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Sinusoids and
Phasors
He who knows not, and knows not that he knows not, is a fool—
shun him. He who knows not, and knows that he knows not, is a child—
teach him. He who knows, and knows not that he knows, is asleep—wake
him up. He who knows, and knows that he knows, is wise—follow him.

—Persian Proverb

c h a p t e r

9

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.d), “an ability to function on
multi-disciplinary teams.”
The “ability to function on multidisciplinary teams” is inherently crit-
ical for the working engineer. Engineers rarely, if ever, work by them-
selves. Engineers will always be part of some team. One of the things
I like to remind students is that you do not have to like everyone on a
team; you just have to be a successful part of that team.

Most frequently, these teams include individuals from a variety of
engineering disciplines, as well as individuals from nonengineering dis-
ciplines such as marketing and finance.

Students can easily develop and enhance this skill by working in
study groups in every course they take. Clearly, working in study
groups in nonengineering courses, as well as engineering courses out-
side your discipline, will also give you experience with multidiscipli-
nary teams.

Photo by Charles Alexander
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Introduction
Thus far our analysis has been limited for the most part to dc circuits:
those circuits excited by constant or time-invariant sources. We have
restricted the forcing function to dc sources for the sake of simplicity,
for pedagogic reasons, and also for historic reasons. Historically, dc
sources were the main means of providing electric power up until the
late 1800s. At the end of that century, the battle of direct current ver-
sus alternating current began. Both had their advocates among the elec-
trical engineers of the time. Because ac is more efficient and economical
to transmit over long distances, ac systems ended up the winner. Thus,
it is in keeping with the historical sequence of events that we consid-
ered dc sources first.

We now begin the analysis of circuits in which the source voltage or
current is time-varying. In this chapter, we are particularly interested in
sinusoidally time-varying excitation, or simply, excitation by a sinusoid.

9.1
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Nikola Tesla (1856–1943) and George Westinghouse (1846–1914)
helped establish alternating current as the primary mode of electricity
transmission and distribution.

Today it is obvious that ac generation is well established as the form
of electric power that makes widespread distribution of electric power
efficient and economical. However, at the end of the 19th century, which
was the better—ac or dc—was hotly debated and had extremely out-
spoken supporters on both sides. The dc side was led by Thomas Edison,
who had earned a lot of respect for his many contributions. Power gen-
eration using ac really began to build after the successful contributions
of Tesla. The real commercial success in ac came from George
Westinghouse and the outstanding team, including Tesla, he assembled.
In addition, two other big names were C. F. Scott and B. G. Lamme.

The most significant contribution to the early success of ac was
the patenting of the polyphase ac motor by Tesla in 1888. The induc-
tion motor and polyphase generation and distribution systems doomed
the use of dc as the prime energy source.

Historical

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to as alternating current (ac).
Such a current reverses at regular time intervals and has alternately pos-
itive and negative values. Circuits driven by sinusoidal current or volt-
age sources are called ac circuits.

We are interested in sinusoids for a number of reasons. First, nature
itself is characteristically sinusoidal. We experience sinusoidal varia-
tion in the motion of a pendulum, the vibration of a string, the ripples
on the ocean surface, and the natural response of underdamped second-
order systems, to mention but a few. Second, a sinusoidal signal is easy
to generate and transmit. It is the form of voltage generated throughout

George Westinghouse. Photo
© Bettmann/Corbis
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the world and supplied to homes, factories, laboratories, and so on. It
is the dominant form of signal in the communications and electric
power industries. Third, through Fourier analysis, any practical peri-
odic signal can be represented by a sum of sinusoids. Sinusoids,
therefore, play an important role in the analysis of periodic signals.
Lastly, a sinusoid is easy to handle mathematically. The derivative
and integral of a sinusoid are themselves sinusoids. For these and
other reasons, the sinusoid is an extremely important function in
circuit analysis.

A sinusoidal forcing function produces both a transient response
and a steady-state response, much like the step function, which we stud-
ied in Chapters 7 and 8. The transient response dies out with time so
that only the steady-state response remains. When the transient response
has become negligibly small compared with the steady-state response,
we say that the circuit is operating at sinusoidal steady state. It is this
sinusoidal steady-state response that is of main interest to us in this
chapter.

We begin with a basic discussion of sinusoids and phasors. We
then introduce the concepts of impedance and admittance. The basic
circuit laws, Kirchhoff’s and Ohm’s, introduced for dc circuits, will be
applied to ac circuits. Finally, we consider applications of ac circuits
in phase-shifters and bridges.

