chapter

AC Power Analysis

Four things come not back: the spoken word; the sped arrow; time past; the neglected opportunity.

-Al Halif Omar Ibn

Enhancing Your Career

Career in Power Systems

The discovery of the principle of an ac generator by Michael Faraday in 1831 was a major breakthrough in engineering; it provided a convenient way of generating the electric power that is needed in every electronic, electrical, or electromechanical device we use now.

Electric power is obtained by converting energy from sources such as fossil fuels (gas, oil, and coal), nuclear fuel (uranium), hydro energy (water falling through a head), geothermal energy (hot water, steam), wind energy, tidal energy, and biomass energy (wastes). These various ways of generating electric power are studied in detail in the field of power engineering, which has become an indispensable subdiscipline of electrical engineering. An electrical engineer should be familiar with the analysis, generation, transmission, distribution, and cost of electric power.

The electric power industry is a very large employer of electrical engineers. The industry includes thousands of electric utility systems ranging from large, interconnected systems serving large regional areas to small power companies serving individual communities or factories. Due to the complexity of the power industry, there are numerous electrical engineering jobs in different areas of the industry: power plant (generation), transmission and distribution, maintenance, research, data acquisition and flow control, and management. Since electric power is used everywhere, electric utility companies are everywhere, offering exciting training and steady employment for men and women in thousands of communities throughout the world.

A pole-type transformer with a lowvoltage, three-wire distribution system. © Vol. 129 PhotoDisc/Getty

11.1 Introduction

Our effort in ac circuit analysis so far has been focused mainly on calculating voltage and current. Our major concern in this chapter is power analysis.

Power analysis is of paramount importance. Power is the most important quantity in electric utilities, electronic, and communication systems, because such systems involve transmission of power from one point to another. Also, every industrial and household electrical device—every fan, motor, lamp, pressing iron, TV, personal computer has a power rating that indicates how much power the equipment requires; exceeding the power rating can do permanent damage to an appliance. The most common form of electric power is 50- or 60-Hz ac power. The choice of ac over dc allowed high-voltage power transmission from the power generating plant to the consumer.

We will begin by defining and deriving *instantaneous power* and *average power*. We will then introduce other power concepts. As practical applications of these concepts, we will discuss how power is measured and reconsider how electric utility companies charge their customers.

11.2 Instantaneous and Average Power

As mentioned in Chapter 2, the *instantaneous power* p(t) absorbed by an element is the product of the instantaneous voltage v(t) across the element and the instantaneous current i(t) through it. Assuming the passive sign convention,

$$p(t) = v(t)i(t) \tag{11.1}$$

The instantaneous power (in watts) is the power at any instant of time.

It is the rate at which an element absorbs energy.

Consider the general case of instantaneous power absorbed by an arbitrary combination of circuit elements under sinusoidal excitation, as shown in Fig. 11.1. Let the voltage and current at the terminals of the circuit be

$$v(t) = V_m \cos(\omega t + \theta_v)$$
(11.2a)

$$i(t) = I_m \cos(\omega t + \theta_i)$$
(11.2b)

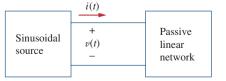
where V_m and I_m are the amplitudes (or peak values), and θ_v and θ_i are the phase angles of the voltage and current, respectively. The instantaneous power absorbed by the circuit is

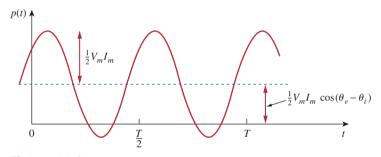
$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$
(11.3)

We apply the trigonometric identity

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$
 (11.4)

We can also think of the instantaneous power as the power absorbed by the element at a specific instant of time. Instantaneous quantities are denoted by lowercase letters.




Figure 11.1 Sinusoidal source and passive linear circuit.

and express Eq. (11.3) as

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$
 (11.5)

This shows us that the instantaneous power has two parts. The first part is constant or time independent. Its value depends on the phase difference between the voltage and the current. The second part is a sinusoidal function whose frequency is 2ω , which is twice the angular frequency of the voltage or current.

A sketch of p(t) in Eq. (11.5) is shown in Fig. 11.2, where $T = 2\pi/\omega$ is the period of voltage or current. We observe that p(t) is periodic, $p(t) = p(t + T_0)$, and has a period of $T_0 = T/2$, since its frequency is twice that of voltage or current. We also observe that p(t) is positive for some part of each cycle and negative for the rest of the cycle. When p(t) is positive, power is absorbed by the circuit. When p(t) is negative, power is absorbed by the source; that is, power is transferred from the circuit to the source. This is possible because of the storage elements (capacitors and inductors) in the circuit.

Figure 11.2 The instantaneous power p(t) entering a circuit.

The instantaneous power changes with time and is therefore difficult to measure. The *average* power is more convenient to measure. In fact, the wattmeter, the instrument for measuring power, responds to average power.

The average power, in watts, is the average of the instantaneous power over one period.

