
The Truth about Principal Components and

Factor Analysis

36-350, Data Mining

28 September 2009

Contents

1 The Truth about Principal Components Analysis 1
1.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Simulating with PCA . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 How Many Components? . . . . . . . . . . . . . . . . . . . . . . 3

2 The Truth about Factor Analysis 6
2.1 How Many Factors? . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Graphical Form of Factor Models . . . . . . . . . . . . . . . 8
2.3 The Rotation Problem Again . . . . . . . . . . . . . . . . . . . . 10
2.4 Factors or Mixtures? . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Thomson Sampling Model . . . . . . . . . . . . . . . . . . . 11

3 Advice 16
Having spent a great deal of time on the technicalities of principal compo-

nents and factor analysis, we’ll wrap up by looking at their uses and abuses for
understanding data; next time we’ll take up non-linear dimensionality reduc-
tion.1

1 The Truth about Principal Components Anal-
ysis

Principal components tries to re-express the data as a sum of uncorrelated
components. There are lots of other techniques which try to do similar things,
like Fourier analysis, or wavelet decomposition. Things like Fourier analysis
decompose the data into a sum of a fixed set of basis functions or basis vectors.
This has the advantage of making results comparable across data sets, and of
making the meaning of the components clear. So why ever do PCA rather than
a Fourier transform?

1Thanks to Dr. Moritz Heene for valuable discussion and references on factor analysis.
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First, in some situations the idea of doing a Fourier transform is just embar-
rassingly weird. For the states or cars data ets, we could number the features
and take cosines of the feature numbers, etc., but it just seems crazy. No such
embarrassment attends PCA. Second, when using a fixed set of components,
there is no guarantee that a small number of components will give a good re-
construction of the original data. PCA guarantees that the first q components
will do a better (mean-square) job of reconstructing the original data than any
other linear method using only q components. Third, it is good at preserving
distances between the points — the component scores give the optimal linear
multidimensional scaling (see section 3.7 of Principles of Data Mining).

PCA gives us uncorrelated components, which are generally not independent
components; for that you need independent component analysis (Stone, 2004).
PCA looks for linear combinations of the original features; one could well do
better by finding nonlinear combinations. Rather than directions in feature
space, these would be curves or surfaces.

PCA is purely a descriptive technique; in itself it makes no prediction about
what future data will look like.

1.1 Convergence

If the data come from IID samples of a distribution with covariance matrix V0,
then the sample covariance matrix V ≡ 1

nXTX will converge on V0 as n→∞.
Since the principal components are functions of V (namely its eigenvectors),
they will tend to converge as n grows2. So, along with that additional assump-
tion about the data-generating process, PCA does make a prediction: in the
future, the principal components will look like they do now.

1.2 Simulating with PCA

One can also try to turn PCA into a model which makes predictions about
future data vectors more directly. The observed features are re-written in terms
not just of the PCs but also of the projections along those PCs. One could try
replacing those projection scores with random numbers and then transforming
back into features to get new, simulated feature vectors.

Remember that with q components, we get the component scores

Y = Xw

This turns the n× p matrix X into the n× q matrix Y by multiplying from the
right with the p×q matrix w of eigenvectors. Because it is not a square matrix,
w doesn’t, strictly speaking, have an inverse. However, suppose we look at wT :

2There is a wrinkle if V0 has “degenerate” eigenvalues, i.e., two or more eigenvectors with
the same eigenvalue. Then any linear combination of those vectors is also an eigenvector, with
the same eigenvalue. (Exercise: show this.) For instance, if V0 is the identity matrix, then
every vector is an eigenvector, and PCA routines will return an essentially arbitrary collection
of mutually perpendicular vectors. Generically, however, any arbitrarily small tweak to V0

will break the degeneracy.
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the transpose is a q × p matrix, so wTw will be a q × q matrix. In fact, it will
be the q-dimensional identity matrix. This is because the ijth entry in wTw
is the dot product of the ith row of wT with the jth column of w, i.e., the dot
product of two eigenvectors of V. But the eigenvectors are orthonormal, so this
will be zero if i 6= j and 1 if i = j.

So here is our simulation recipe. First, find the principal components matrix
w and the component scores Y. Then replace Y with similar but random
numbers, say J, and take

JwT + ε

where ε has the same distribution as the projection residuals.3 This synthetic
data will have a similar covariance structure to the originals, but higher-order
properties have been randomized.4 This kind of approach is sometimes used
to create synthetic data for testing other algorithms, or to check whether the
combination of components resembles the original in more qualtitative ways
than just mean squared error.5

1.3 How Many Components?

There are a couple of common ways of deciding how many principal components
to use.

