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1
Introduction

“We must be careful not to confuse data with the abstractions we use to analyze them.”
William James

I would like to start this thesis with a brief overview of my scientific career.
I began my scientific education in Brest in 1997 where I studied the main concepts of mathe-

matics and physics. In 2000, I was admitted to the Ecole Nationale d’Informatique et de Mathé-
matiques Appliquées de Grenbole (ENSIMAG) in order to pursue my education in applied math-
ematics and statistics. There, I graduated and obtained a master of engineering degree in applied
mathematics and computer science in 2003. During that period, I was more and more attracted by
studying problems arising in the “real” world with mathematical models. In 2002, when I started
my last year at ENSIMAG, I was totally convinced that the application and the development of
dedicated mathematical frameworks, and especially statistical frameworks, can help solving issues
in other fields.

I therefore took the opportunity to consolidate my formation in applied statistics by following
in parallel to my engineering degree a Master of Science in Applied Mathematics with a specialty
in Statistics at the University of Grenoble (ex. Université Joseph Fourier). During that year, I
developed a special feeling with problems and data encountered in biology and medical science.
When I had to conclude my degree with an internship, I was naturally tempted by the most applied
topic dealing with “classification of histological slides from breast cancer tissues” and spent 4
months in the LabSAD (Laboratoire de statisque et analyse de données) in Grenoble under the
supervision of Etienne Bertin. During my internship, I had to find a quantitative indicator of the
spatial organization of cells within a tissue that can discriminate between aggressive and non-
aggressive breast tumors. It was an exciting experience during which I learnt a lot about the
biological processes involved in tumorigeneis and tried to formalize the biological knowledge into
a statistical framework. I developed a taste for giving a special care to the type and nature of
available data. I also really appreciated working in closed collaboration with biologists from our
non-academic partner TriPath Imaging, who kindly shared the data. At the end of that year, I
decided to start a PhD in order to engage my professional life in the research field.

I began my PhD in 2003, co-supervised by Olivier François (Professor at ENSIMAG - TIMC-
IMAG) and Jean-Michel Billiot and Remy Drouilhet (Associated professors at the Université de
Grenoble - LJK) on the statistical modeling of tumors. In my PhD, I considered two main statistical
problems arising during the analysis of cancerous data. The first problem was to account for
genomic data in the estimation of the age of the tumor and the second problem dealt with the
modeling and the estimation of cell interaction in a living tissue. My PhD allowed me to acquire
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2 CHAPTER 1. INTRODUCTION

skills in probabilistic modeling, estimation theory and implementation of statistical tools with
the learning of the computer language and environment . My PhD confirmed my interest in
(1) the knowledge of the biological mechanisms underlying the complexity of life, (2) the basic
understanding of the biotechnological processes that generate observations to use an appropriate
modeling of the data type and (3) the probabilistic modeling of such data in order to propose
dedicated inference procedures.

The second part of my scientific career began just after my PhD and the research covered
in this manuscript goes from this point to the present. After my PhD, I decided to take a post-
doctoral position at the Bioinformatics Research Center (BiRC) belonging to the University of
Aarhus in Denmark. I was motivated by the challenges of analyzing high-dimensional data and
the opportunity to improve our knowledge on genes involved in breast and prostate cancer. I
was part of an ambitious project that was granted by a European project where 4 main partners
were involved: the University of Aarhus (Denmark), the University of Oxford (United Kingdom),
the Radboud University of Nijmegen (the Netherlands) and DeCODE (Island). My goal was to
design a statistical framework to test for an association between the development of a disease
and the interaction between two genes in Genome-Wide Association Studies (GWAS). There I
found in GWAS a thrilling interdisciplinary field of research where genetical, computational and
statistical aspects, as well as their interactions, are crucial. In term of research theme, I was
greatly introduced to genetical aspects by Mikkel Schierup (Professor of Bioinformatics at the
University of Aarhus) and computational aspects by Thomas Mailund (Associate Professor of
Bioinformatics at the University of Aarhus) which allowed me to develop an efficient method. I
combined biological knowledge and computational techniques to propose a statistical procedure
for interaction testing that is feasible at the genome scale and that accounts for multiple testing
issues encountered in high-dimensional data.

After two years, I succeeded in obtaining a tenured position during autumn 2008 as an asso-
ciate professor at the University of Rennes 2 and in the statistical team of the Institut de Recherche
Mathématiques de Rennes (IRMAR). During my post-doc, I found in GWAS an extremely stim-
ulating research area: the biological questioning and the nature of the data themselves raise new
challenges regarding statistical modeling with fundamental applications in fields as diverse as
agronomy or medicine. I therefore pursued my research in the analysis of GWAS through a statis-
tical modeling approach with the supervision of several MSc. internships. I have also started new
collaborations. With David Causeur (Professor at Agrocampus Ouest), we worked on the mod-
eling of the dependence in high-dimensional data (with the co-supervision of MSc internships).
I also worked with Chloé Friguet (Associate professor at the University of Bretagne-Sud) on the
power of association tests. With Alain Mom (Associate Professor at the University of Rennes 2),
we tackled the issue of classification in sparse contingency tables. I have also been concerned
by the modeling of spatial data regarding the inference of interaction point processes with Radu
Stoica (Associate Professor at the University of Lille 1) and the clustering of points with respect
to covariates in collaboration with Avner Bar-Hen (Professor at the University of Paris Descartes).

When I arrived in Rennes, I have also diversified my fields of application by starting new col-
laborations with researchers in fields at the frontiers with statistics. I have been working with
Christophe Hitte (Researcher at the University of Rennes 1) on the genetics of the Domestic
Dogs by tackling issues regarding association studies, selection and regulation leading to the co-
supervision of several MSc. internships. I have also been working with Christian Delamarche
(Professor at the University of Rennes 1) on the prediction of amyloid fibers by supervising sev-
eral MSc. internships and with Maud Marchal (Associate Professor at the Institut National des
Sciences Appliquées in Rennes) on the statistical modeling, with mixed models, of the human
perception in virtual reality. In 2013, I decided to apply for an associate professor position at
Agrocampus Ouest. Although this change was not motivated by an evolution in my research top-
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ics, it offered me the opportunity to start new collaborations in nutrition (with the co-supervision
of a MSc. student with Amélie Deglaire (Associate Professor at Agrocampus Ouest) and in phys-
iopathology with Alexis Le Faucheur (Associate Professor at the Ecole Nationale Supérieure in
Rennes), where we designed appropriate linear mixed models. Furthermore, it has strengthened
my collaborations with David Causeur (Professor at Agrocampus Ouest) thus leading to the co-
supervision of a PhD thesis starting in autumn 2016.

To conclude, I define myself as a biostatistician with a consideration for all steps of a biolog-
ical experiment, going from the design to the interpretation of the results through the modeling,
the analysis and the inference of the collected data. In all my research projects, I used a similar
methodology as a common denominator of my work.At first, I am investigating the applied ques-
tion that I want to tackle by focusing on the nature and the type of data related to the problem.
In a second step, I am focusing on the statistical or probabilistic modeling of such data by draw-
ing statistical hypotheses that correspond (as close as possible) to the initial question. Then I am
putting efforts on developing statistical procedures (inference, simulation, etc.) to test for statis-
tical hypotheses. Such an “hypothesis and data driven” approach characterizes the way I enjoy
doing research.

The remainder of this introductory chapter provides motivations for my research work in the
field of biostatistics. First, I briefly describe the major role played by biological data in the birth
and evolution of statistics. In the lights of the revolution in the nature of biological data, I exhibit
some important statistical challenges associated with such “modern” data. I then present the main
themes of my research and set them in the landscape of biostatistics.

1.1 Biological data feeds and needs the biostatistician

Although statistics interplay with all data-oriented fields, the relationship between statistics and
biology is specific as biological data has always been a catalyzer for many advances in statistics.

1.1.1 The forward-backward algorithm of biostatistics

Biology is one of the most prolific field in generating data. Even, in the pre-era of statistics, the
study of biological issues has lead researchers to collect, summarize and visualize data giving
significant insights into the processes involved in the raised biological questions and helping re-
searchers to solve them. For instance, some of the major historical advances in epidemiology are
associated with (1) the design of experiment driven by statistical considerations [Lind, 1753], (2)
the introduction of time-to-event data [Graunt, 1662] and (3) the characterization of spatial data
[Snow, 1855]. These three issues are still generating an abundant literature in statistics and are
tackled in this manuscript (Sections 2.2, 3.2, 4.2, 4.3 and 4.4)

At the end of the 19th century, the evolution of biological data, notably in terms of size and
heterogeneity in data type, had lead to the birth of (bio)statistics as a rigorous mathematical
discipline used for systematic analysis. Since, statistics and biology have shared a common
lineage thoroughly illustrated by the contributions of R.A. Fisher [Fisher, 1922, Fisher, 1925,
Fisher, 1935]. One the most important contribution of Fisher’s work was to begin a systemati-
cal approach of the analysis of real data as the springboard for the development of new statis-
tical methods. Such a data-driven approach allowed Fisher to establish the foundation statisti-
cal hypothesis testing [Fisher, 1935] and to raise several statistical issues tackled throughout the
manuscript (Analysis of contingency tables [Fisher, 1922], meta-analysis and combination of
tests [Fisher, 1925]).

One of the biggest challenge of biostatistics concerns the design and the application of appro-
priate statistical methods that can handle the variety and the complexity of biological data types.
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As such, I consider the relationship between statistics and biology as an iterative forward-backward
algorithm. In a forward step, data are generated using biotechnology to tackle a specific biological
question. During the backward step, statisticians develop statistical methods that take into account
the biological constraints. Driven by biological applications, challenges for biostatisticians are,
from my point-of-view, to unlock the scope for biological advancement and start with a new for-
ward step. Research challenges in biostatistics are therefore associated with the characteristics of
the biological data used to tackle modern biological issues.

1.1.2 The characteristics of modern biological data

The growth of knowledge in biostatistics is accompanied by the growth of biological data. The
evolution of biological data, especially in epidemiology and public health, has been paved by two
main technological revolutions: the emergence of computers and the advent of high-throughput
technologies.

The impact of computers can indeed be observed at various steps of the statistical pipeline,
going from the collection and storage of the data to the development of new statistical testing
[Speed, 1985]. First, it can be remarked that data are now (almost) always collected automati-
cally, thus favoring statistics to globally improve the quality of the data [Kettenring et al., 2003].
Next, the exponential storage capacity of computers, together with the increase of the speed, have
allowed the analysis of large datasets. Finally, the advent of modern computer technology and
relatively cheap computing resources have enabled computer-intensive biostatistical methods like
bootstrapping and resampling methods.

The high-throughput technologies developed in the last decade have revolutionized the speed
of data accumulation in the life sciences. Such a technology has been developed at various levels
of living organisms with the design of biological chips (or arrays) as for example SNP arrays,
DNA microarrays, protein and peptide arrays or tissue microarrays. These four examples of high-
throughput technologies generate heterogeneous types of data that are under consideration in this
manuscript. In more details, at the smallest scale of a single site in DNA, SNP arrays have been de-
veloped to detect polymorphisms within a population. Latest generation of SNP arrays allows the
qualitative measure of genotypes of almost one million of Single Nucleotide Polymorphism (SNP)
per individual. At the gene level, DNA microarrays allow the quantitative measure of expression
levels of tens of thousands of genes simultaneously in a biological tissue. At the functional level
of genes, protein arrays have been used to track the interactions and activities of a large number
of proteins in parallel. The use of peptide chips can further be used to investigate the kinetics
of protein-protein interactions. Mass spectrometry based-proteomics and peptidomics have also
largely contributed to the huge expansion of data dealing with functional genes. Our final example
are Tissue Microarrays (TMA) that have been proposed to study simultaneously the expression
molecular targets at the DNA, mRNA, and protein levels. The use of paraffin in TMAs allows
the observation of the spatial distribution of expression measures within a tissue. TMAs provides
a practical and effective tool helping the identification of new diagnostic and prognostic markers
and targets in human cancers for example. Figure 1.1 provides examples of the data collected
with three different high-throughput technologies and reveals the heterogeneity in the statistical
nature of collected data.

Therefore, the rapid evolution of biotechnologies has allowed the collection of massive amount
of data in various fields of biology. The common motivation for collecting more data is a hope
for a better understanding of the underlying processes that rule the observed biological systems.
We indeed now have in hands very rich and complex data that hold great promises to solve many
complex biological questions.

However, the data evolution has nowadays raised more questions than answers due to the ever
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(a) (b) (c)

Figure 1.1: Illustration of collected data with high throughout technologies: (a) gene expression
levels using DNA microarray (b) genotypes using SNP array and (c) spatial organization of a
tissue using a Tissue MicroArray (TMA).

growing complexity of the typology of “modern” biological data [Wooley, 2006]. The complexity
of the data can be observed either in the set of explanatory variables (also known as independent
variables, predictors, regressors, exposure variables, risk factors, features or input variables in the
various statistical contexts) or in the set of response variables (also known as dependent variables,
predicted variables, measured variables, explained variables or output variables in other contexts)
or even in the set of individuals (i.e. the objects described by the variables that can be people,
animals things, etc.). Modern biological data are indeed characterized by variables (1) observed
at various scale of the organism that are known to interact in complex biological systems, (2)
collected through many different technologies thus requiring normalization and integration prior
to the statistical analysis, (3) of many types such as: sequences data, graphs, patterns, images,
spatial data, temporal data, etc. Another important aspect of the data is the set of individuals
used as a statistical sample of the studied population. In some area, large public investments have
contributed to the collection of large sample sizes that can contain 10,000 to 100,000 of individuals.

All these characteristics have raised many statistical challenges that are inherent to the nature
of data, in terms of statistical data type and correlation structure of the data. In the next section,
I will describe the main challenges I have tackled in my research and that are considered in this
manuscript.

1.2 Statistical research challenges

In this manuscript, we define the research context of our work based on the four following chal-
lenges.

• Designing powerful experiments for addressing biological challenges

For a long time, experimental design is known to be the first step of a statistical analy-
sis, however data revolution has deeply modified the practice of the design of experiment
[Fisher, 1935]. In the current omics era, the collection of data is often not driven by a pre-
cise biological question. Important issues for the biostatistician are (1) to account for the
experimental bias due to the gap between data collection and biological question and (2) to
determine what is needed as variables (or measures) to statistically address the biological
hypothesis.

A common and central question is the optimization of the statistical power. Sample size
estimation is important at the design stage to ensure a sufficient statistical power to address
the stated objective. Statistical power should also be included in the criteria used to choose
the best statistical procedure. Furthermore, since biostatisticians aim at providing biologists
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with tools for extracting meaning from those data, they should also guide them towards
reasonable hypothesis testing.

• Modeling data type
The fundamental modification of biological data due technological advances has raised
many statistical issues. These issues are also related to the nature of the data that come
in many heterogeneous data types. In situations such as in microarray experiment, the
expression levels of large numbers of genes is measured, thus corresponding to traditional
continuous variables [Pease et al., 1994]. However in other situations, biostatistical analy-
sis fall into the field of categorical data analysis. For instance, in epidemiology, collected
data are usually categorical since scientists are interested in the analysis of the causes and
effects of disease conditions compared to health conditions [Balding, 2006]. The “choice”
of a data type plays a major role throughout the overall statistical pipeline of analysis and
relies on biological assumptions. Interpreting the statistical results through the prism of the
underlying biological assumptions is certainly the main issue of the modern biostatistics.

• Formalizing biologically relevant statistical hypotheses
Although data revolution has seen the emergence and/or the application of complementary
statistical tools, such as Bayesian statistics, hypothesis testing is still widely used in many
biological fields. As the complexity of various biological systems is still unknown, it is
necessary to provide machine-readable representations of analytic and theoretical results
as well as the inferential procedures that lead to various hypotheses [Wooley, 2006]. It is
therefore crucial to address biological questions with well-defined statistical hypotheses.
The accumulation of data has generated a tendency to let the data speak for themselves
leading to an overfitting of the data in many situations and driving the issue of over-optimism
in the biostatisical research [Boulesteix, 2010, Jelizarow et al., 2010].

• Accounting for the structure of the data
New biomedical and high-throughput technologies have generated enormous amounts of
data that are known to be highly structured. Data structure is due to different observation
scales, various technologies, plurality and complexity of the biological systems in place,
etc. For example, the human genome can be parsed into haplotype blocks defined as sizable
regions over which there is little evidence for historical recombination [Gabriel et al., 2002].
Otherwise, real biological entities, from cells to ecosystems, are not spatially homoge-
neous, and an interesting challenge can be found in understanding how one spatial region
is different from another. Thus, spatial relationships must be captured in machine-readable
form, and other biologically significant data must be overlaid on top of these relationships
[Wooley, 2006]. Biological data are therefore highly structured, resulting in a deviation to
the independence. Appropriate modeling of the biological systems have to be proposed to
avoid the detection of confounding factors and to increase statistical power with efficient
correction for multiple testing.

In the next section, these four research challenges are illustrated in the context of genome-wide
associated studies.

1.3 Illustration of my research challenges through the example of
genome-wide association studies (GWAS)

Genome-wide association studies (GWAS) have played a central role in my research work. Indeed,
data that have arisen in GWAS bring together many of the characteristics shared by modern bio-
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logical data and, therefore, I found in GWAS an exciting source of statistical research challenges.
The purpose of this section is to provide illustrations of the research challenges I tackle in this
manuscript. Therefore, for each challenge, I decided to indicate the corresponding references of
my research work in the context of GWAS.

GWAS aim at investigating the genetic variations that are associated with a phenotypic trait.
The most common approach of GWAS is the case-control setup, which compares two large groups
of individuals, one healthy control group and one case group affected by a disease. Genetic vari-
ations can be assayed at the nucleotide level with SNP (Single Nucleotide Polymorphism) arrays,
that monitor hundred of thousand of variants that cover the whole genome. The set of individuals
is composed by n0 controls and n1 cases leading to a sample size of n0 + n1 = n. Each individ-
ual is characterized by one response variable that corresponds to the phenotype (i.e the disease
status) and by a set of p explanatory variables coding for the genotypes observed at p sites. As
displayed in Figure 1.2, data can be displayed by a single vector of phenotype and a n × p matrix
of genotypes.

Figure 1.2: Typical representation of a GWAS data set.

In the remainder of this section, my four research challenges are detailed in the context of case-
control genome-wide association studies and references are given regarding my corresponding
publications.

Designing powerful experiment for addressing biological challenges
The design of a GWAS experiment requires the recruitment of the individuals as well as the

choice of the explanatory variables (here the SNPs to be genotyped). The optimization of the
power of a GWAS therefore involves appropriate choices for these two main characteristics.

Regarding the recruitment of the individuals, although financial constraints usually drive the
sample size n, other parameters, such as the case-to-control ratio, n1/n0, (or the balance of the
design) is rarely fixed. One challenge is to understand the combined role of theses design parame-
ters in power functions in order to guide biologist toward the most powerful association test [JP4,
PP3].

Concerning the choice of explanatory variables in a GWAS, it is noteworthy that the num-
ber of SNPs in the human genome is estimated to approximately 85 millions. For technological
and cost reasons, genotyping all SNPs in a single chip is not feasible. However, as displayed in
Figure 1.3(a), contiguous SNPs along the genome are likely to be correlated while the correla-
tion vanishes with the physical distance between two SNPs. This structure of the human genome,
known as blocks of Linkage Disequilibrium (LD) structure, raised the issue of selecting a subset
of SNPs to be genotyped. Nevertheless, such a selection falls into the challenge of selecting the
most informative set of explanatory variables among correlated variables [IC7, NC3].
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(a) (b)

Figure 1.3: Illustration of the 1-dimensional correlation structure along the human genome. Both
figures are obtained with the same set of SNPs within a 1 Megabase region in Chromosome 6 and
with the same genotype data from the WTCCC dataset [WTCCC, 2007]. Figure (a) displays the
linkage disequilibrium pattern in SNPs and Figure (b) shows the empirical correlation between
association tests computed with 1000 simulations of a phenotype under the null hypothesis.

Modeling heterogeneous data type
In GWAS, explanatory variables are usually characterized by bi-allelic SNPs, i.e. variants

nucleotide with only two possible nucleobases (or alleles) among the four canonical nucleobases
(cytosine, guanine, adenine and thymine). Although such variable is classically modeled by a
categorical random variable with 3 possibles values in the set SCat = {Major homozygote, Het-
erozygote, Minor homozygote} (or SCat = {AA, Aa, aa}), stating biological hypotheses can modify
the probabilistic representation of the variable and thus the data type.

If SCat is used as the set of possible values, data observed at a single SNP can be summarized
into a 2 × 3 contingency table (see Table 1.1(a)). However if the assumption of independent
pairing of the chromosome is made, it is very tempting to consider alleles rather than genotypes
since the sample is doubled when counting alleles. In that case, data can be summarized in a 2× 2
contingency table as displayed in Table 1.1(b). Genotypes can also be ordered according to the
number of minor alleles so that the set of possible values for the SNP becomes SOrd = {aa < Aa <
AA}. In that case, it is assumed that the more alleles are carried, the larger the effect size is. Given
these three statistical modeling of the variables, one of the main challenge is the evaluation of the
impact of the choice of the data type in the power association tests ([PP3]).

Several other statistical types can be used for analyzing GWAS data. If the relationship be-
tween number of alleles and effect size is assumed to be linear, genotype can be seen as a discrete
random variable with a possible set of values given by SDis = {0, 1, 2}. At last, genotype value
is considered as a continuum, the set of possible values for the SNP can be SCon = R. Another
challenge in the choice of the data type is therefore to use specific biological hypotheses to allow
the calculation and/or the computation of statistical procedure [JP3, JP8].

Formalizing biologically relevant statistical hypotheses
The goal of GWAS is the detection of an association between a set of variants (or SNPs) and the

phenotype. However, from a statistical point-of-view, the term association is not well defined and
can be interpreted in multiple ways. Testing for association can indeed be performed at different
scales of the genome, as for example at the single SNP level, at the gene level or at the genome
level. These different hypotheses can be formalized as follows. Let Y be the random variable
coding for the phenotype and X = [X1, . . . , Xp] for the random vector of genotype where Xi is the
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HHH
HHHY

X
AA Aa aa Total

0 nAA
0 nAa

0 naa
0 n0

1 nAA
1 nAa

1 naa
1 n1

Total nAA nAa naa n

HHH
HHHY

X
A a Total

0 nA
0 na

0 n0
1 nA

1 na
1 n1

Total nA na n

(a) (b)

Table 1.1: Tables (a) and (b) are the contingency tables crossing the phenotype and a single SNP
at the genotype and the allele level respectively.

random variable that characterizes the genotype for the ith SNP.
When testing for the association of a single variant, for example Xi, the statistical hypotheses

can be written as:
H0 = Y y Xi vs. H1 = Y 6y Xi

However, since a large number of variants is collected, epidemiologists are interested in testing
all SNPs. From a statistical point-of-view, the statistical question is slightly modified and can be
formulated as “Is there one or more SNP associated with the phenotype?”. Statistical hypotheses
can therefore be formalized as follows:

H0 =
{
∀i ∈ [1 . . . p], Y y Xi

}
vs. H1 =

{
∃i ∈ [1 . . . p]/Y 6y Xi

}
If we consider that the main goal of GWAS is to detect associated regions, it is necessary to

properly define what is meant by regions. Genomic regions can be haplotypes, LD block, exons,
introns, genes, etc. In any cases, the set of variables is modified and we set Ri = {Xi,1, . . . , Xi,ni}

the ith genomic region composed by ni SNPs. When considering a total of r regions, statistical
hypotheses can be formulated as follows:

H0 =
{
∀i ∈ [1 . . . r], Y y Ri

}
vs. H1 =

{
∃i ∈ [1 . . . r]/Y 6y Ri

}
Testing these statistical hypotheses requires the application or the design of an appropriate sta-

tistical procedure. It is thus crucial to biologically interpret the results with respect to the biologi-
cal hypotheses that underlies the performed statistical procedure. One of most important challenge
for a (bio)statistician, at least when performing inference based on the hypothesis framework, is
therefore to translate the biological hypotheses into a formal statistical hypotheses [JP3, JP7, JP8,
PP1].

Accounting for the structure of the data
The complex architecture of SNP data at the genome scale raises several statistical issues.

First, as shown in Figure 1.3(a), SNP data are correlated with a block structure, reflecting the LD
block correlation observed at the level of the population. Such correlation induces a dependency
between the statistical tests for association (see Figure 1.3(b)), thus raising a challenging issue in
the correction for multiple testing for example [JP8].

Another issue related to the architecture of the SNP data is the possibility to test for complex
hypotheses. Although testing each SNP independently in a single-marker approach has been suc-
cessful [Hindorff et al., 2009], findings were of modest effect and a large proportion of the genetic
heritability is still not covered for common complex diseases [Maher, 2008, Manolio et al., 2009].
Epistasis (that can be interpreted as the effect of the interaction between genes on the phenotype) is
often cited as one of the main biological mechanism carrying the “missing heritability” in GWAS
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[Moore, 2003, Phillips, 2008]. Since human complex diseases are generally caused by the com-
bined effect of multiple genes, the detection of genetic interactions is thus essential to improve our
knowledge of the etiology of complex diseases [Cordell, 2009, Hindorff et al., 2009]. To address
the so-called missing heritability, it is therefore natural to test for interaction between SNPs in
susceptibility with the disease. However, because of the block structure of the genome, testing for
interaction at the gene scale remains challenging [JP3, PP1].

1.4 Research axes and contributions

In order to present our research work, we have focused our attention in this manuscript on three
main research axes, corresponding to our contributions in the design of statistical methods for
biomedical research. These three axes are displayed in Figure 1.4 as intermediate points between
our research challenges and the application fields that have motivated and validated our work.
These axes indeed represent three levels of complexity in the analyzed data: we first consider data
with a simple probabilistic characterization (Axis 1), then we examine structure of data result-
ing from the complex combination of simple variables (Axis 2) and finally we study data with a
complex probabilistic modeling (Axis 3).

Figure 1.4: Summary of our contributions, drawing paths between research challenges and
biomedical applications under consideration in this manuscript.

Axis 1 - Analysis of categorical data
In a first axis, we focus our research work on the analysis of data composed by variables with

a relatively simple probabilistic modeling of marginal and joint distributions. We indeed consider
the study of the relationships between 2 or 3 categorical variables through the analysis of two or
three-ways contingency tables for two main reasons. First, categorical variables are particularly
encountered in biomedical sciences, epidemiology, public health, genetics, etc. Next, compared to
statistical models with continuous variables where the normal distribution plays the central role,
models with categorical variables rely on several different distributions such as binomial, multi-
nomial, Poisson distributions. One major issue with categorical distributions is that the size of
parameter sets is increasing with the number of categories so that the degrees-of-freedom in a
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contingency tables can be very important. Therefore statistical methods for studying relationships
between categorical data were late gaining the level of sophistication achieved by continuous vari-
ables and many challenging questions remain.