Thus, the average power is given by

$$P = \frac{1}{T} \int_0^T p(t) \, dt$$
 (11.6)

Although Eq. (11.6) shows the averaging done over *T*, we would get the same result if we performed the integration over the actual period of p(t) which is $T_0 = T/2$.

Substituting p(t) in Eq. (11.5) into Eq. (11.6) gives

$$P = \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) dt$$

+ $\frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i) dt$
= $\frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) \frac{1}{T} \int_0^T dt$
+ $\frac{1}{2} V_m I_m \frac{1}{T} \int_0^T \cos(2\omega t + \theta_v + \theta_i) dt$ (11.7)

The first integrand is constant, and the average of a constant is the same constant. The second integrand is a sinusoid. We know that the average of a sinusoid over its period is zero because the area under the sinusoid during a positive half-cycle is canceled by the area under it during the following negative half-cycle. Thus, the second term in Eq. (11.7) vanishes and the average power becomes

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$
(11.8)

Since $\cos(\theta_v - \theta_i) = \cos(\theta_i - \theta_v)$, what is important is the difference in the phases of the voltage and current.

Note that p(t) is time-varying while P does not depend on time. To find the instantaneous power, we must necessarily have v(t) and i(t) in the time domain. But we can find the average power when voltage and current are expressed in the time domain, as in Eq. (11.8), or when they are expressed in the frequency domain. The phasor forms of v(t) and i(t) in Eq. (11.2) are $\mathbf{V} = V_m / \frac{\theta_v}{\theta_v}$ and $\mathbf{I} = I_m / \frac{\theta_i}{\theta_i}$, respectively. P is calculated using Eq. (11.8) or using phasors V and I. To use phasors, we notice that

$$\frac{1}{2}\mathbf{V}\mathbf{I}^* = \frac{1}{2}V_m I_m / \underline{\theta_v - \theta_i}$$

$$= \frac{1}{2}V_m I_m [\cos(\theta_v - \theta_i) + j\sin(\theta_v - \theta_i)]$$
(11.9)

We recognize the real part of this expression as the average power P according to Eq. (11.8). Thus,

$$P = \frac{1}{2} \operatorname{Re}[\mathbf{VI}^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$
(11.10)

Consider two special cases of Eq. (11.10). When $\theta_v = \theta_i$, the voltage and current are in phase. This implies a purely resistive circuit or resistive load *R*, and

$$P = \frac{1}{2}V_m I_m = \frac{1}{2}I_m^2 R = \frac{1}{2}|\mathbf{I}|^2 R$$
(11.11)

where $|\mathbf{I}|^2 = \mathbf{I} \times \mathbf{I}^*$. Equation (11.11) shows that a purely resistive circuit absorbs power at all times. When $\theta_v - \theta_i = \pm 90^\circ$, we have a purely reactive circuit, and

$$P = \frac{1}{2} V_m I_m \cos 90^\circ = 0$$
 (11.12)

showing that a purely reactive circuit absorbs no average power. In summary,

A resistive load (R) absorbs power at all times, while a reactive load (L or C) absorbs zero average power.

Given that

Example 11.1

 $v(t) = 120\cos(377t + 45^\circ)$ V and $i(t) = 10\cos(377t - 10^\circ)$ A

find the instantaneous power and the average power absorbed by the passive linear network of Fig. 11.1.

Solution:

The instantaneous power is given by

$$p = vi = 1200 \cos(377t + 45^{\circ}) \cos(377t - 10^{\circ})$$

Applying the trigonometric identity

$$\cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A - B)]$$

gives

$$p = 600[\cos(754t + 35^\circ) + \cos 55^\circ]$$

or

$$p(t) = 344.2 + 600\cos(754t + 35^\circ) W$$

The average power is

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} 120(10) \cos[45^\circ - (-10^\circ)]$$
$$= 600 \cos 55^\circ = 344.2 \text{ W}$$

which is the constant part of p(t) above.

Calculate the instantaneous power and average power absorbed by the **Practice Problem 11.1** passive linear network of Fig. 11.1 if

 $v(t) = 330 \cos(10t + 20^\circ) \text{ V}$ and $i(t) = 33 \sin(10t + 60^\circ) \text{ A}$

Answer: $3.5 + 5.445 \cos(20t - 10^{\circ}) \text{ kW}$, 3.5 kW.

Calculate the average power absorbed by an impedance $\mathbf{Z} = 30 - j70 \,\Omega$ when a voltage $\mathbf{V} = 120/0^{\circ}$ is applied across it.

Example 11.2

Solution:

The current through the impedance is

$$\mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} = \frac{120/0^{\circ}}{30 - j70} = \frac{120/0^{\circ}}{76.16/-66.8^{\circ}} = 1.576/66.8^{\circ} \text{ A}$$

The average power is

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} (120)(1.576) \cos(0 - 66.8^\circ) = 37.24 \text{ W}$$

Practice Problem 11.2 A current $\mathbf{I} = 33/30^{\circ}$ A flows through an impedance $\mathbf{Z} = 40/-22^{\circ} \Omega$. Find the average power delivered to the impedance.

Answer: 20.19 kW.

