
24 Exception Handling: A
Deeper Look

It is common sense to take a
method and try it. If it fails,
admit it frankly and try
another. But above all, try
something.
—Franklin Delano Roosevelt

If they’re running and they don’t
look where they’re going
I have to come out from
somewhere and catch them.
—Jerome David Salinger

O b j e c t i v e s
In this chapter you’ll learn:

■ To use try, catch and
throw to detect, handle and
indicate exceptions,
respectively.

■ To process uncaught and
unexpected exceptions.

■ To declare new exception
classes.

■ How stack unwinding
enables exceptions not
caught in one scope to be
caught in another.

■ To handle new failures.

■ To use unique_ptr to
prevent memory leaks.

■ To understand the standard
exception hierarchy.

24.1 Introduction 877

24.1 Introduction
As you know, an exception is an indication of a problem that occurs during a program’s
execution. Exception handling enables you to create applications that can resolve (or han-
dle) exceptions. In many cases, handling an exception allows a program to continue exe-
cuting as if no problem had been encountered. The features presented in this chapter
enable you to write robust and fault-tolerant programs that can deal with problems con-
tinue executing or terminate gracefully.

We begin with a review of exception-handling concepts via an example that demon-
strates handling an exception that occurs when a function attempts to divide by zero. We
show how to handle exceptions that occur in a constructor or destructor and exceptions
that occur if operator new fails to allocate memory for an object. We introduce several C++
Standard Library exception handling classes.

24.2 Example: Handling an Attempt to Divide by Zero
Let’s consider a simple example of exception handling (Figs. 24.1–24.2). We show how to
deal with a common arithmetic problem—division by zero. In C++, division by zero using
integer arithmetic typically causes a program to terminate prematurely. In floating-point
arithmetic, some C++ implementations allow division by zero, in which case a result of
positive or negative infinity is displayed as INF or -INF, respectively.

In this example, we define a function named quotient that receives two integers input
by the user and divides its first int parameter by its second int parameter. Before per-
forming the division, the function casts the first int parameter’s value to type double.
Then, the second int parameter’s value is (implicitly) promoted to type double for the
calculation. So function quotient actually performs the division using two double values
and returns a double result.

24.1 Introduction

24.2 Example: Handling an Attempt to
Divide by Zero

24.3 When to Use Exception Handling

24.4 Rethrowing an Exception

24.5 Processing Unexpected Exceptions

24.6 Stack Unwinding

24.7 Constructors, Destructors and
Exception Handling

24.8 Exceptions and Inheritance
24.9 Processing new Failures

24.10 Class unique_ptr and Dynamic
Memory Allocation

24.11 Standard Library Exception Hierarchy
24.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 24.1
Exception handling provides a standard mechanism for processing errors. This is especially
important when working on a project with a large team of programmers.

Software Engineering Observation 24.2
Incorporate your exception-handling strategy into your system from inception. Including
effective exception handling after a system has been implemented can be difficult.

878 Chapter 24 Exception Handling: A Deeper Look

Although division by zero is often allowed in floating-point arithmetic, for the pur-
pose of this example we treat any attempt to divide by zero as an error. Thus, function
quotient tests its second parameter to ensure that it isn’t zero before allowing the division
to proceed. If the second parameter is zero, the function throws an exception to indicate
to the caller that a problem occurred. The caller (main in this example) can then process
the exception and allow the user to type two new values before calling function quotient
again. In this way, the program can continue executing even after an improper value is
entered, thus making the program more robust.

The example consists of two files. DivideByZeroException.h (Fig. 24.1) defines an
exception class that represents the type of the problem that might occur in the example, and
fig24_02.cpp (Fig. 24.2) defines the quotient function and the main function that calls
it. Function main contains the code that demonstrates exception handling.

Defining an Exception Class to Represent the Type of Problem That Might Occur
Figure 24.1 defines class DivideByZeroException as a derived class of Standard Library class
runtime_error (defined in header <stdexcept>). Class runtime_error—a derived class of
Standard Library class exception (defined in header <exception>)—is the C++ standard
base class for representing runtime errors. Class exception is the standard C++ base class for
all exceptions. (Section 24.11 discusses class exception and its derived classes in detail.) A
typical exception class that derives from the runtime_error class defines only a constructor
(e.g., lines 12–13) that passes an error-message string to the base-class runtime_error con-
structor. Every exception class that derives directly or indirectly from exception contains the
virtual function what, which returns an exception object’s error message. You’re not re-
quired to derive a custom exception class, such as DivideByZeroException, from the stan-
dard exception classes provided by C++. However, doing so allows you to use the virtual
function what to obtain an appropriate error message. We use an object of this DivideBy-
ZeroException class in Fig. 24.2 to indicate when an attempt is made to divide by zero.

Demonstrating Exception Handling
Figure 24.2 uses exception handling to wrap code that might throw a “divide-by-zero” ex-
ception and to handle that exception, should one occur. The user enters two integers, which
are passed as arguments to function quotient (lines 10–18). This function divides its first

1 // Fig. 24.1: DivideByZeroException.h
2 // Class DivideByZeroException definition.
3
4 using namespace std;
5
6 // DivideByZeroException objects should be thrown by functions
7 // upon detecting division-by-zero exceptions
8 class DivideByZeroException :
9 {

10 public:
11 // constructor specifies default error message
12 DivideByZeroException()
13 : {}
14 }; // end class DivideByZeroException

Fig. 24.1 | Class DivideByZeroException definition.

#include <stdexcept> // stdexcept header contains runtime_error

public runtime_error

runtime_error("attempted to divide by zero")

24.2 Example: Handling an Attempt to Divide by Zero 879

parameter (numerator) by its second parameter (denominator). Assuming that the user does
not specify 0 as the denominator for the division, function quotient returns the division re-
sult. If the user inputs 0 for the denominator, quotient throws an exception. In the sample
output, the first two lines show a successful calculation, and the next two show a failure due
to an attempt to divide by zero. When the exception occurs, the program informs the user
of the mistake and prompts the user to input two new integers. After we discuss the code,
we’ll consider the user inputs and flow of program control that yield these outputs.

1 // Fig. 24.2: fig24_02.cpp
2 // A simple exception-handling example that checks for
3 // divide-by-zero exceptions.
4 #include <iostream>
5
6 using namespace std;
7
8 // perform division and throw DivideByZeroException object if
9 // divide-by-zero exception occurs

10 double quotient(int numerator, int denominator)
11 {
12 // throw DivideByZeroException if trying to divide by zero
13 if (denominator == 0)
14
15
16 // return division result
17 return static_cast< double >(numerator) / denominator;
18 } // end function quotient
19
20 int main()
21 {
22 int number1; // user-specified numerator
23 int number2; // user-specified denominator
24 double result; // result of division
25
26 cout << "Enter two integers (end-of-file to end): ";
27
28 // enable user to enter two integers to divide
29 while (cin >> number1 >> number2)
30 {
31
32
33
34
35
36
37
38
39
40
41
42

Fig. 24.2 | Exception-handling example that throws exceptions on attempts to divide by zero.
(Part 1 of 2.)