In our work, we addressed the question of the design of experiment in association studies by
proposing a formal comparison of power functions obtained with widely used association tests.
In the context of genomics and cancerology we proposed recommendations to optimize statistical
power with respect to experimental parameters and biological hypotheses. We further tackled the
issue of formalizing biologically-relevant statistical hypotheses in genomics. Using specific
modeling of the data, we derived a fast and efficient statistical procedure to detect an association
between a phenotype and the interaction between two biological markers. Finally, we used a
biologically-oriented statistical hypothesis to account for the sparse type of data used to detect
genomic regions under selection.

Axis 2 - Statistical modeling of highly structured data
In most situations, because of the emergence of high-throughput technologies, it is of interest

to investigate the relationship between one categorical response variable and a large number of
explanatory variables falling into the paradigm of “high-dimensional” data. Fortunately, due to
the (high) correlation between variables, the dimension of the underlying biological processes is
often much more low dimensional than expected. Although the probabilistic modeling of indi-
vidual variable is relatively simple, the combination of these data raises statistical issues, notably
regarding the probabilistic characterization of the joint probability of such dataset. In our second
axis, we therefore focus on the development of methodologies to account for these correlation
structures in order to circumvent the issues raised by the high-dimensionality.

In our work, we first address the issue of variable selection in the design of experiment in
genome-wide association studies. Using the argument that variable selection is driven by an ob-
jective function, we stress that the practice of GWAS is biased towards the identification of single-
marker association. We then focus on the multiple testing issue by using modeling of data type
oriented by biological scales and correlation structure among them. By mixing biological knowl-
edge and statistical arguments we detect potential interaction between genes. To account for the
correlation between variables, we also address the issue of the aggregation of tests. By using an ap-
propriate modeling of the data, we therefore develop a region-based test for detecting interaction
in the association studies. In the context of proteomics, where the number and the heterogeneity
of features is very important, we propose a statistical framework to build meta-predictors. The ap-
plication of such a methodology in the context of amyloidogenesis allows the detection of proteins
involved in neurodegenerative diseases.

Axis 3 - Probabilistic modeling and related statistical inference
In our third axis, we focus on other complex data type where complexity is inherent to the

statistical nature of the data. In many fields of biostatistics, such as ecology and public health,
data are measured in complex mathematical support spaces. Such complexity requires a specific
probabilistic characterization that can be guided by biological hypotheses. From a statistical point-
of-view, the development of inference procedures therefore relies on the probabilistic modeling
of the data. Thus, one major challenge for a biostatistician is to propose and develop relevant
probabilistic models on which statistical inference can be based.

In our work, we tackle the issue of clustering data in a 2-dimensional space by using a point
processing modeling framework. Such a framework allows us to propose a methodology that
account for spatial covariates by integrating the structure of the data which plays a major role in
ecology. In the context of cancerology, we propose a dedicated model of the spatial organization
of tumor cells configurations. Based on such a model that formalizes the interaction structure
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of the data points, we propose an inference procedure to discriminate between aggressive and
non-aggressive tumors. Finally, by drawing a parallel between temporal structure of data in
insurance and in hospital-acquired-disease, we propose an inference procedure to estimate the risk
of developing a disease during a stay in a hospital.

Organization of the manuscript
This series of three research axes gives a natural organization of this manuscript in three chap-

ters that can be read almost independently. Chapter 2 describes our contributions on the analysis
of the relationship between categorical variables. Based on the contingency table framework, we
propose several statistical models motivated by the characteristics of data in genetics and molecu-
lar biology. Chapter 3 presents novel methods that aim at accounting for the structure of data. Our
contributions focus on methods for reducing the dimension of omics data (specifically genomics
and proteomics data). In chapter 4, we describe our contributions on the probabilistic modeling
of data observed in ecology and public health. Based on such a modeling, we develop adapted
statistical inference procedures. Chapter 5 concludes the summary of our contributions and gives
some perspectives on our future research activities.

Finally, in appendix A, I briefly introduce a more applied series of works in various fields
such as physiopathology, virtual reality and peptidomics that I have been involved in. All these
contributions share the common characteristics of relying on human-based experiments where the
number of subjects is low and the individual variability is high. In all these works, we therefore
used linear mixed models to analyze the data. However since the associated publications do not
involve any significantly new statistical methodology, we will not reach level of details achieved
in the three main chapters 2, 3 and 4.

All the contributions described in this manuscript have been achieved during my post-doctoral
position (2007-2008 at the University of Aarhus) and my two associate professor positions (2008-
2013 at the University of Rennes 2 and since 2013 at Agrocampus Ouest). During this period, I
have been particularly honored to supervise Master students that have contributed to my research
activities: Dr. Aida Eslami, Dr. Anthony Talvas, Hillel Jean-Baptiste Adolphe, Floriane Ethis de
Corny, Emeline Geoffroy, Florian Kroell and Florian Hébert. I have also collaborated with different
researchers and their names will be mentioned in the appropriate sections of this manuscript.
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Analysis of categorical data

2.1 Introduction and background

In this chapter we present our contributions on the modeling and the statistical analysis of the
relationship between categorical variables. The study of such relationships is usually performed
through the analysis of contingency tables that are widely used in many fields of bioscience (epi-
demiology, public health, medicine, etc.) [Agresti, 2013]. The study of specific structures in
contingency tables allows us to address the main statistical issues of power in association testing,
interaction and clustering.

Let first introduce the main notations used in this chapter. Let consider a set of categorical
variables displayed in a contingency table. We assume that the first categorical variable, denoted
by Y with I categories, corresponds to the division of a population of individuals into I subgroups.
For example, in a case-control study, two groups of individuals are compared (for example a group
of healthy patients and a group of patients affected by a disease) so that I = 2 and Y is a binary
variable. In our research context, Y can be considered as the response variable thus justifying the
choice of the notation.

Let first consider the relationship between Y and a second categorical response variable, de-
noted by X with J categories. Observed data are displayed in a I × J table where the cell ni j

(for i = 1 . . . I and j = 1 . . . J) contains the number of times the ith category of Y and jth cate-
gory for X are jointly observed (see figure 2.1(a)). When investigating the relationship between Y
and two categorical variables, X1 with J categories and X2 with K categories, observed data are
summarized into a I × J × K table as shown in figure 2.1(b).

One of the main questions addressed when handling contingency tables is the independence
between the categorical variables. In a two-way contingency table, when Y and X are independent,
the conditional distribution of Y (or X) is identical to the marginal distribution of Y (or X). The
marginal distribution of a categorical variable can be seen as its unconditional distribution and is
observed through the marginal counts defined as in Equation 2.1 for Y:

∀i ∈ [1, I], ni. =

J∑
j=1

ni j (2.1)

Throughout this chapter, the categories of Y are considered as subgroups of a population. We
further assume that the number of individuals in each subgroup is fixed so that data come from
a specific design of experiment, called one-margin fixed design [Lydersen et al., 2009]. In other
words, ∀i ∈ [1, I], ni. is not random, as for example in case-control study where the numbers of
diseased and healthy patients are fixed according to financial constraints.

13
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(a) (b)

Figure 2.1: Scheme of observed contingency tables crossing (a) two categorical variables Y and
X and (b) three categorical variables Y, X1 and X2.

If the independence between the categorical variables is rejected, it is natural to investigate the
cause of such a deviation from independence. In the most simple situation, where we consider
two categorical variables each with 2 or 3 categories, there is only very few possible families of
dependent structure. Statistical power is therefore the most appropriate measure to compare exist-
ing tests. If the number of categories for each of the two variables increases, dependence between
variables can be summarized and interpreted by clustering similar categories. However, when
considering the association between 3 (or more) variables, the number of structure of dependence
is becoming so important that the design of statistical hypotheses, and especially the modeling
of the pairwise interaction between variables, plays a major role in the detection of deviation
from independence. Our contributions in contingency table analysis tackle the general statistical
issues of power comparison (Section 2.2), interaction detection (Section 2.3) and cluster detection
(Section 2.4).

In Section 2.2, we address the issue of comparing the statistical power of widely used asso-
ciation tests. In the literature, such comparisons have been performed using computations of the
power functions that are obtained through approximations. However, computation-based compar-
isons hardly account for the multidimensionality of the set of features involved in power func-
tions, thus highlighting the need for an analytical comparison. In [JP4] and [PP3], we proposed
a general framework to compare χ2 distributed association statistical based on the comparison of
non-centrality parameters.

In Section 2.3, we tackle the issue of detecting an association between a binary variable and the
interaction between two other categorical variables. In [JP7], we proposed a formal interpretation
of the biological meaning of interaction between genetic markers. Based on odds-ratio modeling
we further derived an appropriate statistical test.

In Section 2.4, we aim at clustering individuals in categories population that are characterized
by different sets of categories observed from another variable. Since cluster detection depends on
a precise definition of a cluster, we introduced in [JP2] a characterization of a cluster in the context
of genomic selection that specifically accounts for the sparsity of the contingency table. We further
proposed a statistical framework to cluster individuals under selection based on the definition of a
novel dissimilarity and elements of graph theory.
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2.2 Statistical power for single testing in case-control association

Our research work presented in this section proposes a general framework to compare the power
of χ2 distributed statistics. Part of this work has been conducted in collaboration with Chloé
Friguet (Université Bretagne-Sud, Vannes, France).

2.2.1 Context and issue

Single testing in case-control association consists in testing the association between a binary vari-
able Y , such as presence (Y = 1) or absence (Y = 0) of a disease, and a categorical explanatory
variable X. Motivated by GWAS, our research work focuses on a categorical variable X with two
or three categories since X represents a bi-allelic SNP. At the allele level, the two categories of
a SNP are A and a, while at the genotypic level, the SNP is characterized by three categories in
[AA, Aa, aa] (see paragraph data type in section 1.3 for more details). As shown in Table 1.1, data
can therefore be displayed in a 2 × 2 or a 2 × 3 contingency table whether X is considered at the
allelic or the genotypic level.

Association testing can be performed by a large collection of statistical tests. However some
statistics are very popular in practice such as Pearson’s χ2, likelihood ratio, odds ratio or Cochran-
Armitage [Agresti, 2013]. We start by setting the formal expression for each popular statistic and
their associated statistical hypotheses, thus corresponding to specific biological assumption. The
general statistical hypotheses in single testing in case-control association can be written as:

H0 = Y y X vs. H1 = Y 6y X (2.2)

However, in case of a 2 × 2 contingency, association testing consists in comparing two binomial
proportions and hypotheses in Equation 2.2 can be rewritten as:

H0 : π1 = π2 vs. H1 : π1 , π2, (2.3)

where πi = P[X = a|Y = i] for i = 0, 1. We can easily see that H0 is similar to the non-
association between X and Y , as conditioning on Y does not modify the distribution of X. Testing
the equality of two binomial proportions can be performed by widely-used Pearson’s chi-squared
test or the likelihood-ratio test. Furthermore,H0 andH1 are equivalent to the following statistical
hypotheses:

H0 : log
(
π1/(1 − π1)
π2/(1 − π2)

)
= 0 vs. H1 : log

(
π1/(1 − π1)
π2/(1 − π2)

)
, 0, (2.4)

where π1/(1−π1)
π2/(1−π2) is the so-called odds ratio (OR). Given the links between the odds ratio and the

coefficients of a logistic regression model, the statistical hypotheses proposed in Equations (2.3)
and (2.4) can be rewritten as:

H0 : β1 = 0 vs. H1 : β1 , 0.

β1 is a coefficient of the following logistic regression model:

logit (P[X = 2|Y = y]) = β0 + β1I{1}(y),

where logit(π) = log
(
π

1−π

)
and I is the indicator function. Therefore, a classical statistical inference

regarding the odds ratio can be applied to compare two binomial proportions.
In practice, Pearson’s χ2 and likelihood-ratio (LR) tests are very popular. Both tests are based

on the comparison between observed counts and the estimated expected counts underH0, denoted
mi j and defined as:

m j
i =

ni.n. j
N

for i = 0, 1 and j ∈ [a, A]
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Pearson’s χ2 test statistic is given by:

PA =
∑

i∈{0,1}

∑
j∈[a,A]

(n j
i − m j

i )2

m j
i

and the LR test statistic is defined as:

LRA = 2(`1 − `0) = 2
∑

i∈{0,1}

∑
j [a,A]

n j
i log

 n j
i

m j
i


where `1 (resp. `0) is the maximized log-likelihood under H1 (resp. H0). Inference of the odds
ratio is usually performed by testing the nullity of the log odds ratio. Such test is based on a test
statistic, hereafter denoted z, which is defined as:

z2 =
t2

σ2 =

(
log

(
nA

0 na
1

na
0nA

1

))2

1
nA

0
+ 1

na
0

+ 1
nA

1
+ 1

na
1

When considering 2 × 3 contingency tables, both Pearson’s χ2 and LR tests can be easily
extended to handle with genotypic counts. Similar to the allele case, the expected genotypic counts
underH0 are obtained by m j

i =
nin j

n ∀i ∈ {aa, aA, AA} and j = 0, 1. Pearson’s χ2 test statistic (PG)
and LR test statistic (LRG) can thus be written as:

PG =
∑

i∈{0,1}

∑
j∈{AA,Aa,aa}

(n j
i − m j

i )2

m j
i

and LRG = 2
∑

i∈{0,1}

∑
j∈{AA,Aa,aa}

n j
i log

 n j
i

m j
i

 .
In the context of genetic association studies, the Cochran-Armitage Test of linear Trend (CA)

has also been widely used [Armitage, 1955]. CA modifies the Pearson chi-squared test to incor-
porate a suspected ordering in the effects of the categories for X. The most widely used version
of CA aims at testing a linear effect of the number of copies of the minor allele and is defined as
follows:

CA =
n2

(
(nAA

0 n1 − nAa
1 n0) + 2(naa

0 n1 − naa
1 n0)

)2

n0n1
(
nAa(n − nAa) + 4naa(n − naa) − 4nAanaa

) .
UnderH0, PA, LRA, z2, as well as CA follow asymptotically a central chi-squared distribution

with one degree-of-freedom. The statistics PG and LRG also follow asymptotically a central chi-
squared distribution but with two degrees-of-freedom. In the following, the χ2

A test, the LRA test
and the z2 test refer to Pearson’s chi-squared test, likelihood-ratio test based on allele counts and
to odds ratio based test. Furthermore, χ2

G and the LRG tests respectively correspond to Pearson’s
chi-squared test and likelihood-ratio test based on genotype counts. Finally, CA is used for the
Cochran-Armitage test of trend.

A substantial literature is dedicated to the analysis of association tests especially for the com-
parison of two binomial proportions in 2x2 contingency tables [Lin and Yang, 2009, Fagerland et al., 2015,
Hirji et al., 1991, Agresti, 2013]. Many studies have focused on comparing the behavior of Pear-
son’s χ2 and log-likelihood-ratio tests. The study of the power divergence family demonstrates that
Pearson’s χ2 and LR are asymptotically equivalent under the null hypothesis [Cressie and Read, 1984,
Cressie and Read, 1989].

Besides, comparing the behavior of statistics under the alternative hypothesis is also a crucial
issue since it allows us to choose the most powerful test. Various studies have focused on compar-
ing the power of asymptotic tests based on Pearson’s χ2 and LR statistics [Lydersen et al., 2009,
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Ruxton and Neuhäuser, 2010]. However, although differences have been observed in the behavior
of both tests, neither of them is uniformly more powerful than the other. Indeed, Zar [Zar, 2008]
suggests that the two tests generally yield similar predictions and cites studies that express pref-
erences for either one test or the other. For instance, the LR statistic is preferred due to some
theoretical and computational advantages [Sokal and Rohlf, 1995], while it has been suggested
that Pearson’s χ2 behaves better than LR when sample size is low [Quinn and Keough, 2002].
Such comparisons have been performed using computations of the power functions that are ob-
tained through approximations, such as in the method proposed by [Drost et al., 1989]. However,
computation-based comparisons hardly account for the multidimensionality of the set of features
involved in power functions, thus highlighting the need for an analytical comparison. Neverthe-
less, association test statistics based on categorical variables are usually χ2 distributed, for which
power functions are intractable.

2.2.2 Approach

Main idea
In [JP4] we introduced a general framework to evaluate and compare the power of one degree-

of-freedom χ2 distributed tests of association. We extended such a framework to compare two
degrees-of-freedom tests in the context of genetic association studies [PP3]. Beside previous
power studies, our methodology is based on the analytical comparison of power functions. Com-
pared to computation-based and simulation-based methods, the formal derivation of power func-
tions offers the advantage of simultaneously investigating the whole multidimensional space of
parameters.

Under the alternative hypothesis, association test statistics follow asymptotically non-central
χ2 distributions with one degree-of-freedom for PA, LRA, z2 and CA and two degrees-of-freedom
for PG and LRG. For both tests, the power function thus increases with the corresponding non-
centrality parameter. Instead of studying the power function, for which no explicit formula is
available, we therefore focus our effort on a comparison of the non-centrality parameters of each
test. Let us introduce the non-centrality parameters, called λPA , λLRA , λz2 , λPG , λLRG and λCA used
to define the distributions of the test statistics as shown in Table 2.1. Given a significant level α,
the power of each test is defined as the probability under H1, that the statistic is greater than the
(1− α)-quantile of the corresponding central chi-squared distribution, denoted qi

1−α where i = 1, 2
is the number of degree-of-freedom. Table 2.1 summarizes the power functions for each test and
shows that these functions can be compared directly by evaluating their non-centrality parameters.

Test statistic Distribution underH1 Power function
PA χ2

1(λPA) P
(
PA > q1

1−α

)
LRA χ2

1(λLRA) P
(
LRA > q1

1−α

)
z2 χ2

1(λzZ ) P
(
z2 > q1

1−α

)
CA χ2

1(λCA) P
(
CA > q1

1−α

)
PG χ2

2(λPG ) P
(
PG > q2

1−α

)
LRG χ2

2(λLRG ) P
(
LRG > q2

1−α

)
Table 2.1: Distribution and power function for each test statistic.

Estimation of the non-centrality parameters



18 CHAPTER 2. ANALYSIS OF CATEGORICAL DATA

To be compared, non-centrality parameters for association tests have to be estimated since
they do not have a general closed form. In [JP4], we proposed to estimate non-centrality pa-
rameters by using the expected observed counts under a predefined alternative hypothesis. We
therefore consider that conditional probabilities, P[Y = j|X = i], for j = 0, 1 and i =∈ {A, a}
or i =∈ {AA, Aa, aa}, are fixed. Expected observed counts can thus be defined, for i ∈ {A, a} or
i ∈ {AA, Aa, aa}, by :

ne1
i = nϕP[Y = 1|X = i] and ne0

i = n(1 − ϕ)P[Y = 0|X = i],

where ϕ =
n1.
n0.

is the balance of the design (or case-to-control ratio) that is not random in our
one-margin fixed design. Non-centrality parameters are thus estimated by comparing the expected
observed counts ne j

i to me j
i =

neine j

n the expected counts assuming thatH0 is true which leads to:

λ̂PA =
∑

i∈{A,a}

∑
j∈{0,1}

(ne j
i − me j

i )2

me j
i

λ̂LRA = 2
∑

i∈{A,a}

∑
j∈{0,1}

ne j
i log

 ne j
i

me j
i


λ̂z2 =

(
log

(
neA

0 nea
1

nea
0neA

1

))2

1
neA

0
+ 1

nea
0

+ 1
neA

1
+ 1

nea
1

λ̂PG =
∑

i∈{AA,Aa,aa}

∑
j∈{0,1}

(ne j
i − me j

i )2

me j
i

λ̂LRG = 2
∑

i∈{AA,Aa,aa}

∑
j∈{0,1}

ne j
i log

ne j
i

m j
i


λ̂CATT =

n2
(
(neAa

0 n1 − neAa
1 n0) + 2(neaa

0 n1 − neaa
1 n0)

)2

n0n1
(
neAa(n − neAa) + 4neaa(n − neaa) − 4neAaneaa

)
Parameters that influence power

In [JP4] and [PP3], we formalized a set of 5 parameters (ϕ, n, πa, h and β1) that interplay in
power functions of association tests. First, we focused on ϕ, the balance of the design and n the
total number of observations, that are controlled beforehand since they characterize the experi-
mental design of the study. We also introduced πa and h, two parameters related to the distribution
of the X variable. When X is assumed to be a categorical variable with two categories, we set
πa = P[X = a] as the parameter of binomial law followed by X. If X has three categories, X has a
multinomial law and we further introduced h as a measure of the deviation from Hardy-Weinberg
Equilibrium as follows:

P[X = AA] = (1−πa)2
(
1 +

πa

1 − πa
(1 − h)

)
, P[X = Aa] = 2h(1−πa)πa and P[X = aa] = π2

a

(
1 +

1 − πa

πa
(1 − h)

)

The final parameter, denoted by β1, is used to parameterize the size and the nature of the
association effect computed underH1.



2.2. STATISTICAL POWER FOR SINGLE TESTING IN CASE-CONTROL ASSOCIATION19

2.2.3 Main Results and application to GWAS

Analytical comparison under the recessive alternative hypothesis
Let consider a class of association models parameterized by β1 and defined as follows:

MRec : logit (P[Y = 1|X = x]) = β0 + β1Ix=aa

Model MRec corresponds to the so-called recessive model of inheritance commonly used in ge-
netic epidemiology. We performed the estimation of non-centrality parameters by using a Taylor
decomposition on β1. As proposed in [PP3], focusing on the first order coefficients of the Taylor
decompositions provides an interpretable comparison of the power. For example, Equation 2.5
displays the first order coefficient for CA test.

λ̂CA = β2
1 ×

2nϕ(1 − ϕ)πa(1 − πa)(1 − h(1 − πa))2

2 − h
+ o(β2

1) (2.5)

In more details, Equation 2.5 shows that λ̂CA is increasing with n and is maximum when the
design is well balanced (ϕ = 1/2). Furthermore, λ̂CA is increasing with πa when πa ∈ [0, 1/2].
Moreover, the impact of a deviation from HWE on the power of detection is governed by the term
(1−h(1−πa))/(2−h). It can be remarked that such a term is decreasing with h, for all πa ∈ [0, 1/2].
As a consequence, the statistical power of CA is maximum when the allele is common (πa ≈ 1/2)
and HWE is not satisfied (h ≈ 0). To support our conclusions, the evolution of λ̂CA according to
πa and h is displayed in Figure 2.2. Our results confirm that λ̂CA, and hence power, is increasing
with πa and decreasing with h.

Figure 2.2: Evolution of the λCA with respect to πA and h.

Recommandations
In [JP4] and [PP3], we compared all non-centrality parameters and provided a table of recom-

mendations regarding the most powerful test with respect to multidimensional set of parameters.
In Table 2.2, it can be remarked that for the recessive disease model, parameters h and ϕ play a
major role in the comparison of the statistical association tests.

Extensions
In [JP4], we further investigated situations where Y and X are not compared directly. In such

cases, X is tagged by another binomial (or multinomial) variable T , and the true difference be-
tween the Y and X can only be detected by comparing the difference between the Y and T . Such a
situation, called indirect association, is encountered in GWAS where the SNP (Single Nucleotide
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h < 0.1 h = 0.5 h > 0.9
πa 0.05 0.25 0.45 0.05 0.25 0.45 0.05 0.25 0.45
ϕ = 0.05 CA CA CA CA, χ2

G CA, χ2
G CA, χ2

G χ2
G χ2

G χ2
G

ϕ = 0.5 CA CA CA CA, χ2
G, LRG CA, χ2

G, LRG CA, χ2
G, LRG χ2

G, LRG χ2
G, LRG χ2

G, LRG

ϕ = 0.95 CA CA CA CA, LRG CA, LRG CA, LRG LRG LRG LRG

Table 2.2: Most powerful test(s) underMRec.

Polymorphism) array does not genotype all SNPs but a selection of informative SNPs, called tag-
SNPs [Carlson et al., 2004]. Although it is widely assumed that testing for indirect association
tends to decrease the power of detection [Moskvina and O’Donovan, 2007], our methodology al-
lows us to investigate in more detail the impact of the indirect association on the power of each
test. We showed that power is also influenced by r the correlation between X and T , as well as
πT , the parameter of the tag binomial. We first showed that, in the case of indirect association,
the sample size has to be increased by a factor of 1/r2 to reach the same power as we obtained
in the case of direct association case. Conclusions drawn in the indirect case are very similar to
those obtained in the direct case. However, it is noteworthy that differences between tests are less
marked with the increasing of the parameter of the tag binomial, πT .

In [PP3], we also investigated other disease models, such as the dominant model (MDom) and
the multiplicative model (MMult) defined as:

MDom : logit (P[Y = 1|X = x]) = β0 + β1Ix=Aa + β1Ix=aa

MMult : logit (P[Y = 1|X = x]) = β0 + β1Ix=Aa + 2β1Ix=aa

Recommendations obtained were very different from one alternative hypothesis to the others.

Applications to GWAS
In [JP4], we compared the behavior of χ2

A, LRA, z2, χ2
G, LRG and CATT tests in a real situation

by performing genome-wide scans for single-locus associations on a publicly available dataset
from the Wellcome Trust Case Control Consortium (WTCCC) [WTCCC, 2007]. In our analysis,
we focused on Crohn’s disease, a chronic inflammatory disease, which causes inflammation of the
gastrointestinal tract, as it has been proved to be heritable [Franke et al., 2010]. The number of
cases were approximately 2, 000 while the number of patients not affected by Crohn’s Disease was
equal to ≈ 15, 000, thus leading a case-to-control ratio of ϕ ≈ 2, 000/15, 000 ≈ 0.13.

Figure 2.3 shows the “− log 10 p-values” for SNPs that are significant (after a Bonferroni
correction) for at least one association test. Our results confirmed that the behavior of the tests can
be very different when the case-to-control ratio ϕ and πa are low.

2.2.4 Concluding remarks

In this work, we proposed a methodology to compare the power of association tests that have a χ2

distribution. We provided analytical estimation of the power functions under different alternative
hypotheses that correspond to classical disease models in genetic epidemiology. Our main results,
confirmed by the analysis of real situations, show that none of the tests is uniformly the most
powerful. The choice of the most powerful test depends on the design of experiment, on the data
type and on the alternative hypothesis, i.e. the nature of the investigated signal.

Such a result confirmed that each test is based on an analytical hypothesis that can be translated
into biological assumptions, thus enhancing the importance of putting the biological interpretation
of a statistical analysis in the perspective of modeling assumptions.
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Figure 2.3: Genome-wide scans obtained with the 6 association tests in the WTCCC dataset for
Crohn’s disease.