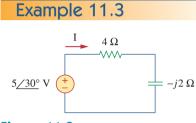


Figure 11.3 For Example 11.3.

For the circuit shown in Fig. 11.3, find the average power supplied by the source and the average power absorbed by the resistor.

Solution:

The current **I** is given by

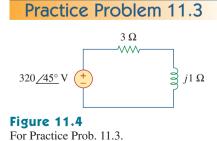
$$\mathbf{I} = \frac{5/30^{\circ}}{4 - j2} = \frac{5/30^{\circ}}{4.472/-26.57^{\circ}} = 1.118/56.57^{\circ} \text{ A}$$

The average power supplied by the voltage source is

$$P = \frac{1}{2}(5)(1.118)\cos(30^\circ - 56.57^\circ) = 2.5 \text{ W}$$

The current through the resistor is

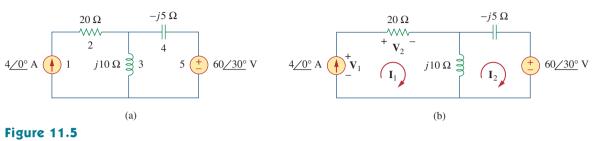
$$\mathbf{I}_{R} = \mathbf{I} = 1.118/56.57^{\circ} \,\mathrm{A}$$


and the voltage across it is

$$\mathbf{V}_R = 4\mathbf{I}_R = 4.472/56.57^\circ \,\mathrm{V}$$

The average power absorbed by the resistor is

$$P = \frac{1}{2}(4.472)(1.118) = 2.5 \text{ W}$$


which is the same as the average power supplied. Zero average power is absorbed by the capacitor.

In the circuit of Fig. 11.4, calculate the average power absorbed by the resistor and inductor. Find the average power supplied by the voltage source.

Answer: 15.361 kW, 0 W, 15.361 kW.

Determine the average power generated by each source and the average power absorbed by each passive element in the circuit of Fig. 11.5(a).

For Example 11.4.

Solution:

We apply mesh analysis as shown in Fig. 11.5(b). For mesh 1,

$$I_1 = 4 A$$

For mesh 2,

$$(j10 - j5)\mathbf{I}_2 - j10\mathbf{I}_1 + 60/30^\circ = 0, \qquad \mathbf{I}_1 = 4 \text{ A}_2$$

or

$$j5\mathbf{I}_2 = -60/30^\circ + j40 \implies \mathbf{I}_2 = -12/-60^\circ + 8$$

= 10.58/79.1° A

For the voltage source, the current flowing from it is $I_2 = 10.58/79.1^{\circ}$ A and the voltage across it is $60/30^{\circ}$ V, so that the average power is

$$P_5 = \frac{1}{2}(60)(10.58)\cos(30^\circ - 79.1^\circ) = 207.8 \text{ W}$$

Following the passive sign convention (see Fig. 1.8), this average power is absorbed by the source, in view of the direction of I_2 and the polarity of the voltage source. That is, the circuit is delivering average power to the voltage source.

For the current source, the current through it is $I_1 = 4/0^\circ$ and the voltage across it is

$$\mathbf{V}_1 = 20\mathbf{I}_1 + j10(\mathbf{I}_1 - \mathbf{I}_2) = 80 + j10(4 - 2 - j10.39)$$

= 183.9 + j20 = 184.984/6.21° V

The average power supplied by the current source is

$$P_1 = -\frac{1}{2}(184.984)(4)\cos(6.21^\circ - 0) = -367.8 \text{ W}$$

It is negative according to the passive sign convention, meaning that the current source is supplying power to the circuit.

For the resistor, the current through it is $\mathbf{I}_1 = 4/\underline{0^\circ}$ and the voltage across it is $20\mathbf{I}_1 = 80/\underline{0^\circ}$, so that the power absorbed by the resistor is

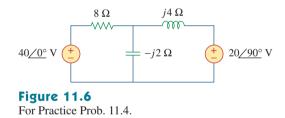
$$P_2 = \frac{1}{2}(80)(4) = 160 \text{ W}$$

Example 11.4

For the capacitor, the current through it is $I_2 = 10.58/79.1^{\circ}$ and the voltage across it is $-j5I_2 = (5/-90^{\circ})(10.58/79.1^{\circ}) = 52.9/79.1^{\circ} - 90^{\circ}$. The average power absorbed by the capacitor is

$$P_4 = \frac{1}{2}(52.9)(10.58)\cos(-90^\circ) = 0$$

For the inductor, the current through it is $\mathbf{I}_1 - \mathbf{I}_2 = 2 - j10.39 = 10.58/-79.1^\circ$. The voltage across it is $j10(\mathbf{I}_1 - \mathbf{I}_2) = 10.58/-79.1^\circ + 90^\circ$. Hence, the average power absorbed by the inductor is


$$P_3 = \frac{1}{2}(105.8)(10.58)\cos 90^\circ = 0$$

Notice that the inductor and the capacitor absorb zero average power and that the total power supplied by the current source equals the power absorbed by the resistor and the voltage source, or

$$P_1 + P_2 + P_3 + P_4 + P_5 = -367.8 + 160 + 0 + 0 + 207.8 = 0$$

indicating that power is conserved.

