If
Practice Problem 7.8

$$
h(t)= \begin{cases}0, & t<0 \\ -4, & 0<t<2 \\ 3 t-8, & 2<t<6 \\ 0, & t>6\end{cases}
$$

express $h(t)$ in terms of the singularity functions.
Answer: $-4 u(t)+2 u(t-2)+3 r(t-2)-10 u(t-6)-3 r(t-6)$.

Evaluate the following integrals involving the impulse function:

$$
\begin{gathered}
\int_{0}^{10}\left(t^{2}+4 t-2\right) \delta(t-2) d t \\
\int_{-\infty}^{\infty}\left[\delta(t-1) e^{-t} \cos t+\delta(t+1) e^{-t} \sin t\right] d t
\end{gathered}
$$

Solution:

For the first integral, we apply the sifting property in Eq. (7.32).

$$
\int_{0}^{10}\left(t^{2}+4 t-2\right) \delta(t-2) d t=\left.\left(t^{2}+4 t-2\right)\right|_{t=2}=4+8-2=10
$$

Similarly, for the second integral,

$$
\begin{aligned}
\int_{-\infty}^{\infty} & {\left[\delta(t-1) e^{-t} \cos t+\delta(t+1) e^{-t} \sin t\right] d t } \\
& =\left.e^{-t} \cos t\right|_{t=1}+\left.e^{-t} \sin t\right|_{t=-1} \\
& =e^{-1} \cos 1+e^{1} \sin (-1)=0.1988-2.2873=-2.0885
\end{aligned}
$$

Evaluate the following integrals:

$$
\int_{-\infty}^{\infty}\left(t^{3}+5 t^{2}+10\right) \delta(t+3) d t, \quad \int_{0}^{10} \delta(t-\pi) \cos 3 t d t
$$

Answer: 28, 1 .

7.5 Step Response of an RC Circuit

When the dc source of an $R C$ circuit is suddenly applied, the voltage or current source can be modeled as a step function, and the response is known as a step response.

The step response of a circuit is its behavior when the excitation is the step function, which may be a voltage or a current source.

Figure 7.40
An $R C$ circuit with voltage step input.

The step response is the response of the circuit due to a sudden application of a dc voltage or current source.

Consider the $R C$ circuit in Fig. 7.40(a) which can be replaced by the circuit in Fig. 7.40(b), where V_{s} is a constant dc voltage source. Again, we select the capacitor voltage as the circuit response to be determined. We assume an initial voltage V_{0} on the capacitor, although this is not necessary for the step response. Since the voltage of a capacitor cannot change instantaneously,

$$
\begin{equation*}
v\left(0^{-}\right)=v\left(0^{+}\right)=V_{0} \tag{7.40}
\end{equation*}
$$

where $v\left(0^{-}\right)$is the voltage across the capacitor just before switching and $v\left(0^{+}\right)$is its voltage immediately after switching. Applying KCL, we have

$$
C \frac{d v}{d t}+\frac{v-V_{s} u(t)}{R}=0
$$

or

$$
\begin{equation*}
\frac{d v}{d t}+\frac{v}{R C}=\frac{V_{s}}{R C} u(t) \tag{7.41}
\end{equation*}
$$

where v is the voltage across the capacitor. For $t>0$, Eq. (7.41) becomes

$$
\begin{equation*}
\frac{d v}{d t}+\frac{v}{R C}=\frac{V_{s}}{R C} \tag{7.42}
\end{equation*}
$$

Rearranging terms gives

$$
\frac{d v}{d t}=-\frac{v-V_{s}}{R C}
$$

or

$$
\begin{equation*}
\frac{d v}{v-V_{s}}=-\frac{d t}{R C} \tag{7.43}
\end{equation*}
$$

Integrating both sides and introducing the initial conditions,

$$
\begin{gathered}
\left.\ln \left(v-V_{s}\right)\right|_{V_{0}} ^{v(t)}=-\left.\frac{t}{R C}\right|_{0} ^{t} \\
\ln \left(v(t)-V_{s}\right)-\ln \left(V_{0}-V_{s}\right)=-\frac{t}{R C}+0
\end{gathered}
$$

or

$$
\begin{equation*}
\ln \frac{v-V_{s}}{V_{0}-V_{s}}=-\frac{t}{R C} \tag{7.44}
\end{equation*}
$$

