
Chapter 2

The Location Model

2.1 Four Essential Statistics

The location model
Yi = μ+ ei, i = 1, . . . , n (2.1)

is often summarized by obtaining point estimates and confidence intervals
for a location parameter and a scale parameter. Assume that there is a
sample Y1, . . . , Yn of size n where the Yi are iid from a distribution with
median MED(Y ), mean E(Y ), and variance V (Y ) if they exist. Also assume
that the Yi have a cumulative distribution function (cdf) F that is known
up to a few parameters. For example, Yi could be normal, exponential,
or double exponential. The location parameter μ is often the population
mean or median while the scale parameter is often the population standard
deviation

√
V (Y ).

By far the most important robust technique for the location model is to
make a plot of the data. Dot plots, histograms, box plots, density estimates,
and quantile plots (also called empirical cdfs) can be used for this purpose
and allow the investigator to see patterns such as shape, spread, skewness,
and outliers.

Example 2.1. Buxton (1920) presents various measurements on 88 men
from Cyprus. Case 9 was removed since it had missing values. Figure 2.1
shows the dot plot, histogram, density estimate, and box plot for the heights
of the men. Although measurements such as height are often well approxi-
mated by a normal distribution, cases 62-66 are gross outliers with recorded
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Figure 2.1: Dot plot, histogram, density estimate, and box plot for heights
from Buxton (1920).
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heights around 0.75 inches! It appears that their heights were recorded under
the variable “head length,” so these height outliers can be corrected. Note
that the presence of outliers is easily detected in all four plots.

Point estimation is one of the oldest problems in statistics and four of
the most important statistics for the location model are the sample mean,
median, variance, and the median absolute deviation (mad). Let Y1, . . . , Yn

be the random sample; ie, assume that Y1, ..., Yn are iid.

Definition 2.1. The sample mean

Y =

∑n
i=1 Yi

n
. (2.2)

The sample mean is a measure of location and estimates the population
mean (expected value) μ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi −m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi − Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m
is equal to the sum of the lengths of the rods corresponding to Yi > m. If
the rods have the same diameter, then the weight of a rod is proportional
to its length, and the weight of the rods corresponding to the Yi ≤ Y is
equal to the weight of the rods corresponding to Yi > Y . The sample mean
is drawn towards an outlier since the absolute residual corresponding to a
single outlier is large.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,

and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
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the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.

Definition 2.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (2.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 2.3. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (2.4)

and the sample standard deviation Sn =
√
S2

n.

The sample median need not be unique and is a measure of location while
the sample standard deviation is a measure of scale. In terms of the “rod
analogy,” the median is a value m such that at least half of the rods are to
the left of m and at least half of the rods are to the right of m. Hence the
number of rods to the left and right of m rather than the lengths of the rods
determine the sample median. The sample standard deviation is vulnerable
to outliers and is a measure of the average value of the rod lengths |ri(Y )|.
The sample mad, defined below, is a measure of the median value of the rod
lengths |ri(MED(n))|.

Definition 2.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (2.5)

Since MAD(n) is the median of n distances, at least half of the obser-
vations are within a distance MAD(n) of MED(n) and at least half of the
observations are a distance of MAD(n) or more away from MED(n).

Example 2.2. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.
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Table 2.1: Some commonly used notation.

population sample

E(Y ), μ, θ Y n, E(n) μ̂, θ̂

MED(Y ),M MED(n), M̂
VAR(Y ), σ2 VAR(n), S2, σ̂2

SD(Y ), σ SD(n), S, σ̂
MAD(Y ) MAD(n)
IQR(Y ) IQR(n)

They are also quite old. Rey (1978, p. 2) quotes Thucydides on a tech-
nique used in the winter of 428 B.C. by Greek besiegers. Cities were often
surrounded by walls made of layers of bricks, and besiegers made ladders to
scale these walls. The length of the ladders was determined by counting the
layers of bricks. Many soldiers counted the number of bricks, and the mode
of the counts was used to estimate the number of layers. The reasoning was
that some of the counters would make mistakes, but the majority were likely
to hit the true count. If the majority did hit the true count, then the sample
median would equal the mode. In a lecture, Professor Portnoy stated that in
215 A.D., an “eggs bulk” of impurity was allowed in the ritual preparation of
food, and two Rabbis desired to know what is an “average sized egg” given
a collection of eggs. One said use the middle sized egg while the other said
average the largest and smallest eggs of the collection. Hampel, Ronchetti,
Rousseeuw and Stahel (1986, p. 65) attribute MAD(n) to Gauss in 1816.

2.2 A Note on Notation

Notation is needed in order to distinguish between population quantities,
random quantities, and observed quantities. For population quantities, cap-
ital letters like E(Y ) and MAD(Y ) will often be used while the estima-
tors will often be denoted by MED(n),MAD(n), MED(Yi, i = 1, ..., n), or
MED(Y1, . . . , Yn). The random sample will be denoted by Y1, . . . , Yn. Some-
times the observed sample will be fixed and lower case letters will be used.
For example, the observed sample may be denoted by y1, ..., yn while the
estimates may be denoted by med(n),mad(n), or yn. Table 2.1 summarizes
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some of this notation.

2.3 The Population Median and MAD

The population median MED(Y ) and the population median absolute devi-
ation MAD(Y ) are very important quantities of a distribution.

Definition 2.5. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (2.6)

Definition 2.6. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (2.7)

MED(Y ) is a measure of location while MAD(Y ) is a measure of scale.
The median is the middle value of the distribution. Since MAD(Y ) is the
median distance from MED(Y ), at least half of the mass is inside [MED(Y )−
MAD(Y ),MED(Y )+MAD(Y )] and at least half of the mass of the distribu-
tion is outside of the interval (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )).
In other words, MAD(Y ) is any value such that

P (Y ∈ [MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )]) ≥ 0.5,

and

P (Y ∈ (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )) ) ≤ 0.5.

Warning. There is often no simple formula for MAD(Y ). For example,
if Y ∼ Gamma(ν, λ), then VAR(Y ) = νλ2, but for each value of ν, there is
a different formula for MAD(Y ).

MAD(Y ) and MED(Y ) are often simple to find for location, scale, and
location–scale families. Assume that the cdf F of Y has a probability density
function (pdf) or probability mass function (pmf) f . The following definitions
are taken from Casella and Berger (2002, p. 116-119) and Lehmann (1983,
p. 20).

Definition 2.7. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = fY (w − μ) indexed by the location parameter μ, −∞ < μ < ∞, is
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Table 2.2: MED(Y ) and MAD(Y ) for some useful random variables.

NAME Section MED(Y ) MAD(Y )
Cauchy C(μ, σ) 3.3 μ σ

double exponential DE(θ, λ) 3.6 θ 0.6931λ
exponential EXP(λ) 3.7 0.6931λ λ/2.0781

two parameter exponential EXP(θ, λ) 3.8 θ + 0.6931λ λ/2.0781
half normal HN(μ, σ) 3.12 μ+ 0.6745σ 0.3991 σ

largest extreme value LEV(θ, σ) 3.13 θ + 0.3665σ 0.7670σ
logistic L(μ, σ) 3.14 μ 1.0986 σ
normal N(μ, σ2) 3.19 μ 0.6745σ
Rayleigh R(μ, σ) 3.23 μ+ 1.1774σ 0.4485σ

smallest extreme value SEV(θ, σ) 3.24 θ − 0.3665σ 0.7670σ
tp 3.25 0 tp,3/4

uniform U(θ1, θ2) 3.27 (θ1 + θ2)/2 (θ2 − θ1)/4

the location family for the random variable W = μ + Y with standard pdf
fY (y).

Definition 2.8. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY (w/σ) indexed by the scale parameter σ > 0, is the scale
family for the random variable W = σY with standard pdf fY (y).

Definition 2.9. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY ((w − μ)/σ) indexed by the location and scale parameters
μ, −∞ < μ < ∞, and σ > 0, is the location–scale family for the random
variable W = μ + σY with standard pdf fY (y).

Table 2.2 gives the population mads and medians for some “brand name”
distributions. The distributions are location–scale families except for the
exponential and tp distributions. The notation tp denotes a t distribution
with p degrees of freedom while tp,α is the α percentile of the tp distribution,
ie P (tp ≤ tp,α) = α. Hence tp,0.5 = 0 is the population median. The second
column of Table 2.2 gives the section of Chapter 3 where the random variable
is described further. For example, the exponential (λ) random variable is
described in Section 3.7. Table 2.3 presents approximations for the binomial,
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Table 2.3: Approximations for MED(Y ) and MAD(Y ).

Name Section MED(Y ) MAD(Y )

binomial BIN(k,ρ) 3.1 kρ 0.6745
√
kρ(1 − ρ)

chi-square χ2
p 3.5 p− 2/3 0.9536

√
p

gamma G(ν, λ) 3.9 β(ν − 1/3) λ
√
ν/1.483

chi-square and gamma distributions.

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following lemma and Table 2.2. Let
F (yα) = P (Y ≤ yα) = α for 0 < α < 1 where the cdf F (y) = P (Y ≤ y). Let
D = MAD(Y ), M = MED(Y ) = y0.5 and U = y0.75.

Lemma 2.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and
symmetric about μ, then MED(Y ) = μ and MAD(Y ) = y0.75 − MED(Y ).
Find M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U
by solving F (U) = 0.75 for U . Then D = MAD(Y ) = U −M.

c) Suppose that W is from a location–scale family with standard pdf
fY (y) that is continuous and positive on its support. Then W = μ + σY
where σ > 0. First find M by solving FY (M) = 0.5. After finding M , find
D by solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = μ + σM
and MAD(W ) = σD.

Proof sketch. a) Assume the probability density function of Y is con-
tinuous and positive on its support. Assume b > 0. Then

1/2 = P [Y ≤ MED(Y )] = P [a + bY ≤ a + bMED(Y )] = P [W ≤ MED(W )].

