
6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 1/7

C++ Exception HandlingC++ Exception Handling

An exception is a problem that arises during the execution of a program. A C++ exception is aAn exception is a problem that arises during the execution of a program. A C++ exception is a
response to an exceptional circumstance that arises while a program is running, such as anresponse to an exceptional circumstance that arises while a program is running, such as an
attempt to divide by zero.attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C++ exceptionExceptions provide a way to transfer control from one part of a program to another. C++ exception
handling is built upon three keywords: handling is built upon three keywords: try, catch,try, catch, and and throwthrow..

throwthrow − A program throws an exception when a problem shows up. This is done using a − A program throws an exception when a problem shows up. This is done using a
throwthrow keyword. keyword.

catchcatch − A program catches an exception with an exception handler at the place in a − A program catches an exception with an exception handler at the place in a
program where you want to handle the problem. The program where you want to handle the problem. The catchcatch keyword indicates the catching keyword indicates the catching
of an exception.of an exception.

trytry − A − A trytry block identifies a block of code for which particular exceptions will be activated. block identifies a block of code for which particular exceptions will be activated.
It's followed by one or more catch blocks.It's followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using a combination ofAssuming a block will raise an exception, a method catches an exception using a combination of
the the trytry and and catchcatch keywords. A try/catch block is placed around the code that might generate an keywords. A try/catch block is placed around the code that might generate an
exception. Code within a try/catch block is referred to as protected code, and the syntax for usingexception. Code within a try/catch block is referred to as protected code, and the syntax for using
try/catch as follows −try/catch as follows −

try {try {
 // protected code // protected code
} catch(ExceptionName e1) {} catch(ExceptionName e1) {
 // catch block // catch block
} catch(ExceptionName e2) {} catch(ExceptionName e2) {
 // catch block // catch block
} catch(ExceptionName eN) {} catch(ExceptionName eN) {
 // catch block // catch block
}}

You can list down multiple You can list down multiple catchcatch statements to catch different type of exceptions in case your statements to catch different type of exceptions in case your trytry
block raises more than one exception in different situations.block raises more than one exception in different situations.

Throwing ExceptionsThrowing Exceptions

Exceptions can be thrown anywhere within a code block using Exceptions can be thrown anywhere within a code block using throwthrow statement. The operand of statement. The operand of
the throw statement determines a type for the exception and can be any expression and the type ofthe throw statement determines a type for the exception and can be any expression and the type of
the result of the expression determines the type of exception thrown.the result of the expression determines the type of exception thrown.

Following is an example of throwing an exception when dividing by zero condition occurs −Following is an example of throwing an exception when dividing by zero condition occurs −

6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 2/7

double division(int a, int b) {double division(int a, int b) {
 if(b == 0) { if(b == 0) {
 throw "Division by zero condition!"; throw "Division by zero condition!";
 } }
 return (a/b); return (a/b);
}}

Catching ExceptionsCatching Exceptions

The The catchcatch block following the block following the trytry block catches any exception. You can specify what type of block catches any exception. You can specify what type of
exception you want to catch and this is determined by the exception declaration that appears inexception you want to catch and this is determined by the exception declaration that appears in
parentheses following the keyword catch.parentheses following the keyword catch.

try {try {
 // protected code // protected code
} catch(ExceptionName e) {} catch(ExceptionName e) {
 // code to handle ExceptionName exception // code to handle ExceptionName exception
}}

Above code will catch an exception of Above code will catch an exception of ExceptionNameExceptionName type. If you want to specify that a catch type. If you want to specify that a catch
block should handle any type of exception that is thrown in a try block, you must put an ellipsis, ...,block should handle any type of exception that is thrown in a try block, you must put an ellipsis, ...,
between the parentheses enclosing the exception declaration as follows −between the parentheses enclosing the exception declaration as follows −

try {try {
 // protected code // protected code
} catch(...) {} catch(...) {
 // code to handle any exception // code to handle any exception
}}

The following is an example, which throws a division by zero exception and we catch it in catchThe following is an example, which throws a division by zero exception and we catch it in catch
block.block.

#include#include <iostream><iostream>
usingusing namespacenamespace std std;;

doubledouble division division((intint a a,, intint b b)) {{
 ifif((b b ==== 00)) {{
 throwthrow "Division by zero condition!""Division by zero condition!";;
 }}
 returnreturn ((aa//bb););
}}

intint main main ()() {{

Live DemoLive Demo

http://tpcg.io/Nuo9hc

6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 3/7

 intint x x == 5050;;
 intint y y == 00;;
 doubledouble z z == 00;;

 trytry {{
 z z == division division((xx,, y y););
 cout cout <<<< z z <<<< endl endl;;
 }} catchcatch ((constconst charchar** msg msg)) {{
 cerr cerr <<<< msg msg <<<< endl endl;;
 }}

 returnreturn 00;;
}}

Because we are raising an exception of type Because we are raising an exception of type const char*const char*, so while catching this exception, we, so while catching this exception, we
have to use const char* in catch block. If we compile and run above code, this would produce thehave to use const char* in catch block. If we compile and run above code, this would produce the
following result −following result −

Division by zero condition!Division by zero condition!

