
We can find although it is not required. Since ,

(c) As the circuit reaches steady state. We have the equivalent
circuit in Fig. 8.6(a) except that the 3-A current source is now
operative. By current division principle,

(8.2.12)
iL(�) �

2

2 � 4
3 A � 1 A

vR(�) �
4

2 � 4
 3 A � 2 � 4 V,  vC 

(�) � �20 V

t S �,

diR(0�)

dt
�

1

5
  
dvR(0�)

dt
�

1

5
  
2

3
�

2

15
 A/s

vR � 5iRdiR(0�)�dt
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Practice Problem 8.2For the circuit in Fig. 8.7, find: (a) 
(b) , (c) iL(�), vC 

(�), vR(�).diL(0�)�dt, dvC 
(0�)�dt, dvR(0�)�dt

iL(0�), vC 

(0�), vR(0�),

Figure 8.7
For Practice Prob. 8.2.

Answer: (a) 0, 0, (b) 0, 20 V/s, 0, (c) 20 V, 20 V.�2 A,�6 A,

The Source-Free Series RLC Circuit
An understanding of the natural response of the series RLC circuit is
a necessary background for future studies in filter design and commu-
nications networks.

Consider the series RLC circuit shown in Fig. 8.8. The circuit is
being excited by the energy initially stored in the capacitor and induc-
tor. The energy is represented by the initial capacitor voltage and
initial inductor current . Thus, at ,

(8.2a)

(8.2b)

Applying KVL around the loop in Fig. 8.8,

(8.3)Ri � L 

di

dt
�

1

C
 �

t

��

 i(t) dt � 0

 i(0) � I0

 v(0) �
1

C
 �

0

��

 i dt � V0

t � 0I0

V0

8.3

Figure 8.8
A source-free series RLC circuit.

4u(t) A 6 A

5 Ω

2 H

iC iL

vC

+

−

iR

vL

vR+ −

+

−
F1

5

i

R L

I0

V0 C

+

−
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To eliminate the integral, we differentiate with respect to t and
rearrange terms. We get

(8.4)

This is a second-order differential equation and is the reason for call-
ing the RLC circuits in this chapter second-order circuits. Our goal is
to solve Eq. (8.4). To solve such a second-order differential equation
requires that we have two initial conditions, such as the initial value
of i and its first derivative or initial values of some i and The ini-
tial value of i is given in Eq. (8.2b). We get the initial value of the
derivative of i from Eqs. (8.2a) and (8.3); that is,

or

(8.5)

With the two initial conditions in Eqs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

(8.6)

where A and s are constants to be determined. Substituting Eq. (8.6)
into Eq. (8.4) and carrying out the necessary differentiations, we obtain

or

(8.7)

Since is the assumed solution we are trying to find, only the
expression in parentheses can be zero:

(8.8)

This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the char-
acter of i. The two roots of Eq. (8.8) are

(8.9a)

(8.9b)

A more compact way of expressing the roots is

(8.10)s1 � �a � 2a2 � �0
2,  s2 � �a � 2a2 � �0

2

s2 � � 

R

2L
� Ba R

2L
b2

�
1

LC

s1 � � 

R

2L
� Ba R

2L
b2

�
1

LC

s2 �
R

L
 s �

1

LC
� 0

i � Aest

Aestas2 �
R

L
 s �

1

LC
b � 0

As2est �
AR

L
 sest �

A

LC
 est � 0

i � Aest

di(0)

dt
� � 

1

L
 (RI0 � V0)

Ri(0) � L 

di(0)

dt
� V0 � 0

v.

d 
2i

dt2 �
R

L
  
di

 dt
�

i

LC
� 0
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See Appendix C.1 for the formula to
find the roots of a quadratic equation.
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where

(8.11)

The roots and are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of the circuit; is known as the resonant frequency or
strictly as the undamped natural frequency, expressed in radians per
second (rad/s); and is the neper frequency or the damping factor,
expressed in nepers per second. In terms of and , Eq. (8.8) can be
written as

(8.8a)

The variables s and are important quantities we will be discussing
throughout the rest of the text.