Sinusoids
Consider the sinusoidal voltage

(9.1)

where

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and
in Fig. 9.1(b) as a function of time. It is evident that the sinusoid
repeats itself every T seconds; thus, T is called the period of the sinu-
soid. From the two plots in Fig. 9.1, we observe that 

(9.2)T �
2 p

�

�T � 2 p,

 �t � the argument of the sinusoid

 � � the angular frequency in radians/s

 Vm � the amplitude of the sinusoid

v(t) � Vm sin �t

9.2
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Figure 9.1
A sketch of : (a) as a function of (b) as a function of t.�t,Vm sin �t
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As mentioned, the period T of the periodic function is the time of one
complete cycle or the number of seconds per cycle. The reciprocal of
this quantity is the number of cycles per second, known as the cyclic
frequency f of the sinusoid. Thus,

(9.5)

From Eqs. (9.2) and (9.5), it is clear that

(9.6)

While is in radians per second (rad/s), f is in hertz (Hz).�

� � 2 p f

f �
1

T
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A periodic function is one that satisfies f (t ) f (t nT ), for all t and
for all integers n.

��

The fact that repeats itself every T seconds is shown by replacing
t by in Eq. (9.1). We get

(9.3)

Hence,

(9.4)

that is, has the same value at as it does at t and is said to
be periodic. In general,

v(t)t � Tv

v(t � T ) � v(t)

 � Vm sin(�t � 2p) � Vm sin �t � v(t)

 v(t � T) � Vm sin �(t � T) � Vm sin � at �
2p
�
b

t � T
v(t)

Heinrich Rudorf Hertz (1857–1894), a German experimental physi-
cist, demonstrated that electromagnetic waves obey the same funda-
mental laws as light. His work confirmed James Clerk Maxwell’s
celebrated 1864 theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany.
He attended the University of Berlin and did his doctorate under the
prominent physicist Hermann von Helmholtz. He became a professor
at Karlsruhe, where he began his quest for electromagnetic waves.
Hertz successfully generated and detected electromagnetic waves; he
was the first to show that light is electromagnetic energy. In 1887, Hertz
noted for the first time the photoelectric effect of electrons in a molec-
ular structure. Although Hertz only lived to the age of 37, his discov-
ery of electromagnetic waves paved the way for the practical use of
such waves in radio, television, and other communication systems. The
unit of frequency, the hertz, bears his name.

Historical

The unit of f is named after the German
physicist Heinrich R. Hertz (1857–1894).

The Burndy Library Collection
at The Huntington Library, 
San Marino, California.
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Let us now consider a more general expression for the sinusoid,

(9.7)

where is the argument and is the phase. Both argument and
phase can be in radians or degrees.

Let us examine the two sinusoids

(9.8)

shown in Fig. 9.2. The starting point of in Fig. 9.2 occurs first in
time. Therefore, we say that leads by or that lags by 
If we also say that and are out of phase. If then

and are said to be in phase; they reach their minima and max-
ima at exactly the same time. We can compare and in this man-
ner because they operate at the same frequency; they do not need to
have the same amplitude.

v2v1

v2v1

f � 0,v2v1f � 0,
f.v2v1fv1v2

v2

v1(t) � Vm sin �t  and  v2 (t) � Vm sin(�t � f)

f(�t � f)

v(t) � Vm sin(�t � f)

9.2 Sinusoids 373

Figure 9.2
Two sinusoids with different phases.

A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids, it is expedient to express both as either sine
or cosine with positive amplitudes. This is achieved by using the fol-
lowing trigonometric identities:

(9.9)

With these identities, it is easy to show that

(9.10)

Using these relationships, we can transform a sinusoid from sine form
to cosine form or vice versa.

 sin(�t � 180�) � �sin �t  

 cos(�t � 180�) � �cos �t  

 sin(�t � 90�) � �cos �t

 cos(�t � 90�) � �sin �t 

 sin(A � B) � sin A cos B � cos  A sin B

 cos(A � B) � cos  A cos B � sin  A sin B

Vm

–Vm

�t
�

v2 = Vm sin(�t + �)

v1 = Vm sin �t

π 2π
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A graphical approach may be used to relate or compare sinusoids
as an alternative to using the trigonometric identities in Eqs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal axis
represents the magnitude of cosine, while the vertical axis (pointing
down) denotes the magnitude of sine. Angles are measured positively
counterclockwise from the horizontal, as usual in polar coordinates.
This graphical technique can be used to relate two sinusoids. For exam-
ple, we see in Fig. 9.3(a) that subtracting from the argument of

gives or Similarly, adding to
the argument of gives or as
shown in Fig. 9.3(b).

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other is in cosine
form. To add and we note that A is the magnitude of

while B is the magnitude of as shown in Fig. 9.4(a). The
magnitude and argument of the resultant sinusoid in cosine form is
readily obtained from the triangle. Thus,

(9.11)

where

(9.12)

For example, we may add and as shown in Fig. 9.4(b)
and obtain

(9.13)

Compared with the trigonometric identities in Eqs. (9.9) and
(9.10), the graphical approach eliminates memorization. However, we
must not confuse the sine and cosine axes with the axes for complex
numbers to be discussed in the next section. Something else to note in
Figs. 9.3 and 9.4 is that although the natural tendency is to have the
vertical axis point up, the positive direction of the sine function is down
in the present case.