2.3 Interaction in three-way contingency tables

Our research work presented in this section proposes a methodology to detect an association
between one binomial variable and the interaction between two categorical variables.

2.3.1 Context and issue

In life science, it is very common that the interaction between a set of explanatory variables
{X1, . . . , Xp} impacts the distribution of a response variable Y , such as the interaction between two
genes in susceptibility with a phenotypic trait. Even in this simple situation, where p = 2, and con-
sidering that each explanatory variable has only three categories, such as SNP genotypes, the num-
ber of interaction models is enormous [Li and Reich, 2000, Hallgrimsdottir and Yuster, 2008]. In
that context, an interaction model corresponds to a typical structure in a three-way contingency ta-
ble that summarizes the relationship between three categorical variables: Y with 2 categories {0, 1},
X1 with three categories {AA, Aa, aa} and X2 with three categories {BB, Bb, bb}. Such a table can
be displayed as in Figure 2.4 where n j,k

i is the number of times the event “Y = i∩X1 = j∩X2 = k”
is observed.

From a statistical point-of-view, an interaction is defined as a deviation from the additivity of
the marginal effects of X1 and X2 on Y . Testing for interaction can therefore be formalized through
the following statistical hypotheses:

H0 : [β5, β6, β7, β8] = [0, 0, 0, 0] vs. H1 : [β5, β6, β7, β8] , [0, 0, 0, 0]

where [β5, β6, β7, β8] is a subset of regression coefficients of a logistic model:

logit (P[Y = 1|X1 = x1, X2 = x2]) = β0 + β1Ix1=Aa + β2Ix1=aa + β3Ix2=Bb + β4Ix2=bb

+β5Ix1=AaIx2=Bb + β6Ix1=aaIx2=Bb + β7Ix1=AaIx2=bb + β8Ix1=aaIx2=bb

Testing forH0 can be performed using likelihood ratio tests.
However, such a definition in the context of genetic epidemiology has raised a controversy

regarding the ability of statistical interaction to detect biological interaction. Although biological
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Figure 2.4: Three-way contingency table summarizing the cross tabulation between a case-control
phenotype (Y) and two bi-allelic SNPS (X1 and X2).

interaction does not have a formal definition, many studies provided evidence of discrepancies be-
tween statistical and biological interpretation of interaction [Cordell, 2009]. Following pioneered
definition given by Bateson [Bateson, 1909], it has been argued that biological interaction between
two genes, also called epistasis, is a departure from independence between the two genes. To fill
the gap between biological and statistical definitions of interaction, it is therefore crucial to propose
an appropriate hypothesis testing framework.

2.3.2 Our approach: IndOR for Independent Odds-Ratio

In [JP7], we designed the statistical procedure IndOR (for Independent Odds-Ratio) in order to
detect a variation in the dependency between two SNPs in the affected and in the unaffected pop-
ulations. The novelty of our approach is that the independence is assumed to be the statistical
independence so that under the null hypothesis H0, cases and controls share the same amount of
dependency.

Definition of the statistic IndOR
Our null hypothesis can be detailed in the following way:

∀(x1, x2) ∈ [AA, Aa, aa] × [BB, Bb, bb] :

H0 :
P[X1 = x1, X2 = x2|Y = 1]

P[X1 = xA|Y = 1]P[X2 = x2|Y = 1]
=

P[X1 = x1, xb|Y = 0]
P[X1 = x1|Y = 0]P[X2 = x2|Y = 0]

(2.6)

Using Bayes formula, Equation 2.6 is equivalent to :

P[Y = 1|X1 = x1, X2 = x2]P[Y = 1]
P[Y = 1|X1 = x1]P[Y = 1|X2 = x2]

=
P[Y = 0|X1 = x1, X2 = x2]P[Y = 0]
P[Y = 0|X1 = x1]P[Y = 0|X2 = x2]

(2.7)

By considering AA, BB as the baseline genotype, odds-ratios (OR) can be defined as following:

OR(x1, x2) =
odds(x1, x2)

odds(AA, BB)
=

P[Y=1|X1=x1,X2=x2]
P[Y=0|X1=x1,X2=x2]
P[Y=1|X1=AA,X2=BB]
P[Y=0|X1=AA,X2=BB]
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OR(x1) =
odds(x1)
odds(AA)

=

P[Y=1|X1=x1]
P[Y=0|X1=x1]
P[Y=1|X1=AA]
P[Y=0|X1=AA]

and OR(x1) =
odds(x2)
odds(BB)

=

P[Y=1|X2=xb]
P[Y=0|X2=xb]
P[Y=1|X2=BB]
P[Y=0|X2=BB]

Thus, according to equation 2.7, underH0 we have:

OR(x1, x2)
OR(x1)OR(x2)

= 1 (2.8)

The joint effect between X1 and X2 has four degrees of freedom. As AA, BB was considered
as the baseline genotype pair, we measured in [JP7] the variation of dependency over the four fol-
lowing pairs: AaBb, aaBb, Aabb and aabb. We used equation 2.8 to propose the four-dimensional
vector Φ = (ϕ1, ϕ2, ϕ3, ϕ4) where :

ϕ1 = log
(

OR(Aa, Bb)
OR(Aa)OR(Bb)

)
; ϕ2 = log

(
OR(aa, Bb)

OR(aa)OR(Bb)

)
;

ϕ3 = log
(

OR(Aa, bb)
OR(Aa)OR(bb)

)
; ϕ4 = log

(
OR(aa, bb)

OR(aa)OR(bb)

)
;

The null and alternative hypotheses can then be defined as:

H0 : Φ = [0; 0; 0; 0] andH1 : Φ , [0; 0; 0; 0] (2.9)

In [JP7], to test forH0, we defined our Wald statistic, IndOR, as follows:

IndOR = ΦV−1
Φ Φt (2.10)

where V−1
Φ

is the inverse of variance-covariance matrix for Φ and Φt is the transposed vector of
Φ. Under the null hypothesis of the same amount of dependence between cases and controls, the
score IndOR follows a central χ2 distribution with four degrees of freedom.

Estimation of the multidimensional vector Φ

Φ is defined in terms of odds-ratio. Odds-ratio are well-studied coefficients in epidemiology
and Maximum Likelihood Estimator (MLE) can be easily computed [Thomas, 2004]. In our con-
text, MLE for the four coefficients can be estimated by:

ϕ̂1 = log(nAaBb
1 ) + log(nAA

1 ) + log(nBB
1 ) − log(nAABB

1 ) − log(nAa
1 ) − log(nBb

1 )

− log(nAaBb
u ) − log(nAA

u ) − log(nBB
u ) + log(nAABB

u ) + log(nAa
u ) + log(nBb

u )

ϕ̂2 = log(naaBb
1 ) + log(nAA

1 ) + log(nBB
1 ) − log(nAABB

1 ) − log(naa
1 ) − log(nBb

1 )

− log(naaBb
u ) − log(nAA

u ) − log(nBB
u ) + log(nAABB

u ) + log(naa
u ) + log(nBb

u )

ϕ̂3 = log(nAabb
1 ) + log(nAA

1 ) + log(nBB
1 ) − log(nAABB

1 ) − log(nAa
1 ) − log(nbb

1 )

− log(nAaBb
u ) − log(nAA

u ) − log(nBB
u ) + log(nAABB

u ) + log(nAa
u ) + log(nbb

u )

ϕ̂4 = log(naabb
1 ) + log(nAA

1 ) + log(nBB
1 ) − log(nAABB

1 ) − log(naa
1 ) − log(nbb

1 )

− log(nAaBb
u ) − log(nAA

u ) − log(nBB
u ) + log(nAABB

u ) + log(naa
u ) + log(nbb

u )

Estimation of the covariance matrix VΦ

In [JP7], we used the δmethod to estimate the variance-covariance matrix VΦ. The δmethod is
particularly adapted to the estimation of variance-covariance matrices of multidimensional odds-
ratio vectors [Casella and Berger, 1990, Freedman, 2000, Lui, 2004, Chen and Chatterjee, 2007].
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We assumed counts for cases and controls to follow independent multinomial distributions such
as:

[NAABB
1 , . . . ,Naabb

1 ] ∼ Mult(pAABB
1 , . . . , paabb

1 )

and
[NAABB

u , . . . ,Naabb
u ] ∼ Mult(pAABB

u , . . . , paabb
u )

where Nxa xb
1 (resp. Nxa xb

u ) is the random variable modeling the number of diseased (resp. healthy)
patients with xa, xb genotype. pxa,xb

1 (resp. pxa,xb
u ) is the probability of having AA, BB genotype for

a diseased (resp. healthy) patient.
Thus, counts for all genotype (xa, xb) in the affected population are asymptotically equivalent

to the following expression:

Nxa,xb
1 = n1 pxa,xb

1

1 +

√
(1 − pxa,xb

1 )

n1 pxa,xb
1

δxa,xb
1


where the δ coefficients have the following correlation structure:

δxa,xb
1 ∼ N(0, 1) (2.11)

Cov
(
δxa,xb

1 , δ
x′a,x

′
b

1

)
= −

√√√√
pxa,xb

1 p
x′a,x′b
1

(1 − pxa,xb
1 )(1 − p

x′a,x′b
1 )

when(xa, xb) , (x′a, x
′
b) (2.12)

Furthermore, when n1 pxa,xb
1 is high enough, the following approximation can be used:

log
(
Nxa,xb

1

)
≈ log(n1 pxa,xb

1 ) +

√
(1 − pxa,xb

1 )

n1 pxa,xb
1

δxa,xb
1 (2.13)

Similar approximation is obtained for counts in unaffected population by replacing the ’1’
indice by ’0’. We then used Equation 2.13 to derive the four odds-ratio estimators (ϕ̂1, ϕ̂2, ϕ̂3
and ϕ̂4) with respect to the δ coefficients. The estimation of VΦ is achieved by using δ correlation
structure given by Equations 2.11 and 2.12.

2.3.3 Main results and application to GWAS

In [JP7], we evaluated the statistical properties of IndOR and compared its power against widely
used statistical procedures.

Control of the type-1 error and computational cost
Given the assumptions made in the Maximum Likelihood estimation of Φ and in the use of

the δ method in the estimation of the covariance matrix VΦ, the control of the Type-1 error rate
is straightforward. However, the two above mentioned assumptions rely on the asymptotic theory
and are hardly verified in practice. To evaluate the robustness to these assumptions, we performed
simulations under various scenarios where the null hypothesis is assumed. Results obtained in
[JP7] showed an appropriate control of the Type-1 error.

Furthermore, since we derived a closed form for the estimation of Φ and VΦ, the computa-
tional cost of IndOR is very low. As computational cost is indeed a burden to perform large-scale
association studies in genetic epidemiology, the use of IndOR statistic might be very helpful in
routine.
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Power simulation study
The evaluation was first conducted using extensive simulations through a large power study.

We focused on the effect of three main factors (the underlying interaction model, the correlation
between X1 and X2 and the control-to-case ratio) in a total of 45 scenarios.

The results obtained in our power study demonstrate the efficiency of our statistical procedure
IndOR. IndOR is indeed the most powerful test in a majority of scenarios and is comparable to the
best test in 76% of the tested scenarios. The efficiency of IndOR is remarkable when the two SNPs
of interest are correlated and/or when control-to-case ratios are higher than one. Furthermore,
IndOR has proven its ability to detect a wider range of epistatic interactions by accounting for
non-linear effects.

Application to GWAS
In [JP7], we used IndOR on the publicly available dataset from the WTCCC [WTCCC, 2007]

to perform two genome-wide scans. Cases for the first and the second genome scan were indi-
viduals affected by Crohn’s disease. Controls population for the first genome scan was made by
the 3, 000 shared controls in the original WTCCC study. For the second genome scan, control
individuals were combined as individuals not affected by Crohn’s disease, thus leading to a total
of 15, 000 controls.

Figure 2.5 displays the quantile-quantile plots obtained from our genome-wide scans. The
shaded regions in the plots correspond to the 95% concentration band obtained from the null hy-
pothesis of non-interaction (corresponding to a χ2 test with four degrees of freedom). We can
observe an excess of points outside the 95% concentration band at the tail of the distribution re-
vealing a significant deviation from the expected distribution for IndOR. The deviation for IndOR
was mainly due to a single interaction between two genomic regions. This interaction involved
gene Adenomatous Polyposis Coli (APC) and the IQ-domain GTPase-activating protein 1 (IQ-
GAP1). The most interacting SNP pair was made by rs6496669 on chromosome 15 and SNP
rs434157 on chromosome 5. It can be remarked that IndOR showed a remarkable increase in the
significance for the pair rs6496669-rs434157 (corrected p-value of 2.83 × 10−8).

Removing all APC-IQGAP1 SNP pairs from the analysis completely eliminated any significant
p-values for IndOR with shared controls. However when the set of controls was the combination
of individuals not diagnosed for Crohn’s disease, one SNP pair was still globally significant for
IndOR. The significant SNP pair involved SNP rs9009 on chromosome 8 and SNP rs2830075 on
chromosome 21. These two SNPs belong to two genomic regions where the cathepsin B (CTSB)
and the amyloid beta (APP) are located. The p-values obtained for the pair rs9009-rs2830075 are
summarized in Table 2.3.

Control set SNP1 Chr1 (Position) SNP2 Chr2 (Position) p-value corr. p-value
Shared rs6496669 15 (88696269) rs434157 5 (112219541) 4.44 × 10−9 1.33 × 10−3

Combined rs6496669 15 (88696269) rs434157 5 (112219541) 9.42 × 10−14 2.83 × 10−8

Shared rs9009 8 (11739415) rs2830075 21 (26424313) 1.36 × 10−6 0.40
Combined rs9009 8 (11739415) rs2830075 21 (26424313) 1.42 × 10−7 0.042

Table 2.3: P-values and corrected p-values for the two SNP pairs rs6496669-rs434157 and
rs9009-rs2830075 for IndOR, when controls are shared and combined. The two SNP pairs
rs6496669-rs434157 and rs9009-rs2830075 are the two most significant SNP pairs associated
with Crohn’s disease in the WTCCC data set.
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(a) (b)

Figure 2.5: Quantile-Quantile plots. Figure (a) displays quantile-quantile plots obtained with
the set of shared controls. Figure (b) reports QQ plots with the combined set of controls. The
shaded region is the 95% concentration band, calculated assuming independent SNP pairs.

2.3.4 Concluding remarks

In this work we proposed a new statistical procedure to test for the association between a binary
response variable and the interaction between two categorical variables. The method is based on
an original formal expression of “association” and our results show its complementarity with other
methods. Several other methods have since been proposed in the literature that are based on other
definitions of association. These methods can therefore be seen as complementary methods rather
than concurrent methods. However, in practice, people are not interested in testing one particular
formal interpretation of association and thus, an interesting perspective is to find an appropriate
combination of all these methods to produce a “meta” method.

From a practical point-of-view, our method is based on closed-form estimators which fasten its
computation. In [JP7], the illustration of our method on a large scale dataset proved the feasibility
of a genome-wide scan in a reasonable computational time. The method has been implemented in
an R package that is available at https://github.com/MathieuEmily/IndOR.

2.4 Clustering in sparse two-way contingency tables

In this section, we present our work on the clustering of individuals in sparse contingency tables.
This work was conducted within a collaboration with Alain Mom (Université Rennes 2 and Institut
de Recherche Mathématiques de Rennes) for the statistical modeling and with Christophe Hitte
(Université Rennes 1 and Institut de Génétique de Rennes) for the illustrative example.

2.4.1 Context and issue

The study of the link(s) between two categorical variables, Y with I categories and X with J cate-
gories, starts by testing the independence between X and Y [Agresti, 2013]. When independence is
rejected and considering that the categories of Y correspond to subpopulations from a global popu-
lation, investigating the nature of the relationship between Y and X can be performed by clustering
the subpopulations (i.e. the Y categories) [Greenacre, 1988]. For that purpose, subpopulations
are usually characterized by their conditional profile that corresponds to the distribution, for one
subpopulation, of the observations over the J categories of X [Hirotsu, 2009].

Clustering subpopulations is usually based on detecting categories for X (also called features
in machine learning) that are specific to sets of subpopulations. However, with the advent of high-

https://github.com/MathieuEmily/IndOR
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throughput technologies, situations where J (the number of categories for X) is of the order of n
(the sample size) are becoming very common. As the dimensionality increases, the sparseness is
therefore likely to be observed even when the total sample size is large. Since classical statistical
frameworks are known to loose optimality as tables become sparse [Agresti and Yang, 1987], it is
therefore challenging to detect conditional profiles by accounting for sparsity and specificity si-
multaneously. Such profiles, called sparse-specific profiles are characterized by two main features.
Firstly, the sparse profiles are those profiles for which only very few categories have non-zero
counts. Secondly, specific profiles are those profiles presenting specific categories, i.e. categories
that are (almost) never observed in the other subpopulations.

The detection of sparse-specific profiles can be performed by using hierarchical clustering
techniques. The quality of the clustering depends on the choice of (1) a dissimilarity measure
between individuals and (2) a linkage criterion for the hierarchical clustering. As quoted in
[Hastie et al., 2009] (p.506), “Specifying an appropriate dissimilarity measure is far more impor-
tant in obtaining success with clustering than choice of clustering algorithm”. For that reason,
attention was first focused on the choice of an appropriate dissimilarity to detect sparse-specific
profiles. An abundant literature has been dedicated to improving the measure of similarity between
individuals in sparse contingency tables, either by applying dimension reduction techniques or by
proposing dissimilarity measures [Aggarwal and Zhai, 2012]. Dimension reduction techniques,
such as Latent Semantic Indexing (LSI) [Landauer et al., 1998] and Non-negative Matrix Factor-
ization (NMF) [Lee and Seung, 2001] aim at transforming a high dimension space of features to a
space of fewer dimensions using linear or non-linear combinations [Hastie et al., 2009]. Applying
such techniques can help selecting the most relevant categories, thus improving the quality of the
clustering [Witten and Tibshirani, 2010]. However, these techniques do not explicitly account for
sparse-specific profiles in the reduction of the dimensionality of the feature space. As a conse-
quence, power to detect sparse-specific profiles for dimension reduction techniques is likely to be
limited. On the one hand, the similarity between individuals can be measured with many differ-
ent functions developed to deal with sparse contingency tables. In the text domain, the most well
known and commonly used similarity function is the cosine similarity function [Singhal, 2001]. In
ecology, dedicated dissimilarities are the Bray-Curtis dissimilarity, the Jaccard dissimilarity, the d2

1
(or Manhattan) distance, the Hellinger distance or the Gower dissimilarity [Oksanen et al., 2015].

However, these methods usually work directly with counts which might not be appropriate to
detect sparse-specific profiles. Indeed, heterogeneity in the marginal counts of individuals gives
different weights to individuals, thus leading to inappropriate conclusions. A natural way to control
weights given to individuals is to focus on the conditional distribution of the categories, also known
as conditional profiles. The analysis of conditional profiles is classically performed by using either
the χ2 distance or the d2

2 distance (also known as L2 norm). Nevertheless, capturing sparse-specific
profile with the χ2 distance raises some limitations since χ2 is sensitive to profiles specificities.
On the other hand, d2

2 distance between two profiles is more influenced by the sparsity than the
specificity.

2.4.2 Approach

In [JP2], we tackle the issue of detecting sparse-specific profiles by introducing a novel dissimilar-
ity called d2

s adapted to the detection of sparse-specific profiles. d2
s is based on the comparison of

conditional profiles and gives equal influence to sparsity and specificity of profiles, compared to
other dissimilarities. To identify sparse-specific profiles, we propose a procedure called SMILE,
for Statistical Method to detect sparse-specific profiLEs, which consists in a single-linkage hi-
erarchical clustering [Jardine and Sibson, 1971] constructed using the d2

s dissimilarity. Selected
profiles with the SMILE procedure correspond to the smallest subset of conditional profiles that
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coalesce at the final step of the hierarchical clustering.

The dissimilarity d2
s

Conditional profile for Y = i is defined by a J−dimensional vector yi = [pi
1, . . . , pi

J]′ where
pi

j = ni j/ni.. In the following, E is used to denote the set of those I conditional profiles. Our
dissimilarity d2

s is defined by:

Definition 2.4.1 ∀x, y ∈ E:
d2

s (x, y) = ‖x‖2 ‖y‖2 d2
θ (x, y) (2.14)

where:

d2
θ (x, y) = 2(1 − cos(x̂y)) = 2

(
1 −

〈x, y〉2
‖x‖2 ‖y‖2

)
(2.15)

is the square of the angular distance between the lines spanned by x and y, 〈, 〉2 is the L2 scalar
product and ‖.‖2 its corresponding norm.

The sparsity of a given profile x is indeed measured by ‖x‖2 since the sparser x is, the higher
‖x‖2 is and the specificity between two profiles is measured by the angular distance dθ. Thus,
from Equation 2.14, it can be remarked that d2

s gives the same importance to the sparsity and the
specificity since 0 ≤ ‖x‖2 ‖y‖2 ≤ 1, 0 ≤ d2

θ (x, y)/2 ≤ 1 and multiplying the dissimilarities by the
same scalar does not modify the clustering.

According to Equation 2.15, d2
s can further be reformulated as:

∀x, y ∈ E, d2
s (x, y) = 2(‖x‖2 ‖y‖2 − 〈x, y〉2). (2.16)

It can easily be remarked that d2
s is symmetric. Moreover, according to the Cauchy-Schwarz

inequality, ∀x, y ∈ E d2
s (x, y) ≥ 0, thus proving that d2

s is actually a dissimilarity.

Single-linkage detection
The SMILE procedure is based on single-linkage detection, where single-linkage detection

corresponds to the selection of the smaller of the two subsets linked at the final step of a single-
linkage hierarchical clustering constructed with some dissimilarity d. In the single-linkage hier-
archical clustering, the linkage criterion between two clusters Ci and C j is defined by d(Ci,C j) =

minx∈Ci,y∈C jd(x, y) [Jardine and Sibson, 1971]. The clustering is then obtained by iteratively merg-
ing the pair of clusters that minimizes the single linkage criterion.

The single-linkage method has a tendency to form long and straggly clusters. This phe-
nomenon, often known as “chaining phenomenon”, refers to the gradual growth of a cluster as
one element at a time gets added to it [Calinski and Corsten, 1985]. Considered as a potential
drawback in some practical situations, the chaining effect is an advantage in our situation by al-
lowing the separation of two highly distinct groups. Another advantage of using the single-linkage
criterion is that the dissimilarities between clusters are the original dissimilarities between indi-
viduals: dissimilarities remain unchanged during the clustering, preserving their good properties,
if any, all through the study. Thus, the single-linkage criterion is adapted to separate individuals
with sparse-specific profiles from the rest of the population.

2.4.3 Main results and application to the detection of selection

Benefit of the d2
s in single-linkage detection

In [JP2], we first proposed an original characterization of the structure of the individual subset
selected by the single-linkage detection by considering the parallel between single-linkage cluster-
ing trees and Minimum Spanning Trees (MST) introduced in graph theory [Gower and Ross, 1969].



2.4. CLUSTERING IN SPARSE TWO-WAY CONTINGENCY TABLES 29

For that purpose, we introduced a restricted version of the Kruskal algorithm that is widely used
to compute MST [Kruskal, 1956] and proved theorem 2.4.1 that provides a necessary and suffi-
cient conditions, for a set of subpopulations A to be selected at the final step of the single-linkage
detection.

Theorem 2.4.1 Let A be a set of subpopulations of E and d be a dissimilarity. A is linked to its
complementary A, at the final step of the hierarchical clustering based on d and using the single-
linkage criterion if and only if A and A are the two last connected components at the final step of
the Kruskal algorithm. A is thus selected by single-linkage detection if and only if:

max(dMS T (A), dMS T (A)) < minx∈A,y∈Ad(x, y) (2.17)

where dMS T (A) is the length of the final edge of a restricted version of the Kruskal algorithm.

Illustrations of Theorem 2.4.1 as well as the calculation of dMS T (A) are provided in Figure 2.6.
Theorem 2.4.1 helps understanding the roles played of the within structure of A and Ā in single-
linkage clustering.

Figure 2.6: Two examples of hierarchical clustering with n = 7 and nA = 3. The black dots
represent the first level of clustering between an individual in A and an individual in A, i.e.
minx∈A,y∈Ad(x, y). The two examples illustrate the calculation of dMS T (A) and dMS T (A). In the
first example, subset A is selected by the SMILE procedure while in the second example, subset A
is not selected by the SMILE procedure.

The benefits of using d2
s is then stated by comparing d2

s to the L2 norm, called d2
2. We indeed

proved that
∀x, y ∈ E d2

2(x, y) = d2
s (x, y) + (‖x‖2 − ‖y‖2)2. (2.18)

It is noteworthy that compared to d2
s , the d2

2 dissimilarity gives more weight to variation in
sparsity between the 2 compared profiles by adding the term (‖x‖2 − ‖y‖2)2. Thus, compared to d2

s ,
d2

2 is likely to be more sensitive to the heterogeneity, and especially heterogeneity in sparsity, in a
given subset. Therefore, the detection of a targeted subset A with single-linkage detection is less
influenced by the structure of A when using d2

s compared to d2
2. By focusing on the case where A

is a singleton, situations for which our dissimilarity, d2
s , is more powerful than d2

2 are described in
Theorem 2.4.3.

Before stating Theorem 2.4.3, further definitions are needed. Let first introduce the sparsest
and the least sparse conditional profiles as follows:
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Definition 2.4.2 The sparsest conditional profile, xs, and the least sparse conditional profile, x0,
are defined, for all x ∈ E such that x , xs and x , x0, by:

‖x0‖2 < ‖x‖2 < ‖xs‖2 .

Let also formalize a hierarchy in the specificity of a profile by defining a totally specific condi-
tional profile (see Definition 2.4.3) and a nearly totally specific conditional profile (see Definition
2.4.4).

Definition 2.4.3 x ∈ E is said to be totally specific if and only if: ∀y , x ∈ E, 〈x, y〉2 = 0.

Definition 2.4.4 x ∈ E is said to be nearly totally specific for the dissimilarity d if and only if
〈x, x0〉2 = 0 and d(x, x0) = miny,xd(x, y).

We then proved the two following theorems:

Theorem 2.4.2 If xs is nearly totally specific for the dissimilarity d ∈ {d2
s , d

2
2} then xs is selected

by single-linkage detection.

Theorem 2.4.3 If xs is nearly totally specific for d2
2 then xs is nearly totally specific for d2

s .

If xs is nearly totally specific for d2
2, then it is selected by single-linkage detection using d2

2.
Theorems 2.4.2 and 2.4.3 thus ensure that xs is selected by single-linkage detection using d2

s . It
is noteworthy that the reciprocity of Theorem 2.4.3 is false. Conditional profiles selected by d2

s
might be missed by d2

2, thus proving the benefit of using d2
s instead of d2

2. This advantage for d2
s is

further highlighted by the analysis of our illustrative example.