1/2 = P [MED(Y ) − MAD(Y ) ≤ Y ≤ MED(Y ) + MAD(Y )]

= P [a+ bMED(Y ) − bMAD(Y ) ≤ a + bY ≤ a + bMED(Y ) + bMAD(Y )]

= P [MED(W ) − bMAD(Y ) ≤W ≤ MED(W ) + bMAD(Y )]

= P [MED(W ) − MAD(W ) ≤ W ≤ MED(W ) + MAD(W )].
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The proofs of b) and c) are similar. QED

Frequently the population median can be found without using a com-
puter, but often the population mad is found numerically. A good way to
get a starting value for MAD(Y ) is to generate a simulated random sample
Y1, ..., Yn for n ≈ 10000 and then compute MAD(n). The following examples
are illustrative.

Example 2.3. Suppose the W ∼ N(μ, σ2). Then W = μ + σZ where
Z ∼ N(0, 1). The standard normal random variable Z has a pdf that is
symmetric about 0. Hence MED(Z) = 0 and MED(W ) = μ+σMED(Z) = μ.
Let D = MAD(Z) and let P (Z ≤ z) = Φ(z) be the cdf of Z. Now Φ(z) does
not have a closed form but is tabled extensively. Lemma 2.1b) implies that
D = z0.75 − 0 = z0.75 where P (Z ≤ z0.75) = 0.75. From a standard normal
table, 0.67 < D < 0.68 or D ≈ 0.674. A more accurate value can be found
with the following R/Splus command.

> qnorm(0.75)

[1] 0.6744898

Hence MAD(W ) ≈ 0.6745σ.

Example 2.4. If W is exponential (λ), then the cdf of W is FW (w) =
1 − exp(−w/λ) for w > 0 and FW (w) = 0 otherwise. Since exp(log(1/2)) =
exp(− log(2)) = 0.5, MED(W ) = log(2)λ. Since the exponential distribution
is a scale family with scale parameter λ, MAD(W ) = Dλ for some D > 0.
Hence

0.5 = FW (log(2)λ+Dλ) − FW (log(2)λ−Dλ),

or 0.5 =

1− exp[−(log(2)+D)]− (1− exp[−(log(2)−D)]) = exp(− log(2))[eD − e−D].

Thus 1 = exp(D) − exp(−D) which may be solved numerically. One way to
solve this equation is to write the following R/Splus function.

tem <- function(D){exp(D) - exp(-D)}

Then plug in values D until tem(D) ≈ 1. Below is some output.
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> mad(rexp(10000),constant=1) #get the sample MAD if n = 10000

[1] 0.4807404

> tem(0.48)

[1] 0.997291

> tem(0.49)

[1] 1.01969

> tem(0.484)

[1] 1.006238

> tem(0.483)

[1] 1.004

> tem(0.481)

[1] 0.9995264

> tem(0.482)

[1] 1.001763

> tem(0.4813)

[1] 1.000197

> tem(0.4811)

[1] 0.99975

> tem(0.4812)

[1] 0.9999736

Hence D ≈ 0.4812 and MAD(W ) ≈ 0.4812λ ≈ λ/2.0781. If X is a
two parameter exponential (θ, λ) random variable, then X = θ + W. Hence
MED(X) = θ + log(2)λ and MAD(X) ≈ λ/2.0781. Arnold Willemsen, per-
sonal communication, noted that 1 = eD + e−D. Multiply both sides by
W = eD so W = W 2 − 1 or 0 = W 2 − W − 1 or eD = (1 +

√
5)/2 so

D = log[(1 +
√

5)/2] ≈ 0.4812.

Example 2.5. This example shows how to approximate the population
median and mad under severe contamination when the “clean” observations
are from a symmetric location–scale family. Let Φ be the cdf of the standard
normal, and let Φ(zα) = α. Note that zα = Φ−1(α). Suppose Y ∼ (1−γ)FW +
γFC where W ∼ N(μ, σ2) and C is a random variable far to the right of μ.
Show a)

MED(Y ) ≈ μ+ σz[ 1
2(1−γ)

]

and b) if 0.4285 < γ < 0.5,

MAD(Y ) ≈ MED(Y ) − μ+ σz[ 1
2(1−γ)

] ≈ 2σz[ 1
2(1−γ)

].
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Solution. a) Since the pdf of C is far to the right of μ,

(1 − γ)Φ(
MED(Y ) − μ

σ
) ≈ 0.5,

and

Φ(
MED(Y ) − μ

σ
) ≈ 1

2(1 − γ)
.

b) Since the mass of C is far to the right of μ,

(1 − γ)P [MED(Y ) − MAD(Y ) < W < MED(Y ) + MAD(Y )] ≈ 0.5.

Since the contamination is high, P (W < MED(Y ) + MAD(Y )) ≈ 1, and

0.5 ≈ (1 − γ)P (MED(Y ) − MAD(Y ) < W )

= (1 − γ)[1 − Φ(
MED(Y ) − MAD(Y ) − μ

σ
)].

Writing z[α] for zα gives

MED(Y ) − MAD(Y ) − μ

σ
≈ z

[
1 − 2γ

2(1 − γ)

]
.

Thus

MAD(Y ) ≈ MED(Y ) − μ − σz

[
1 − 2γ

2(1 − γ)

]
.

Since z[α] = −z[1 − α],

−z
[

1 − 2γ

2(1 − γ)

]
= z

[
1

2(1 − γ)

]

and

MAD(Y ) ≈ μ+ σz

[
1

2(1 − γ)

]
− μ+ σz

[
1

2(1 − γ)

]
.

Application 2.1. The MAD Method: In analogy with the method of
moments, robust point estimators can be obtained by solving MED(n) =
MED(Y ) and MAD(n) = MAD(Y ). In particular, the location and scale
parameters of a location–scale family can often be estimated robustly using
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Table 2.4: Robust point estimators for some useful random variables.

BIN(k,ρ) ρ̂ ≈ MED(n)/k
C(μ, σ) μ̂ = MED(n) σ̂ = MAD(n)
χ2

p p̂ ≈ MED(n) + 2/3, rounded

DE(θ, λ) θ̂ = MED(n) λ̂ = 1.443MAD(n)

EXP(λ) λ̂1 = 1.443MED(n) λ̂2 = 2.0781MAD(n)

EXP(θ, λ) θ̂ = MED(n) − 1.440MAD(n) λ̂ = 2.0781MAD(n)

G(ν, λ) ν̂ ≈ [MED(n)/1.483MAD(n)]2 λ̂ ≈ [1.483MAD(n)]2

MED(n)

HN(μ, σ) μ̂ = MED(n) − 1.6901MAD(n) σ̂ = 2.5057MAD(n)

LEV(θ, σ) θ̂ = MED(n) − 0.4778MAD(n) σ̂ = 1.3037MAD(n)
L(μ, σ) μ̂ = MED(n) σ̂ = 0.9102MAD(n)
N(μ, σ2) μ̂ = MED(n) σ̂ = 1.483MAD(n)
R(μ, σ) μ̂ = MED(n) − 2.6255MAD(n) σ̂ = 2.230MAD(n)

U(θ1, θ2) θ̂1 = MED(n) − 2MAD(n) θ̂2 = MED(n) + 2MAD(n)

c1MED(n) and c2MAD(n) where c1 and c2 are appropriate constants. Table
2.4 shows some of the point estimators and the following example illustrates
the procedure. For a location–scale family, asymptotically efficient estimators
can be obtained using the cross checking technique. See He and Fung (1999).

Example 2.6. a) For the normal N(μ, σ2) distribution, MED(Y ) = μ
and MAD(Y ) ≈ 0.6745σ. Hence μ̂ = MED(n) and σ̂ ≈ MAD(n)/0.6745 ≈
1.483MAD(n).

b) Assume that Y is gamma(ν, λ). Chen and Rubin (1986) showed that
MED(Y ) ≈ λ(ν − 1/3) for ν > 1.5. By the central limit theorem,

Y ≈ N(νλ, νλ2)

for large ν. If X is N(μ, σ2) then MAD(X) ≈ σ/1.483. Hence MAD(Y ) ≈
λ
√
ν/1.483. Assuming that ν is large, solve MED(n) = λν and MAD(n) =

λ
√
ν/1.483 for ν and λ obtaining

ν̂ ≈
(

MED(n)

1.483MAD(n)

)2

and λ̂ ≈ (1.483MAD(n))2

MED(n)
.
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c) Suppose that Y1, ..., Yn are iid from a largest extreme value distribution,
then the cdf of Y is

F (y) = exp[− exp(−(
y − θ

σ
))].

This family is an asymmetric location-scale family. Since 0.5 = F (MED(Y )),
MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ. Let D = MAD(Y ) if θ = 0
and σ = 1. Then 0.5 = F [MED(Y ) + MAD(Y )] − F [MED(Y ) − MAD(Y )].
Solving 0.5 = exp[− exp(−(0.36651 +D))]− exp[− exp(−(0.36651 −D))] for
D numerically yields D = 0.767049. Hence MAD(Y ) = 0.767049σ.

d) Sometimes MED(n) and MAD(n) can also be used to estimate the pa-
rameters of two parameter families that are not location–scale families. Sup-
pose that Y1, ..., Yn are iid from a Weibull(φ, λ) distribution where λ, y, and
φ are all positive. Then W = log(Y ) has a smallest extreme value SEV(θ =
log(λ1/φ), σ = 1/φ) distribution. Let σ̂ = MAD(W1, ...,Wn)/0.767049 and
let θ̂ = MED(W1, ...,Wn) − log(log(2))σ̂. Then φ̂ = 1/σ̂ and λ̂ = exp(θ̂/σ̂).

Falk (1997) shows that under regularity conditions, the joint distribution
of the sample median and mad is asymptotically normal. See Section 2.9.
A special case of this result follows. Let ξα be the α percentile of Y. Thus
P (Y ≤ ξα) = α. If Y is symmetric and has a positive continuous pdf f, then
MED(n) and MAD(n) are asymptotically independent

√
n

( (
MED(n)
MAD(n)

)
−

(
MED(Y )
MAD(Y )

) )
D→ N

( (
0
0

)
,

(
σ2

M 0
0 σ2

D

) )

where

σ2
M =

1

4[f(MED(Y ))]2
,

and

σ2
D =

1

64

[
3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]
=

1

16[f(ξ3/4)]2
.