Taking the exponential of both sides

$$
\begin{aligned}
\frac{v-V_{s}}{V_{0}-V_{s}} & =e^{-t / \tau}, \quad \tau=R C \\
v-V_{s} & =\left(V_{0}-V_{s}\right) e^{-t / \tau}
\end{aligned}
$$

or

$$
\begin{equation*}
v(t)=V_{s}+\left(V_{0}-V_{s}\right) e^{-t / \tau}, \quad t>0 \tag{7.45}
\end{equation*}
$$

Thus,

$$
v(t)= \begin{cases}V_{0}, & t<0 \tag{7.46}\\ V_{s}+\left(V_{0}-V_{s}\right) e^{-t / \tau}, & t>0\end{cases}
$$

This is known as the complete response (or total response) of the $R C$ circuit to a sudden application of a dc voltage source, assuming the capacitor is initially charged. The reason for the term "complete" will become evident a little later. Assuming that $V_{s}>V_{0}$, a plot of $v(t)$ is shown in Fig. 7.41.

If we assume that the capacitor is uncharged initially, we set $V_{0}=0$ in Eq. (7.46) so that

$$
v(t)= \begin{cases}0, & t<0 \tag{7.47}\\ V_{s}\left(1-e^{-t / \tau}\right), & t>0\end{cases}
$$

which can be written alternatively as

$$
\begin{equation*}
v(t)=V_{s}\left(1-e^{-t / \tau}\right) u(t) \tag{7.48}
\end{equation*}
$$

This is the complete step response of the $R C$ circuit when the capacitor is initially uncharged. The current through the capacitor is obtained from Eq. (7.47) using $i(t)=C d v / d t$. We get

$$
i(t)=C \frac{d v}{d t}=\frac{C}{\tau} V_{s} e^{-t / \tau}, \quad \tau=R C, \quad t>0
$$

or

$$
\begin{equation*}
i(t)=\frac{V_{s}}{R} e^{-t / \tau} u(t) \tag{7.49}
\end{equation*}
$$

Figure 7.42 shows the plots of capacitor voltage $v(t)$ and capacitor current $i(t)$.

Rather than going through the derivations above, there is a systematic approach-or rather, a short-cut method-for finding the step response of an $R C$ or $R L$ circuit. Let us reexamine Eq. (7.45), which is more general than Eq. (7.48). It is evident that $v(t)$ has two components. Classically there are two ways of decomposing this into two components. The first is to break it into a "natural response and a forced response" and the second is to break it into a "transient response and a steady-state response." Starting with the natural response and forced response, we write the total or complete response as

$$
\text { Complete response }=\underset{\text { stored energy }}{\text { natural response }}+\underset{\text { independent source }}{\text { forced response }}
$$

or

$$
\begin{equation*}
v=v_{n}+v_{f} \tag{7.50}
\end{equation*}
$$

where

$$
v_{n}=V_{o} e^{-t / \tau}
$$

and

$$
v_{f}=V_{s}\left(1-e^{-t / \tau}\right)
$$

We are familiar with the natural response v_{n} of the circuit, as discussed in Section 7.2. v_{f} is known as the forced response because it is produced by the circuit when an external "force" (a voltage source in this case) is applied. It represents what the circuit is forced to do by the input excitation. The natural response eventually dies out along with the transient component of the forced response, leaving only the steadystate component of the forced response.

Figure 7.41
Response of an $R C$ circuit with initially charged capacitor.

Figure 7.42
Step response of an $R C$ circuit with initially uncharged capacitor: (a) voltage response, (b) current response.

This is the same as saying that the complete response is the sum of the transient response and the steady-state response.