Practice Problem 11.4 Calculate the average power absorbed by each of the five elements in the circuit of Fig. 11.6.

Answer: 40-V Voltage source: -60 W; *j*20-V Voltage source: -40 W; resistor: 100 W; others: 0 W.

11.3 Maximum Average Power Transfer

In Section 4.8 we solved the problem of maximizing the power delivered by a power-supplying resistive network to a load R_L . Representing the circuit by its Thevenin equivalent, we proved that the maximum power would be delivered to the load if the load resistance is equal to the Thevenin resistance $R_L = R_{\text{Th}}$. We now extend that result to ac circuits.

Consider the circuit in Fig. 11.7, where an ac circuit is connected to a load \mathbf{Z}_L and is represented by its Thevenin equivalent. The load is usually represented by an impedance, which may model an electric

In the circuit in Fig. 11.11, find the value of R_L that will absorb the maximum average power. Calculate that power.

Solution:

We first find the Thevenin equivalent at the terminals of R_L .

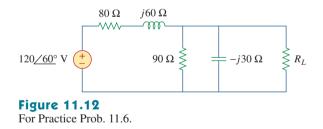
$$\mathbf{Z}_{\text{Th}} = (40 - j30) \| j20 = \frac{j20(40 - j30)}{j20 + 40 - j30} = 9.412 + j22.35 \ \Omega$$

By voltage division,

$$\mathbf{V}_{\rm Th} = \frac{j20}{j20 + 40 - j30} (150/30^\circ) = 72.76/134^\circ \,\rm V$$

The value of R_L that will absorb the maximum average power is

$$R_L = |\mathbf{Z}_{\rm Th}| = \sqrt{9.412^2 + 22.35^2} = 24.25 \ \Omega$$


The current through the load is

$$\mathbf{I} = \frac{\mathbf{V}_{\text{Th}}}{\mathbf{Z}_{\text{Th}} + R_L} = \frac{72.76/134^{\circ}}{33.66 + j22.35} = 1.8/100.42^{\circ} \text{ A}$$

The maximum average power absorbed by R_L is

$$P_{\text{max}} = \frac{1}{2} |\mathbf{I}|^2 R_L = \frac{1}{2} (1.8)^2 (24.25) = 39.29 \text{ W}$$

In Fig. 11.12, the resistor R_L is adjusted until it absorbs the maximum average power. Calculate R_L and the maximum average power absorbed by it.

Answer: 30Ω , 6.863 W.

11.4 Effective or RMS Value

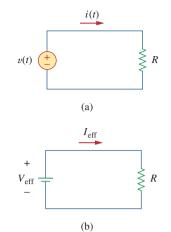
The idea of effective value arises from the need to measure the effectiveness of a voltage or current source in delivering power to a resistive load.

The effective value of a periodic current is the dc current that delivers the same average power to a resistor as the periodic current.

Practice Problem 11.6

Example 11.6

j20 Ω 🗃


 40Ω $-j30 \Omega$ ~~~~

467

 $\leq R_L$

Figure 11.11 For Example 11.6.

150<u>/30°</u> V

Finding the effective current: (a) ac circuit, (b) dc circuit.

In Fig. 11.13, the circuit in (a) is ac while that of (b) is dc. Our objective is to find I_{eff} that will transfer the same power to resistor *R* as the sinusoid *i*. The average power absorbed by the resistor in the ac circuit is

$$P = \frac{1}{T} \int_0^T i^2 R \, dt = \frac{R}{T} \int_0^T i^2 \, dt$$
 (11.22)

while the power absorbed by the resistor in the dc circuit is

$$P = I_{\rm eff}^2 R \tag{11.23}$$

Equating the expressions in Eqs. (11.22) and (11.23) and solving for $I_{\rm eff}$, we obtain

$$I_{\rm eff} = \sqrt{\frac{1}{T}} \int_0^T i^2 dt$$
 (11.24)

The effective value of the voltage is found in the same way as current; that is,

$$V_{\rm eff} = \sqrt{\frac{1}{T}} \int_0^T v^2 \, dt$$
 (11.25)

This indicates that the effective value is the (square) *root* of the *mean* (or average) of the *square* of the periodic signal. Thus, the effective value is often known as the *root-mean-square* value, or *rms* value for short; and we write

$$I_{\rm eff} = I_{\rm rms}, \qquad V_{\rm eff} = V_{\rm rms} \tag{11.26}$$

For any periodic function x(t) in general, the rms value is given by

$$X_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T x^2 dt}$$
(11.27)

The effective value of a periodic signal is its root mean square (rms) value.

