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Practice Problem 8.4 The circuit in Fig. 8.12 has reached steady state at If the make-
before-break switch moves to position b at calculate for

Answer: e�2.5t(10 cos 1.6583t � 15.076 sin 1.6583t) A.

t 7 0.
i(t)t � 0,

 t � 0�.

t = 0

a b

100 V

10 Ω

1 H

+
− 5 Ω

i(t)

F1
9

Figure 8.12
For Practice Prob. 8.4.
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Figure 8.13
A source-free parallel RLC circuit.

The Source-Free Parallel RLC Circuit
Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume ini-
tial inductor current and initial capacitor voltage ,

(8.27a)

(8.27b)

Since the three elements are in parallel, they have the same voltage v
across them. According to passive sign convention, the current is enter-
ing each element; that is, the current through each element is leaving
the top node. Thus, applying KCL at the top node gives

(8.28)

Taking the derivative with respect to t and dividing by C results in

(8.29)

We obtain the characteristic equation by replacing the first derivative
by s and the second derivative by . By following the same reasoning
used in establishing Eqs. (8.4) through (8.8), the characteristic equa-
tion is obtained as

(8.30)

The roots of the characteristic equation are

or

(8.31)

where
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The names of these terms remain the same as in the preceding section,
as they play the same role in the solution. Again, there are three pos-
sible solutions, depending on whether or 
Let us consider these cases separately.

Overdamped Case ( )
From Eq. (8.32), when The roots of the charac-
teristic equation are real and negative. The response is

(8.33)

Critically Damped Case ( )
For The roots are real and equal so that the
response is

(8.34)

Underdamped Case ( )
When In this case the roots are complex and may
be expressed as

(8.35)

where

(8.36)

The response is

(8.37)

The constants and in each case can be determined from the
initial conditions. We need and The first term is known
from Eq. (8.27b). We find the second term by combining Eqs. (8.27)
and (8.28), as

or

(8.38)

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or criti-
cally damped.

Having found the capacitor voltage for the parallel RLC cir-
cuit as shown above, we can readily obtain other circuit quantities such
as individual element currents. For example, the resistor current is

and the capacitor voltage is We have selected
the capacitor voltage as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current for the RLC series circuit, whereas we first found
the capacitor voltage for the parallel RLC circuit.v(t)

i(t)

v(t)
vC � C dv�dt.iR � v�R

v(t)

dv(0)

dt
� � 

(V0 � RI0)

RC

V0

R
� I0 � C 

dv(0)

dt
� 0

dv(0)�dt.v(0)
A2A1

v(t) � e�a t(A1 cos �dt � A2 sin �dt)

�d � 2�0
2 � a2

s1,2 � �a � j�d

a 6 �0, L 6 4R2C.
A � �0

v(t) � (A1 � A2t)e�a t

 L � 4R2C.a � �0,
A � �0

v(t) � A1es1t � A2es2t

L 7 4R2C.a 7 �0

A � �0

a 6 �0.a � �0,a 7 �0,

8.4 The Source-Free Parallel RLC Circuit 327

ale80571_ch08_313-367.qxd  11/30/11  1:13 PM  Page 327



328 Chapter 8 Second-Order Circuits

In the parallel circuit of Fig. 8.13, find for assuming
and Consider these cases:

and 

Solution:

■ CASE 1 If 

Since in this case, the response is overdamped. The roots of
the characteristic equation are

and the corresponding response is

(8.5.1)

We now apply the initial conditions to get and 

(8.5.2)

But differentiating Eq. (8.5.1),

At 

(8.5.3)

From Eqs. (8.5.2) and (8.5.3), we obtain and 
Substituting and in Eq. (8.5.1) yields

(8.5.4)

■ CASE 2 When 

while remains the same. Since the response is
critically damped. Hence, and

(8.5.5)

To get and we apply the initial conditions

(8.5.6)

But differentiating Eq. (8.5.5),

dv
dt

� (�10A1 � 10A2t � A2)e�10t

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

5 � 0

5 � 10 � 10�3 � �100

v(0) � 5 � A1

A2,A1

v(t) � (A1 � A2t)e�10t

s1 � s2 � �10,
a � �0 � 10,�0 � 10

a �
1

2RC
�

1

2 � 5 � 10 � 10�3 � 10

R � 5 �,

v(t) � �0.2083e�2t � 5.208e�50t

A2A1

A2 � 5.208.A1 � �0.2083

�260 � �2A1 � 50A2

t � 0,

dv
dt

� �2A1e�2t � 50A2e�50t

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

5 � 0

1.923 � 10 � 10�3 � �260

v(0) � 5 � A1 � A2

A2.A1

v(t) � A1e�2t � A2e�50t

s1,2 � �a � 2a2 � �0
2 � �2, �50

a 7 �0 

�0 �
12LC

�
121 � 10 � 10�3

� 10

a �
1

2RC
�

1

2 � 1.923 � 10 � 10�3 � 26

R � 1.923 �,

R � 6.25 �.R � 1.923 �, R � 5 �,
C � 10 mF.i(0) � 0, L � 1 H,v(0) � 5 V,

t 7 0,v(t)Example 8.5
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At 

(8.5.7)