#include "DivideByZeroException.h" // DivideByZeroException class

throw DivideByZeroException(); // terminate function

// try block contains code that might throw exception
// and code that will not execute if an exception occurs
try
{
 result = quotient(number1, number2);
 cout << "The quotient is: " << result << endl;
} // end try
catch (DivideByZeroException ÷ByZeroException)
{
 cout << "Exception occurred: "
 << divideByZeroException.what() << endl;
} // end catch

880 Chapter 24 Exception Handling: A Deeper Look

Enclosing Code in a try Block
The program begins by prompting the user to enter two integers. The integers are input in
the condition of the while loop (line 29). Line 35 passes the values to function quotient
(lines 10–18), which either divides the integers and returns a result, or throws an exception
(i.e., indicates that an error occurred) on an attempt to divide by zero. Exception handling
is geared to situations in which the function that detects an error is unable to handle it.

A try block encloses statements that might cause exceptions and statements that
should be skipped if an exception occurs. The try block in lines 33–37 encloses the invo-
cation of function quotient and the statement that displays the division result. In this
example, because the invocation of function quotient (line 35) can throw an exception,
we enclose this function invocation in a try block. Enclosing the output statement (line
36) in the try block ensures that the output will occur only if function quotient returns
a result.

Defining a catch Handler to Process a DivideByZeroException
Exceptions are processed by catch handlers. At least one catch handler (lines 38–42) must
immediately follow each try block. The exception parameter is declared as a reference to
the type of exception the catch handler can process (DivideByZeroException in this
case). When an exception occurs in a try block, the catch handler that executes is the one
whose type matches the type of the exception that occurred (i.e., the type in the catch
block matches the thrown exception type exactly or is a base class of it). If an exception
parameter includes an optional parameter name, the catch handler can use that parameter
name to interact with the caught exception in the body of the catch handler, which is de-
limited by braces ({ and }). A catch handler typically reports the error to the user, logs it
to a file, terminates the program gracefully or tries an alternate strategy to accomplish the

43
44 cout << "\nEnter two integers (end-of-file to end): ";
45 } // end while
46
47 cout << endl;
48 } // end main

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): ^Z

Software Engineering Observation 24.3
Exceptions may surface through explicitly mentioned code in a try block, through calls to
other functions and through deeply nested function calls initiated by code in a try block.

Fig. 24.2 | Exception-handling example that throws exceptions on attempts to divide by zero.
(Part 2 of 2.)

24.2 Example: Handling an Attempt to Divide by Zero 881

failed task. In this example, the catch handler simply reports that the user attempted to
divide by zero. Then the program prompts the user to enter two new integer values.

Termination Model of Exception Handling
If an exception occurs as the result of a statement in a try block, the try block expires (i.e.,
terminates immediately). Next, the program searches for the first catch handler that can
process the type of exception that occurred. The program locates the matching catch by
comparing the thrown exception’s type to each catch’s exception-parameter type until the
program finds a match. A match occurs if the types are identical or if the thrown excep-
tion’s type is a derived class of the exception-parameter type. When a match occurs, the
code contained in the matching catch handler executes. When a catch handler finishes
processing by reaching its closing right brace (}), the exception is considered handled and
the local variables defined within the catch handler (including the catch parameter) go
out of scope. Program control does not return to the point at which the exception occurred
(known as the throw point), because the try block has expired. Rather, control resumes
with the first statement (line 44) after the last catch handler following the try block. This
is known as the termination model of exception handling. Some languages use the re-
sumption model of exception handling, in which, after an exception is handled, control
resumes just after the throw point. As with any other block of code, when a try block ter-
minates, local variables defined in the block go out of scope.

If the try block completes its execution successfully (i.e., no exceptions occur in the
try block), then the program ignores the catch handlers and program control continues
with the first statement after the last catch following that try block.

If an exception that occurs in a try block has no matching catch handler, or if an
exception occurs in a statement that is not in a try block, the function that contains the

Common Programming Error 24.1
It’s a syntax error to place code between a try block and its corresponding catch handlers
or between its catch handlers.

Common Programming Error 24.2
Each catch handler can have only a single parameter—specifying a comma-separated list
of exception parameters is a syntax error.

Common Programming Error 24.3
It’s a logic error to catch the same type in two different catch handlers following a single
try block.

Common Programming Error 24.4
Logic errors can occur if you assume that after an exception is handled, control will return
to the first statement after the throw point.

Error-Prevention Tip 24.1
With exception handling, a program can continue executing (rather than terminating)
after dealing with a problem. This helps ensure the kind of robust applications that con-
tribute to what’s called mission-critical computing or business-critical computing.

882 Chapter 24 Exception Handling: A Deeper Look

statement terminates immediately, and the program attempts to locate an enclosing try
block in the calling function. This process is called stack unwinding and is discussed in
Section 24.6.

Flow of Program Control When the User Enters a Nonzero Denominator
Consider the flow of control when the user inputs the numerator 100 and the denominator
7. In line 13, function quotient determines that the denominator does not equal zero, so
line 17 performs the division and returns the result (14.2857) to line 35 as a double. Pro-
gram control then continues sequentially from line 35, so line 36 displays the division re-
sult—line 37 ends the try block. Because the try block completed successfully and did
not throw an exception, the program does not execute the statements contained in the
catch handler (lines 38–42), and control continues to line 44 (the first line of code after
the catch handler), which prompts the user to enter two more integers.

Flow of Program Control When the User Enters a Denominator of Zero
Now consider the case in which the user inputs the numerator 100 and the denominator
0. In line 13, quotient determines that the denominator equals zero, which indicates an
attempt to divide by zero. Line 14 throws an exception, which we represent as an object
of class DivideByZeroException (Fig. 24.1).

To throw an exception, line 14 uses keyword throw followed by an operand that rep-
resents the type of exception to throw. Normally, a throw statement specifies one operand.
(In Section 24.4, we discuss how to use a throw statement with no operand.) The operand
of a throw can be of any type. If the operand is an object, we call it an exception object—
in this example, the exception object is an object of type DivideByZeroException. How-
ever, a throw operand also can assume other values, such as the value of an expression that
does not result in an object of a class (e.g., throw x > 5) or the value of an int (e.g., throw
5). The examples in this chapter focus exclusively on throwing objects of exception classes.