2.4 Robust Confidence Intervals

In this section, large sample confidence intervals (CIs) for the sample me-
dian and 25% trimmed mean are given. The following confidence interval
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provides considerable resistance to gross outliers while being very simple to
compute. The standard error SE(MED(n)) is due to Bloch and Gastwirth
(1968), but the degrees of freedom p is motivated by the confidence interval
for the trimmed mean. Let 
x� denote the “greatest integer function” (eg,

7.7� = 7). Let �x denote the smallest integer greater than or equal to x
(eg, �7.7 = 8).

Application 2.2: inference with the sample median. Let Un =
n− Ln where Ln = 
n/2� − �√n/4  and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1 (so p ≈ � √n ). Then a 100(1−α)% confidence interval
for the population median is

MED(n) ± tp,1−α/2SE(MED(n)). (2.8)

Definition 2.10. The symmetrically trimmed mean or the δ trimmed
mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑
i=Ln+1

Y(i) (2.9)

where Ln = 
nδ� and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The (δ, 1 − γ) trimmed mean uses Ln = 
nδ� and Un = 
nγ�.

The trimmed mean is estimating a truncated mean μT . Assume that Y
has a probability density function fY (y) that is continuous and positive on
its support. Let yδ be the number satisfying P (Y ≤ yδ) = δ. Then

μT =
1

1 − 2δ

∫ y1−δ

yδ

yfY (y)dy. (2.10)

Notice that the 25% trimmed mean is estimating

μT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =

⎧⎨
⎩

Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.
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Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (2.11)

The standard error (SE) of Tn is SE(Tn) =
√
VSW (Ln, Un)/n.

Application 2.3: inference with the δ trimmed mean. A large
sample 100 (1 − α)% confidence interval (CI) for μT is

Tn ± tp,1−α
2
SE(Tn) (2.12)

where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p =

Un −Ln − 1 degrees of freedom. This interval is the classical t–interval when
δ = 0, but δ = 0.25 gives a robust CI.

Example 2.7. In 1979 an 8th grade student received the following scores
for the nonverbal, verbal, reading, English, math, science, social studies, and
problem solving sections of a standardized test: 6, 9, 9, 7, 8, 9, 9, 7. Assume
that if this student took the exam many times, then these scores would be
well approximated by a symmetric distribution with mean μ. Find a 95% CI
for μ.

Solution. When computing small examples by hand, the steps are
to sort the data from smallest to largest value, find n, Ln, Un, Y(Ln+1),
Y(Un), p, MED(n) and SE(MED(n)). After finding tp,1−α/2, plug the rel-
evant quantities into the formula for the CI. The sorted data are 6, 7, 7,
8, 9, 9, 9, 9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln =

4� − �√2 = 4 − �1.414 = 4 − 2 = 2 and Un = n − Ln = 8 − 2 = 6.
Hence SE(MED(n)) = 0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 7) = 1. The degrees of
freedom p = Un − Ln − 1 = 6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus
the 95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5±3.182(1) = (5.318, 11.682). The classical t–interval uses Y = (6+7+
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y
2
i ) − 8(82)] = (1/7)[(522 −

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for μ is

8 ± 2.365(
√

1.4286/8) = (7.001, 8.999). Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
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and that SE(Y ) < SE(MED(n)). The parameter μ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t–interval is considerably superior to the overly long median interval.

Example 2.8. In the last example, what happens if the 6 becomes 66
and a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they take
the same values as in the previous example and SE(MED(n)) = 0.5(Y(6) −
Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is MED(n) ±
t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = (7.409, 10.591). Notice that with
discrete data, it is possible to drive SE(MED(n)) to 0 with a few outliers if
n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows up and

is equal to (−2.955, 56.455).

Example 2.9. The Buxton (1920) data contains 87 heights of men,
but five of the men were recorded to be about 0.75 inches tall! The mean
height is Y = 1598.862 and the classical 95% CI is (1514.206, 1683.518).
MED(n) = 1693.0 and the resistant 95% CI based on the median is (1678.517,
1707.483). The 25% trimmed mean Tn = 1689.689 with 95% CI (1672.096,
1707.282).

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356 and the classical 95% CI is
(1678.595, 1706.118). Now MED(n) = 1694.0 and the 95% CI based on the
median is (1678.403, 1709.597). The 25% trimmed mean Tn = 1693.200 with
95% CI (1676.259, 1710.141). Notice that when the outliers are corrected,
the three intervals are very similar although the classical interval length is
slightly shorter. Also notice that the outliers roughly shifted the median
confidence interval by about 1 mm while the outliers greatly increased the
length of the classical t–interval.

Sections 2.5, 2.6 and 2.7 provide additional information on CIs and tests.

2.5 Large Sample CIs and Tests

Large sample theory can be used to construct confidence intervals (CIs) and
hypothesis tests. Suppose that Y = (Y1, ..., Yn)

T and that Wn ≡ Wn(Y ) is
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an estimator of some parameter μW such that

√
n(Wn − μW )

D→ N(0, σ2
W )

where σ2
W/n is the asymptotic variance of the estimator Wn. The above

notation means that if n is large, then for probability calculations

Wn − μW ≈ N(0, σ2
W/n).

Suppose that S2
W is a consistent estimator of σ2

W so that the (asymptotic)
standard error of Wn is SE(Wn) = SW/

√
n. Let zα be the α percentile of the

N(0,1) distribution. Hence P (Z ≤ zα) = α if Z ∼ N(0, 1). Then

1 − α ≈ P (−z1−α/2 ≤ Wn − μW

SE(Wn)
≤ z1−α/2),

and an approximate or large sample 100(1 − α)% CI for μW is given by

(Wn − z1−α/2SE(Wn),Wn + z1−α/2SE(Wn)).

Three common approximate level α tests of hypotheses all use the null
hypothesis Ho : μW = μo. A right tailed test uses the alternative hypothesis
HA : μW > μo, a left tailed test uses HA : μW < μo, and a two tail test uses
HA : μW �= μo. The test statistic is

to =
Wn − μo

SE(Wn)
,

and the (approximate) p-values are P (Z > to) for a right tail test, P (Z < to)
for a left tail test, and 2P (Z > |to|) = 2P (Z < −|to|) for a two tail test. The
null hypothesis Ho is rejected if the p-value < α.

Remark 2.1. Frequently the large sample CIs and tests can be improved
for smaller samples by substituting a t distribution with p degrees of freedom
for the standard normal distribution Z where p ≡ pn is some increasing
function of the sample size n. Then the 100(1 − α)% CI for μW is given by

(Wn − tp,1−α/2SE(Wn),Wn + tp,1−α/2SE(Wn)).

The test statistic rarely has an exact tp distribution, but the approximation
tends to make the CIs and tests more conservative; ie, the CIs are longer and
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Ho is less likely to be rejected. This book will typically use very simple rules
for p and not investigate the exact distribution of the test statistic.

Paired and two sample procedures can be obtained directly from the one
sample procedures. Suppose there are two samples Y1, ..., Yn and X1, ..., Xm.
If n = m and it is known that (Yi, Xi) match up in correlated pairs, then
paired CIs and tests apply the one sample procedures to the differences Di =
Yi −Xi. Otherwise, assume the two samples are independent, that n and m
are large, and that

( √
n(Wn(Y ) − μW (Y ))√
m(Wm(X) − μW (X))

)
D→ N2

( (
0
0

)
,

(
σ2

W (Y ) 0
0 σ2

W (X)

) )
.

Then(
(Wn(Y ) − μW (Y ))
(Wm(X) − μW (X))

)
≈ N2

( (
0
0

)
,

(
σ2

W (Y )/n 0
0 σ2

W (X)/m

) )
,

and

Wn(Y ) −Wm(X) − (μW (Y ) − μW (X)) ≈ N(0,
σ2

W (Y )

n
+
σ2

W (X)

m
).

Hence

SE(Wn(Y ) −Wm(X)) =

√
S2

W (Y )

n
+
S2

W (X)

m
,

and the large sample 100(1 − α)% CI for μW (Y ) − μW (X) is given by

(Wn(Y ) −Wm(X)) ± z1−α/2SE(Wn(Y ) −Wm(X)).

Often approximate level α tests of hypotheses use the null hypothesis
Ho : μW (Y ) = μW (X). A right tailed test uses the alternative hypothesis
HA : μW (Y ) > μW (X), a left tailed test uses HA : μW (Y ) < μW (X), and a
two tail test uses HA : μW (Y ) �= μW (X). The test statistic is

to =
Wn(Y ) −Wm(X)

SE(Wn(Y ) −Wm(X))
,

and the (approximate) p-values are P (Z > to) for a right tail test, P (Z < to)
for a left tail test, and 2P (Z > |to|) = 2P (Z < −|to|) for a two tail test. The
null hypothesis Ho is rejected if the p-value < α.
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Remark 2.2. Again a tp distribution will often be used instead of the
N(0,1) distribution. If pn is the degrees of freedom used for a single sample
procedure when the sample size is n, use p = min(pn, pm) for the two sample
procedure. These CIs are known as Welch intervals. See Welch (1937) and
Yuen (1974).

Example 2.10. Consider the single sample procedures where Wn = Y n.
Then μW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and p = n− 1. Let tp denote a
random variable with a t distribution with p degrees of freedom and let the
α percentile tp,α satisfy P (tp ≤ tp,α) = α. Then the classical t-interval for
μ ≡ E(Y ) is

Y n ± tn−1,1−α/2
Sn√
n

and the t-test statistic is

to =
Y − μo

Sn/
√
n
.