The two values of s in Eq. (8.10) indicate that there are two pos-
sible solutions for i, each of which is of the form of the assumed solu-
tion in Eq. (8.6); that is,

(8.12)

Since Eq. (8.4) is a linear equation, any linear combination of the
two distinct solutions and is also a solution of Eq. (8.4). A com-
plete or total solution of Eq. (8.4) would therefore require a linear
combination of and . Thus, the natural response of the series RLC
circuit is

(8.13)

where the constants and are determined from the initial values
and in Eqs. (8.2b) and (8.5).
From Eq. (8.10), we can infer that there are three types of solutions:

1. If we have the overdamped case.
2. If we have the critically damped case.
3. If we have the underdamped case.

We will consider each of these cases separately.

Overdamped Case ( 0)
From Eqs. (8.9) and (8.10), implies When this
happens, both roots and are negative and real. The response is

(8.14)

which decays and approaches zero as t increases. Figure 8.9(a) illus-
trates a typical overdamped response.

Critically Damped Case ( 0)
When and

(8.15)s1 � s2 � �a � � 

R

2L

a � �0, C � 4L�R2
A � �

i(t) � A1es1t � A2es2t

s2s1

C 7 4L�R2.a 7 �0

A � �

a 6 �0,
a � �0,
a 7 �0,

di(0)�dti(0)
A2A1

i(t) � A1es1t � A2es2t

i2i1

i2i1

i1 � A1es1t,  i2 � A2es2t

�0

s2 � 2a s � �0
2 � 0

�0a

a

�0

s2s1

a �
R

2L
,  �0 �

12LC
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The neper (Np) is a dimensionless unit
named after John Napier (1550–1617),
a Scottish mathematician.

The ratio � 0 is known as the damp-
ing ratio .z

�a

The response is overdamped when
the roots of the circuit’s characteristic
equation are unequal and real, critically
damped when the roots are equal and
real, and underdamped when the
roots are complex.

ale80571_ch08_313-367.qxd  11/30/11  1:13 PM  Page 321



For this case, Eq. (8.13) yields

where . This cannot be the solution, because the two ini-
tial conditions cannot be satisfied with the single constant . What
then could be wrong? Our assumption of an exponential solution is
incorrect for the special case of critical damping. Let us go back to
Eq. (8.4). When , Eq. (8.4) becomes

or

(8.16)

If we let

(8.17)

then Eq. (8.16) becomes

which is a first-order differential equation with solution 
where is a constant. Equation (8.17) then becomes

or

(8.18)

This can be written as

(8.19)

Integrating both sides yields

or

(8.20)

where is another constant. Hence, the natural response of the criti-
cally damped circuit is a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term, or

(8.21)

A typical critically damped response is shown in Fig. 8.9(b). In fact,
Fig. 8.9(b) is a sketch of which reaches a maximum value of

at one time constant, and then decays all the way to zero.t � 1�a,e�1�a
i(t) � te�at,

i(t) � (A2 � A1t)e�at

A2

i � (A1t � A2)e�at

eati � A1t � A2

d

dt
 (eati) � A1

eat
 

di

dt
� eatai � A1

di

dt
� ai � A1e�at

A1

f � A1e�at,

df

dt
� a f � 0

f �
di

dt
� ai

d

dt
 adi

dt
� aib � a adi

dt
� aib � 0

d 
2i

dt2
� 2a 

di

dt
� a2i � 0

a � �0 � R�2L

A3

A3 � A1 � A2 

i(t) � A1e�at � A2e�at � A3e�at
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Figure 8.9
(a) Overdamped response, (b) critically
damped response, (c) underdamped
response.

t

i(t)

0

e–t

(c)

t1
�

i(t)

0

(b)

t

i(t)

0

(a)

2�
�d
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Underdamped Case ( )
For The roots may be written as

(8.22a)

(8.22b)

where and which is called the damping
frequency. Both and are natural frequencies because they help
determine the natural response; while is often called the undamped
natural frequency, is called the damped natural frequency. The natural
response is

(8.23)

Using Euler’s identities,

(8.24)
we get

(8.25)

Replacing constants and with constants and 
we write

(8.26)

With the presence of sine and cosine functions, it is clear that the nat-
ural response for this case is exponentially damped and oscillatory in
nature. The response has a time constant of and a period of

Figure 8.9(c) depicts a typical underdamped response.
[Figure 8.9 assumes for each case that .]

Once the inductor current is found for the RLC series circuit
as shown above, other circuit quantities such as individual element
voltages can easily be found. For example, the resistor voltage is

and the inductor voltage is . The inductor cur-
rent is selected as the key variable to be determined first in order
to take advantage of Eq. (8.1b).