As part of throwing an exception, the throw operand is created and used to initialize
the parameter in the catch handler, which we discuss momentarily. The throw statement
in line 14 creates a DivideByZeroException object. When line 14 throws the exception,
function quotient exits immediately. So, line 14 throws the exception before function
quotient can perform the division in line 17. This is a central characteristic of exception
handling: A function should throw an exception before the error has an opportunity to occur.

Because we enclosed the call to quotient (line 35) in a try block, program control
enters the catch handler (lines 38–42) that immediately follows the try block. This catch
handler serves as the exception handler for the divide-by-zero exception. In general, when
an exception is thrown within a try block, the exception is caught by a catch handler that
specifies the type matching the thrown exception. In this program, the catch handler spec-
ifies that it catches DivideByZeroException objects—this type matches the object type

Common Programming Error 24.5
Use caution when throwing the result of a conditional expression (?:)—promotion rules
could cause the value to be of a type different from the one expected. For example, when
throwing an int or a double from the same conditional expression, the int is promoted
to a double. So, a catch handler that catches an int would never execute based on such
a conditional expression.

24.3 When to Use Exception Handling 883

thrown in function quotient. Actually, the catch handler catches a reference to the
DivideByZeroException object created by function quotient’s throw statement (line 14),
so that the catch handler does not make a copy of the exception object.

The catch’s body (lines 40–41) prints the error message returned by function what of
base-class runtime_error—i.e., the string that the DivideByZeroException constructor
(lines 12–13 in Fig. 24.1) passed to the runtime_error base-class constructor.

24.3 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes, such as out-of-range array subscripts, arithmetic overflow (i.e., a value outside
the representable range of values), division by zero, invalid function parameters and unsuc-
cessful memory allocation (due to lack of memory). Exception handling is not designed to
process errors associated with asynchronous events (e.g., disk I/O completions, network
message arrivals, mouse clicks and keystrokes), which occur in parallel with, and indepen-
dent of, the program’s flow of control.

Exception handling also is useful for processing problems that occur when a program
interacts with software elements, such as member functions, constructors, destructors and
classes. Such software elements often use exceptions to notify programs when problems
occur. This enables you to implement customized error handling for each application.

Performance Tip 24.1
Catching an exception object by reference eliminates the overhead of copying the object
that represents the thrown exception.

Good Programming Practice 24.1
Associating each type of runtime error with an appropriately named exception object im-
proves program clarity.

Software Engineering Observation 24.4
Exception handling provides a single, uniform technique for processing problems. This
helps programmers on large projects understand each other’s error-processing code.

Software Engineering Observation 24.5
Avoid using exception handling as an alternate form of flow of control. These “additional”
exceptions can “get in the way” of genuine error-type exceptions.

Software Engineering Observation 24.6
Exception handling enables predefined software components to communicate problems to
application-specific components, which can then process the problems in an application-
specific manner.

Performance Tip 24.2
When no exceptions occur, exception-handling code incurs little or no performance penal-
ty. Thus, programs that implement exception handling operate more efficiently than do
programs that intermix error-handling code with program logic.

884 Chapter 24 Exception Handling: A Deeper Look

Complex applications normally consist of predefined software components and appli-
cation-specific components that use the predefined components. When a predefined com-
ponent encounters a problem, that component needs a mechanism to communicate the
problem to the application-specific component—the predefined component cannot know in
advance how each application processes a problem that occurs.

24.4 Rethrowing an Exception
It’s possible that an exception handler, upon receiving an exception, might decide either
that it cannot process that exception or that it can process the exception only partially. In
such cases, the exception handler can defer the exception handling (or perhaps a portion of it)
to another exception handler. In either case, you achieve this by rethrowing the exception
via the statement

Regardless of whether a handler can process an exception, the handler can rethrow the
exception for further processing outside the handler. The next enclosing try block detects
the rethrown exception, which a catch handler listed after that enclosing try block
attempts to handle.

The program of Fig. 24.3 demonstrates rethrowing an exception. In main’s try block
(lines 29–34), line 32 calls function throwException (lines 8–24). The throwException
function also contains a try block (lines 11–15), from which the throw statement in line
14 throws an instance of standard-library-class exception. Function throwException’s
catch handler (lines 16–21) catches this exception, prints an error message (lines 18–19)
and rethrows the exception (line 20). This terminates function throwException and
returns control to line 32 in the try…catch block in main. The try block terminates (so
line 33 does not execute), and the catch handler in main (lines 35–38) catches this excep-
tion and prints an error message (line 37). Since we do not use the exception parameters
in the catch handlers of this example, we omit the exception parameter names and specify
only the type of exception to catch (lines 16 and 35).

Software Engineering Observation 24.7
Functions with common error conditions should return 0 or NULL (or other appropriate
values, such as bools) rather than throw exceptions. A program calling such a function
can check the return value to determine success or failure of the function call.

throw;

Common Programming Error 24.6
Executing an empty throw statement outside a catch handler calls function terminate,
which abandons exception processing and terminates the program immediately.

1 // Fig. 24.3: fig24_03.cpp
2 // Rethrowing an exception.
3 #include <iostream>
4 #include <exception>
5 using namespace std;

Fig. 24.3 | Rethrowing an exception. (Part 1 of 2.)

24.5 Processing Unexpected Exceptions 885

24.5 Processing Unexpected Exceptions
Function unexpected calls the function registered with function set_unexpected (de-
fined in header <exception>). If no function has been registered in this manner, function
terminate is called by default. Cases in which function terminate is called include:

1. the exception mechanism cannot find a matching catch for a thrown exception

2. a destructor attempts to throw an exception during stack unwinding

6
7 // throw, catch and rethrow exception
8 void throwException()
9 {

10 // throw exception and catch it immediately
11 try
12 {
13 cout << " Function throwException throws an exception\n";
14
15 } // end try
16
17 {
18 cout << " Exception handled in function throwException"
19 << "\n Function throwException rethrows exception";
20
21 } // end catch
22
23 cout << "This also should not print\n";
24 } // end function throwException
25
26 int main()
27 {
28 // throw exception
29 try
30 {
31 cout << "\nmain invokes function throwException\n";
32 throwException();
33 cout << "This should not print\n";
34 } // end try
35 catch (exception &) // handle exception
36 {
37 cout << "\n\nException handled in main\n";
38 } // end catch
39
40 cout << "Program control continues after catch in main\n";
41 } // end main

main invokes function throwException
 Function throwException throws an exception
 Exception handled in function throwException
 Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

Fig. 24.3 | Rethrowing an exception. (Part 2 of 2.)

throw exception(); // generate exception

catch (exception &) // handle exception

throw; // rethrow exception for further processing

886 Chapter 24 Exception Handling: A Deeper Look

3. an attempt is made to rethrow an exception when there’s no exception currently
being handled

4. a call to function unexpected defaults to calling function terminate

(Section 15.5.1 of the C++ Standard Document discusses several additional cases.) Func-
tion set_terminate can specify the function to invoke when terminate is called. Other-
wise, terminate calls abort, which terminates the program without calling the destructors of
any remaining objects of automatic or static storage class. This could lead to resource leaks
when a program terminates prematurely.

