 4.8 (Page 000)

1. Composite Simpson’s rule gives the following.

a. 0.5284163 b. 4.266654 c. 0.4329748 d. 0.8802210

3. Composite Simpson’s rule gives the following.

a. 0.4112649 b. 0.2440679 c. 0.05501681 d. 0.2903746

5 . The escape velocity is approximately 6.9450 mi/s.

Exercise Set 4.9 (Page 000)

1. From the two-point formula we have the following approximations:

June 29, 2002 1:10 P.M.

664 CHAPTER 4 Answers for Numerical Methods

a. f ′(0.5) ≈ 0.8520, f ′(0.6) ≈ 0.8520, f ′(0.7) ≈ 0.7960

b. f ′(0.0) ≈ 3.7070, f ′(0.2) ≈ 3.1520, f ′(0.4) ≈ 3.1520

3. For the endpoints of the tables we use the three-point endpoint formula. The other

approximations come from the three-point midpoint formula.

a. f ′(1.1) ≈ 17.769705, f ′(1.2) ≈ 22.193635, f ′(1.3) ≈ 27.107350, f ′(1.4) ≈
32.150850

b. f ′(8.1) ≈ 3.092050, f ′(8.3) ≈ 3.116150, f ′(8.5) ≈ 3.139975, f ′(8.7) ≈ 3.163525

c. f ′(2.9) ≈ 5.101375, f ′(3.0) ≈ 6.654785, f ′(3.1) ≈ 8.216330, f ′(3.2) ≈ 9.786010

d. f ′(2.0) ≈ 0.13533150, f ′(2.1) ≈ −0.09989550, f ′(2.2) ≈ −0.3298960, f ′(2.3) ≈
−0.5546700

5. a. The five-point endpoint formula gives f ′(2.1) ≈ 3.899344, f ′(2.2) ≈ 2.876876,

f ′(2.5) ≈ 1.544210, and f ′(2.6) ≈ 1.355496. The five-point midpoint formula

gives f ′(2.3) ≈ 2.249704 and f ′(2.4) ≈ 1.837756.

b. The five-point endpoint formula gives f ′(−3.0) ≈ −5.877358, f ′(−2.8) ≈ −5.468933,

f ′(−2.2) ≈ −4.239911, and f ′(−2.0) ≈ −3.828853. The five-point midpoint for-

mula gives f ′(−2.6) ≈ −5.059884 and f ′(−2.4) ≈ −4.650223.

7. The approximation is −4.8 × 10−9. f ′′(0.5) = 0. The error bound is 0.35874. The

method is very accurate since the function is symmetric about x = 0.5.

9. f ′(3) ≈ 1
12 [f(1)− 8f(2) + 8f(4)− f(5)] = 0.21062 with an error bound given by

max
1≤x≤5

|f (5)(x)|h4

30
≤ 23

30
= 0.76.

11. The optimal h = 2
√
ε/M, where M = max |f ′′(x)|.

June 29, 2002 1:10 P.M.

4.9 Answers for Numerical Methods 665

13. Since e′(h) = −ε/h2 + hM/3, we have e′(h) = 0 if and only if h = 3
√

3ε/M . Also,

e′(h) < 0 if h < 3
√

3ε/M and e′(h) > 0 if h > 3
√

3ε/M , so an absolute minimum for

e(h) occurs at h = 3
√

3ε/M .

15. Using three-point formulas gives the following table:

Time 0 3 5 8 10 13

Speed 79 82.4 74.2 76.8 69.4 71.2

June 29, 2002 1:10 P.M.

666 CHAPTER 5 Answers for Numerical Methods

Exercise Set 5.2 (Page 000)

1. Euler’s method gives the approximations in the following tables.

a.

i ti wi y(ti)

1 0.500 0.0000000 0.2836165
2 1.000 1.1204223 3.2190993

b.

i ti wi y(ti)

1 2.500 2.0000000 1.8333333
2 3.000 2.6250000 2.5000000

c.

i ti wi y(ti)

1 1.250 2.7500000 2.7789294
2 1.500 3.5500000 3.6081977
3 1.750 4.3916667 4.4793276
4 2.000 5.2690476 5.3862944

d.

i ti wi y(ti)

1 0.250 1.2500000 1.3291498
2 0.500 1.6398053 1.7304898
3 0.750 2.0242547 2.0414720
4 1.000 2.2364573 2.1179795

June 29, 2002 1:10 P.M.

5.2 Answers for Numerical Methods 667

3. Euler’s method gives the approximations in the following tables.

a.

i ti wi y(ti)

2 1.2 1.0082645 1.0149523
4 1.4 1.0385147 1.0475339
6 1.6 1.0784611 1.0884327
8 1.8 1.1232621 1.1336536
10 2.0 1.1706516 1.1812322

b.

i ti wi y(ti)

2 1.4 0.4388889 0.4896817
4 1.8 1.0520380 1.1994386
6 2.2 1.8842608 2.2135018
8 2.6 3.0028372 3.6784753
10 3.0 4.5142774 5.8741000

c.

i ti wi y(ti)

2 0.4 −1.6080000 −1.6200510
4 0.8 −1.3017370 −1.3359632
6 1.2 −1.1274909 −1.1663454
8 1.6 −1.0491191 −1.0783314
10 2.0 −1.0181518 −1.0359724

d.

June 29, 2002 1:10 P.M.

668 CHAPTER 5 Answers for Numerical Methods

i ti wi y(ti)

2 0.2 0.1083333 0.1626265
4 0.4 0.1620833 0.2051118
6 0.6 0.3455208 0.3765957
8 0.8 0.6213802 0.6461052
10 1.0 0.9803451 1.0022460

5.

a.

i ti wi y(ti)

1 0.50 0.12500000 0.28361652
2 1.00 2.02323897 3.21909932

b.

i ti wi y(ti)

1 2.50 1.75000000 1.83333333
2 3.00 2.42578125 2.50000000

c.

i ti wi y(ti)

1 1.25 2.78125000 2.77892944
2 1.50 3.61250000 3.60819766
3 1.75 4.48541667 4.47932763
4 2.00 5.39404762 5.38629436

d.

June 29, 2002 1:10 P.M.

5.2 Answers for Numerical Methods 669

i ti wi y(ti)

1 0.25 1.34375000 1.32914981
2 0.50 1.77218707 1.73048976
3 0.75 2.11067606 2.04147203
4 1.00 2.20164395 2.11797955

7.

a.

i ti wi y(ti)

2 1.2 1.0149771 1.0149523
4 1.4 1.0475619 1.0475339
6 1.6 1.0884607 1.0884327
8 1.8 1.1336811 1.1336536
10 2.0 1.1812594 1.1812322

b.

i ti wi y(ti)

2 1.4 0.4896141 0.4896817
4 1.8 1.1993085 1.1994386
6 2.2 2.2132495 2.2135018
8 2.6 3.6779557 3.6784753
10 3.0 5.8729143 5.8741000

c.

June 29, 2002 1:10 P.M.

670 CHAPTER 5 Answers for Numerical Methods

i ti wi y(ti)

2 0.4 −1.6201137 −1.6200510
4 0.8 −1.3359853 −1.3359632
6 1.2 −1.1663295 −1.1663454
8 1.6 −1.0783171 −1.0783314
10 2.0 −1.0359674 −1.0359724

d.

i ti wi y(ti)

2 0.2 0.1627236 0.1626265
4 0.4 0.2051833 0.2051118
6 0.6 0.3766352 0.3765957
8 0.8 0.6461246 0.6461052
10 1.0 1.0022549 1.0022460

9.

a.

i ti wi y(ti)

1 1.05 −0.9500000 −0.9523810
2 1.10 −0.9045353 −0.9090909
11 1.55 −0.6263495 −0.6451613
12 1.60 −0.6049486 −0.6250000
19 1.95 −0.4850416 −0.5128205
20 2.00 −0.4712186 −0.5000000

b. Linear interpolation gives

(i) y(1.052) ≈ −0.9481814, (ii) y(1.555) ≈ −0.6242094, (iii) y(1.978) ≈
−0.4773007.

June 29, 2002 1:10 P.M.

5.3 Answers for Numerical Methods 671

The actual values are y(1.052) = −0.9505703, y(1.555) = −0.6430868, y(1.978) =

−0.5055612.

c.

i ti wi y(ti)

1 1.05 −0.9525000 −0.9523810
2 1.10 −0.9093138 −0.9090909
11 1.55 −0.6459788 −0.6451613
12 1.60 −0.6258649 −0.6250000
19 1.95 −0.5139781 −0.5128205
20 2.00 −0.5011957 −0.5000000

d. Linear interpolation gives

(i) y(1.052) ≈ −0.9507726, (ii) y(1.555) ≈ −0.6439674, (iii) y(1.978) ≈
−0.5068199.

e.

i ti wi y(ti)

1 1.05 −0.9523813 −0.9523810
2 1.10 −0.9090914 −0.9090909
11 1.55 −0.6451629 −0.6451613
12 1.60 −0.6250017 −0.6250000
19 1.95 −0.5128226 −0.5128205
20 2.00 −0.5000022 −0.5000000

f. Hermite interpolation gives

(i) y(1.052) ≈ −0.9505706, (ii) y(1.555) ≈ −0.6430884, (iii) y(1.978) ≈
−0.5055633.

11. b. w50 = 0.10430 ≈ p(50)

c. Since p(t) = 1− 0.99e−0.002t, p(50) = 0.10421.

Exercise Set 5.3 (Page 000)

June 29, 2002 1:10 P.M.

672 CHAPTER 5 Answers for Numerical Methods

1. a.

i t wi y(ti)

1 0.5 0.2646250 0.2836165
2 1.0 3.1300023 3.2190993

b.

i t wi y(ti)

1 2.5 1.7812500 1.8333333
2 3.0 2.4550638 2.5000000

c.

i t wi y(ti)

1 1.25 2.7777778 2.7789294
2 1.50 3.6060606 3.6081977
3 1.75 4.4763015 4.4793276
4 2.00 5.3824398 5.3862944

d.

i t wi y(ti)

1 0.25 1.3337962 1.3291498
2 0.50 1.7422854 1.7304898
3 0.75 2.0596374 2.0414720
4 1.00 2.1385560 2.1179795

3. a.

i t wi y(ti)

1 0.5 0.5602111 0.2836165
2 1.0 5.3014898 3.2190993

June 29, 2002 1:10 P.M.

5.3 Answers for Numerical Methods 673

b.

i t wi y(ti)

1 2.5 1.8125000 1.8333333
2 3.0 2.4815531 2.5000000

c.

i t wi y(ti)

1 1.25 2.7750000 2.7789294
2 1.50 3.6008333 3.6081977
3 1.75 4.4688294 4.4793276
4 2.00 5.3728586 5.3862944

d.

i t wi y(ti)

1 0.25 1.3199027 1.3291498
2 0.50 1.7070300 1.7304898
3 0.75 2.0053560 2.0414720
4 1.00 2.0770789 2.1179795

5. a. 1.0221167 ≈ y(1.25) = 1.0219569, 1.1640347 ≈ y(1.93) = 1.1643901

b. 1.9086500 ≈ y(2.1) = 1.9249616, 4.3105913 ≈ y(2.75) = 4.3941697

c. −1.1461434 ≈ y(1.3) = −1.1382768, −1.0454854 ≈ y(1.93) = −1.0412665

d. 0.3271470 ≈ y(0.54) = 0.3140018, 0.8967073 ≈ y(0.94) = 0.8866318

7. a. 1.0225530 ≈ y(1.25) = 1.0219569, 1.1646155 ≈ y(1.93) = 1.1643901

b. 1.9132167 ≈ y(2.1) = 1.9249616, 4.3246152 ≈ y(2.75) = 4.3941697

June 29, 2002 1:10 P.M.

674 CHAPTER 5 Answers for Numerical Methods

c. −1.1441775 ≈ y(1.3) = −1.1382768, −1.0447403 ≈ y(1.93) = −1.0412665

d. 0.3251049 ≈ y(0.54) = 0.3140018, 0.8945125 ≈ y(0.94) = 0.8866318

9. a. 1.0227863 ≈ y(1.25) = 1.0219569, 1.1649247 ≈ y(1.93) = 1.1643901

b. 1.9153749 ≈ y(2.1) = 1.9249616, 4.3312939 ≈ y(2.75) = 4.3941697

c. −1.1432070 ≈ y(1.3) = −1.1382768, −1.0443743 ≈ y(1.93) = −1.0412665

d. 0.3240839 ≈ y(0.54) = 0.3140018, 0.8934152 ≈ y(0.94) = 0.8866318

11. a. The Runge-Kutta method of order 4 gives the results in the following tables.

i t wi y(ti)

2 1.2 1.0149520 1.0149523
4 1.4 1.0475336 1.0475339
6 1.6 1.0884323 1.0884327
8 1.8 1.1336532 1.1336536
10 2.0 1.1812319 1.1812322

b.

i t wi y(ti)

2 1.4 0.4896842 0.4896817
4 1.8 1.1994320 1.1994386
6 2.2 2.2134693 2.2135018
8 2.6 3.6783790 3.6784753
10 3.0 5.8738386 5.8741000

c.

June 29, 2002 1:10 P.M.

5.4 Answers for Numerical Methods 675

i t wi y(ti)

2 0.4 −1.6200576 −1.6200510
4 0.8 −1.3359824 −1.3359632
6 1.2 −1.1663735 −1.1663454
8 1.6 −1.0783582 −1.0783314
10 2.0 −1.0359922 −1.0359724

d.

i t wi y(ti)

2 0.2 0.1627655 0.1626265
4 0.4 0.2052405 0.2051118
6 0.6 0.3766981 0.3765957
8 0.8 0.6461896 0.6461052
10 1.0 1.0023207 1.0022460

13. With f(t, y) = −y + t+ 1 we have

wi + hf

(
ti +

h

2
, wi +

h

2
f(ti, wi)

)
=wi +

h

2
[f(ti, wi) + f(ti+1, wi + hf(ti, wi))]

=wi +
h

4

[
f(ti, wi) + 3f

(
ti +

2
3
h,wi +

2
3
hf(ti, wi)

)]

=wi

(
1− h+

h2

2

)
+ ti

(
h− h2

2

)
+ h.

15. In 0.2 s we have approximately 2099 units of KOH.

Exercise Set 5.4 (Page 000)

1. The Adams-Bashforth methods give the results in the following tables.

a.

June 29, 2002 1:10 P.M.

676 CHAPTER 5 Answers for Numerical Methods

i ti 2-step 3-step 4-step 5-step y(ti)

1 0.2 0.0268128 0.0268128 0.0268128 0.0268128 0.0268128
2 0.4 0.1200522 0.1507778 0.1507778 0.1507778 0.1507778
3 0.6 0.4153551 0.4613866 0.4960196 0.4960196 0.4960196
4 0.8 1.1462844 1.2512447 1.2961260 1.3308570 1.3308570
5 1.0 2.8241683 3.0360680 3.1461400 3.1854002 3.2190993

b.

i ti 2-step 3-step 4-step 5-step y(ti)

1 2.2 1.3666667 1.3666667 1.3666667 1.3666667 1.3666667
2 2.4 1.6750000 1.6857143 1.6857143 1.6857143 1.6857143
3 2.6 1.9632431 1.9794407 1.9750000 1.9750000 1.9750000
4 2.8 2.2323184 2.2488759 2.2423065 2.2444444 2.2444444
5 3.0 2.4884512 2.5051340 2.4980306 2.5011406 2.5000000

c.

i ti 2-step 3-step 4-step 5-step y(ti)

1 1.2 2.6187859 2.6187859 2.6187859 2.6187859 2.6187859
2 1.4 3.2734823 3.2710611 3.2710611 3.2710611 3.2710611
3 1.6 3.9567107 3.9514231 3.9520058 3.9520058 3.9520058
4 1.8 4.6647738 4.6569191 4.6582078 4.6580160 4.6580160
5 2.0 5.3949416 5.3848058 5.3866452 5.3862177 5.3862944

d.

i ti 2-step 3-step 4-step 5-step y(ti)

1 0.2 1.2529306 1.2529306 1.2529306 1.2529306 1.2529306
2 0.4 1.5986417 1.5712255 1.5712255 1.5712255 1.5712255
3 0.6 1.9386951 1.8827238 1.8750869 1.8750869 1.8750869
4 0.8 2.1766821 2.0844122 2.0698063 2.0789180 2.0789180
5 1.0 2.2369407 2.1115540 2.0998117 2.1180642 2.1179795

June 29, 2002 1:10 P.M.

5.4 Answers for Numerical Methods 677

3. The Adams-Bashforth methods give the results in the following tables.

a.

i ti 2-step 3-step 4-step 5-step y(ti)

2 1.2 1.0161982 1.0149520 1.0149520 1.0149520 1.0149523
4 1.4 1.0497665 1.0468730 1.0477278 1.0475336 1.0475339
6 1.6 1.0910204 1.0875837 1.0887567 1.0883045 1.0884327
8 1.8 1.1363845 1.1327465 1.1340093 1.1334967 1.1336536
10 2.0 1.1840272 1.1803057 1.1815967 1.1810689 1.1812322

b.

i ti 2-step 3-step 4-step 5-step y(ti)

2 1.4 0.4867550 0.4896842 0.4896842 0.4896842 0.4896817
4 1.8 1.1856931 1.1982110 1.1990422 1.1994320 1.1994386
6 2.2 2.1753785 2.2079987 2.2117448 2.2134792 2.2135018
8 2.6 3.5849181 3.6617484 3.6733266 3.6777236 3.6784753
10 3.0 5.6491203 5.8268008 5.8589944 5.8706101 5.8741000

c.

i ti 2-step 3-step 4-step 5-step y(ti)

5 0.5 −1.5357010 −1.5381988 −1.5379372 −1.5378676 −1.5378828
10 1.0 −1.2374093 −1.2389605 −1.2383734 −1.2383693 −1.2384058
15 1.5 −1.0952910 −1.0950952 −1.0947925 −1.0948481 −1.0948517
20 2.0 −1.0366643 −1.0359996 −1.0359497 −1.0359760 −1.0359724

d.

June 29, 2002 1:10 P.M.

678 CHAPTER 5 Answers for Numerical Methods

i ti 2-step 3-step 4-step 5-step y(ti)

2 0.2 0.1739041 0.1627655 0.1627655 0.1627655 0.1626265
4 0.4 0.2144877 0.2026399 0.2066057 0.2052405 0.2051118
6 0.6 0.3822803 0.3747011 0.3787680 0.3765206 0.3765957
8 0.8 0.6491272 0.6452640 0.6487176 0.6471458 0.6461052
10 1.0 1.0037415 1.0020894 1.0064121 1.0073348 1.0022460

5. The Adams Fourth-order Predictor-Corrector method gives the results in the following

tables.

a.

i ti wi y(ti)

2 1.2 1.0149520 1.0149523
4 1.4 1.0475227 1.0475339
6 1.6 1.0884141 1.0884327
8 1.8 1.1336331 1.1336536
10 2.0 1.1812112 1.1812322

b.

i ti wi y(ti)

2 1.4 0.4896842 0.4896817
4 1.8 1.1994245 1.1994386
6 2.2 2.2134701 2.2135018
8 2.6 3.6784144 3.6784753
10 3.0 5.8739518 5.8741000

c.

June 29, 2002 1:10 P.M.

5.4 Answers for Numerical Methods 679

i ti wi y(ti)

5 0.5 −1.5378788 −1.5378828
10 1.0 −1.2384134 −1.2384058
15 1.5 −1.0948609 −1.0948517
20 2.0 −1.0359757 −1.0359724

d.

i ti wi y(ti)

2 0.2 0.1627655 0.1626265
4 0.4 0.2048557 0.2051118
6 0.6 0.3762804 0.3765957
8 0.8 0.6458949 0.6461052
10 1.0 1.0021372 1.0022460

7. Milne-Simpson’s Predictor-Corrector method gives the results in the following tables.

a.

i ti wi y(ti)

2 1.2 1.01495200 1.01495231

5 1.5 1.06725997 1.06726235

7 1.7 1.11065221 1.11065505

10 2.0 1.18122584 1.18123222

b.

i ti wi y(ti)

2 1.4 0.48968417 0.48968166

5 2.0 1.66126150 1.66128176

7 2.4 2.87648763 2.87655142

10 3.0 5.87375555 5.87409998

c.