Equation 11.27 states that to find the rms value of x(t), we first find its square x^2 and then find the mean of that, or

$$\frac{1}{T} \int_0^T x^2 dt$$

and then the square *root* $(\sqrt{})$ of that mean. The rms value of a constant is the constant itself. For the sinusoid $i(t) = I_m \cos \omega t$, the effective or rms value is

$$I_{\rm rms} = \sqrt{\frac{1}{T}} \int_0^T I_m^2 \cos^2 \omega t \, dt$$

= $\sqrt{\frac{I_m^2}{T}} \int_0^T \frac{1}{2} (1 + \cos 2\omega t) \, dt = \frac{I_m}{\sqrt{2}}$ (11.28)

Similarly, for $v(t) = V_m \cos \omega t$,

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}} \tag{11.29}$$

Keep in mind that Eqs. (11.28) and (11.29) are only valid for sinusoidal signals.

The average power in Eq. (11.8) can be written in terms of the rms values.

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$

= $V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$ (11.30)

Similarly, the average power absorbed by a resistor R in Eq. (11.11) can be written as

$$P = I_{\rm rms}^2 R = \frac{V_{\rm rms}^2}{R}$$
(11.31)

When a sinusoidal voltage or current is specified, it is often in terms of its maximum (or peak) value or its rms value, since its average value is zero. The power industries specify phasor magnitudes in terms of their rms values rather than peak values. For instance, the 110 V available at every household is the rms value of the voltage from the power company. It is convenient in power analysis to express voltage and current in their rms values. Also, analog voltmeters and ammeters are designed to read directly the rms value of voltage and current, respectively.

Determine the rms value of the current waveform in Fig. 11.14. If the current is passed through a 2- Ω resistor, find the average power absorbed by the resistor.

Solution:

The period of the waveform is T = 4. Over a period, we can write the current waveform as

$$i(t) = \begin{cases} 5t, & 0 < t < 2\\ -10, & 2 < t < 4 \end{cases}$$

The rms value is

$$I_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T i^2 dt} = \sqrt{\frac{1}{4} \left[\int_0^2 (5t)^2 dt + \int_2^4 (-10)^2 dt \right]}$$
$$= \sqrt{\frac{1}{4} \left[25 \frac{t^3}{3} \Big|_0^2 + 100t \Big|_2^4 \right]} = \sqrt{\frac{1}{4} \left(\frac{200}{3} + 200 \right)} = 8.165 \,\mathrm{A}$$

The power absorbed by a 2- Ω resistor is

$$P = I_{\rm rms}^2 R = (8.165)^2 (2) = 133.3 \,\mathrm{W}$$

Find the rms value of the current waveform of Fig. 11.15. If the current flows through a 9- Ω resistor, calculate the average power absorbed by the resistor.

Answer: 9.238 A, 768 W.

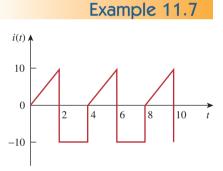
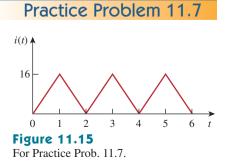
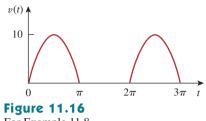




Figure 11.14 For Example 11.7.

Example 11.8

For Example 11.8.

v(t)

100

0

Figure 11.17

For Practice Prob. 11.8.

 π

 2π

The waveform shown in Fig. 11.16 is a half-wave rectified sine wave. Find the rms value and the amount of average power dissipated in a $10-\Omega$ resistor.

Solution:

The period of the voltage waveform is $T = 2\pi$, and

$$v(t) = \begin{cases} 10 \sin t, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \end{cases}$$

The rms value is obtained as

$$V_{\rm rms}^2 = \frac{1}{T} \int_0^T v^2(t) \, dt = \frac{1}{2\pi} \left[\int_0^\pi (10\,\sin t)^2 \, dt + \int_\pi^{2\pi} 0^2 \, dt \right]$$

But $\sin^2 t = \frac{1}{2}(1 - \cos 2t)$. Hence,

$$V_{\rm rms}^2 = \frac{1}{2\pi} \int_0^{\pi} \frac{100}{2} (1 - \cos 2t) \, dt = \frac{50}{2\pi} \left(t - \frac{\sin 2t}{2} \right) \Big|_0^{\pi}$$
$$= \frac{50}{2\pi} \left(\pi - \frac{1}{2} \sin 2\pi - 0 \right) = 25, \qquad V_{\rm rms} = 5 \, \rm V$$

The average power absorbed is

$$P = \frac{V_{\rm rms}^2}{R} = \frac{5^2}{10} = 2.5 \,\rm W$$

Practice Problem 11.8 Find the rms value of the full-wave rectified sine wave in Fig. 11.17. Calculate the average power dissipated in a $6-\Omega$ resistor.

Answer: 70.71 V, 833.3 W.

 3π

t

11.5 Apparent Power and Power Factor

In Section 11.2 we saw that if the voltage and current at the terminals of a circuit are

$$v(t) = V_m \cos(\omega t + \theta_v)$$
 and $i(t) = I_m \cos(\omega t + \theta_i)$ (11.32)

or, in phasor form, $\mathbf{V} = V_m / \frac{\theta_v}{\theta_v}$ and $\mathbf{I} = I_m / \frac{\theta_i}{\theta_i}$, the average power is

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$
(11.33)

In Section 11.4, we saw that $P = V_{\rm rms} I_{\rm rms} \cos \theta$

$$V = V_{\rm rms} I_{\rm rms} \cos(\theta_v - \theta_i) = S \cos(\theta_v - \theta_i)$$
(11.34)

We have added a new term to the equation:

$$S = V_{\rm rms} I_{\rm rms}$$
(11.35)

chapter

Three-Phase Circuits

He who cannot forgive others breaks the bridge over which he must pass himself.