Function set_terminate and function set_unexpected each return a pointer to the
last function called by terminate and unexpected, respectively (0, the first time each is
called). This enables you to save the function pointer so it can be restored later. Functions
set_terminate and set_unexpected take as arguments pointers to functions with void
return types and no arguments.

If the last action of a programmer-defined termination function is not to exit a pro-
gram, function abort will be called to end program execution.

24.6 Stack Unwinding
When an exception is thrown but not caught in a particular scope, the function call stack
is “unwound,” and an attempt is made to catch the exception in the next outer
try…catch block. Unwinding the function call stack means that the function in which
the exception was not caught terminates, all local variables in that function are destroyed
and control returns to the statement that originally invoked that function. If a try block
encloses that statement, an attempt is made to catch the exception. If a try block does not
enclose that statement, stack unwinding occurs again. If no catch handler ever catches this
exception, function terminate is called to terminate the program. The program of
Fig. 24.4 demonstrates stack unwinding.

Common Programming Error 24.7
Aborting a program component due to an uncaught exception could leave a resource—
such as a file stream or an I/O device—in a state in which other programs are unable to
acquire the resource. This is known as a resource leak.

1 // Fig. 24.4: fig24_04.cpp
2 // Stack unwinding.
3 #include <iostream>
4 #include <stdexcept>
5 using namespace std;
6
7 // function3 throws runtime error
8 void function3()
9 {

10 cout << "In function 3" << endl;
11

Fig. 24.4 | Stack unwinding. (Part 1 of 2.)

throw (runtime_error)

24.6 Stack Unwinding 887

In main, the try block (lines 34–38) calls function1 (lines 24–28). Next, function1
calls function2 (lines 17–21), which in turn calls function3 (lines 8–14). Line 13 of
function3 throws a runtime_error object. However, because no try block encloses the
throw statement in line 13, stack unwinding occurs—function3 terminates at line 13,
then returns control to the statement in function2 that invoked function3 (i.e., line 20).
Because no try block encloses line 20, stack unwinding occurs again—function2 termi-
nates at line 20 and returns control to the statement in function1 that invoked function2
(i.e., line 27). Because no try block encloses line 27, stack unwinding occurs one more
time—function1 terminates at line 27 and returns control to the statement in main that

12 // no try block, stack unwinding occurs, return control to function2
13 throw runtime_error("runtime_error in function3"); // no print
14 } // end function3
15
16 // function2 invokes function3
17 void function2()
18 {
19 cout << "function3 is called inside function2" << endl;
20 function3(); // stack unwinding occurs, return control to function1
21 } // end function2
22
23 // function1 invokes function2
24 void function1()
25 {
26 cout << "function2 is called inside function1" << endl;
27 function2(); // stack unwinding occurs, return control to main
28 } // end function1
29
30 // demonstrate stack unwinding
31 int main()
32 {
33 // invoke function1
34 try
35 {
36 cout << "function1 is called inside main" << endl;
37 function1(); // call function1 which throws runtime_error
38 } // end try
39 catch (runtime_error &error) // handle runtime error
40 {
41 cout << "Exception occurred: " << << endl;
42 cout << "Exception handled in main" << endl;
43 } // end catch
44 } // end main

function1 is called inside main
function2 is called inside function1
function3 is called inside function2
In function 3
Exception occurred: runtime_error in function3
Exception handled in main

Fig. 24.4 | Stack unwinding. (Part 2 of 2.)

throw (runtime_error)

throw (runtime_error)

error.what()

888 Chapter 24 Exception Handling: A Deeper Look

invoked function1 (i.e., line 37). The try block of lines 34–38 encloses this statement,
so the first matching catch handler located after this try block (line 39–43) catches and
processes the exception. Line 41 uses function what to display the exception message.
Recall that function what is a virtual function of class exception that can be overridden
by a derived class to return an appropriate error message.

24.7 Constructors, Destructors and Exception Handling
First, let’s discuss an issue that we’ve mentioned but not yet resolved satisfactorily: What
happens when an error is detected in a constructor? For example, how should an object’s
constructor respond when new fails because it was unable to allocate required memory for
storing that object’s internal representation? Because the constructor cannot return a value
to indicate an error, we must choose an alternative means of indicating that the object has
not been constructed properly. One scheme is to return the improperly constructed object
and hope that anyone using it would make appropriate tests to determine that it’s in an
inconsistent state. Another scheme is to set some variable outside the constructor. The pre-
ferred alternative is to require the constructor to throw an exception that contains the error
information, thus offering an opportunity for the program to handle the failure.

Before an exception is thrown by a constructor, destructors are called for any member
objects built as part of the object being constructed. Destructors are called for every auto-
matic object constructed in a try block before an exception is thrown. Stack unwinding
is guaranteed to have been completed at the point that an exception handler begins exe-
cuting. If a destructor invoked as a result of stack unwinding throws an exception, termi-
nate is called.

If an object has member objects, and if an exception is thrown before the outer object
is fully constructed, then destructors will be executed for the member objects that have
been constructed prior to the occurrence of the exception. If an array of objects has been
partially constructed when an exception occurs, only the destructors for the constructed
objects in the array will be called.

An exception could preclude the operation of code that would normally release a
resource (such as memory or a file), thus causing a resource leak. One technique to resolve
this problem is to initialize a local object to acquire the resource. When an exception
occurs, the destructor for that object will be invoked and can free the resource.

24.8 Exceptions and Inheritance
Various exception classes can be derived from a common base class, as we discussed in
Section 24.2, when we created class DivideByZeroException as a derived class of class
exception. If a catch handler catches a pointer or reference to an exception object of a
base-class type, it also can catch a pointer or reference to all objects of classes publicly de-
rived from that base class—this allows for polymorphic processing of related errors.

Error-Prevention Tip 24.2
When an exception is thrown from the constructor for an object that’s created in a new
expression, the dynamically allocated memory for that object is released.

24.9 Processing new Failures 889

24.9 Processing new Failures
The C++ standard specifies that, when operator new fails, it throws a bad_alloc exception
(defined in header <new>). In this section, we present two examples of new failing. The first
uses the version of new that throws a bad_alloc exception when new fails. The second uses
function set_new_handler to handle new failures. [Note: The examples in Figs. 24.5–24.6
allocate large amounts of dynamic memory, which could cause your computer to become
sluggish.]

new Throwing bad_alloc on Failure
Figure 24.5 demonstrates new throwing bad_alloc on failure to allocate the requested
memory. The for statement (lines 16–20) inside the try block should loop 50 times and,
on each pass, allocate an array of 50,000,000 double values. If new fails and throws a
bad_alloc exception, the loop terminates, and the program continues in line 22, where
the catch handler catches and processes the exception. Lines 24–25 print the message
"Exception occurred:" followed by the message returned from the base-class-exception
version of function what (i.e., an implementation-defined exception-specific message,
such as "Allocation Failure" in Microsoft Visual C++). The output shows that the pro-
gram performed only four iterations of the loop before new failed and threw the bad_alloc
exception. Your output might differ based on the physical memory, disk space available
for virtual memory on your system and the compiler you’re using.