June 29, 2002 1:10 P.M.

680 CHAPTER 5 Answers for Numerical Methods

i ti wi y(ti)

5 0.5 −1.53788255 −1.53788284

10 1.0 −1.23840789 −1.23840584

15 1.5 −1.09485532 −1.09485175

20 2.0 −1.03597247 −1.03597242

d.

i ti wi y(ti)

2 0.2 0.16276546 0.16262648

5 0.5 0.27741080 0.27736167

7 0.7 0.50008713 0.50006579

10 1.0 1.00215439 1.00224598

Exercise Set 5.5 (Page 000)

1. y22 = 0.14846014 approximates y(0.1) = 0.14846010.

3. The Extrapolation method gives the results in the following tables.

a.

i ti wi hi k yi

1 1.05 1.10385729 0.05 2 1.10385738
2 1.10 1.21588614 0.05 2 1.21588635
3 1.15 1.33683891 0.05 2 1.33683925
4 1.20 1.46756907 0.05 2 1.46756957

b.

i ti wi hi k yi

1 0.25 0.25228680 0.25 3 0.25228680
2 0.50 0.51588678 0.25 3 0.51588678
3 0.75 0.79594460 0.25 2 0.79594458
4 1.00 1.09181828 0.25 3 1.09181825

June 29, 2002 1:10 P.M.

5.6 Answers for Numerical Methods 681

c.

i ti wi hi k yi

1 1.50 −1.50000055 0.50 5 −1.50000000
2 2.00 −1.33333435 0.50 3 −1.33333333
3 2.50 −1.25000074 0.50 3 −1.25000000
4 3.00 −1.20000090 0.50 2 −1.20000000

d.

i ti wi hi k yi

1 0.25 1.08708817 0.25 3 1.08708823
2 0.50 1.28980537 0.25 3 1.28980528
3 0.75 1.51349008 0.25 3 1.51348985
4 1.00 1.70187009 0.25 3 1.70187005

5. P (5) ≈ 56, 751.

Exercise Set 5.6 (Page 000)

1. a. w1 = 0.4787456 ≈ y(t1) = y(0.2966446) = 0.4787309

b. w4 = 0.31055852 ≈ y(t4) = y(0.2) = 0.31055897

3. The Runge-Kutta-Fehlberg method gives the results in the following tables.

a.

i ti wi hi yi

1 1.0500000 1.1038574 0.0500000 1.1038574
2 1.1000000 1.2158864 0.0500000 1.2158863
3 1.1500000 1.3368393 0.0500000 1.3368393
4 1.2000000 1.4675697 0.0500000 1.4675696

b.

June 29, 2002 1:10 P.M.

682 CHAPTER 5 Answers for Numerical Methods

i ti wi hi yi

1 0.2500000 0.2522868 0.2500000 0.2522868
2 0.5000000 0.5158867 0.2500000 0.5158868
3 0.7500000 0.7959445 0.2500000 0.7959446
4 1.0000000 1.0918182 0.2500000 1.0918183

c.

i ti wi hi yi

1 1.1382206 −1.7834313 0.1382206 −1.7834282
3 1.6364797 −1.4399709 0.3071709 −1.4399551
5 2.6364797 −1.2340532 0.5000000 −1.2340298
6 3.0000000 −1.2000195 0.3635203 −1.2000000

d.

i ti wi hi yi

1 0.2 1.0571819 0.2 1.0571810
2 0.4 1.2014801 0.2 1.2014860
3 0.6 1.3809214 0.2 1.3809312
4 0.8 1.5550243 0.2 1.5550314
5 1.0 1.7018705 0.2 1.7018701

5. The Adams Variable Step-Size Predictor-Corrector method gives the results in the

following tables.

a.

i ti wi hi yi

1 1.05000000 1.10385717 0.05000000 1.10385738
2 1.10000000 1.21588587 0.05000000 1.21588635
3 1.15000000 1.33683848 0.05000000 1.33683925
4 1.20000000 1.46756885 0.05000000 1.46756957

b.

June 29, 2002 1:10 P.M.

5.7 Answers for Numerical Methods 683

i ti wi hi yi

1 0.20000000 0.20120278 0.20000000 0.20120267
2 0.40000000 0.40861919 0.20000000 0.40861896
3 0.60000000 0.62585310 0.20000000 0.62585275
4 0.80000000 0.85397394 0.20000000 0.85396433
5 1.00000000 1.09183759 0.20000000 1.09181825

c.

i ti wi hi yi

5 1.16289739 −1.75426113 0.03257948 −1.75426455
10 1.32579477 −1.60547206 0.03257948 −1.60547731
15 1.57235777 −1.46625721 0.04931260 −1.46626230
20 1.92943707 −1.34978308 0.07694168 −1.34978805
25 2.47170180 −1.25358275 0.11633076 −1.25358804
30 3.00000000 −1.19999513 0.10299186 −1.20000000

d.

i ti wi hi yi

1 0.06250000 1.00583097 0.06250000 1.00583095
5 0.31250000 1.13099427 0.06250000 1.13098105
10 0.62500000 1.40361751 0.06250000 1.40360196
12 0.81250000 1.56515769 0.09375000 1.56514800
14 1.00000000 1.70186884 0.09375000 1.70187005

7. The current after 2 s is approximately i(2) = 8.693 amperes.

Exercise Set 5.7 (Page 000)

1. The Runge-Kutta for Systems method gives the results in the following tables.

a.

June 29, 2002 1:10 P.M.

684 CHAPTER 5 Answers for Numerical Methods

i ti w1i u1i w2i u2i

1 0.200 2.12036583 2.12500839 1.50699185 1.51158743
2 0.400 4.44122776 4.46511961 3.24224021 3.26598528
3 0.600 9.73913329 9.83235869 8.16341700 8.25629549
4 0.800 22.67655977 23.00263945 21.34352778 21.66887674
5 1.000 55.66118088 56.73748265 56.03050296 57.10536209

b.

i ti w1i u1i w2i u2i

1 0.500 0.95671390 0.95672798 −1.08381950 −1.08383310
2 1.000 1.30654440 1.30655930 −0.83295364 −0.83296776
3 1.500 1.34416716 1.34418117 −0.56980329 −0.56981634
4 2.000 1.14332436 1.14333672 −0.36936318 −0.36937457

c.

i ti w1i u1i w2i u2i w3i u3i

1 0.5 0.70787076 0.70828683 −1.24988663 −1.25056425 0.39884862 0.39815702

2 1.0 −0.33691753 −0.33650854 −3.01764179 −3.01945051 −0.29932294 −0.30116868

3 1.5 −2.41332734 −2.41345688 −5.40523279 −5.40844686 −0.92346873 −0.92675778

4 2.0 −5.89479008 −5.89590551 −8.70970537 −8.71450036 −1.32051165 −1.32544426

d.

i ti w1i u1i w2i u2i w3i u3i

2 0.2 1.38165297 1.38165325 1.00800000 1.00800000 −0.61833075 −0.61833075

5 0.5 1.90753116 1.90753184 1.12500000 0.12500000 −0.09090565 −0.09090566

7 0.7 2.25503524 2.25503620 1.34300000 1.34000000 0.26343971 0.26343970

10 1.0 2.83211921 2.83212056 2.00000000 2.00000000 0.88212058 0.88212056

June 29, 2002 1:10 P.M.

5.8 Answers for Numerical Methods 685

3. First use the Runge-Kutta method of order four for systems to compute all starting

values:

w1,0, w2,0, . . . , wm,0

w1,1, w2,1, . . . , wm,1

w1,2, w2,2, . . . , wm,2

w1,3, w2,3, . . . , wm,3.

Then for each j = 3, 4, . . . N −1, compute, for each i = 1, . . . ,m, the predictor values

w
(0)
i,j+1 =wi,j +

h

24
[55fi(ti, w1,j , . . . , wm,j)− 59fi(tj−1, w1,j−1, . . . , wm,j−1)

+ 37fi(tj−2, w1,j−2, . . . , wm,j−2)− 9fi(tj−3, w1,j−3, . . . , wm,j−3)],

and then the corrector values

wi,j+1 =wi,j +
h

24
[9fi(tj+1, w

(0)
i,j+1, . . . , w

(0)
m,j+1) + 19fi(ti, w1,j , . . . , wm,j)

− 5fi(tj−1, w1,j−1, . . . , wm,j−1) + fi(tj−2, w1,j−2, . . . , wm,j−2)].

5. The predicted number of prey, x1i, and predators, x2i, are given in the following

table.

i ti x1i x2i

10 1.0 4393 1512
20 2.0 288 3175
30 3.0 32 2042
40 4.0 25 1258

A stable solution is x1 = 833.3 and x2 = 1500.

Exercise Set 5.8 (Page 000)

June 29, 2002 1:10 P.M.

686 CHAPTER 5 Answers for Numerical Methods

1. Euler’s method gives the results in the following tables.

a.

i ti wi y(ti)

2 0.200 0.027182818 0.4493290
5 0.500 0.000027183 0.0301974
7 0.700 0.000000272 0.0049916
10 1.000 0.000000000 0.0003355

b.

i ti wi y(ti)

2 0.200 0.373333333 0.0461052
5 0.500 −0.933333333 0.2500151
7 0.700 0.146666667 0.4900003
10 1.000 1.333333333 1.0000000

c.

i ti wi y(ti)

2 0.500 16.47925 0.4794709
4 1.000 256.7930 0.8414710
6 1.500 4096.142 0.9974950
8 2.000 65523.12 0.9092974

d.

June 29, 2002 1:10 P.M.

5.8 Answers for Numerical Methods 687

i ti wi y(ti)

2 0.200 6.128259 1.000000001
5 0.500 −378.2574 1.000000000
7 0.700 −6052.063 1.000000000
10 1.000 387332.0 1.000000000

3. The Adams Fourth-Order Predictor-Corrector method gives the results in the follow-

ing tables.

a.

i ti wi y(ti)

2 0.200 0.4588119 0.4493290
5 0.500 −0.0112813 0.0301974
7 0.700 0.0013734 0.0049916
10 1.000 0.0023604 0.0003355

b.

i ti wi y(ti)

2 0.200 0.0792593 0.0461052
5 0.500 0.1554027 0.2500151
7 0.700 0.5507445 0.4900003
10 1.000 0.7278557 1.0000000

c.

i ti wi y(ti)

2 0.500 188.3082 0.4794709
4 1.000 38932.03 0.8414710
6 1.500 9073607 0.9974950
8 2.000 2115741299 0.9092974

June 29, 2002 1:10 P.M.

688 CHAPTER 5 Answers for Numerical Methods

d.

i ti wi y(ti)

2 0.200 −215.7459 1.000000000
5 0.500 −682637.0 1.000000000
7 0.700 −159172736 1.000000000
10 1.000 −566751172258 1.000000000

5. The following tables list the results of the Backward Euler method applied to the

problems in Exercise 1.

a.

i ti wi k y(ti)

2 0.20 0.75298666 2 0.44932896
5 0.50 0.10978082 2 0.03019738
7 0.70 0.03041020 2 0.00499159
10 1.00 0.00443362 2 0.00033546

b.

i ti wi k y(ti)

2 0.20 0.08148148 2 0.04610521
5 0.50 0.25635117 2 0.25001513
7 0.70 0.49515013 2 0.49000028
10 1.00 1.00500556 2 1.00000000

c.

i ti wi k y(ti)

2 0.50 0.50495522 2 0.47947094
4 1.00 0.83751817 2 0.84147099
6 1.50 0.99145076 2 0.99749499
8 2.00 0.90337560 2 0.90929743

June 29, 2002 1:10 P.M.

5.8 Answers for Numerical Methods 689

d.

i ti wi k y(ti)

2 0.20 1.00348713 3 1.00000001
5 0.50 1.00000262 2 1.00000000
7 0.70 1.00000002 1 1.00000000
10 1.00 1.00000000 1 1.00000000

June 29, 2002 1:10 P.M.

690 CHAPTER 6 Answers for Numerical Methods

Exercise Set 6.2 (Page 000)

1. a. Intersecting lines with solution x1 = x2 = 1.

b. Intersecting lines with solution x1 = x2 = 0.

c. One line, so there are an infinite number of solutions with x2 = 3
2 − 1

2x1.

d. Parallel lines, so there is no solution.

e. One line, so there are an infinite number of solutions with x2 = −1
2x1.

f. Three lines in the plane that do not intersect at a common point.

g. Intersecting lines with solution x1 = 2
7 and x2 = −11

7 .

h. Two planes in space that intersect in a line with x1 = −5
4x2 and x3 = 3

2x2 + 1.

3. Gaussian elimination gives the following solutions.

a. x1 = 1.1875, x2 = 1.8125, x3 = 0.875 with one row interchange required.

b. x1 = −1, x2 = 0, x3 = 1 with no interchange required.

c. x1 = 1.5, x2 = 2, x3 = −1.2, x4 = 3 with no interchange required.

d. x1 = 22
9 , x2 = −4

9 , x3 = 4
3 , x4 = 1 with one row interchange required.

e. No unique solution.

f. x1 = −1, x2 = 2, x3 = 0, x4 = 1 with one row interchange required.

5. a. When α = −1/3, there is no solution.

b. When α = 1/3, there are an infinite number of solutions with x1 = x2 +1.5, and

x2 is arbitrary.

June 29, 2002 1:10 P.M.

6.3 Answers for Numerical Methods 691

c. If α �= ±1/3, then the unique solution is

x1 =
3

2(1 + 3α)
and x2 =

−3
2(1 + 3α)

.

7. a. There is sufficient food to satisfy the average daily consumption.

b. We could add 200 of species 1, or 150 of species 2, or 100 of species 3, or 100 of

species 4.

c. Assuming none of the increases indicated in part (b) was selected, species 2 could

be increased by 650, or species 3 could be increased by 150, or species 4 could be

increased by 150.

d. Assuming none of the increases indicated in parts (b) or (c) were selected, species

3 could be increased by 150, or species 4 could be increased by 150.

Exercise Set 6.3 (Page 000)

1. a. None b. Interchange rows 2 and 3.

c. None d. Interchange rows 1 and 2.

3. a. Interchange rows 1 and 3, then interchange rows 2 and 3.

b. Interchange rows 2 and 3.

c. Interchange rows 2 and 3.

d. Interchange rows 1 and 3, then interchange rows 2 and 3.

5. Gaussian elimination with three-digit chopping arithmetic gives the following results.

a. x1 = 30.0, x2 = 0.990

June 29, 2002 1:10 P.M.

692 CHAPTER 6 Answers for Numerical Methods

b. x1 = 1.00, x2 = 9.98

c. x1 = 0.00, x2 = 10.0, x3 = 0.142

d. x1 = 12.0, x2 = 0.492, x3 = −9.78

e. x1 = 0.206, x2 = 0.0154, x3 = −0.0156, x4 = −0.716

f. x1 = 0.828, x2 = −3.32, x3 = 0.153, x4 = 4.91

7. Gaussian elimination with partial pivoting and three-digit chopping arithmetic gives

the following results.

a. x1 = 10.0, x2 = 1.00

b. x1 = 1.00, x2 = 9.98

c. x1 = −0.163, x2 = 9.98, x3 = 0.142

d. x1 = 12.0, x2 = 0.504, x3 = −9.78

e. x1 = 0.177, x2 = −0.0072, x3 = −0.0208, x4 = −1.18

f. x1 = 0.777, x2 = −3.10, x3 = 0.161, x4 = 4.50

9. a. α = 6

Exercise Set 6.4 (Page 000)

1. a. 


1 0 0
1 2 0
9 5 1




b. 


1 −1 2
2 −1 7
−2 1 −5




June 29, 2002 1:10 P.M.

6.4 Answers for Numerical Methods 693

c. 


1 0 0
2 1 0
−7 −2 1




d. 


6 −7 15
0 −1 3
0 0 6




3. a. Singular, detA = 0 b. detA = −8, detA−1 = −0.125

c. Singular, detA = 0 d. Singular, detA = 0

e. detA = 28, detA−1 =
1
28

f. detA = 3, detA−1 =
1
3

5. a. Not true. Let

A =
[

2 1
1 0

]
and B =

[
1 −1
−1 2

]
. Then AB =

[
1 0
1 −1

]

is not symmetric.

b. True. Let A be a nonsingular symmetric matrix. From the properties of trans-

poses and inverses we have (A−1)t = (At)−1. Thus (A−1)t = (At)−1 = A−1, and

A−1 is symmetric.

c. Not true. Use the matrices A and B from part (a).

7. a. The solution is x1 = 0, x2 = 10, and x3 = 26.

b. We have D1 = −1, D2 = 3, D3 = 7, and D = 0, and there are no solutions.

c. We have D1 = D2 = D3 = D = 0, and there are infinitely many solutions.

June 29, 2002 1:10 P.M.

694 CHAPTER 6 Answers for Numerical Methods

9. a. For each k = 1, 2, . . . ,m, the number aik represents the total number of plants of

type vi eaten by herbivores in the species hk. The number of herbivores of types

hk eaten by species cj is bkj . Thus, the total number of plants of type vi ending

up in species cj is ai1b1j + ai2b2j + · · ·+ aimbmj = (AB)ij .

b. We first assume n = m = k so that the matrices will have inverses. Let x1, ..., xn

represent the vegetations of type v1, ..., vn, let y1, ..., yn represent the number of

herbivores of species h1, ..., hn, and let z1, ..., zn represent the number of carnivores

of species c1, ..., cn.

If 


x1

x2
...
xn


 = A




y1
y2
...
yn


 , then




y1
y2
...
yn


 = A−1




x1

x2
...
xn


 .

Thus, (A−1)i,j represents the amount of type vj plants eaten by a herbivore of

species hi. Similarly, if



y1
y2
...
yn


 = B




z1
z2
...
zn


 , then




z1
z2
...
zn


 = B−1




y1
y2
...
yn


 .

Thus (B−1)i,j represents the number of herbivores of species hj eaten by a carni-

vore of species ci. If x = Ay and y = Bz, then x = ABz and z = (AB)−1x. But,

y = A−1x and z = B−1y, so z = B−1A−1x.

11. a. In component form:

(a11x1 − b11y1 + a12x2 − b12y2) + (b11x1 + a11y1 + b12x2 + a12y2)i = c1 + id1

(a21x1 − b21y1 + a22x2 − b22y2) + (b21x1 + a21y1 + b22x2 + a22y2)i = c2 + id2,

June 29, 2002 1:10 P.M.

6.5 Answers for Numerical Methods 695

so

a11x1 + a12x2 − b11y1 − b12y2 = c1

b11x1 + b12x2 + a11y1 + a12y2 = d1

a21x1 + a22x2 − b21y1 − b22y2 = c2

b21x1 + b22x2 + a21y1 + a22y2 = d2

b. The system 


1 3 2 −2
−2 2 1 3
2 4 −1 −3
1 3 2 4






x1

x2

y1
y2


 =




5
2
4
−1




has the solution x1 = −1.2, x2 = 1, y1 = 0.6, and y2 = −1.

Exercise Set 6.5 (Page 000)

1. a. x1 = −3, x2 = 3, x3 = 1

b. x1 = 1
2 , x2 = −9

2 , x3 = 7
2

3. a.

P tLU =




0 1 0
1 0 0
0 0 1






1 0 0
0 1 0
0 −1

2 1






1 1 −1
0 2 3
0 0 5

2




b.