-G. Herbert

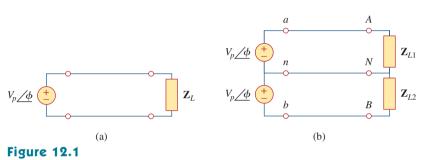
Enhancing Your Skills and Your Career

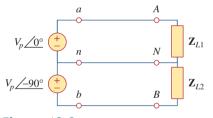
ABET EC 2000 criteria (3.e), "an ability to identify, formulate, and solve engineering problems."

Developing and enhancing your "ability to identify, formulate, and solve engineering problems" is a primary focus of textbook. Following our six step problem-solving process is the best way to practice this skill. Our recommendation is that you use this process whenever possible. You may be pleased to learn that this process works well for nonengineering courses.

ABET EC 2000 criteria (f), "an understanding of professional and ethical responsibility."

"An understanding of professional and ethical responsibility" is required of every engineer. To some extent, this understanding is very personal for each of us. Let us identify some pointers to help you develop this understanding. One of my favorite examples is that an engineer has the responsibility to answer what I call the "unasked question." For instance, assume that you own a car that has a problem with the transmission. In the process of selling that car, the prospective buyer asks you if there is a problem in the right-front wheel bearing. You answer no. However, as an engineer, you are required to inform the buyer that there is a problem with the transmission without being asked.


Your responsibility both professionally and ethically is to perform in a manner that does not harm those around you and to whom you are responsible. Clearly, developing this capability will take time and maturity on your part. I recommend practicing this by looking for professional and ethical components in your day-to-day activities.


Photo by Charles Alexander

12.1 Introduction

So far in this text, we have dealt with single-phase circuits. A single-phase ac power system consists of a generator connected through a pair of wires (a transmission line) to a load. Figure 12.1(a) depicts a single-phase two-wire system, where V_p is the rms magnitude of the source voltage and ϕ is the phase. What is more common in practice is a single-phase three-wire system, shown in Fig. 12.1(b). It contains two identical sources (equal magnitude and the same phase) that are connected to two loads by two outer wires and the neutral. For example, the normal household system is a single-phase three-wire system because the terminal voltages have the same magnitude and the same phase. Such a system allows the connection of both 120-V and 240-V appliances.

Single-phase systems: (a) two-wire type, (b) three-wire type.

Historical note: Thomas Edison invented

a three-wire system, using three wires

instead of four.

Two-phase three-wire system.

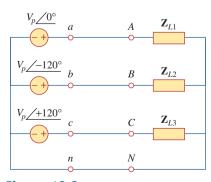


Figure 12.3 Three-phase four-wire system.

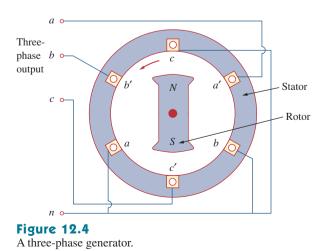
Circuits or systems in which the ac sources operate at the same frequency but different phases are known as *polyphase*. Figure 12.2 shows a two-phase three-wire system, and Fig. 12.3 shows a three-phase fourwire system. As distinct from a single-phase system, a two-phase system is produced by a generator consisting of two coils placed perpendicular to each other so that the voltage generated by one lags the other by 90°. By the same token, a three-phase system is produced by a generator consisting of three sources having the same amplitude and frequency but out of phase with each other by 120°. Since the three-phase system is by far the most prevalent and most economical polyphase system, discussion in this chapter is mainly on three-phase systems.

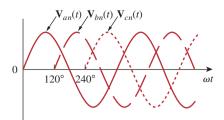
Three-phase systems are important for at least three reasons. First, nearly all electric power is generated and distributed in three-phase, at the operating frequency of 60 Hz (or $\omega = 377$ rad/s) in the United States or 50 Hz (or $\omega = 314$ rad/s) in some other parts of the world. When one-phase or two-phase inputs are required, they are taken from the three-phase system rather than generated independently. Even when more than three phases are needed—such as in the aluminum industry, where 48 phases are required for melting purposes—they can be provided by manipulating the three phases supplied. Second, the instantaneous power in a three-phase system can be constant (not pulsating), as we will see in Section 12.7. This results in uniform power transmission and less vibration of three-phase system is more economical than the single-phase. The amount of wire required for a three-phase system is less than that required for an equivalent single-phase system.

Historical

Nikola Tesla (1856–1943) was a Croatian-American engineer whose inventions—among them the induction motor and the first polyphase ac power system—greatly influenced the settlement of the ac versus dc debate in favor of ac. He was also responsible for the adoption of 60 Hz as the standard for ac power systems in the United States.