Error-Prevention Tip 24.3
Using inheritance with exceptions enables an exception handler to catch related errors
with concise notation. One approach is to catch each type of pointer or reference to a de-
rived-class exception object individually, but a more concise approach is to catch pointers
or references to base-class exception objects instead. Also, catching pointers or references to
derived-class exception objects individually is error prone, especially if you forget to test
explicitly for one or more of the derived-class pointer or reference types.

1 // Fig. 24.5: fig24_05.cpp
2 // Demonstrating standard new throwing bad_alloc when memory
3 // cannot be allocated.
4 #include <iostream>
5
6 using namespace std;
7
8 int main()
9 {

10 double *ptr[50];
11
12 // aim each ptr[i] at a big block of memory
13 try
14 {
15 // allocate memory for ptr[i]; new throws bad_alloc on failure
16 for (int i = 0; i < 50; ++i)
17 {

Fig. 24.5 | new throwing bad_alloc when memory cannot be allocated. (Part 1 of 2.)

#include <new> // bad_alloc class is defined here

890 Chapter 24 Exception Handling: A Deeper Look

new Returning 0 on Failure
The C++ standard specifies that compilers can use an older version of new that returns 0
upon failure. For this purpose, header <new> defines object nothrow (of type nothrow_t),
which is used as follows:

The preceding statement uses the version of new that does not throw bad_alloc exceptions
(i.e., nothrow) to allocate an array of 50,000,000 doubles.

Handling new Failures Using Function set_new_handler
An additional feature for handling new failures is function set_new_handler (prototyped
in standard header <new>). This function takes as its argument a pointer to a function that
takes no arguments and returns void. This pointer points to the function that will be
called if new fails. This provides you with a uniform approach to handling all new failures,
regardless of where a failure occurs in the program. Once set_new_handler registers a new
handler in the program, operator new does not throw bad_alloc on failure; rather, it de-
fers the error handling to the new-handler function.

If new allocates memory successfully, it returns a pointer to that memory. If new fails
to allocate memory and set_new_handler did not register a new-handler function, new
throws a bad_alloc exception. If new fails to allocate memory and a new-handler function
has been registered, the new-handler function is called. The C++ standard specifies that the
new-handler function should perform one of the following tasks:

1. Make more memory available by deleting other dynamically allocated memory
(or telling the user to close other applications) and return to operator new to at-
tempt to allocate memory again.

18
19 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
20 } // end for
21 } // end try
22 catch ()
23 {
24 cerr << "Exception occurred: "
25 << << endl;
26 } // end catch
27 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
Exception occurred: bad allocation

double *ptr = new(nothrow) double[50000000];

Software Engineering Observation 24.8
To make programs more robust, use the version of new that throws bad_alloc exceptions
on failure.

Fig. 24.5 | new throwing bad_alloc when memory cannot be allocated. (Part 2 of 2.)

ptr[i] = new double[50000000]; // may throw exception

bad_alloc &memoryAllocationException

memoryAllocationException.what()

24.9 Processing new Failures 891

2. Throw an exception of type bad_alloc.

3. Call function abort or exit (both found in header <cstdlib>) to terminate the
program.

Figure 24.6 demonstrates set_new_handler. Function customNewHandler (lines 9–
13) prints an error message (line 11), then calls abort (line 12) to terminate the program.
The output shows that the loop iterated four times before new failed and invoked function
customNewHandler. Your output might differ based on the physical memory and disk
space available for virtual memory on your system and your compiler.

1 // Fig. 24.6: fig24_06.cpp
2 // Demonstrating set_new_handler.
3 #include <iostream>
4
5 #include <cstdlib> // abort function prototype
6 using namespace std;
7
8
9

10
11
12
13
14
15 // using set_new_handler to handle failed memory allocation
16 int main()
17 {
18 double *ptr[50];
19
20
21
22
23
24 // aim each ptr[i] at a big block of memory; customNewHandler will be
25 // called on failed memory allocation
26 for (int i = 0; i < 50; ++i)
27 {
28 ptr[i] = new double[50000000]; // may throw exception
29 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
30 } // end for
31 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
customNewHandler was called
This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

Fig. 24.6 | set_new_handler specifying the function to call when new fails.

#include <new> // set_new_handler function prototype

// handle memory allocation failure
void customNewHandler()
{
 cerr << "customNewHandler was called";
 abort();
} // end function customNewHandler

// specify that customNewHandler should be called on
// memory allocation failure
set_new_handler(customNewHandler);

892 Chapter 24 Exception Handling: A Deeper Look

24.10 Class unique_ptr and Dynamic Memory
Allocation1

A common programming practice is to allocate dynamic memory, assign the address of
that memory to a pointer, use the pointer to manipulate the memory and deallocate the
memory with delete when the memory is no longer needed. If an exception occurs after
successful memory allocation but before the delete statement executes, a memory leak
could occur. The C++ standard provides class template unique_ptr in header <memory> to
deal with this situation.

An object of class unique_ptr maintains a pointer to dynamically allocated memory.
When a unique_ptr object destructor is called (for example, when a unique_ptr object
goes out of scope), it performs a delete operation on its pointer data member. Class tem-
plate unique_ptr provides overloaded operators * and -> so that a unique_ptr object can
be used just as a regular pointer variable is. Figure 24.9 demonstrates a unique_ptr object
that points to a dynamically allocated object of class Integer (Figs. 24.7–24.8).

1. Class unique_ptr is a part of the new C++ standard that’s already implemented in Visual C++ 2010
and GNU C++. This class replaces the deprecated auto_ptr class. To compile this program in GNU
C++, use the -std=C++0x compiler flag.

1 // Fig. 24.7: Integer.h
2 // Integer class definition.
3
4 class Integer
5 {
6 public:
7 Integer(int i = 0); // Integer default constructor
8 ~Integer(); // Integer destructor
9 void setInteger(int i); // functions to set Integer

10 int getInteger() const; // function to return Integer
11 private:
12 int value;
13 }; // end class Integer

Fig. 24.7 | Integer class definition.

