
Math 541: Statistical Theory II

Hypothesis Testing: Concepts and Simple Examples

Instructor: Songfeng Zheng

In this course, the statistical inference problems concerned with are inference problems re-
garding a parameter. A parameter can be estimated from sample data either by a single
number (a point estimate) or an entire interval of plausible values (a confidence interval).
Frequently, however, the objective of an investigation is not to estimate a parameter but
to decide which of two contradictory claims about the parameter is correct. Methods for
accomplishing this comprise the part of statistical inference is called Hypothesis testing.

1 Basic Concepts in Hypothesis Testing

Recall in our statistical inference problems, we are interested in the parameter θ of the
probability distribution but the value of θ is unknown, we only know that the value of θ
must lie in a certain parameter space Θ. We assume that Θ can be partitioned into two
disjoint subsets Θ0 and Θ1, such that Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 = Θ. Now, we must decide
whether the unknown value of θ lies in Θ0 or in Θ1.

Let H0 denote the hypothesis that θ ∈ Θ0 and let Ha denote the hypothesis that θ ∈ Θ1.
Since the subsets Θ0 and Θ1 are disjoint and their union is the whole parameter space,
exactly one of the hypotheses H0 and Ha must be true. We must decide whether to accept
the hypothesis H0 or the hypothesis Ha. A problem of this type, in which there are only two
possible decisions, is called a problem of hypothesis testing.

In applications, we will make our decision based on some observations which are sampled
from the probability distribution, and the observed values will provide us with information
about the value of θ. A procedure to decide whether to accept the hypothesis H0 or to accept
the hypothesis Ha is called a test procedure.

In our discussion so far, we have treated the hypotheses H0 and Ha on an equal base. In
most problems, however, the two hypotheses are treated quite differently. In literature and in
statistics community, the hypothesis H0 is called null hypothesis and Ha is called alternative
hypothesis.

Scientific research often involves trying to decide whether a current theory should be replaced
by a more plausible and satisfactory explanation of the phenomenon under investigation. A
conservative approach is to identify the current theory with H0 and the researcher’s alter-
native explanation with Ha. Rejection of the current theory will then occur only when
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evidence is much more consistent with the new theory. In many situations, Ha is referred
as the “researcher’s hypothesis” since it is the claim that the researcher would really like to
validate. The word “null” means “of no value, effect or consequence” which suggests that H0

should be identified with the hypothesis of no change (from current opinion), no difference,
no improvement, and so on. Suppose, for example, that 10% of all circuit boards produced
by a certain manufacturer during a recent period were defective. An engineer has suggested
a change in the production process in the belief that it will result in a reduced defective rate.
Let p denote the true proportion of defective boards resulting from the changed process.
Then the research hypothesis, on which the burden of proof is placed, is the assertion that
p < 0.1, thus the alternative hypothesis is Ha : p < 0.1. we usually don’t say a theory is
true!

Suppose that X1, · · · , Xn form a random sample from a distribution for which the pdf or pf
is f(x|θ), where the value of the parameter θ must lie in the parameter space Θ. Further
assume that Θ0 and Θ1 are disjoint sets with Θ0 ∪ Θ1 = Θ. We want to test the following
hypotheses:

H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θ1

The set Θi (i = 0 or 1) may contain just a single value of θ. If this is the case, then the
corresponding hypothesis is said to be a simple hypothesis. On the other hand, if the set
Θi contains more than one value of θ, then it is said that the corresponding hypothesis is
a composite hypothesis. Under a simple hypothesis, the distribution of the observation is
completely specified. Under a composite hypothesis, it is specified only that the distribution
of the observations belongs to a certain class. For example, a simple null hypothesis H0 must
have the form

H0 : θ = θ0.

When θ is one-dimensional, there are two popular forms of composite hypotheses. One-sided
null hypotheses are of the form H0 : θ ≤ θ0 or H0 : θ ≥ θ0 with the corresponding one-sided
alternative hypotheses being Ha : θ > θ0 or Ha : θ < θ0. When the null hypothesis is simple,
like H0 : θ = θ0, the alternative hypothesis is usually two-sided, Ha : θ ̸= θ0.

