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Purpose

● Both are used to reduce the dimensionality of 
correlated measurements
– Can be used in a purely exploratory fashion to 

investigate dimensionality
– Or, can be used in a quasi-confirmatory fashion to 

investigate whether the empirical dimensionality is 
consistent with the expected or theoretical 
dimensionality

● Conceptually, very different analyses
● Mathematically, there is substantial overlap



Principal Component Analysis

● Principal component analysis is conceptually 
and mathematically less complex 
– So, start here...

● First rule...
– Don't interpret components as factors or latent 

variables.
– Components are simply weighted composite variables
– They should be interpreted and called components or 

composites 



Principal Component Analysis
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Principal Component Analysis

● Key Questions
– How do you determine the weights?
– How many composites do you need to reasonably 

reproduce the observed correlations among the 
measured variables?

● Fewer is better!
– Can the resulting components be transformed/rotated 

to yield more interpretable components?
– How do you compute a person's score on the composite 

variable?



Conceptually...

From k original variables: x1,x2,...,xk:
Produce k new variables: C1, C2, ..., Ck:

C1 = a11x1 + a12x2 + ... + a1kxk

C2 = a21x1 + a22x2 + ... + a2kxk

...
Ck = ak1x1 + ak2x2 + ... + akkxk

Notice that there are as many components as 
there are original variables



Conceptually...

● Find the weights such that 
– Composite variables are orthogonal/uncorrelated
– C1 explains as much variance as possible

● maximum variance criterion
– C2 explains as much of the remaining variance as 

possible
– etc...



Conceptually...
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In 3 dimensions...



Conceptually...

The variance of the resulting composite variables 
equal to the eigenvalues associated with the 
correlation or covariance matrix
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Eigen..what?

● Determining the weights that maximize the 
variance of the components turns out to be a 
special case of Matrix Eigenvalues and 
Eigenvectors

● Problem:
– Can make this quantity as large as desired by simply 

increasing the weights to infinity
– So, put a constraint on the weights...

Criterion:  sij ai a j=aT S amax

Constraint :  ai a j=aT a=1



Eigen..what?

● Lagrange Multipliers (λ) are frequently used 
when maximizing functions subject to 
constraints.

● The partial derivative (used to find the 
maximum) is:

1 = a1
T S ai−1a1

T a1−1

∂1

∂a1
2 S a1−21 a1



Eigen..what?

● Set equal to zero, divide out the constant, and 
factor yields:

● So, we need to solve for both the eigenvalue (λ) 
and the weights (eigenvector)

1 = a1
T S ai−1a1

T a1−1

S−1 I a1 = 0



Eigen..what?

● Solving for the eigenvalues
– Characteristic Equation...solving for the determinant

● Once you have the eigenvalues, plug them back 
into the equation to solve for the eigenvectors



Example (by Hand...)

X1 X2
1 2
3 3
3 5
5 4
5 6
6 5
8 7
9 8

S = [6.25 4.25
4.25 3.5 ]

Sa = a  S −  I  a=0 [6.25− 4.25
4.25 3.5− ]=0

Eigenvalues



Example (by Hand...)

S = [6.25 4.25
4.25 3.5 ]

[6.25− 4.25
4.25 3.5− ]=0 ; 1=9.34

2=0.41

[6.25 4.25
4.25 3.5 ] [ a11

a12 ]=[1 a11

1 a12 ] a11=0.81
a12=0.59

[6.25 4.25
4.25 3.5 ] [a21

a22 ]= [2 a21

2 a22 ] a21=−.59
a22=0.81

Eigenvectors



Stopping Rules

● Problem: It requires k principal components to 
perfectly reproduce an observed covariance 
matrix among k measured variables

● But, this doesn't simplify the dimensionality

● Instead, how many principal components do 
you need to reproduce the observed covariance 
matrix reasonably well?
– Kaiser's Criterion

● If λj < 1 then component explains less variance than 
original variable (correlation matrix)

– Cattell's Scree Criterion



Scree Plot
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Component Rotation

● The components have been achieved using a 
maximal variance criterion.  
– Good for prediction using the fewest possible 

composites
– Bad for understanding

● So, once the number of desired components has 
been determined, rotate them to a more 
understandable pattern/criterion
– Simple Structure!