The right tailed p-value is given by P (tn−1 > to).
Now suppose that there are two samples whereWn(Y ) = Y n andWm(X) =

Xm.Then μW (Y ) = E(Y ) ≡ μY , μW (X) = E(X) ≡ μX , σ
2
W (Y ) = VAR(Y ) ≡

σ2
Y , σ

2
W (X) = VAR(X) ≡ σ2

X , and pn = n − 1. Let p = min(n − 1, m − 1).
Since

SE(Wn(Y ) −Wm(X)) =

√
S2

n(Y )

n
+
S2

m(X)

m
,

the two sample t-interval for μY − μX

(Y n −Xm) ± tp,1−α/2

√
S2

n(Y )

n
+
S2

m(X)

m

and two sample t-test statistic

to =
Y n −Xm√

S2
n(Y )

n
+ S2

m(X)
m

.

The right tailed p-value is given by P (tp > to). For sample means, values of
the degrees of freedom that are more accurate than p = min(n − 1, m − 1)
can be computed. See Moore (2007, p. 474).
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2.6 Some Two Stage Trimmed Means

Robust estimators are often obtained by applying the sample mean to a
sequence of consecutive order statistics. The sample median, trimmed mean,
metrically trimmed mean, and two stage trimmed means are examples. For
the trimmed mean given in Definition 2.10 and for the Winsorized mean,
defined below, the proportion of cases trimmed and the proportion of cases
covered are fixed.

Definition 2.11. Using the same notation as in Definition 2.10, the
Winsorized mean

Wn = Wn(Ln, Un) =
1

n
[LnY(Ln+1) +

Un∑
i=Ln+1

Y(i) + (n− Un)Y(Un)]. (2.13)

Definition 2.12. A randomly trimmed mean

Rn = Rn(Ln, Un) =
1

Un − Ln

Un∑
i=Ln+1

Y(i) (2.14)

where Ln < Un are integer valued random variables. Un − Ln of the cases
are covered by the randomly trimmed mean while n − Un + Ln of the cases
are trimmed.

Definition 2.13. The metrically trimmed mean (also called the Huber
type skipped mean) Mn is the sample mean of the cases inside the interval

[θ̂n − k1Dn, θ̂n + k2Dn]

where θ̂n is a location estimator, Dn is a scale estimator, k1 ≥ 1, and k2 ≥ 1.

The proportions of cases covered and trimmed by randomly trimmed
means such as the metrically trimmed mean are now random. Typically the
sample median MED(n) and the sample mad MAD(n) are used for θ̂n and
Dn, respectively. The amount of trimming will depend on the distribution
of the data. For example, if Mn uses k1 = k2 = 5.2 and the data is normal
(Gaussian), about 1% of the data will be trimmed while if the data is Cauchy,
about 12% of the data will be trimmed. Hence the upper and lower trimming
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points estimate lower and upper population percentiles L(F ) and U(F ) and
change with the distribution F.

Two stage estimators are frequently used in robust statistics. Often the
initial estimator used in the first stage has good resistance properties but
has a low asymptotic relative efficiency or no convenient formula for the SE.
Ideally, the estimator in the second stage will have resistance similar to the
initial estimator but will be efficient and easy to use. The metrically trimmed
mean Mn with tuning parameter k1 = k2 ≡ k = 6 will often be the initial
estimator for the two stage trimmed means. That is, retain the cases that
fall in the interval

[MED(n) − 6MAD(n),MED(n) + 6MAD(n)].

Let L(Mn) be the number of observations that fall to the left of MED(n) −
k1 MAD(n) and let n − U(Mn) be the number of observations that fall to
the right of MED(n) + k2 MAD(n). When k1 = k2 ≡ k ≥ 1, at least half of
the cases will be covered. Consider the set of 51 trimming proportions in the
set C = {0, 0.01, 0.02, ..., 0.49, 0.50}. Alternatively, the coarser set of 6 trim-
ming proportions C = {0, 0.01, 0.1, 0.25, 0.40, 0.49} may be of interest. The
greatest integer function (eg 
7.7� = 7) is used in the following definitions.

Definition 2.14. Consider the smallest proportion αo,n ∈ C such that
αo,n ≥ L(Mn)/n and the smallest proportion 1 − βo,n ∈ C such that 1 −
βo,n ≥ 1 − (U(Mn)/n). Let αM,n = max(αo,n, 1 − βo,n). Then the two stage
symmetrically trimmed mean TS,n is the αM,n trimmed mean. Hence TS,n

is a randomly trimmed mean with Ln = 
n αM,n� and Un = n − Ln. If
αM,n = 0.50, then use TS,n = MED(n).

Definition 2.15. As in the previous definition, consider the smallest
proportion αo,n ∈ C such that αo,n ≥ L(Mn)/n and the smallest proportion
1− βo,n ∈ C such that 1− βo,n ≥ 1 − (U(Mn)/n). Then the two stage asym-
metrically trimmed mean TA,n is the (αo,n, 1 − βo,n) trimmed mean. Hence
TA,n is a randomly trimmed mean with Ln = 
n αo,n� and Un = 
n βo,n�.
If αo,n = 1 − βo,n = 0.5, then use TA,n = MED(n).

Example 2.11. These two stage trimmed means are almost as easy to
compute as the classical trimmed mean, and no knowledge of the unknown
parameters is needed to do inference. First, order the data and find the
number of cases L(Mn) less than MED(n) − k1MAD(n) and the number of
cases n − U(Mn) greater than MED(n) + k2MAD(n). (These are the cases
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trimmed by the metrically trimmed mean Mn, but Mn need not be com-
puted.) Next, convert these two numbers into percentages and round both
percentages up to the nearest integer. For TS,n find the maximum of the two
percentages. For example, suppose that there are n = 205 cases and Mn

trims the smallest 15 cases and the largest 20 cases. Then L(Mn)/n = 0.073
and 1 − (U(Mn)/n) = 0.0976. Hence Mn trimmed the 7.3% smallest cases
and the 9.76% largest cases, and TS,n is the 10% trimmed mean while TA,n

is the (0.08, 0.10) trimmed mean.

Definition 2.16. The standard error SERM for the two stage trimmed
means given in Definitions 2.10, 2.14 and 2.15 is

SERM(Ln, Un) =
√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2

(Ln+1) +
∑Un

i=Ln+1 Y
2

(i) + (n− Un)Y 2
(Un)] − n [Wn(Ln, Un)]

2

(n− 1)[(Un − Ln)/n]2
. (2.15)

Remark 2.3. A simple method for computing VSW (Ln, Un) has the
following steps. First, find d1, ..., dn where

di =

⎧⎨
⎩

Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (2.16)

Notice that the SE given in Definition 2.16 is the SE for the δ trimmed mean
where Ln and Un are fixed constants rather than random.

Application 2.4. Let Tn be the two stage (symmetrically or) asymmet-
rically trimmed mean that trims the Ln smallest cases and the n−Un largest
cases. Then for the one and two sample procedures described in Section 2.5,
use the one sample standard error SERM (Ln, Un) given in Definition 2.16 and
the tp distribution where the degrees of freedom p = Un − Ln − 1.
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The CIs and tests for the δ trimmed mean and two stage trimmed means
given by Applications 2.3 and 2.4 are very similar once Ln has been computed.
For example, a large sample 100 (1 − α)% confidence interval (CI) for μT is

(Tn − tUn−Ln−1,1−α
2
SERM(Ln, Un), Tn + tUn−Ln−1,1−α

2
SERM(Ln, Un)) (2.17)

where P (tp ≤ tp,1−α
2
) = 1−α/2 if tp is from a t distribution with p degrees of

freedom. Section 2.7 provides the asymptotic theory for the δ and two stage
trimmed means and shows that μT is the mean of a truncated distribution.
Chapter 3 gives suggestions for k1 and k2 while Chapter 4 provides a simula-
tion study comparing the robust and classical point estimators and intervals.
Next Examples 2.7, 2.8 and 2.9 are repeated using the intervals based on the
two stage trimmed means instead of the median.

Example 2.12. In 1979 a student received the following scores for the
nonverbal, verbal, reading, English, math, science, social studies, and prob-
lem solving sections of a standardized test:
6, 9, 9, 7, 8, 9, 9, 7.
Assume that if this student took the exam many times, then these scores
would be well approximated by a symmetric distribution with mean μ. Find
a 95% CI for μ.

Solution. If TA,n or TS,n is used with the metrically trimmed mean that
uses k = k1 = k2, eg k = 6, then μT (a, b) = μ. When computing small
examples by hand, it is convenient to sort the data:
6, 7, 7, 8, 9, 9, 9, 9.
Thus MED(n) = (8 + 9)/2 = 8.5. The ordered residuals Y(i) − MED(n) are
-2.5, -1.5, -1.5, 0.5, 0.5, 0.5, 0.5, 0.5.
Find the absolute values and sort them to get
0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 2.5.
Then MAD(n) = 0.5, MED(n)−6MAD(n) = 5.5, and MED(n)+6MAD(n)
= 11.5. Hence no cases are trimmed by the metrically trimmed mean, ie
L(Mn) = 0 and U(Mn) = n = 8. Thus Ln = 
8(0)� = 0, and Un = n−Ln = 8.
Since no cases are trimmed by the two stage trimmed means, the robust
interval will have the same endpoints as the classical t–interval. To see
this, note that Mn = TS,n = TA,n = Y = (6 + 7 + 7 + 8 + 9 + 9 + 9 +
9)/8 = 8 = Wn(Ln, Un). Now VSW (Ln, Un) = (1/7)[

∑n
i=1 Y

2
(i) − 8(82)]/[8/8]2

= (1/7)[(522 − 8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95%

CI for μ is 8 ± 2.365(
√

1.4286/8) = (7.001, 8.999).
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Example 2.13. In the last example, what happens if a 6 becomes 66
and a 9 becomes 99? Use k = 6 and TA,n. Then the ordered data are
7, 7, 8, 9, 9, 9, 66, 99.
Thus MED(n) = 9 and MAD(n) = 1.5. With k = 6, the metrically trimmed
mean Mn trims the two values 66 and 99. Hence the left and right trimming
proportions of the metrically trimmed mean are 0.0 and 0.25 = 2/8, respec-
tively. These numbers are also the left and right trimming proportions of
TA,n since after converting these proportions into percentages, both percent-
ages are integers. Thus Ln = 
0� = 0, Un = 
0.75(8)� = 6 and the two stage
asymmetrically trimmed mean trims 66 and 99. So TA,n = 49/6 ≈ 8.1667.
To compute the scaled Winsorized variance, use Remark 2.3 to find that the
di’s are
7, 7, 8, 9, 9, 9, 9, 9
and

VSW =
S2

n(d1, ..., d8)

[(6 − 0)/8]2
≈ 0.8393

.5625
≈ 1.4921.