3 cos �t � 4 sin �t � 5 cos(�t � 53.1�)

�4 sin �t3 cos �t

C � 2A 
2 � B 

2,  u � tan�1
 

B

A

A cos �t � B sin �t � C cos(�t � u)

sin �t,cos �t
B sin �t,A cos �t

sin(�t � 180�) � �sin �t,�sin �t,sin �t
180�cos(�t � 90�) � sin �t.sin �t,cos �t

90�
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Figure 9.3
A graphical means of relating cosine
and sine: (a) 
(b) sin(�t � 180�) � �sin �t.

cos(�t � 90�) � sin �t,

Figure 9.4
(a) Adding and (b) adding and �4 sin �t.3 cos �tB sin �t,A cos �t
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9.2 Sinusoids 375

Find the amplitude, phase, period, and frequency of the sinusoid

Solution:

The amplitude is 
The phase is 
The angular frequency is 

The period 

The frequency is f �
1

T
� 7.958 Hz.

T �
2 p 
�

�
2 p 

50
� 0.1257 s.

� � 50 rad/s.
f � 10�.

Vm � 12 V.

v(t) � 12 cos(50 t � 10�)

Example 9.1

Practice Problem 9.1Given the sinusoid calculate its amplitude, phase,
angular frequency, period, and frequency.

Answer: 30, 12.57 rad/s, 0.5 s, 2 Hz.�75�,

30 sin(4 p t � 75�),

Example 9.2Calculate the phase angle between and 
State which sinusoid is leading.

Solution:
Let us calculate the phase in three ways. The first two methods use
trigonometric identities, while the third method uses the graphical
approach.

■ METHOD 1 In order to compare and we must express
them in the same form. If we express them in cosine form with pos-
itive amplitudes,

(9.2.1)

and

(9.2.2)

It can be deduced from Eqs. (9.2.1) and (9.2.2) that the phase differ-
ence between and is We can write as

(9.2.3)

Comparing Eqs. (9.2.1) and (9.2.3) shows clearly that leads by

■ METHOD 2 Alternatively, we may express in sine form:

 � 10 sin(�t � 40�) � 10 sin(�t � 10� � 30�)

 v1 � �10 cos(�t � 50�) � 10 sin(�t � 50� � 90�)

v1

30�.v1v2

v2 � 12 cos(�t � 130� � 30�) or v2 � 12 cos(�t � 260�)

v230�.v2v1

v2 � 12 cos(�t � 100�)

v2 � 12 sin(�t � 10�) � 12 cos(�t � 10� � 90�)

v1 � 10 cos(�t � 130�) or v1 � 10 cos(�t � 230�)

v1 � �10 cos(�t � 50�) � 10 cos(�t � 50� � 180�)

v2,v1

12 sin(�t � 10�).
v2 �v1 � �10 cos(�t � 50�)
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But Comparing the two shows that lags 
by This is the same as saying that leads by 

■ METHOD 3 We may regard as simply with a
phase shift of Hence, is as shown in Fig. 9.5. Similarly, 
is with a phase shift of as shown in Fig. 9.5. It is easy
to see from Fig. 9.5 that leads by that is, 90� � 50� � 10�.30�,v1v2

�10�,12 sin �t
v2v1�50�.

�10  cos �tv1

30�.v1v230�.
v2v1v2 � 12 sin(�t � 10�).

376 Chapter 9 Sinusoids and Phasors

50°

10°v1

v2

sin �t 

cos �t 

Figure 9.5
For Example 9.2.

Find the phase angle between

Does lead or lag ?

Answer: leads 

Phasors
Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

9.3

i2.210°, i1

i2i1

i1 � �4 sin(377t � 55�)  and  i2 � 5 cos(377t � 65�)

Practice Problem 9.2

A phasor is a complex number that represents the amplitude and
phase of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources; solutions of such circuits would be intractable oth-
erwise. The notion of solving ac circuits using phasors was first intro-
duced by Charles Steinmetz in 1893. Before we completely define
phasors and apply them to circuit analysis, we need to be thoroughly
familiar with complex numbers.

A complex number z can be written in rectangular form as

(9.14a)

where x is the real part of z; y is the imaginary part of z.
In this context, the variables x and y do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless, we note that there are some
resemblances between manipulating complex numbers and manipulat-
ing two-dimensional vectors.

The complex number z can also be written in polar or exponential
form as

(9.14b)z � r lf � re jf

j � 1�1;

z � x � jy

Charles Proteus Steinmetz (1865–1923)
was a German-Austrian mathematician
and electrical engineer.