P tLU =




1 0 0
0 0 1
0 1 0






1 0 0
2 1 0
1 0 1






1 2 −1
0 −5 6
0 0 4




c.

P tLU =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0







1 0 0 0
2 1 0 0
1 0 1 0
3 0 0 1







1 −2 3 0
0 5 −2 1
0 0 −1 −2
0 0 0 3




June 29, 2002 1:10 P.M.

696 CHAPTER 6 Answers for Numerical Methods

d.

P tLU =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







1 0 0 0
2 1 0 0
1 0 1 0
1 0 0 1







1 −2 3 0
0 5 −3 −1
0 0 −1 −2
0 0 0 1




Exercise Set 6.6 (Page 000)

1. (i) The symmetric matrices are in (a), (b), and (f).

(ii) The singular matrices are in (e) and (h).

(iii) The strictly diagonally dominant matrices are in (a), (b), (c), and (d).

(iv) The positive definite matrices are in (a) and (f).

3. Choleski factorization gives the following results.

a.

L =




1.414213 0 0
−0.7071069 1.224743 0

0 −0.8164972 1.154699




b.

L =




2 0 0 0
0.5 1.658311 0 0
0.5 −0.7537785 1.087113 0
0.5 0.4522671 0.08362442 1.240346




c.

L =




2 0 0 0
0.5 1.658311 0 0
−0.5 −0.4522671 2.132006 0

0 0 0.9380833 1.766351




d.

L =




2.449489 0 0 0
0.8164966 1.825741 0 0
0.4082483 0.3651483 1.923538 0
−0.4082483 0.1825741 −0.4678876 1.606574




5. Crout factorization gives the following results.

June 29, 2002 1:10 P.M.

6.6 Answers for Numerical Methods 697

a. x1 = 0.5, x2 = 0.5, x3 = 1 b. x1 = −0.9999995, x2 = 1.999999, x3 = 1

c. x1 = 1, x2 = −1, x3 = 0

d. x1 = −0.09357798, x2 = 1.587156, x3 = −1.167431, x4 = 0.5412844

7. a. No, consider
[

1 0
0 1

]
.

b. Yes, since A = At.

c. Yes, since xt(A+B)x = xtAx + xtBx.

d. Yes, since xtA2x = xtAtAx = (Ax)t(Ax) ≥ 0, and because A is nonsingular,

equality holds only if x = 000.

e. No, consider A =
[

1 0
0 1

]
and B =

[
2 0
0 2

]
.

9. a. Since detA = 3α− 2β, A is singular if and only if α = 2β/3.

b. |α| > 1, |β| < 1

c. β = 1

d. α > 2
3 , β = 1

11. a. Mating male i with female j produces offspring with the same wing characteristics

as mating male j with female i.

b. No. Consider, for example, x = (1, 0,−1)t.

June 29, 2002 1:10 P.M.

698 CHAPTER 7 Answers for Numerical Methods

Exercise Set 7.2 (Page 000)

1. a. We have ||x||∞ = 4 and ||x||2 = 5.220153.

b. We have ||x||∞ = 4 and ||x||2 = 5.477226.

c. We have ||x||∞ = 2k and ||x||2 = (1 + 4k)1/2.

d. We have ||x||∞ = 4/(k + 1) and ||x||2 = (16/(k + 1)2 + 4/k4 + k4e−2k)1/2.

3. a. We have limk→∞ x(k) = (0, 0, 0)t.

b. We have limk→∞ x(k) = (0, 1, 3)t.

c. We have limk→∞ x(k) = (0, 0, 1
2)t.

d. We have limk→∞ x(k) = (1,−1, 1)t.

5. a. We have ||x− x̂||∞ = 8.57× 10−4 and ||Ax̂− b||∞ = 2.06× 10−4.

b. We have ||x− x̂||∞ = 0.90 and ||Ax̂− b||∞ = 0.27.

c. We have ||x− x̂||∞ = 0.5 and ||Ax̂− b||∞ = 0.3.

d. We have ||x− x̂||∞ = 6.55× 10−2, and ||Ax̂− b||∞ = 0.32.

7. Let A =
[

1 1
0 1

]
and B =

[
1 0
1 1

]
. Then ‖AB‖∞© = 2, but ‖A‖∞© · ‖B‖∞© = 1.

9. It is not difficult to show that (i) holds. If ‖A‖ = 0, then ‖Ax‖ = 0 for all vec-

tors x with ‖x‖ = 1. Using x = (1, 0, . . . , 0)t, x = (0, 1, 0, . . . , 0)t, . . . , and x =

(0, . . . , 0, 1)t successively implies that each column of A is zero. Thus, ‖A‖ = 0 if and

only if A = 0. Moreover,

‖αA‖ = max
‖x‖=1

‖(αAx)‖ = |α| max
‖x‖=1

‖Ax‖ = |α| · ‖A‖,
‖A+B‖ = max

‖x‖=1
‖(A+B)x‖ ≤ max

‖x‖=1
(‖Ax‖+ ‖Bx‖),

June 29, 2002 1:10 P.M.

7.3 Answers for Numerical Methods 699

so

||A+B|| ≤ max
‖x‖=1

‖Ax‖+ max
‖x‖=1

‖Bx‖ = ‖A‖+ ‖B‖

and

‖AB‖ = max
‖x‖=1

‖(AB)x‖ = max
‖x‖=1

‖A(Bx)‖,

so

||AB|| ≤ max
‖x‖=1

‖A‖ ‖Bx‖ = ‖A‖ max
‖x‖=1

‖Bx‖ = ‖A‖ ‖B‖.

Exercise Set 7.3 (Page 000)

1. a. The eigenvalue λ1 = 3 has the eigenvector x1 = (1,−1)t, and the eigenvalue

λ2 = 1 has the eigenvector x2 = (1, 1)t.

b. The eigenvalue λ1 = 1+
√

5
2 has the eigenvector x1 = (1, 1+

√
5

2)t, and the eigen-

value λ2 = 1−√
5

2 has the eigenvector x2 =
(
1, 1−√

5
2

)t

.

c. The eigenvalue λ1 = 1
2 has the eigenvector x1 = (1, 1)t and the eigenvalue

λ2 = −1
2 has the eigenvector x2 = (1,−1)t.

d. The eigenvalue λ1 = 0 has the eigenvector x1 = (1,−1)t and the eigenvalue

λ2 = −1 has the eigenvector x2 = (1,−2)t.

e. The eigenvalue λ1 = λ2 = 3 has the eigenvectors x1 = (0, 0, 1)t and x2 =

(1, 1, 0)t, and the eigenvalue λ3 = 1 has the eigenvector x3 = (1,−1, 0)t.

f. The eigenvalue λ1 = 7 has the eigenvector x1 = (1, 4, 4)t, the eigenvalue λ2 = 3

has the eigenvector x2 = (1, 2, 0)t, and the eigenvalue λ3 = −1 has the eigenvector

x3 = (1, 0, 0)t.

g. The eigenvalue λ1 = λ2 = 1 has the eigenvectors x1 = (−1, 1, 0)t and x2 =

(−1, 0, 1)t, and the eigenvalue λ3 = 5 has the eigenvector x3 = (1, 2, 1)t.

June 29, 2002 1:10 P.M.

700 CHAPTER 7 Answers for Numerical Methods

h. The eigenvalue λ1 = 3 has the eigenvector x1 = (−1, 1, 2)t, the eigenvalue λ2 = 4

has the eigenvector x2 = (0, 1, 2)t, and the eigenvalue λ3 = −2 has the eigenvector

x3 = (−3, 8, 1)t.

3. Since

Ak
1 =

[
1 0

2k−1
2k+1 2−k

]
, we have lim

k→∞
Ak

1 =
[

1 0
1
2 0

]
.

Also

Ak
2 =

[
2−k 0
16k
2k−1 2−k

]
, so lim

k→∞
Ak

2 =
[

0 0
0 0

]
.

5. a. 3 b. 1.618034 c. 0.5 d. 3.162278

e. 3 f. 8.224257 g. 5.203527 h. 5.601152

7. Let A =
[

1 1
0 1

]
and B =

[
1 0
1 1

]
. Then ρ(A) = ρ(B) = 1 and ρ(A+B) = 3.

9. a. Since

det(A− λI) = det((A− λI)t) = det(At − λIt) = det(At − λI),

λ is an eigenvalue of A if and only if λ is an eigenvalue of At.

b. If Ax = λx, then A2x = λAx = λ2x. By induction we have Anx = λnx for each

positive integer n.

c. If Ax = λx and A−1 exists, then x = λA−1x. Also, since A−1 exists, zero is not

an eigenvalue of A, so λ �= 0 and 1
λx = A−1x. So 1/λ is an eigenvalue of A−1.

d. Since Ax = λx, we have (A−αI)x = (λ−α)x, and since (A−αI)−1 exists and

α �= λ, we have
1

λ− αx = (A− αI)−1x.

June 29, 2002 1:10 P.M.

7.4 Answers for Numerical Methods 701

Exercise Set 7.4 (Page 000)

1. Two iterations of Jacobi’s method give the following results.

a. (0.1428571,−0.3571429, 0.4285714)t

b. (0.97, 0.91, 0.74)t

c. (−0.65, 1.65,−0.4,−2.475)t

d. (−0.5208333,−0.04166667,−0.2166667, 0.4166667)t

e. (1.325,−1.6, 1.6, 1.675, 2.425)t

f. (0.6875, 1.125, 0.6875, 1.375, 0.5625, 1.375)t

3. Jacobi’s Method gives the following results.

a. x(10) = (0.03507839,−0.2369262, 0.6578015)t

b. x(6) = (0.9957250, 0.9577750, 0.7914500)t

c. x(22) = (−0.7975853, 2.794795,−0.2588888,−2.251879)t

d. x(14) = (−0.7529267, 0.04078538,−0.2806091, 0.6911662)t

e. x(12) = (0.7870883,−1.003036, 1.866048, 1.912449, 1.985707)t

f. x(17) = (0.9996805, 1.999774, 0.9996805, 1.999840, 0.9995482, 1.999840)t

5. a. A is not strictly diagonally dominant.

b.

Tj =




0 0 1
0.5 0 0.25
−1 0.5 0


 and ρ(Tj) = 0.97210521.

Since Tj is convergent, the Jacobi method will converge.

c. With x(0) = (0, 0, 0)t, x(187) = (0.90222655,−0.79595242, 0.69281316)t.

June 29, 2002 1:10 P.M.

702 CHAPTER 7 Answers for Numerical Methods

d. ρ(Tj) = 1.39331779371. Since Tj is not convergent, the Jacobi method will not

converge.

7. Tj = (tik) has entries given by

tik =
{

0, i = k for 1 ≤ i ≤ n, and 1 ≤ k ≤ n
−aik

aii
, i �= k for 1 ≤ i ≤ n, and 1 ≤ k ≤ n.

Thus,

‖Tj‖∞ = max
1≤i≤n

n∑
k=1
k �=i

|aik

aii
| < 1,

since A is strictly diagonally dominant.

Exercise Set 7.5 (Page 000)

1. Two iterations of the SOR method give the following results.

a. (0.05410079,−0.2115435, 0.6477159)t

b. (0.9876790, 0.9784935, 0.7899328)t

c. (−0.71885, 2.818822,−0.2809726,−2.235422)t

d. (−0.6604902, 0.03700749,−0.2493513, 0.6561139)t

e. (1.079675,−1.260654, 2.042489, 1.995373, 2.049536)t

f. (0.8318750, 1.647766, 0.9189856, 1.791281, 0.8712129, 1.959155)t

3. The tridiagonal matrices are in parts (b) and (c).

b. For ω = 1.012823 we have x(4) = (0.9957846, 0.9578935, 0.7915788)t.

c. For ω = 1.153499 we have x(7) = (−0.7977651, 2.795343,−0.2588021,−2.251760)t.

5. a. The system was reordered so that the diagonal of the matrix had nonzero entries.

June 29, 2002 1:10 P.M.

7.6 Answers for Numerical Methods 703

b. (i) The solution vector is (−6.27212290601165×10−3,−2.36602456112022×104,

−1.36602492324141× 104,−3.34606444633457× 104, 2.36602456112022× 104,

1.00000000000000× 104,−2.73205026462435× 104, 2.36602492324141× 104)t,

using 29 iterations with tolerance 1.00× 10−2.

(ii) The solution vector is (−9.89308239877573×10−3,−2.36602492321617×104,

−1.36602492324141× 104,−3.34606444633457× 104, 2.36602456107651× 104,

1.00000000000000× 104,−2.73205026459521× 104, 2.36602456112022× 104)t,

using 57 iterations with tolerance 1.00× 10−2.

(iii) The solution vector is (−2.16147× 10−3,−2.366025403900× 104,

−1.366025404100× 104,−3.346065215000× 104, 2.366025411100× 104,

1.000000000000× 104,−2.732050807600× 104, 2.366025403600× 104)t,

using 19 iterations with tolerance 1.00× 10−2 and parameter 1.25.

Exercise Set 7.6 (Page 000)

1. The || · ||∞ condition number is as follows.

a. 50 b. 241.37 c. 600, 002

d. 339, 866 e. 12 h. 198.17

3. The matrix is ill-conditioned since K∞ = 60002. For the new system we have x̃ =

(−1.0000, 2.0000)t.

5. a. (i) (−10.0, 1.01)t, (ii) (10.0, 1.00)t

b. (i) (12.0, 0.499,−1.98)t, (ii) (1.00, 0.500,−1.00)t

c. (i) (0.185, 0.0103,−0.0200,−1.12)t, (ii) (0.177, 0.0127,−0.0207,−1.18)t

d. (i) (0.799,−3.12, 0.151, 4.56)t, (ii) (0.758,−3.00, 0.159, 4.30)t

June 29, 2002 1:10 P.M.

704 CHAPTER 7 Answers for Numerical Methods

7. a. We have x̃ = (188.9998, 92.99998, 45.00001, 27.00001, 21.00002)t.

b. The condition number is K∞ = 80.

c. The exact solution is x = (189, 93, 45, 27, 21)t.

9. a.

Ĥ−1 =




8.968 −35.77 29.77
−35.77 190.6 −178.6
29.77 −178.6 178.6




b.

Ĥ =




0.9799 0.4870 0.3238
0.4860 0.3246 0.2434
0.3232 0.2433 0.1949




c. ‖H − Ĥ‖∞ = 0.04260

Exercise Set 7.7 (Page 000)

Note: All the material in this section is new

1. a. (0.18, 0.13)t

b. (0.19, 0.10)t

c. Gaussian elimination gives the best answer since v(2) = (0, 0)t in the conjugate

gradient method.

d. (0.13, 0.21)t. There is no improvement, although v(2) �= 0.

3. a. (1.00,−1.00, 1.00)t

b. (0.827, 0.0453,−0.0357)t

c. The partial pivoting and scaled partial pivoting also give (1.00,−1.00, 1.00)t.

d. (0.776, 0.238,−0.185)t;

The residual from (3b) is (−0.0004,−0.0038, 0.0037)t, and the residual from part

June 29, 2002 1:10 P.M.

7.7 Answers for Numerical Methods 705

(3d) is (0.0022,−0.0038, 0.0024)t.

There does not appear to be much improvement, if any. Rounding error is more

prevalent because of the increase in the number of matrix multiplications.

5. a. x(2) = (0.1535933456,−0.1697932117, 0.5901172091)t, ‖r(2)‖∞ = 0.221.

b. x(2) = (0.9993129510, 0.9642734456, 0.7784266575)t, ‖r(2)‖∞ = 0.144.

c. x(2) = (−0.7290954114, 2.515782452,−0.6788904058,−2.331943982)t, ‖r(2)‖∞ =

2.2.

d. x(2) = (−0.7071108901,−0.0954748881,−0.3441074093, 0.5256091497)t, ‖r(2)‖∞ =

0.39.

e. x(2) = (0.5335968381, 0.9367588935, 1.339920949, 1.743083004, 1.743083004)t, ‖r(2)‖∞ =

1.3.

f. x(2) = (1.022375671, 1.686451893, 1.022375671, 2.060919568, 0.8310997764, 2.060919568)t,

‖r(2)‖∞ = 1.13.

7. a. x(3) = (0.06185567013,−0.1958762887, 0.6185567010)t, ‖r(3)‖∞ = 0.4× 10−9.

b. x(3) = (0.9957894738, 0.9578947369, 0.7915789474)t, ‖r(3)‖∞ = 0.1× 10−9.

c. x(4) = (−0.7976470579, 2.795294120,−0.2588235305,−2.251764706)t, ‖r(4)‖∞ =

0.39× 10−7.

d. x(4) = (−0.7534246575, 0.04109589039,−0.2808219179, 0.6917808219)t, ‖r(4)‖∞ =

0.11× 10−9.

e. x(5) = (0.4516129032, 0.7096774197, 1.677419355, 1.741935483, 1.806451613)t, ‖r(5)‖∞ =

0.2× 10−9.

f. x(4) = (1.000000000, 2.000000000, 1.000000000, 2.000000000, 0.9999999997, 2.000000000)t,

‖r(4)‖∞ = 0.44× 10−9.

June 29, 2002 1:10 P.M.

706 CHAPTER 7 Answers for Numerical Methods

9.

Jacobi Gauss-Seidel SOR (ω = 1.3) Conjugate Gradient

a. 49 28 13 9

iterations iterations iterations iterations

x1 0.93406183 0.93406917 0.93407584 0.93407713

x2 0.97473885 0.97475285 0.97476180 0.97476363

x3 1.10688692 1.10690302 1.10691093 1.10691243

x4 1.42346150 1.42347226 1.42347591 1.42347699

x5 0.85931331 0.85932730 0.85933633 0.85933790

x6 0.80688119 0.80690725 0.80691961 0.80692197

x7 0.85367746 0.85370564 0.85371536 0.85372011

x8 1.10688692 1.10690579 1.10691075 1.10691250

x9 0.87672774 0.87674384 0.87675177 0.87675250

x10 0.80424512 0.80427330 0.80428301 0.80428524

x11 0.80688119 0.80691173 0.80691989 0.80692252

x12 0.97473885 0.97475850 0.97476265 0.97476392

x13 0.93003466 0.93004542 0.93004899 0.93004987

x14 0.87672774 0.87674661 0.87675155 0.87675298

x15 0.85931331 0.85933296 0.85933709 0.85933979

x16 0.93406183 0.93407462 0.93407672 0.93407768

June 29, 2002 1:10 P.M.

7.7 Answers for Numerical Methods 707

Jacobi Gauss-Seidel SOR (ω = 1.2) Conjugate Gradient

b. 60 35 23 11

iterations iterations iterations iterations

x1 0.39668038 0.39668651 0.39668915 0.39669775

x2 0.07175540 0.07176830 0.07177348 0.07178516

x3 −0.23080396 −0.23078609 −0.23077981 −0.23076923

x4 0.24549277 0.24550989 0.24551535 0.24552253

x5 0.83405412 0.83406516 0.83406823 0.83407148

x6 0.51497606 0.51498897 0.51499414 0.51500583

x7 0.12116003 0.12118683 0.12119625 0.12121212

x8 −0.24044414 −0.24040991 −0.24039898 −0.24038462

x9 0.37873579 0.37876891 0.37877812 0.37878788

x10 1.09073364 1.09075392 1.09075899 1.09076341

x11 0.54207872 0.54209658 0.54210286 0.54211344

x12 0.13838259 0.13841682 0.13842774 0.13844211

x13 −0.23083868 −0.23079452 −0.23078224 −0.23076923

x14 0.41919067 0.41923122 0.41924136 0.41925019

x15 1.15015953 1.15018477 1.15019025 1.15019425

x16 0.51497606 0.51499318 0.51499864 0.51500583

x17 0.12116003 0.12119315 0.12120236 0.12121212

x18 −0.24044414 −0.24040359 −0.24039345 −0.24038462

x19 0.37873579 0.37877365 0.37878188 0.37878788

x20 1.09073364 1.09075629 1.09076069 1.09076341

x21 0.39668038 0.39669142 0.39669449 0.39669775

x22 0.07175540 0.07177567 0.07178074 0.07178516

x23 −0.23080396 −0.23077872 −0.23077323 −0.23076923

x24 0.24549277 0.24551542 0.24551982 0.24552253

x25 0.83405412 0.83406793 0.83407025 0.83407148

June 29, 2002 1:10 P.M.