In hypothesis testing problems, it is unavoidable to make mistakes, we might mistakenly
reject or accept the null hypothesis. We should consider what kinds of errors we might
make. For each value of θ ∈ Θ0, the decision to reject H0 is an incorrect decision. It has
become traditional to call an erroneous decision to reject a true null hypothesis a type I
error, or an error of the first kind. An erroneous decision to accept a false null hypothesis
is called a type II error, or an error of the second kind. Of course, either θ ∈ Θ0 or θ ∈ Θ1,
but not both. Hence, only one type of error is possible, but we never know which it is.

The probability of making a type I error is called the significant level of the test and is
usually denoted as α; i.e.

α = P (reject H0|H0 true)
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The probability of making a type II error is usually denoted as β, i.e.

β = P (Accept H0|Ha true).

Ideally, we would like our decision makes mistake as small as possible, which means that we
want α to be small and β to be small. However, in general, these two goals work against
each other. That is, if we choose a decision rule to make α small, we will usually find β
big. For example, the test procedure which always accept H0, regardless of what data are
observed, will have α = 0. However, for this procedure, the type II error β = 1. Similarly,
the test procedure which always reject H0 will have β = 0, but always have α = 1. Hence,
there is a need to strike an appropriate balance between the two goals of small α and β.

In many practical applications type I errors are more delicate than type II errors (we should
take care to reject a well-established theory). Therefore, the most popular method for
striking a balance between the two goals is to control the type I error by choosing a number
α0 between 0 and 1, and require that α < α0. This test is called a level α0 test, and α0 is
called the level of significance for the test. While 1% or 5% might be an acceptable level of
significance for one application, a different application can require a very different level.

Consider now a problem in which hypotheses having the following form are to be tested:

H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θ1

As we mentioned before, before we decide which hypothesis to accept, we can observe a
random sample X1, · · · , Xn drawn from a distribution that involves the unknown parameter
θ. We let S denote the sample space of the n-dimensional random vector X = (X1, · · · , Xn).
In other words, S is the set of all possible outcomes of the random sample.

In the problem of this type, we specify a test procedure by partitioning the sample space
S into two subsets. One subset contains the values of X for which the test procedure will
accept H0, and the other subset contains the values of X for which the test procedure will
reject H0 and therefore accept Ha. The subset for which H0 will be rejected is called the
critical region of the test. Therefore, the test procedure is determined by specifying the
critical region of the test, and the complement of the critical region must then contain all
the outcomes for which H0 will be accepted.

We usually find a function of the sample and make our decision based on the value of the
function. Therefore the function should be computable, so it does not contain any unknown
parameter. In another word, the function based on which we make our decision to reject
or accept the null hypothesis is a statistic, and this statistic is called a testing statistic.
Let us denote this test statistic as T = r(X). Under the null hypothesis, the probability
distribution of the test statistic is called the null distribution.

Typically, a test using test statistic T will reject the null hypothesis if T falls in some fixed
interval or falls outside of some fixed interval. The set of values of the test statistic that
leads to rejection of the null hypothesis is called the rejection region, and the set of values
that leads to acceptance of the null hypothesis is called the acceptance region.
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Let us study a simple example which demonstrates the above mentioned ideas.

Example 1: A politician claimed that he will gain 50% of votes in a city election and
thereby he will win. However, after studied the politician’s policies, an expert thinks he will
lose the election. To test their conjecture, the expert randomly select 15 voters and found
Y of them would vote for the candidate.

Let us denote the supporting rate for the candidate is p. The researcher’s hypothesis is
the expert’s conjecture, p < 0.5, and the null hypothesis is the politician’s claim, p ≥ 0.5.
Therefore, we have the following hypotheses:

H0 : p ≥ 0.5 vs. Ha : p < 0.5.

We are given that Y out of 15 voters support the candidate. If the value of Y is very small,
say 0, what would we conclude about the candidate’s claim? If the candidate was correct,
i.e., there are at least 50% of voters support him, it is not impossible to observe Y = 0
people favoring the candidate out of 15 voters, but the possibility should be very small. It
is much more likely that we would observe Y = 0 if the alternative hypothesis was correct.
Thus, if we observe Y = 0, intuitively, we would reject the null hypothesis (p ≥ 0.5) and
in favor of the alternative hypothesis (p < 0.5). If we observe other small values of Y , the
similar reasoning would lead us to the same conclusion.

In this example, we make our decision based on the value of Y , therefore, Y is the test
statistic. If the null hypothesis was correct, i.e. supporting rate p ≥ 0.5, Y is distributed as
a binomial distribution, i.e.

Y ∼ Bin(15, p).