Simulation study
We evaluated the performance of the SMILE procedure by comparing our novel dissimilarity

d2
s to 11 other measures in single-linkage detection: 5 dissimilarities (Bray-Curtis, d2

1 (or Manhat-
tan), Jaccard, Gower and Hellinger ), 3 distances (cosine, χ2 and d2

2) and 3 reduction dimension
techniques dedicated to the analysis of sparse contingency tables (Sparse clustering, Latent Se-
mantic Analysis or LSA and non-negative matrix factorization).

We proposed an algorithm for the simulation of contingency tables designed to simulate the
structure of the set of selected individuals, A, and its complementary A. Since the structure of A
plays a major role in the detection of A (see Theorem 2.4.1), simulated scenarios that focus on the
impact of the structure of A on single-linkage detection are designed. On the one hand, a simulated
scenario, Scenario ]1, is considered where specific and non-sparse profiles are observed in A. On
the other hand, the impact of heterogeneity in sparsity in analyzed for profiles in A thanks to two
simulated scenarios, Scenarios ]2 and ]3.

Our results proved that our procedure is the only method (1) able to detect sparse-specific
profiles when specific and non-sparse profiles are observed in A (2) not impacted by the structure
in A, coming from the fact that d2

s gives equal influence to sparsity and specificity of profiles.

Application to the detection of selection in domestic dogs
We used the SMILE procedure on genomic data from the European consortium LUPA [Lequarré et al., 2011]

where I = 30 dog breeds are considered as subgroups of the population of domestic dogs. Atten-
tion is focused to six genomic regions, Regions ]1, ]2,...,]6, defined as small parts of the genome.
For each of the six regions of interest, the set of categories are defined as the set of observed DNA
sequences, also called the set of haplotypes. The six regions of interest have been chosen as being
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previously reported causative for the following morphological traits: brachicephaly, furnishings,
wrinkled skin, periodic fever syndrome, chondrodysplasia and curly hair. For each region, genetic
studies have shown that the presence or absence of a particular DNA sequence (or category) is
associated with the observation of the trait.

These six genomic regions were considered as test regions to compare the ability for the novel
dissimilarity d2

s and the 11 compared methods to detect known signals with single-linkage detec-
tion. For each of the six regions of interest, the true signal, i.e. the breed(s) that is(are) under
selection, is(are) known. Thus, for the novel dissimilarity d2

s and the 11 competitive methods, we
first evaluated the set of breeds detected in each region and then compare it with the known set
of breeds that should have been detected according to biological knowledge. The performance of
each method, given in Table 2.4, showed that the proposed dissimilarity d2

s was the only method
able to correctly detect 5 regions. All other methods also failed at finding the only missed region
by d2

s , (Region ]2), thus demonstrating the strength of d2
s in a real situation.

Method Regions Total
]1 ]2 ]3 ]4 ]5 ]6

d2
s x x x x x 5

d2
2 x x x x 4

Sparcl x x x x 4
NMF x x x 3
LSA x x 2
Jaccard x 1
Bray-Curtis x 1
d2

1 x 1
χ2 x 1
Hellinger x 1
Gower 0
Cosine 0

Table 2.4: Summary of the results obtained for d2
s and the 11 compared methods on the six

genomic regions used as test regions to validate the method. A x means a correct detection of
the signal known from biological experiments. The last column gives the total number of signals
correctly found by the corresponding method.

We drew a parallel between results obtained on the real data set analysis and more general
results on the SMILE procedure. The low power observed for several dissimilarities was first
explained. Regions with only one selected breed were then focused on. Finally, results were
discussed regarding regions with more than one targeted breed.

2.4.4 Final comments

In this contribution, we proposed a statistical framework to detect a particular conditional profile
in data summarized by a two-contingency. The main originality of our work consists in defining
the set of targeted profiles that is the formal interpretation of series of biological assumptions.
Based on such assumptions we provided an appropriate metric to distinguish between profiles.
Using a mixture of theoretical results, simulations and a real data example, we provided evidence
that (1) our method is efficient to detect the statistical hypotheses designed to raise the biological
question and (2) the statistical hypotheses characterize well the biological assumption underlying
the biological question.



32 CHAPTER 2. ANALYSIS OF CATEGORICAL DATA

The computation of the method described in this section is integrated in an R package available
at https://github.com/MathieuEmily/SMILE.

https://github.com/MathieuEmily/SMILE


3
Statistical modeling of highly structured data

3.1 Introduction

The following sections propose an overview of our research work dedicated to the analysis of
large-scale genomic data. Due to the emergence of high-throughput data, the increasing com-
plexity of genomic data has raised new statistical challenges. Compared to our contributions in
chapter 2, where we developed statistical methodologies for situations where only 2 or 3 vari-
ables are considered, our aim in this chapter is to consider genomic data as whole (such as whole
genome sequencing data), where the number p of variables ranges from a few hundred to a few bil-
lion. Therefore, genomic data falls into the paradigm of “high-dimensional data” which is known
to be a major issue for the statistical analysis [Bühlmann and van de Geer, 2011].

The impact of high-dimensionality on statistics is multiple and often refers to the “curse of
dimensionality” [Donoho, 2000, Sammut and Webb, 2011]. It relates to the fact that the conver-
gence of any estimator to the true value is very slow and that an enormous amount of observations
is needed to obtain a good estimate. However, since the past few years has not seen a significant
increase in sample sizes, the number of variables may exceed the sample size by several orders
of magnitude. Circumventing the curse of dimensionality seems therefore to be hopeless in the
analysis of whole genome sequencing data.

Fortunately, high-dimensional data are often much more low dimensional than they seemed to
be and are usually concentrated around low-dimensional structures [Giraud, 2014]. These struc-
tures are due to the intrinsic low complexity of the systems producing the data and we can hope
to extract useful information from them. Taking into account these structures may indeed be suffi-
cient to overcome the issues raised by the high-dimensionality.

However, a major issue with genomic data is that these structures are, most of the time, only
very partially known and must be guessed from the data themselves. The main task is therefore to
identify, at least approximately, these structures. Nevertheless, one of the main consequence of the
completion of the human genome is a better understanding of the global structure of the genome
and many studies have showed that genomes are highly structured at various scales [Little, 2005].
At the smallest possible unit of measure, i.e. the nucleobase, it can be first considered that genomes
have a 1-dimensional structure along the chromosome [Gabriel et al., 2002]. As shown in Fig-
ure 1.3 (see page 8), the correlation between Single Nucleotide Polymorphisms (SNPs) is local
thus conferring a block structure to the genome. The ordered sequences of nucleobases also play
a major in functional genomics. By reading three nucleotides at a time (the so-called codon), the
transcription-translation machinery can convert DNA sequences into proteins. Knowledge of the
structure and function of the proteome is central to the exploitation of the wealth of biological
information available in the post-genome era [Adams, 2008]. This knowledge provides funda-

33
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mental understanding of biological processes and can inform the systematic development of novel
pharmaceuticals [Fleming et al., 2006].

In this chapter, we summarized our contributions on the statistical modeling of the complex-
ity of genomic data that focuses on the two above levels of structure: the nucleobase level and
the sequence of amino-acid level. Our contributions were motivated by (1) the test of an associ-
ation between a binary variable and the interaction between 2 categorical variables (at the lowest
possible level of the nucleobase) and (2) the prediction of a functional trait (amyloidogenesis) in
proteins (at the functional level of a sequence of amino-acid). First, improving statistical proce-
dures to detect interaction is crucial since interaction is commonly assumed to be one of main
factor contributing to heritability. Next, amyloid proteins are associated with the pathology en-
countered in a range of diseases including Alzheimer’s, Parkinson’s and type II diabetes, all of
which are progressive disorders with associated high morbidity and mortality. Our contributions
address the general statistical issues of the design of experiment (Section 3.2), the multiple test-
ing correction (Section 3.3), the aggregation of statistical tests (Section 3.4) and the design of
meta-predictor (Section 3.5).

In Section 3.2, we tackle the issue of selecting the most informative set of SNPs, when search-
ing for associations between a binary phenotype and the interaction between two-SNPs, by ac-
counting for the 1-dimensional structure of the genome. Although such an approach has already
been used to help the design of experiment, these studies aimed at optimizing the power of single-
association testing. They may not be appropriate to the interaction issue and, in [NC3, IC7], we
proposed a specific formulation and resolution of the optimization based on information theory.

In Section 3.3, we focus on the multiple testing correction issue when a large number of in-
teraction tests are performed. Due to the correlation observed between variables, there exists a
potentially important correlation between statistical tests for interaction thus complicating the cor-
rection for multiple testing. In [JP8], we proposed a statistical framework to perform multiple
testing correction that is based on combining biological knowledge integration with information
theory.

In Section 3.4, we address the issue of combining statistical interaction tests in order to test for
interaction at the level of the gene (or region) rather than at the nucleobase level, where a gene is
considered as a sequence of several nucleobases. Due to the correlation between variables within
each set of nucleobases, the dimensionality of the whole set of interaction tests is much lower than
the number of pairwise interaction tests that can be performed. In [JP3], we proposed a novel
procedure based on the minimum p-value statistic that integrates over the covariance structure
between the individual tests.

In Section 3.5, our aim is to define a statistical framework to propose a (meta-)predictor that
combines predictions obtained from a set of individual predictors. When the trait of interest,
such as amyloidogenesis, is an intricate phenomenon in which many features interplay, individual
predictors usually account for a very few number of features, thus reducing the overall predictive
capacity of each method. However since the overall set of features involved in the trait is highly
correlated, individual predictors also share a large part of common information. In [JP6], we
introduced a statistical procedure to select and combine individual methods into a meta-predictor
in order to improve the overall prediction.

3.2 Variable selection in the design of experiment

Our research work presented in this section proposes a statistical method to select a set of infor-
mative variable to detect an association between a binary variable and the interaction between
two variables. It is the results of a collaboration with Chloé Friguet.
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3.2.1 Context

In the human genome, the number of SNPs reported in the famous database dbSNP (http://www.
ncbi.nlm.nih.gov/SNP/snp_summary.cgi) is now larger than 80,000,000. When considering
a group of highly correlated SNPs, the information carried by an individual SNP tends to be redun-
dant with the other SNPs. The selection of a tag SNP as a representative of these groups reduces
the amount of redundancy when analyzing parts of the genome associated with traits/diseases.
Figure 3.1 shows an example of a selection of tag SNPs in a small region. Therefore tag SNPs
selection is a crucial step in the design of experiment.

Figure 3.1: Pairwise correlation plot (or LD plot) of a set of SNPs in TLSP gene. The level of grey
indicates the pairwise r2 values (%) in the lozenges. Selected tag SNPs are framed.

Let consider a set of p categorical variables, each with 3 categories to mimic bi-allelic SNPs,
denoted as X1, . . . , Xp. The statistical question raised by tag SNPs selection is the identification of a
maximum informative subset of variables, called Xt(1), . . . , Xt(k), where {t(1), . . . , t(k)} ⊆ {1, . . . , p}.
Various measures have been used to quantify and maximize the information retrieved by tagging
and existing methods proposed in the literature can be classified in different groups whether a
partition of the p initial SNPs into contiguous blocks is assumed and whether the number of k
tag-SNPs is fixed or random.

The wide majority of these measures is based on the pairwise correlation between SNPs (the
r2 linkage disequilibrium statistic). The use of r2 is very popular because r2 is related to sta-
tistical power to detect single association. If the true signal of association is carried by vari-
able Xc, then the power to detect association at Xt with a sample of size n is approximately the
power attained with a sample size of r2 × n at Xc where r2 is the correlation between Xc and Xt

[Pritchard and Przeworski, 2001]. In other words, to achieve the same power with indirect associ-
ation as achieved in the case of direct association, the sample size must be increased by a factor of
1/r2.

Furthermore, to reduce the computational cost, the search for tags is performed using a system
of contiguous set of SNPs defined through the 1-dimensional block structure. Such a set of SNPs,
also called neighborhood, can be based on either a priori biological knowledge, such as the iden-
tification of recombination hotspots, or contiguous region of observed correlated SNPs or sliding
windows. Figure 3.2 provides a scheme of the cutting of a chromosome in B blocks. Once blocks
are defined, the selection of tag-SNPs is performed within each block. Let consider the `th block
(` = 1, . . . , B), denoted by X`, that is composed of set of p` variables:

X` =
[
X1,`, . . . , Xp`,`

]
The purpose of tagging is to find a subset ofX`, calledXt

`
, that maximizes the information contains

in X`, where:

http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi
http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi
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Xt
` =

[
Xt`(1),`, . . . , Xt`(p`),`

]
Figure 3.2 provides a overview of the main notations.

Figure 3.2: Block representation and tag-SNP selection where tag SNPs are in red.

In practice, the issue of tag selection is to findXt
`

that satisfies the following criterion [Carlson et al., 2004]:

∀i ∈ [1, . . . , p`],∃ j ∈ [t`(1), . . . , t`(p`)] / r2(Xi,`, X j,`) ≥ 0.8 (3.1)

According to Equation 3.1, each variable of a block should be tagged with at least one tag variable
with a correlation threshold of r2 ≥ 0.8. Solution for satisfying Equation 3.1 is not unique and
additional constraints, such as minimizing t`(p`), the dimensionality of tags or maximizing the cor-
relation threshold, can be used to reach the “best” solution [Stram, 2004]. From a computational
point-of-view, computing a maximum informative Xt

`
is a NP-hard problem in its full general

[Halldorsson et al., 2004] form and an iterative greedy algorithm is used [de Bakker et al., 2005].
Although such a strategy has proved its efficiency in single-marker association studies, it may be
not adapted to the detection of interaction between SNPs for two main reasons. First, in situations
where the signals is carried out by a pair of interacting variables, each variable is likely to be tagged
by a tag-SNP. The correlation threshold in Equation 3.1 does not account for this “double tagging”
situation that generates a “double” loss in statistical power. Next, when considering that blocks of
variables are not independent, a pair of variables is not necessarily best tagged by a pair of tagged
variables. Since interaction between variables is one of the most common biological phenomenon
used to explain the lack of power of single-variable association, it is therefore important to account
for interaction in the design of SNP arrays.

3.2.2 Our approach: EpiTag

In [NC3, IC7], we proposed a statistical method to select subset of tag variables that maximally
retrieved the information of all pairs of variables between two sets of variables. Our method is
based on information theory measures.

Let first define two sets of variables, X`1 with p`1 variables and X`2 with p`2 variables, as
follows:

X`1 =
[
X1,`1 , . . . , Xp`1 ,`1

]
and X`2 =

[
X1,`2 , . . . , Xp`2 ,`2

]
To select the most informative subset of variables, we consider X, the set of all possible pairs

of variables between X`1 and X`2 :

X =
{
(Xi,`1 , X j,`2),∀i ∈ [1, . . . , p`1], ∀ j ∈ [1, . . . , p`2]

}
.

Our aim is to select a subset of X, called T , so that each element of X is tagged by at least one
element of T at a given threshold τ. We further assume that T is a cross product between two sets
of tag variables (one for X`1 and one for X`2) so that T can be written as follows:

T =
{
(Xi,`1 , X j,`2),∀i ∈ [t`1(1), . . . , t`1(p`1)], ∀ j ∈ [t`2(1), . . . , t`2(p`2)]

}
.
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To measure the information of a couple of variables retrieved by another couple of variables, we
used the Normalized Mutual Information. The objective of our method EpiTag can therefore be
defined as follows:

∀(i, j) ∈ {1, . . . , p`1} × {1, . . . , p`2}, ∃(r, s) ∈ {p`1(1), . . . , p`1(p`1)} × {p`2(1), . . . , p`2(p`2)} /

NMI
(
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

)
≥ τ

(3.2)
where:

NMI
[
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

]
=

I
[
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

]√
H(Xi,`1 , X j,`2)H(Xr,`1 , Xs,`2)

and

I
[
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

]
=

∑
(xi,x j,xr ,xs)∈{0,1,2}4

p(i, j,r,s) log
(

p(i, j,r,s)

P
[
(Xi,`1 , X j,`2) = (xi, x j)

]
P
[
(Xr,`1 , Xs,`2) = (xr, xs)

] )
H

(
Xi,`1 , X j,`2

)
= I

[
(Xi,`1 , X j,`2), (Xi,`1 , X j,`2)

]
p(i, j,r,s) = P

[
(Xi,`1 , X j,`2 , Xr,`1 , Xs,`2) = (xi, x j, xr, xs)

]
.

Thus, NMI is the Normalized Mutual Information between the pair of variables (Xi,`1 , X j,`2) and
the other pair (Xr,`1 , Xs,`2) while I and H respectively corresponds to the mutual information and
the entropy measure.

To implement EpiTag, we used a greedy algorithm that starts by selecting the pair of variables
that cover the maximum number of pairs. Then the tag and its covered variables are excluded from
the dataset. At each iteration, the most informative pair of variable is therefore the one that covers
the most couple of variables that have not been selected. Given the following f function:

∀(i, j) ∈ U1 × U2, f (Xi, X j) =
∑

(k,`)∈U1×U2

1NMI
[
(Xi,`1 ,X j,`2 ),(Xk,`1 ,X`,`2 )

]
≥τ

where U1 ⊆ {1, . . . , p`1} is the subset of unselected variables Xi,`1 and U2 ⊆ {1, . . . , p`2} the subset
of unselected variables X j,`2 at the current step. At the current iteration, the selected couple of
variables is therefore defined as:

(T1,T2) = argmax
(Xi,X j)∈U1×U2

f (Xi,`1 , X j,`1)

Iterations stop when all variables are selected.

3.2.3 Results

In [NC3, IC7], we compared our procedure EpiTag to two other methods of variable selection:
NoTag and Tagger [de Bakker et al., 2005]. In NoTag, we consider that no variable selection is
performed so that all variables are tested for association in the analysis. Tagger is the classical
method used for tagging SNP and aims at proposing a solution for Equation 3.1. Tagger is therefore
a selection method only based on the 1-dimensional structure of the genome and may thus be
appropriate for detecting interaction.

Our comparison focuses on the statistical power to detect the interaction between two vari-
ables. In the following paragraphs we considered two sets of variables X`1 and X`2 , and assumed a
dominant-dominant model for simulating Y . Let (Xi,`1 , X j,`2) be the associated pair (or causal pair)
of variables with Y as follows:

logit
(
P(Y = 1|(Xi,`1 , X j,`2) = (xi, x j)

)
= α + β

(
1x∈{Aa,aa}(xi)1x∈{Aa,aa}(x j)

)
(3.3)
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We then performed all pairwise testing between a variable in Xt
`1

and a variable in Xt
`2

, where
Xt
`1

(resp. Xt
`2

) is the subset of tag variables for X`1 (resp. X`2). It is noteworthy that the subset
Xt
`1

and Xt
`2

depend on the selection method (NoTag, Tagger or EpiTag). To test the interaction
between Xr,`1 ∈ X

t
`1

and Xs,`2 ∈ X
t
`2

we used the following likelihood ratio test:

LRT(Xr,`1 , Xs,`2) = D(M0(Xr,`1 , Xs,`2)) − D(M1(Xr,`1 , Xs,`2)) ∼H0 χ
2(4)

where D is the deviance computed for the two modelsM0 etM1:

M0 : logit
[
P(Y = 1|(Xr,`1 , Xs,`2) = (xi, x j)

]
= β0 + β11x=Aa(xi) + β21x=aa(xi) + β31x=Aa(x j) + β41x=aa(x j)

M1 : logit
[
P(Y = 1|(Xr,`1 , Xs,`2) = (xi, x j)

]
= β0 + β11x=Aa(xi) + β21x=aa(xi) + β31x=Aa(x j) + β41x=aa(x j)

+β51x=Aa(xi)1x=Aa(x j) + β61x=aa(xi)1x=Aa(x j)

+β71x=Aa(xi)1x=aa(x j) + β81x=aa(xi)1x=aa(x j)

We declared that a method successfully detected the causal signal if at least one pair is signifi-
cant after a Benjamini-Hochberg correction for multiple testing.

Simulation
In this paragraph we simulated two regions, each composed of 6 variables following the

scheme displayed in Figure 3.3. Variables are simulated according to a complete joint probability
distribution where the marginal probabilities are fixed to (0.62, 2 × 0.6 × 0.4, 0.42) for each vari-
able, thus corresponding to SNPs in Hardy-Weinberg Equilibrium with a Minor Allele Frequency
of 0.4. Furthermore, pairwise correlation between SNPs within a region is fixed to r2 = 0.8.

Figure 3.3: Simulation scheme. For each region, one variable is causal (in orange), one variable
is the Tag obtained with Tagger (in green), one variable is the tag obtained with EpiTag (purple
triangle) and 3 others are linked to the tag (in blue).

We performed simulations with values for β ∈ [0, 0.5], thus investigating different effect sizes.
As shown in Figure 3.4, EpiTag is the most powerful method for all value of β.
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Figure 3.4: Power for NoTag, Tagger and EpiTag with respect to the effect size β.

Power based on a reference panel

In [NC3, IC7], we performed a second simulation study based on a realistic pattern of cor-
relation between SNPs. For that purpose, we used the GWASimulator [Li and Li, 2008] to sim-
ulate 1,000 datasets that mimic the structure of the genome (observed in the CEU population of
HapMap Phase 3 [Consortium, 2003]) in two regions of 1 megabase. For each of the 1,000 sim-
ulated datasets, 2,000 individuals (1,000 cases and 1,000 controls) have been simulated, and one
pair have been randomly selected to be directly associated with Y . We used Equation 3.3, to
simulate Y and tuned the parameters so that the power for detecting the association is 0.5.

In our comparison, we used different thresholds for Tagger (r2 ≥ 0.8, r2 ≥ 0.9 and r2 ≥ 0.95)
and EpiTag (NMI ≥ 0.7 and NMI ≥ 0.8) for selecting subsets of variables. Results obtained in
Table 3.1 show that EpiTag is the best trade-off between power and false discovery proportion. Al-
though the NoTag strategy is the most powerful method, it suffers from a very high false discovery
proportion.

It can further be remarked that power is very low for Tagger when using a threshold lower than
0.9. Such a result suggests that accounting only for the 1-dimensional structure in the selection of
variable is not appropriate to the detection of interaction.

Method Threshold Number of tests Power False discovery proportion
NoTag 484 0.47 0.45
Tagger r2 ≥ 0.95 252 0.40 0.35
Tagger r2 ≥ 0.90 165 0.0 0.28
Tagger r2 ≥ 0.80 126 0.0 0.27
EpiTag NMI ≥ 0.8 121 0.47 0.38
EpiTag NMI ≥ 0.7 74 0.45 0.29

Table 3.1: Power and false discovery proportion estimated from 1,000 simulations for the 6
compared methods.
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3.2.4 Concluding remarks

In this work, we proposed an information theory based method to select the most informative set of
SNPs that optimizes the power of detecting interaction between two categorical variables. Our re-
sults demonstrate the importance, when dealing with heterogeneous variables where several scales
of structure interplay, of accounting for the various levels of correlation. In variable selection,
driving the selection by the 1-dimensional structure may optimize power for single association
testing to the detriment of higher order of association.

It is therefore ideal to design the experiment, here selecting variables, with respect to hy-
pothesis testing. EpiTag has been implemented in an R package that is available at https:
//github.com/MathieuEmily/EpiTag.

3.3 Multiple testing correction based on the interactome

Our research work presented in this section proposes a statistical method to use biological knowl-
edge in the search for interacting variables and validate a procedure for correcting multiple com-
parisons. It is the results of a collaboration with Mikkel Schierup (University of Aarhus, Den-
mark), Thomas Mailund (University of Aarhus, Denmark), Leif Schauser (University of Aarhus,
Denmark) and Jotun Hein (University of Oxford, United Kingdom).

3.3.1 Context

In the previous section, we demonstrated that the experimental design of SNP arrays used in
genome-wide association studies may not be optimal to detect an association between a binary
variable Y and the interaction between two variables. However, experimental design is not the
only factor limiting the power of detecting such an association. Considering the variable selection
performed in commercial SNP array, such as the Affymetrix GeneChip 500k Mapping Array Set
used in the WTCCC data set [WTCCC, 2007], the number of variables is of the order of 500,000.
Testing exhaustively all pairs of variables leads to a total of ≈ 1.25 × 1011 tests.

Such a large number of tests is a challenge both statistically and computationally. Statistically,
it implies that significant tests after a trivial Bonferroni correction for multiple testing should have
p-values lower than 4×10−13. Due the stringency of the correction, such a p-value is very unlikely
and the large majority of the true signals of interaction are missed. Furthermore, although it is
computationally possible to perform 125 billion tests, these tests have to be very simple to be run
in a reasonable time even on large CPU clusters.

However, as commonly suggested in high-dimensional design, the dimensionality of the data is
likely to be much lower that the dimensionality of the observed data [Giraud, 2014]. To reduce the
dimensionality of the data, statistical methods can be used to learn and account for the correlation
structure [Bühlmann and van de Geer, 2011]. In the context of interaction, the correlation structure
is even more complex than the 1-dimensional correlation of the genome and guessing such a
structure remains highly challenging. As an alternative to the statistical inference of the structure
of the data, dimension reduction can also be performed by using a priori knowledge.

For example, in molecular biology, interaction between molecules belonging to different bio-
chemical families (proteins, nucleic acids, lipids, carbohydrates, etc.) are particularly investigated
to define interactomes [Bonetta, 2010]. Most commonly, interactome refers to protein-protein
interaction, where physical interactions among proteins are studied. Prioritizing the search for
interacting variables can therefore help reducing the complexity of the data. However, even after
prioritization, data are still highly structured and issues regarding correction for multiple remains.

https://github.com/MathieuEmily/EpiTag
https://github.com/MathieuEmily/EpiTag
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3.3.2 Approach

In [JP8], we proposed an approach to combine the biological and statistical perspectives of detect-
ing an association between Y and the interaction between two variables. We first postulate that
two genes that biologically interact are good candidates to a statistical analysis. For that purpose
we have reduced the search to variables belonging to gene pairs known to interact and referenced
in protein databases. We first described the bioinformatic pipeline used to extract variables of
interest. Next we developed the statistical analysis performed in our analysis.

Bioinformatic pipeline
Before the statistical testing of association, a series of bioinformatic steps were performed to

extract tested variables. The bioinformatic pipeline is summarized in a flowchart shown in Fig-
ure 3.5. In a first step, we used the STRING database to select approximately 71,000 potential
protein-protein interactions that we wanted to test [von Mering et al., 2007]. For each pair of pro-
tein, we selected the two lists of SNPs located within the genes coded for two proteins. A quality
control is then performed to remove variables with a poor genotyping quality. Finally we tested
all pairs of good variables for the association of their interaction with Y .
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Figure 3.5: Flowchart of the main steps of our statistical pipeline.