1 // Fig. 24.8: Integer.cpp
2 // Member function definitions of class Integer.
3 #include <iostream>
4 #include "Integer.h"
5 using namespace std;
6
7 // Integer default constructor
8 Integer::Integer(int i)
9 : value(i)

10 {
11 cout << "Constructor for Integer " << value << endl;
12 } // end Integer constructor
13

Fig. 24.8 | Member function definitions of class Integer. (Part 1 of 2.)

24.10 Class unique_ptr and Dynamic Memory Allocation 893

Line 15 of Fig. 24.9 creates unique_ptr object ptrToInteger and initializes it with a
pointer to a dynamically allocated Integer object that contains the value 7. Line 18 uses
the unique_ptr overloaded -> operator to invoke function setInteger on the Integer
object that ptrToInteger manages. Line 21 uses the unique_ptr overloaded * operator to
dereference ptrToInteger, then uses the dot (.) operator to invoke function getInteger
on the Integer object. Like a regular pointer, a unique_ptr’s -> and * overloaded opera-
tors can be used to access the object to which the unique_ptr points.

14 // Integer destructor
15 Integer::~Integer()
16 {
17 cout << "Destructor for Integer " << value << endl;
18 } // end Integer destructor
19
20 // set Integer value
21 void Integer::setInteger(int i)
22 {
23 value = i;
24 } // end function setInteger
25
26 // return Integer value
27 int Integer::getInteger() const
28 {
29 return value;
30 } // end function getInteger

1 // Fig. 24.9: fig24_09.cpp
2 // unique_ptr object manages dynamically allocated memory.
3 #include <iostream>
4
5 using namespace std;
6
7 #include "Integer.h"
8
9 // use unique_ptr to manipulate Integer object

10 int main()
11 {
12 cout << "Creating a unique_ptr object that points to an Integer\n";
13
14
15
16
17 cout << "\nUsing the unique_ptr to manipulate the Integer\n";
18
19
20 // use unique_ptr to get Integer value
21 cout << "Integer after setInteger: " <<
22 } // end main

Fig. 24.9 | unique_ptr object manages dynamically allocated memory. (Part 1 of 2.)

Fig. 24.8 | Member function definitions of class Integer. (Part 2 of 2.)

#include <memory>

// "aim" unique_ptr at Integer object
unique_ptr< Integer > ptrToInteger(new Integer(7));

ptrToInteger->setInteger(99); // use unique_ptr to set Integer value

(*ptrToInteger).getInteger()

894 Chapter 24 Exception Handling: A Deeper Look

Because ptrToInteger is a local automatic variable in main, ptrToInteger is
destroyed when main terminates. The unique_ptr destructor forces a delete of the
Integer object pointed to by ptrToInteger, which in turn calls the Integer class
destructor. The memory that Integer occupies is released, regardless of how control leaves
the block (e.g., by a return statement or by an exception). Most importantly, using this
technique can prevent memory leaks. For example, suppose a function returns a pointer
aimed at some object. Unfortunately, the function caller that receives this pointer might
not delete the object, thus resulting in a memory leak. However, if the function returns a
unique_ptr to the object, the object will be deleted automatically when the unique_ptr
object’s destructor gets called.

Only one unique_ptr at a time can own a dynamically allocated object and the object
cannot be an array. By using its overloaded assignment operator or copy constructor, a
unique_ptr can transfer ownership of the dynamic memory it manages. The last
unique_ptr object that maintains the pointer to the dynamic memory will delete the
memory. This makes unique_ptr an ideal mechanism for returning dynamically allocated
memory to client code. When the unique_ptr goes out of scope in the client code, the
unique_ptr’s destructor deletes the dynamic memory.

24.11 Standard Library Exception Hierarchy
Experience has shown that exceptions fall nicely into a number of categories. The C++
Standard Library includes a hierarchy of exception classes, some of which are shown in
Fig. 24.10. As we first discussed in Section 24.2, this hierarchy is headed by base-class ex-
ception (defined in header <exception>), which contains virtual function what, which
derived classes can override to issue appropriate error messages.

Immediate derived classes of base-class exception include runtime_error and
logic_error (both defined in header <stdexcept>), each of which has several derived
classes. Also derived from exception are the exceptions thrown by C++ operators—for
example, bad_alloc is thrown by new (Section 24.9), bad_cast is thrown by dynamic_cast
(Chapter 21) and bad_typeid is thrown by typeid (Chapter 21). Including bad_exception
in the throw list of a function means that, if an unexpected exception occurs, function unex-
pected can throw bad_exception rather than terminating the program’s execution (by
default) or calling another function specified by set_unexpected.

Creating a unique_ptr object that points to an Integer
Constructor for Integer 7

Using the unique_ptr to manipulate the Integer
Integer after setInteger: 99

Destructor for Integer 99

Common Programming Error 24.8
Placing a catch handler that catches a base-class object before a catch that catches an object
of a class derived from that base class is a logic error. The base-class catch catches all objects
of classes derived from that base class, so the derived-class catch will never execute.

Fig. 24.9 | unique_ptr object manages dynamically allocated memory. (Part 2 of 2.)

24.11 Standard Library Exception Hierarchy 895

Class logic_error is the base class of several standard exception classes that indicate
errors in program logic. For example, class invalid_argument indicates that an invalid
argument was passed to a function. (Proper coding can, of course, prevent invalid argu-
ments from reaching a function.) Class length_error indicates that a length larger than
the maximum size allowed for the object being manipulated was used for that object. Class
out_of_range indicates that a value, such as a subscript into an array, exceeded its allowed
range of values.

Class runtime_error, which we used briefly in Section 24.6, is the base class of several
other standard exception classes that indicate execution-time errors. For example, class
overflow_error describes an arithmetic overflow error (i.e., the result of an arithmetic
operation is larger than the largest number that can be stored in the computer) and class
underflow_error describes an arithmetic underflow error (i.e., the result of an arithmetic
operation is smaller than the smallest number that can be stored in the computer).

Fig. 24.10 | Some of the Standard Library exception classes.

Common Programming Error 24.9
Exception classes need not be derived from class exception, so catching type exception is
not guaranteed to catch all exceptions a program could encounter.

Error-Prevention Tip 24.4
To catch all exceptions potentially thrown in a try block, use catch(...). One weak-
ness with catching exceptions in this way is that the type of the caught exception is un-
known at compile time. Another weakness is that, without a named parameter, there’s no
way to refer to the exception object inside the exception handler.