Born in Austria-Hungary (now Croatia), to a clergyman, Tesla had an incredible memory and a keen affinity for mathematics. He moved to the United States in 1884 and first worked for Thomas Edison. At that time, the country was in the "battle of the currents" with George Westinghouse (1846–1914) promoting ac and Thomas Edison rigidly leading the dc forces. Tesla left Edison and joined Westinghouse because of his interest in ac. Through Westinghouse, Tesla gained the reputation and acceptance of his polyphase ac generation, transmission, and distribution system. He held 700 patents in his lifetime. His other inventions include high-voltage apparatus (the tesla coil) and a wireless transmission system. The unit of magnetic flux density, the tesla, was named in honor of him.




Courtesy Smithsonian Institution

We begin with a discussion of balanced three-phase voltages. Then we analyze each of the four possible configurations of balanced threephase systems. We also discuss the analysis of unbalanced three-phase systems. We learn how to use *PSpice for Windows* to analyze a balanced or unbalanced three-phase system. Finally, we apply the concepts developed in this chapter to three-phase power measurement and residential electrical wiring.

12.2 Balanced Three-Phase Voltages

Three-phase voltages are often produced with a three-phase ac generator (or alternator) whose cross-sectional view is shown in Fig. 12.4. The generator basically consists of a rotating magnet (called the *rotor*) surrounded by a stationary winding (called the *stator*). Three separate

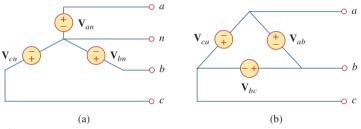


Figure 12.5 The generated voltages are 120° apart from each other.

windings or coils with terminals a-a', b-b', and c-c' are physically placed 120° apart around the stator. Terminals a and a', for example, stand for one of the ends of coils going into and the other end coming out of the page. As the rotor rotates, its magnetic field "cuts" the flux from the three coils and induces voltages in the coils. Because the coils are placed 120° apart, the induced voltages in the coils are equal in magnitude but out of phase by 120° (Fig. 12.5). Since each coil can be regarded as a single-phase generator by itself, the three-phase generator can supply power to both single-phase and three-phase loads.

A typical three-phase system consists of three voltage sources connected to loads by three or four wires (or transmission lines). (Threephase current sources are very scarce.) A three-phase system is equivalent to three single-phase circuits. The voltage sources can be either wye-connected as shown in Fig. 12.6(a) or delta-connected as in Fig. 12.6(b).

Figure 12.6

Three-phase voltage sources: (a) Y-connected source, (b) Δ -connected source.

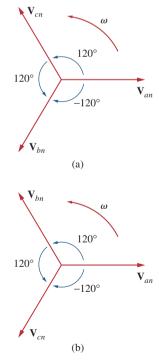


Figure 12.7 Phase sequences: (a) *abc* or positive sequence, (b) *acb* or negative sequence.

Let us consider the wye-connected voltages in Fig. 12.6(a) for now. The voltages \mathbf{V}_{an} , \mathbf{V}_{bn} , and \mathbf{V}_{cn} are respectively between lines *a*, *b*, and *c*, and the neutral line *n*. These voltages are called *phase voltages*. If the voltage sources have the same amplitude and frequency ω and are out of phase with each other by 120°, the voltages are said to be *balanced*. This implies that

$$\mathbf{V}_{an} + \mathbf{V}_{bn} + \mathbf{V}_{cn} = 0 \tag{12.1}$$

$$\mathbf{V}_{an}| = |\mathbf{V}_{bn}| = |\mathbf{V}_{cn}| \tag{12.2}$$

Thus,

Balanced phase voltages are equal in magnitude and are out of phase with each other by 120°.

Since the three-phase voltages are 120° out of phase with each other, there are two possible combinations. One possibility is shown in Fig. 12.7(a) and expressed mathematically as

$$\mathbf{V}_{an} = V_p \underline{/0^{\circ}}$$

$$\mathbf{V}_{bn} = V_p \underline{/-120^{\circ}}$$

$$\mathbf{V}_{cn} = V_p \underline{/-240^{\circ}} = V_p \underline{/+120^{\circ}}$$
(12.3)

where V_p is the effective or rms value of the phase voltages. This is known as the *abc sequence* or *positive sequence*. In this phase sequence, V_{an} leads V_{bn} , which in turn leads V_{cn} . This sequence is produced when the rotor in Fig. 12.4 rotates counterclockwise. The other possibility is shown in Fig. 12.7(b) and is given by

$$\mathbf{V}_{an} = V_{p} / 0^{\circ} \\
 \mathbf{V}_{cn} = V_{p} / -120^{\circ} \\
 \mathbf{V}_{bn} = V_{p} / -240^{\circ} = V_{p} / +120^{\circ}$$
(12.4)

This is called the *acb sequence* or *negative sequence*. For this phase sequence, V_{an} leads V_{cn} , which in turn leads V_{bn} . The *acb* sequence is produced when the rotor in Fig. 12.4 rotates in the clockwise direction. It is easy to show that the voltages in Eqs. (12.3) or (12.4) satisfy Eqs. (12.1) and (12.2). For example, from Eq. (12.3),

$$\mathbf{V}_{an} + \mathbf{V}_{bn} + \mathbf{V}_{cn} = V_p / \underline{0^\circ} + V_p / \underline{-120^\circ} + V_p / \underline{+120^\circ}$$

= $V_p (1.0 - 0.5 - j0.866 - 0.5 + j0.866)$ (12.5)
= 0

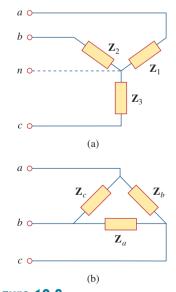
The **phase sequence** is the time order in which the voltages pass through their respective maximum values.