Simple Structure

● Thurstone, 1944
– Each variable has at least one zero loading
– Each factor in a factor matrix with k columns should 

have k zero loadings
– Each pair of columns in a factor matrix should have 

several variables loading on one factor but not the 
other

– Each pair of columns should have a large proportion of 
variables with zero loadings in both columns

– Each pair of columns should only have a small 
proportion of variables with non zero loadings in both 
columns



Component Rotation

● Geometric Version
● Factor loadings are found 

by dropping a line from 
the variable coordinates 
to the factor at a right 
angle

● Repositioning the axes 
changes the loadings on 
the factor but keeps the 
relative positioning of the 
points the same



Simple Structure Rotations

● Orthogonal vs. Oblique
– Orthogonal rotation keeps factors un-correlated while 

increasing the meaning of the factors
– Oblique rotation allows the factors to correlate leading 

to a conceptually clearer picture but a nightmare for 
explanation



Orthogonal Rotations
● Varimax – most popular

– Simple structure by maximizing variance of loadings 
within factors across variables

– Makes large loading larger and small loadings smaller
– Spreads the variance from first (largest) factor to other 

smaller factors
● Quartimax - Not used as often

– Opposite of Varimax
– minimizes the number of factors needed to explain 

each variable
– often generates a general factor on which most 

variables are loaded to a high or medium degree.



Orthogonal Rotations

● Equamax – Not popular
– hybrid of the earlier two that tries to simultaneously 

simplify factors and variables
– compromise between Varimax and Quartimax criteria.



Oblique Rotations

● Direct Oblimin – Most common oblique
– Begins with an unrotated solution 
– Has a parameter (gamma in SPSS) that allows the user 

to define the amount of correlation acceptable
– gamma values near -4 -> orthogonal, 0 leads to mild 

correlations (also direct quartimin) and 1 highly 
correlated

● Promax – more efficient
– Solution is rotated maximally with an orthogonal 

rotation
– Followed by oblique rotation - Easy and quick method
– Orthogonal loadings are raised to powers in order to 

drive down small loadings - Simple structure



Component Loadings

● Component loadings are the correlations  
between the variables (rows) and components 
(columns). 

● Most would say should be higher than .3
– accounts for 10% of variance in composite

● The squared factor loading is the percent of 
variance in that variable explained by the 
component

● In oblique rotation, one gets both a pattern 
matrix and a structure matrix



Component Loadings

● Structure matrix
– factor loading matrix as in orthogonal rotation
– Correlation of the variable with the component
– Contains both unique and common variance

● Pattern matrix
– coefficients represent partial correlations with 

components.
– Like regression weights
– The more factors, the lower the pattern coefficients 

because there will be more common contributions to 
variance explained



Component Loadings

● For oblique rotation, you should look at both 
the structure and pattern coefficients when 
attributing a label to a factor
– Pattern matrices often appear to give simpler structure.
– Many authors argue that this “apparent” simple 

structure is misleading because it ignores the 
correlation among the components.



Pattern vs. Structure matrices



Component Scores

● A person's score on a composite is simply the 
weighted sum of the variable scores

● A component score is a person’s score on that 
composite variable -- when their variable values 
are applied as:

PC1 =  a11X1 + a 21X2 + … + a k1Xk

– The weights are the eigenvectors.
● These scores can be used as variables in further 

analyses (e.g., regression)



Covariance or Correlation Matrix?

● Covariance Matrix:
– Variables must be in same units
– Emphasizes variables with most variance
– Mean eigenvalue ≠1.0

● Correlation Matrix:
– Variables are standardized (mean 0.0, SD 1.0)
– Variables can be in different units
– All variables have same impact on analysis
– Mean eigenvalue = 1.0



Example: US crime statistics

● Variables
– Murder
– Rape 
– Robbery 
– Assault
– Burglary 
– Larceny 
– Autotheft

– Data: Frequency by state

Component loadings

 

               1           2

 

   MURDER     0.557      -0.771

   RAPE       0.851      -0.139

   ROBBERY    0.782       0.055

   ASSAULT    0.784      -0.546

   BURGLARY   0.881       0.308

   LARCENY    0.728       0.480

   AUTOTHFT   0.714       0.438



Example: Component Loadings

Factor Loadings Plot
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PC process summary

● Decide whether to use correlation or covariance matrix 
● Find eigenvectors (components) and eigenvalues 

(variance accounted for)
● Decide how many components to use by examining 

eigenvalues (perhaps using scree diagram)
● Rotate subset of components to simple structure
● Examine loadings (perhaps vector loading plot)
● Plot scores



PCA Terminology & Relations
● jth principal component is jth eigenvector of

correlation/covariance matrix
● scores are values of units on components 

(produced using coefficients)
● amount of variance accounted for by 

component is given by eigenvalue, λj

● proportion of variance accounted for by 
component is given by  λj / Σ λj

● loading of kth original variable on jth 
component is given by  ajk√λj --correlation 
between variable and component



PCA Relations

● Sum of eigenvalues = p
– if the input matrix was a correlation matrix

•  Sum of eigenvalues = sum of input variances
– if the input matrix was a covariance matrix

•  Proportion of variance explained = eigenvalue 
/ sum of eigenvalues

•  Sum of squared factor loadings for jth principal 
component = eigenvalue j



PCA Relations

● Sum of squared factor loadings for variable i
– = variance explained in variable i
– = Cii (diagonal entry i in matrix C)
– = communality_i  in common factor analysis
– = variance of variable i if m = p

•  Sum of crossproducts between columns i and j 
of factor loading matrix = Cij (entry ij in matrix 
C)

•  The relations in #4, #5 and #6 are still true 
after rotation.