708 CHAPTER 7 Answers for Numerical Methods

Jacobi Gauss-Seidel SOR (ω = 1.1) Conjugate Gradient

c. 15 9 8 8

iterations iterations iterations iterations

x1 −3.07611424 −3.07611739 −3.07611796 −3.07611794

x2 −1.65223176 −1.65223563 −1.65223579 −1.65223582

x3 −0.53282391 −0.53282528 −0.53282531 −0.53282528

x4 −0.04471548 −0.04471608 −0.04471609 −0.04471604

x5 0.17509673 0.17509661 0.17509661 0.17509661

x6 0.29568226 0.29568223 0.29568223 0.29568218

x7 0.37309012 0.37309011 0.37309011 0.37309011

x8 0.42757934 0.42757934 0.42757934 0.42757927

x9 0.46817927 0.46817927 0.46817927 0.46817927

x10 0.49964748 0.49964748 0.49964748 0.49964748

x11 0.52477026 0.52477026 0.52477026 0.52477027

x12 0.54529835 0.54529835 0.54529835 0.54529836

x13 0.56239007 0.56239007 0.56239007 0.56239009

x14 0.57684345 0.57684345 0.57684345 0.57684347

x15 0.58922662 0.58922662 0.58922662 0.58922664

x16 0.59995522 0.59995522 0.59995522 0.59995523

x17 0.60934045 0.60934045 0.60934045 0.60934045

x18 0.61761997 0.61761997 0.61761997 0.61761998

x19 0.62497846 0.62497846 0.62497846 0.62497847

x20 0.63156161 0.63156161 0.63156161 0.63156161

x21 0.63748588 0.63748588 0.63748588 0.63748588

x22 0.64284553 0.64284553 0.64284553 0.64284553

x23 0.64771764 0.64771764 0.64771764 0.64771764

x24 0.65216585 0.65216585 0.65216585 0.65216585

x25 0.65624320 0.65624320 0.65624320 0.65624320

x26 0.65999423 0.65999423 0.65999423 0.65999422

x27 0.66345660 0.66345660 0.66345660 0.66345660

x28 0.66666242 0.66666242 0.66666242 0.66666242

x29 0.66963919 0.66963919 0.66963919 0.66963919

x30 0.67241061 0.67241061 0.67241061 0.67241060

x31 0.67499722 0.67499722 0.67499722 0.67499721

x32 0.67741692 0.67741692 0.67741691 0.67741691

x33 0.67968535 0.67968535 0.67968535 0.67968535

x34 0.68181628 0.68181628 0.68181628 0.68181628

x35 0.68382184 0.68382184 0.68382184 0.68382184

x36 0.68571278 0.68571278 0.68571278 0.68571278

x37 0.68749864 0.68749864 0.68749864 0.68749864

x38 0.68918652 0.68918652 0.68918652 0.68918652

x39 0.69067718 0.69067718 0.69067718 0.69067717

x40 0.68363346 0.68363346 0.68363346 0.68363349

June 29, 2002 1:10 P.M.

7.7 Answers for Numerical Methods 709

11. a.

Solution Residual

2.55613420 0.00668246

4.09171393 −0.00533953

4.60840390 −0.01739814

3.64309950 −0.03171624

5.13950533 0.01308093

7.19697808 −0.02081095

7.68140405 −0.04593118

5.93227784 0.01692180

5.81798997 0.04414047

5.85447806 0.03319707

5.94202521 −0.00099947

4.42152959 −0.00072826

3.32211695 0.02363822

4.49411604 0.00982052

4.80968966 0.00846967

3.81108707 −0.01312902

This converges in 6 iterations with tolerance 5.00×10−2 in the l∞ norm and ‖r(6)‖∞ =

0.046.

b.

Solution Residual

2.55613420 0.00668246

4.09171393 −0.00533953

4.60840390 −0.01739814

3.64309950 −0.03171624

5.13950533 0.01308093

7.19697808 −0.02081095

7.68140405 −0.04593118

5.93227784 0.01692180

5.81798996 0.04414047

5.85447805 0.03319706

5.94202521 −0.00099947

4.42152959 −0.00072826

3.32211694 0.02363822

4.49411603 0.00982052

4.80968966 0.00846967

3.81108707 −0.01312902

June 29, 2002 1:10 P.M.

710 CHAPTER 7 Answers for Numerical Methods

This converges in 6 iterations with tolerance 5.00×10−2 in the l∞ norm and ‖r(6)‖∞ =

0.046.

c. All tolerances lead to the same convergence specifications.

13. a. Let {v(1), . . .v(n)} be a set of nonzero A-orthogonal vectors for the symmetric

positive definite matrix A. Then 〈v(i), Av(j)〉 = 0, if i �= j. Suppose

c1v(1) + c2v(2) + · · ·+ cnv(n) = 0,

where not all ci are zero. Suppose k is the smallest integer for which ck �= 0.

Then

ckv(k) + ck+1v(k+1) + · · ·+ cnv(n) = 0.

We solve for v(k) to obtain

v(k) = −ck+1

ck
v(k+1) − · · · − cn

ck
v(n).

Multiplying by A gives

Av(k) = −ck+1

ck
Av(k+1) − · · · − cn

ck
Av(n),

so

v(k)tAv(k) = −ck+1

ck
v(k)tAv(k+1) − · · · − cn

ck
v(k)tAv(n)

= −ck+1

ck
〈v(k), Av(k+1)〉 − · · · − cn

ck
〈v(k), Av(n)〉

= −ck+1

ck
· 0− · · · − cn

ck
· 0.

Since A is positive definite, v(k) = 0, which is a contradiction. Thus, all ci must

be zero, and {v(1), . . . ,v(n)} is linearly independent.

b. Let {v(1), . . . ,v(n)} be a set of nonzero A-orthogonal vectors for the symmetric

positive definite matrix A, and let z be orthogonal to v(i), for each i = 1, . . . , n.

From part (a), the set {v(1), . . .v(n)} is linearly independent, so there is a collec-

tion of constants β1, . . . , βn with

z =
n∑

i=1

βiv(i).

June 29, 2002 1:10 P.M.

7.7 Answers for Numerical Methods 711

Hence,

ztz =
n∑

i=1

βiztv(i) =
n∑

i=1

βi · 0 = 0,

and part (v) of the Inner Product Properties implies that z = 0.

June 29, 2002 1:10 P.M.

712 CHAPTER 8 Answers for Numerical Methods

Exercise Set 8.2 (Page 000)

1. The linear least squares polynomial is 1.70784x+ 0.89968.

3. The least squares polynomials with their errors are:

0.6208950 + 1.219621x, with E = 2.719× 10−5;

0.5965807 + 1.253293x− 0.01085343x2, with E = 1.801× 10−5;

0.6290193 + 1.185010x+ 0.03533252x2 − 0.01004723x3, with E = 1.741× 10−5.

5. a. The linear least squares polynomial is 72.0845x− 194.138, with error of 329.

b. The least squares polynomial of degree 2 is 6.61821x2−1.14352x+1.23556, with

error of 1.44× 10−3.

c. The least squares polynomial of degree 3 is−0.0136742x3+6.84557x2−2.37919x+

3.42904, with error of 5.27× 10−4.

7. a. k = 0.8996, E(k) = 0.407

b. k = 0.9052, E(k) = 0.486

Part (b) best fits the total experimental data.

9. Point average = 0.101(ACT score) +0.487

Exercise Set 8.3 (Page 000)

1. The linear least squares approximations are as follows.

a. P1(x) = 1.833333 + 4x

b. P1(x) = −1.600003 + 3.600003x

c. P1(x) = 1.140981− 0.2958375x

June 29, 2002 1:10 P.M.

8.3 Answers for Numerical Methods 713

d. P1(x) = 0.1945267 + 3.000001x

e. P1(x) = 0.6109245 + 0.09167105x

f. P1(x) = −1.861455 + 1.666667x

3. The linear least squares approximations on [−1, 1] are as follows.

a. P1(x) = 3.333333− 2x

b. P1(x) = 0.6000025x

c. P1(x) = 0.5493063− 0.2958375x

d. P1(x) = 1.175201 + 1.103639x

e. P1(x) = 0.4207355 + 0.4353975x

f. P1(x) = 0.6479184 + 0.5281226x

5. The errors for the approximations in Exercise 3 are as follows.

a. 0.177779 b. 0.0457206 c. 0.00484624

d. 0.0526541 e. 0.0153784 f. 0.00363453

7. The Gram-Schmidt process produces the following collections of polynomials.

a. φ0(x) = 1, φ1(x) = x− 0.5, φ2(x) = x2 − x+ 1
6 , and φ3(x) = x3 − 1.5x2 +

0.6x− 0.05

b. φ0(x) = 1, φ1(x) = x − 1, φ2(x) = x2 − 2x + 2
3 , and φ3(x) = x3 − 3x2 +

12
5 x− 2

5

June 29, 2002 1:10 P.M.

714 CHAPTER 8 Answers for Numerical Methods

c. φ0(x) = 1, φ1(x) = x− 2, φ2(x) = x2 − 4x+ 11
3 , and φ3(x) = x3 − 6x2 +

11.4x− 6.8

9. The least squares polynomials of degree 2 are as follows.

a. P2(x) = 3.833333φ0(x) + 4φ1(x) + 0.9999998φ2(x)

b. P2(x) = 2φ0(x) + 3.6φ1(x) + 3φ2(x)

c. P2(x) = 0.5493061φ0(x)− 0.2958369φ1(x) + 0.1588785φ2(x)

d. P2(x) = 3.194528φ0(x) + 3φ1(x) + 1.458960φ2(x)

e. P2(x) = 0.6567600φ0(x) + 0.09167105φ1(x)− 0.7375118φ2(x)

f. P2(x) = 1.471878φ0(x) + 1.666667φ1(x) + 0.2597705φ2(x)

11. a. 2L0(x) + 4L1(x) + L2(x)

b. 1
2L0(x)− 1

4L1(x) + 1
16L2(x)− 1

96L3(x)

c. 6L0(x) + 18L1(x) + 9L2(x) + L3(x)

d. 1
3L0(x)− 2

9L1(x) + 2
27L2(x)− 4

243L3(x)

Exercise Set 8.4 (Page 000)

1. The interpolating polynomials of degree 2 are as follows.

a. P2(x) = 2.377443 + 1.590534(x− 0.8660254) + 0.5320418(x− 0.8660254)x

b. P2(x) = 0.7617600 + 0.8796047(x− 0.8660254)

c. P2(x) = 1.052926 + 0.4154370(x− 0.8660254)− 0.1384262x(x− 0.8660254)

d. P2(x) = 0.5625 + 0.649519(x− 0.8660254) + 0.75x(x− 0.8660254)

June 29, 2002 1:10 P.M.

8.4 Answers for Numerical Methods 715

3. The interpolating polynomials of degree 3 are as follows.

a.

P3(x) =2.519044 + 1.945377(x− 0.9238795)

+ 0.7047420(x− 0.9238795)(x− 0.3826834)

+ 0.1751757(x− 0.9238795)(x− 0.3826834)(x+ 0.3826834)

b.

P3(x) =0.7979459 + 0.7844380(x− 0.9238795)

− 0.1464394(x− 0.9238795)(x− 0.3826834)

− 0.1585049(x− 0.9238795)(x− 0.3826834)(x+ 0.3826834)

c.

P3(x) =1.072911 + 0.3782067(x− 0.9238795)

− 0.09799213(x− 0.9238795)(x− 0.3826834)

+ 0.04909073(x− 0.9238795)(x− 0.3826834)(x+ 0.3826834)

d.

P3(x) =0.7285533 + 1.306563(x− 0.9238795)

+ 0.9999999(x− 0.9238795)(x− 0.3826834)

5. The zeros of T̃3 produce the following interpolating polynomials of degree 2.

a. P2(x) = 0.3489153− 0.1744576(x− 2.866025) + 0.1538462(x− 2.866025)(x− 2)

b. P2(x) = 0.1547375− 0.2461152(x− 1.866025) + 0.1957273(x− 1.866025)(x− 1)

c. P2(x) = 0.6166200−0.2370869(x−0.9330127)−0.7427732(x−0.9330127)(x−0.5)

d. P2(x) = 3.0177125 + 1.883800(x− 2.866025) + 0.2584625(x− 2.866025)(x− 2)

June 29, 2002 1:10 P.M.

716 CHAPTER 8 Answers for Numerical Methods

7. If i > j, then

1
2
(Ti+j(x) + Ti−j(x)) =

1
2

(
cos(i+ j)θ + cos(i− j)θ

)
= cos iθ cos jθ = Ti(x)Tj(x).

Exercise Set 8.5 (Page 000)

1. The Padé approximations of degree 2 for f(x) = e2x are

n = 2,m = 0 : r2,0(x) = 1 + 2x+ 2x2,

n = 1,m = 1 : r1,1(x) = (1 + x)/(1− x),
n = 0,m = 2 : r0,2(x) = (1− 2x+ 2x2)−1.

i xi f(xi) r2,0(xi) r1,1(xi) r0,2(xi)

1 0.2 1.4918 1.4800 1.5000 1.4706
2 0.4 2.2255 2.1200 2.3333 1.9231
3 0.6 3.3201 2.9200 4.0000 1.9231
4 0.8 4.9530 3.8800 9.0000 1.4706
5 1.0 7.3891 5.0000 undefined 1.0000

3. r2,3(x) = (1 + 2
5x+ 1

20x
2)/(1− 3

5x+ 3
20x

2 − 1
60x

3)

i xi f(xi) r2,3(xi)

1 0.2 1.22140276 1.22140277
2 0.4 1.49182470 1.49182561
3 0.6 1.82211880 1.82213210
4 0.8 2.22554093 2.22563652
5 1.0 2.71828183 2.71875000

5. r3,3(x) = (x− 7
60x

3)/(1 + 1
20x

2)

June 29, 2002 1:10 P.M.

8.5 Answers for Numerical Methods 717

i xi f(xi) 6th Maclaurin r3,2(xi)
Polynomial

0 0.0 0.00000000 0.00000000 0.00000000
1 0.1 0.09983342 0.09966675 0.09938640
2 0.2 0.19866933 0.19733600 0.19709571
3 0.3 0.29552021 0.29102025 0.29246305
4 0.4 0.38941834 0.37875200 0.38483660
5 0.5 0.47942554 0.45859375 0.47357724

7. The Padé approximations of degree 5 are as follows.

a. r0,5(x) = (1 + x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5)−1

b. r1,4(x) = (1− 1
5x)/(1 + 4

5x+ 3
10x

2 + 1
15x

3 + 1
120x

4)

c. r3,2(x) = (1− 3
5x+ 3

20x
2 − 1

60x
3)/(1 + 2

5x+ 1
20x

2)

d. r4,1(x) = (1− 4
5x+ 3

10x
2 − 1

15x
3 + 1

120x
4)/(1 + 1

5x)

i xi f(xi) r0,5(xi) r1,4(xi) r2,3(xi) r4,1(xi)

1 0.2 0.81873075 0.81873081 0.81873074 0.81873075 0.81873077
2 0.4 0.67032005 0.67032276 0.67031942 0.67031963 0.67032099
3 0.6 0.54881164 0.54883296 0.54880635 0.54880763 0.54882143
4 0.8 0.44932896 0.44941181 0.44930678 0.44930966 0.44937931
5 1.0 0.36787944 0.36809816 0.36781609 0.36781609 0.36805556

9. a. Since

sin |x| = sin(Mπ + s) = sinMπ cos s+ cosMπ sin s = (−1)M sin s,

we have

sinx = sign x sin |x| = sign (x)(−1)M sin s.

June 29, 2002 1:10 P.M.

718 CHAPTER 8 Answers for Numerical Methods

b. We have

sinx ≈
(
s− 31

294
s3
)/(

1 +
3
49
s2 +

11
5880

s3
)

with |error| ≤ 2.84× 10−4.

c. Set M = round(|x|/π); s = |x| −Mπ; f1 =
(
s− 31

294s
3
)/(

1 + 3
49s

2 + 11
5880s

4
)
.

Then f = (−1)Mf1 · x/|x| is the approximation.

d. Set y = x+ π
2 and repeat part (c) with y in place of x.

Exercise Set 8.6 (Page 000)

1. S2(x) = π2

3 − 4 cosx+ cos 2x

3. S3(x) = 3.676078−3.676078 cosx+1.470431 cos 2x−0.7352156 cos 3x+3.676078 sinx−
2.940862 sin 2x

5. Sn(x) = 1
2 + 1

π

∑n−1
k=1

1−(−1)k

k sin kx

7. The trigonometric least squares polynomials are as follows.

a. S2(x) = cos 2x

b. S2(x) = 0

c. S3(x) = 1.566453+0.5886815 cosx−0.2700642 cos 2x+0.2175679 cos 3x+ 0.8341640 sinx−
0.3097866 sin 2x

d. S3(x) = −2.046326 + 3.883872 cosx− 2.320482 cos 2x+ 0.7310818 cos 3x

9. The trigonometric least squares polynomial is S3(x) = −0.4968929+0.2391965 cosx+

1.515393 cos 2x+ 0.2391965 cos 3x− 1.150649 sinx with error E(S3) = 7.271197.

June 29, 2002 1:10 P.M.

8.7 Answers for Numerical Methods 719

11. Let f(−x) = −f(x). The integral
∫ 0

−a
f(x) dx under the change of variable t = −x

transforms to

−
∫ 0

a

f(−t) dt =
∫ a

0

f(−t) dt = −
∫ a

0

f(t) dt = −
∫ a

0

f(x) dx.

Thus,
∫ a

−a

f(x) dx =
∫ 0

−a

f(x) dx+
∫ a

0

f(x) dx = −
∫ a

0

f(x) dx+
∫ a

0

f(x) dx = 0.

13. Representative integrations that establish the orthogonality are:
∫ π

−π

[φ0(x)]2 dx =
1
2

∫ π

−π

dx = π,

∫ π

−π

[φk(x)]2 dx =
∫ π

−π

(cos kx)2 dx =
∫ π

−π

[
1
2

+
1
2

cos 2kx
]
dx = π +

[
1
4k

sin 2kx
]π

−π

= π,

∫ π

−π

φk(x)φ0(x) dx =
1
2

∫ π

−π

cos kx dx =
1
2k

sin kx
]π

−π

= 0,

and
∫ π

−π

φk(x)φn+j(x) dx =
∫ π

−π

cos kx sin jx dx =
1
2

∫ π

−π

[sin(k + j)x− sin(k − j)x] dx = 0.

Exercise Set 8.7 (Page 000)

1. The trigonometric interpolating polynomials are as follows.

a. S2(x) = −12.33701 + 4.934802 cosx− 2.467401 cos 2x+ 4.934802 sinx

b. S2(x) = −6.168503 + 9.869604 cosx− 3.701102 cos 2x+ 4.934802 sinx

c. S2(x) = 1.570796− 1.570796 cosx

d. S2(x) = −0.5− 0.5 cos 2x+ sinx

Note: New Figures

June 29, 2002 1:10 P.M.