Hence the robust confidence interval is 8.1667± t5,0.975

√
1.4921/8 ≈ 8.1667±

1.1102 ≈ (7.057, 9.277). The classical confidence interval Y ± tn−1,0.975S/
√
n

blows up and is equal to (−2.955, 56.455).

Example 2.14. Use k = 6 and TA,n to compute a robust CI using
the 87 heights from the Buxton (1920) data that includes 5 outliers. The
mean height is Y = 1598.862 while TA,n = 1695.22. The classical 95% CI is
(1514.206,1683.518) and is more than five times as long as the robust 95%
CI which is (1679.907,1710.532). In this example the five outliers can be
corrected. For the corrected data, no cases are trimmed and the robust and
classical estimators have the same values. The results are Y = 1692.356 =
TA,n and the robust and classical 95% CIs are both (1678.595,1706.118). Note
that the outliers did not have much affect on the robust confidence interval.

2.7 Asymptotics for Two Stage Trimmed Means

Large sample or asymptotic theory is very important for understanding ro-
bust statistics. Convergence in distribution, convergence in probability, al-
most everywhere (sure) convergence, and tightness (bounded in probability)
are reviewed in the following remark.
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Remark 2.4. Let X1, X2, ... be random variables with corresponding
cdfs F1, F2, .... Let X be a random variable with cdf F. Then Xn converges
in distribution to X if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. If X1, X2, ... and X share a common proba-
bility space, then Xn converges in probability to X if

lim
n→∞

P (|Xn −X| < ε) = 1,

for every ε > 0, and Xn converges almost everywhere (or almost surely, or
with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

The three types of convergence will be denoted by

Xn
D→ X, Xn

P→ X, and Xn
ae→ X,

respectively. Notation such as “Xn converges to X ae” will also be used.
Serfling (1980, p. 8-9) defines Wn to be bounded in probability, Wn = OP (1),
if for every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| > Dε) < ε

for all n ≥ Nε, and Wn = OP (n−δ) if nδWn = OP (1). The sequence Wn =
oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

Truncated and Winsorized random variables are important because they
simplify the asymptotic theory of robust estimators. Let Y be a random
variable with continuous cdf F and let α = F (a) < F (b) = β. Thus α is
the left trimming proportion and 1−β is the right trimming proportion. Let
F (a−) = P (Y < a). (Refer to Proposition 4.1 for the notation used below.)

Definition 2.17. The truncated random variable YT ≡ YT (a, b) with
truncation points a and b has cdf

FYT
(y|a, b) = G(y) =

F (y)− F (a−)

F (b) − F (a−)
(2.18)
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for a ≤ y ≤ b. Also G is 0 for y < a and G is 1 for y > b. The mean and
variance of YT are

μT = μT (a, b) =

∫ ∞

−∞
ydG(y) =

∫ b

a
ydF (y)

β − α
(2.19)

and

σ2
T = σ2

T (a, b) =

∫ ∞

−∞
(y − μT )2dG(y) =

∫ b

a
y2dF (y)

β − α
− μ2

T .

See Cramér (1946, p. 247).

Definition 2.18. The Winsorized random variable

YW = YW (a, b) =

⎧⎨
⎩

a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =

⎧⎪⎪⎨
⎪⎪⎩

0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

μW = μW (a, b) = αa+ (1 − β)b+

∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +

∫ b

a

y2dF (y)− μ2
W .

Definition 2.19. The quantile function

F−1
Q (t) = Q(t) = inf{y : F (y) ≥ t}. (2.20)

Note that Q(t) is the left continuous inverse of F and if F is strictly
increasing and continuous, then F has an inverse F−1 and F−1(t) = Q(t).
The following conditions on the cdf are used.

49



Regularity Conditions. (R1) Let Y1, . . . , Yn be iid with cdf F .
(R2) Let F be continuous and strictly increasing at a = Q(α) and b = Q(β).

The following theorem is proved in Bickel (1965), Stigler (1973a), and
Shorack and Wellner (1986, p. 678-679). The α trimmed mean is asymptot-
ically equivalent to the (α, 1 − α) trimmed mean. Let Tn be the (α, 1 − β)
trimmed mean. Lemma 2.3 shows that the standard error SERM given in the
previous section is estimating the appropriate asymptotic standard deviation
of Tn.

Theorem 2.2. If conditions (R1) and (R2) hold and if 0 < α < β < 1,
then √

n(Tn − μT (a, b))
D→ N [0,

σ2
W (a, b)

(β − α)2
]. (2.21)

Lemma 2.3: Shorack and Wellner (1986, p. 680). Assume that
regularity conditions (R1) and (R2) hold and that

Ln

n

P→ α and
Un

n

P→ β. (2.22)

Then

VSW (Ln, Un)
P→ σ2

W (a, b)

(β − α)2
.

Since Ln = 
nα� and Un = n−Ln (or Ln = 
nα� and Un = 
nβ�) satisfy
the above lemma, the standard error SERM can be used for both trimmed
means and two stage trimmed means: SERM (Ln, Un) =

√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n− Un)Y

2
(Un)] − n [Wn(Ln, Un)]

2

(n− 1)[(Un − Ln)/n]2
.

Again Ln is the number of cases trimmed to the left and n−Un is the number
of cases trimmed to the right by the trimmed mean.

The following notation will be useful for finding the asymptotic distribu-
tion of the two stage trimmed means. Let a = MED(Y ) − kMAD(Y ) and
b = MED(Y ) + kMAD(Y ) where MED(Y ) and MAD(Y ) are the popula-
tion median and median absolute deviation respectively. Let α = F (a−) =
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P (Y < a) and let αo ∈ C = {0, 0.01, 0.02, ..., 0.49, 0.50} be the smallest value
in C such that αo ≥ α. Similarly, let β = F (b) and let 1−βo ∈ C be the small-
est value in the index set C such that 1− βo ≥ 1− β. Let αo = F (ao−), and
let βo = F (bo). Recall that L(Mn) is the number of cases trimmed to the left
and that n−U(Mn) is the number of cases trimmed to the right by the met-
rically trimmed mean Mn. Let αo,n ≡ α̂o be the smallest value in C such that

αo,n ≥ L(Mn)/n, and let 1−βo,n ≡ 1−β̂o be the smallest value in C such that
1−βo,n ≥ 1−(U(Mn)/n). Then the robust estimator TA,n is the (αo,n, 1−βo,n)
trimmed mean while TS,n is the max(αo,n, 1−βo,n)100% trimmed mean. The
following lemma is useful for showing that TA,n is asymptotically equivalent
to the (αo, 1 − βo) trimmed mean and that TS,n is asymptotically equivalent
to the max(αo, 1 − βo) trimmed mean.

Lemma 2.4: Shorack and Wellner (1986, p. 682-683). Let F
have a strictly positive and continuous derivative in some neighborhood of
MED(Y ) ± kMAD(Y ). Assume that

√
n(MED(n) −MED(Y )) = OP (1) (2.23)

and √
n(MAD(n) −MAD(X)) = OP (1). (2.24)

Then √
n(
L(Mn)

n
− α) = OP (1) (2.25)

and √
n(
U(Mn)

n
− β) = OP (1). (2.26)

Corollary 2.5. Let Y1, ..., Yn be iid from a distribution with cdf F that
has a strictly positive and continuous pdf f on its support. Let αM =
max(αo, 1 − βo) ≤ 0.49, βM = 1 − αM , aM = F−1(αM ), and bM = F−1(βM).
Assume that α and 1 − β are not elements of C = {0, 0.01, 0.02, ..., 0.50}.
Then √

n[TA,n − μT (ao, bo)]
D→ N(0,

σ2
W (ao, bo)

(βo − αo)2
),

and √
n[TS,n − μT (aM , bM)]

D→ N(0,
σ2

W (aM , bM)

(βM − αM )2
).
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Proof. The first result follows from Theorem 2.2 if the probability that
TA,n is the (αo, 1−βo) trimmed mean goes to one as n tends to infinity. This

condition holds if L(Mn)/n
D→ α and U(Mn)/n

D→ β. But these conditions
follow from Lemma 2.4. The proof for TS,n is similar. QED

2.8 L, R, and M Estimators

Definition 2.20. An L-estimator is a linear combination of order statistics.

TL,n =
n∑

i=1

cn,iY(i)

for some choice of constants cn,i.

The sample mean, median and trimmed mean are L-estimators. Often
only a fixed number of the cn,i are nonzero. Examples include the max = Y(n),
the min = Y(1), the range = Y(n) − Y(1), and the midrange = (Y(n) + Y(1))/2.
The following definition and theorem are useful for L-estimators such as
the interquartile range and median that use a fixed linear combination of
sample quantiles. Recall that the smallest integer function �x rounds up,
eg �7.7 = 8.

Definition 2.21. The sample α quantile ξ̂n,α = Y(�nα�). The population
quantile ξα = Q(α) = inf{y : F (y) ≥ α}.

Theorem 2.6: Serfling (1980, p. 80). Let 0 < α1 < α2 < · · · <
αk < 1. Suppose that F has a density f that is positive and continuous in
neighborhoods of ξα1, ..., ξαk

. Then

√
n[(ξ̂n,α1, ..., ξ̂n,αk

)T − (ξα1 , ..., ξαk
)T ]

D→ Nk(0,Σ)

where Σ = (σij) and

σij =
αi(1 − αj)

f(ξαi)f(ξαj)

for i ≤ j and σij = σji for i > j.