Once we know $x(0), x(\infty)$, and τ, almost all the circuit problems in this chapter can be solved using the formula

$$
x(t)=x(\infty)+[x(0)-x(\infty)] e^{-t / \tau}
$$

Another way of looking at the complete response is to break into two components-one temporary and the other permanent, i.e.,

$$
\text { Complete response }=\underset{\text { temporary part }}{\text { transient response }}+\underset{\text { permanent part }}{\text { steady-state response }}
$$

or

$$
\begin{equation*}
v=v_{t}+v_{s s} \tag{7.51}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{t}=\left(V_{o}-V_{s}\right) e^{-t / \tau} \tag{7.52a}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{s s}=V_{s} \tag{7.52b}
\end{equation*}
$$

The transient response v_{t} is temporary; it is the portion of the complete response that decays to zero as time approaches infinity. Thus,

The transient response is the circuit's temporary response that will die out with time.

The steady-state response $v_{s s}$ is the portion of the complete response that remains after the transient reponse has died out. Thus,

The steady-state response is the behavior of the circuit a long time after an external excitation is applied.

The first decomposition of the complete response is in terms of the source of the responses, while the second decomposition is in terms of the permanency of the responses. Under certain conditions, the natural response and transient response are the same. The same can be said about the forced response and steady-state response.

Whichever way we look at it, the complete response in Eq. (7.45) may be written as

$$
\begin{equation*}
v(t)=v(\infty)+[v(0)-v(\infty)] e^{-t / \tau} \tag{7.53}
\end{equation*}
$$

where $v(0)$ is the initial voltage at $t=0^{+}$and $v(\infty)$ is the final or steadystate value. Thus, to find the step response of an $R C$ circuit requires three things:

1. The initial capacitor voltage $v(0)$.
2. The final capacitor voltage $v(\infty)$.
3. The time constant τ.

We obtain item 1 from the given circuit for $t<0$ and items 2 and 3 from the circuit for $t>0$. Once these items are determined, we obtain
the response using Eq. (7.53). This technique equally applies to $R L$ circuits, as we shall see in the next section.

Note that if the switch changes position at time $t=t_{0}$ instead of at $t=0$, there is a time delay in the response so that Eq. (7.53) becomes

$$
\begin{equation*}
v(t)=v(\infty)+\left[v\left(t_{0}\right)-v(\infty)\right] e^{-\left(t-t_{0}\right) / \tau} \tag{7.54}
\end{equation*}
$$

where $v\left(t_{0}\right)$ is the initial value at $t=t_{0}^{+}$. Keep in mind that Eq. (7.53) or (7.54) applies only to step responses, that is, when the input excitation is constant.

The switch in Fig. 7.43 has been in position A for a long time. At $t=0$,

Example 7.10

 the switch moves to B. Determine $v(t)$ for $t>0$ and calculate its value at $t=1 \mathrm{~s}$ and 4 s .

Figure 7.43
For Example 7.10.

Solution:

For $t<0$, the switch is at position A. The capacitor acts like an open circuit to dc, but v is the same as the voltage across the $5-\mathrm{k} \Omega$ resistor. Hence, the voltage across the capacitor just before $t=0$ is obtained by voltage division as

$$
v\left(0^{-}\right)=\frac{5}{5+3}(24)=15 \mathrm{~V}
$$

Using the fact that the capacitor voltage cannot change instantaneously,

$$
v(0)=v\left(0^{-}\right)=v\left(0^{+}\right)=15 \mathrm{~V}
$$

For $t>0$, the switch is in position B. The Thevenin resistance connected to the capacitor is $R_{\mathrm{Th}}=4 \mathrm{k} \Omega$, and the time constant is

$$
\tau=R_{\mathrm{Th}} C=4 \times 10^{3} \times 0.5 \times 10^{-3}=2 \mathrm{~s}
$$

Since the capacitor acts like an open circuit to dc at steady state, $v(\infty)=30 \mathrm{~V}$. Thus,

$$
\begin{aligned}
v(t) & =v(\infty)+[v(0)-v(\infty)] e^{-t / \tau} \\
& =30+(15-30) e^{-t / 2}=\left(30-15 e^{-0.5 t}\right) \mathrm{V}
\end{aligned}
$$

At $t=1$,

$$
v(1)=30-15 e^{-0.5}=20.9 \mathrm{~V}
$$

At $t=4$,

$$
v(4)=30-15 e^{-2}=27.97 \mathrm{~V}
$$

Practice Problem 7.10

Figure 7.44
For Practice Prob. 7.10.