Appendix B presents a short tutorial on
complex numbers.
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where r is the magnitude of z, and is the phase of z. We notice that
z can be represented in three ways:

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and
y, we can get r and as

(9.16a)

On the other hand, if we know r and we can obtain x and y as

(9.16b)

Thus, z may be written as

(9.17)

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

the following operations are important.
Addition:

(9.18a)z1 � z2 � (x1 � x2) � j( y1 � y2)

z2 � x2 � jy2 � r2 lf2

z � x � jy � r lf,  z1 � x1 � jy1 � r1 lf1

z � x � jy � r lf � r ( cos f � j sin f)

x � r cos f,  y � r sin f

f,

r � 2x 
2 � y 

2,  f �  tan 
�1 

y

x

f

 z � re 
j f    Exponential form

 z � r lf   Polar form

 z � x � jy   Rectangular form

f

9.3 Phasors 377

Charles Proteus Steinmetz (1865–1923), a German-Austrian
mathematician and engineer, introduced the phasor method (covered in
this chapter) in ac circuit analysis. He is also noted for his work on the
theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the
age of one. As a youth, he was forced to leave Germany because of
his political activities just as he was about to complete his doctoral dis-
sertation in mathematics at the University of Breslau. He migrated to
Switzerland and later to the United States, where he was employed by
General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first
time. This led to one of his many textbooks, Theory and Calculation
of ac Phenomena, published by McGraw-Hill in 1897. In 1901, he
became the president of the American Institute of Electrical Engineers,
which later became the IEEE.

Historical
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Figure 9.6
Representation of a complex number 
x � jy � r lf.
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Subtraction:

(9.18b)

Multiplication:

(9.18c)

Division:

(9.18d)

Reciprocal:

(9.18e)

Square Root:

(9.18f)

Complex Conjugate:

(9.18g)

Note that from Eq. (9.18e),

(9.18h)

These are the basic properties of complex numbers we need. Other
properties of complex numbers can be found in Appendix B.

The idea of phasor representation is based on Euler’s identity. In
general,

(9.19)

which shows that we may regard and as the real and imag-
inary parts of we may write

(9.20a)

(9.20b)

where Re and Im stand for the real part of and the imaginary part of.
Given a sinusoid we use Eq. (9.20a) to express

as

(9.21)

or

(9.22)

Thus,

(9.23)

where

(9.24)V � Vm 
e 

jf � Vm lf

v(t) � Re(Ve 
j�t)

v(t) � Re(Vme  
jfe  

j�t)

v(t) � Vm cos(�t � f) � Re(Vme  
j(�t�f))

v(t)
v(t) � Vm cos(�t � f),

 sin  f � Im(e  
jf)

 cos f � Re(e  
jf)

e 
jf;

sin fcos f

e 
� j f �  cos f � j sin f

1

j
� �j

z* � x � jy � rl�f � re�jf

2z � 2r lf�2

1
z

�
1
r
 l�f

z1

z2
�

r1

r2
 lf1 � f2

z1z2 � r1r2 lf1 � f2

z1 � z2 � (x1 � x2) � j(y1 � y2)

378 Chapter 9 Sinusoids and Phasors
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V is thus the phasor representation of the sinusoid as we said ear-
lier. In other words, a phasor is a complex representation of the mag-
nitude and phase of a sinusoid. Either Eq. (9.20a) or Eq. (9.20b) can
be used to develop the phasor, but the standard convention is to use
Eq. (9.20a).

One way of looking at Eqs. (9.23) and (9.24) is to consider the plot
of the sinor on the complex plane. As time increases,
the sinor rotates on a circle of radius at an angular velocity in the
counterclockwise direction, as shown in Fig. 9.7(a). We may regard 
as the projection of the sinor on the real axis, as shown in
Fig. 9.7(b). The value of the sinor at time is the phasor V of the
sinusoid The sinor may be regarded as a rotating phasor. Thus, when-
ever a sinusoid is expressed as a phasor, the term is implicitly pres-
ent. It is therefore important, when dealing with phasors, to keep in mind
the frequency of the phasor; otherwise we can make serious mistakes.�

e 
j�t

v(t).
t � 0

Ve 
j�t

v(t)
�Vm

Ve 
j�t � Vm 

e 
j(�t�f)

v(t),
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A phasor may be regarded as a mathe-
matical equivalent of a sinusoid with
the time dependence dropped.

If we use sine for the phasor instead of
cosine, then v (t) Vm sin( t )
Im(Vme j( t )) and the corresponding
phasor is the same as that in Eq. (9.24).

�f�
�� f��

Rotation at � rad s

at t = t0

�Vm

Re

Im

t0

t

Vm

–Vm

v(t) = Re(Ve j�t )

(a) (b)

Figure 9.7
Representation of (a) sinor rotating counterclockwise, (b) its projection
on the real axis, as a function of time.

Ve 
j�t:

Equation (9.23) states that to obtain the sinusoid corresponding to
a given phasor V, multiply the phasor by the time factor and take
the real part. As a complex quantity, a phasor may be expressed in rec-
tangular form, polar form, or exponential form. Since a phasor has
magnitude and phase (“direction”), it behaves as a vector and is printed
in boldface. For example, phasors and are
graphically represented in Fig. 9.8. Such a graphical representation of
phasors is known as a phasor diagram.