Factor Analysis Model
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Factor Analysis

● Latent variables are thought to cause the 
manifest variables

● The relationship isn't perfect and so each 
measured variable is due, in part, to the latent 
variables and the residual variance is treated as 
random error

x1 = a11f1 + a12f2 + ... + a1kfk + e1

x2 = a21f1 + a22f2 + ... + a2kfk + e2

...
xp = ap1f1 + ap2f2 + ... + apkfk + e3



Is the Factor model identified?

● Look back at the factor model...
● 6 measured variables

– 6*7/2=21 free parameters
● How many parameters estimated in the factor 

analysis model?
– 6 error variances
– 12 path coefficients
– 1 factor correlation
– =19; okay....



Is the Factor model identified?

● What if you try to extract 3 factors?
– 6 error variances
– 18 loadings
– 3 correlations

● 27 parameters being estimated
● Uh-ohhhh... 27>21

● There are many sources of mathematical 
indeterminacy in the factor analysis model



A useful dodge...

● The factor analysis method gets around the 
identification problem by estimating the 
loadings and the errors separately

● Mathematically, the main difference between 
FA and PCA is that FA uses a reduced 
correlation matrix
– Based on communality estimates

● Factor analysis finds the eigenvalues and 
eigenvectors of the correlation matrix with the 
squared multiple correlations each variable with 
other variables on the main diagonal



Estimating Communality

● Many ways to estimate communality and the 
many varieties of FA differ with respect to how 
communality is estimated
– Principle Factors aka Principle Axis
– Iterated Principle Factors

● The most common estimate of communality(h2) 
is the squared multiple correlation (SMC)

● In other words, regress each variable on all 
other variables and get the multiple R.
xi2 = bo + b1xi1 + b2xi3 + ... + bpxip



Reduce the correlation matrix

 1.0   .72   .63   .54   .45

.72    1.0   .56   .48   .40

.63    .56   1.0   .42  .35

.54    .48   .42   1.0  .30

.45    .40   .35   .30  1.0

 .81   .72   .63   .54  .45

.72   .64   .56   .48   .40

.63   .56   .49   .42   .35

.54   .48   .42   .36   .30

.45   .40   .35   .30   .25



FA Analysis

● Now, just perform a PCA on the reduced 
correlation matrix

● Re-estimate communalities based on the factor 
solution



Common problems in FA

● The communality estimates are just 
that...estimates.

● These estimates can often result in impossible 
results.
– Communality estimates greater than 1.0
– Error variance estimates less than 0.0

● Collectively referred to as “Heywood Cases”
● When encountered, the model does not fit.

– Simplify the model or reduce the number of variables 
being analyzed.



Factor Scores

● Unlike PCA, a person's score on the latent 
variable is indeterminant
– Two unknowns (latent true score and error) but only 

one observed score for each person
● Can't compute the factor score as you can in 

PCA.
● Instead you have to estimate the person's factor 

score.



Differences between PCA and FA

● Unless you have lots of error (very low 
communalities) you will get virtually identical 
results when you perform these two analyses

● I always do both
● I've only seen a discrepancy one or two times

– Change FA model (number of factors extracted) or 
estimate communality differently or reduce the number 
of variables being factored



Some Guidelines
● Factors need at least three variables with high 

loadings or should not be interpreted
– Since the vars won't perform as expected you should 

probably start out with 6 to 10 variables per factor.
● If the loadings are low, you will need more 

variables, 10 or 20 per factor may be required. 
● The larger the n, the larger the number of vars 

per factor, and the larger the loadings, the better
– Strength in one of these areas can compensate for 

weakness in another 
– Velicer, W. F., & Fava, J. L.  (1998).  Effects of 

variable and subject sampling on factor  pattern 
recovery.  Psychological Methods, 3, 231-251.



Some Guidelines

● Large N, high h2, and high overdetermination 
(each factor having at least three or four high 
loadings and simple structure) increase your 
chances of reproducing the population factor 
pattern

● When communalities are high (> .6), you 
should be in good shape even with N well 
below 100

● With communalities moderate (about .5) and 
the factors well-determined, you should have 
100 to 200 subjects



Some Guidelines

● With communalities low (< .5) but high 
overdetermination of factors (not many factors, 
each with 6 or 7 high loadings), you probably 
need well over 100 subjects.

● With low communalities and only 3 or 4 high 
loadings on each, you probably need over 300 
subjects.

● With low communalities and poorly determined 
factors, you will need well over 500 subjects.
– MacCallum, R. C., Widaman, K. F., Zhang, S., & 

Hong, S.  (1999).  Sample size in factor analysis.  
Psychological Methods, 4, 84-99.



Example...