Statistical procedure
The statistical procedure is composed of two main steps. First, all pairwise testing between

SNPs are performed sequentially. In a second step, we developed a multiple testing correction to
provide a genome-wide significant level of testing.

Let first consider a pair of variables, (Xr,`1 , Xs,`2), where Xr,`1 (resp. Xs,`2) is a variable of the
first (second) protein of the `th protein pair. To test the interaction between Xr,`1 and Xs,`2 we used
the following likelihood ratio test:

LRT(Xr,`1 , Xs,`2) = D(M0(Xr,`1 , Xs,`2)) − D(M1(Xr,`1 , Xs,`2)) ∼H0 χ
2(4)
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where D is the deviance computed for the two modelsM0 etM1:

M0 : logit
[
P(Y = 1|(Xr,`1 , Xs,`2) = (xi, x j)

]
= β0 + β11x=Aa(xi) + β21x=aa(xi) + β31x=Aa(x j) + β41x=aa(x j)

M1 : logit
[
P(Y = 1|(Xr,`1 , Xs,`2) = (xi, x j)

]
= β0 + β11x=Aa(xi) + β21x=aa(xi) + β31x=Aa(x j) + β41x=aa(x j)

+β51x=Aa(xi)1x=Aa(x j) + β61x=aa(xi)1x=Aa(x j)

+β71x=Aa(xi)1x=aa(x j) + β81x=aa(xi)1x=aa(x j)

In the second step, we adjusted p-values for multiple comparisons, to estimate the significance
level of interaction. In [JP8], we proposed to apply a Bonferroni-like correction based on the effec-
tive number of SNP pairs. In our network-based approach, there are two levels of dependencies.
First, for a particular pair of genes, each SNP from the first gene is tested against each SNP from
the second gene. Second, gene pairs are not independent, as one gene can belong to more than one
gene pair. Although the second source of dependency might have an impact on the significance
level, we accounted only for the multiple comparisons arising in a single gene pair test. If nGG is
the number of gene pairs and pi

`1
and pi

`2
are respectively the number of variables in the first and

second gene of the pair i, then the total number of tests, denoted by N, is given by:

N =

nGG∑
i=1

pi
`1
× pi

`2
.

To account for the dependency between tests, we propose to estimate the number of effective tests
in a single gene pair i, denoted by ni

eff
and to use it in the above formula in place of pi

`1
× pi

`2
. The

effective number of tests was calculated using the eigen-values of a correlation matrix, where
the correlation between two pairs of SNPs can be measured with the entropy and the mutual
information. If we considered two pairs of variables (Xi,`1 , X j,`2) and (Xr,`1 , Xs,`2) the correlation is
given by:

Cor
(
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

)
=

Cov
(
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

)
√

Var(Xi,`1 , X j,`2) × Var(Xr,`1 , Xs,`2)

where

Var(Xi,`1 , X j,`2) = H(Xi,`1 , X j,`2)

Cov
(
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

)
= I

(
(Xi,`1 , X j,`2), (Xr,`1 , Xs,`2)

)
= H

(
Xi,`1 , X j,`2

)
+ H

(
Xr,`1 , Xs,`2

)
− H

(
Xi,`1 , X j,`2 , Xr,`1 , Xs,`2

)
with H the entropy measure and I the mutual information measure. As described by Li and Ji
[Li and Ji, 2005], letting λk (k = 1, . . . , pi

`1
× pi

`2
) the eigen-values of the correlation matrix of the

variables, the number of effective tests in the gene pair i, ni
eff

is given by:

ni
eff =

pi
`1
×pi

`2∑
k=1

f (|λk|)

with f (x) = 1x>1(x) + (x−bxc), where 1 is the indicator function and bxc is the floor of x. In [JP8],
we estimated the number of effective pairs of variables as follows:

Ne f f =

nGG∑
i=1

ni
e f f (3.4)

An effective correction for multiple testing consists in multiplying the p-values by Ne f f .
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3.3.3 Results and applications to the WTCCC dataset

Performance of the multiple testing correction procedure
In [JP8], we tested the efficiency of our correction for multiple comparisons on simulated data

sets based on the WTCCC data. Ten thousand gene pairs were randomly generated in the set of
genes from the STRING database. For each of the 10,000 gene pairs, the number of effective pairs
was calculated with the procedure described in the previous section and compared with the total
number of pairs that is used in the conventional Bonferroni correction. Type I error rate at the 5%
level showed that a Bonferroni correction is overly conservative: we estimated that the probability
of rejecting the null hypothesis of non-interaction to be 0.8%. It proved that LD structure within
genes induces dependency between SNP pairs, lowering the power to detect epistasis. The use of
the effective number of pairs gave a better correction, improving the power to detect interaction,
and we estimated that the probability of rejecting the null hypothesis at a 5% level was 4.5%; still
conservative but much less than the Bonferroni correction.

Search for interacting variable in susceptibility with Crohn’s Disease (CD)
After applying some data quality filter, we were left with approximately 3,500,000 tests for

Crohn’s disease (CD) in the WTCCC data. Figure 3.6 shows the quantile-quantile plots for the
interaction tests using the 71,000 well-established protein-protein interactions in the STRING
database. The shaded region in the plots corresponds to the 95% concentration band obtained
from the null hypothesis of non-interaction. The computation of the number of effective tests gave
Ne f f ≈ 580, 000 thus providing a genome-wide significant level of 8.62 × 10−8. Consistent with
the quantile-quantile plots, CD showed a strong interaction with a p-value of 1, 13×10−9, yielding
an overall p-value of 6 × 10−4 after correction.

We indeed observed an excess of points outside the 95% concentration band at the tail of
the distribution. In total, eight SNP pairs showed a significant interaction that belongs to the
same putative biological interaction. This interaction involves genes Adenomatous Polyposis Coli
(APC) and the IQ-domain GTPase-activating protein 1 (IQGAP1). Removing all APC-IQGAP1
SNP pairs from the analysis completely eliminates the deviation from the expected Q-Q plot (see
the blue points in Figure 3.6).

3.3.4 Concluding remarks

In this work we developed a method that drives the search for testing an association between a cat-
egorical variable using biological networks. Using elements of information theory we proposed an
original method for multiple testing correction. Our results showed that an appropriate design of
experiment may help circumventing the burden of multiple testing in high-dimensional testing.

3.4 Combining statistical tests

Our research work presented in this section proposes a statistical method to aggregate interaction
tests of an association between a binary variable and the interaction between two variables.

3.4.1 Context

In the previous section, we focused on the multiple testing correction of a complete set of p-values
obtained from a large number of interaction tests. However, as seen previously, the genome is
structured through a multilevel scheme where the 1-dimensional structure allows defining con-
tiguous blocks of correlated variables. In single association testing, such a 1-dimensional has been
used to propose association tests at the level of the block. In contrast to single variable approach,
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Figure 3.6: Quantile-quantile plots of the test statistic observed for the CD. The black dots
correspond to the entire data set. The blue dots result from the removal of SNP pairs included
in APC-IQGAP1 regions. The shaded region shows the 95% concentration band for the non-
interaction hypothesis.

block-level testing can help characterizing functional, compositional and statistical interactions
[Phillips, 2008]. Such tests allow for all the variables within the block to be jointly modeled as
a set and can take into account the correlation structure within a block [Huang et al., 2011]. Sin-
gle block-based strategy has been successfully applied in many applications and more specifically
in the detection of an association between Y and X with low probabilities. Furthermore the use
of the block (or gene) as the statistical unit can greatly facilitate the biological interpretation of
findings [Jorgenson and Witte, 2006, Neale and Sham, 2004]. In the context of interaction, by ag-
gregating signals across variables in a block, statistical power is likely to be increased in situations
when multiple interactions are associated with Y [Wu et al., 2010]. Furthermore, if the interacting
variables are only tagged, rather than directly observed, block-based tests can aggregate signals
from different tag variables. Therefore, block-based block-block interaction methods have recently
grown in popularity.

In case-control studies, where Y is dichotomous, principal component analysis (PCA) has first
been used to test the association between synthetic variables (i.e. principal components) from each
block [Li et al., 2009]. In another approach, Peng et al. proposed a U-statistic, called CCU, to
measure the difference of correlation between two blocks in cases and controls [Peng et al., 2010].
In CCU, correlations in cases and controls is based on canonical correlation analysis in order to
detect block-block co-association [Peng et al., 2010]. Although CCU has good performances, it
is limited to detect linear correlation, which may be unsuitable for finding nonlinear signals. To
overcome this limitation, CCU has been extended to KCCU, where correlation is estimated by ker-
nel canonical correlation [Yuan et al., 2012, Larson et al., 2014]. Kernel-based methods have also
been successfully adapted to block-block interaction via kernel regression [Larson and Schaid, 2013].
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Partial Least Squares Path Modeling (PLSPM) has also been proposed as an alternative mea-
sure of correlation between two blocks and proved its efficiency when the two blocks are linked
[Zhang et al., 2013]. Rather than focusing on a single measure of correlation between blocks,
Rajapakse et al. proposed a test to compare the whole covariance structure between two blocks
in cases and controls [Rajapakse et al., 2012]. More recently, a non-parametric statistic, called
GBIGM and based on information theory, has been introduced as an attractive option to detect
non-linear relationship between two blocks [Li et al., 2015]. All these methods assume that the
modeling of the joint distribution of SNPs within and between the two blocks has to be the initial
step of the statistical procedure.

3.4.2 Our approach: AGGrEGATOr

In [JP3], rather than considering multiple variables in both block as part of a joint model, we pro-
posed an alternative strategy, called AGGrEGATOr for A Gene-based GEne-Gene interActTiOn
test for case-control association studies, that aims at aggregating p-values obtained at the SNP
level into a test at the gene level. We start by applying a logistic regression model to test all pairs
of SNPs between the two blocks. We then used a minP procedure to combine the p-values into a
single test at the block level. Since the distribution of the minP statistic depends on the correlation
between the combined statistics, we proposed an estimation of the correlation between variable-
variable interaction statistics. The various steps of the AGGrEGATOr framework are illustrated in
Figure 3.7.

Figure 3.7: Overview of the different steps of the AGGrEGATOr procedure. In step (A) Wi j

statistics are computed for all pairs of SNPs between the 2 genes (X1 and X2). Step (B) consists in
unfolding the matrix of statistics into a vectorW of p`1 × p`2 statistics. In step (C), the covariance
matrix of vectorW is computed.
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Let consider two blocks of variables X`1 and X`2 such as:

X`1 =
[
X1,`1 , . . . , Xp`1 ,`1

]
and X`2 =

[
X1,`2 , . . . , Xp`2 ,`2

]
,

where p`1 and p`2 are the number of variables in each block. We further assumed that each Xi, j is
a discrete random variable with values in {0; 1; 2} that corresponds to the number of copies of the
minor allele.

Pairwise interaction test
In [JP3], we used a standard logistic regression to model the association between the two

variables, Xi,`1 and X j,`1 , and the response variable Y .

logit
[
P(Y = 1|Xi,`1 = x1, X j,`2 = x2)

]
= β

i, j
0 + β

i, j
1 x1 + β

i, j
2 x2 + β

i, j
3 x1x2 (3.5)

where [βi, j
0 , β

i, j
1 , β

i, j
2 , β

i, j
3 ] are the regression coefficients and βi, j

3 is interpreted as the weight of the
interaction between the two variables. The interaction between the two variables is then tested by
means of the following statistical null and alternative hypotheses:

H s
0 : βi, j

3 = 0 and H s
1 : βi, j

3 , 0.

To testH s
0 againstH s

1 , we used the following Wald statistic:

Wi j =
β̂

i, j
3
̂
σ

(
β̂

i, j
3

) (3.6)

where β̂i, j
3 is an estimate of βi, j

3 and
̂
σ

(
β̂

i, j
3

)
an estimate of its standard deviation.

Our block-based interaction test: minP
When applying pairwise interaction tests to all variable pairs between two blocks with p`1 and

p`2 variables, we obtained p`1 × p`2 p-values (see Figure 3.7 (A)). The main goal of our method is
to combine the p`1 × p`2 p-values into a single block-block interaction test. To do so, we proposed
to test the null hypothesisH0 against the alternativeH1 where:

H0 : ∀1 ≤ i ≤ p`1 and ∀1 ≤ j ≤ p`2 , β
i, j
3 = 0,

H1 : ∃(i, j) where 1 ≤ i ≤ p`1 and 1 ≤ j ≤ p`2 , β
i, j
3 , 0.

As described in Equation 3.6, the p`1 × p`2 p-values are related to p`1 × p`2 Wald statistics
Wi j(i = 1 . . . p`1 , j = 1 . . . p`2). It is well known that underH0:

W = [W11, . . . ,Wp`1 p`2 ] ∼ N(0,Σ),

where N(0,Σ) is the multivariate normal density with mean 0, the p`1 × p`2 null vector, and co-
variance matrix Σ. Σ = [σ(i, j),(i′, j′)] i=1...p`1 ; j=1...p`2

i′=1...p`1 ; j′=1...p`2

is a (p`1 × p`2) × (p`1 × p`2) symmetric matrix

where σ(i, j),(i′, j′) = Cov(Wi j,Wi′, j′).
To combine a set of p-values, we compared the maximum of the absolute values for the ob-

served Wald statistics to the asymptotic distribution expected under H0. More precisely we com-
pute the probability minP that at least one absolute value for Wald statistics is as large as the
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maximum of the observed absolute values under the null hypothesis. Let Z = [Z1, . . . ,Zp`1 p`2 ] be
a multivariate Gaussian random vector with the following distribution Z ∼ N(0,Σ) and
Wmax = max{|W11|, . . . , |Wp`1 p`2 |} be the maximum of the absolute values for the observed Wald
statistics. Thus, the minP probability is obtained by the following formula:

minP = 1 − P
[

max(|Z1|, |Z2|, . . . , |Zp`1 p`2 |) < Wmax
]
. (3.7)

Since our pairwise interaction test is two-sided, one can remark that Wmax = Φ−1 (1 − Pmin/2),
where Φ is the standard normal distribution function and Pmin the minimum of the observed
p-values. Equation (3.7) is then equivalent to the one proposed by Conneely and Boehnke in
[Conneely and Boehnke, 2007].

Estimation of the variance-covariance matrix: Σ

Because of the LD between SNPs within a gene and since a SNP is used in many different pairs,
the Wi j are correlated. By integrating over the multivariate normal distribution, Equation (3.7)
explicitly accounts for Σ, the covariance structure of the Wi j. However, the estimation of Σ is not
straightforward simply because the computation of Wi j in Equation (3.6) does not have a closed
form. In order to compute Equation (3.7), we proposed in [JP3] an estimation of Σ based on the
correlation (or LD) between variables.

Let ri,i′ =
pii′−pi pi′√

pi(1−pi)pi′ (1−pi′ )
be the widely used correlation measure. We proposed that:

σ(i, j),(i′, j′) = Cov(Wi j,Wi′, j′) ≈ ri,i′r j, j′ (3.8)

3.4.3 Main results and application to Rheumatoid Arthritis

In [JP3], we evaluated the performance of our procedure AGGrEGATOr compared to 6 previ-
ously published methods: CCA for Canonical Correlation Analysis [Peng et al., 2010], KCCA for
Kernel Canonical Correlation Analysis [Yuan et al., 2012, Larson et al., 2014], PCA for Principal
Component Analysis based method [Li et al., 2009], CLD for Composite Linkage Disequilibrium
[Rajapakse et al., 2012], PLSPM for Partial Least Square Path Modeling [Zhang et al., 2013] and
GBIGM for Gene-Based Information Gain Method [Li et al., 2015].

The computation and comparative evaluations of the methods has been performed via the R
package GeneGeneInteR developed in [PP1].

Evaluation of type-I error rate
To investigate the control of the type-I error rate, we focused on three main disease models

(No effect, One marginal effect and Multiplicative marginal effect) that express the relationship
between the two blocks of variables and Y . As proposed in [Marchini et al., 2005], disease models
were presented by a 3 × 3 table of odds where each cell characterizes the odds of the disease with
respect to the genotype. Each model had two parameters: γ characterizes the baseline odds and θ
quantifies the strength of the model.

As shown in Table 3.2, AGGrEGATOr is a valid statistical method for detecting block-block
interaction and confirms that the estimation of the correlation matrix is accurate when the correla-
tion between the two tested blocks is low. Furthermore, we proved in [JP3] that AGGrEGATOr is
robust to various correlation patterns within the two blocks of interest.

Power studies
In [JP3], to evaluate the power of our minP procedure, we first considered disease models

where the interaction between only one pair of variables was causal and then we investigated sce-
narios where 2, 5 and 10 pairs of variables were simulated as causal. In the case of one causal pair,
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Models α θ AGGrEGATOr CCA KCCA CLD PCA PSLPM GBIGM
No effect 0.05 0.061 0.046 0.043 0.043 0.071* 0.055 0.059

0.01 0.010 0.009 0.009 0.010 0.017 0.009 0.047*
One marginal 0.05 1 0.053 0.051 0.067* 0.051 0.039 0.040 0.064
effect 0.01 1 0.011 0.010 0.008 0.009 0.005 0.008 0.063*

0.05 4 0.058 0.055 0.070* 0.062 0.058 0.067* 0.052
0.01 4 0.009 0.013 0.006 0.011 0.012 0.017 0.051*

Multiplicative 0.05 1 0.047 0.043 0.049 0.062 0.054 0.029* 0.061
marginal 0.01 1 0.012 0.015 0.012 0.01 0.011 0.006 0.059*
effects 0.05 4 0.041 0.040 0.084* 0.132* 0.067* 0.348* 0.104*

0.01 4 0.009 0.014 0.028* 0.024* 0.014 0.302* 0.102*

Table 3.2: Estimation of the false positive rate in several scenarios involving three disease models
based the pair Locus 1-Locus 2: a model with no effect, a model with one marginal (recessive)
effect and a model with two (multiplicative) marginal effects. α is the expected predefined type-I
error rate and θ is the parameter of the disease. Results with an ∗ indicate a significant deviation
from the expected false positive rate.

we focused on 8 disease models, all characterized by a 3 × 3 table of odds [Marchini et al., 2005]
as described in the above section Evaluation of the type-I error rate. The 8 disease models, previ-
ously investigated in other studies [Li and Reich, 2000, Li et al., 2015] [JP7], were chosen to cover
a wide spectra of epistatic models. We considered historical epistatic models (dominant-dominant,
recessive-recessive and recessive-dominant models), and more sophisticated epistatic models (in-
teraction multiplicative effect [Marchini et al., 2005], threshold [Neuman and Rice, 1992], XOR
[Li and Reich, 2000], additive-additive [Li and Reich, 2000] and special interaction model [Li and Chen, 2008]).
For each disease model, power was estimated from 1,000 simulations and for different θ ∈ [0, 5].

In [JP3], we remarked that under the 8 disease models with only one causal variable, AGGrE-
GATOr always outperformed the other methods. Our results demonstrated that, compared to the
other methods, AGGrEGATOr has the capacity to accurately identify a wide range of interaction
signals. Furthermore, AGGrEGATOr is the only method that is robust to the correlation pattern
between and within blocks of interest.

When we considered a disease model with two causal pairs of variables, AGGrEGATOr out-
performed the other methods in presence of interaction multiplicative and dominant-dominant ef-
fects. However, power for the AGGrEGATOr procedure was slightly lower than for CCA, KCCA,
CLD and PCA when 10 causal pairs are involved in the disease model. Hence, our results prove,
that CCA, KCCA, CLD and, to a lesser extent, PCA can aggregate multiple source of interaction
more efficiently than AGGrEGATOr. Nevertheless, even for 10 causal pairs, our procedure AG-
GrEGATOr has reasonable power to detect gene-gene interaction. It can also be remarked that
AGGrEGATOr has very similar power for other correlation structures while the other methods
seemed to be sensitive to the correlation pattern.

Real data analysis
To assess the capacity of AGGrEGATOr to deal with real case-control phenotype, we first

investigated the susceptibility of a set of pairs of genes (or blocks) to Rheumatoid Arthritis (RA).
For doing so, we used the GSE39428 data set for which genotyping was performed using a custom-
designed Illumina 384-SNP VeraCode microarray (Illumina) to determine possible associations of
17 genes to RA [Chang et al., 2013, Li et al., 2015]. The data contains 266 cases and 163 controls.
We further used the WTCCC data set as a replication cohort [WTCCC, 2007]. In the WTCCC
data set, 2,000 RA patients and 3,000 controls were genotyped in the British population using the
Affymetrix GeneChip 500k Mapping Array Set.
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In a second analysis, we aimed at replicating gene-gene interactions in susceptibility with
complex diseases. For that purpose, we selected a list of publications that reported gene pairs
statistically associated with three complex diseases: Rheumatoid Arthritis (RA), Crohn’s Disease
(CD) and Coronary Artery Disease (CAD). Prior to the analysis, SNPs within genes have been fil-
tered with respect to Hardy-Weinberg Equilibrium, missing data and Minor Allele Frequency in the
WTCCC data set [WTCCC, 2007]. After filtering, a total of 15 gene pairs, reported in 5 different
publications, has been tested [Li et al., 2009, Jung et al., 2009, Peng et al., 2010, Liu et al., 2011,
Musameh et al., 2015].

The application of the AGGrEGATOr procedure to the association between Rheumatoid Arthri-
tis and 17 genes revealed a potential gene-gene interaction between PADI4 and CA1. Moreover,
AGGrEGATOr was able to replicate 7 over 15 previously reported gene pairs associated with
Rheumatoid Arthritis, or Crohn’s Disease or Coronary Artery Disease. Again, additional inves-
tigation is needed to confirm the role played by these gene-gene interactions in the etiology of
targeted diseases. The statistical replication of several gene pairs first confirmed the capacity for
AGGrEGATOr to be a robust and valid method compared to competitive methods and also gives
promising new insights in the etiology of Rheumatoid Arthritis, Crohn’s Disease and Coronary
Artery Disease.

3.4.4 Conclusion

In this contribution, we proposed a new statistical procedure to test for an association between
a binary variable and the interaction between two categorical variables. Our method is based on
a multinormal integration of individual tests so that the association is tested at the scale of a set
of variables rather than at the scale of the variable. Our results proved that putting biological
information, such as the block structure of the genome, in hypothesis testing may be efficient.
Using such information in the statistical procedure is also crucial to correctly interpret the obtained
results.

The method has been implemented in a Bioconductor R package that is available at https:
//bioconductor.org/packages/devel/bioc/html/GeneGeneInteR.html and at https:
//github.com/MathieuEmily/GeneGeneInteR.

3.5 Meta-prediction

Our research work presented in this contribution proposes a statistical framework to combine indi-
vidual predictor into a meta-predictor. It is the result of a collaboration with Christian Delamarche
(University of Rennes 1).

3.5.1 Context

In the previous sections, we focused on categorical variables, X, that are assumed to follow a multi-
nomial distribution with three categories, in order to mimic SNPs data. Various methodologies
developed in the previous sections relied on this modeling of data and can hardly be generalized
to any kind of categorical variables. However for many omic data, variables have more than three
categories. For example, in proteomics, a sequence is a set of amino acids where an amino acid
can be modeled by a categorical variable with 20 categories.

One of the main goals of proteomics is the study of the structures and functions of proteins,
since understanding protein function is one of the keys to understand life at the molecular level.
Because amino acid sequence determines protein structure and protein structures dictate biochem-
ical function, the study of protein sequences is crucial to give insights into functions of the pro-

https://bioconductor.org/packages/devel/bioc/html/GeneGeneInteR.html
https://bioconductor.org/packages/devel/bioc/html/GeneGeneInteR.html
https://github.com/MathieuEmily/GeneGeneInteR
https://github.com/MathieuEmily/GeneGeneInteR
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teome. Furthermore, although three-dimensional structure is known to play important functional
roles, many biological processes are assumed to be sequence-specific. Therefore, one of the big
challenges in proteomics is to predict whether a given sequence of amino-acid is associated with
the observation of a studied biological process. Studying the relationships between biological
function and amino acid sequence is also important in the context of human disease because many
conditions arise as a consequence of alterations of protein function due to modifications (muta-
tions, insertion, deletion, etc.) of the native sequence.

For many applications, the analysis of an amino-acid sequence is performed by first calculating
a score for each amino-acid. A score profile is then used to summarize the whole sequence. Based
on this profile, a global score or predictive function is obtained to estimate the functional outcome
of the sequence.

In that context, let introduce a sequence of length p, denoted by X, as follows:

X = [X1, . . . , Xp]

where each Xi is a categorical variable with 20 categories in [Alanine, . . . ,Tyrosine] that corre-
sponds to the set of amino acids that can be detected in mass spectrometry. For each Xi, a score
S (Xi) is given as an indicator of the propensity of Xi (or the subsequence in the vicinity of Xi) to
give a targeted biological function, denoted by Y , to the whole protein. For any X, a score can
therefore be defined as a p-dimensional vector as follows:

S (X) = [S (X1), . . . , S (Xp)].

An example of such a profile is displayed in 3.8. A predictor of the targeted biological function Y
is then characterized as a function f of X, i.e in a general form:

Ŷ = f (S (X))

Figure 3.8: Example of a sequence profile for sequence
X =LTLAVLFLTGSQARHFWQQDEPQSPWDRVKDL of length 32. A score is assigned to
each Xi (or amino-acid) of X = [X1, . . . , X32].

A large number of features is involved in the functions of a protein, such as the its three-
dimensional structure or its hydrophobicity. These features are commonly assumed to be corre-
lated and/or to interact so that the functionality of a protein is an intricate phenomenon in which
many features interplay. Since the amino-acid sequence is a key element in most of these features,
it is very common that, for a given Y , numerous score functions, S , and predictor functions, f , are
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proposed. However, existing predictors individually account for a very few number of features,
thus reducing the overall predictive capacity of each method thus conferring them a lack of robust-
ness. Therefore, there is a need for developing sequence-based predictors that can embrace the
complexity of the targeted biological process.

3.5.2 Our approach: MetAmyl

In [JP6], we proposed statistical procedure, called MetAmyl: a METa-predictor for AMYLoid
proteins, to account for a wide range of features involved in a biological process. We developed a
metapredictor that aims at selecting and combining a set of scores (used in individual predictors)
into new score function. Although our method is dedicated to the detection of amyloid proteins, a
biological process detailed in the next section, the procedure is sufficiently general to be applied
in other contexts.