Equations (9.21) through (9.23) reveal that to get the phasor cor-
responding to a sinusoid, we first express the sinusoid in the cosine
form so that the sinusoid can be written as the real part of a complex
number. Then we take out the time factor and whatever is left is
the phasor corresponding to the sinusoid. By suppressing the time fac-
tor, we transform the sinusoid from the time domain to the phasor
domain. This transformation is summarized as follows:

(9.25)
(Time-domain (Phasor-domain
representation) representation)

v(t) � Vm cos(�t � f)  3   V � Vmlf

e 
j�t,

I � Im l�uV � Vm lf

e 
j�t

We use lightface italic letters such as
z to represent complex numbers but
boldface letters such as V to represent
phasors, because phasors are vector-
like quantities.
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Given a sinusoid we obtain the corre-
sponding phasor as Equation (9.25) is also demonstrated
in Table 9.1, where the sine function is considered in addition to the
cosine function. From Eq. (9.25), we see that to get the phasor repre-
sentation of a sinusoid, we express it in cosine form and take the
magnitude and phase. Given a phasor, we obtain the time domain
representation as the cosine function with the same magnitude as the
phasor and the argument as plus the phase of the phasor. The idea
of expressing information in alternate domains is fundamental to all
areas of engineering.

�t

V � Vm lf.
v(t) � Vm cos(�t � f),

380 Chapter 9 Sinusoids and Phasors

TABLE 9.1

Sinusoid-phasor transformation.

Time domain representation Phasor domain representation

Im lu � 90�Im sin(�t � u)

Im luIm cos(�t � u)

Vm lf � 90�Vm sin(�t � f)

Vm lfVm cos(�t � f)

Note that in Eq. (9.25) the frequency (or time) factor is sup-
pressed, and the frequency is not explicitly shown in the phasor domain
representation because is constant. However, the response depends
on For this reason, the phasor domain is also known as the frequency
domain.

From Eqs. (9.23) and (9.24), 
so that

(9.26)
 � Re(�Vme 

j�te 
jfe 

j 90�) � Re( j�Ve 
j�t)

 
dv
dt

� ��Vm sin(�t � f) � �Vm cos(�t � f � 90�)

(�t � f),v(t) � Re(Ve 
j�t) � Vm cos

�.
�

e 
j�t

Lagging direction

Leading direction

Real axis

Imaginary axis

Vm

Im

�

�

V

I

–�

�

Figure 9.8
A phasor diagram showing and I � Im l�u .V � Vm lf
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This shows that the derivative is transformed to the phasor domain
as 

(9.27)

(Time domain) (Phasor domain)

Similarly, the integral of is transformed to the phasor domain
as

(9.28)

(Time domain) (Phasor domain)

Equation (9.27) allows the replacement of a derivative with respect
to time with multiplication of in the phasor domain, whereas
Eq. (9.28) allows the replacement of an integral with respect to time
with division by in the phasor domain. Equations (9.27) and (9.28)
are useful in finding the steady-state solution, which does not require
knowing the initial values of the variable involved. This is one of the
important applications of phasors.

Besides time differentiation and integration, another important
use of phasors is found in summing sinusoids of the same fre-
quency. This is best illustrated with an example, and Example 9.6
provides one.

The differences between and V should be emphasized:

1. is the instantaneous or time domain representation, while is
the frequency or phasor domain representation.

2. is time dependent, while is not. (This fact is often forgot-
ten by students.)

3. is always real with no complex term, while is generally
complex.

Finally, we should bear in mind that phasor analysis applies only when
frequency is constant; it applies in manipulating two or more sinusoidal
signals only if they are of the same frequency.

Vv(t)

Vv(t)

Vv(t)

v(t)

j�

j�

V
j�

3�  v dt

V�j�
v(t)

j�V3
dv
dt

j�V
v(t)

9.3 Phasors 381

Differentiating a sinusoid is equivalent
to multiplying its corresponding phasor
by j .�

Integrating a sinusoid is equivalent to
dividing its corresponding phasor
by j .�

Adding sinusoids of the same fre-
quency is equivalent to adding their
corresponding phasors.

Evaluate these complex numbers:

(a) 

(b) 

Solution:

(a) Using polar to rectangular transformation,

Adding them up gives

40l50� � 20l�30� � 43.03 � j20.64 � 47.72l25.63�

20l�30� � 20[cos(�30�) � j sin(�30�)] � 17.32 � j10

40l50� � 40(cos 50� � j sin 50�) � 25.71 � j30.64

10l�30� � (3 � j4)

(2 � j4)(3 � j5)*

(40l50� � 20l�30�)1�2

Example 9.3
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Taking the square root of this,

(b) Using polar-rectangular transformation, addition, multiplication,
and division,

 � 0.565l�160.13�

 �
11.66 � j9

�14 � j22
�

14.73l�37.66�

26.08l122.47�

 
10l�30� � (3 � j4)

(2 � j4)(3 � j5)*
�

8.66 � j5 � (3 � j4)

(2 � j4)(3 � j5)

(40l50� � 20l�30�) 
1�2 � 6.91l12.81�

382 Chapter 9 Sinusoids and Phasors

Evaluate the following complex numbers:

(a) 

(b) 

Answer: (a) (b) 8.293 � j7.2.�15.5 � j13.67,

10 � j5 � 3l40�

�3 � j 4
� 10l30� � j5

[(5 � j2)(�1 � j4) � 5l60�]*

Practice Problem 9.3

Transform these sinusoids to phasors:

(a) 
(b) 

Solution:

(a) has the phasor

(b) Since 

The phasor form of is

V � 4l140� V

v

 � 4 cos(30t � 140�) V

 v � �4 sin(30t � 50�) � 4 cos(30t � 50� � 90�)

�sin  A � cos(A � 90�),

I � 6 l�40� A

i � 6 cos(50t � 40�)

v � �4 sin(30t � 50�) V
i � 6 cos(50t � 40�) A

Example 9.4

Express these sinusoids as phasors:

(a) 
(b) 

Answer: (a) (b) I � 4l100� A.V � 7l40� V,

i � �4 sin(10t � 10�) A
v � 7 cos(2t � 40�) V

Practice Problem 9.4
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9.3 Phasors 383

Find the sinusoids represented by these phasors:

(a) 
(b) 

Solution:

(a) Transforming this to the time domain
gives

(b) Since 

Converting this to the time domain gives

v(t) � 8 cos(�t � 70�) V

 � 8l90� � 20� � 8l70� V

 V � j8l�20� � (1l90�)(8l�20�)

j � 1l90�,

i(t) � 5 cos(�t � 126.87�) A

I � �3 � j 4 � 5l126.87�.

V � j8e�j20� V
I � �3 � j4 A

Example 9.5

Find the sinusoids corresponding to these phasors:

(a) 
(b) 

Answer: (a) 
(b) i(t) � 13 cos(vt � 67.38�) A.

v(t) � 25 cos(vt � 140�) V or 25 cos(vt � 220�) V,

I � j(12 � j5) A
V � �25l40� V

Practice Problem 9.5

Example 9.6Given and find
their sum.

Solution:
Here is an important use of phasors—for summing sinusoids of the
same frequency. Current is in the standard form. Its phasor is

We need to express in cosine form. The rule for converting sine
to cosine is to subtract Hence,

and its phasor is

If we let then

 � 3.218l�56.97� A

 � 3.464 � j2 � 1.71 � j4.698 � 1.754 � j2.698

 I � I1 � I2 � 4l30� � 5l�110�

i � i1 � i2,

I2 � 5l�110�

i2 � 5 cos(�t � 20� � 90�) � 5 cos(�t � 110�)

90�.
i2(t)

I1 � 4l30�

i1(t)

i2(t) � 5 sin(�t � 20�) A,i1(t) � 4 cos(�t � 30�) A
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Transforming this to the time domain, we get

Of course, we can find using Eq. (9.9), but that is the hard way.i1 � i2

i(t) � 3.218 cos(�t � 56.97�) A

384 Chapter 9 Sinusoids and Phasors

Practice Problem 9.6 If and find 

Answer: v(t) � 29.77 cos(�t � 49.98�) V.

v1 � v2.
v �v2 � 20 cos(�t � 45�) V,v1 � �10 sin(�t � 30�) V

Example 9.7

Find the voltage in a circuit described by the integrodifferential
equation

using the phasor approach.

Answer: v(t) � 5.3 cos(5t � 88�) V.

2 

dv
dt

� 5v � 10 �  v dt � 50 cos(5t � 30�)

v(t)Practice Problem 9.7

Using the phasor approach, determine the current in a circuit
described by the integrodifferential equation

Solution:
We transform each term in the equation from time domain to phasor
domain. Keeping Eqs. (9.27) and (9.28) in mind, we obtain the phasor
form of the given equation as

But so

Converting this to the time domain,

Keep in mind that this is only the steady-state solution, and it does not
require knowing the initial values.

i(t) � 4.642 cos(2t � 143.2�) A

I �
50l75�

4 � j10
�

50l75�

10.77l�68.2�
� 4.642l143.2� A

I(4 � j4 � j6) � 50l75�

� � 2,

4I �
8I
j�

� 3j�I � 50l75�

4i � 8 �  i dt � 3 

di

dt
� 50 cos(2t � 75�)

i(t)
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Phasor Relationships
for Circuit Elements

Now that we know how to represent a voltage or current in the pha-
sor or frequency domain, one may legitimately ask how we apply this
to circuits involving the passive elements R, L, and C. What we need
to do is to transform the voltage-current relationship from the time
domain to the frequency domain for each element. Again, we will
assume the passive sign convention.

We begin with the resistor. If the current through a resistor R is
the voltage across it is given by Ohm’s law as

(9.29)

The phasor form of this voltage is

(9.30)

But the phasor representation of the current is Hence,

(9.31)

showing that the voltage-current relation for the resistor in the phasor
domain continues to be Ohm’s law, as in the time domain. Figure 9.9
illustrates the voltage-current relations of a resistor. We should note
from Eq. (9.31) that voltage and current are in phase, as illustrated in
the phasor diagram in Fig. 9.10.