From Eqs. (8.5.6) and (8.5.7), and Thus,

(8.5.8)

■ CASE 3 When 

while remains the same. As in this case, the response
is underdamped. The roots of the characteristic equation are

Hence,

(8.5.9)

We now obtain and as

(8.5.10)

But differentiating Eq. (8.5.9),

At 

(8.5.11)

From Eqs. (8.5.10) and (8.5.11), and . Thus,

(8.5.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.

v(t) � (5 cos 6t � 6.667 sin 6t)e�8t

A2 � �6.667A1 � 5

�80 � �8A1 � 6A2

t � 0,

dv
dt

� (�8A1  cos  6t � 8A2  sin  6t � 6A1  sin  6t � 6A2  cos  6t)e�8t

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

5 � 0

6.25 � 10 � 10�3 � �80

v(0) � 5 � A1

A2,A1

v(t) � (A1 cos 6t � A2 sin 6t)e�8t

s1,2 � �a � 2a2 � �0
2 � �8 � j6

a 6 �0�0 � 10

a �
1

2RC
�

1

2 � 6.25 � 10 � 10�3 � 8

R � 6.25 �,

v(t) � (5 � 50t)e�10t V

A2 � �50.A1 � 5

�100 � �10A1 � A2

t � 0,
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Figure 8.14
For Example 8.5: responses for three degrees of damping.
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330 Chapter 8 Second-Order Circuits

In Fig. 8.13, let
Find for

Answer: �2te�10t u(t) V.

t 7 0.v(t)
R �2 �, L � 0.4 H, C �25 mF, v(0) �0, i(0)� 50 mA.Practice Problem 8.5

Find for in the RLC circuit of Fig. 8.15.t 7 0v(t)Example 8.6

40 V

0.4 H

50 Ω 20 �F

30 Ω

+
−

i

t = 0 v
+

−

Figure 8.15
For Example 8.6.

Solution:
When the switch is open; the inductor acts like a short circuit
while the capacitor behaves like an open circuit. The initial voltage across
the capacitor is the same as the voltage across the - resistor; that is,

(8.6.1)

The initial current through the inductor is

The direction of i is as indicated in Fig. 8.15 to conform with the
direction of in Fig. 8.13, which is in agreement with the convention
that current flows into the positive terminal of an inductor (see Fig. 6.23).
We need to express this in terms of , since we are looking for v.

(8.6.2)

When , the switch is closed. The voltage source along with the
resistor is separated from the rest of the circuit. The parallel RLC

circuit acts independently of the voltage source, as illustrated in Fig. 8.16.
Next, we determine that the roots of the characteristic equation are

or

s1 � �854,  s2 � �146

 � �500 � 2250,000 � 124,997.6 � �500 � 354

 s1,2 � �a � 2a2 � �2
0

�0 �
12LC

�
120.4 � 20 � 10�6

� 354

a �
1

2RC
�

1

2 � 50 � 20 � 10�6 � 500

30-�
t 7 0

dv(0)

dt
� � 

v(0) � Ri(0)

RC
� � 

25 � 50 � 0.5

50 � 20 � 10�6 � 0

dv�dt

I0

i(0) � � 

40

30 � 50
� �0.5 A

v(0) �
50

30 � 50
 (40) �

5

8
� 40 � 25 V

�50

t 6 0,
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4.5 A 4 mF20 Ω 10 H

t = 0

Figure 8.17
For Practice Prob. 8.6.

Since we have the overdamped response

(8.6.3)

At we impose the condition in Eq. (8.6.1),

(8.6.4)

Taking the derivative of in Eq. (8.6.3),

Imposing the condition in Eq. (8.6.2),

or

(8.6.5)

Solving Eqs. (8.6.4) and (8.6.5) gives

Thus, the complete solution in Eq. (8.6.3) becomes

v(t) � �5.156e�854t � 30.16e�146t V

A1 � �5.156,  A2 � 30.16

0 � 854A1 � 146A2

dv(0)

dt
� 0 � �854A1 � 146A2

dv
dt

� �854A1e�854t � 146A2e�146t

v(t)

v(0) � 25 � A1 � A2  1  A2 � 25 � A1

t � 0,

v(t) � A1e�854t � A2e�146t

a 7 �0,
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40 V

0.4 H

50 Ω 20 �F

30 Ω

+
−

Figure 8.16
The circuit in Fig. 8.15 when . The parallel
RLC circuit on the right-hand side acts independently
of the circuit on the left-hand side of the junction.

t 7 0

Practice Problem 8.6Refer to the circuit in Fig. 8.17. Find for .

Answer: 150(e�10t � e�2.5t) V.

t 7 0v(t)

Step Response of a Series RLC Circuit
As we learned in the preceding chapter, the step response is obtained
by the sudden application of a dc source. Consider the series RLC cir-
cuit shown in Fig. 8.18. Applying KVL around the loop for ,

(8.39)

But

i � C 

dv
dt

L 

di

dt
� Ri � v � Vs

t 7 0

8.5

Vs

R L

C+
−

i
t = 0

v
+

−

Figure 8.18
Step voltage applied to a series RLC circuit.
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