Example 7.11

(a)

(b)

Figure 7.46
Solution of Example 7.11: (a) for $t<0$, (b) for $t>0$.

Find $v(t)$ for $t>0$ in the circuit of Fig. 7.44. Assume the switch has been open for a long time and is closed at $t=0$. Calculate $v(t)$ at $t=0.5$.

Answer: $\left(9.375+5.625 e^{-2 t}\right) \mathrm{V}$ for all $t>0,7.63 \mathrm{~V}$.

In Fig. 7.45, the switch has been closed for a long time and is opened at $t=0$. Find i and v for all time.

Figure 7.45
For Example 7.11.

Solution:

The resistor current i can be discontinuous at $t=0$, while the capacitor voltage v cannot. Hence, it is always better to find v and then obtain i from v.

By definition of the unit step function,

$$
30 u(t)=\left\{\begin{aligned}
0, & t<0 \\
30, & t>0
\end{aligned}\right.
$$

For $t<0$, the switch is closed and $30 u(t)=0$, so that the $30 u(t)$ voltage source is replaced by a short circuit and should be regarded as contributing nothing to v. Since the switch has been closed for a long time, the capacitor voltage has reached steady state and the capacitor acts like an open circuit. Hence, the circuit becomes that shown in Fig. 7.46(a) for $t<0$. From this circuit we obtain

$$
v=10 \mathrm{~V}, \quad i=-\frac{v}{10}=-1 \mathrm{~A}
$$

Since the capacitor voltage cannot change instantaneously,

$$
v(0)=v\left(0^{-}\right)=10 \mathrm{~V}
$$

For $t>0$, the switch is opened and the $10-\mathrm{V}$ voltage source is disconnected from the circuit. The $30 u(t)$ voltage source is now operative, so the circuit becomes that shown in Fig. 7.46(b). After a long time, the circuit reaches steady state and the capacitor acts like an open circuit again. We obtain $v(\infty)$ by using voltage division, writing

$$
v(\infty)=\frac{20}{20+10}(30)=20 \mathrm{~V}
$$

The Thevenin resistance at the capacitor terminals is

$$
R_{\mathrm{Th}}=10 \| 20=\frac{10 \times 20}{30}=\frac{20}{3} \Omega
$$

and the time constant is

$$
\tau=R_{\mathrm{Th}} C=\frac{20}{3} \cdot \frac{1}{4}=\frac{5}{3} \mathrm{~s}
$$

Thus,

$$
\begin{aligned}
v(t) & =v(\infty)+[v(0)-v(\infty)] e^{-t / \tau} \\
& =20+(10-20) e^{-(3 / 5) t}=\left(20-10 e^{-0.6 t}\right) \mathrm{V}
\end{aligned}
$$

To obtain i, we notice from Fig. 7.46(b) that i is the sum of the currents through the $20-\Omega$ resistor and the capacitor; that is,

$$
\begin{aligned}
i & =\frac{v}{20}+C \frac{d v}{d t} \\
& =1-0.5 e^{-0.6 t}+0.25(-0.6)(-10) e^{-0.6 t}=\left(1+e^{-0.6 t}\right) \mathrm{A}
\end{aligned}
$$

Notice from Fig. 7.46(b) that $v+10 i=30$ is satisfied, as expected.
Hence,

$$
\begin{aligned}
v & = \begin{cases}10 \mathrm{~V}, & t<0 \\
\left(20-10 e^{-0.6 t}\right) \mathrm{V}, & t \geq 0\end{cases} \\
i & = \begin{cases}-1 \mathrm{~A}, & t<0 \\
\left(1+e^{-0.6 t}\right) \mathrm{A}, & t>0\end{cases}
\end{aligned}
$$

Notice that the capacitor voltage is continuous while the resistor current is not.