For the inductor L, assume the current through it is 
The voltage across the inductor is

(9.32)

Recall from Eq. (9.10) that We can write the
voltage as

(9.33)

which transforms to the phasor

(9.34)

But and from Eq. (9.19), Thus,

(9.35)

showing that the voltage has a magnitude of and a phase of
The voltage and current are out of phase. Specifically, the

current lags the voltage by Figure 9.11 shows the voltage-current
relations for the inductor. Figure 9.12 shows the phasor diagram.

For the capacitor C, assume the voltage across it is 
The current through the capacitor is

(9.36)

By following the same steps as we took for the inductor or by apply-
ing Eq. (9.27) on Eq. (9.36), we obtain

(9.37)I � j�C V  1  V �
I

j�C

i � C 

dv
dt

Vm cos(�t � f).
v �

90�.
90�f � 90�.

�LIm

V � j�LI

e 
j90� � j.� I,Im lf

V � �LIm e 
j(f�90�) � �LIme 

jf e 
j90� � �LIm lf � 90�

v � �LIm cos(�t � f � 90�)

�sin  A � cos(A � 90�).

v � L 

di

dt
� ��LIm sin(�t � f)

Im cos(�t � f).
i �

V � R I

I � Im lf.

V � RIm lf

v � iR � RIm cos(�t � f)

i � Im cos(�t � f),

9.4

9.4 Phasor Relationships for Circuit Elements 385

(a)

i

v

+

−

R

v = iR

(b)

I

V

+

−

R

V = IR

Figure 9.9
Voltage-current relations for a resistor in
the: (a) time domain, (b) frequency domain.

I

�

V

0 Re

Im

Figure 9.10
Phasor diagram for the resistor.

Although it is equally correct to say
that the inductor voltage leads the cur-
rent by , convention gives the current
phase relative to the voltage.

90�

i

v

+

−

L

v = L di
dt

(a)

I

V

+

−

L

V = j�LI 

(b)

Figure 9.11
Voltage-current relations for an inductor in
the: (a) time domain, (b) frequency domain.

�

Re

Im

V
I

0

�

Figure 9.12
Phasor diagram for the inductor; 
I lags V.

ale80571_ch09_368-412.qxd  12/2/11  3:48 PM  Page 385



showing that the current and voltage are out of phase. To be spe-
cific, the current leads the voltage by Figure 9.13 shows the voltage-
current relations for the capacitor; Fig. 9.14 gives the phasor diagram.
Table 9.2 summarizes the time domain and phasor domain representa-
tions of the circuit elements.

90�.
90�

386 Chapter 9 Sinusoids and Phasors

i

v

+

−

C

(a)

i = C dv
dt

I

V

+

−

C

(b)

I = j�C V 

Figure 9.13
Voltage-current relations for
a capacitor in the: (a) time
domain, (b) frequency
domain.

�

Re

Im

I
V

0

�

Figure 9.14
Phasor diagram for the capacitor; I
leads V.

TABLE 9.2

Summary of voltage-current relationships.

Element Time domain Frequency domain

R

L

C V �
I

j�C
i � C 

dv
dt

V � j�LIv � L 

di

dt

V � RIv � Ri

Example 9.8 The voltage is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.

Solution:
For the inductor, where and 
Hence,

Converting this to the time domain,

i(t) � 2 cos(60t � 45�) A

I �
V

j�L
�

12l45�

j60 	 0.1
�

12l45�

6l90�
� 2l�45� A

V � 12l45� V.� � 60 rad/sV � j�LI,

v � 12 cos(60t � 45�)

Practice Problem 9.8 If voltage is applied to a capacitor, cal-
culate the current through the capacitor.

Answer: 50 cos(100t � 120�) mA.

50 mFv � 10 cos(100t � 30�)
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Impedance and Admittance
In the preceding section, we obtained the voltage-current relations for
the three passive elements as

(9.38)

These equations may be written in terms of the ratio of the phasor volt-
age to the phasor current as

(9.39)

From these three expressions, we obtain Ohm’s law in phasor form for
any type of element as

(9.40)

where Z is a frequency-dependent quantity known as impedance, mea-
sured in ohms.

Z �
V
I
  or  V � ZI

V
I

� R,  
V
I

� j�L,  
V
I

�
1

j�C

V � RI,  V � j�LI,  V �
I

j�C

9.5

9.5 Impedance and Admittance 387

The impedance represents the opposition that the circuit exhibits to
the flow of sinusoidal current. Although the impedance is the ratio of
two phasors, it is not a phasor, because it does not correspond to a sinu-
soidally varying quantity.

The impedances of resistors, inductors, and capacitors can be
readily obtained from Eq. (9.39). Table 9.3 summarizes their imped-
ances. From the table we notice that and 
Consider two extreme cases of angular frequency. When (i.e.,
for dc sources), and confirming what we already
know—that the inductor acts like a short circuit, while the capacitor
acts like an open circuit. When (i.e., for high frequencies),

and indicating that the inductor is an open circuit
to high frequencies, while the capacitor is a short circuit. Figure 9.15
illustrates this.