C++ Standard ExceptionsC++ Standard Exceptions

C++ provides a list of standard exceptions defined in C++ provides a list of standard exceptions defined in <exception><exception> which we can use in ourwhich we can use in our
programs. These are arranged in a parent-child class hierarchy shown below −programs. These are arranged in a parent-child class hierarchy shown below −

6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 4/7

Here is the small description of each exception mentioned in the above hierarchy −Here is the small description of each exception mentioned in the above hierarchy −

6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 5/7

Sr.NoSr.No Exception & DescriptionException & Description

11 std::exceptionstd::exception

An exception and parent class of all the standard C++ exceptions.An exception and parent class of all the standard C++ exceptions.

22 std::bad_allocstd::bad_alloc

This can be thrown by This can be thrown by newnew..

33 std::bad_caststd::bad_cast

This can be thrown by This can be thrown by dynamic_castdynamic_cast..

44 std::bad_exceptionstd::bad_exception

This is useful device to handle unexpected exceptions in a C++ program.This is useful device to handle unexpected exceptions in a C++ program.

55 std::bad_typeidstd::bad_typeid

This can be thrown by This can be thrown by typeidtypeid..

66 std::logic_errorstd::logic_error

An exception that theoretically can be detected by reading the code.An exception that theoretically can be detected by reading the code.

77 std::domain_errorstd::domain_error

This is an exception thrown when a mathematically invalid domain is used.This is an exception thrown when a mathematically invalid domain is used.

88 std::invalid_argumentstd::invalid_argument

This is thrown due to invalid arguments.This is thrown due to invalid arguments.

99 std::length_errorstd::length_error

This is thrown when a too big std::string is created.This is thrown when a too big std::string is created.

1010 std::out_of_rangestd::out_of_range

This can be thrown by the 'at' method, for example a std::vector andThis can be thrown by the 'at' method, for example a std::vector and
std::bitset<>::operator[]().std::bitset<>::operator[]().

1111 std::runtime_errorstd::runtime_error

6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 6/7

An exception that theoretically cannot be detected by reading the code.An exception that theoretically cannot be detected by reading the code.

1212 std::overflow_errorstd::overflow_error

This is thrown if a mathematical overflow occurs.This is thrown if a mathematical overflow occurs.

1313 std::range_errorstd::range_error

This is occurred when you try to store a value which is out of range.This is occurred when you try to store a value which is out of range.

1414 std::underflow_errorstd::underflow_error

This is thrown if a mathematical underflow occurs.This is thrown if a mathematical underflow occurs.

Define New ExceptionsDefine New Exceptions

You can define your own exceptions by inheriting and overriding You can define your own exceptions by inheriting and overriding exceptionexception class functionality. class functionality.
Following is the example, which shows how you can use std::exception class to implement yourFollowing is the example, which shows how you can use std::exception class to implement your
own exception in standard way −own exception in standard way −

#include#include <iostream><iostream>
#include#include <exception><exception>
usingusing namespacenamespace std std;;

structstruct MyExceptionMyException :: publicpublic exception exception {{
 constconst charchar ** what what ()() constconst throwthrow ()() {{
 returnreturn "C++ Exception""C++ Exception";;
 }}
};};

intint main main()() {{
 trytry {{
 throwthrow MyExceptionMyException();();
 }} catchcatch((MyExceptionMyException&& e e)) {{
 std std::::cout cout <<<< "MyException caught""MyException caught" <<<< std std::::endlendl;;
 std std::::cout cout <<<< e e..whatwhat()() <<<< std std::::endlendl;;
 }} catchcatch((stdstd::::exceptionexception&& e e)) {{
 //Other errors//Other errors
 }}
}}

This would produce the following result −This would produce the following result −

Live DemoLive Demo

http://tpcg.io/FUdUJO

6/7/2020 C++ Exception Handling - Tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm 7/7

MyException caughtMyException caught
C++ ExceptionC++ Exception

Here, Here, what()what() is a public method provided by exception class and it has been overridden by all the is a public method provided by exception class and it has been overridden by all the
child exception classes. This returns the cause of an exception.child exception classes. This returns the cause of an exception.