The switch in Fig. 7.47 is closed at $t=0$. Find $i(t)$ and $v(t)$ for all time.
Note that $u(-t)=1$ for $t<0$ and 0 for $t>0$. Also, $u(-t)=1-u(t)$.

Figure 7.47
For Practice Prob. 7.11.

Answer: $i(t)= \begin{cases}0, & t<0 \\ -2\left(1+e^{-1.5 t}\right) \mathrm{A}, & t>0,\end{cases}$
$v= \begin{cases}20 \mathrm{~V}, & t<0 \\ 10\left(1+e^{-1.5 t}\right) \mathrm{V}, & t>0\end{cases}$

Figure 7.48
An $R L$ circuit with a step input voltage.

Figure 7.49
Total response of the $R L$ circuit with initial inductor current I_{0}.

7.6 Step Response of an RL Circuit

Consider the RL circuit in Fig. 7.48(a), which may be replaced by the circuit in Fig. 7.48(b). Again, our goal is to find the inductor current i as the circuit response. Rather than apply Kirchhoff's laws, we will use the simple technique in Eqs. (7.50) through (7.53). Let the response be the sum of the transient response and the steady-state response,

$$
\begin{equation*}
i=i_{t}+i_{s s} \tag{7.55}
\end{equation*}
$$

We know that the transient response is always a decaying exponential, that is,

$$
\begin{equation*}
i_{t}=A e^{-t / \tau}, \quad \tau=\frac{L}{R} \tag{7.56}
\end{equation*}
$$

where A is a constant to be determined.
The steady-state response is the value of the current a long time after the switch in Fig. 7.48(a) is closed. We know that the transient response essentially dies out after five time constants. At that time, the inductor becomes a short circuit, and the voltage across it is zero. The entire source voltage V_{s} appears across R. Thus, the steady-state response is

$$
\begin{equation*}
i_{s s}=\frac{V_{s}}{R} \tag{7.57}
\end{equation*}
$$

Substituting Eqs. (7.56) and (7.57) into Eq. (7.55) gives

$$
\begin{equation*}
i=A e^{-t / \tau}+\frac{V_{s}}{R} \tag{7.58}
\end{equation*}
$$

We now determine the constant A from the initial value of i. Let I_{0} be the initial current through the inductor, which may come from a source other than V_{s}. Since the current through the inductor cannot change instantaneously,

$$
\begin{equation*}
i\left(0^{+}\right)=i\left(0^{-}\right)=I_{0} \tag{7.59}
\end{equation*}
$$

Thus, at $t=0$, Eq. (7.58) becomes

$$
I_{0}=A+\frac{V_{s}}{R}
$$

From this, we obtain A as

$$
A=I_{0}-\frac{V_{s}}{R}
$$

Substituting for A in Eq. (7.58), we get

$$
\begin{equation*}
i(t)=\frac{V_{s}}{R}+\left(I_{0}-\frac{V_{s}}{R}\right) e^{-t / \tau} \tag{7.60}
\end{equation*}
$$

This is the complete response of the $R L$ circuit. It is illustrated in Fig. 7.49. The response in Eq. (7.60) may be written as

$$
\begin{equation*}
i(t)=i(\infty)+[i(0)-i(\infty)] e^{-t / \tau} \tag{7.61}
\end{equation*}
$$

where $i(0)$ and $i(\infty)$ are the initial and final values of i, respectively. Thus, to find the step response of an $R L$ circuit requires three things:

1. The initial inductor current $i(0)$ at $t=0$.
2. The final inductor current $i(\infty)$.
3. The time constant τ.

We obtain item 1 from the given circuit for $t<0$ and items 2 and 3 from the circuit for $t>0$. Once these items are determined, we obtain the response using Eq. (7.61). Keep in mind that this technique applies only for step responses.