Software Engineering Observation 24.9
The standard exception hierarchy is a good starting point for creating exceptions. You
can build programs that can throw standard exceptions, throw exceptions derived from
the standard exceptions or throw your own exceptions not derived from the standard
exceptions.

exception

logic_errorruntime_error

bad_type_idbad_alloc bad_cast bad_exception

underflow_erroroverflow_error invalid_argument length_error out_of_range

896 Chapter 24 Exception Handling: A Deeper Look

24.12 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors in a pro-
gram. You learned that exception handling enables you to remove error-handling code
from the “main line” of the program’s execution. We demonstrated exception handling in
the context of a divide-by-zero example. We reviewed how to use try blocks to enclose
code that may throw an exception, and how to use catch handlers to deal with exceptions
that may arise. You learned how to throw and rethrow exceptions, and how to handle the
exceptions that occur in constructors. The chapter continued with discussions of process-
ing new failures, dynamic memory allocation with class unique_ptr and the standard li-
brary exception hierarchy.

Software Engineering Observation 24.10
Use catch(...) to perform recovery that does not depend on the exception type (e.g.,
releasing common resources). The exception can be rethrown to alert more specific
enclosing catch handlers.

Summary
Section 24.1 Introduction
• An exception (p. 877) is an indication of a problem that occurs during a program’s execution.

• Exception handling enables you to create programs that can resolve problems that occur at exe-
cution time—often allowing programs to continue executing as if no problems had been encoun-
tered. More severe problems may require a program to notify the user of the problem before
terminating in a controlled manner.

Section 24.2 Example: Handling an Attempt to Divide by Zero
• Class exception is the standard base class for exceptions classes (p. 878). It provides virtual function

what (p. 878) that returns an appropriate error message and can be overridden in derived classes.

• Class runtime_error (p. 878), which is defined in header <stdexcept> (p. 878), is the C++ stan-
dard base class for representing runtime errors.

• C++ uses the termination model (p. 881) of exception handling.

• A try block consists of keyword try followed by braces ({}) that define a block of code in which
exceptions might occur. The try block encloses statements that might cause exceptions and state-
ments that should not execute if exceptions occur.

• At least one catch handler must immediately follow a try block. Each catch handler specifies an
exception parameter that represents the type of exception the catch handler can process.

• If an exception parameter includes an optional parameter name, the catch handler can use that
parameter name to interact with a caught exception object (p. 882).

• The point in the program at which an exception occurs is called the throw point (p. 881).

• If an exception occurs in a try block, the try block expires and program control transfers to the
first catch in which the exception parameter’s type matches that of the thrown exception.

• When a try block terminates, local variables defined in the block go out of scope.

• When a try block terminates due to an exception, the program searches for the first catch han-
dler that matches the type of exception that occurred. A match occurs if the types are identical

 Summary 897

or if the thrown exception’s type is a derived class of the exception-parameter type. When a
match occurs, the code contained within the matching catch handler executes.

• When a catch handler finishes processing, the catch parameter and local variables defined within
the catch handler go out of scope. Any remaining catch handlers that correspond to the try
block are ignored, and execution resumes at the first line of code after the try…catch sequence.

• If no exceptions occur in a try block, the program ignores the catch handler(s) for that block.
Program execution resumes with the next statement after the try…catch sequence.

• If an exception that occurs in a try block has no matching catch handler, or if an exception oc-
curs in a statement that is not in a try block, the function that contains the statement terminates
immediately, and the program attempts to locate an enclosing try block in the calling function.
This process is called stack unwinding (p. 882).

• To throw an exception, use keyword throw followed by an operand that represents the type of
exception to throw. The operand of a throw can be of any type.

Section 24.3 When to Use Exception Handling
• Exception handling is for synchronous errors (p. 883), which occur when a statement executes.

• Exception handling is not designed to process errors associated with asynchronous events
(p. 883), which occur in parallel with, and independent of, the program’s flow of control.

Section 24.4 Rethrowing an Exception
• The exception handler can defer the exception handling (or perhaps a portion of it) to another ex-

ception handler. In either case, the handler achieves this by rethrowing the exception (p. 884).

• Common examples of exceptions are out-of-range array subscripts, arithmetic overflow, division
by zero, invalid function parameters and unsuccessful memory allocations.

Section 24.5 Processing Unexpected Exceptions
• Function unexpected calls the function registered with function set_unexpected (p. 885). If no

function has been registered in this manner, function terminate (p. 884) is called by default.

• Function set_terminate (p. 886) can specify the function to invoke when terminate is called.
Otherwise, terminate calls abort (p. 886), which terminates the program without calling the de-
structors of objects that are declared static and auto.

• Functions set_terminate and set_unexpected each return a pointer to the last function called
by terminate and unexpected, respectively (0, the first time each is called). This enables you to
save the function pointer so it can be restored later.

• Functions set_terminate and set_unexpected take as arguments pointers to functions with
void return types and no arguments.

• If a programmer-defined termination function does not exit a program, function abort will be
called after the programmer-defined termination function completes execution.

Section 24.6 Stack Unwinding
• Unwinding the function call stack means that the function in which the exception was not

caught terminates, all local variables in that function are destroyed and control returns to the
statement that originally invoked that function.

Section 24.7 Constructors, Destructors and Exception Handling
• Exceptions thrown by a constructor cause destructors to be called for any objects built as part of

the object being constructed before the exception is thrown.

• Each automatic object constructed in a try block is destructed before an exception is thrown.

898 Chapter 24 Exception Handling: A Deeper Look

• Stack unwinding completes before an exception handler begins executing.

• If a destructor invoked as a result of stack unwinding throws an exception, terminate is called.

• If an object has member objects, and if an exception is thrown before the outer object is fully
constructed, then destructors will be executed for the member objects that have been constructed
before the exception occurs.

• If an array of objects has been partially constructed when an exception occurs, only the destruc-
tors for the constructed array element objects will be called.

• When an exception is thrown from the constructor for an object that is created in a new expres-
sion, the dynamically allocated memory for that object is released.

Section 24.8 Exceptions and Inheritance
• If a catch handler catches a pointer or reference to an exception object of a base-class type, it also

can catch a pointer or reference to all objects of classes derived publicly from that base class—
this allows for polymorphic processing of related errors.

Section 24.9 Processing new Failures
• The C++ standard document specifies that, when operator new fails, it throws a bad_alloc excep-

tion (p. 889), which is defined in header <new>.

• Function set_new_handler (p. 889) takes as its argument a pointer to a function that takes no
arguments and returns void. This pointer points to the function that will be called if new fails.

• Once set_new_handler registers a new handler (p. 890) in the program, operator new does not
throw bad_alloc on failure; rather, it defers the error handling to the new-handler function.

• If new allocates memory successfully, it returns a pointer to that memory.

• If an exception occurs after successful memory allocation but before the delete statement exe-
cutes, a memory leak could occur.

Section 24.10 Class unique_ptr and Dynamic Memory Allocation
• The C++ Standard Library provides class template unique_ptr (p. 892) to deal with memory leaks.

• An object of class unique_ptr maintains a pointer to dynamically allocated memory. A
unique_ptr’s destructor performs a delete operation on the unique_ptr’s pointer data member.