Let Y be a binary outcome variable and S 1, . . . , S `, a collection of ` score functions. We
assumed that score functions are applied to a window Wi = [Xbi−kc, . . . , Xbi+kc], with a fixed size
k and centered in Xi. The size k of the window is usually chosen according to some biological
knowledge. In [JP6], we proposed a new score function S meta

i as a linear combination of the S i:

S meta(Wi) = β0 +
∑̀
j=1

βiS j(Wi) (3.9)

The estimation of the linear combination is achieved through a logistic regression model and is de-
composed into two main steps. In a first step, we automatically selected the most informative and
complementary set of individual predictors using a stepwise procedure. Variable selection is com-
monly used in supervised classification to alleviate the effect of the cures of dimensionality and
to enhance generalization by reducing overfitting [Venables and Ripley, 2002, Hastie et al., 2009].
In a second step, the weights assigned to each predictors, i.e. the regression coefficients in equa-
tion 3.9, are estimated by maximizing the likelihood of the logistic regression model. It is notewor-
thy that the second step performed simultaneously with the final step of the stepwise procedure.
To be estimated, our methodology relies on an appropriate training dataset that is crucial to avoid
overfitting.

We further proposed a thresholding method to predict the outcome Y with respect to Wi. For
that purpose, we introduced τ so that the prediction function for a given Wi is:

f (Wi) = 1(S meta(Wi) > τ)

The threshold τ is estimated by maximizing the distance to the upper-left corner in the ROC curve,
which corresponds to the cut-off that maximizes the quantity (1− sensitivity)2 + (1− speci f icity)2.
To prevent from overfitting, we used a leave-one-out cross-validation to estimate τ. We finally
proposed a predictor of protein sequence X as follows:

f (X) =

0 if ∀Wi / f (Wi) = 0
1 if ∃Wi / f (Wi) = 1

3.5.3 Results and application to amyloidogensis

A score function for predicting amyloid fibrils
In [JP6], we applied our methodology to the detection of amyloid fibrils that are protein aggre-

gates insoluble and resistant to protease activity in vivo [Jiménez et al., 1999]. The formation and
the accumulation of amyloid aggregates, as implicated in the cellular death process, are common
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features of a variety of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Hunting-
ton’s diseases [Ross and Poirier, 2004, Chiti and Dobson, 2006]. Extensive researches have shown
a large number of biological mechanisms involved in amyloidogenesis. Mutations, maturation,
protein synthesis errors, inappropriate proteolysis and protein environment modification might
lead to the formation of amyloid fibrils [Dobson, 2004]. Because of the complexity of amyloido-
genesis, predicting the capacity for a given protein to form amyloid fibrils remains as of today a
very challenging task.

Since it has been experimentally demonstrated that the length of six amino acids, correspond-
ing to hexapeptides, is essential and sufficient for a segment to induce amyloid conversion of
an entire protein domain [Ventura et al., 2004, Meng et al., 2012], the past few years have seen
the development of a large number of methods dedicated to the prediction of amyloid hot spots
in proteins. We therefore focused on the meta-prediction of 6-amino-acids length window, each
Wi is composed of k = 6 variables. The large number of predictive methods reflects the com-
plexity of the biological mechanisms involved in amyloidosis. It is very likely that the forma-
tion of amyloid fibrils is an intricate phenomenon in which many features interplay (secondary
structures formation, disorder propensity, hydrophobicity, structural modeling energy, physico-
chemical properties, amino-acid context). In [JP6], we combined well-known existing methods
into a meta-predictor using the methodology described in the previous section and obtained the
following score:

S Meta
i (Wi) = β0 + β1S PAFIG(Wi) + β2S S ALS A(Wi) + β3S Waltz(Wi) + β4S FA1(Wi)

where

β0 = −0.047727784, β1 = 3.667188941, β2 = 4.944766967, β3 = 0.005114034, β4 = −0.413373395

and PAFIG [Tian et al., 2009], SALSA [Zibaee et al., 2007], Waltz [Maurer-Stroh et al., 2010] and
FA1 [Garbuzynskiy et al., 2010] are the selected individual predictors.

Accuracy of the prediction
The evaluation of MetAmyl on three independent datasets (the training, the amylome and

httNT datasets) revealed its accuracy to predict amyloidogenic segments in polypeptide chains
and/or proteins. On the training dataset, MetAmyl has a significantly higher AUC, Accuracy
and Matthews correlation coefficient than the other predictors (see Figure 3.9). Moreover, on the
amylome dataset, MetAmyl has the best Q value, Matthews correlation coefficient and F1 score.
The potential overfitting for MetAmyl on the training dataset has been controlled by the use of
cross-validation which is enhanced by MetAmyl performance on the amylome subset and the httNT

dataset. Although it is based on a large number of experimentally validated amyloid regions, the
amylome subset suffers from a lack of validated non-amyloid regions, which can affect the results
of performance calculations. For this reason, we used a third test set, named httNT and independent
of the training dataset the amylome subset. The httNT dataset has been chosen as being unbiased
with regard to the correct assignment of amyloid or non-amyloid.

Investigation of the human proteome
In [IC12], we investigated our score function in the prediction of amyloidogenic motifs in hu-

man proteins. Since the variability between human proteins is important, notably in their respective
size, we further introduced a new measure of the amyloidogenesis of a protein, called NHS A for
Normalized Hot Spot Area. NHS A is defined as the sum of the difference between each variable,
Xi, and the threshold τ divided by the total length of the sequence, where only positive variables
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Figure 3.9: Receiver operating characteristic (ROC curves) obtained for the 4 selected predic-
tors, PAFIG, SALSA, FA1 and Waltz, and leave-one-out cross validated MetAmyl on the training
dataset.

(Xi > τ) are considered. The general form of NHS A for a given sequence X = [Xi, . . . , Xp] with p
variables is given by:

NHS A(X = [X1, . . . , Xp]) =
1
p

p∑
i=1

1x>τ(Xi)(Xi − τ)

We computed NHS A for the 67,153 proteins of observed in humans. Our results, displayed in
Figure 3.10, do not reveal islets or bias in the localization of genes related to the NHSA values.

Figure 3.10: Normalized Hot Spot Area of the 67,153 Human proteins.

3.5.4 Concluding remarks

In [JP6], we proposed a statistical framework to integrate individual predictors into a meta-predictor.
Our results demonstrated that, in the context of a complex trait such as amyloidogenesis, merging
existing predictors allows accounting for a broad scale of features in a single predictor. In this
contribution, rather than focusing on the correlation between features we aggregate methods that
individually account for a very few number of features.
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Our method is available online at the following url: http://metamyl.genouest.org/ and
its implementation is dedicated to the issue of detecting amyloidogenic profiles. For an input
amino-acid sequence, an amyloidogenic profile is computed by the use of a sliding window with
a fix number of 6 amino acids. The implementation has been designed to manipulate large scale
datasets. We first computed the 64,000,000 hexapeptides scores corresponding to the combinato-
rial diversity of amino-acids and we stored them on the server. Thus, the building of the profile
of an input sequence consists in uploading scores from the server instead of calculating it for each
window, which accelerates the computation of our profiles.

http://metamyl.genouest.org/
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4
Probabilistic modeling and statistical inference of spatial and

time-to-event data

4.1 Introduction

In the following sections we propose an overview of our contributions in the probabilistic mod-
eling of complex biological data and associated statistical inference techniques. Standard statisti-
cal inference and estimation theory rely on the modeling of observed data (categorized, ordered,
discrete or continuous quantities) by random variables. Compared to our work presented in the
previous chapters, we focus here in the statistical analysis of observed data that are not straightfor-
wardly modeled by commonly used variables. In chapters 2 and 3, we indeed proposed statistical
procedures to handle with data that are modeled by random variables with a relatively simple prob-
ability space (Ω,F ,P), where Ω is the sample space (i.e. the set of all possible outcomes), F is
the set of events and P the probability function. First, response variables Y were considered as
Bernoulli variables, to mimic the case/control outcome for example, where the probability space
is straightforward:{

Ω = {0, 1}; F = {∅, 0, 1, 0 ∪ 1}; P[Y = 1] = 1 − P[Y = 0] = p
}
.

Other variables, X, were categorical variables, such as SNP data with 3 categories, haplotype
data or amino-acid data with 20 categories. The probability spaces for such data are also well
known. Therefore, in the previous chapters, we more focused on the modeling of the multidimen-
sionality of the data rather than on the probabilistic modeling.

However in many situations, biological data cannot be modeled by “simple” probabilistic ran-
dom variables. For example, it is very common to study the geographic variation of individuals
or features. More specifically, in the context of the spatial distribution of health outcomes, spa-
tial epidemiology is concerned with the description and examination of spatial disease pattern
in consideration of several risk factors such as demographic, environmental or genetic factors
[Elliott and Wartenberg, 2004].

Another example is the study of the dependence of a response variable over time. For in-
stance, environmental epidemiology is concerned with the study of environmental exposures that
contribute to or protect against injuries, illnesses. The identification of public health and health
care actions to manage the risks [Pekkanen and Pearce, 2001]. Data are typically available at reg-
ular time intervals (e.g., daily pollution levels and daily mortality counts) and the aim is to explore
short-term associations between them. In clinical trial, longitudinal experiments are designed to
answer specific questions about biomedical or behavioral interventions, such as new treatments.
During the trial, investigators recruit patients with the predetermined characteristics, administer
the treatment(s) and collect data on the patients’ health for a defined time period.

57
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Specific probabilistic objects have been developed to provide statistical frameworks for ana-
lyzing spatial data and time-dependent data. On the one hand, the theory of spatial point process is
devoted to the probabilistic modeling of a set of points in general spaces, and especially points in
geographical space, with a random process. On the other hand, time series models have been suc-
cessfully developed to analyze time-dependent data using stochastic processes. In both cases, the
probability space, especially Ω and F can be complex. Therefore the definition of the probability
function, P, is crucial to provide formal assumptions of the biological processes under study. An
appropriate definition of P is therefore essential to provide efficient statistical frameworks related
to hypothesis testing.

The complexity of the probability space requires specific development for answering tradi-
tional statistical questions such as goodness-of-fit, simulation-based inference, clustering, model
selection, etc. In this chapter, we first tackle in section 4.2 the statistical issue of clustering spatial
data in 2-dimension when covariates can be accounted for. We then proposed, in section 4.3 an es-
timation procedure related to a specific formulation of the probability function P in the context of
2-dimensional spatial data. Finally, when dealing with temporal data, we introduced in section 4.4
a family of probability functions in the area of the evaluation of risk disease in public health.

4.2 Clustering in 2D spatial point process

Our research work presented in this section addresses the issue of detecting cluster(s) of points in
a 2-dimensional space. It results from a collaboration with Avner Bar-Hen (University of Paris
Descartes) and Nicolas Picard (CIRAD).

4.2.1 Spatial point process and context

In many fields, the observation of a configuration of points (e.g., trees in a forest, disease cases,
or biological cells in a tissue) provides meaningful insights regarding the biological processes
underlying the observed pattern. The overall study of such a configuration requires the analysis
of the (1) location of points, (2) the distances between pairs of points but also (3) all possible
k-uplets of points. In the pioneering example, designed by John Snow, of cholera cases in the
London epidemic of 1854, the location of points was important since they were closed to a specific
pump [Snow, 1855]. Furthermore, the inter distance between points was also crucial since points
were abnormally closed together, thus characterizing a cluster of points. It is therefore necessary
to define a configuration as a unique but complex object characterizing the whole set of points.
From a statistical point-of-view, observing a configuration x should be interpreted as observing
the realization of a random variable X.

Definition
For that purpose, spatial point processes have been introduced as a probabilistic environment

to study pattern of points observed in 2-dimensional space (or in general d-dimensional space). Let
S ⊆ R2 be a complete, separable metric space where the metric is the usual Euclidean distance.
Let x be an observed configuration of points and n(x) be the total number of points of x. For each
bounded set B ⊂ S , xB is the configuration of points of x restricted to B: xB = x ∩ B, so that n(xB)
is the number of points of x in B.

The space of locally finite point configurations, Nl f , can be defined as follows:

Nl f = {x ⊆ S : nx(B) < ∞,∀ bounded B ⊆ S }
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Let further consider that S is equipped with the Borel sigma algebra B and let denote B0 the class
of bounded Borel sets. The space Nl f can be equipped with the following sigma algebra:

Nl f = σ
(
{x ∈ Nl f : n(xB) = m} : B ∈ B0,m ∈ N0

)
that is Nl f is the smallest sigma algebra generated by the sets:

{x ∈ Nl f : n(xB) = m} : B ∈ B0,m ∈ N0

where N0 = N ∪ {0}.

Definition 4.2.1 A point process X on S is a measurable mapping defined on some probability
space (Ω,F ,P) taking values in (Nl f ,Nl f ). This mapping induces a distribution PX of X given by:

PX(F) = P({ω ∈ Ω : Φ(ω) ∈ F}),∀F ∈ Nl f .

In practice, the process lives in some subset W of R2 and patterns are only observed in a
bounded area S ⊂ W, such as the experiment design plots in agronomy or the core of a tissue in
histology.

In point process theory, the distribution of a point process X can be, equivalently, identified by
three main characterizations: the finite dimensional distribution of X, the void probability and the
generating functional of X. For example, the void probability of a bounded set B ⊆ S is given by:

ν(B) = P(nX(B) = 0), ∀B ∈ S .

Theorem 4.2.1 The distribution of a simple point process X, for which realizations does not con-
tain coincident point, on S is uniquely determined by its void probabilities of bounded Borel sets
B ∈ B0.

In other words, if two point processes share the same void probabilities, then they are equal in
distribution.

The central role of the spatial Poisson process
Poisson point processes play a fundamental role in the theory of point processes. They possess

the property of “no interaction” between points or “complete spatial randomness”. As such, they
are practically useless as a model for a spatial point pattern as most spatial point patterns exhibit
some degrees of interaction among the points. However, they serve as reference processes when
summary statistics are studied and as a building block for more structured point process models.

Let S ⊆ R2 be a metric space. Poisson point processes are defined according to an intensity
function λ : S → [0,∞) that is locally integrable:∫

B
λ(x)dx < ∞ ∀ bounded B ⊆ S .

Intensity function is used to define the intensity measure, µ, of a Poisson point process as follows:

µ(B) =

∫
B
λ(x)dx ∀B ⊆ S

A formal definition of Poisson point process can be given as in the following definition 4.2.2.

Definition 4.2.2 A point process X on S is a Poisson point process with intensity function λ if the
two following properties hold:
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1. For any B ⊆ S , such as µ(B) < ∞, nX(B) has a Poisson distribution with parameter µ(B)
(nX(B) ∼ P(µ(B))).

2. For any n ∈ N, B ⊆ S such that 0 < µ(B) < ∞, knowing that nX(B) = n, the point process
XB is made by n points i.i.d. with a density function given by f (x) = λ(x)/µ(B).

So, if S is bounded, this gives us a simple way to simulate a Poisson process on S . First draw nX(B)
according the Poisson distribution with parameter λ(B). Next draw nX(B) independent points
uniformly on S .

Furthermore, the Poisson point process has nice tractable mathematical properties. First, it can
be easily characterized using the void probabilities. According to the Poisson distribution, for a
Poisson process with intensity function λ, we have:

∀ bounded B ⊆ S , ν(B) = P (nX(B) = 0) = exp(−µ(B)) (4.1)

Furthermore, Proposition 4.2.1 gives other characterization of a Poisson point process.

Proposition 4.2.1 Let X be a point process on S .

1. X is a Poisson point process with intensity function λ if and only if ∀B ⊆ S , such as µ(B) =∫
B λ(x)dx and ∀F ⊆ Nl f :

P (XB ∈ F) =

∞∑
n=0

exp(−µ(B))
n!

∫
B
· · ·

∫
B
1x1,...,xn∈F

n∏
i=1

λ(xi)dx1, . . . , dxn. (4.2)

2. Let assume that X is a Poisson point process with intensity function λ. For any function
h : Nl f → [0,∞) and any B ⊆ S , such as µ(B) < ∞:

E [h (XB)] =

∞∑
n=0

exp(−µ(B))
n!

∈B · · ·

∫
B
1x1,...,xn∈Fh(x1, . . . , xn)

n∏
i=1

λ(xi)dx1, . . . , dxn. (4.3)

4.2.2 Context of clustering

The spatial distribution of tree species in forests, such as tropical forests for example, is known
to be driven by ecological processes. The spatial pattern of a given population of a tree species
can indeed be viewed as the result of interactions between the biology of the population and other
ecological processes on the abiotic and biotic environments of the population. Describing the
spatial distribution of a tree species, as a product of these processes, is an important tool for
understanding its dynamic. Since tree locations are random in a natural forest, point process mod-
eling is a classical approach to study these processes [Cressie, 1993, Diggle, 1983, Ripley, 1988,
Stoyan et al., 1995, Stoyan and Stoyan, 1994, Daley and Vere-Jones, 1988].

In practice, exploration of a point process classically begins by descriptive statistics. These
exploratory analyses rely on first testing complete spatial randomness (CSR) [Diggle, 1983]. Such
a test allows the testing of the independence between points (or trees) and their marginal uniform
distribution. If CSR is not rejected, the observed configuration of points is likely to be a realization
of a Poisson point process.

However, when CSR is rejected (i.e. when the underlying point process is not a Poisson point
process), one main purpose of point process modeling is the identification of spatial clusters that
characterize spatial areas exhibiting a high concentration of events or points. Since detecting spa-
tial pattern of events is essential in many fields (medicine, cosmology with spatial clustering of
galaxies, social sciences and criminology, agronomy and more), a substantial literature has been
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dedicated to the issue of spatial clustering [Murray et al., 2014]. The two most popular cluster de-
tection approaches are the spatial scan statistics [Kulldorff and Nagarwalla, 1995, Kulldorff, 1997,
Patil and Taillie, 2004, Tango and Takahashi, 2005, Duczmal and Assuncao, 2004, Demattei et al., 2007]
and spatial autocorrelation [F Dormann et al., 2007, Ord and Getis, 1995, Stojanova et al., 2013].
On one hand, spatial scan statistics aim at scanning the studied area using windows of an imposed
shape (circles, ellipses or squares): based on a likelihood ratio test, spatial clusters are defined by
the windows that group together an abnormally high number of cases. On the other hand, spa-
tial autocorrelation methods rely on the significance of local indicators calculated according to a
weighted neighborhood matrix between observed points. Both classes of methods are based on a
pre-existing spatial structure: the geometric shape of the scanning window for spatial scan statis-
tics and the spatial weights set in the neighborhood matrix for autocorrelation indicators. The use
of arbitrary spatial structures is a clear limitation regarding cluster detection since cluster struc-
tures are not restricted to regular shapes nor to known weighted neighborhood. Furthermore, the
use of pre-defined spatial structures is likely to mask the underlying cause of clusters, such as the
relationship between clusters and their ecological environment for instance. Therefore, existing
methods are likely to fail at distinguishing true clusters from covariates dependence.

4.2.3 Our approach

In [JP5], we introduced a novel statistical procedure to detect spatial cluster based on a transfor-
mation of the 2-dimensional observed point process into a collection of 1-dimensional ordered
trajectories. The two main advantages of our approach are the following. First, our transformation
of the data does not depend on an imposed spatial structure. Next, transformed data are compared
to a reference Poisson point process that can be either homogeneous or inhomogeneous. The use
of an inhomogeneous Poisson process as a reference allows accounting for the effect of covariates.

We introduced a new measure of closeness between points that first relies on (1) a data trans-
formation from R2 to R. Cluster detection is then performed by using a (2) parallel between our
measure of closeness and hierarchical clustering. We further introduced the (3) extension of our
methodology to the non stationary case.

Data transformation to an ordered trajectory in R
Data transformation is made by finding iteratively the next event, or point, in the trajectory

as follows: (1) the first point in the trajectory x(1) is chosen arbitrarily in the set of the observed
points; (2) x(2) is the nearest point, according to some distance d, from x(1); (3) assuming that the
i − 1 first points of the trajectory have already been ordered, the ith point x(i) is the nearest point
from x(i−1) among the n− i+1 points not yet selected; (4) the iterative process ends when all points
are included in the trajectory. Such iterative process allows for ordering the points in the trajectory
from x(1) to x(n) as displayed in the example shown in Figure 4.1.

Measure of closeness
The main idea of our measure of closeness is first to compare, with respect to a given trajectory,

the observed distance between consecutive points to an expected distance according to a theoretical
spatial point process. In order to avoid a strong dependency to the starting point of the chosen
trajectory, we proposed in a second step to account simultaneously for several trajectories in the
calculation of our measure of closeness.

Under the assumption that X is a homogeneous Poisson process with intensity λ, the cumula-
tive probability distribution of the distance between the ith and the (i + 1)th points can be easily
obtained. Conditionally to the i points already included in the trajectory, the remaining n− i points
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Figure 4.1: Example of a trajectory obtained with the data transformation algorithm. The grey
part represents A5, the set of points where the nearest neighbor to x(5) cannot be located.

fall into the set A \ Ai where:

A1 = ∅ and Ai =

i−1⋃
k=1

B(x(k), dk)

and dk = d(x(k), x(k+1)) is the observed distance between the kth and the (k + 1)th points in the
trajectory. An illustrative example of Ai is given in Figure 4.1. Thus, since x(i+1) is the nearest
neighbor to xi among the n − i remaining points, the probability that x(i+1) is closer than d∗ ∈ R+

to xi is given by the nearest neighbor distance distribution function for a homogeneous Poisson
process. Considering Di as the random variable characterizing the distance between xi and its
nearest neighbor in A \ Ai, we have:

P(Di ≤ d∗) = 1 − exp{−λ|B(x(i), d∗) \ Ai|}.

where B(x(i), d∗) is the ball centered on x(i) with radius d∗. |B(x(i), d∗) \ Ai| is the area of the set of
acceptable points at distance lower than d∗ to xi. Our measure of closeness between two nearest
neighbors points in the trajectory, x(i) and x(i+1), is defined by pi as follows:

pi = P(Di ≤ di|λ) = 1 − exp{−λ|B(x(i), di) \ Ai|}. (4.4)

Thus, |B(x(i), di) \ Ai| is the area of the set of acceptable points closer to x(i) than x(i+1). Note that
the pi are an increasing function of the di. Thus, a low value for pi indicates that x(i) and x(i+1) are
close.

Two neighbor points on the trajectory, x(i) and x(i+1), can be considered within the same cluster
if the measure of closeness pi is less than a given threshold p∗. Unfortunately, the clusters are very
sensitive to the choice of the first point. For different choices of initial points, the distances di and
the derived pi are different and therefore the clusters are unstable, especially for the points at the
border of the clusters. In order to increase the robustness of our cluster detection, the aim of this
second step is to combine the measures of closeness obtained from all possible trajectories into
dissimilarities.

The maximum number of distinct possible trajectories equal to the number of points. Since
two points can be neighbors for one trajectory but not for another trajectory, distance between two
points cannot be directly compared among all trajectories. In order to compare the trajectories,
each trajectory is converted to a matrix of dissimilarities between each pair of points. If two points
are neighbors on the trajectory, the dissimilarity is equal to pi. If the two points are not neighbors
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we consider the maximum of the pi on the path between the two points on the trajectory. For a
trajectory t, we can define:

s(xi, x j|t) = max{pk, for all pk from x(b) = xi to x(e) = x j on trajectory t} (4.5)

A natural way to combine trajectories is to define the distance between two points as the
minimum of the dissimilarities over all the possible trajectories tl:

s(xi, x j) = min
tl;l=1,...,n

. . . s(xi, x j|tl) (4.6)

Cluster identification
To identify cluster of points, in [JP5], we addressed the issue of determining an appropriate

threshold value for s to aggregate points. Let first remark that choosing an appropriate threshold
for pi is equivalent to cut a dendrogram that represents a particular hierarchical clustering and,
from Equation 4.6, that the hierarchical clustering induced by our dissimilarity is the single link in
hierarchical cluster analysis. However, hierarchical clustering methods do not directly address the
issue of determining the number of groups within the data and we used in [JP5] the Gap statistic
[Tibshirani et al., 2001] for estimating the “best” clustering. The idea of the gap method is to
compare the expected number of clusters under a uniform distribution with the empirical number
of clusters computed from the original data. Let W(r) be the number of clusters for a threshold r,
the gap statistic is defined as:

G(r) = E[log(W(r))] − log(W(r))

In case of repulsive distribution, G(r) is positive while for aggregative distribution G(r) is negative.
Let r∗ be the value that maximizes G(r). The number of clusters is given by W(r∗).

Extension to non stationary process
In the previous section, the underlying reference point process X is assumed to be a homo-

geneous Poisson process. However, in a practical framework, such hypothesis is rarely realistic.
Thus, it is important to be able to separate the case of a clustered point process from a patch aris-
ing from the heterogeneity of the intensity of the point process (see [Waagepetersen, 2007] for
example).

One can remark that the measure of closeness, introduced in Equation 4.4 for the homogeneous
case, depends only on the intensity within B(x(i), di) \ Ai. In order to account for covariates in
the clustering detection, we proposed to compare the observed nearest-neighbor distance di to an
inhomogeneous Poisson process with intensity λ(x), where x ∈ R2. Thus, the definition of pi can
be extended to an inhomogeneous process by integrated the intensity overB(x(i), di)\Ai as follows:

pi = P(Di ≤ di|λ(x)) = 1 − exp
−∫

B(x(i),di)\Ai

λ(x)
 . (4.7)

The inhomogeneous intensity λ(x) can be either a known function or estimated using covariates
information of the area of interest. Various cases can be considered for estimated λ(x) such as non-
parametric, semi-parametric or parametric estimation.

4.2.4 Results and applications

Simulation-based evaluation of the Gap statistic
Our simulation study aims at investigating the clustering performances of our method to dif-

ferent methods. In this section we focus on two main objectives.
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The first objective is to evaluate the performances of the Gap statistic to determine the opti-
mal number of clusters in our framework and the second objective is to compare the clustering
performances of our framework to methods based on scan statistics. We used Kulldorff’s software
SatScan v9.3.1 to compute the partitions based on scan statistics [Kulldorff and Information Management Services, 2009].

We tackle this objective by comparing the Gap statistic to 9 well-known methods designed to
optimally cut a dendrogram according to various criteria. The 9 methods were chosen as the 4 best
methods according to [Milligan and Cooper, 1985] (ch, [Calinski and Harabasz, 1974], pseudot2,
[Duda and Hart, 1973], cindex, [Hubert and Levin, 1976], gamma, [Baker and Hubert, 1975]), and
5 other popular methods (hartigan: [Hartigan, 1975], kl: [Krzanowski and Lai, 1988], silhouette
[Rousseeuw, 1987], sindex, [Halkidi et al., 2000], sdbw: [Halkidi and Vazirgiannis, 2001]). All
methods have been used via the R programming software packages NbClust [Charrad et al., 2014]
and cluster [Maechler et al., 2014]. The comparison of various clustering methods was based
on the similarity between the true partition and partitions estimated by clustering methods. We
measured the similarity between the true and observed partitions with the adjusted Rand index
[Hubert and Arabie, 1985]. Note that the adjusted Rand index ranges from 0 to 1 where a value of
1 indicates a perfect match between the two partitions.