We should select a value for p to fully determine the null distribution. A general rule is to
select p in H0 and it is closest to Ha, here obviously we select p = 0.5. Thus, Bin(15, p) is
the null distribution.

From our discussion above, we would reject the null hypothesis if the observed value Y is
too small, therefore the rejection region is of the form {Y ≤ c}, where c is a constant.

Let us calculate the probability of type I error if we select the rejection region as {Y ≤ 2}.
By definition,

α = P (Y ≤ 2|H0) =
2∑

y=0

(
15

y

)
(0.5)y(0.5)15−y =

(
15

0

)
(0.5)15+

(
15

1

)
(0.5)15+

(
15

2

)
(0.5)15 = 0.004.

Suppose that the candidate will receive 30% of the votes (p = 0.3), calculate the probability
β that the sample will erroneously lead us to conclude that H0 is true. This probability is
the probability of type II error. By definition,

β = P (accept H0|Ha true) = P (Y > 2|p = 0.3) =
15∑
y=3

(
15

y

)
(0.3)y(0.7)15−y = 0.873,
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because when Ha is true, Y ∼ Bin(15, 0.3).

Now, assume we adjusted the reject region to be {Y ≤ 5}, and still assume the true value
of p is 0.3, let us calculate the probability of type I and type II errors α and β. In this case

α = P (Y ≤ 5|H0) =
5∑

y=0

(
15

y

)
(0.5)y(0.5)15−y =

5∑
y=0

(
15

y

)
(0.5)15 = 0.151.

and

β = P (accept H0|Ha true) = P (Y > 5|p = 0.3) =
15∑
y=6

(
15

y

)
(0.3)y(0.7)15−y = 0.278.

This example shows that the test using rejection region {Y ≤ 2} can guarantee a low risk of
making a type I error (α = 0.004), but it does not offer adequate protection against a type
II error (β = 0.873). We can decrease the probability of type II error to 0.278 by changing
the rejection region to {Y ≤ 5}, however, by doing this we increased the probability of type
I error to 0.151. Thus, this example demonstrates the inverse relation between α and β.

2 Some Commonly used Tests

This section gives some commonly used, canonical hypothesis testing procedures.

Example 2: Testing Hypotheses about the mean of a normal distribution with
known variance. Suppose that X = (X1, · · · , Xn) is a random sample from a normal
distribution with unknown mean µ and known variance σ2. We wish to test the hypotheses

H0 : µ = µ0 vs. Ha : µ ̸= µ0

Solution: If the null hypothesis was correct, we would expect the sample mean value X̄
to be close to the population mean value µ0. Under the null hypothesis, we know that
X̄ ∼ N(µ0, σ

2/n), that is

Z =
X̄ − µ0

σ/
√
n

∼ N(0, 1).

If the null hypothesis was correct, then the statistic Z should be close to 0. We make our
decision based on the value of Z, therefore Z is the test statistic, and the distribution of Z
under the assumption of H0 is the null distribution, in this example, the null distribution is
N(0, 1).

Now suppose we want to test the hypotheses on the significant level α, that is under the
null hypothesis µ = µ0, the probability of rejecting H0 is α. As we analyzed before, we
make our decision based on the deviation of Z from 0, that is if the value of |Z| > c, we
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will reject the null hypothesis, where c is a constant. Therefore the rejection probability is
P (|Z| > c) = α where Z ∼ N(0, 1). It is easy to calculate that the value of c is 100×(1−α/2)
percentile of standard normal distribution, Z(1− α/2). Therefore, the final decision rule is:
if |Z| > Z(1−α/2), we would reject the null hypothesis at the significant level α; otherwise,
we fail to reject the null hypothesis.

In the above, the alternative hypothesis is two-sided: µ ̸= µ0. If the alternative is one-sided,
for example,

H0 : µ ≤ µ0 vs. Ha : µ > µ0,

then we would reject the null hypothesis if the test statistic Z is greater than a predetermined
positive number c. If the significant level is α, we can calculate the value of c by P (Z > c) = α
where Z ∼ N(0, 1). Then c = Z(1−α). Therefore if the alternative hypothesis isHa : µ > µ0,
we can reject the null hypothesis if the test statistic Z > Z(1− α).

The other case of one-sided hypothesis is

H0 : µ ≥ µ0 vs. Ha : µ < µ0.