720 CHAPTER 8 Answers for Numerical Methods

x

y

-4 -2

-5

15

10

42

5

20

-3 -1

1

3

(a) y = π(x π) S (x) 2
_ _

x

y

-4 -2

-5

15

10

42

5

20

-3 -1

1

3

(b)
y = x(π x) S (x)2

_ _

x

y

-4 -2

-0.4

0.4

0.1

-0.2

-0.1

-0.3

41

(c)

y = |x| S (x)
2

_

x

y

-4 -2

1.2

0.8

42

0.4

1.6

-3 -1 1 3

2.0
(d) y = 1 S (x)2

_

y = 1 S (x)2
__

3. The Fast Fourier Transform method gives the following trigonometric interpolating

polynomials.

a. S4(x) = −11.10331+2.467401 cosx−2.467401 cos 2x+2.467401 cos 3x−1.233701 cos 4x

+5.956833 sinx −2.467401 sin 2x+ 1.022030 sin 3x

b. S4(x) = 1.570796− 1.340759 cosx− 0.2300378 cos 3x

c. S4(x) = −0.1264264+0.2602724 cosx−0.3011140 cos 2x+1.121372 cos 3x+0.04589648 cos 4x

−0.1022190 sinx+ 0.2754062 sin 2x −2.052955 sin 3x

d. S4(x) = −0.1526819 + 0.04754278 cosx + 0.6862114 cos 2x − 1.216913 cos 3x +

1.176143 cos 4x− 0.8179387 sinx+ 0.1802450 sin 2x+ 0.2753402 sin 3x

5.

June 29, 2002 1:10 P.M.

8.7 Answers for Numerical Methods 721

Approximation Actual

a. −69.76415 −62.01255
b. 9.869602 9.869604
c. −0.7943605 −0.2739383
d. −0.9593287 −0.9557781

June 29, 2002 1:10 P.M.

722 CHAPTER 9 Answers for Numerical Methods

Exercise Set 9.2 (Page 000)

1. a. The eigenvalues and associated eigenvectors are λ1 = 2, v(1) = (1, 0, 0)t; λ2 =

1, v(2) = (0, 2, 1)t; and λ3 = −1, v(3) = (−1, 1, 1)t. The set is linearly indepen-

dent.

b. The eigenvalues and associated eigenvectors are λ1 = λ2 = λ3 = 1, v(1) = v(2) =

(1, 0, 1)t and v(3) = (0, 1, 1). The set is linearly dependent.

c. The eigenvalues and associated eigenvectors are λ1 = 2, v(1) = (0, 1, 0)t; λ2 =

3, v(2) = (1, 0, 1)t; and λ3 = 1, v(3) = (1, 0,−1)t. The set is linearly independent.

d. The eigenvalues and associated eigenvectors are λ1 = λ2 = 3, v(1) = (1, 0,−1)t,v(2) =

(0, 1,−1)t; and λ3 = 0, v(3) = (1, 1, 1)t. The set is linearly independent.

e. The eigenvalues and associated eigenvectors are λ1 = 1,v(1) = (0,−1, 1)t;λ2 =

1+
√

2,v(2) = (
√

2, 1, 1)t; and λ3 = 1−√2,v(3) = (−√2, 1, 1)t. The set is linearly

independent.

f. The eigenvalues and associated eigenvectors are λ1 = 1, v(1) = (1, 0,−1)t;λ2 =

1,v(2) = (1,−1, 0)t; and λ3 = 4, v(3) = (1, 1, 1)t. The set is linearly independent.

3. a. The three eigenvalues are within {λ | |λ| ≤ 2} ∪ {λ | |λ− 2| ≤ 2}.

b. The three eigenvalues are within R1 = {λ | |λ− 4| ≤ 2}.

c. The three real eigenvalues satisfy 0 ≤ λ ≤ 6.

d. The three real eigenvalues satisfy 1.25 ≤ λ ≤ 8.25.

e. The four real eigenvalues satisfy −8 ≤ λ ≤ 1.

f. The four real eigenvalues are within R1 = {λ | |λ− 2| ≤ 4}.

5. If c1v1+· · ·+ckvk = 0, then for any j = 1, 2, . . . , k, we have c1vt
jv1+· · ·+ckvt

jvk = 000.

But orthogonality gives civt
jvi = 0 for i �= j, so cjvt

jvj = 0 and cj = 0.

June 29, 2002 1:10 P.M.

9.3 Answers for Numerical Methods 723

7. Since {vi}ni=1 is linearly independent in IRn, there exist numbers c1, . . . , cn with

x = c1v1 + · · ·+ cnvn.

Hence, for any j = 1, 2, . . . , n,

vt
jx = c1vt

jv1 + · · ·+ cnvt
jvn = cjvt

jvj = cj .

9. a. The eigenvalues are λ1 = 5.307857563, λ2 = −0.4213112993, λ3 = −0.1365462647

with associated eigenvectors (0.59020967, 0.51643129, 0.62044441)t,

(0.77264234,−0.13876278,−0.61949069)t, and (0.23382978,−0.84501102, 0.48091581)t,

respectively.

b. A is not positive definite, since λ2 < 0 and λ3 < 0.

Exercise Set 9.3 (Page 000)

1. The approximate eigenvalues and approximate eigenvectors are as follows.

a. µ(3) = 3.666667, x(3) = (0.9772727, 0.9318182, 1)t

b. µ(3) = 2.000000, x(3) = (1, 1, 0.5)t

c. µ(3) = 5.000000, x(3) = (−0.2578947, 1,−0.2842105)t

d. µ(3) = 5.038462, x(3) = (1, 0.2213741, 0.3893130, 0.4045802)t

e. µ(3) = 7.531073, x(3) = (0.6886722,−0.6706677,−0.9219805, 1)t

f. µ(3) = 4.106061, x(3) = (0.1254613, 0.08487085, 0.00922509, 1)t

3. The approximate eigenvalues and approximate eigenvectors are as follows.

a. µ(3) = 3.959538, x(3) = (0.5816124, 0.5545606, 0.5951383)t

b. µ(3) = 2.0000000, x(3) = (−0.6666667,−0.6666667,−0.3333333)t

June 29, 2002 1:10 P.M.

724 CHAPTER 9 Answers for Numerical Methods

c. µ(3) = 7.189567, x(3) = (0.5995308, 0.7367472, 0.3126762)t

d. µ(3) = 6.037037, x(3) = (0.5073714, 0.4878571,−0.6634857,−0.2536857)t

e. µ(3) = 5.142562, x(3) = (0.8373051, 0.3701770, 0.1939022, 0.3525495)t

f. µ(3) = 8.593142, x(3) = (−0.4134762, 0.4026664, 0.5535536,−0.6003962)t

5. The approximate eigenvalues and approximate eigenvectors are as follows.

a. µ(8) = 4.000001, x(8) = (0.9999773, 0.99993134, 1)t

b. The method fails because of division by zero.

c. µ(7) = 5.124890, x(7) = (−0.2425938, 1,−0.3196351)t

d. µ(15) = 5.236112, x(15) = (1, 0.6125369, 0.1217216, 0.4978318)t

e. µ(10) = 8.999890, x(10) = (0.9944137,−0.9942148,−0.9997991, 1)t

f. µ(11) = 4.105317, x(11) = (0.11716540, 0.072853995, 0.01316655, 1)t

7. The approximate eigenvalues and approximate eigenvectors are as follows.

a. µ(9) = 1.000015, x(9) = (−0.1999939, 1,−0.7999909)t

b. µ(12) = −0.4142136, x(12) = (1,−0.7070918,−0.7071217)t

c. The method did not converge in 25 iterations. However, µ(42) = 1.636636,

x(42) = (−0.5706815, 0.3633636, 1)t.

d. µ(9) = 1.381959, x(9) = (−0.3819400,−0.2361007, 0.2360191, 1)t

e. µ(6) = 3.999997, x(6) = (0.9999939, 0.9999999, 0.9999940, 1)t

f. µ(3) = 4.105293, x(3) = (0.06281419, 0.08704089, 0.01825213, 1)t

9. a. We have |λ| ≤ 6 for all eigenvalues λ.

June 29, 2002 1:10 P.M.

9.4 Answers for Numerical Methods 725

b. The approximate eigenvalue is µ(133) = 0.69766854, with the approximate eigen-

vector x(133) = (1, 0.7166727, 0.2568099, 0.04601217)t.

c. Wielandt’s deflation fails because λ2 and λ3 are complex numbers.

d. The characteristic polynomial is P (λ) = λ4 − 1
4λ− 1

16 and the eigenvalues are

λ1 = 0.6976684972, λ2 = −0.2301775942 + 0.56965884i,

λ3 = −0.2301775942− 0.56965884i, and λ4 = −0.237313308.

e. The beetle population should approach zero since A is convergent.

Exercise Set 9.4 (Page 000)

1. Householder’s method produces the following tridiagonal matrices.

a. 


12.00000 −10.77033 0.0
−10.77033 3.862069 5.344828

0.0 5.344828 7.137931




b. 


2.0000000 1.414214 0.0
1.414214 1.000000 0.0

0.0 0.0 3.0




c. 


1.0000000 −1.414214 0.0
−1.414214 1.000000 0.0

0.0 0.0 1.000000




d. 


4.750000 −2.263846 0.0
−2.263846 4.475610 −1.219512

0.0 −1.219512 5.024390




3. a. Since P = I − 2wwt, we have

P t = (I − 2wwt)t = It − 2(wwt)t = I − 2(wt)twt = I − 2wwt = P.

June 29, 2002 1:10 P.M.

726 CHAPTER 9 Answers for Numerical Methods

b. Using part (a) We have

P tP = P 2 =
(
I − 2wwt

)2 = I − 4wwt + 4wwtwwt.

But wtw = 1, so

P tP = I − 4wwt + 4wwt = I and P t = P = P−1.

Exercise Set 9.5 (Page 000)

1. Two iterations of the QR method produce the following matrices.

a.

A(3) =




0.6939977 −0.3759745 0.0
−0.3759745 1.892417 −0.03039696

0.0 −0.03039696 3.413585




b.

A(3) =




4.535466 1.212648 0.0
1.212648 3.533242 3.83× 10−7

0.0 3.83× 10−7 −0.06870782




c.

A(3) =




4.679567 −0.2969009 0.0
−2.969009 3.052484 −1.207346× 10−5

0.0 −1.207346× 10−5 1.267949




d.

A(3) =




0.3862092 0.4423226 0.0 0.0
0.4423226 1.787694 −0.3567744 0.0

0.0 −0.3567744 3.080815 3.116382× 10−5

0.0 0.0 3.116382× 10−5 4.745281




e.

A(3) =



−2.826365 1.130297 0.0 0.0
1.130297 −2.429647 −0.1734156 0.0

0.0 −0.1734156 0.8172086 1.863997× 10−9

0.0 0.0 1.863997× 10−9 3.438803




June 29, 2002 1:10 P.M.

9.5 Answers for Numerical Methods 727

f.

A(3) =




0.2763388 0.1454371 0.0 0.0
0.1454371 0.4543713 0.1020836 0.0

0.0 0.1020836 1.174446 −4.36× 10−5

0.0 0.0 −4.36× 10−5 0.9948441




3. The matrices in Exercise 1 have the following eigenvalues, accurate to within 10−5.

a. 3.414214, 2.000000, 0.58578644

b. −0.06870782, 5.346462, 2.722246

c. 1.267949, 4.732051, 3.000000

d. 4.745281, 3.177283, 1.822717, 0.2547188

e. 3.438803, 0.8275517,−1.488068,−3.778287

f. 0.9948440, 1.189091, 0.5238224, 0.1922421

5. a. Let

P =
[

cos θ − sin θ
sin θ cos θ

]

and y = Px. Show that ‖x‖2 = ‖y‖2. Then use the relationship x1+ix2 = reiα,

where r = ‖x‖2 and α = tan−1(x2/x1), and y1 + iy2 = rei(α+θ).

b. Let x = (1, 0)t and θ = π/4.

7. Jacobi’s method produces the following eigenvalues, accurate to within the tolerance:

a. 3.414214, 0.5857864, 2.0000000; 3 iterations

b. 2.722246, 5.346462, −0.06870782; 3 iterations

c. 4.732051, 3, 1.267949; 3 iterations

d. 0.2547188, 1.822717, 3.177283, 4.745281; 3 iterations

e. −1.488068, −3.778287, 0.8275517, 3.438803; 3 iterations

June 29, 2002 1:10 P.M.

728 CHAPTER 9 Answers for Numerical Methods

f. 0.1922421, 1.189091, 0.5238224, 0.9948440; 3 iterations

June 29, 2002 1:10 P.M.

10.2 Answers for Numerical Methods 729

Exercise Set 10.2 (Page 000)

1. One example is f(x1, x2) =
(

1,
1

|x1 − 1|+ |x2|
)t

.

3. a. (−1, 3.5)t and (2.5, 4)t b. (0.11, 0.27)t and (−0.11, 0.23)t

c. (1, 1, 1)t d. (1,−1, 1)t and (1, 1,−1)t

Note: New Figures

x

y

-2 -1

-1

1

0.5

-0.5

21

(b)

x

-4

8

4

84

12

1

x 2
x (1 x) + 4x = 12_

1 1 2

 (x 2) + (2x 3) =25_
1 2

_2 2

The graphs for parts (a) and (b) are shown with the approximate intersections. The

three-dimensional graphs for parts (c) and (d) are not given since experimentation is needed

in Maple to determine the approximate intersections.

5. a. With x(0) = (−1, 3.5)t, x(1) = (−1, 3.5)t, so (−1, 3.5)t is a solution. With

x(0) = (2.5, 4)t, x(3) = (2.546947, 3.984998)t.

b. With x(0) = (0.11, 0.27)t, x(6) = (0.1212419, 0.2711051)t. With x(0) = (−0.11, 0.23)t,

x(4) = (−0.09816344, 0.21950013)t.

c. With x(0) = (1, 1, 1)t , x(3) = (1.036401, 1.085707, 0.9311914)t.

d. With x(0) = (1,−1, 1)t, x(5) = (0.9,−1, 0.5)t, and with x(0) = (1,−1, 1)t, x(5) =

(0.5, 1,−0.5)t.

June 29, 2002 1:10 P.M.

730 CHAPTER 10 Answers for Numerical Methods

7. a. With x(0) = (−0.5,−1, 1.5)t we have x(5) = (−0.66666667,−1.3333333, 1.3333333)t.

b. Adding the first two equations gives

4x1 − 2x2 = 0 so x1 =
x2

2
.

Subtracting the first two equations gives

−4x2 + 2x3 − 8 = 0 so x3 = 2x2 + 4.

c. Using the results of part (b) we have
(x2

2

)2

+ x2
2 + (2x2 + 4)2 − 4 = 0 so 21x2

2 + 64x2 + 48 = 0.

d. The solutions to the quadratic equation in part (c) are x2 = −4/3 and x2 =

−12/7.

e. The solution x2 = −4/3 gives the complete solutions (−2/3,−4/3, 4/3)t, and the

solution x2 = −12/7 gives the complete solutions (−6/7,−12/7, 4/7)t. Thus we

have

||(−2/3,−4/3, 4/3)t − x(0)||∞ = 0.16666667

and

||(−6/7,−12/7, 4/7)t − x(0)||∞ = 0.92857143,

so the initial approximation is closer to the solution (−2/3,−4/3, 4/3)t.

9. a. Suppose (x1, x2, x3, x4)t is a solution to

4x1 − x2 + x3 =x1x4,

−x1 + 3x2 − 2x3 =x2x4,

x1 − 2x2 + 3x3 =x3x4,

x2
1 + x2

2 + x2
3 =1.

June 29, 2002 1:10 P.M.

10.3 Answers for Numerical Methods 731

Multiplying the first three equations by −1 and factoring gives

4(−x1)− (−x2) + (−x3) =(−x1)x4,

−(−x1) + 3(−x2)− 2(−x3) =(−x2)x4,

(−x1)− 2(−x2) + 3(−x3) =(−x3)x4,

(−x1)2 + (−x2)2 + (−x3)2 =1.

Thus, (−x1,−x2,−x3, x4)t is also a solution.

b. Using x(0) = (1, 1, 1, 1)t gives x(5) = (0, 0.70710678, 0.70710678, 1)t.

Using x(0) = (1, 0, 0, 0)t gives x(6) = (0.81649658, 0.40824829,−0.40824829, 3)t.

Using x(0) = (1,−1, 1,−1)t gives x(5) = (0.57735027,−0.57735027, 0.57735027, 6)t.

The other three solutions, (0,−0.70710678,−0.70710678, 1)t,

(−0.81649658,−0.40824829, 0.40824829, 3)t, and (−0.57735027, 0.57735027,−0.57735027, 6)t

follow from part (a).

11. a. k1 = 8.77125, k2 = 0.259690, k3 = −1.37217

b. Solving the equation 500
πr2 = k1e

k2r + k3r numerically gives r = 3.18517.

Exercise Set 10.3 (Page 000)

1. a. x(2) = (0.4777920, 1.927557)t

b. x(2) = (−0.3250070,−0.1386967)t

c. x(2) = (0.5115893,−78.72872,−0.5120771)t

d. x(2) = (−67.00583, 38.31494, 31.69089)t

3. a. x(9) = (0.5, 0.8660254)t

b. x(8) = (1.772454, 1.772454)t

June 29, 2002 1:10 P.M.

732 CHAPTER 10 Answers for Numerical Methods

c. x(9) = (−1.456043,−1.664231, 0.4224934)t

d. x(5) = (0.4981447,−0.1996059,−0.5288260)t

5. Using x(0) = (1, 1, 1, 1)t gives x(6) = (0, 0.70710678, 0.70710678, 1)t.

Using x(0) = (1, 0, 0, 0)t gives x(15) = (0.81649659, 0.40824821,−0.40824837, 3.00000004)t.

Using x(0) = (1,−1, 1,−1)t gives x(11) = (0.57735034,−0.57735022, 0.57735024, 6)t.

The other three solutions are (0,−0.70710678,−0.70710678, 1)t,

(−0.81649659,−0.40824821, 0.40824837, 3)t, and (−0.57735034, 0.57735022,−0.57735024, 6)t.

7. We have
[
A−1 − A−1xytA−1

1 + ytA−1x

]
(A+ xyt) =A−1A− A−1xytA−1A

1 + ytA−1x
+A−1xyt − A−1xytA−1xyt

1 + ytA−1x

=I − A−1xyt

1 + ytA−1x
+A−1xyt − A−1xytA−1xyt

1 + ytA−1x

=I − A−1xyt −A−1xyt − ytA−1xA−1xyt +A−1xytA−1xyt

1 + ytA−1x

=I +
ytA−1xA−1xyt − ytA−1x(A−1xyt)

1 + ytA−1x
= I.

Exercise Set 10.4 (Page 000)

1. a. With x(0) = (0, 0)t, we have x(11) = (0.4943541, 1.948040)t.

b. With x(0) = (1, 1)t, we have x(2) = (0.4970073, 0.8644143)t .

c. With x(0) = (2, 2)t, we have x(1) = (1.736083, 1.804428)t.

d. With x(0) = (0, 0)t, we have x(2) = (−0.3610092, 0.05788368)t .

3. a. With x(0) = (0, 0, 0)t, we have x(14) = (1.043605, 1.064058, 0.9246118)t.

June 29, 2002 1:10 P.M.

10.5 Answers for Numerical Methods 733

b. With x(0) = (0, 0, 0)t, we have x(9) = (0.4932739, 0.9863888,−0.5175964)t .

c. With x(0) = (0, 0, 0)t, we have x(11) = (−1.608296,−1.192750, 0.7205642)t.

d. With x(0) = (0, 0, 0)t, we have x(1) = (0, 0.00989056, 0.9890556)t .

5. a. With x(0) = (0, 0)t, we have x(8) = (3.136548, 0)t and g(x(8)) = 0.005057848.

b. With x(0) = (0, 0)t, we have x(13) = (0.6157412, 0.3768953)t and g(x(13)) =

0.1481574.

c. With x(0) = (0, 0, 0)t, we have x(5) = (−0.6633785, 0.3145720, 0.5000740)t and

g(x(5)) = 0.6921548.

d. With x(0) = (1, 1, 1)t, we have x(4) = (0.04022273, 0.01592477, 0.01594401)t and

g(x(4)) = 1.010003.