Putting results from the homogeneous and the inhomogeneous case together, the Gap statistic
appears to be the most satisfying method for choosing the optimal number of clusters. More
precisely, the Gap statistic is the only method showing a high mean adjusted Rand index and a
reasonable 95% confidence interval.

Paracou
In [JP5], we illustrated our method on the analysis of the spatial pattern of a tree species (Dico-

rynia guianensis) surveyed at the Paracou experimental site in French Guiana [Gourlet-Fleury et al., 2004].
Figure 4.2 gives the classification tree derived from the methodology developed in the previous
section. The use of the Gap statistic leads to 6 clusters: the two isolated points of the upper left
corner, the isolated point of the right lower corner, and three clusters with a size larger than 6,
called A, B and C in Figure 4.2.

However, differences in topography are known to led to different aggregation intensity for
many species. (see for example [Ashton et al., 2000, Dalling et al., 2007, Traissac and Pascal, 2014]).
Dicorynia guianensis fruits and seeds have many morphological features in common with wind-
dispersed species. Furthermore, the slope of the plot is of particular interest since the seed spread
is likely to be higher in steep area. In [JP5], we thus considered the slope as an exogenous con-
tinuous variable in the clustering of Dicorynia guianensis. We aimed at comparing the observed
spatial distribution of trees with an inhomogeneous Poisson process with intensity λ(x) (see Equa-
tion 4.7). We estimated the intensity function λ(x) by fitting a spatial trend according to the slope
in the overall plot. We fitted the conditional intensity as:

λ(u, x) = exp{ψ′B(u) + ϕ′C(u, x)} (4.8)

where θ = (ψ, ϕ) are the parameters to be estimated. Both ψ and ϕ are vectors of any dimension,
corresponding to the dimensions of the vector-valued statistics B(u) and C(u, x) respectively. The
term B(u) depends only on the spatial location u, so it represents spatial trend, i.e. spatial covariate
effects. The term C(u, x) represents stochastic interactions, i.e. dependence between the points of
the random point process. C(u, x) is absent for Poisson process.

The fitted coefficients reveal a tendency for the intensity to increase as the slope decreases.
Thus, trees are expected to be closer in flat regions than in steep regions.

Results of our clustering procedure in the inhomogeneous case, displayed in Figure 4.3, lead
to 8 clusters: three isolated points, one cluster of 2 points and 4 clusters made by ≥ 6 points.
Compared to the homogeneous case, where no exogenous variable was accounted for, 5 clusters
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are identical and only cluster A was split in 3 parts, called A1, A2 and A3. One can remark in the
right panel of Figure 4.3 that the slope between clusters A1, A2 and A3 is small. As a consequence,
the cumulative probability distribution of the distance between clusters A1, A2 and A3 is higher
when accounting for the slope. Thus, points in clusters A1, A2 and A3 are seen as being more
distant from each other. That is the reason why clusters A1, A2 and A3 are not connected in the
heterogeneous case. From an ecological point of view, we might interpret our result as the fact
that the range of dispersion of trees in flat area cannot be as high as in cluster A.

Figure 4.2: Left panel: Classification tree obtained from the spatial pattern of Dicorynia guianen-
sis. Right panel: optimal clustering using gap statistics leads to 3 isolated points and 3 clusters in
grey.

4.2.5 Conclusion

In this contribution, we proposed a statistical procedure to detect clusters of points in a 2-dimensional
space. Our method is based on a probabilistic characterization of a configuration of points. Such
a characterization allowed us to draw a parallel between classification and graph theory to pro-
pose an efficient procedure. Furthermore, the use of our formalization allows the adjustment for
covariates that may prevent the detection of clusters by playing a cofounder role.

The method has been implemented in an R package that is available at https://github.
com/MathieuEmily/SpatialClustering.

4.3 Statistical inference in 2D spatial marked point process

Our research work presented in this section proposes a stochastic model, accompanied with an
inference procedure, for the self-organization of interacting points in a 2-dimensional space. It
has been achieved within a collaboration with Radu Stoica (University of Lille 1).

4.3.1 Marked spatial Gibbs point process

Marked point process

https://github.com/MathieuEmily/SpatialClustering
https://github.com/MathieuEmily/SpatialClustering
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Figure 4.3: Left panel: Classification tree obtained from the spatial pattern of Dicorynia guianen-
sis with respect to the slope of the plot. Right panel: Optimal clustering using gap statistics leads
to 3 isolated points and 5 clustered. The underlying grey contour represents the slope of the plot,
normalized between 0 and 1. A slope closed to 0 means a flat region while a slope closed to 1
refers to the most steep area of the plot.

In many situations, additional information exist on the points that form the observed con-
figurations. These additional data are conventionally termed marks. The marks may be either
quantitative variables, such as weight or height in the case of plants, or qualitative variables such
as species, thus defining different types of points in the pattern.

Combining a spatial point process with marks yields to a marked pointed process that can be
defined as follows:

Definition 4.3.1 Let X be a point process defined on S and M the mark space. A marked point
process is defined as follows:

X = {(x, τx), x ∈ S and τx ∈} .

X is a marked point process on S × M.

In most applications, the mark space M is a subset of Rm with m ≥ 1. In the special case
where M = {1, . . . , k}, X is a multi-type process with k different types of points. The Poisson point
process can be easily extended to the marked Poisson point process as defined in Definition 4.3.2.

Definition 4.3.2 Let X be a Poisson point process on S with intensity function λ. Let assume
that conditional to X = x, the observed marks τx are independent. The marked point process
X = {(x, τx) : x ∈ X} is a marked Poisson point process.

Let p be the common density of the marks and λM(x, τx) = λ(x)p(τx). X is a Poisson point
process on S × M with intensity function λM.

Marked Gibbs point process
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When Complete Spatial Randomness (CSR) is rejected, observed point configurations are
likely to come from an underlying point process that is not the Poisson point process. It is therefore
essential to define processes that can fit data where the configuration does not look random.

A natural way of proposing new type of processes is to define distributions that are based on
the Poisson process. Let consider X a marked point process with a density f with respect to the
marked Poisson process. Then we have:

P
(
X ∈ F

)
=

∞∑
n=0

exp(−µ(B))
n!

∫
B

∫
M
· · ·

∫
B

∫
M
1(x1,τx1 ),...,(xn,τxn )∈F

f ({(x1, τx1), . . . , (xn, τxn)})p(τx1), . . . , p(τxn)dx1dτx1 , . . . , dxndτxn

In that context, Gibbs marked point processes are characterized by a class of density functions
f . In general, a Gibbs point process has a density with respect to the Poisson point process of the
following form:

∀ϕ ∈ S × M, f (ϕ,Θ) =
exp

(
−H(ϕ,Θ)

)
Z(Θ)

(4.9)

where H is usually called an Hamiltonian in statistical physics and allows the modeling of partic-
ular patterns of points such as aggregative or repulsive patterns. Such a modeling is parameterized
by the set of parameters Θ. Finally, for a given model, the constant Z(Θ) is a normalizing constant,
also called partition function, used to ensure that f is a density:

Z(Θ) =

∫
ϕ

exp
(
−H(ϕ,Θ)

)
Context of modeling

The development and the maintenance of multi-cellular organisms are driven by permanent
rearrangements of cell shapes and positions. Such rearrangements are a key step for the re-
construction of functional organs [Armstrong, 1989]. In vitro experiments such as Holtfreter’s
experiments on the pronephros [Holfreter, 1944] and the famous example of an adult living or-
ganism Hydra [Gierer et al., 1972] are illustrations of spectacular spontaneous cell sorting. Stein-
berg used the ability of cells to self-organize in coherent structures to conduct a series of pi-
oneering experimental studies that characterized cell adhesion as a major actor of cell sorting
[Steinberg, 1962b, Steinberg, 1962a, Steinberg, 1962c]. Following his experiments, Steinberg
suggested that the interaction between two cells involves an adhesion surface energy which varies
according to the cell type.

With the emergence of high-throughput tissue-based tools, such as Tissue microarrays (TMAs),
the immunohistological analysis of large sample of tissues is allowed [Kononen et al., 1968]. Fur-
thermore, TMAs are used to detect and characterize cell organization within a biological tissue
since segmentation algorithms have been developed to automatically detect the nuclei of the cells
of the tissue. Such algorithms allow the extraction of the bi-dimensional positions of the nuclei as
well as additional features for each cell (such as fluorescence intensity, probe colocalization and
other measures of protein expression).

The modeling of the self-organization of cells in a tissue has inspired the development of many
mathematical models [Graner and Glazier, 1992, Mochizuki et al., 1996]. These models rely on
computer simulations of physical processes and act by minimizing an energy functional, referred
as Hamiltonian. Tuning the internal parameters of these models is usually achieved by direct
comparison of the model output and the real data that they are supposed to mimic. An important
challenge is to provide automatic estimation procedures for these parameters based on statistically
consistent models and algorithms. Better understanding and estimating of the nature of cell-cell
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interactions in tumorigenesis may play a key role for an early detection of cancer. In addition, the
invasive nature of some tumors is directly linked to the modification of the strength of cell-cell
interactions. Estimating this parameter could therefore be a step toward more accurate prognosis.

Although marked Gibbs point process provides a natural probabilistic framework to deal with
such a data, the practical use of such a class of models remains challenging. First, biological
processes have to be realistically modeled. Next, the inference of the set of parameters in a marked
Gibbs point process is not straightforward. Due to the fact that the density in Equation 4.9 is known
up to an intractable normalizing constant, the likelihood is not computable.

4.3.2 Our approach

In [NC7], we proposed an approach using marked Gibbs point process to mimic the organization
of cells within a biological tissue. We further provided an estimation of the set of parameters based
on simulation techniques.

Description of Gibbs model
We assumed that cells are localized in a bounded set S ⊂ R2. Furthermore, we focus on binary

coding of cell types, so that, for each cell xi,a mark mxi is attached to xi where mxi ∈ M = {0, 1}.
Our model aims at perturbing the marked Poisson point process by considering that points can
interact. In [NC7], we therefore proposed the following marked Gibbs model:

∀x ∈ S × M where x = {(xi,mi), . . . , (xn,mn)} :

f (x,Θ) =
h(x,Θ)
Z(Θ)

=
exp

(
−H(x,Θ)

)
Z(Θ)

=
exp

(
−

(
θ1

∑n
i=1 p(xi,mi) + θ2θ3

∑n
i=1 r(xi,mi) +

∑
i∼ j q(mi,m j)

))
Z(Θ)

(4.10)

=
exp

(
− < t(x,Θ) >

)
Z(Θ)

where Θ = {θ1, θ2, θ3} is the set or parameters to be estimated and t is the vector of sufficient
statistics. It is noteworthy that the proposed Hamiltonian (or functional energy) is decomposed
into three main components corresponding to three summary statistics used to describe the spatial
organization of cells (see Figure 4.4).

The first summary statistic, p, is a shape constraint of each cell. The second summary statistic,
r was introduced to consider non-homogeneous cell types. Finally, the third summary statistic, q,
allows the modeling of the interaction between neighboring cells. We therefore used the Voronoï
tessellation to define the neighborhood so that i ∼ j means that cells xi and x j are neighbors in the
Voronoï sense. Figure 4.4 also shows a modeling of the cells with the Voronoï tessellation.

MCMCML Estimation
The estimation of the set of parameters Θ is challenging since Z(Θ) is intractable. In [NC7],

to overcome this issue, we proposed a Markov Chain Monte Carlo Maximum Likelihood (MCM-
CML) estimator. MCMCL is a class of estimation techniques that is based on approximation of
some quantities using empirical simulations. Such a technique therefore requires the use of an
efficient simulator of the process defined in Equation 4.10.

In our context, the use of a Voronoï neighborhood topology induces a local influence of the
energy. It can be noticed that such a property is deduced from the fact the model proposed in this
study belongs to the class of the nearest-neighbor markov point processes. Metropolis-Hastings
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(a) (b)

Figure 4.4: Example of an histological slide. (a) the real observed image (b) Voronoï tesselation
computed from cell nuclei.

algorithm can therefore be used to correctly simulate such a process. We further used geometrical
properties of the Voronoï graph to accelerate the rate of convergence as proved in [JP10].

MCMCML estimation can be derived as follows. According to Equation 4.10, the log likeli-
hood of an observed marked configuration x is:

`(θ, x) = log
(
h(x, θ)

)
− log (Z(θ)) , ∀θ ∈ Θ

Let further consider a fixed set of parameter ψ ∈ Θ. The log likelihood ratio of θ against ψ is
usually more convenient since we have:

`(θ, x) − `(ψ, x) = log
(

h(x, θ)
h(x, ψ)

)
− log

(
Z(θ)
Z(ψ)

)
To maximize `(θ, x), it can be remarked that the first term log

(
h(x,θ)
h(x,ψ)

)
is known in closed form.

However, the second term log
(

Z(θ)
Z(ψ)

)
is intractable. But, if h(x, θ) = 0 whenever h(x, ψ) = 0, then it

is known that:
Z(θ)
Z(ψ)

= Eψ

[
h(X, θ)
h(X, ψ)

]
The previous equation permits the calculation of the ratio of the normalizing constant by using an
MCMC on the expectation. More precisely, let x1, . . . , xn be n simulated configurations obtained
under our model in Equation 4.10 with Θ = ψ, then we have:

Eψ

[
h(X, θ)
h(X, ψ)

]
≈

1
n

n∑
i=1

h(xi, θ)

h(xi, ψ)
.

The log likelihood, `(θ, x) can therefore be approximated by `n(θ, x) where:

`(θ, x) ≈ `n(θ, x) = log
(

h(x, θ)
h(x, ψ)

)
− log

1
n

n∑
i=1

h(xi, θ)

h(xi, ψ)

 + `(ψ, x)

Maximizing `n(θ, x) gives an approximation of the Maximum Likelihood Estimator (MLE), θ̂.
Such maximization was performed using a Newton-Raphson algorithm for which the gradient and
Hessian expression of our model are simple:

log
(
h(x, θ)

)
= − < t(x, θ >

∇ log
(
h(x, θ)

)
= −t(x)

∇2 log
(
h(x, θ)

)
= 0
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4.3.3 Results

In [NC7], we performed a series of simulation in two situations. In a first situation, we simulated
a large number of configurations with a known set of parameters θ. For each simulation, θ̂ was
estimated with our MCMCML procedure by using another set of parameters, chosen to be equal
to the targeted: ψ = θ. In a second situation, we also simulated a large number of configurations
according to θ, but we used several sets of value for ψ in our MCMCML simulation.

Our results demonstrated that the choice of ψ is crucial. When ψ ≈ θ, the whole set of param-
eters was correctly estimated. However, the further ψ was from θ, the worst the estimation was. In
the latter case, there is no guaranty that the approximated likelihood has a maximum. Furthermore,
the estimation of the gradient is very unstable and the efficiency of the estimation depends on the
number of Monte Carlo simulations used to estimate Eψ

[ h(X,θ)
h(X,ψ)

]
. Therefore, the computational cost

of a good estimation is relatively high.
We further applied our model to histological slides from breast cancer tissues. Figure 4.4

displays an example of such data and estimation. The estimated coefficients obtained in Figure 4.4,
can be interpreted as follows:

• the high value of β1 indicates that the cell shapes are homogeneous;

• the low value of β2 reveals an absence of multi-type effect: the size of clusters is similar
from one cell type to another;

• the very high value β2 allows the identification of a strong effect of aggregation between cell
from the same type.

4.3.4 Conclusion

In this work we proposed a specific probabilistic model of the 2-dimensional organization of
living cells in tissues. Our model is a mix between biological assumptions regarding the chemical
and physical interaction between cells and point process theory. Such a formal framework allowed
us to propose an appropriate statistical procedure to estimate interpretable parameters that drive
the 2-dimensional configuration of cells. Based on techniques from computational statistics, our
statistical procedure can be used in hypothesis testing.

4.4 Risk analysis in public health

Our research work presented in this section tackles the issue of preventing the risk of occurrence
of hospital-acquired disease risk by using elements of stochastic process and non-parametric es-
timation. This work has been performed in collaboration with Olivier François (Institut National
Polytechnique de Grenoble) and Pierre Casez (TIMC Laboratory). For this work, I received the
Docteur Norbert MARX award delivered by the SFdS (“Socié́té Française de Statistique” i.e. the
French Statistical Society) .

4.4.1 Context

In a number of applied fields, such as medicine, biology, public health, epidemiology, engineer-
ing, economics, and demography, many questions raise the issue of estimating or predicting the
time needed to the occurrence of a particular event. The most commonly event that has been
studied in the literature is death as exemplified in the pioneering studied of life table by Graunt
[Graunt, 1662]. The event may also be the appearance of a tumor, the development of some disease
(such as hospital-acquired diseases), recurrence of a disease, equipment breakdown, cessation of
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breast feeding, and so forth. Furthermore, the event may be a good event, such as remission after
some treatment, conception, cessation of smoking, and so forth.

Let T be the time until some specific event and consider that T is a nonnegative random
variable. Four main functions are used to characterize the distribution of T , namely (1) the survival
function, which is the probability of an individual surviving to time x, (2) the hazard rate function,
sometimes termed risk function, which is the chance an individual of age x experiences the event
in the next instant in time, (3) the probability density (or probability mass) function, which is the
unconditional probability of the event’s occurring at time x and (4) the mean residual life at time
x, which is the mean time to the event of interest, given the event has not occurred at x.

In practice, the survival function, Ψ, is the basic quantity employed to describe time-to-event
phenomena. It is defined as:

Ψ(t) = P[T > t].

A substantial literature has been devoted to the analysis of survival curves, as for example the non-
parametric estimator of Kaplan-Meier with a particular focus on the analysis and the modeling of
censored data.

However, in some fields, there exists an interest in comparing survival curves to distinguish the
distribution of time-to-event variables under various conditions [Committee of Quality of Care in America, 2001].
For example, in public health, several procedures or protocols can be compared in distinct hospi-
tals to improve the safety and the quality of care. With reports describing the problem of medical
errors and preventable complications, the safety and quality of health care has indeed become a
major concern. Therefore, surveillance systems for hospital-acquired diseases (HAD) have been
implemented. Based on Quality Indicators (QIs), developing statistical indices that can quantify
HAD risk remains an important objective for improving health care systems [Iezzoni, 2003].

However, for a given procedure of care, such as hip replacement procedure, HAD risk is influ-
enced by many factors. Among them, the length of stay (LOS) and the medical department where
the procedure is performed are known to be the two most important factors [Villemur, 1998]. Ac-
counting for these factors in the estimation of the survival function is not straightforward and
requires the assumption that the individual probability of disease is a function of the length of
stay in a department. For example, if we suppose a sequence of LOS (in days): {1, 4, 17, 3, 5} and
further assume that disease events occur during the third and the fifth LOS. Then we have two
realizations T , the time-to-event random variable, that are: t1 = 22 = 1 + 4 + 17 and t2 = 8 = 3 + 5.
In our context, observed times-to-event are the sum of individual observed LOS.

More formally, T is the sum of random variables T =
∑

i Xi where the event occurs in Xi (the
ith LOS) with a given probability. Therefore T can be written as a random sum of random variables
as follows:

T =

I∑
i=1

Xi (4.11)

where:
I0 = 0 and I = min

i
{Zi = 1}

with:

Zi =

0 if no event occur during Xi

1 otherwise

so that Zi is bernoulli variable with the conditional probability of an event as parameter:

Zi ∼ B (p(xi)) where p(xi) = P[An event occur|Xi = xi]

Given a specific medical department, to account for the LOS in the estimation of the time-to-
event distribution, it is therefore appropriate to use the definition of T as proposed in Equation 4.11.
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4.4.2 Approach

In [JP9], we proposed a model to estimate the survival function, Ψ, of time-to-event variable T ,
as defined in Equation 4.11. In our model we assumed that the sequence of LOS X1, X2, . . . , are
i.i.d. random variables with unknown probability density f (x) and cumulative distribution function
F(x), for x > 0.

Renewal theory
Applying renewal arguments to the risk function Ψ(t) leads us to the following defective re-

newal equation:

Ψ(t) = 1 − F(T ) +

∫ t

0
Ψ(t − x)q(x) f (x)dx t > 0 (4.12)

where q(x) = P[No event occur|X=x](= 1 − p(x))

Cramer-Lundberg approximation
In [JP9], because Equation 4.12 could not be solved explicitly, we sought an exponential ap-

proximation for Ψ(t), analogous to the so-called Cramer-Lunderg approximation of actuarial the-
ory. This approximation assumes a positive solution of the Lundberg equation, called the adjust-
ment coefficient. Here, the adjustment coefficient translates into the smallest positive solution R of
the following Lundberg-like equation:∫ ∞

0
eRxq(x) f (x)dx = 1 (4.13)

Assuming the existence of R, we can define B(t) = Ψ(t)eRt, t > 0. From the defective renewal
Equation 4.12 we have:

B(t) = b(t) +

∫ t

0
B(t − x)dG(x), t > 0,

where b(t) = eRt(1 − F(t)), and dG(x) = eRxq(x) f (x)dx. Now G is a probability distribution, and
B(t) is the solution of a standard renewal equation. The renewal theorem can be applied to study
both the asymptotic behavior of B(t), and the risk probability Ψ(t), provided that eRt(1 − F(t)) is
integrable and that

∫ ∞
0 xdG(x) < ∞. In fact, we obtain that:

Ψ(t) ∼ CRe−Rt, as t → ∞

with:

CR =

∫ ∞
0 eRx(1 − F(x))dx∫ ∞
0 xeRxq(x) f (x)dx

.

Cramer-Lundberg approximation
Since the formulas obtained for R and CR cannot be used for the inference of the disease risk

directly, we introduced, in [JP9] an alternative approach based on the Bayes formula. To this aim,
we looked at the distribution of the X conditional on no disease. In other words, we reject Xi,
for which a disease event is observed, Zi = 1, and we keep only the durations for which Zi = 0.
Denoting a duration resulting from this rejection procedure by Yi , we have:

P[Yi ≤ s) = P[Xi ≤ s|Zi = 0], s ≥ 0,
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and we write the common probability density function of all the Y ′i s by fY (.). Using the definition
of q(x) and applying the Bayes formula, we obtain that:

q(x) = fY (x)
P[No disease]

f (x)
, x > 0

Replacing q(x) by the above expression in Equation 4.13 leads us to the following equation:∫ ∞

0
eRx f (x) fY (x)

P(No disease]
f (x)

dx = 1

Finally, we obtain that: ∫ ∞

0
eRx fY (x)dx =

1
P[No disease]

which can be rewritten as:
E[eRY ] =

1
P[No disease]

.

This equation allows us to build an estimator R̂ for the adjustment coefficient R by replacing the
expected values by their corresponding empirical averages.

Regarding the estimation of CR, the same type of arguments also leads to a natural estimator.
First, we can use integration by parts to obtain the following expression:∫ ∞

0
eRx(1 − F(x))dx =

E[eRX] − 1
R

,

where X has probability density f (x). Using the Bayes formula, the denominator in CR can be
simplified, and we obtain:∫ ∞

0
xeRxq(x) f (x)dx = P[Nodisease] × E[YeRY ].

An estimate, ĈR, can be built by replacing the expected values by their corresponding empirical
averages in the above formulas, using the value of R̂ instead of the adjustment coefficient R. To
finish, the disease risk can be estimated as 1 − ĈR exp

(
R̂t

)
.

4.4.3 Results

To evaluate the accuracy of our proposed estimator, we first performed in [JP9] a simulation study
by simulating Xi’s according to the exponential distribution, and we used 10 distinct models for
the conditional individual risk, p(x). Each model corresponded to the cumulative distribution
function of a classical probability distribution, exponential distribution, mixture of exponential
distributions, gamma distributions, Weibull distributions and uniform distribution over [0, 1]. The
distributions were chosen as being representative of a spectrum of distribution of practical interest,
and they also corresponded to models for which diseases generally occur at non constant rates over
the individual stay. Using Monte-Carlo simulations, we proved that R̂ and ĈR are unbiased (except
for ĈR under the Weibull distribution), with an acceptable standard error.

Application to pulmonary embolism after hip replacement procedure
As a typical disease illustrating our approach, we considered pulmonary embolism (PE) after

hip replacement procedure (HRP) in hospitals of the Rhône-Alpes area, France. PE is a com-
mon but preventable complication following HRP, and it is a cause of morbidity and mortality
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[Tapson, 2008]. For that complication, LOS and confinement to bed are acknowledged to be
among the principal determinants [Villemur, 1998].

For the purpose of this study, we selected patients older than 18 years who were admitted to a
sample of 20 hospitals in the Rhoône-Alpes area from January to November 2006 for a first HRP
(3,569 patients). For each of the 20 hospitals, we estimated an (unconditional) individual risk, p,
and we formed the set of durations without declared disease events, yi’s. Since the adjustment
coefficient was estimated by solving the equation

(∑n
i=1 eR̂yi/n

)
/(1 − p), we can expect an approx-

imate linear relationship between the logarithm of R and the logarithm of the average duration
when the coefficient is small R ≈ 0. In Figure 4.5, the 20 estimated adjustment coefficients were
plotted against the inverse average X, 1/y, and we then normalized the plot using the regression
of the risk estimate on the inverse X. From Figure 4.5, two hospitals displayed outlier adjustment
coefficients (Hospital 3 and Hospital 13) higher than those obtained for the other hospitals.

Figure 4.5: Estimated risk coefficients for the 20 hospital data on PE after HRP recorded in the
FPPS database. The coefficients were adjusted after regression on the inverse average LOS in
each hospital.

4.4.4 Concluding remarks

In this contribution, we addressed the issue of estimating the survival function of a variable that
is interpretable as the result of a stochastic process. Based on elements from actuarial theory,
we provided an original probabilistic characterization of the process that allowed us to give a
parameterization of the survival function. We described non-parametric estimators of the set of
parameters and used these estimations to compare 20 hospitals.



5
Conclusion and perspectives

The previous chapters presented the actual state of my research activities in biostatistics and ad-
dressed four main statistical challenges: designing powerful experiments, formalizing statistical
hypothesis, modeling heterogeneous data type and accounting for the structure of the data. These
challenges have been tackled through three axes of contributions: the analysis of categorical data,
the modeling of structured data and the probabilistic modeling of data in biosciences. In my con-
tributions, I designed statistical procedures motivated by issues encountered in various fields of
biosciences and applied them in genomics, proteomics, cancerology, ecology and public health.
Most of my contributions are accompanied by computational tools implementing our methods.