Similarly we would reject the null hypothesis if the test statistic Z is less than a predeter-
mined negative number c. If the significant level is α, we can calculate the value of c by
P (Z < c) = α where Z ∼ N(0, 1). Then c = Z(α). Therefore if the alternative hypothesis
is Ha : µ ≤ µ0, we can reject the null hypothesis if the test statistic Z < Z(α).

Example 3: Testing Hypotheses about the mean of a normal distribution with
unknown variance. Suppose that X = (X1, · · · , Xn) is a random sample from a normal
distribution with unknown mean µ and unknown variance σ2. We wish to test the hypotheses

H0 : µ = µ0 vs. Ha : µ ̸= µ0

Solution: Based on the same reasoning as in Example 2, if the null hypothesis was correct,
we would expect the sample mean value X̄ to be close to the population mean value µ0.
However, in this case, we cannot use

Z =
X̄ − µ0

σ/
√
n

as the test statistic because σ is unknown. However, if we use

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2

to replace σ, we have

T =
X̄ − µ0

S/
√
n
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is a statistic, and the distribution of T is t distribution with n − 1 degrees of freedom, i.e.,
under the null hypothesis

T =
X̄ − µ0

S/
√
n

∼ tn−1.

Therefore, in this example, T is the test statistic, and null distribution is tn−1.

Now suppose we want to test the hypotheses on the significant level α, that is under the null
hypothesis µ = µ0, the probability of rejecting H0 is α. As we analyzed before, we make our
decision based on the deviation of T from 0, that is if the value of |T | > c, we will reject the
null hypothesis, where c is a constant. Therefore the rejection probability is P (|T | > c) = α
where T ∼ tn−1. It is easy to calculate that the value of c is 100 × (1 − α/2) percentile of
tn−1 distribution, tn−1(1− α/2). Therefore, the final decision rule is: if |T | > tn−1(1− α/2),
we would reject the null hypothesis at the significant level α; otherwise, we fail to reject the
null hypothesis.

Now let us consider the one-sided test

H0 : µ ≤ µ0 vs. Ha : µ > µ0.

In this case, we would reject the null hypothesis if the test statistic T is greater than a
predetermined positive number c. If the significant level is α, we can calculate the value of
c by P (T > c) = α where T ∼ tn−1. Then c = tn−1(1 − α). Therefore if the alternative
hypothesis is Ha : µ > µ0, we can reject the null hypothesis if the test statistic T >
tn−1(1− α).

The other case of one-sided hypothesis is

H0 : µ ≥ µ0 vs. Ha : µ < µ0.

Similarly we would reject the null hypothesis if the test statistic T is less than a predetermined
negative number c. If the significant level is α, we can calculate the value of c by P (T < c) =
α where T ∼ tn−1. Then c = tn−1(α). Therefore if the alternative hypothesis is Ha : µ ≤ µ0,
we can reject the null hypothesis if the test statistic T < tn−1(α).

Example 4: Suppose X1, · · · , Xn from a normal distribution N(µ, σ2) where µ is known
and σ is unknown. We wish to test the hypotheses

H0 : σ = σ0 vs. Ha : σ ̸= σ0

Solution: We use σ̂2 = 1
n

∑n
i=1(Xi − µ)2 to estimate σ2. If the null hypothesis was correct,

the estimated value should be close to the value of σ2
0. Enlightened by this intuitive idea,

we would reject the null hypothesis if either σ̂2/σ2
0 is too big or too small. Recall that the

statistic

V =
nσ̂2

σ2
0
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follows chi-square distribution with n degrees of freedom. We can use V as the test statistic,
and the null distribution under the null hypothesis is χ2

n.

Now, Suppose we want to test the hypotheses at the significant level α. From our intuition,
the probability of rejecting the null hypothesis is

P (V < a or V > b) = α

Where a and b are two constants. Let χ2
n(α/2) and χ2

n(1− α/2) be the (α/2)× 100-th and
(1 − α/2) × 100-th percentiles, respectively. We can let a = χ2

n(α/2) and b = χ2
n(1 − α/2),

respectively. Therefore, the decision rule would be: if V < χ2
n(α/2) or V > χ2

n(1− α/2), we
would reject the null hypothesis; otherwise we accept the null hypothesis.

Now let us consider the one-sided test

H0 : σ ≤ σ0 vs. Ha : σ > σ0.