R-estimators are derived from rank tests and include the sample mean
and median. See Hettmansperger and McKean (1998).
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Definition 2.22. An M-estimator of location T with preliminary esti-
mator of scale MAD(n) is computed with at least one Newton step

T (m+1) = T (m) + MAD(n)

∑n
i=1 ψ( Yi−T (m)

MAD(n)
)∑n

i=1 ψ
′( Yi−T (m)

MAD(n)
)

where T (0) = MED(n). In particular, the one step M-estimator

T (1) = MED(n) + MAD(n)

∑n
i=1 ψ(Yi−MED(n)

MAD(n)
)

∑n
i=1 ψ

′(Yi−MED(n)

MAD(n)
)
.

The key to M-estimation is finding a good ψ. The sample mean and
sample median are M-estimators. Recall that Newton’s method is an iterative
procedure for finding the solution T to the equation h(T ) = 0 where M-
estimators use

h(T ) =

n∑
i=1

ψ(
Yi − T

S
).

Thus

h′(T ) =
d

dT
h(T ) =

n∑
i=1

ψ′(
Yi − T

S
)(
−1

S
)

where S = MAD(n) and

ψ′(
Yi − T

S
) =

d

dy
ψ(y)

evaluated at y = (Yi − T )/S. Beginning with an initial guess T (0), successive
terms are generated from the formula T (m+1) = T (m) − h(T (m))/h′(T (m)).
Often the iteration is stopped if |T (m+1) − T (m)| < ε where ε is a small
constant. However, one step M-estimators often have the same asymptotic
properties as the fully iterated versions. The following example may help
clarify notation.

Example 2.15. Huber’s M-estimator uses

ψk(y) =

⎧⎨
⎩

−k, y < −k
y, −k ≤ y ≤ k
k, y > k.
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Now

ψ′
k(
Y − T

S
) = 1

if T − kS ≤ Y ≤ T + kS and is zero otherwise (technically the derivative is
undefined at y = ± k, but assume that Y is a continuous random variable
so that the probability of a value occuring on a “corner” of the ψ function is
zero). Let Ln count the number of observations Yi < MED(n) − kMAD(n),
and let n−Un count the number of observations Yi > MED(n) + kMAD(n).
Set T (0) = MED(n) and S = MAD(n). Then

n∑
i=1

ψ′
k(
Yi − T (0)

S
) = Un − Ln.

Since

ψk(
Yi − MED(n)

MAD(n)
) =

⎧⎨
⎩

−k, Yi < MED(n) − kMAD(n)

Ỹi, MED(n) − kMAD(n) ≤ Yi ≤ MED(n) + kMAD(n)
k, Yi > MED(n) + kMAD(n),

where Ỹi = (Yi − MED(n))/MAD(n),

n∑
i=1

ψk(
Y(i) − T (0)

S
) = −kLn + k(n − Un) +

Un∑
i=Ln+1

Y(i) − T (0)

S
.

Hence

MED(n) + S

∑n
i=1 ψk(

Yi−MED(n)

MAD(n)
)

∑n
i=1 ψ

′
k(

Yi−MED(n)

MAD(n)
)

= MED(n) +
kMAD(n)(n− Un − Ln) +

∑Un

i=Ln+1[Y(i) −MED(n)]

Un − Ln

,

and Huber’s one step M-estimator

H1,n =
kMAD(n)(n− Un − Ln) +

∑Un

i=Ln+1 Y(i)

Un − Ln

.
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2.9 Asymptotic Theory for the MAD

Let MD(n) = MED(|Yi − MED(Y )|, i = 1, . . . , n). Since MD(n) is a me-
dian and convergence results for the median are well known, see for ex-
ample Serfling (1980, p. 74-77) or Theorem 2.6 from the previous section,
it is simple to prove convergence results for MAD(n). Typically MED(n) =
MED(Y )+OP (n−1/2) and MAD(n) = MAD(Y )+OP (n−1/2). Equation (2.27)
in the proof of the following lemma implies that if MED(n) converges to
MED(Y ) ae and MD(n) converges to MAD(Y ) ae, then MAD(n) converges
to MAD(Y ) ae.

Lemma 2.7. If MED(n) = MED(Y ) +OP (n−δ) and
MD(n) = MAD(Y ) +OP (n−δ), then MAD(n) = MAD(Y ) +OP (n−δ).

Proof. Let Wi = |Yi −MED(n)| and let Vi = |Yi − MED(Y )|. Then

Wi = |Yi −MED(Y ) + MED(Y ) − MED(n)| ≤ Vi + |MED(Y ) − MED(n)|,

and

MAD(n) = MED(W1, . . . ,Wn) ≤ MED(V1, . . . , Vn) + |MED(Y ) − MED(n)|.
Similarly

Vi = |Yi − MED(n) + MED(n) − MED(Y )| ≤Wi + |MED(n) −MED(Y )|
and thus

MD(n) = MED(V1, . . . , Vn) ≤ MED(W1, . . . ,Wn) + |MED(Y ) − MED(n)|.
Combining the two inequalities shows that

MD(n)−|MED(Y )−MED(n)| ≤ MAD(n) ≤ MD(n)+|MED(Y )−MED(n)|,
or

|MAD(n) − MD(n)| ≤ |MED(n) − MED(Y )|. (2.27)

Adding and subtracting MAD(Y ) to the left hand side shows that

|MAD(n) −MAD(Y ) − OP (n−δ)| = OP (n−δ) (2.28)

and the result follows. QED
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The main point of the following theorem is that the joint distribution of
MED(n) and MAD(n) is asymptotically normal. Hence the limiting distribu-
tion of MED(n) + kMAD(n) is also asymptotically normal for any constant
k. The parameters of the covariance matrix are quite complex and hard to es-
timate. The assumptions of f used in Theorem 2.8 guarantee that MED(Y )
and MAD(Y ) are unique.

Theorem 2.8: Falk (1997). Let the cdf F of Y be continuous near and
differentiable at MED(Y ) = F−1(1/2) and MED(Y )±MAD(Y ). Assume that
f = F ′, f(F−1(1/2)) > 0, and A ≡ f(F−1(1/2) −MAD(Y )) + f(F−1(1/2) +
MAD(Y )) > 0. Let C ≡ f(F−1(1/2)−MAD(Y ))− f(F−1(1/2)+MAD(Y )),
and letB ≡ C2+4Cf(F−1(1/2))[1−F (F−1(1/2)−MAD(Y ))−F (F−1(1/2)+
MAD(Y ))]. Then

√
n

( (
MED(n)
MAD(n)

)
−

(
MED(Y )
MAD(Y )

) )
D→

N

( (
0
0

)
,

(
σ2

M σM,D

σM,D σ2
D

) )
(2.29)

where

σ2
M =

1

4f2(F−1(1
2
))
, σ2

D =
1

4A2
(1 +

B

f2(F−1(1
2
))

),

and

σM,D =
1

4Af(F−1(1
2
))

(1 − 4F (F−1(
1

2
) + MAD(Y )) +

C

f(F−1(1
2
))

).

Determining whether the population median and mad are unique can be
useful. Recall that F (y) = P (Y ≤ y) and F (y−) = P (Y < y). The median
is unique unless there is a flat spot at F−1(0.5), that is, unless there exist a
and b with a < b such that F (a) = F (b) = 0.5. MAD(Y ) may be unique even
if MED(Y ) is not, see Problem 2.7. If MED(Y ) is unique, then MAD(Y )
is unique unless F has flat spots at both F−1(MED(Y ) − MAD(Y )) and
F−1(MED(Y ) + MAD(Y )). Moreover, MAD(Y ) is unique unless there exist
a1 < a2 and b1 < b2 such that F (a1) = F (a2), F (b1) = F (b2),

P (ai ≤ Y ≤ bi) = F (bi) − F (ai−) ≥ 0.5,

and
P (Y ≤ ai) + P (Y ≥ bi) = F (ai) + 1 − F (bi−) ≥ 0.5
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for i = 1, 2. The following lemma gives some simple bounds for MAD(Y ).

Lemma 2.9. Assume MED(Y ) and MAD(Y ) are unique. a) Then

min{MED(Y ) − F−1(0.25), F−1(0.75) − MED(Y )} ≤ MAD(Y ) ≤
max{MED(Y ) − F−1(0.25), F−1(0.75) − MED(Y )}. (2.30)

b) If Y is symmetric about μ = F−1(0.5), then the three terms in a) are
equal.
c) If the distribution is symmetric about zero, then MAD(Y ) = F−1(0.75).
d) If Y is symmetric and continuous with a finite second moment, then

MAD(Y ) ≤
√

2VAR(Y ).

e) Suppose Y ∈ [a, b]. Then

0 ≤ MAD(Y ) ≤ m = min{MED(Y ) − a, b− MED(Y )} ≤ (b− a)/2,

and the inequalities are sharp.

Proof. a) This result follows since half the mass is between the upper
and lower quartiles and the median is between the two quartiles.

b) and c) are corollaries of a).
d) This inequality holds by Chebyshev’s inequality, since

P ( |Y − E(Y )| ≥ MAD(Y ) ) = 0.5 ≥ P ( |Y −E(Y )| ≥
√

2VAR(Y ) ),

and E(Y ) = MED(Y ) for symmetric distributions with finite second mo-
ments.

e) Note that if MAD(Y ) > m, then either MED(Y ) − MAD(Y ) < a
or MED(Y ) + MAD(Y ) > b. Since at least half of the mass is between a
and MED(Y ) and between MED(Y ) and b, this contradicts the definition of
MAD(Y ). To see that the inequalities are sharp, note that if at least half of
the mass is at some point c ∈ [a, b], than MED(Y ) = c and MAD(Y ) = 0.
If each of the points a, b, and c has 1/3 of the mass where a < c < b, then
MED(Y ) = c and MAD(Y ) = m. QED

Many other results for MAD(Y ) and MAD(n) are possible. For example,
note that Lemma 2.9 b) implies that when Y is symmetric, MAD(Y ) =
F−1(3/4) − μ and F (μ+ MAD(Y )) = 3/4. Also note that MAD(Y ) and the
interquartile range IQR(Y ) are related by

2MAD(Y ) = IQR(Y ) ≡ F−1(0.75) − F−1(0.25)
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when Y is symmetric. Moreover, results similar to those in Lemma 2.9 hold
for MAD(n) with quantiles replaced by order statistics. One way to see this
is to note that the distribution with a point mass of 1/n at each observation
Y1, . . . , Yn will have a population median equal to MED(n). To illustrate the
outlier resistance of MAD(n) and MED(n), consider the following lemma.