My contributions have however raised additional questions and open new research directions
that we aim at addressing in the coming years. In the following paragraphs, we provide details of
these future works in the light of the current research challenges in biostatistics.

Categorical variables analysis

I Improving experimental design in three-way association testing
In [JP4, PP3], we proposed a general framework to compare the power of several tests of as-
sociation between two categorical variables. However, in genomics and many other fields, it
is very common to investigate the relationship between more than two categorical variables.
For instance, a large number of statistical methods have been developed to the detection of
interaction in three-way contingency tables, such as the search for epistasis in genetic asso-
ciation studies [Cordell, 2009]. Since power for detecting epistasis is known to be limited
in large scale genetic association studies, it is necessary to understand the roles played by
experimental design parameters in power functions. We therefore aim at proposing a mod-
eling of power functions in order to suggest new perspectives in the detection of three-way
interaction testing.

I Assessing the impact of imputation in genome-wide association testing
The explosion of the amount of data has led to the development of many statistical meth-
ods dedicated to the imputation of missing values. In genome-wide association studies,
imputation refers to the inference of unobserved genotypes and allows testing initially-
untyped genetic variants for association with a trait of interest [Marchini and Howie, 2010].
Genotype imputation hence helps tremendously in narrowing-down the location of probably
causal variants. There are several software packages available to impute genotypes (Beagle
[Browning and Browning, 2009], MaCH [Li et al., 2010] and IMPUTE2 [Howie et al., 2012]).
These methods are based on reference panels such as the 1000 Genomes Project. However,
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imputed values are subjected to uncertainty due the inference procedure and such uncer-
tainty has to be accounted for in association testing. We aim at addressing this issue by
incorporating the uncertainty in the computation of association p-values.

Modeling of the dependence in high-dimensional data

I Using generalized linear factor models in high-dimensional data
To cover the entire genome, the number of SNPs in GWAS has to be very large inducing a
tremendous number of statistical tests. Thus a big challenge in the interpretation of GWAS
is the evaluation of the statistical significance level, for which multiple testing adjustments
are commonly performed to either control the family-wise error-rate (FWER) or the false-
discovery-rate (FDR). However SNPs data are known to be dependent, which leads to some
correlation between statistical tests and seriously affects the consistency of SNP ranking
[Friguet et al., 2009, Fan et al., 2012] . Accounting for the dependence in the joint distribu-
tion of categorical variables is not straightforward. To overcome that issue, we proposed in
[IC9] a generalized factor model that aims at identifying a linear kernel of dependence in a
family of log-linear models.

We introduced Y as the phenotype of interest considered as binary. The ith SNP was denoted
by Xi, also considered as binary in its bi-allelic form. The following multivariate logistic
framework was assumed for the SNP profile:

logit(P(Xi = 1|Y = y,Z = z)) = µi + αiy + b′iZ, (5.1)

where Z is a q−vector of unobservable random variables assumed to be independently nor-
mally distributed with mean 0 and standard deviation 1. The estimation of the set of pa-
rameters in a factor model is usually performed with a Expectation-Maximization (EM)
algorithm.

However, in the model proposed in Equation 5.1 the expectation of the deviance is not
tractable. Our goal is to propose alternative strategy, such as coordinate descent algorithm,
for estimating such class of model. Furthermore, it can be remarked that the model in
Equation 5.1 is very closed to “item response theory (IRT)” models. In that context, we
further aim at addressing the stability of the model.

I Using multilevel modeling in multiple testing
Correlation among test statistics is known to affect the control of the proportion of false dis-
coveries in high dimensional data. Multiple hypotheses testing is therefore a critical issue
under dependence. However, in many fields, data are self-organized through a hierarchical
scheme, going from microscopic to macroscopic levels of structures. In genomics, for ex-
ample, genomes are known to have a block structure of correlation induced by the patterns
of linkage disequilibrium. The dependence among tests in genome-wide studies can there-
fore be decomposed into a within and a between blocks correlations. To tackle the issue of
multiple testing in GWAS, we therefore aim at proposing a model where within and between
correlations are modeled independently.

First, we can assume that blocks are independent so that traditional techniques for correction
for multiple testing under independence (such as Benjamini-Hochberg [Benjamini and Hochberg, 1995]
or Simes [Simes, 1986]) can be applied to account for the between correlation structure.
However, the application of such traditional methods requires the calculation of a combined
p-value characterizing the association of a single block. Since the size of a block is rea-
sonable, several methods can be applied to combine statistical tests within a block (minP
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[Conneely and Boehnke, 2007], VEGAS [Liu et al., 2010], whitening [Kessy et al., 2015]).
However, these methods have been designed for normally distributed statistics. Our aim is
extend these procedure to χ2 distributed statistic that are largely encountered in association
testing.

I Modeling the spatial architecture of the genome with Gibbs point processes
The architecture of the genome is known to be highly complex thus reflecting the multi-
ple mechanisms involved in maintaining the correct functionality of the genome. These
mechanisms include recombination, linkage disequilibrium, physical constraints in the 3D
structure. Our aim is to propose a spatial modeling of the architecture of the genome that ac-
counts for most of the heterogeneous source of constraints. Gibbs point processes is adapted
to such modeling since constraints can be formalized in the Hamiltonian of the model.

By improving the modeling of the spatial architecture, our goal is first to propose adapted
decomposition of the correlation structure among association tests. Models of the spatial
pattern of the genome can indeed be used as a priori class of covariance structure that can
help addressing the multiple testing issue. Extension to spatio-temporal Gibbs point process
is also considered to improve our knowledge of the evolution of the structure of the genome.
Such knowledge is important to understand and control the impact of structure modifications
of the genome on its functionality.

Probabilistic modeling of sequencing data

I Using zero-inflated models in next-generation sequencing data
High-throughput technology allows the quantification of the expression of a large number
of biological features. However, the absence, or the very low level of expression, of the
targeted feature leads to the observation of zeros. In many situations, measuring a zero is
particularly informative and, therefore, it is important to propose probabilistic modeling of
such measurements that specifically accounts for the observation of zeros.

In that context, the past few years have seen the emergence of zero-inflated models in bioin-
formatics. Our aim is to propose a specific modeling of data obtained in whole transcriptome
sequencing technologies (RNA-Seq) by using zero-inflated negative binomial distributions.
Applied to cancer diagnosis, our goal is to compare the expression signature of microRNAs
(mRNAs) with long non-coding RNAs (lncRNAs). The main goal of our probabilistic mod-
eling is to capture more subtle changes that could not be seen with current models. Based
on this model, another perspective consists in proposing original statistical classification and
regression procedures to (a) refine the classification of tumor samples into subtypes based on
the comparative expression profiling of matched paired (tumor/control) samples, (b) identify
the most statistically significant expression profiles as potential cancer biomarkers and (c)
estimate regulatory network of lncRNAs by mRNAs. We aim at proposing models that are
not restricted to RNA-seq data but that can also been used in other context such as single-cell
gene expression analysis [Pierson and Yau, 2015].

Towards the use of biostatistics for personalized medicine

In the longer term, I would like to focus my research activities towards the new era of personalized
medicine. A need for personalized medicine stems from several major factors, including failure
of the current research and development practices, based on population-based studies, to develop
effective therapies for an entire population of patients [Hamburg and Collins, 2010, Offit, 2011].
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However, personalized medicine is one the biggest current challenges in life science and raises
a large number of biotechnological, computational and also statistical issues. The latter include
issues in experimental design, high-dimensional modeling and data integration.

First, when approaching the ultimate level of personalized medicine, each group of individuals
consists of a single patient and a dense serie of measures is a prerequisite for reliable inference
and predictions. Such longitudinal experiments are based on experimental designs involving the
baseline and several follow-up time points, for instance, before and after a particular disease status,
intervention or development of resistance to a particular drug treatment. The challenge here is to
determine the key factors influencing statistical power in order to propose optimal experimental
design.

Next, since the biological functions of organisms depend on complex and highly interactive
systems of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, data used in per-
sonalized medicine are characterized by new high-throughput multi-omics data from genomics,
metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics experiments. How-
ever high-dimensionality is one of the main challenges that biostatisticians face when deciphering
omics data. All estimate instability, model overfitting, local convergence, and large standard er-
rors compromise the prediction advantage provided by multiple measures. Controlling the high
rates of false-positives requires researchers to adjust for multiple testing to control for type 1 error
rate. Another solution to overcome multiple testing issues is to reduce dimensionality via sparse
methods that provide sparse linear combinations from a subset of relevant variables (i.e. sparse
canonical correlation analysis, sparse principal components analysis, sparse regression). However,
stochastic processes to select “best” subsets of variables inferred from a given sample population
may not contain the best information on another independent study, and certainly not at an in-
dividual level (i.e. selection-bias) [Bühlmann and van de Geer, 2011]. Reducing dimensionality
remains still very challenging but is a key step in reducing the loss of information.

Lastly, efficient integration of complementary information sources from multiple levels, in-
cluding tissue characteristics from cellular imaging, the genome, transcriptome, proteome, metabolome
and interactome, can greatly facilitate the discovery of true causes and states of disease in specific
subgroups of patients sharing a common genetic background. However, the depiction of biolog-
ical systems through the integration of omics data requires appropriate mathematical and statistical
methodologies to infer and describe causal links between different subcomponents [Brown et al., 2014].
The integration of omics data is both a challenge and an opportunity in biostatistics since costs of
omics profiles is decreasing. Aside from the computational complexity of analyzing thousands of
measurements, the extraction of correlations as true and meaningful biological interactions is not
trivial. Biological systems include non-linear interactions and joint effects of multiple factors that
make it difficult to distinguish signals from random errors. Data integration of heterogeneous data
types is therefore one of the biggest challenge in biostatistics and there is a need to develop statis-
tical methods to improve data utilization and scientific discovery [Gomez-Cabrero et al., 2014].

As a biostatistician, facing the above mentioned statistical challenges is a way to fulfill the
promises provided by the emergence of personalized medicine.
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On the use of mixed models in life science

In this appendix, I introduce a series of works that have been achieved with some of my col-
laborators in various fields of life science at the frontiers with statistics. All these contributions
rely on the analysis of data obtained with human-based experiments characterized by a relatively
low number of subjects and a substantial within and between subjects variability. In these works,
my contributions fall into the modeling of observed data in order to address three main statis-
tical issues: predictive inference of an outcome variable, comparison of the accuracy of several
concurrent methods and the modeling of the residual variability.

In the remainder of this appendix, I first formalize the common statistical context of these
analyses that fall into the area of linear mixed models. I then briefly summarize the contributions
of such a modeling in physiopathology, virtual reality and peptidomics. Finally, I provide some
statistical perspectives arisen from the practical interpretation of these works.

A.1 Introduction and motivation

Life science data are characterized by the measurement of variables in human and animal subjects.
Data are therefore subjected to multiple correlated measurements and the use of multilevel models
is required to the statistical analysis. Multilevel models are indeed increasingly employed across
a variety of disciplines to analyze nested or hierarchically-structured data. There are many types
of multilevel models, which differ in terms of the number of levels, type of design (e.g., cross-
sectional, longitudinal with repeated measures, cross-classified), scale of the outcome variable
(e.g., continuous, categorical), and number of outcomes (e.g., univariate, multivariate). These
models have been used to address a variety of research questions involving model parameters that
include fixed effects, random level-1 coefficients, and variance-covariance components.

Typically, when repeated measures are observed from the same object, data are considered
as clustered in groups where a group corresponds to an individual. In that context, linear mixed
models are commonly used to account for the cluster structure of the data. The (general) linear
mixed model has therefore become a standard tool for modeling correlated continuous data from
longitudinal and clustered sampling.

To deal with the common characteristics (low number of individuals and substantial within
and between individual variability) of the data considered in this appendix, we therefore focus our
modeling effort on the definition of appropriate linear mixed models. Before summarizing our
contributions, I will briefly introduce the main statistical concepts of linear mixed model where a
single level of grouping is considered.
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Linear mixed model for single level of grouping
Let consider y a set of n observations of a continuous response variable that are clustered into

I groups, where group i is made by ni observations so that n =
∑I

i=1 ni. The n observed responses
can therefore be grouped as follows:

y = [y1,1, . . . , y1,n1︸          ︷︷          ︸
y1

, y2,1, . . . , y2,n2︸          ︷︷          ︸
y2

, . . . , yI,1, . . . , yI,nI︸         ︷︷         ︸
yI

]′

so that yi is a ni-dimensional vector of observations for the ith group.
For each response k in the ith group (k = 1, . . . , ni), we considere that a p-dimensional vector

xi,k = [xi,k,1, . . . , xi,k,p] and a q-dimensional vector zi,k = [zi,k,1, . . . , xi,k,q] are attached as explana-
tory variables. For all i = 1, . . . , I, we defined Xi (of size ni × p) and Zi (of size ni× q) as follows:

Xi =

p︷                   ︸︸                   ︷
xi,1,1 . . . xi,1,p
...

. . .
...

xi,ni,1 . . . xi,ni,p

 and Zi =

q︷                  ︸︸                  ︷
zi,1,1 . . . zi,1,q
...

. . .
...

zi,ni,1 . . . zi,ni,q


The linear mixed-effects model expresses yi (∀i = 1, . . . , I) as follows:

yi = Xiβ + Ziui + εi (A.1)

where Xi is the design matrix for the fixed effect (or fixed-effects regressor matrix) and Zi the de-
sign matrix for the random effects (or random-effects regressor matrix), β ∈ Rp is a p-dimensional
vector of fixed effects and ui ∈ R

q a q-dimensional vector of random effects, for which it is as-
sumed that:

ui ∼ N (0,Σ) (A.2)

Finally, εi ∈ R
ni is a ni-dimensional vector, also called within-group error vector with:

εi ∼ N
(
0, σ2Ini

)
where Ini is the ni × ni identity matrix.

The random group effects ui and the within-group errors εi are assumed to be independent for
different groups and to be independent of each other for the same group.

This decomposition of the variability with both a within and between error terms is particularly
adapted to the type of data under consideration in our following contributions. First, accounting
for random effects in the model allows for a better selection of the fixed effects to improve the
prediction [Pinheiro and Bates, 2009]. Next, considering random effects allow a more reliable
evaluation of fixed effects [Pinheiro and Bates, 2009]. Finally, the comparison of random effects
models give insights in experimental design [Davis, 2002].

A.2 Application to physiopathology, virtual reality and peptidomics

This section is devoted to the summary of our contributions regarding the use of linear mixed mod-
els in three emerging domains of life science: physiopathology, virtual reality and peptidomics.
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A.2.1 Designing equations for predicting the metabolic rate during outdoor walk-
ing

In [PP2], we tackled the issue of assessing energy expenditure (EE) related to walking, at both
individual and group levels. Walking has indeed been considered as of substantial importance to
public health and as a leading therapeutic modality and the amount EE achieved while walking
is related to the risk of mortality from chronic diseases and the risk of cardiovascular events.
The main goal of our study is to determine the accuracy of using Global Positioning System
(GPS) in combination with other sensors for estimating EE during outdoor walking testing several
conditions of speed and grade. Thus, the purpose of the present study was two-fold: 1) to compare
GPS, accelerometry, and heart rate methods for estimating EE during level, uphill and downhill
outdoor walking; and 2) to determine to which extent combining these methods, increases, if any,
the accuracy of EE estimation compared with using a single method.

This twofold objective was addressed throughout the development of new equations obtained
from the estimation of linear mixed models. We introduced a general framework where fixed and
random effects are selected with variable selection procedures. Based on cross-validated root-
mean-squared-error (RMSE), predictive performances of each model are compared and proved
that a GPS device is a valuable method to be used for estimating EE during outdoor walking.
However, although our results confirm the importance of accounting for random effects in the
predictive model, the amount of variability retrieved by our model is very high compared to the
residual variability. Therefore, the inclusion of other random factors in Ziui in Equation A.1 may
improved the predictive performance of the models.

A.2.2 Measuring the human perception in virtual worlds

Since almost three decades, Virtual Reality (VR) has become a huge field of exploration for re-
searchers in computer science. The virtual could assist the surgeon, help the prototyping of indus-
trial objects, simulate natural phenomena or entertain users through games or films. Virtual Reality
technologies simulate digital environments with which users can interact and, as a result, perceive
through different modalities the effects of their actions in real time. The main idea is that the user’s
motions need to be perceived and to have an immediate impact on the virtual world by modifying
the objects in real-time. In addition, the targeted immersion of the user is not only visual: auditory
or haptic feedback need to be taken into account, merging all the sensorial modalities of the user
into a multimodal answer.

The user’s perception of the virtual world generally represents the key indicator of the degree
of interactivity that the virtual environment can generate. The more believable the interaction
and its feedback, the more it makes the user unconsciously shift his reality from the real to the
virtual environment, developing a true sense of presence, as defined by the “sense of being there”
by Slater in 1995, an illusion of being located inside the virtual environment depicted by the VR
system. Thus, interaction significantly contributes in making Virtual Reality such a powerful and
immersive tool.

Concerning interaction, each of us uses all our body possibilities to interact with our real en-
vironment. If VR was limited to specific hardware using mainly hand or head motions one decade
ago, there have been these last years increasing novel hardware setups tracking and measuring
full-body motions and feedback. Following these improved hardware devices, 3D interaction
techniques have to adapt their properties to propose novel interaction metaphors exploiting similar
body inputs. The entire user body can now be used to interact with a virtual environment.

In this context, I participated to the evaluation of novel 3D interaction techniques exploiting
novel body parts such as the feet [IC18, BC1], the full-body [IC16], the two hands simultaneously
[IC10], or at a smaller scale the fingers [IC3]. Deformed body parts such as the arms were also
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studied and compared to real-world experiments [PP4]. The evaluations are essential to assess the
performance of the interaction techniques. They are composed of two main parts: quantitative
measurements such as the speed or the accuracy of the participant to achieve a given task in the
virtual environment, and subjective questionnaires to gather the participants’ opinion.

In our contributions, we used linear mixed models as well as generalized linear mixed models
to select the main factors influencing the quantitative measurements as well as participants’ opin-
ion. In [IC3, PP4], we also proposed specific formulations of the design matrix for the fixed effect
(Xi in Equation A.1), to evaluate learning effects in the studied tasks.

A.2.3 Modeling of the kinetics of milk digestion

In [JP1], we addressed the question of the impact of Holder milk pasteurization (a type of pasteur-
ization that ensures sanitary quality of donor’s human milk but also denatures beneficial proteins)
in the kinetics of peptide release during the gastrointestinal digestion of term human milk. Di-
gestion was measured through a measure of abundance for a collection of peptide of n = 1054
peptides. For each peptide, we proposed a linear mixed model to estimate the fixed coefficients
that measure the interaction between two factors: Pasteurization and Digestion time. Ascend-
ing hierarchical clustering was then conducted on these interaction coefficients and allowed the
identification of height clusters of peptides. The characterization of the clusters was further un-
dertaken using the biochemical characteristics and the bioactivity prediction of each peptide. Our
results demonstrated that human milk pasteurization impacted selectively the release kinetics of
more than half of the peptides during term newborn in vitro dynamic digestion. It also increased
the number and abundance of peptides present before gastrointestinal digestion which may have
further nutritional consequences.

More recently, we extended our work to in vivo data. For that purpose, we used simulations
and real data to investigate the impact of the modeling of the variability in linear mixed models.
We therefore compared the following situations: no random effects, simple random effects and
repeated measurements modeling of random effects with various structures (such as general, com-
pound symmetry, Gaussian, etc.) by using corresponding correlation structure in the matrix Σ in
Equation A.2. As expected according to parsimonious arguments [Davis, 2002], our results show
that the correct modeling of correlation structure of repeated measurements require a relatively
large number of individuals. Such result give new insights in the design of experiment and put the
experimental interpretation of the results into novel perspectives.

A.3 Perspectives

A common characteristic of our contributions in physiopathology, virtual reality and peptidomics
is the small size of the sample. Since experiments were based on human evaluation satisfying
several constraints, recruiting participants was costly thus reducing the sample size. However,
with the expansion of the use of multilevel models, questions have emerged concerning how
well these models work under design conditions such as sample size at each level of the anal-
ysis [Bell et al., 2010]. This issue is central in most quantitative studies but is more complex in
multilevel models because of the multiple levels of analysis. Currently there are few sample size
guidelines referenced in the literature.

Another interesting perspective of our research is the evaluation of the impact of the parametric
modeling of the fixed and the random effects in our proposed models. For example, in several
situations, the perceptive evaluation of a virtual task hardly follows a normal distribution. In that
context other class of mixed models should be considered such as non-parametric mixed models
[Karcher and Wang, 2001].
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Addressing these two challenges is an opportunity to push the analysis of data one step further
in various fields of application such as physiopathology, virtual reality and peptidomics.
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[Freedman, 2000] Freedman, D. A. (2000). Notes on the odds-ratio and the δ-method,
http://www.stat.berkeley.edu/∼census/oddsrat.pdf.



BIBLIOGRAPHY 95

[Friguet et al., 2009] Friguet, C., Kloareg, M., and Causeur, D. (2009). A factor model approach
to multiple testing under dependence. Journal of American Statistical Association, 104:1406–
1415.

[Gabriel et al., 2002] Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumen-
stiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C.,
Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J., and Altshuler, D. (2002). The
structure of haplotype blocks in the human genome. Science, 296(5576):2225–2229.

[Garbuzynskiy et al., 2010] Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010).
Foldamyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioin-
formatics, 26(3):326–332.

[Gierer et al., 1972] Gierer, A., Berking, S., Bode, H., David, C., Flick, K., Hansmann, G.,
Schaller, H., and Trenkner, E. (1972). Regeneration of hydra from reaggregated cells. Nat
New Biol, 239:98–101.

[Giraud, 2014] Giraud, C. (2014). Introduction to High-Dimensional Statistics. Chapman and
Hall/CRC, 1st edition.

[Gomez-Cabrero et al., 2014] Gomez-Cabrero, D., Abugessaisa, I., Maier, D., Teschendorff, A.,
Merkenschlager, M., Gisel, A., Ballestar, E., Bongcam-Rudloff, E., Conesa, A., and Tegnér,
J. (2014). Data integration in the era of omics: current and future challenges. BMC Systems
Biology, 8(2):1–10.

[Gourlet-Fleury et al., 2004] Gourlet-Fleury, S., Ferry, B., Molino, J. F., and Petronelli, P. (2004).
Paracou experimental plots: key features. In S. Gourlet-Fleury, J. M. G. . O. L., editor, Ecol-
ogy and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term
experimental research site in French Guiana, pages 17–34.

[Gower and Ross, 1969] Gower, J. and Ross, G. J. S. (1969). Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society. Series C (Applied Statistics),
18(17):54–64.

[Graner and Glazier, 1992] Graner, F. and Glazier, J. (1992). Simulation of biological cell sorting
using a two-dimensional extended potts model. Physical Review Letters, 69:2013–2016.

[Graunt, 1662] Graunt, J. (1662). Natural and Political Observations Made upon the Bills of
Mortality. London : Printed by John Martyn, first edition.

[Greenacre, 1988] Greenacre, M. (1988). Clustering the rows and columns of a contingency table.
Journal of Classification, 5(1):39–51.

[Halkidi and Vazirgiannis, 2001] Halkidi, M. and Vazirgiannis, M. (2001). Clustering validity
assessment: finding the optimal partitioning of a data set. In Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on, pages 187–194.

[Halkidi et al., 2000] Halkidi, M., Vazirgiannis, M., and Batistakis, Y. (2000). Quality scheme
assessment in the clustering process. In Zighed, D., Komorowski, J., and Åżytkow, J., edi-
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Résumé

La biostatistique est confrontée depuis quelques années à la modélisation et à l’analyse de données de plus en plus

complexes. Cette complexité croissante est le fruit d’une évolution des données marquée par deux révolutions

majeures : l’explosion des capacités de calculs informatiques et l’émergence des technologies d’acquisition haut-

débit. Bien que les évolutions technologiques aient permis l’acquisition massive de données, l’analyse statistique

laisse aujourd’hui de nombreuses questions ouvertes. Ces dernières années, la typologie des données biologiques

a en effet profondément changé, faisant ainsi émerger de nouveaux défis statistiques. Dans ce contexte, l’objectif

principal de mes activités de recherche consiste à proposer, en réponse à une question biologique d’intérêt,

des procédures statistiques s’appuyant sur quatre grands défis principaux : la conception et la planification

d’expériences optimisant la puissance statistique, la modélisation des types de variables mesurées, la formali-

sation d’hypothèses de tests pertinentes du point de vue biologique et la prise en compte de la structure des

données. Mon approche peut être décrite au travers de trois axes principaux de recherche : (1) l’analyse et la

modélisation de données catégorielles, (2) la modélisation statistique de données fortement structurées et (3)

la modélisation probabiliste et l’inférence statistique pour le traitement de données spatialisées ou temporelles.

Mes contributions ont notamment porté sur les tests d’association avec l’estimation de fonctions de puissances,

la détection d’interaction, la sélection de variables et la correction pour les tests multiples. J’ai également traité

des problèmes liés à la classification, à l’agrégation de tests et à l’estimation de fonction survie. Les approches

développées ont été systématiquement évaluées à l’aide de données réelles provenant de nombreux domaines des

sciences du vivant comme la génomique, la protéomique, la cancérologie, l’écologie et la santé. Les résultats obte-

nus ouvrent de nombreuses perspectives en biostatistique, notamment dans l’intégration de données hétérogènes

et la médecine personnalisée.

Abstract

The recent years have seen biostatistics facing issues regarding the modeling and the analysis of more and

more complex data. The evolution of biological data has been paved by two main technological revolutions: the

explosion of computer capacities and the advent of high-throughput technologies. Although the fast evolution

of biotechnologies has allowed the collection of massive amount of data, it has raised a large number of open

questions. In the last few years, the deep modification of biological data type has contributed to the emergence

of novel statistical challenges. In this context, the main goal of my research is to provide, in response to

a biological question of interest, statistical procedures based on four main challenges : the design and the

experimental planning to optimize statistical power, the statistical modeling of the types of measured variables,

the formalization of relevant biological assumptions and the modeling of the structure of the data. My approach

can be described through three main research axes: (1) the analysis and the modeling of categorical data, (2)

the statistical modeling of highly structured data and (3) the probabilistic modeling and the statistical inference

of spatial and temporal data. My contributions especially tackle the issue of association testing through the

estimation of power functions, the detection of interaction, the variable selection and the correction for multiple

testing. I have also focused my research activities on classification issues, the aggregation of statistical tests

and the estimation of survival function. A systematic evaluation of the proposed methods has been performed

through the analysis of real data from many fields of biosciences, such as genomics, proteomics, cancer, ecology

and health. The results open novel perspectives in biostatistics, including the integration of heterogeneous data

and personalized medicine.
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