In this case, we would reject the null hypothesis if the test statistic V is greater than a
predetermined positive number b. If the significant level is α, we can calculate the value of b
by P (V > b) = α where V ∼ χ2

n. Then b = χ2
n(1−α). Therefore if the alternative hypothesis

is Ha : σ > σ0, we can reject the null hypothesis if the test statistic T > χ2
n(1− α).

The other case of one-sided hypothesis is

H0 : σ > σ0 vs. Ha : σ ≤ σ0.

Similarly we would reject the null hypothesis if the test statistic V is less than a predeter-
mined number a. If the significant level is α, we can calculate the value of a by P (V < a) = α
where V ∼ χ2

n. Then a = χ2
n(α). Therefore if the alternative hypothesis is Ha : σ ≤ σ0, we

can reject the null hypothesis if the test statistic V < χ2
n(α).

Summarizing the examples above, we can see that the general procedure for a hypothesis
testing problem is like the following steps:

1. Find an estimator for the parameter of interest.

2. Find a connection between the estimator and the given value of the parameter in H0.
This step gives us an intuitive idea for the testing procedure, but not necessarily gives
us the test statistic.

3. Usually, last step gives us several candidates for the test statistic, choose the one which
yields a standard distribution (modify the test statistic if necessary).

4. Determine the rejection region based on the analysis, and express the type I error rate
based on the null distribution.

5. Solve the obtained equation to find the decision rule.
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Let us do the following example following the above steps.

Example 5: Suppose X1, · · · , Xn from a normal distribution N(µ, σ2) where both µ and σ
are unknown. We wish to test the hypotheses

H0 : σ = σ0 vs. Ha : σ ̸= σ0

Step 1: In the case of both µ and σ are unknown, we would estimate σ2 by σ̂2 = 1
n

∑n
i=1(Xi−

X̄)2.

Step 2: If the null hypothesis was correct, we would expect that the estimated value σ̂2

would be close to σ2
0, and this suggest us to compare σ̂2 and σ2

0. Therefore, the test statistic

could involve quantities like σ̂2 − σ2
0 or σ̂2/σ2

0, and so on.

Step 3: Recall that

V ′ =
nσ̂2

σ2
0

∼ χ2
n−1

Therefore, in this example, V ′ is the test statistic, and null distribution is χ2
n−1. As you can

see that we choose σ̂2/σ2
0 from the two candidates in Step 2, and modified it so that it has

a standard distribution.

Step 4: Now suppose we want to test the hypotheses on the significant level α, that is under
the null hypothesis σ = σ0, the probability of rejecting H0 is α. As we analyzed before, we
make our decision based on the value of V ′, that is if the value of V ′ < a or V ′ > b, we will
reject the null hypothesis, where a and b are constants. Therefore the rejection probability
is P (V ′ < a or V ′ > b) = α where V ′ ∼ χ2

n−1.

Step 5: Solving the equation in step 4, we can let a = χ2
n−1(α/2) and b = χ2

n−1(1 − α/2),
respectively. Therefore, the decision rule would be: if V ′ < χ2

n−1(α/2) or V
′ > χ2

n−1(1−α/2),
we would reject the null hypothesis; otherwise we accept the null hypothesis.

Now let us consider the one-sided test

H0 : σ ≤ σ0 vs. Ha : σ > σ0.

In this case, we would reject the null hypothesis if the test statistic V ′ is greater than a
predetermined positive number b. If the significant level is α, we can calculate the value of
b by P (V ′ > b) = α where V ∼ χ2

n−1. Then b = χ2
n−1(1 − α). Therefore if the alternative

hypothesis is Ha : σ > σ0, we can reject the null hypothesis if the test statistic V ′ >
χ2
n−1(1− α).

The other case of one-sided hypothesis is

H0 : σ > σ0 vs. Ha : σ ≤ σ0.

Similarly we would reject the null hypothesis if the test statistic V ′ is less than a predeter-
mined number a. If the significant level is α, we can calculate the value of a by P (V ′ < a) = α
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where V ′ ∼ χ2
n−1. Then a = χ2

n−1(α). Therefore if the alternative hypothesis is Ha : σ ≤ σ0,
we can reject the null hypothesis if the test statistic V ′ < χ2

n(α).