We conclude this section by noting the following interesting, pecu-
liar properties of an RLC network:

1. The behavior of such a network is captured by the idea of damping,
which is the gradual loss of the initial stored energy, as evidenced by
the continuous decrease in the amplitude of the response. The damp-
ing effect is due to the presence of resistance R. The damping factor

determines the rate at which the response is damped. If 
then and we have an LC circuit with as the
undamped natural frequency. Since in this case, the response
is not only undamped but also oscillatory. The circuit is said to be
loss-less, because the dissipating or damping element (R) is absent.
By adjusting the value of R, the response may be made undamped,
overdamped, critically damped, or underdamped.

2. Oscillatory response is possible due to the presence of the two
types of storage elements. Having both L and C allows the flow of

a 6 �0

1�1LCa � 0,
R � 0,a

i(t)
vL � L di�dtvR � Ri,

i(t)
i(0) � 0

T � 2p��d.
1�a

i(t) � e�a t(B1 cos �d 
t � B2 sin �d 

t)

B2,B1j(A1 � A2)(A1 � A2)

� e�a t[(A1 � A2) cos �d 
t � j(A1 � A2) sin �d 

t]

 i(t) � e�a t[A1(cos �d 
t � j sin  �d 

t) � A2(cos �d 
t � j sin �d 

t)]

e 
ju �  cos u � j sin  u,  e�ju �  cos  u � j sin  u

i(t) � A1e�(a�j�d)t � A2e�(a�j�d)t

� e�a t(A1e 
j�d t � A2e�j�d t)

�d

�0

�d�0

�d � 2�0
2 � a2,j � 2�1

 s2 � �a � 2�(�0
2 � a2) � �a � j�d

 s1 � �a � 2�(�0
2 � a2) � �a � j�d

a 6 �0, C 6 4L�R2.
A � �0

8.3 The Source-Free Series RLC Circuit 323

R 0 produces a perfectly sinusoidal
response. This response cannot be
practically accomplished with L and C
because of the inherent losses in them.
See Figs 6.8 and 6.26. An electronic
device called an oscillator can pro-
duce a perfectly sinusoidal response.

�

Examples 8.5 and 8.7 demonstrate the
effect of varying R.

The response of a second-order circuit
with two storage elements of the same
type, as in Fig. 8.1(c) and (d), cannot
be oscillatory.
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energy back and forth between the two. The damped oscillation
exhibited by the underdamped response is known as ringing. It
stems from the ability of the storage elements L and C to transfer
energy back and forth between them.

3. Observe from Fig. 8.9 that the waveforms of the responses differ.
In general, it is difficult to tell from the waveforms the difference
between the overdamped and critically damped responses. The crit-
ically damped case is the borderline between the underdamped and
overdamped cases and it decays the fastest. With the same initial
conditions, the overdamped case has the longest settling time,
because it takes the longest time to dissipate the initial stored
energy. If we desire the response that approaches the final value
most rapidly without oscillation or ringing, the critically damped
circuit is the right choice.

324 Chapter 8 Second-Order Circuits

What this means in most practical cir-
cuits is  that we seek an overdamped
circuit that is as close as possible to a
critically damped circuit.

Example 8.3 In Fig. 8.8, and Calculate the charac-
teristic roots of the circuit. Is the natural response overdamped, under-
damped, or critically damped?

Solution:
We first calculate

The roots are

or

Since we conclude that the response is overdamped. This is
also evident from the fact that the roots are real and negative.

a 7 �0,

s1 � �0.101,  s2 � �9.899

s1,2 � �a � 2a2 � �0
2 � �5 � 225 � 1

a �
R

2L
�

40

2(4)
� 5,  �0 �

12LC
�

124 � 1
4

� 1

C � 1�4 F.R � 40 �, L � 4 H,

Practice Problem 8.3 If and in Fig. 8.8, find and 
What type of natural response will the circuit have?

Answer: 1, 10, underdamped.�1 � j 9.95,

s2.a, �0, s1,C � 2 mFR � 10 �, L � 5 H,

Find in the circuit of Fig. 8.10. Assume that the circuit has reached
steady state at .

Solution:
For , the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
shown in Fig. 8.11(a). Thus, at ,

i(0) �
10

4 � 6
� 1 A,  v(0) � 6i(0) � 6 V

t � 0

t 6 0

t � 0�
i(t)Example 8.4
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where is the initial current through the inductor and is the
initial voltage across the capacitor.