Again, if the switching takes place at time $t=t_{0}$ instead of $t=0$, Eq. (7.61) becomes

$$
\begin{equation*}
i(t)=i(\infty)+\left[i\left(t_{0}\right)-i(\infty)\right] e^{-\left(t-t_{0}\right) / \tau} \tag{7.62}
\end{equation*}
$$

If $I_{0}=0$, then

$$
i(t)= \begin{cases}0, & t<0 \tag{7.63a}\\ \frac{V_{s}}{R}\left(1-e^{-t / \tau}\right), & t>0\end{cases}
$$

or

$$
\begin{equation*}
i(t)=\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right) u(t) \tag{7.63b}
\end{equation*}
$$

This is the step response of the $R L$ circuit with no initial inductor current. The voltage across the inductor is obtained from Eq. (7.63) using $v=L d i / d t$. We get

$$
v(t)=L \frac{d i}{d t}=V_{s} \frac{L}{\tau R} e^{-t / \tau}, \quad \tau=\frac{L}{R}, \quad t>0
$$

or

$$
\begin{equation*}
v(t)=V_{s} e^{-t / \tau} u(t) \tag{7.64}
\end{equation*}
$$

Figure 7.50 shows the step responses in Eqs. (7.63) and (7.64).

Figure 7.50
Step responses of an $R L$ circuit with no initial inductor current: (a) current response, (b) voltage response.

Example 7.12

Figure 7.51
For Example 7.12.

Find $i(t)$ in the circuit of Fig. 7.51 for $t>0$. Assume that the switch has been closed for a long time.

Solution:

When $t<0$, the $3-\Omega$ resistor is short-circuited, and the inductor acts like a short circuit. The current through the inductor at $t=0^{-}$(i.e., just before $t=0$) is

$$
i\left(0^{-}\right)=\frac{10}{2}=5 \mathrm{~A}
$$

Since the inductor current cannot change instantaneously,

$$
i(0)=i\left(0^{+}\right)=i\left(0^{-}\right)=5 \mathrm{~A}
$$

When $t>0$, the switch is open. The $2-\Omega$ and $3-\Omega$ resistors are in series, so that

$$
i(\infty)=\frac{10}{2+3}=2 \mathrm{~A}
$$

The Thevenin resistance across the inductor terminals is

$$
R_{\mathrm{Th}}=2+3=5 \Omega
$$

For the time constant,

$$
\tau=\frac{L}{R_{\mathrm{Th}}}=\frac{\frac{1}{3}}{5}=\frac{1}{15} \mathrm{~s}
$$

Thus,

$$
\begin{aligned}
i(t) & =i(\infty)+[i(0)-i(\infty)] e^{-t / \tau} \\
& =2+(5-2) e^{-15 t}=2+3 e^{-15 t} \mathrm{~A}, \quad t>0
\end{aligned}
$$

Check: In Fig. 7.51, for $t>0$, KVL must be satisfied; that is,

$$
\begin{gathered}
10=5 i+L \frac{d i}{d t} \\
5 i+L \frac{d i}{d t}=\left[10+15 e^{-15 t}\right]+\left[\frac{1}{3}(3)(-15) e^{-15 t}\right]=10
\end{gathered}
$$

This confirms the result.

The switch in Fig. 7.52 has been closed for a long time. It opens at $t=0$. Find $i(t)$ for $t>0$.

Answer: $\left(4+2 e^{-10 t}\right)$ A for all $t>0$.

Figure 7.52

For Practice Prob. 7.12.

At $t=0$, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later.
Find $i(t)$ for $t>0$. Calculate i for $t=2 \mathrm{~s}$ and $t=5 \mathrm{~s}$.

Figure 7.53
For Example 7.13.

Solution:

We need to consider the three time intervals $t \leq 0,0 \leq t \leq 4$, and $t \geq 4$ separately. For $t<0$, switches S_{1} and S_{2} are open so that $i=0$. Since the inductor current cannot change instantly,

$$
i\left(0^{-}\right)=i(0)=i\left(0^{+}\right)=0
$$

For $0 \leq t \leq 4, S_{1}$ is closed so that the $4-\Omega$ and $6-\Omega$ resistors are in series. (Remember, at this time, S_{2} is still open.) Hence, assuming for now that S_{1} is closed forever,

$$
\begin{gathered}
i(\infty)=\frac{40}{4+6}=4 \mathrm{~A}, \quad R_{\mathrm{Th}}=4+6=10 \Omega \\
\tau=\frac{L}{R_{\mathrm{Th}}}=\frac{5}{10}=\frac{1}{2} \mathrm{~s}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
i(t) & =i(\infty)+[i(0)-i(\infty)] e^{-t / \tau} \\
& =4+(0-4) e^{-2 t}=4\left(1-e^{-2 t}\right) \mathrm{A}, \quad 0 \leq t \leq 4
\end{aligned}
$$