As a complex quantity, the impedence may be expressed in rec-
tangular form as

(9.41)

where is the resistance and is the reactance. The
reactance X may be positive or negative. We say that the impedance is
inductive when X is positive or capacitive when X is negative. Thus,
impedance is said to be inductive or lagging since current
lags voltage, while impedance is capacitive or leading
because current leads voltage. The impedance, resistance, and reactance
are all measured in ohms. The impedance may also be expressed in
polar form as

(9.42)Z � 0Z 0  lu

Z � R � jX
Z � R � jX

X � Im ZR � Re Z

Z � R � jX

ZC � 0,ZL S 

� S 


ZC S 
,ZL � 0
� � 0

ZC � �j��C.ZL � j�L

TABLE 9.3

Impedances and admittances
of passive elements.

Element Impedance Admittance

R

L

C Y � j�CZ �
1

j�C

Y �
1

j�L
Z � j�L

Y �
1

R
Z � R

Short circuit at dc

Open circuit at
high frequencies

(a)

Open circuit at dc

Short circuit at
high frequencies

(b)

L

C

Figure 9.15
Equivalent circuits at dc and high
frequencies: (a) inductor, (b) capacitor.

The impedance Z of a circuit is the ratio of the phasor voltage V to the
phasor current I, measured in ohms ( ).�
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Comparing Eqs. (9.41) and (9.42), we infer that

(9.43)

where

(9.44)

and

(9.45)

It is sometimes convenient to work with the reciprocal of imped-
ance, known as admittance.

R � 0Z 0  cos u,  X � 0Z 0  sin u

0Z 0 � 2R 
2 � X 

2,  u �  tan�1 
X

R

Z � R � jX � 0Z 0lu

388 Chapter 9 Sinusoids and Phasors

The admittance Y is the reciprocal of impedance, measured in
siemens (S).

The admittance of an element (or a circuit) is the ratio of the pha-
sor current through it to the phasor voltage across it, or

(9.46)

The admittances of resistors, inductors, and capacitors can be obtained
from Eq. (9.39). They are also summarized in Table 9.3.

As a complex quantity, we may write Y as

(9.47)

where is called the conductance and is called
the susceptance. Admittance, conductance, and susceptance are
all expressed in the unit of siemens (or mhos). From Eqs. (9.41)
and (9.47),

(9.48)

By rationalization,

(9.49)

Equating the real and imaginary parts gives

(9.50)

showing that as it is in resistive circuits. Of course, if 
then G � 1�R.

X � 0,G � 1�R

G �
R

R 
2 � X 

2 ,  B � � 

X

R 
2 � X 

2

G � jB �
1

R � jX
�

R � jX

R � jX
�

R � jX

R 
2 � X 

2

G � jB �
1

R � jX

B � Im YG � Re Y

Y � G � jB

Y �
1

Z
�

I
V

Y

ale80571_ch09_368-412.qxd  12/2/11  3:48 PM  Page 388



9.6 Kirchhoff’s Laws in the Frequency Domain 389

Example 9.9

+
−

i

+

−

5 Ω

v0.1 Fvs = 10 cos 4t

Figure 9.16
For Example 9.9.

Practice Problem 9.9

Kirchhoff’s Laws in the
Frequency Domain

We cannot do circuit analysis in the frequency domain without Kirch-
hoff’s current and voltage laws. Therefore, we need to express them in
the frequency domain.

For KVL, let be the voltages around a closed loop.
Then

(9.51)

In the sinusoidal steady state, each voltage may be written in cosine
form, so that Eq. (9.51) becomes

(9.52)
 � p � Vmn cos(�t � un) � 0

 Vm1 cos(�t � u1) � Vm2 cos(�t � u2)

v1 � v2 � p � vn � 0

v1, v2, p  , vn

9.6

+
−

i 4 Ω

v0.2 Hvs = 20 sin(10t + 30°) V

+

−

Figure 9.17
For Practice Prob. 9.9.

Find and in the circuit shown in Fig. 9.16.

Solution:
From the voltage source 

The impedance is

Hence the current

(9.9.1)

The voltage across the capacitor is

(9.9.2)

Converting I and V in Eqs. (9.9.1) and (9.9.2) to the time domain, we get

Notice that leads by as expected.90�v(t)i(t)

v(t) � 4.47 cos(4t � 63.43�) V

i(t) � 1.789 cos(4t � 26.57�) A

 �
1.789l26.57�

0.4l90�
� 4.47l�63.43� V

 V � IZC �
I

j�C
�

1.789l26.57�

j4 	 0.1

 � 1.6 � j0.8 � 1.789l26.57� A

 I �
Vs

Z
�

10l0�

5 � j2.5
�

10(5 � j2.5)

52 � 2.52

Z � 5 �
1

j�C
� 5 �

1

j4 	 0.1
� 5 � j2.5 �

Vs � 10 l0� V

� � 4,10 cos 4t,

i(t)v(t)

Refer to Fig. 9.17. Determine and 

Answer: 4.472 sin(10t � 3.43�) A.8.944 sin(10t � 93.43�) V,

i(t).v(t)
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