Lemma 2.10. If Y1, . . . , Yn are n fixed points, and if m ≤ n−1 arbitrary
points W1, . . . ,Wm are added to form a sample of size n+m, then

MED(n+m) ∈ [Y(1), Y(n)] and 0 ≤ MAD(n+m) ≤ Y(n) − Y(1). (2.31)

Proof. Let the order statistics of Y1, . . . , Yn be Y(1) ≤ · · · ≤ Y(n). By
adding a single point W , we can cause the median to shift by half an order
statistic, but since at least half of the observations are to each side of the
sample median, we need to add at leastm = n−1 points to move MED(n+m)
to Y(1) or to Y(n). Hence if m ≤ n−1 points are added, [MED(n+m)−(Y(n)−
Y(1)),MED(n + m) + (Y(n) − Y(1))] contains at least half of the observations
and MAD(n+m) ≤ Y(n) − Y(1). QED

Hence if Y1, . . . , Yn are a random sample with cdf F and if W1, . . . ,Wn−1

are arbitrary, then the sample median and mad of the combined sample,
MED(n+ n− 1) and MAD(n+ n− 1), are bounded by quantities from the
random sample from F .

2.10 Summary

1) Given a small data set, recall that

Y =

∑n
i=1 Yi

n

and the sample variance

S2 = S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
,

and the sample standard deviation (SD)

S = Sn =
√
S2

n.
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If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics.
The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. To find the
sample median, sort the data from smallest to largest and find the middle
value or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi − MED(n)|, then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.

2) Find the population median M = MED(Y ) by solving the equation
F (M) = 0.5 for M where the cdf F (y) = P (Y ≤ y). If Y has a pdf f(y)
that is symmetric about μ, then M = μ. If W = a + bY, then MED(W ) =
a + bMED(Y ). Often a = μ and b = σ.

3) To find the population median absolute deviation D = MAD(Y ), first
find M = MED(Y ) as in 2) above.
a) Then solve F (M +D) − F (M −D) = 0.5 for D.
b) If Y has a pdf that is symmetric about μ, then let U = y0.75 where
P (Y ≤ yα) = α, and yα is the 100αth percentile of Y for 0 < α < 1.
Hence M = y0.5 is the 50th percentile and U is the 75th percentile. Solve
F (U) = 0.75 for U . Then D = U −M.
c) If W = a + bY, then MAD(W ) = |b|MAD(Y ).

MED(Y ) and MAD(Y ) need not be unique, but for “brand name” con-
tinuous random variables, they are unique.

4) A large sample 100 (1 − α)% confidence interval (CI) for θ is

θ̂ ± tp,1−α
2
SE(θ̂)
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where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p degrees

of freedom. We will use 95% CIs so α = 0.05 and tp,1−α
2

= tp,0.975 ≈ 1.96 for

p > 20. Be able to find θ̂, p and SE(θ̂) for the following three estimators.

a) The classical CI for the population mean θ = μ uses θ̂ = Y ,
p = n− 1 and SE(Y ) = S/

√
n.

Let 
x� denote the “greatest integer function”. Then 
x� is the largest
integer less than or equal to x (eg, 
7.7� = 7). Let �x denote the smallest
integer greater than or equal to x (eg, �7.7 = 8).

b) Let Un = n−Ln where Ln = 
n/2� − �√n/4 . Then the CI for the

population median θ = MED(Y ) uses θ̂ = MED(n), p = Un − Ln − 1 and

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

c) The 25% trimmed mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑
i=Ln+1

Y(i)

where Ln = 
n/4� and Un = n − Ln. That is, order the data, delete the
Ln smallest cases and the Ln largest cases and take the sample mean of
the remaining Un − Ln cases. The 25% trimmed mean is estimating the
population truncated mean

μT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =

⎧⎨
⎩

Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

(The “half set” of retained cases is not changed, but replace the Ln small-
est deleted cases by the smallest retained case Y(Ln+1) and replace the Ln

largest deleted cases by the largest retained case Y(Un).) Then the Win-
sorized variance is the sample variance S2

n(d1, ..., dn) of d1, ..., dn, and the
scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
.
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Then the CI for the population truncated mean θ = μT uses θ̂ = Tn,
p = Un − Ln − 1 and

SE(Tn) =
√
VSW (Ln, Un)/n.

2.11 Complements

Chambers, Cleveland, Kleiner and Tukey (1983) is an excellent source for
graphical procedures such as quantile plots, QQ-plots, and box plots.

The confidence intervals and tests for the sample median and 25% trimmed
mean can be modified for certain types of censored data as can the robust
point estimators based on MED(n) and MAD(n). Suppose that in a reli-
ability study the Yi are failure times and the study lasts for T hours. Let
Y(R) < T but T < Y(R+1) < · · · < Y(n) so that only the first R failure times
are known and the last n−R failure times are unknown but greater than T
(similar results hold if the first L failure times are less than T but unknown
while the failure times T < Y(L+1) < · · · < Y(n) are known). Then create a
pseudo sample Z(i) = Y(R) for i > R and Z(i) = Y(i) for i ≤ R. Then compute
the robust estimators based Z1, ..., Zn. These estimators will be identical
to the estimators based on Y1, ..., Yn (no censoring) if the amount of right
censoring is moderate. For a one parameter family, nearly half of the data
can be right censored if the estimator is based on the median. If the sample
median and MAD are used for a two parameter family, the proportion of
right censored data depends on the skewness of the distribution. Symmet-
ric data can tolerate nearly 25% right censoring, right skewed data a larger
percentage, and left skewed data a smaller percentage. See Olive (2006). He
and Fung (1999) present an alternative robust method that also works well
for this type of censored data.

Huber (1981, p. 74-75) and Chen (1998) show that the sample median
minimizes the asymptotic bias for estimating MED(Y ) for the family of sym-
metric contaminated distributions, and Huber (1981) concludes that since the
asymptotic variance is going to zero for reasonable estimators, MED(n) is
the estimator of choice for large n. Hampel, Ronchetti, Rousseeuw, and Sta-
hel (1986, p. 133-134, 142-143) contains some other optimality properties of
MED(n) and MAD(n). Larocque and Randles (2008), McKean and Schrader
(1984) and Bloch and Gastwirth (1968) are useful references for estimating
the SE of the sample median.
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Section 2.4 is based on Olive (2005b). Several other approximations for
the standard error of the sample median SE(MED(n)) could be used.

a) McKean and Schrader (1984) proposed

SE(MED(n)) =
Y(n−c+1) − Y(c)

2z1−α
2

where c = (n+1)/2 − z1−α/2

√
n/4 is rounded up to the nearest integer. This

estimator was based on the half length of a distribution free 100 (1−α)% CI
(Y(c), Y(n−c+1)) for MED(Y ). Use the tp approximation with p = 
2√n� − 1.

b) This proposal is also due to Bloch and Gastwirth (1968). Let Un =
n− Ln where Ln = 
n/2� − �0.5n0.8  and use

SE(MED(n)) =
Y(Un) − Y(Ln+1)

2n0.3
.

Use the tp approximation with p = Un − Ln − 1.

c) MED(n) is the 50% trimmed mean, so trimmed means with trimming
proportions close to 50% should have an asymptotic variance close to that of
the sample median. Hence an ad hoc estimator is

SE(MED(n)) = SERM(Ln, Un)

where Un = n−Ln where Ln = 
n/2�−�√n/4  and SERM(Ln, Un) is given
by Definition 2.16 on p. 46. Use the tp approximation with p = Un −Ln − 1.

In a small simulation study (see Section 4.6), the proposal in Application
2.2 using Ln = 
n/2� − �√n/4  seemed to work best. Using Ln = 
n/2� −
�0.5n0.8  gave better coverages for symmetric data but is vulnerable to a
single cluster of shift outliers if n ≤ 100.

An enormous number of procedures have been proposed that have bet-
ter robustness or asymptotic properties than the classical procedures when
outliers are present. Huber (1981), Hampel, Ronchetti, Rousseeuw, and Sta-
hel (1986) and Staudte and Sheather (1990) are standard references. For
location–scale families, we recommend using the robust estima-
tors from Application 2.1 to create a highly robust asymptotically
efficient cross checking estimator. See Olive (2006) and He and Fung
(1999). Joiner and Hall (1983) compare and contrast L, R, and M-estimators
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while Jureckova and Sen (1996) derive the corresponding asymptotic the-
ory. Mosteller (1946) is an early reference for L-estimators. Bickel (1965),
Dixon and Tukey (1968), Stigler (1973a), Tukey and McLaughlin (1963) and
Yuen (1974) discuss trimmed and Winsorized means while Prescott (1978)
examines adaptive methods of trimming. Bickel (1975) examines one-step M-
estimators, and Andrews, Bickel, Hampel, Huber, Rogers and Tukey (1972)
present a simulation study comparing trimmed means and M-estimators.
A robust method for massive data sets is given in Rousseeuw and Bassett
(1990).

Hampel (1985) considers metrically trimmed means. Shorack (1974) and
Shorack and Wellner (1986, section 19.3) derive the asymptotic theory for
a large class of robust procedures for the iid location model. Special cases
include trimmed, Winsorized, metrically trimmed, and Huber type skipped
means. Also see Kim (1992) and papers in Hahn, Mason, and Weiner (1991).
Olive (2001) considers two stage trimmed means.