For $t \geq 4, S_{2}$ is closed; the $10-\mathrm{V}$ voltage source is connected, and the circuit changes. This sudden change does not affect the inductor current because the current cannot change abruptly. Thus, the initial current is

$$
i(4)=i\left(4^{-}\right)=4\left(1-e^{-8}\right) \simeq 4 \mathrm{~A}
$$

To find $i(\infty)$, let v be the voltage at node P in Fig. 7.53. Using KCL,

$$
\begin{gathered}
\frac{40-v}{4}+\frac{10-v}{2}=\frac{v}{6} \quad \Rightarrow \quad v=\frac{180}{11} \mathrm{~V} \\
i(\infty)=\frac{v}{6}=\frac{30}{11}=2.727 \mathrm{~A}
\end{gathered}
$$

The Thevenin resistance at the inductor terminals is

$$
R_{\mathrm{Th}}=4 \| 2+6=\frac{4 \times 2}{6}+6=\frac{22}{3} \Omega
$$

and

$$
\tau=\frac{L}{R_{\mathrm{Th}}}=\frac{5}{\frac{22}{3}}=\frac{15}{22} \mathrm{~s}
$$

Hence,

$$
i(t)=i(\infty)+[i(4)-i(\infty)] e^{-(t-4) / \tau}, \quad t \geq 4
$$

We need $(t-4)$ in the exponential because of the time delay. Thus,

$$
\begin{aligned}
i(t) & =2.727+(4-2.727) e^{-(t-4) / \tau}, \quad \tau=\frac{15}{22} \\
& =2.727+1.273 e^{-1.4667(t-4)}, \quad t \geq 4
\end{aligned}
$$

Putting all this together,

$$
i(t)= \begin{cases}0, & t \leq 0 \\ 4\left(1-e^{-2 t}\right), & 0 \leq t \leq 4 \\ 2.727+1.273 e^{-1.4667(t-4)}, & t \geq 4\end{cases}
$$

At $t=2$,

$$
i(2)=4\left(1-e^{-4}\right)=3.93 \mathrm{~A}
$$

At $t=5$,

$$
i(5)=2.727+1.273 e^{-1.4667}=3.02 \mathrm{~A}
$$

Practice Problem 7.13

Figure 7.54
For Practice Prob. 7.13.

Switch S_{1} in Fig. 7.54 is closed at $t=0$, and switch S_{2} is closed at $t=2 \mathrm{~s}$. Calculate $i(t)$ for all t. Find $i(1)$ and $i(3)$.

Answer:

$$
i(t)= \begin{cases}0, & t<0 \\ 2\left(1-e^{-9 t}\right), & 0<t<2 \\ 3.6-1.6 e^{-5(t-2)}, & t>2\end{cases}
$$

$i(1)=1.9997 \mathrm{~A}, i(3)=3.589 \mathrm{~A}$.

7.7 † First-Order Op Amp Circuits

An op amp circuit containing a storage element will exhibit first-order behavior. Differentiators and integrators treated in Section 6.6 are examples of first-order op amp circuits. Again, for practical reasons, inductors are hardly ever used in op amp circuits; therefore, the op amp circuits we consider here are of the $R C$ type.

As usual, we analyze op amp circuits using nodal analysis. Sometimes, the Thevenin equivalent circuit is used to reduce the op amp circuit to one that we can easily handle. The following three examples illustrate the concepts. The first one deals with a source-free op amp circuit, while the other two involve step responses. The three examples have been carefully selected to cover all possible $R C$ types of op amp circuits, depending on the location of the capacitor with respect to the op amp; that is, the capacitor can be located in the input, the output, or the feedback loop.