Exercise Set 10.5 (Page 000)

Note: All the material in this section is new

1. a. (3,−2.25)t

b. (0.42105263, 2.6184211)t

c. (2.173110,−1.3627731)t

3. Using x(0) = 0 in all parts gives:

a. (0.44006047, 1.8279835)t

b. (−0.41342613, 0.096669468)t

c. (0.49858909, 0.24999091,−0.52067978)t

d. (6.1935484, 18.532258,−21.725806)t

June 29, 2002 1:10 P.M.

734 CHAPTER 10 Answers for Numerical Methods

5. a. Using x(0) = (−1, 3.5)t gives (−1, 3.5)t.

Using x(0) = (2.5, 4.0)t gives (2.5469465, 3.9849975)t.

b. Using x(0) = (0.11, 0.27)t gives (0.12124195, 0.27110516)t.

c. Using x(0) = (1, 1, 1)t gives (1.0364005, 1.0857066, 0.93119144)t.

d. Using x(0) = (1,−1, 1)t gives (0.90016074,−1.0023801, 0.49661093)t.

Using x(0) = (1, 1,−1)t gives (0.50104035, 1.0023801,−0.49661093)t.

7. a. (0.49998949, 0.86608576)t

b. (1.7724820, 1.7722940)t

c. (−1.4561027,−1.6642463, 0.42241506)t

d. (0.49814392,−0.19960453,−0.52882611)t

9. (0.50024553, 0.078230039,−0.52156996)t

June 29, 2002 1:10 P.M.

11.2 Answers for Numerical Methods 735

Exercise Set 11.2 (Page 000)

1. The Linear Shooting method gives the following results.

a.

i xi w1i y(xi)

1 0.5 0.82432432 0.82402714

b.

i xi w1i y(xi)

1 0.25 0.3937095 0.3936767
2 0.50 0.8240948 0.8240271
3 0.75 1.337160 1.337086

3. The Linear Shooting method gives the following results.

a.

i xi w1i y(xi)

3 0.3 0.7833204 0.7831923
6 0.6 0.6023521 0.6022801
9 0.9 0.8568906 0.8568760

b.

i xi w1i y(xi)

5 1.25 0.1676179 0.1676243
10 1.50 0.4581901 0.4581935
15 1.75 0.6077718 0.6077740

June 29, 2002 1:10 P.M.

736 CHAPTER 11 Answers for Numerical Methods

c.

i xi w1i y(xi)

3 0.3 −0.5185754 −0.5185728
6 0.6 −0.2195271 −0.2195247
9 0.9 −0.0406577 −0.0406570

d.

i xi w1i y(xi)

3 1.3 0.0655336 0.06553420
6 1.6 0.0774590 0.07745947
9 1.9 0.0305619 0.03056208

5. a. The Linear Shooting method with h = 0.1 gives the following results.

i xi w1i

3 0.3 0.05273437
5 0.5 0.00741571
8 0.8 0.00038976

b. The Linear Shooting method with h = 0.05 gives the following results.

i xi w1i

6 0.3 0.04990547
10 0.5 0.00673795
16 0.8 0.00033755

June 29, 2002 1:10 P.M.

11.3 Answers for Numerical Methods 737

7. a. The approximate potential is u(3) ≈ 36.66702 using h = 0.1.

b. The actual potential is u(3) = 36.66667.

9. a. There are no solutions if b is an integer multiple of π and B �= 0.

b. A unique solution exists whenever b is not an integer multiple of π.

c. There are infinitely many solutions if b is an multiple integer of π and B = 0.

Exercise Set 11.3 (Page 000)

1. The Linear Finite-Difference method gives the following results.

a.

i xi w1i y(xi)

1 0.5 0.83333333 0.82402714

b.

i xi w1i y(xi)

1 0.25 0.39512472 0.39367669
2 0.50 0.82653061 0.82402714
3 0.75 1.33956916 1.33708613

c.
4(0.82653061)− 0.83333333

3
= 0.82426304

3. The Linear Finite-Difference method gives the following results.

a.

June 29, 2002 1:10 P.M.

738 CHAPTER 11 Answers for Numerical Methods

i xi wi y(xi)

2 0.2 1.018096 1.0221404
5 0.5 0.5942743 0.59713617
7 0.7 0.6514520 0.65290384

b.

i xi wi y(xi)

5 1.25 0.16797186 0.16762427
10 1.50 0.45842388 0.45819349
15 1.75 0.60787334 0.60777401

c.

i xi w1i y(xi)

3 0.3 −0.5183084 −0.5185728
6 0.6 −0.2192657 −0.2195247
9 0.9 −0.0405748 −0.04065697

d.

i xi w1i y(xi)

3 1.3 0.0654387 0.0655342
6 1.6 0.0773936 0.0774595
9 1.9 0.0305465 0.0305621

5. The Linear Finite-Difference method gives the following results.

June 29, 2002 1:10 P.M.

11.4 Answers for Numerical Methods 739

i xi wi(h = 0.1)

3 0.3 0.05572807
6 0.6 0.00310518
9 0.9 0.00016516

i xi wi(h = 0.05)

6 0.3 0.05132396
12 0.6 0.00263406
18 0.9 0.00013340

7.
i xi wi

10 10.0 0.1098549
20 20.0 0.1761424
25 25.0 0.1849608
30 30.0 0.1761424
40 40.0 0.1098549

Exercise Set 11.4 (Page 000)

1. The Nonlinear Shooting method gives w1 = 0.405505 ≈ ln 1.5 = 0.405465.

3. The Nonlinear Shooting method gives the following results.

a.
4 iterations required:

i xi w1i y(xi)

3 1.3 0.4347934 0.4347826
6 1.6 0.3846363 0.3846154
9 1.9 0.3448586 0.3448276

June 29, 2002 1:10 P.M.

740 CHAPTER 11 Answers for Numerical Methods

b.
6 iterations required:

i xi w1i y(xi)

3 1.3 2.069249 2.069231
6 1.6 2.225013 2.225000
9 1.9 2.426317 2.426316

c.
3 iterations required:

i xi w1i y(xi)

3 2.3 1.2676912 1.2676917
6 2.6 1.3401256 1.3401268
9 2.9 1.4095359 1.4095383

d.
7 iterations required:

i xi w1i y(xi)

5 1.25 0.4358290 0.4358272
10 1.50 1.3684496 1.3684447
15 1.75 2.9992010 2.9991909

5.
i xi w1i ≈ y(ti) w2i

3 0.6 0.71682963 0.92122169
5 1.0 1.00884285 0.53467944
8 1.6 1.13844628 −0.11915193

Exercise Set 11.5 (Page 000)

1. The Nonlinear Finite-Difference method gives w1 = 0.4067967 ≈ ln 1.5 = 0.4054651.

June 29, 2002 1:10 P.M.

11.5 Answers for Numerical Methods 741

3. The Nonlinear Finite-Difference method gives the following results.

a.

i xi w1i y(xi)

3 1.3 0.4347972 0.4347826
6 1.6 0.3846286 0.3846154
9 1.9 0.3448316 0.3448276

b.

i xi w1i y(xi)

3 1.3 2.0694081 2.0692308
6 1.6 2.2250937 2.2250000
9 1.9 2.4263387 2.4263158

c.

i xi w1i y(xi)

3 2.3 1.2677078 1.2676917
6 2.6 1.3401418 1.3401268
9 2.9 1.4095432 1.4095383

d.

i xi w1i y(xi)

5 1.25 0.4345979 0.4358273
10 1.50 1.3662119 1.3684447
15 1.75 2.9969339 2.9991909

June 29, 2002 1:10 P.M.

742 CHAPTER 11 Answers for Numerical Methods

5.
i xi wi

5 30 0.01028080
10 60 0.01442767
15 90 0.01028080

Exercise Set 11.6 (Page 000)

1. The Piecewise Linear method gives φ(x) = −0.07713274φ1(x) − 0.07442678φ2(x).

This gives φ(x1) = −0.07713274 and φ(x2) = −0.07442678. The actual values are

y(x1) = −0.07988545 and y(x2) = −0.07712903.

3. The Piecewise Linear method gives the following results.

a.

i xi φ(xi) y(xi)

3 0.3 −0.212333 −0.21
6 0.6 −0.241333 −0.24
9 0.9 −0.090333 −0.09

b.

i xi φ(xi) y(xi)

3 0.3 0.1815138 0.1814273
6 0.6 0.1805502 0.1804754
9 0.9 0.05936468 0.05934303

c.

June 29, 2002 1:10 P.M.

11.6 Answers for Numerical Methods 743

i xi φ(xi) y(xi)

5 0.25 −0.3585989 −0.3585641
10 0.50 −0.5348383 −0.5347803
15 0.75 −0.4510165 −0.4509614

d.

i xi φ(xi) y(xi)

5 0.25 −0.1846134 −0.1845204
10 0.50 −0.2737099 −0.2735857
15 0.75 −0.2285169 −0.2284204

5. The Cubic Spline method gives the following results.

a.

i xi φ(xi) y(xi)

3 0.3 −0.2100000 −0.21
6 0.6 −0.2400000 −0.24
9 0.9 −0.0900000 −0.09

b.

i xi φ(xi) y(xi)

3 0.3 0.1814269 0.1814273
6 0.6 0.1804753 0.1804754
9 0.9 0.05934321 0.05934303

June 29, 2002 1:10 P.M.

744 CHAPTER 11 Answers for Numerical Methods

c.

i xi φ(xi) y(xi)

5 0.25 −0.3585639 −0.3585641
10 0.50 −0.5347779 −0.5347803
15 0.75 −0.4509109 −0.4509614

d.

i xi φ(xi) y(xi)

5 0.25 −0.1845191 −0.1845204
10 0.50 −0.2735833 −0.2735857
15 0.75 −0.2284186 −0.2284204

7.

i xi φ(xi) y(xi)

3 0.3 1.0408182 1.0408182
6 0.6 1.1065307 1.1065306
9 0.9 1.3065697 1.3065697

9. A change in variable w = (x− a)/(b− a) gives the boundary value problem

− d

dw
(p((b− a)w + a)y′) + (b− a)2q((b− a)w + a)y

= (b− a)2f((b− a)w + a),

where 0 < w < 1, y(0) = α, and y(1) = β. Then Exercise 6 can be used.

June 29, 2002 1:10 P.M.

11.6 Answers for Numerical Methods 745

11. Let c = (c1, . . . , cn)t be any vector and let φ(x) =
∑n

j=1 cjφj(x). Then

ctAc =
n∑

i=1

n∑
j=1

aijcicj =
n∑

i=1

i+1∑
j=i−1

aijcicj

=
n∑

i=1

[∫ 1

0

{p(x)ciφ′i(x)ci−1φ
′
i−1(x) + q(x)ciφi(x)ci−1φi−1(x)} dx

+
∫ 1

0

{p(x)c2i [φ′i(x)]2 + q(x)c2i [φ
′
i(x)]

2} dx

+
∫ 1

0

{p(x)ciφ′i(x)ci+1φ
′
i+1(x) + q(x)ciφi(x)ci+1φi+1(x)} dx

]

=
∫ 1

0

{p(x)[φ′(x)]2 + q(x)[φ(x)]2} dx.

So ctAc ≥ 0 with equality only if c = 0. Since A is also symmetric, A is positive

definite.

June 29, 2002 1:10 P.M.

746 CHAPTER 12 Answers for Numerical Methods

Exercise Set 12.2 (Page 000)

1. The Poisson Equation Finite-Difference method gives the following results.

i j xi yj wi,j u(xi, yj)

1 1 0.5 0.5 0.0 0
1 2 0.5 1.0 0.25 0.25
1 3 0.5 1.5 1.0 1

3. The Poisson Equation Finite-Difference method gives the following results.

a.
30 iterations required:

i j xi yj wi,j u(xi, yj)

2 2 0.4 0.4 0.1599988 0.16
2 4 0.4 0.8 0.3199988 0.32
4 2 0.8 0.4 0.3199995 0.32
4 4 0.8 0.8 0.6399996 0.64

b.
29 iterations required:

i j xi yj wi,j u(xi, yj)

2 1 1.256637 0.3141593 0.2951855 0.2938926
2 3 1.256637 0.9424778 0.1830822 0.1816356
4 1 2.513274 0.3141593 −0.7721948 −0.7694209
4 3 2.513274 0.9424778 −0.4785169 −0.4755283

c. 126 iterations required:

June 29, 2002 1:10 P.M.

12.3 Answers for Numerical Methods 747

i j xi yj wi,j u(xi, yj)

4 3 0.8 0.3 1.2714468 1.2712492
4 7 0.8 0.7 1.7509419 1.7506725
8 3 1.6 0.3 1.6167917 1.6160744
8 7 1.6 0.7 3.0659184 3.0648542

d. 127 iterations required:

i j xi yj wi,j u(xi, yj)

2 2 1.2 1.2 0.5251533 0.5250861
4 4 1.4 1.4 1.3190830 1.3189712
6 6 1.6 1.6 2.4065150 2.4064186
8 8 1.8 1.8 3.8088995 3.8088576

5. The approximate potential at some typical points is given in the following table.

i j xi yj wi,j

1 4 0.1 0.4 88
2 1 0.2 0.1 66
4 2 0.4 0.2 66

Exercise Set 12.3 (Page 000)

1. The Heat Equation Backward-Difference method gives the following results.

a.

June 29, 2002 1:10 P.M.

748 CHAPTER 12 Answers for Numerical Methods

i j xi tj wij u(xi, tj)

1 1 0.5 0.05 0.632952 0.652037
2 1 1.0 0.05 0.895129 0.883937
3 1 1.5 0.05 0.632952 0.625037
1 2 0.5 0.1 0.566574 0.552493
2 2 1.0 0.1 0.801256 0.781344
3 2 1.5 0.1 0.566574 0.552493

b.

i j xi tj wij u(xi, tj)

1 1 1/3 0.05 1.59728 1.53102
2 1 2/3 0.05 −1.59728 −1.53102
1 2 1/3 0.1 1.47300 1.35333
2 2 2/3 0.1 −1.47300 −1.35333

3. The Forward-Difference method gives the following results.

a.
For h = 0.4 and k = 0.1:

i j xi tj wi,j u(xi, tj)

2 5 0.8 0.5 3.035630 0
3 5 1.2 0.5 −3.035630 0
4 5 1.6 0.5 1.876122 0

For h = 0.4 and k = 0.05:

i j xi tj wi,j u(xi, tj)

2 10 0.8 0.5 0 0
3 10 1.2 0.5 0 0
4 10 1.6 0.5 0 0

June 29, 2002 1:10 P.M.

12.3 Answers for Numerical Methods 749

b.
For h = π

10 and k = 0.05:

i j xi tj wi,j u(xi, tj)

3 10 0.94247780 0.5 0.4864823 0.4906936
6 10 1.88495559 0.5 0.5718943 0.5768449
9 10 2.82743339 0.5 0.1858197 0.1874283

c.
For h = 0.2 and k = 0.04:

i j xi tj wi,j u(xi, tj)

4 10 0.8 0.4 1.166149 1.169362
8 10 1.6 0.4 1.252413 1.254556
12 10 2.4 0.4 0.4681813 0.4665473
16 10 3.2 0.4 −0.1027637 −0.1056622

d.
For h = 0.1 and k = 0.04:

i j xi tj wi,j u(xi, tj)

3 10 0.3 0.4 0.5397009 0.5423003
6 10 0.6 0.4 0.6344565 0.6375122
9 10 0.9 0.4 0.2061474 0.2071403

5. The Crank-Nicolson method gives the following results.

a.
For h = 0.4 and k = 0.1:

i j xi tj wi,j u(xi, tj)

2 5 0.8 0.5 8.2× 10−7 0
3 5 1.2 0.5 −8.2× 10−7 0
4 5 1.6 0.5 5.1× 10−7 0

For h = 0.4 and k = 0.05:

June 29, 2002 1:10 P.M.

750 CHAPTER 12 Answers for Numerical Methods

i j xi tj wi,j u(xi, tj)

2 10 0.8 0.5 −2.6× 10−6 0
3 10 1.2 0.5 2.6× 10−6 0
4 10 1.6 0.5 −1.6× 10−6 0

b.
For h = π

10 and k = 0.05:

i j xi tj wi,j u(xi, tj)

3 10 0.94247780 0.5 0.4926589 0.4906936
6 10 1.88495559 0.5 0.5791553 0.5768449
9 10 2.82743339 0.5 0.1881790 0.1874283

c.
For h = 0.2 and k = 0.04:

i j xi tj wi,j u(xi, tj)

4 10 0.8 0.4 1.171532 1.169362
8 10 1.6 0.4 1.256005 1.254556
12 10 2.4 0.4 0.4654499 0.4665473
16 10 3.2 0.4 −0.1076139 −0.1056622

d.
For h = 0.1 and k = 0.04:

i j xi tj wi,j u(xi, tj)

3 10 0.3 0.4 0.5440532 0.5423003
6 10 0.6 0.4 0.6395728 0.6375122
9 10 0.9 0.4 0.2078098 0.2071403

7. For the Modified Backward-Difference method, we have

i j xi tj wij

3 25 0.3 0.25 0.2883460
5 25 0.5 0.25 0.3468410
8 25 0.8 0.25 0.2169217

June 29, 2002 1:10 P.M.

12.4 Answers for Numerical Methods 751

9. For the Modified Backward-Difference method, we have

i j xi tj wij(Backward-Difference)

2 10 0.3 0.225 1.207730
5 10 0.75 0.225 1.836564
9 10 1.35 0.225 0.6928342

Exercise Set 12.4 (Page 000)

1. The Wave Equation Finite-Difference method gives the following results.

i j xi tj wij u(xi, tj)

2 4 0.25 1.0 −0.7071068 −0.7071068
3 4 0.50 1.0 −1.0000000 −1.0000000
4 4 0.75 1.0 −0.7071068 −0.7071068

3. a. The Finite-Difference method with h = π
10 and k = 0.05 gives the following

results.

i j xi tj wij u(xi, tj)

2 10 π
5 0.5 0.5163933 0.5158301

5 10 π
2 0.5 0.8785407 0.8775826

8 10 4π
5 0.5 0.5163933 0.5158301

b. The Finite-Difference method with h = π
20 and k = 0.1 gives the following results.

June 29, 2002 1:10 P.M.

752 CHAPTER 12 Answers for Numerical Methods

i j xi tj wij

4 5 π
5 0.5 0.5159163

10 5 π
2 0.5 0.8777292

16 5 4π
5 0.5 0.5159163

c. The Finite-Difference method with h = π
20 and k = 0.05 gives the following

results.

i j xi tj wij

4 10 0.62831853 0.5 0.5159602
10 10 1.57079633 0.5 0.8778039
16 10 2.51327412 0.5 0.5159602

5. The Finite-Difference method gives the following results.

i j xi tj wij

2 5 0.2 0.5 −1
5 5 0.5 0.5 0
8 5 0.8 0.5 1

7. Approximate voltages and currents are given in the following table.

i j xi tj Voltage Current

5 2 50 0.2 77.769 3.88845
12 2 120 0.2 104.60 −1.69931
18 2 180 0.2 33.986 −5.22995
5 5 50 0.5 77.702 3.88510
12 5 120 0.5 104.51 −1.69785
18 5 180 0.5 33.957 −5.22453

June 29, 2002 1:10 P.M.

12.5 Answers for Numerical Methods 753

Exercise Set 12.5 (Page 000)

1. With E1 = (0.25, 0.75), E2 = (0, 1), E3 = (0.5, 0.5), and E4 = (0, 0.5), the basis

functions are

φ1(x, y) =
{

4x on T1

−2 + 4y on T2

φ2(x, y) =
{ −1− 2x+ 2y on T1

0 on T2

φ3(x, y) =
{

0 on T1

1 + 2x− 2y on T2

φ4(x, y) =
{

2− 2x− 2y on T1

2− 2x− 2y on T2

and γ1 = 0.323825, γ2 = 0, γ3 = 1.0000, and γ4 = 0.