3 Attained Significance Level, or p-Value

As we discussed before, the type I error probability, α, is usually called the significance level,
or the level of the test. However, in applications, the actually used value of α is somewhat
arbitrary. Thus, it is possible that we will have different conclusions for α = 0.05 and
α = 0.01. Although, in applications, people usually use α = 0.05 or α = 0.01 frequently, this
choice is for the sake of convenience rather than as a result of rigorous consideration. Thus,
we need a more informative quantity than the statement like “we reject the null hypothesis
at the level 0.05”.

Let W be a test statistic, the p-value, or attained significance level, is the smallest level
of significance α for which the observed data indicate that the null hypothesis should be
rejected.

The smaller the p-value is, the more convincing is the evidence that the null hypothesis
should be rejected. If an experimenter has a value of α in mind, the p-value can be used
to implement an α-level test. Since the p-value is the smallest value of α for which the null
hypothesis can be rejected, thus if the desired value of α is greater than or equal to the p-
value, the null hypothesis should be rejected for that value of α. Indeed, the null hypothesis
should be rejected for any value of α down to and including the p-value. Otherwise, if α
is less than the p-value, the null hypothesis cannot be rejected. In a sense, the p-value
allows the reader to evaluate the extent to which the observed data disagree with the null
hypothesis. Thus, p-value is informative.

If we were to reject the null hypothesis H0 in favor of the alternative hypothesis Ha for
small values of a test statistic W , that is, the rejection region is {W ≤ c}, then the p-value
associated with an observed value w0 of W could be calculated as

p-value = P (W ≤ w0|H0 true).

Similarly, if the rejection region is of the form {W ≥ c}, then the p-value associated with an
observed value w0 of W could be calculated as

p-value = P (W ≥ w0|H0 true).

For two-sided test, suppose the rejection region is of the form {|W | ≥ c}, then the p-value
associated with an observed value w0 of W could be calculated as

p-value = P (|W | ≥ w0|H0 true) = P (W ≥ w0|H0 true) + P (W ≤ −w0|H0 true).

We can see that the p-value actually is the tail probability of the null distribution: if the
test is a one-sided test, then the p-value is one-tail probability; if the test is a two-sided test,
then the p-value is two-tail probability.
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Example 6: Testing Hypotheses about the mean of a normal distribution with
unknown variance. Suppose that X = (X1, · · · , Xn) is a random sample from a normal
distribution with unknown mean µ and unknown variance σ2. Please find the p-value for
the hypotheses testing:

H0 : µ = µ0 vs. Ha : µ ̸= µ0

Solution: From Example 3, we know the rejection region for this test is of the form {|T | >
c}, where

T =
X̄ − µ0

S/
√
n

∼ tn−1,

and

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2.

Now suppose from the observation x1, · · · , xn, we calculate the value of the test statistic as
t∗, then the p-value can be calculated as

p-value = P (|T | > t∗),

where T ∼ tn−1. Let the desired significance level be α, then if p-value < α, we reject the
null hypothesis; otherwise we fail to reject the null hypothesis.

Example 7: Suppose X1, · · · , Xn from a normal distribution N(µ, σ2) where both µ and σ
are unknown. Find the p-value for the hypotheses testing problem:

H0 : σ = σ0 vs. Ha : σ > σ0

Solution: From Example 5, we will have

V =
nσ̂2

σ2
0

∼ χ2
n−1,

where σ̂2 = 1
n

∑n
i=1(Xi − X̄)2. The rejection region is of the form V > c.

Now suppose from the observation x1, · · · , xn, we calculate the value of the test statistic as
v∗, then the p-value can be calculated as

p-value = P (V > v∗),

where V ∼ χ2
n−1. Let the desired significance level be α, then if p-value < α, we reject the

null hypothesis; otherwise we fail to reject the null hypothesis.
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4 Calculating Type II Error Probability and Finding

the Sample Size for a Normal Distribution with Known

Variance

Calculating the type II error probability β could be very difficult for some statistical tests,
but it is easy for the case when the variance is known in the normal distribution.

Suppose that X = (X1, · · · , Xn) is a random sample from a normal distribution with un-
known mean µ and known variance σ2. We wish to test the hypotheses

H0 : µ = µ0 vs. Ha : µ ̸= µ0.

at the significant level α.

From Example 2 in this section, we know that, under the null hypothesis

Z =
X̄ − µ0

σ/
√
n

∼ N(0, 1).

and if |Z| > Z(1 − α/2), we would reject the null hypothesis at the significant level α;
otherwise, we fail to reject the null hypothesis. That is, we would reject the null hypothesis,
if

X̄ > µ0 + z(1− α/2)
σ√
n

or X̄ < µ0 − z(1− α/2)
σ√
n
.