The phase sequence is determined by the order in which the phasors pass through a fixed point in the phase diagram.

In Fig. 12.7(a), as the phasors rotate in the counterclockwise direction with frequency ω , they pass through the horizontal axis in a sequence *abcabca*.... Thus, the sequence is *abc* or *bca* or *cab*. Similarly, for the phasors in Fig. 12.7(b), as they rotate in the counterclockwise direction, they pass the horizontal axis in a sequence *acbacba*.... This describes the *acb* sequence. The phase sequence is important in three-phase power distribution. It determines the direction of the rotation of a motor connected to the power source, for example.

Like the generator connections, a three-phase load can be either wye-connected or delta-connected, depending on the end application. Figure 12.8(a) shows a wye-connected load, and Fig. 12.8(b) shows a delta-connected load. The neutral line in Fig. 12.8(a) may or may not be there, depending on whether the system is four- or three-wire. (And, of course, a neutral connection is topologically impossible for a delta connection.) A wye- or delta-connected load is said to be *unbalanced* if the phase impedances are not equal in magnitude or phase.

A balanced load is one in which the phase impedances are equal in magnitude and in phase.


For a *balanced* wye-connected load,

$$\mathbf{Z}_1 = \mathbf{Z}_2 = \mathbf{Z}_3 = \mathbf{Z}_Y$$

As a common tradition in power systems, voltage and current in this chapter are in rms values unless otherwise stated.

The phase sequence may also be regarded as the order in which the phase voltages reach their peak (or maximum) values with respect to time.

Reminder: As time increases, each phasor (or sinor) rotates at an angular velocity ω .

Figure 12.8 Two possible three-phase load configurations: (a) a Y-connected load, (b) a Δ -connected load.

(12.6)

Reminder: A Y-connected load consists of three impedances connected to a neutral node, while a Δ -connected load consists of three impedances connected around a loop. The load is balanced when the three impedances are equal in either case. where \mathbf{Z}_{Y} is the load impedance per phase. For a *balanced* delta-connected load,

$$\mathbf{Z}_a = \mathbf{Z}_b = \mathbf{Z}_c = \mathbf{Z}_\Delta \tag{12.7}$$

where \mathbf{Z}_{Δ} is the load impedance per phase in this case. We recall from Eq. (9.69) that

$$\mathbf{Z}_{\Delta} = 3\mathbf{Z}_{Y}$$
 or $\mathbf{Z}_{Y} = \frac{1}{3}\mathbf{Z}_{\Delta}$ (12.8)

so we know that a wye-connected load can be transformed into a deltaconnected load, or vice versa, using Eq. (12.8).

Since both the three-phase source and the three-phase load can be either wye- or delta-connected, we have four possible connections:

- Y-Y connection (i.e., Y-connected source with a Y-connected load).
- Y- Δ connection.
- Δ - Δ connection.
- Δ -Y connection.

In subsequent sections, we will consider each of these possible configurations.

It is appropriate to mention here that a balanced delta-connected load is more common than a balanced wye-connected load. This is due to the ease with which loads may be added or removed from each phase of a delta-connected load. This is very difficult with a wye-connected load because the neutral may not be accessible. On the other hand, delta-connected sources are not common in practice because of the circulating current that will result in the delta-mesh if the three-phase voltages are slightly unbalanced.

Example 12.1 Determine the phase sequence of the set of voltages $v_{an} = 200 \cos(\omega t + 10^{\circ})$ $v_{bn} = 200 \cos(\omega t - 230^{\circ}), \quad v_{cn} = 200 \cos(\omega t - 110^{\circ})$

Solution:

The voltages can be expressed in phasor form as

$$\mathbf{V}_{an} = 200/10^{\circ} \text{ V}, \qquad \mathbf{V}_{bn} = 200/-230^{\circ} \text{ V}, \qquad \mathbf{V}_{cn} = 200/-110^{\circ} \text{ V}$$

We notice that \mathbf{V}_{an} leads \mathbf{V}_{cn} by 120° and \mathbf{V}_{cn} in turn leads \mathbf{V}_{bn} by 120°. Hence, we have an *acb* sequence.

Practice Problem 12.1	Given that $\mathbf{V}_{bn} = 110/30^{\circ}$ V, find \mathbf{V}_{an} and \mathbf{V}_{cn} , assuming a positive (<i>abc</i>) sequence.
	Answer: $110/150^{\circ}$ V, $110/-90^{\circ}$ V.