3. The Finite-Element method with K = 8, N = 8,M = 32, n = 9,m = 25, and NL = 0

gives the following results.

γ1 = 0.511023 γ2 = 0.720476

γ3 = 0.507899 γ4 = 0.720476

γ5 = 1.01885 γ6 = 0.720476

γ7 = 0.507896 γ8 = 0.720476

γ9 = 0.511023 γi = 0, 10 ≤ i ≤ 25

u(0.125, 0.125) ≈ 0.614187, u(0.125, 0.25) ≈ 0.690343,

u(0.25, 0.125) ≈ 0.690343 and u(0.25, 0.25) ≈ 0.720476.

June 29, 2002 1:10 P.M.

754 CHAPTER 12 Answers for Numerical Methods

10 11 12 13 14

21 22

9
10

25
13

24
12

23
11

23 24 25

15 1

14
26

27
15

3
4

1
2

2 3 16

17 4

16
28

29
17

7
8

5
6

5 6 18

19 7

18
30

21
22

20
32

19
31

8 9 20

5. The Finite-Element method with K = 0, N = 12,M = 32, n = 20,m = 27, and

NL = 14 gives the following results.

γ1=21.40335, γ8 =24.19855, γ15=20.23334, γ22=15,

γ2=19.87372, γ9 =24.16799, γ16=20.50056, γ23=15,

γ3=19.10019, γ10=27.55237, γ17=21.35070, γ24=15,

γ4=18.85895, γ11=25.11508 γ18 =22.84663, γ25=15,

γ5=19.08533, γ12=22.92824, γ19=24.98178, γ26=15,

γ6=19.84115, γ13=21.39741, γ20=27.41907, γ27=15,

γ7=21.34694, γ14=20.52179, γ21=15.

u(1, 0) ≈ 22.92824, u(4, 0) ≈ 22.84663, u

(
5
2
,

√
3

2

)
≈ 18.85895.

21 22 23

8 1 2 3

10 11 12 13 14

24 25 26 27

4 5 6 7

15 16 17 18

9

19 20

T21 T22 T23 T24 T25 T26

T1 T27 T28 T29 T30 T31 T32 T2

T3 T5 T6 T7 T8 T9 T10 T11 T12 T22

T13 T14 T15 T16 T17 T18 T19 T20

June 29, 2002 1:10 P.M.

CHAPTER 5 .Initial- Value Problems for Differential Equations78

CHAPTER 5 INITIAL-VALUE PROBLEMS FOR
DIFFERENTIAL EQUATIONS

EXERCISE SET 5.2 (Page 187)

1. Euler's method gives the approximations in the following tables.

8.

y(ti)t ti Wi

0.2836165
3.2190993

0.500
1.000

0.0000000
1.1204223

1
2

b.

i ti Wi y{ti)

1 2.500 2.0000000 1.8333333
2 3.000 2.6250000 2.5000000

.c.
y{ti)t ti Wi

1.250
1.500
1.750
2.000

2.75000C
3.55000C
4.39166~
5.269041

2.7789294
3.6081977
4.47932765.3862944

1
2
3
4

d.

2. The errors for Exercise 1 are given in the following tables.

I

I

79Taylor Methods5.2

b.

a.
Error boundActual ErrorError boundActual Error tt

0.429570
1.59726

0.16666.7
0.125000.

0.2836165
2.0986771

11.3938
42.3654

2.5

3.0
0.5
1.0

d.

c.
Actual ErrorError boundActual Error tt

0.0791498
0.0906844
0.0172174
0.118478

0.0355032
0.0810902
0.139625
0.214785

0.25

0.50
0.75
1.00

1.25
1.50
1.75
2.00

0.0289294
0.0581977
0.0876610
0.117247

For Part (d) the error bound formula cannot be applied since L = O.

3. Euler's method gives the approximations in the following tables.

a.
y(ti)

.

tj Wi

1.0082645
1.0516682
1.1004322
1.1106516

1.0149523
1.0672624
1.1106551
1.1812322

2
5
7
10

1.200
1.500
1.100
2.000

b.
y(ti)ti Wi

0.4896811
1.6612818
2.8165514
5.8141000

2
5
7
10

1.400
2.0002.400

3.000

0.4388889
1.4372511
2.4022696
4.5142774

c.

y(ti)z tj Wi

0.400

1.000

1.400

2.000

-1.6080000
-1.1992512
-1.0797454
-1.0181518

-1.6200510
-1.2384058
-1.1146484
-1.0359724

2
5
7
10

lnitial- Value Problems for Differential Equations80 CHAPTER 5

d.
y{ti)ti Wi

0.1083333
0.2410417
0.47276040.9803451

0.1626265
0.2773617
0.5000658
1.0022460

0.2
0.5
0.7
1.0

2
5
7
10

4. The actual errors for the approximations in Exercise 3 are in the following tables.

b.8.~

Actual Errort t Actual Error

1.4 0.0507928
2.0 0.2240306
2.4 0.4742818
3.0 1.3598226

0.0066879
0.0095942
0.0102229
0.0105806

1.2
1.5
1.7
2.0

d.

c.~

t Actual Error

0.4 0.0120510
1.0 0.0391546
1.4 0.0349030
2.0 0.0178206

5.

Taylor's method of order two applied to Exercise 1 gives the approximations in the following
I

tables_ ,8. '"

y{ti)tii Wi

0.28361652
3.21909932

0.50

1.00
0.12500000
2.02323897

1

2

b.

y(ti)t, Wi

.

1.75000000
2.42578125

1.833333332.500000001
2

2.50
3.00

815.2 Taylor Methods

c.

y{ti)tii Wi

1
2
3
4

1.25
1.50
1.75
2.00

2.78125000
3.61250000
4.48541667
5.39404762

2.77892944
3.60819766
4.47932763
5.38629436

d.
y(ti)tit Wi

1
2
3
4

0.25
0.50
0.75

1.00

1.34375000
1.77218707
2.11067606
2.20164395

1.3291
1.1304,
2.0414'
2.1119'

6. Taylor's method of order two applied to Exercise 3 gives the approximations in the following
tables.
8. ~ --

y(ti-)tj Wi

2
4
6
8
10

1.2
1.4
1.6
1.8
2.0

1.0160294
1.0489065
1.0898996
1.1351526
1.1827427

1.0149523
1.0475339
1.0884327
1.1336536
1.1812322

b.

y(ti)ti

.

Wi

2
4
6
8
10

1.4
1.8
2.2
2.6
3.0

0.4869323
1.1913337
2.1936314
3.6322516
5.7654557

0.4896817
1.1994386
2.2135018
3.6784753
5.8741000

c.

y(ti)ti Wi

2
4
6
8
10

0.4

0.8
1.2

1.6

2.0

-1.6156800
-1.3323151
-1.1656621-1.0793381

-1.0372858

-1.6200510
-1.3359632
-1.1663454
-1.0783314
-1.0359724

498189767203

7955

CHAPTER 5 lnitial- Value Problems for Differential Equations

.

d.
y(ti)ti Wi

2
4
6
8
10

0.2

0.4

0.6
0.8
1.0

0.1702083
0.2108626
0.3798682
0.6477610
1.0030316

0.1626265
0.2051118
0.3765957
0.6461052
1.0022460

7. Taylor's method of order four applied to Exercise 3 gives the approximations in the following
tables.
a. _c

y(ti)
.
I ti Wi

2
4
6
8
10

1.
1.
1.
1.
2.

1.0149771
1.0475619
1.0884607
1.1336811
1.1812594

1.0149523
1.0475339
1.0884327
1.1336536
1.1812322

b.

2
4
6
8
10

0.4896817
1.1994386
2.2135018
3.6784753
5.8741000

1.4
1.8
2.2
2.6
3.0

0.4896141
1.1993085
2.2132495
3.6779557
5.8729143

c.

2
4
6
8
10

0.4
0.8
1.2
1.6
2.0

-1.6201137
-1.3359853
-1.1663295
-1.0783171
-1.0359674

-1.6200510
-1.3359632
-1.1663454
-1.0783314
-1.0359724

84 CHAPTER 5

.

lnitial- Value Problems for Differential Equations

y(ti)tiI Wi

1
5
6
9
10

1.1
1.5
1.6
1.92.0

0.3459127
3.967603
5.720875
14.32290
18.68287

0.3459199
3.967666
5.720962
14.32308
18.68310

f.

Cubic Hermite interpolation gives y(1.04) ~ 0.1199704, y(1.55) ~ 4.788527, and y(1.97) ~
17.27904.

Euler's method gives the approximations in the following tables.9. 8.

ti y{ti)Wi

1
2
11
12
19
20

1.05
1.10
1.55
1.60
1.95
2.00

-0.9500000
-0.9045353
-0.6263495
-0.6049486
-0.4850416
-0.4712186

-0.9523810
-0.9090909
-0.6451613
-0.6250000
-0.5128205
-0.5000000

b. Linear interpolation gives
(i) y(1.052) ~ -0.9481814 (ii) y(1.555) ~ -0.6242094 (iii) y(l.978) ~ -0.4773007.

The actual values are y(I.052) = -p.9505703, y(I.555) = -0.6430868, y(I.978) =
-0.5055612. I

Taylor's method of order two gives th~ following results.c.

ti y(ti)Wi

1.05
1.10
1.55
1.60
1.95
2.00

-0.9525000
-0.9093138
-0.6459788
-0.6258649-0.5139781

-0.5011957

-0.9523810
-0.9090909
-0.6451613
-0.6250000
-0.5128205
-0.5000000

2
11
12
1920

d.

Linear interpolation gives
(i) y(1.052) ~ -0.9507726 (ii) y(I.555) ~ -0.6439674 (iii) y(I.978) ~ -0.5068199.

Taylor's method of order four gives the following results.

e.

I

I

~

\~~~

85Taylor Methods5.2

y(ti)a ti Wi

-0.9523810
-0.9090909
-0.6451613
-0.6250000
-0.5128205
-0.5000000

1.05
1.10
1.55
1.60
1.95
2.00

-0.9523813
-0.9090914
-0.6451629
-0.6250017
-0.5128226
-0.5000022

1
2

11
12

19

20

f.

Hermite interpolation gives
(i) y(1.052) ~ -0.9505706 (iii) y(1.978) ~ -0.5055633.

I
(ii) y(1.555) ~ -0.6430884

10. Euler's method gives the following values for the current.

Wj ~ i(tj)J t.1

20
40
60
80
100

2
4
6
8
10

0.702938
-0.0457793

0.294870
0.341673
0.139432

Since p(t) = xn(t)fx(t) we have11. a.

dp(t)
dt

x(t)

-xn(t)x/(t) x~(t)= [X(t)]2 + -;;ri)

--~b -d)xn(t) (b -d)xn(t) + rb(x(t) -'Zn(t))
-+.

'Z(t)

-1-~. = rb(l- p(t».= rb
x(t)

b.

Wso ~ 0.10430 ~ p(50)

Since p(t) = 1 -0.9ge-o.OO2t, p(50) = 0.10421.

c.

Taylor's method of order two gives the table on the left. The table on the right comes
from Taylors method of order four.

12. a.

~

86 CHAPTER 5 lnitial- Value Problems for Differential Equations

..

tjti Wi i Wi

5.86433
2.81789
0.84455

-2.09015

2
5
7
10

0.2
0.5
0.7
1.0

2
5
7
10

0.2
0.5
0.7
1.0

5.86595
2.82145
0.84926

-2.08606

The projectile reaches its maximum height after 0.8 seconds.b.

EXERCISE SET 5.3 (Page 196)

1. The Midpoint method gives the results in the following tables.

,;~;.

89Runge-Kutta Methods5.3

-1.1432070 ~ y(1.3) = -1.1382768 and -1.0443743 ~ y(1.93) ~ -1.0412665

0.3240839 ~ y(O.54) = 0.3140018 and 0.8934152 ~ y(O.94) = 0.8866318
c.
d.

10. The Runge-Kutta method of order four applied to Exercise 1 gives the following results.
I

.t~.:8.
ti Wi y(ti)

0.2836165
3.2190993

0.5
1.0

0.2969975
3.3143118

b.
ti Wi y(ti)

1.8333333
2.5000000

2.5

3.0

1.8333234
2.4999112

c.

ti Wi y(ti)

2.7789095
3.6081647
4.4792846
5.3862426

2.7789294
3.6081977
4.4793276
5.3862944

1.25
1.50
1.75
2.00

d.

ti Wi y(ti)

1.3291498
1.7304898
2.0414720
2.1179795

0.25
0.50
0.75
1.00

1.3291650
1.1305336
2.0415436
2.1180636

11. The Runge-Kutta method of order four applied to Exercise 4 gives the following results.

a.
ti .Wi y(ti)

1.0149520
1.0672620
1.1106547
1.1812319

1.0149523
1.0672624
1.1106551
1.1812322

1.2
1.5
1.7
2.0

5.4 Predictot-Corrector Methods

9114.

a.
b.

The w~ter level after 10 minutes is 6.526747 feet.

The tank will be empty in approximately 25 minutes. 'r...

15.

Using the Runge-Kutta method of order four with h = 0.01 gives an estimate of 2099 units
of KOH after 0.2 seconds.

EXERCISE SET 5.4 {Page 204

,~

1. The Adams-Bashforth methods give the results in the following tables.

8.

2-step 3-step y{ti)ti 4-step 5-step

0.2

0.4

0.6
0.8
1.0

0.0268128
0.1200522
0.4153551
1.1462844
2.8241683

0.0268128
0.1507778
0.4613866
1.2512447
3.0360680

0.0268128
0.1507778
0.4960196
1.2961260
3.1461400

0.0268128
0.1507778
0.4960196
1.3308570
3.1854002

0.0268128
0.1507778
0.4960196
1.3308570
3.2190993

~

b.
2-step 3-step y(ti)ti 4-step 5-step

2.2
2.4
2.6
2.8
3.0

1.3666667
1.6750000
1.9632431
2.2323184
2.4884512

1.3666667
1.6857143
1.9794407
2.2488759
2.5051340

1.3666667
1.6857143
1.9750000
2.2423065
2.4980306

1.3666667
1.6857143
1.9750000
2.2444444
2.5011406

1.3666667
1.6857143
1.97500002.2444444

2.5000000

c.

y{ti)ti 2-step 3-step 4-step 5-step

1.2
1.4
1.6
1.8
2.0

2.61871
3.27341
3.9567
4.6647'
5.3949,

2.61878593.27106113.95142314.6569191

5.3848058

2.61878593.2710611

3.9520058
4.6582078
5.3866452

2.61878593.2710611

3.9520058
4.6580160
5.3862177

2.61878593.2710611

3.9520058
4.6580160
5.3862944

B59
B23
107
738416

92 CHAPTER 5

.

InitiaJ- Value Problems for Differential Equations

d.
2-stepti 3-step 4-step 5-step y(ti)

0.2
0.4
0.6
0.8
1.0

1.2529306
1.5986417
1.93869512.1766821

2.2369407

1.2529306
1.5712255
1.8827238
2.0844122
2.1115540

1.2529306
1.5712255
1.8750869
2.0698063
2.0998117

1.2529306
1.5712255
1.8750869
2.0789180
2.1180642

1.2529306

1.5112255

1.8150869
2.0189180

2.1119195

2. The Adams-Moulton methods give the results in the following tables.

a.

ti 2-step 3-step 4-step y(ti)

0.2
0.4
0.60.8

1.0

0.0268128
0.1533627
0.5030068
1.3463142
3.2512866

0.0268128
0.1507778
0.4979042
1.3357923
3.2298092

0.0268128
0.1507778
0.4960196
1.3322919
3.2227484

0.0268128
0.1507778
0.4960196
1.3308570
3.2190993

c.

tj 2-step 3-step 4-step y{ti)

1.2
1.4
1.6
1.8
2.0

2.6187859
3.27113943.95214544.6582064

5.3865293

2.61878593.2710611

3.9519886
4.6579866
5.3862558

2.6181859
3.2110611

3.95200584.65802115.3863021

2.6187859
3.2710611
3.9520058
4.6580160
5.3862944

d.

0.2
0.4

,O.6
0.81.0

1.2529306
1.5700866
1.8738414
2.0787117
2.1196912

1.2529306
1.5712255
1.87575462.0803067

2.1199024

1.2529306
1.5712255
1.87508692.0789471

2.1178679

1.2529306
1.5712255
1.8750869
2.0789180
2.1179795

3.

The Adams-Bashforth methods give the results in the following tables.

ri"

'"'.

~f;;..

93Predictor-Corrector Methods5.4

a.
y(ti)5-step2-step 3-step 4-stepti

1.0149523
"hq672624
1~f106551
1.1812322

1.0149520
1.0675362
1.1109994
1.1815967

1.0149520
1.0671695
1.1105036
1.1810689

1.01619821.0697141

1.1133294
1.1840272

1.0149520
1.0664788
1.1097691
1.1803057

1.2
1.5
1.1
2.0

b.

y(ti)4-step 5-step2-step 3-stepti

0.4896817
1.6612818
2.8765514
5.8741000

0.4896842
1.6603060

2.8735320
5.8589944

0.4896842
1.6613179
2.8762776
5.8706101

0.4867550
1.6377944
2.8163947
5.6491203

0.4896842
1.6584313
2.8667672
5.8268008

1.42.02.4

3.0

c.

y(ti)5-step2-step 3-step 4-stepti

-1.5378828-1.2384058

-1.0948517
-1.0359724

-1.5379372
-1.2383734
-1.0947925
-1.0359497

-1.5378676
-1.2383693-1.0948481

-1.0359760

-1.5357010
-1.2374093
-1.0952910
-1.0366643

-1.5381988
-1.2389605
-1.0950952
-1.0359996

0.5

1.0

1.5
2.0

d.
y{ti)2-step 3-step 4-step 5-stepti

0.16276550.2769031

0.4988777
1.0073348

0.1626265
0.2773617
0.5000658
1.0022460

0.1627655
0.2732179
0.4972078
1.0020894

0.16276550.2780929

0.4998405
1.0064121

0.2
0.5
0.7
1.0

0.1739
0.2846
0.5042
1.0037

4.

The Adams Fourth-Order Predictor-Corrector method gives the results in the following
tables.

b.

a.
y{ti)y(ti) tjtj WiWi

1.3666610
1.6857079
1.9749941
2.2446995
2.5003083

1.3666667
1.6857143
1.9750000
2.2444444
2.5000000

0.2
0.40.6

0.8
1.0

0.0269059
0.1510468
0.4966479
1.3408657
3.2450881

0.0268128
0.1507778
0.4960196
1.3308570
3.2190993

2.2

2.42.6

2.8

3.0

041336285415

95Extrapolation Methods5.5

b.8.

y(ti)y{ti) tjt; i Wii Wi

..
9.48968417
1.66126150

~.87648763
$.87375555

0.48968166

1.66128176

2.87655142

5.87409998

2

5

710

1.4
2.0

2.4
3.0

1.01495200

1.06725997

1.11065221

1.18122584

1.01495231

1.06726235

1.11065505

1.18123222

2

5

710

1.2
1.51.1

2.0

~d.c.

y(ti)y(t.) titi WiWi

0.2

0.5

0.7

1.0

q.16276546
0.27741080

0.50008713

1.00215439

0.16262648

0.27736167

0.50006579

1.00224598

-1.53788284

-1.23840584

-1.09485175

-1.03597242

2

5
7

10

5

10

15

20

0.5
1.0
1.5

2.0

-1.53788255

-1.23840789

-1.09485532

-1.03597247

8. The Milne-Simpson predictor-corrector method gives the fOllOWjing results.

For h = 0.1: '-.

y(ti)

0.22313016
0.01831564
0.00150344
0.00012341

I

5
10
15
20

ti

0.50000000
1.00000000
1.50000000
2.00000000

Wi

0.22323512
0.01759886
0.00143997
0.00014508

I

~ror
1.0495~60 x 10-4
7.1677~43 X 10-4
6.3470~163 X 10-5

I

2.1674393 X 10-5

~

h = 0.05:

i ti Wi y(ti) Error

5 0.25000000 0.77880158 0.77880078 7.9795149 x 10-7
10 '0.50000000 0.22305989 0.22313016 7.0268844 x 10-5
15 0.75000000 0.06394268 0.06392786 1.4823625 x 10-5
20 1.00000000 0.01826938 0.01831564 4.6259158 x 10-5
25 1.25000000 0.00528604 0.00524752 3.8519648 x 10-5
30 1.50000000 0.00145680 0.00150344 4.6636499 x 10-5
35 1.75000000 0.00048022 0.00043074 4.9475404 x 10-5
40 2.00000000 0.00006872 0.00012341 5.4685031 x 10-5

For the smaller value of h the error appears to increase. We would expect the error to
decrease.