Suppose the alternative hypothesis is true, i.e. the true value of µ is some value µa ̸= µ0, let
us calculate the probability of type II error for this test. Under the alternative hypothesis,
we have

Z ′ =
X̄ − µa

σ/
√
n

∼ N(0, 1).

By definition,

β = P (Accept H0|Ha true)

= P

(
µ0 − z(1− α/2)

σ√
n
≤ X̄ ≤ µ0 + z(1− α/2)

σ√
n
|µ = µa

)

= P

(
µ0 − z(1− α/2)σ/

√
n− µa

σ/
√
n

≤ X̄ − µa

σ/
√
n

≤ µ0 + z(1− α/2)σ/
√
n− µa

σ/
√
n

)

= P

(
µ0 − µa

σ/
√
n

− z(1− α/2) ≤ Z ′ ≤ µ0 − µa

σ/
√
n

+ z(1− α/2)

)

= Φ

(
µ0 − µa

σ/
√
n

+ z(1− α/2)

)
− Φ

(
µ0 − µa

σ/
√
n

− z(1− α/2)

)

where Φ(z) is the cumulative distribution function of the standard normal random variable.
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The above example also suggests a procedure for us to determine the sample size for an
experiment. Suppose for the sample above, we want to test hypotheses

H0 : µ = µ0 vs. Ha : µ > µ0,

and we specify the value of desired α and β. β is evaluated when µ = µa > µ0, where µa is
the true value of µ. Let us determine the sample size n.

Intuitively, if the sample mean X̄ is big enough, then we should reject the null hypothesis,
therefore the rejection region is of the form {X̄ > c} where c is a constant. If the null
hypothesis was true, we have

Z =
X̄ − µ0

σ/
√
n

∼ N(0, 1).

Under the alternative hypothesis, we have

Z ′ =
X̄ − µa

σ/
√
n

∼ N(0, 1).

By the definitions of α and β, we have

α = P (Reject H0|H0 true) = P (X̄ > c|µ = µ0)

= P

(
X̄ − µ0

σ/
√
n

>
c− µ0

σ/
√
n
|µ = µ0

)
= P (Z > z(1− α))

and

β = P (Accept H0|Ha true) = P (X̄ ≤ c|µ = µa)

= P

(
X̄ − µa

σ/
√
n

≤ c− µa

σ/
√
n
|µ = µa

)
= P (Z ′ < z(β))

The above equations give us new equations

c− µ0

σ/
√
n

= z(1− α) and
c− µa

σ/
√
n

= z(β).

Solving for c gives us

c = µ0 +
σ√
n
z(1− α) = µa +

σ√
n
z(β),

thus,
√
n =

σ(z(1− α)− z(β))

µa − µ0

.

Finally, the sample size for an upper-tail α-level test is

n =
σ2(z(1− α)− z(β))2

(µa − µ0)2
.
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5 Duality of Confidence Intervals and Hypothesis Tests

We have studied the confidence intervals for a parameter, and the hypothesis testing tech-
niques regarding the unknown parameters. In the previous examples, we can see that for
an unknown parameter, we used the same sampling distribution to get a confidence interval
and do hypothesis testing. Actually, there is a duality between confidence intervals and
hypothesis tests: a confidence interval can be obtained by “inverting” a hypothesis test, and
vice versa. We will demonstrate this by several examples.

Example 8: Suppose X1, · · · , Xn from a normal distribution N(µ, σ2) where µ is unknown
but σ is known. Let us consider the following hypothesis testing problem:

H0 : µ = µ0

Ha : µ ̸= µ0

For this hypothesis testing problem, we use the test statistic

X̄ − µ0

σ/
√
n

∼ N(0, 1)

Let Z(1− α/2) be the (1− α/2) percentile, from the previous discussion, we know that we
would accept H0 if ∣∣∣∣∣X̄ − µ0

σ/
√
n

∣∣∣∣∣ ≤ Z(1− α/2)

or
−Z(1− α/2)

σ√
n
≤ X̄ − µ0 ≤ Z(1− α/2)

σ√
n

or
X̄ − Z(1− α/2)

σ√
n
≤ µ0 ≤ X̄ + Z(1− α/2)

σ√
n

(1)

The hypothesis testing procedure says that if X̄ and µ0 satisfies the inequality (1), we should
accept the null hypothesis.