Shorack and Wellner (1986, p. 3) and Parzen (1979) discuss the quantile
function while Stigler (1973b) gives historic references to trimming tech-
niques, M-estimators, and to the asymptotic theory of the median. David
(1995, 1998), Field (1985), and Sheynin (1997) also contain historical refer-
ences.

Scale estimators are essential for testing and are discussed in Falk (1997),
Hall and Welsh (1985), Lax (1985), Rousseeuw and Croux (1992, 1993), and
Simonoff (1987b). There are many alternative approaches for testing and
confidence intervals. Guenther (1969) discusses classical confidence intervals
while Gross (1976) considers robust confidence intervals for symmetric dis-
tributions. Basically all of the methods which truncate or Winsorize the tails
worked. Wilcox (2005) uses trimmed means for testing while Kafadar (1982)
uses the biweight M-estimator. Also see Horn (1983). Hettmansperger and
McKean (1998) consider rank procedures.

Wilcox (2005) gives an excellent discussion of the problems that outliers
and skewness can cause for the one and two sample t–intervals, the t–test,
tests for comparing 2 groups and the ANOVA F test. Wilcox (2005) re-
places ordinary population means by truncated population means and uses
trimmed means to create analogs of one, two, and three way anova, multiple
comparisons, and split plot designs.

Often a large class of estimators is defined and picking out good members
from the class can be difficult. Freedman and Diaconis (1982) and Clarke
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(1986) illustrate some potential problems for M-estimators. Jureckova and
Sen (1996, p. 208) show that under symmetry a large class of M-estimators
is asymptotically normal, but the asymptotic theory is greatly complicated
when symmetry is not present. Stigler (1977) is a very interesting paper and
suggests that Winsorized means (which are often called “trimmed means”
when the trimmed means from Definition 2.10 do not appear in the paper)
are adequate for finding outliers.

2.12 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

2.1. Write the location model in matrix form.

2.2. Let fY (y) be the pdf of Y. If W = μ+Y where −∞ < μ <∞, show
that the pdf of W is fW (w) = fY (w − μ).

2.3. Let fY (y) be the pdf of Y. If W = σY where σ > 0, show that the
pdf of W is fW (w) = (1/σ)fY (w/σ).

2.4. Let fY (y) be the pdf of Y. If W = μ+σY where −∞ < μ <∞ and
σ > 0, show that the pdf of W is fW (w) = (1/σ)fY ((w − μ)/σ).

2.5. Use Theorem 2.8 to find the limiting distribution of
√
n(MED(n)−

MED(Y )).

2.6. The interquartile range IQR(n) = ξ̂n,0.75 − ξ̂n,0.25 and is a popular
estimator of scale. Use Theorem 2.6 to show that

√
n

1

2
(IQR(n) − IQR(Y ))

D→ N(0, σ2
A)

where

σ2
A =

1

64

[
3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]
.

2.7. Let the pdf of Y be f(y) = 1 if 0 < y < 0.5 or if 1 < y < 1.5. Assume
that f(y) = 0, otherwise. Then Y is a mixture of two uniforms, one U(0, 0.5)
and the other U(1, 1.5). Show that the population median MED(Y ) is not
unique but the population mad MAD(Y ) is unique.
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2.8. a) Let Ln = 0 and Un = n. Prove that SERM (0, n) = S/
√
n. In other

words, the SE given by Definition 2.16 reduces to the SE for the sample mean
if there is no trimming.

b) Prove Remark 2.3:

VSW (Ln, Un) =
S2

n(d1, ..., dn)

[(Un − Ln)/n]2
.

2.9. Find a 95% CI for μT based on the 25% trimmed mean for the
following data sets. Follow Examples 2.12 and 2.13 closely with Ln = 
0.25n�
and Un = n− Ln.

a) 6, 9, 9, 7, 8, 9, 9, 7

b) 66, 99, 9, 7, 8, 9, 9, 7

2.10. Consider the data set 6, 3, 8, 5, and 2. Show work.

a) Find the sample mean Y .

b) Find the standard deviation S

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

2.11∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,
p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

e) Plot the data. Are any observations unusually large or unusually small?

2.12∗. Consider the following data set on Spring 2004 Math 580 home-
work scores.

66.7 76.0 89.7 90.0 94.0 94.0 95.0 95.3 97.0 97.7

Then Y = 89.54 and S2 = 103.3604.

a) Find SE(Y ).
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b) Find the degrees of freedom p for the classical CI based on Y .

Parts c)-g) refer to the CI based on MED(n).

c) Find the sample median MED(n).

d) Find Ln.

e) Find Un.

f) Find the degrees of freedom p.

g) Find SE(MED(n)).

2.13∗. Consider the following data set on Spring 2004 Math 580 home-
work scores.

66.7 76.0 89.7 90.0 94.0 94.0 95.0 95.3 97.0 97.7

Consider the CI based on the 25% trimmed mean.

a) Find Ln.

b) Find Un.

c) Find the degrees of freedom p.

d) Find the 25% trimmed mean Tn.

e) Find d1, ..., d10.

f) Find d.

g) Find S2(d1, ..., d10).

e) Find SE(Tn).

2.14. Consider the data set 6, 3, 8, 5, and 2.

a) Referring to Application 2.2 on p. 37, find Ln, Un, p and SE(MED(n)).

b) Referring to Application 2.3 on p. 38, let Tn be the 25% trimmed
mean. Find Ln, Un, p, Tn and SE(Tn).

R/Splus problems

2.15∗. Use the commands

height <- rnorm(87, mean=1692, sd = 65)

height[61:65] <- 19.0

to simulate data similar to the Buxton heights. Make a plot similar to Figure
2.1 using the following R/Splus commands.
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> par(mfrow=c(2,2))

> plot(height)

> title("a) Dot plot of heights")

> hist(height)

> title("b) Histogram of heights")

> length(height)

[1] 87

> val <- quantile(height)[4] - quantile(height)[2]

> val

75%

103.5

> wid <- 4*1.06*min(sqrt(var(height)),val/1.34)*(87^(-1/5))

> wid

[1] 134.0595

> dens<- density(height,width=wid)

> plot(dens$x,dens$y)

> lines(dens$x,dens$y)

> title("c) Density of heights")

> boxplot(height)

> title("d) Boxplot of heights")

2.16∗. The following command computes MAD(n).

mad(y, constant=1)

a) Let Y ∼ N(0, 1). Estimate MAD(Y ) with the following commands.

y <- rnorm(10000)

mad(y, constant=1)

b) Let Y ∼ EXP(1). Estimate MAD(Y ) with the following commands.

y <- rexp(10000)

mad(y, constant=1)

2.17∗. The following commands computes the α trimmed mean. The
default uses tp = 0.25 and gives the 25% trimmed mean.

tmn <-

function(x, tp = 0.25)
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{

mean(x, trim = tp)

}

a) Compute the 25% trimmed mean of 10000 simulated N(0, 1) random
variables with the following commands.

y <- rnorm(10000)

tmn(y)

b) Compute the mean and 25% trimmed mean of 10000 simulated EXP(1)
random variables with the following commands.

y <- rexp(10000)

mean(y)

tmn(y)

2.18. The following R/Splus function computes the metrically trimmed
mean.

metmn <-

function(x, k = 6)

{

madd <- mad(x, constant = 1)

med <- median(x)

mean(x[(x >= med - k * madd) & (x <= med + k * madd)])

}

Compute the metrically trimmed mean of 10000 simulated N(0, 1) ran-
dom variables with the following commands.

y <- rnorm(10000)

metmn(y)

Warning: For the following problems, use the command
source(“A:/rpack.txt”) to download the programs. See Preface or Sec-
tion 14.2. Typing the name of the rpack function, eg ratmn, will display
the code for the function. Use the args command, eg args(ratmn), to display
the needed arguments for the function.

2.19. Download the R/Splus function ratmn that computes the two stage
asymmetrically trimmed mean TA,n. Compute the TA,n for 10000 simulated
N(0, 1) random variables with the following commands.
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y <- rnorm(10000)

ratmn(y)

2.20. Download the R/Splus function rstmn that computes the two stage
symmetrically trimmed mean TS,n. Compute the TS,n for 10000 simulated
N(0, 1) random variables with the following commands.

y <- rnorm(10000)

rstmn(y)

2.21∗. a) Download the cci function which produces a classical CI. The
default is a 95% CI.

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command cci(height).

2.22∗. a) Download the R/Splus function medci that produces a CI using
the median and the Bloch and Gastwirth SE.

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command medci(height).

2.23∗. a) Download the R/Splus function tmci that produces a CI using
the 25% trimmed mean as a default.

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command tmci(height).

2.24. a) Download the R/Splus function atmci that produces a CI using
TA,n.

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command atmci(height).

2.25. a) Download the R/Splus function stmci that produces a CI using
TS,n.

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command stmci(height).

2.26. a) Download the R/Splus function med2ci that produces a CI using
the median and SERM (Ln, Un).

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command med2ci(height).

2.27. a) Download the R/Splus function cgci that produces a CI using
TS,n and the coarse grid C = {0, 0.01, 0.1, 0.25, 0.40, 0.49}.
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b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command cgci(height).

2.28. a) Bloch and Gastwirth (1968) suggest using

SE(MED(n)) =

√
n

4m
[Y([n/2]+m) − Y([n/2]−m)]

where m → ∞ but n/m → 0 as n → ∞. Taking m = 0.5n0.8 is optimal
in some sense, but not as resistant as the choice m =

√
n/4. Download the

R/Splus function bg2ci that is used to simulate the CI that uses MED(n)
and the “optimal” BG SE.

b) Compute a 95% CI for the artificial height data set created in Problem
2.15. Use the command bg2ci(height).

2.29. a) Enter the following commands to create a function that produces
a Q plot.

qplot<-

function(y)

{ plot(sort(y), ppoints(y))

title("QPLOT")}

b) Make a Q plot of the height data from Problem 2.15 with the following
command.

qplot(height)

c) Make a Q plot for N(0, 1) data with the following commands.

Y <- rnorm(1000)

qplot(y)
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