For the switch is opened and the voltage source is discon-
nected. The equivalent circuit is shown in Fig. 8.11(b), which is a source-
free series RLC circuit. Notice that the and resistors, which are
in series in Fig. 8.10 when the switch is opened, have been combined to
give in Fig. 8.11(b). The roots are calculated as follows:

or

Hence, the response is underdamped ( ); that is,

(8.4.1)

We now obtain and using the initial conditions. At 

(8.4.2)

From Eq. (8.5),

(8.4.3)

Note that is used, because the polarity of v in
Fig. 8.11(b) is opposite that in Fig. 8.8. Taking the derivative of in
Eq. (8.4.1),

Imposing the condition in Eq. (8.4.3) at gives

But from Eq. (8.4.2). Then

Substituting the values of and in Eq. (8.4.1) yields the
complete solution as

i(t) � e�9t( cos  4.359t � 0.6882  sin  4.359t) A

A2A1

�6 � �9 � 4.359A2  1  A2 � 0.6882

A1 � 1

�6 � �9(A1 � 0) � 4.359(�0 � A2)

t � 0

 � e�9t(4.359)(�A1 sin  4.359t � A2 cos  4.359t)

 
di

dt
� �9e�9t(A1  cos  4.359t � A2  sin  4.359t)

i(t)
v(0) � V0 � �6 V

di

dt
 2
t�0

� � 

1

L
 [Ri(0) � v(0)] � �2[9(1) � 6] � �6 A/s

i(0) � 1 � A1

t � 0,A2A1

i(t) � e�9t(A1 cos  4.359t � A2 sin  4.359 t)

a 6 �

s1,2 � �9 � j 4.359

s1,2 � �a � 2a2 � �0
2 � �9 � 281 � 100

a �
R

2L
�

9

2(1
2)

� 9,  �0 �
12LC

�
121

2 � 1
50

� 10

R � 9 �

6-�3-�

t 7 0,

v(0)i(0)
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0.5 H

0.02 F

9 Ω

i

(b)

10 V

4 Ω

v
+

−
6 Ω+

−

i

(a)

v
+

−

Figure 8.10
For Example 8.4. Figure 8.11

The circuit in Fig. 8.10: (a) for , (b) for .t 7 0t 6 0

t = 0

10 V

4 Ω

0.5 H

0.02 F v
+

−

3 Ω

+
−

6 Ω

i
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Practice Problem 8.4 The circuit in Fig. 8.12 has reached steady state at If the make-
before-break switch moves to position b at calculate for

Answer: e�2.5t(10 cos 1.6583t � 15.076 sin 1.6583t) A.

t 7 0.
i(t)t � 0,

 t � 0�.

t = 0

a b

100 V

10 Ω

1 H

+
− 5 Ω

i(t)

F1
9

Figure 8.12
For Practice Prob. 8.4.

v

R L CI0v

+

−

v

+

−

V0

+

−

Figure 8.13
A source-free parallel RLC circuit.

The Source-Free Parallel RLC Circuit
Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume ini-
tial inductor current and initial capacitor voltage ,

(8.27a)

(8.27b)

Since the three elements are in parallel, they have the same voltage v
across them. According to passive sign convention, the current is enter-
ing each element; that is, the current through each element is leaving
the top node. Thus, applying KCL at the top node gives

(8.28)

Taking the derivative with respect to t and dividing by C results in

(8.29)

We obtain the characteristic equation by replacing the first derivative
by s and the second derivative by . By following the same reasoning
used in establishing Eqs. (8.4) through (8.8), the characteristic equa-
tion is obtained as

(8.30)

The roots of the characteristic equation are

or

(8.31)

where

(8.32)a �
1

2RC
,  �0 �

12LC

s1,2 � �a � 2a2 � �0
2

s1,2 � � 

1

2RC
 � Ba 1

2RC
b2

�
1

LC

s2 �
1

RC
 s �

1

LC
� 0

s2

d 
2v

dt 
2 �

1

RC
 

dv
dt

�
1

LC
 v � 0

v
R

�
1

L
 �

t

��

 v (t)dt � C 

dv
dt

� 0

 v(0) � V0

 i(0) � I0 �
1

L
 �

0

�

 v(t) dt

V0I0

8.4
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