We can recognize that the interval[
X̄ − Z(1− α/2)

σ√
n
, X̄ + Z(1− α/2)

σ√
n

]
(2)

is the (1−α) confidence interval for the parameter µ. The above hypothesis testing procedure
says that we can get the 1 − α confidence interval from the result of level α significant
hypothesis testing.

Conversely, from the 1 − α confidence interval (2), we can see that if the value of µ0 is in
this interval, then we accept H0; otherwise, we reject H0. And this is exactly the decision
rule expressed by the hypothesis testing result.
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Example 9: Suppose X1, · · · , Xn from a normal distribution N(µ, σ2) where µ is known
and σ2 is unknown. We want to do the following hypothesis testing:

H0 : σ
2 = σ2

0

Ha : σ
2 ̸= σ2

0

We use σ̂2 = 1
n

∑n
i=1(Xi − µ)2 to estimate σ2. For this hypothesis testing problem, we use

the test statistic
nσ̂2

σ2
∼ χ2

n

Let χ2
n(α/2) and χ2

n(1 − α/2) be the (α/2) × 100-th and (1 − α/2) × 100-th percentiles,
respectively. From the previous discussion, we know that we would accept H0 if

χ2
n(α/2) ≤

nσ̂2

σ2
0

≤ χ2
n(1− α/2)

or
nσ̂2

χ2
n(1− α/2)

≤ σ2
0 ≤ nσ̂2

χ2
n(α/2)

From this we can get the 1− α confidence interval for σ2 is nσ̂2

χ2
n(1− α/2)

,
nσ̂2

χ2
n(α/2)



And the above result also says that if the value of σ2
0 falls inside of the 1 − α confidence

interval, we should accept H0.

These two examples demonstrate the duality between confidence intervals and hypothesis
testing.

6 Exercises

Exercise 1. We are interested in testing whether or not a coin is fair based on the number
of heads X on 36 tosses of the coin.

a. Write out the null hypothesis and alternative hypothesis, figure out the testing statistic.

b. What is the null distribution of the test statistic?

c. Find the general form of the rejection region.

d. If the rejection region is |X − 18| ≥ 4, calculate the value of α.
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e. If the rejection region is |X − 18| ≥ 4, calculate the value of β if the probability of head
is 0.7.

Exercise 2. Suppose that X = (X1, · · · , Xn) is a random sample from a normal distribution
with unknown mean µ and known variance σ2. We wish to test the hypotheses

H0 : µ = µ0 vs. Ha : µ > µ0.

at the significant level α. Calculate the probability of the type II error β, assuming the true
value is µa, which satisfies µa > µ0.

Exercise 3. Suppose that X = (X1, · · · , Xn) is a random sample from a normal distribution
with unknown mean µ and known variance σ2. We wish to test the hypotheses

H0 : µ = µ0 vs. Ha : µ < µ0.

and we specify the value of desired α and β. β is evaluated when µ = µa < µ0, where µa is
the true value of µ. Determine the sample size n.

Exercise 4. Suppose that X = (X1, · · · , Xn) is a random sample from a normal distribution
with unknown mean µ and known variance σ2. We wish to test the following hypotheses at
the significance level α. Suppose the observed values are x1, · · · , xn. For each case, find the
expression of the p-value, and state your decision rule based on the p-values

a. H0 : µ = µ0 vs. Ha : µ ̸= µ0.

b. H0 : µ = µ0 vs. Ha : µ > µ0.

Exercise 5. Suppose that the null hypothesis is true, that the distribution of the test
statistic, say T , is continuous with cumulative distribution function F and that the test
rejects the null hypothesis for large values of T . Let V denote the p-value of the test.

a. Show that V = 1− F (T ).

b. Conclude that the null distribution of V is uniform.

c. If the null hypothesis is true, what is the probability that the p-value is greater than 0.1?

Exercise 6. Suppose X1, · · · , Xn from a normal distribution N(µ, σ2) where µ is unknown
but σ is known. Consider the following hypothesis testing problem:

H0 : µ = µ0 vs. Ha : µ > µ0

Prove that the decision rule is that we reject H0 if

X̄ − µ0

σ/
√
n

> Z(1− α),

where α is the significant level, and show that this is equivalent to rejecting H0 if µ0 is less
than the 100(1− α)% lower confidence bound for µ.