• Class template unique_ptr provides overloaded operators * and -> so that a unique_ptr object
can be used just as a regular pointer variable is. A unique_ptr also transfers ownership of the dy-
namic memory it manages via its copy constructor and overloaded assignment operator.

Section 24.11 Standard Library Exception Hierarchy
• The C++ Standard Library includes a hierarchy of exception classes. This hierarchy is headed by

base-class exception.

• Immediate derived classes of base class exception include runtime_error and logic_error (both
defined in header <stdexcept>), each of which has several derived classes.

• Several operators throw standard exceptions—operator new throws bad_alloc, operator
dynamic_cast throws bad_cast (p. 894) and operator typeid throws bad_typeid (p. 894).

• Including bad_exception (p. 894) in the throw list of a function means that, if an unexpected
exception occurs, function unexpected can throw bad_exception rather than terminating the
program’s execution or calling another function specified by set_unexpected.

Self-Review Exercises
24.1 List five common examples of exceptions.

 Answers to Self-Review Exercises 899

24.2 Give several reasons why exception-handling techniques should not be used for conven-
tional program control.

24.3 Why are exceptions appropriate for dealing with errors produced by library functions?

24.4 What’s a “resource leak”?

24.5 If no exceptions are thrown in a try block, where does control proceed to after the try block
completes execution?

24.6 What happens if an exception is thrown outside a try block?

24.7 Give a key advantage and a key disadvantage of using catch(...).

24.8 What happens if no catch handler matches the type of a thrown object?

24.9 What happens if several handlers match the type of the thrown object?

24.10 Why would you specify a base-class type as the type of a catch handler, then throw objects
of derived-class types?

24.11 Suppose a catch handler with a precise match to an exception object type is available. Un-
der what circumstances might a different handler be executed for exception objects of that type?

24.12 Must throwing an exception cause program termination?

24.13 What happens when a catch handler throws an exception?

24.14 What does the statement throw; do?

Answers to Self-Review Exercises
24.1 Insufficient memory to satisfy a new request, array subscript out of bounds, arithmetic over-
flow, division by zero, invalid function parameters.

24.2 (a) Exception handling is designed to handle infrequently occurring situations that often
result in program termination, so compiler writers are not required to implement exception han-
dling to perform optimally. (b) Flow of control with conventional control structures generally is
clearer and more efficient than with exceptions. (c) Problems can occur because the stack is un-
wound when an exception occurs and resources allocated prior to the exception might not be freed.
(d) The “additional” exceptions make it more difficult for you to handle the larger number of ex-
ception cases.

24.3 It’s unlikely that a library function will perform error processing that will meet the unique
needs of all users.

24.4 A program that terminates abruptly could leave a resource in a state in which other pro-
grams would not be able to acquire the resource, or the program itself might not be able to reacquire
a “leaked” resource.

24.5 The exception handlers (in the catch handlers) for that try block are skipped, and the pro-
gram resumes execution after the last catch handler.

24.6 An exception thrown outside a try block causes a call to terminate.

24.7 The form catch(...) catches any type of exception thrown in a try block. An advantage
is that all possible exceptions will be caught. A disadvantage is that the catch has no parameter, so
it cannot reference information in the thrown object and cannot know the cause of the exception.

24.8 This causes the search for a match to continue in the next enclosing try block if there is
one. As this process continues, it might eventually be determined that there is no handler in the pro-
gram that matches the type of the thrown object; in this case, terminate is called, which by default
calls abort. An alternative terminate function can be provided as an argument to set_terminate.

900 Chapter 24 Exception Handling: A Deeper Look

24.9 The first matching exception handler after the try block is executed.

24.10 This is a nice way to catch related types of exceptions.

24.11 A base-class handler would catch objects of all derived-class types.

24.12 No, but it does terminate the block in which the exception is thrown.

24.13 The exception will be processed by a catch handler (if one exists) associated with the try
block (if one exists) enclosing the catch handler that caused the exception.

24.14 It rethrows the exception if it appears in a catch handler; otherwise, function unexpected
is called.

Exercises
24.15 (Exceptional Conditions) List various exceptional conditions that have occurred through-
out this text. List as many additional exceptional conditions as you can. For each of these exceptions,
describe briefly how a program typically would handle the exception, using the exception-handling
techniques discussed in this chapter. Some typical exceptions are division by zero, arithmetic over-
flow, array subscript out of bounds, exhaustion of the free store, etc.

24.16 (Catch Parameter) Under what circumstances would you not provide a parameter name
when defining the type of the object that will be caught by a handler?

24.17 (throw Statement) A program contains the statement

throw;

Where would you normally expect to find such a statement? What if that statement appeared in a
different part of the program?

24.18 (Exception Handling vs. Other Schemes) Compare and contrast exception handling with
the various other error-processing schemes discussed in the text.

24.19 (Exception Handling and Program Control) Why should exceptions not be used as an al-
ternate form of program control?

24.20 (Handling Related Exceptions) Describe a technique for handling related exceptions.

24.21 (Throwing Exceptions from a catch) Suppose a program throws an exception and the ap-
propriate exception handler begins executing. Now suppose that the exception handler itself throws
the same exception. Does this create infinite recursion? Write a program to check your observation.

24.22 (Catching Derived-Class Exceptions) Use inheritance to create various derived classes of
runtime_error. Then show that a catch handler specifying the base class can catch derived-class
exceptions.

24.23 (Throwing the Result of a Conditional Expression) Throw the result of a conditional ex-
pression that returns either a double or an int. Provide an int catch handler and a double catch
handler. Show that only the double catch handler executes, regardless of whether the int or the
double is returned.

24.24 (Local Variable Destructors) Write a program illustrating that all destructors for objects
constructed in a block are called before an exception is thrown from that block.

24.25 (Member Object Destructors) Write a program illustrating that member object destructors
are called for only those member objects that were constructed before an exception occurred.

24.26 (Catching All Exceptions) Write a program that demonstrates several exception types being
caught with the catch(...) exception handler.

24.27 (Order of Exception Handlers) Write a program illustrating that the order of exception han-
dlers is important. The first matching handler is the one that executes. Attempt to compile and run

 Exercises 901

your program two different ways to show that two different handlers execute with two different ef-
fects.

24.28 (Constructors Throwing Exceptions) Write a program that shows a constructor passing in-
formation about constructor failure to an exception handler after a try block.

24.29 (Rethrowing Exceptions) Write a program that illustrates rethrowing an exception.

24.30 (Uncaught Exceptions) Write a program that illustrates that a function with its own try
block does not have to catch every possible error generated within the try. Some exceptions can slip
through to, and be handled in, outer scopes.

24.31 (Stack Unwinding) Write a program that throws an exception from a deeply nested func-
tion and still has the catch handler following the try block enclosing the initial call in main catch
the exception.