96 CHAPTER 5

.

Initial- Value Problems for Differential Equations

EXERCISE SET 5.5 (Page 210

1. Y22 = 0.14846014 approximates y(0.1) = 0.14846010.

2. The extrapolation value Y33 = 0.84894236 approximates y(1.2) = 0.84894229.

3. The extrapolation method gives the results in the following tables.

8.

ti hi kz Wi Yi

1
2
3
4

1.05
1.10
1.15
1.20

1.10385729
1.21588614
1.33683891
1.46756907

0.05
0.05
0.05
0.05

2
2
2
2

1.10385738
1.21588635
1.33683925
1.46756957

b.

ti hi kWi Yi

1
2
3
4

0.25
0.50
0.75
1.00

0.25228680
0.51588678
0.79594460
1.09181828

0.25
0.25
0.25
0.25

3
3
2
3

0.25228680
0.51588678
0.79594458
1.09181825

c.

% ti hi kWi Yi

1
2
3
4

1.50
2.00
2.50
3.00

-1.50000055
-1.33333435
-1.25000074
-1.20000090

0.50
0.50
0.50
0.50

5
3
3
2

-1.50000000
-1.33333333
-1.25000000
-1.20000000

d.
ti hii kWi Yi

1
2
3
4

0.25
0.50
0.75
1.00

1.08708817
1.28980537
1.51349008
1.70187009

0.25
0.25
0.25
0.25

3
3
3
3

1.08708823
1.28980528
1.51348985
1.70187005

4. The extrapolation method gives the results in the following tables.

5.6 Adaptive Techniques

8.

hi kI ti YiWi

1.06726237
1.18123223
1.30460372
1.42951608
1.55364771
1.67623915

1.06726235
1.18123222
1.30460371
1.42951607
1.55364770
1.67623914

1
2
3
4
5
6

1.50
2.00
2.50
3.00
3.50
4.00

0.50
0.50
0.50
0.50
0.50
0.50

4
3
3
3
3
3

""'"

b.

hi kti Yii Wi

0.64387533
1.66128176
3.25801536
5.87409998

1
2
3
4

1.50
2.00
2.50
3.00

0.64387537
1.66128182
3.25801550
5.87410027

0.50
0.50
0.50
0.50

4
5
5
5

c.
hi ktii Wi Yi

-1.53788284
-1.23840584
-1.09485175
-1.03597242
-1.01338570
-1.00494525

1
2
3
4
5
6

0.50
1.00
1.50
2.00
2.50
3.00

-1.53788284
-1.23840584
-1.09485175
-1.03597242
-1.01338570
-1.00494526

0.50
0.50
0.50
0.50
0.50
0.50

4
5
5
5
5
4

d.
khiti YiWi

1
2
3
4

0.50

1.00

1.50
2.00

0.29875177
0.21662642
0.12458565
0.05434552

0.50
0.50
0.50
0.50

4
4
4
4

0.29875178
0.21662642
0.12458565
0.05434551

5. The approximate population is y(5) ~ 56,751

EXERCISE SET 5.6 (Page 219

The Runge-Kutta-Fehlberg approximations are1. 8.

98 CHAPTER 5

.

Initial- Value Problems for Differential Equations

b.

Wi = 0.4787456 ~ y(ti) = y(0.2966446) = 0.4787309

The Adams Variable Step-Size Predictor-Corrector approximations are

W4 = 0.31055852 ~ y(t4) = y(0.2) = 0.31055897

2.

a.

b.

The Runge-Kutta-Fehlberg approximations are

Wl = 0.7721617 ~ y(tl) = y(1.3755411) = 0.7723932
W2 = 0.6983579 ~ y(t2) = y(1.7495582) = 0.6985383

The Adams Variable Step-Size Predictor-Corrector approximations are

W4 = 0.8230373 ~ y(t4) = y(1.25) = 0.8230406
Ws = O. 7686640 ~ y(ts) = y(1.3868966) = 0.7686643

3.

The Runge-Kutta-Fehlberg method gives the results in the following tables.

R.

hiti Wi Yi

1
2
3
4

1.0500000
1.1000000
1.1500000
1.2000000

1.1038574
1.2158864
1.3368393
1.4675697

0.05001

0.050010.05001

0.05001

1.1038574
1.2158863
1.3368393
1.4675696

b.
hitii Wi Yi

1
2
3
4

0.2500000
0.5000000
0.7500000
1.0000000

0.2522868
0.5158867
0.7959445
1.0918182

0.2500000
0.2500000
0.2500000
0.2500000

0.2522868
0.5158868
0.7959446
1.0918183

c.

hiti Wi Yi

1
3
5
6

1.1382206
1.6364797
2.6364797
3.0000000

-1.7834313
-1.4399709
-1.2340532
-1.2000195

0.1382206
0.3071709
0.5000000
0.3635203

-1.7834282-1.4399551

-1.2340298
-1.2000000

;~

000
000
000
000

..,"

995.6 Adaptive Techniques

d.

hiI ti Wi Yi

0.2
0.2
0.2
0.2
0.2

1.0571810
1.2014860
1.3809312
1.5550314
1.7018701

0.2
0.4
0.6
0.8
1.0

1.0571819
1.2014801
1.3809214
1.5550243
1.7018705

1
2
3
4
5

J
4. The Runge-Kutta-Fehlberg method giv5 the results in the following tables.

8.
hiti YiWiI

q.1101946
0.2180472
0.3707934
0.1014853

1.0051237
1.1213947
1.2795395
1.6762391

1.1101946
1.7470584
2.3994350
4.0000000

1.0051237
1.1213948
1.2795396
1.6762393

1
5
7

11

b.

hiti Wi Yii

0.1256486
0.1073571
0.0965027
0.0778628
0.0195070

0.7234119
1.3851226
2.1673499
4.1297904
5.8741000

1.5482238
1.8847226
2.1846024
2.6972462
3.0000000

0.7234123
1.3851234
2.1673514
4.1297939
5.8741059

4

7

10

16

21

c.

hii ti Wi Yi

-1.8380836!
I

-1.3597623
-1.1684827
-1.0749509
-1.0291158
-1.0049450

0.1633541
0.1266248
0.1048224
0.1107510
0.1288897
0.1264618

-1.8380836
-1.3597624
-1.1684830
-1.0749511
-1.0291161
-1.0049452

1
5
9
13
17
23

0.1633541
0.7585763
1.1930325
1.6229351
2.1074733
3.0000000

5.6 Adaptive Techniques

101

d.
hitji Wi Yi

1
5
10
12
14

0.06250000
0.31250000
0.62500000
0.81250000
1.00000000

1.00583097
1.130994271.40361751

1.56515769
1.70186884

0.06250000
0.06250000
0.06250000
0.09375000
0.09375000

1.00583095
1.1309810&
1.40360196
1.56514800
1.70187005

6. The following tables list representative results from the Adams Variable Step-Size Predictor-i
I

Corrector method. .J
;

1a. .-~--
",

;'0",
,

,}:I'~ ", '.

"
'c

z hiti Wi Yi

5
15
25
35
45
52
57

1.10431651
1.31294952
1.59408142
2.008462052.66272188

3.40193112
4.00000000

1.00463041

1.031968891.08714711

1.18327922
1.34525123
1.52940900
1.67623887

0.02086330
0.02086330
0.03122028
0.04824992
0.07278716
0.11107035
0.12174963

1.00463045
1.03196898
1.08714722
1.18327937
1.34525143
1.52940924
1.67623914

I:!I

I~.

~b.

hitiz Wi Yi

5
15
25
35
45
55
61

1.18519603
1.55558810
1.92598016
2.296372222.65452689

2.94341188
3.00000000

0.20333499
0.73586642
1.48072467
2.51764797
3.92602442
5.50206466
5.87410206

0.03703921
0.03703921
0.03703921
0.03703921
0.03092051
0.02584049
0.00122679

0.203334970.73586631

1.48072442
2.51764743
3.926023325.502062795.87409998

c.

tj hii Wi Yi

5
17
27415161

0.16854008
0.64833341
1.06742915
1.75380240
2.50124702
3.00000000

-1.83303780-1.42945306-1.21150951

-1.05819340
-1.01335240
-1.00494507

0.03370802
0.05253230
0.04190957
0.06681937
0.07474446
0.01257155

-1.83303783
-1.42945304
-1.21150932
-1.05819325
-1.01335258
-1.00494525

102 CHAPTERS

.

lnitial- Value Problems for Differential Equations

d.
hitii Wi Yi

5
15
20
25
29
33

0.28548652
0.85645955
1.35101725
1.66282314
1.91226786
2.00000000

0.32153668
0.24281066
0.15096743
0.09815109
0.06418555
0.05434530

0.05709730
0.05709730
0.09891154
0.06236118
0.06236118
0.02193303

0.321,'
0.242;
0.150!
0.098
0.064
0.054:

1. The current after 2 seconds is approximately i(2) = 8.693 amperes, using a tolerance of
TOL = 0.01, with the minimum and maximum step-sizes ofB M IN = 0.001 and B M AX =
0.1, respectively.

EXERCISE SET 5.7 (Page 228

1. The Runge-Kutta for Systems method gives the results in the following tables.

8.
ti Wli Uli W2i U2i

0.200

0.400
0.600

0.800

1.000

2.12036583
4.44122776
9.73913329
22.67655977
55.66118088

2.12500839
4.46511961
9.83235869
23.00263945
56.73748265

1.50699185
3.24224021
8.16341700
21.34352778
56.03050296

1.51158743
3.26598528
8.25629549
21.66887674
57.10536209

b.
ti Wli Uli W2i U2i

0.500
1.000
1.500
2.000

0.95671390
1.30654440
1.34416716
1.14332436

0.95672798
1.30655930
1.34418117
1.14333672

-1.08381950
-0.83295364
-0.56980329
-0.36936318

-1.08383310
-0.83296776
-0.56981634
-0.36937457

5367481095

96772
151371857934551

.:

103MJthods for Systems of Equations5.7

c.
U3iW3iU2iW2iti UtiWI;

0.70828683

-0.33650854

-2.41345688

-5.89500551

0.5 0.70781076

1.0 -0.33691753

1.5 -2.41332734

2.0 -5.89479008

d.

0.2 1.38165297 1.38165325 1.00800000 1.00800000 -0.61833075 -0.61833075

0.5 1.90753116 1.90753184 1.12500000 1.12500000 -0.09090565 -0.09090566

0.7 2.25503524 2.25503620 1.34300000 1.3400000o 0.26343971 0.26343970

1.0 2.83211921 2.83212056 2.OOOOOOOO 2.00000o00 0.88212058 0.88212056

2. The Runge-Kutta for Systems method gives the results in the following tables.

8.

ti YiWli

0.00015350
0.00743027
0.03299805
0.17132880

0.00015352
0.00742968
0.03299617
0.17132224

0.200

0.500
0.700
1.000

b.

titi Wli

0.96152583
0.77797237
0.59373830
0.27258872

0.96152437
0.77796897
0.59373369
0.27258237

1.200
1.500
1.700
2.000

c.

tj YiWli

3.73170445
11.31452924
34.04517155

3.73162695
11.31424573
34.04395688

1.000

2.000

3.000

-1.24988663

-3.01764179

-5.40523279

-8.70970537

-1.25056425

-3.01945051

-5.40844686

-8.71450036

0.39884862

-0.29932294

-0.92346873

-1.32051165

0.39815702
-0.30116868

-0.92675778

-1.32544426

104

CHAPTER 5 lnitial- Value Problems for Differential Equations

d.
ti Wli W2i

1.200
1.500
1.700
2.000

0.27273759
1.08849079
2.04353207
4.36156675

0.27273791
1.08849259
2.04353642
4.36157780

3. First use the Runge-Kutta method of order four for systems to compute all starting values:

Wl,O, W2,O. ...,Wm,O

Wl,l,W2,l,'" ,Wm,l

Wl,2, W2,2. ...,Wm,2Wl,3.

W2,3, ...,Wm,3'

Then, for each j = 3,4, N -1 compute the predictor values

.,Wm,j) -59fi(tj-ll Wl,j-ll'" I Wm,j-l)

Wm,j-2) -9fi(tj-31 Wl,j-3, ." I U?m,j-3)].

and for each i = 1,.. .,m compute the corrector values

...,Wm,j)

Wm,j-2)].

Wi,j+l =Wi,j + ~[9/i(tj+ll W~~+ll ~ j. I W~~j+l) + 19/i(til Wl,j,

-5/i(tj-ll Wl,j-ll'" I WmJ-l) + /i(tj-2, Wl,j-2,. ..,

,4.
The Adams fourth-order predictor-corrector ~ethod for systems applied to the problems in
Exercise 1 gives the results in the following ibleso

a. .

ti Wli Uti W2i U2i

0.200
0.400

0.600

0.800

1.000

2.12036583
4.44122776
9.73913329
22.5267321054.81242211

2.12500839
4.46511961
9.83235869
23.00263945
56.73748265

1.50699185
3.24224021
8.16341700
21.20273983
55.20490157

1.51158743
3.26598528
8.25629549
21.66887674
57.10536209

+ 37fi{tj-2! Wl,j-2

105

5.7 Methods for Systems of Equati:Z1S

b.

U2iti W2iUliWli

-1.08383310
-0.83296776
-0.56981634
-0.36937457

-1.08385916-0.83300571

-0.56983853
-0.36938396

0.95672798
1.30655930
1.34418117
1.14333672

0.95675505
1.30659995
1.34420613
1.14334795

0.500
1.000
1.500
2.000

c.
U3iW3iW2i U1iti WI; Uti

0.39815702
-0.30116868

-0.92675718

-1.32544426

0.5 0.70787076 0.70828683 -1.24988663 -1.25056425 0.39884862

1.0 -0.33691753 -0.33650854 -3.01764179 -3.01945051 -0.29932294

1.5 -2.41332734 -2.41345688 -5.40523279 -5.40844686 -0.92346873

2.0 -5.88968402 -5.89590551 -8.72213325 -8.71450036 -1.32972524

~~,

~;f,~I"'~I.~

d.
U3iW3iU2iti tVl; Uli 102;

-0.61833075

-0.09090566

0.26343970

0.88212056

-0.61833075

-0.09090527

0.26344040

0.88212163

1.00800000

1.12500000
1.34300000

2.00000000

1.00800000

1.12500000

1.34300000
2 .00000000

1.38165325

1.90753184

2.25503620

2.83212056

0.2

0.5

0.7
1.0

1.38165297

1.90752882

2.25503040

2.83211032

5. The predicted number of prey, Xli, and predators, X2i, are given in the following table using
h = 0.1.

I ti 'Zli X2i

1512
3175
2042
1258

10
20
30
40

1.0
2.0

3.0

4.0

4393
288
32
25

A stable solution is Xl = 833.3 and X2 = 1500 since for these values we have both X~ (t) = 0
and X2(t) = O. .

6.

The predicted number of prey, Xli, and predators, X2i, are given in the following table.

106

CHAPTER 5

.

Initial- Value Problems (or Differential Equations

tii Wli W2i

6
12
18

1.2

2.4

3.6

2211

175
2

11469
17492
19704

A stable solution is Xl = 8000 and X2 = 4000 since for these values we have both X~ (t) = 0
and x~(t) = O.

1. Euler's method gives the results in the following tables.

a.
ti Wi Yi

0.2000.5000.700

1.000

0.027182818
0.000027183
0.000000272
0.000000000

0.449328964

0.030197383
0.004991594
0.000335463

b.

ti Wi Yi

0.200
0.500
0.700
1.000

0.373333333-0.0933333333

0.146666667
1.333333333

0.046105213
0.250015133
0.490000277
1.000000001

c.

ti Wi Yi

0.500
1.000
1.500
2.000

16.47925
256.7930
4096.142
65523.12

0.479470939
0.841470987
0.9974949870.909297427

~"',

1075.8 Stiff Differential Equations

d.

ti YiWi

1.000000001
1.000000000
1.000000000
1.000000000

6.128259
-378.2574
-6052.063
387332.0

0.200
0.500
0.700
1.000

~""..,

2. The Runge-Kutta fourth order method gives the results in the following tables.

8.

ti YiWi

0.44932896
0.03019738
0.00499159
0.00033546

0.45881186
0.03181595
0.00537013
0.00037239

0.200
0.500
0.700
1.000

b.

ti YiWi

0.01925926
0.25386145
0.49265121
1.00250560

0.04610521
0.25001513
0.49000028
1.00000000

0.200
0.500
0.700
1.000

c.

I",".,

ti YiWi

0.47947094
0.84147099
0.99749499
0.90929743

0.500
1.000
1.500
2.000

188.3082
35296.68
6632737

1246413200

d.
ti YiWi

1.00000000
1.00000000
1.00000000
1.00000000

0.200
0.500
0.700
1.000

-215.7459
-555750.0

-104435653
-269031268010

3. The Adams Fourth-Order Predictor-Corrector method gives the results in the following

tables.

I

1095.8 Stiff Differential Equations

b.

kti Wi Yi

0.200
0.500
0.700
1.000

0.04000000
0.25000000
0.49000000
1.00000000

2
2
2
2

0.04610521
0.25001513
0.49000028
1.00000000

c.

kti Wi Yi

0.500
1.000
1.500
2.000

0.66291133
0.87506346
1.00366141
0.91053267

2
2
2
2

0.47947094
0.84147099
0.99749499
0.90929743

d.

kti Wi Yi

0.200
0.500
0.700
1.000

-1.07568307
-0.97868360
-0.99046408
-1.00284456

4
4
3
3

1.00000000
1.00000000
1.00000000
1.00000000

5.

The following tables list the results of the Backward Euler method applied to the problems
in Exercise 1.
a. --'c._~

z kti Wi Yi

2
5
7
10

0.20
0.50
0.70
1.00

0.75298666
0.10978082
0.03041020
0.00443362

2
2
2
2

0.44932896
0.03019738
0.00499159
0.00033546

b.
kti2 Wi Yi

2
5
7
10

0.20
0.50
0.70
1.00

0.08148148
0.25635117
0.49515013
1.00500556

2
2
2
2

0.04610521
0.25001513
0.49000028
1.00000000

110

CHAPTER 5 lnitial- Value Problems for Differential Equations

.c.

kti Yii Wi

0.50
1.00
1.50
2.00

0.50495522
0.83751817
0.99145076
0.90337560

2
2
2
2

0.47947094
0.84147099
0.99749499
0.90929743

2
4
6
8

d.

kt. YiWi

2
5
7
10

0.20
0.50
0.70
1.00

1.00348713
1.00000262
1.00000002
1.00000000

3
2
1
1

1.00000000
1.00000000
1.00000000
1.00000000

6. p(50) ~ 0.10421

\, e~