1. How many do you need? In homework 4, you saw that the accuracy
with which tumors could be classified depended on how many principal
components we used, and was peaked around q ≈ 12, falling off in either
direction. If our goal is classifying tumors, this suggests that the right
number of components to use is about 12. Of course, there is nothing
which says that accuracy wouldn’t drop like a stone as soon as q < p.
It’s always possible that the very smallest component, carrying the least
variance, is also the only one carrying any information about what we
actually want to make inferences about.

2. How much variance do you want? We can decide that we need at least a
certain fraction of variance, and add components until we achieve it. How

3One way to get “similar but random” values for J would be to fit a parametric distribution,
such as the multivariate normal or the multivariate t, to the component scores. Another
however is to just re-sample the component scores: draw a random value from the first column
of Y, then a random value from the second, etc. Similarly to get the residuals: either ft a
parametric distribution, or draw a residual vector at random from the empirical distribution.
We will see more of this sort of resampling from the empirical distribution later, under the
name of “bootstrapping”.

4If the data are Gaussian, then the higher-order properties are fixed by the covariance, but
that’s not generally the case.

5Brian Whitman’s Eigenradio (eigenradio.media.mit.edu) would do something like this in
real time to a couple of radio stations. Mostly it sounded mildly eerie, except when something
recognizably like human music broke through, which sounded positively uncanny. The site is
offline now, but see http://www.bagatellen.com/archives/interviews/000974.html for an
interview where Whitman tries to explain it to a music blog.
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someone comes to believe that they need 50% of the variance, rather than
40% or 60%, is honestly something I’ve never understood.6

3. How many eigenvalues are big? In some nice situations, there is a clear
separation in size between the eigenvalues of V. A few eigenvalues are
approximately as large as the largest eigenvalue, and all the others are
at least an order of magnitude smaller. It’s then reasonable to hope that
the large eigenvalues correspond to some components which dominate the
data, and the small eigenvalues to stuff which is effectively small correc-
tions to them.7 One can then make a clear separation between the large
eigenvectors, and those which carry the noise components.

Visually, one makes what’s called a scree plot, of eigenvalue magnitudes
versus ranks, and hopes to see a gentle slope, followed by an abrupt cliff
and then the “scree” of negligible eigenvalues. At least in my experience,
however, such sharp separation is rare, leading to a lot of squinting and
judgment calls. For instance, Figure 1 is the scree plot for the data from
homework 4. How many components would you choose on this basis?
What would you say if your boss wanted one more, or one less?

6Except in some physical signal-processing contexts, where “variance” translates into
“power transmitted by the signal”.

7In physical contexts, this corresponds to distinguishing between a few slow, large-
amplitude, macroscopic modes of motion, and many fast, small, microscopic noise modes.
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Figure 1: Eigenvalue rank vs. magntidue for the principal components of the
NCI gene-expression data set used in homework 4.
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2 The Truth about Factor Analysis

Recall the factor-analysis model:

X = Fw + ε

The factor-score matrix F is smaller than the data matrix X (n×q versus n×p),
but Fw has nearly the same correlations as the original features. If we want to
eliminate some dimensions while preserving correlations, then the factor scores
are a good summary of the data.

Many people also think of the factor model as a generative model, an account
of how the data were produced in the first place. Seen this way, it is also a
predictive model. Its prediction is that

X ∼ N (0,wTw + Ψ) (1)

Of course it might seem like it makes a more refined prediction,

X|F ∼ N (Fw,Ψ) (2)

but the problem is that there is no way to guess at or estimate F until after
we’ve seen X, at which point anyone can predict X perfectly. So the actual
forecast is given by Eq. 1.8

Now, without going through the trouble of factor analysis, one could always
just postulate that

X ∼ N (0,V0) (3)

and estimate V0; the maximum likelihood estimate of it is the observed covari-
ance matrix V. The closer our estimate V̂ is to V0, the better our predictions.
One way to think of factor analysis is that it looks for the maximum likelihood
estimate, but constrained to matrices of the form wTw + Ψ.

On the plus side, the constrained estimate has a faster rate of convergence.
That is, both the constrained and unconstrained estimates are consistent and
will converge on their optimal, population values as we feed in more and more
data, but for the same amount of data the constrained estimate is probably
closer to its limiting value. In other words, the constrained estimate ŵT ŵ + Ψ̂
has less variance than the unconstrained estimate V̂.

On the minus side, maybe the true, population V0 just can’t be written
in the form wTw + Ψ. Then we’re getting biased estimates of the covariance
and the bias will not go away, even with infinitely many samples. Using factor
analysis rather than just fitting a multivariate Gaussian means betting that
either this bias is really zero, or that, with the amount of data on hand, the
reduction in variance outweighs the bias.

8A subtlety is that we might get to see some but not all of X, and use that to predict the
rest. Say X = (X1, X2), and we see X1. Then we could, in principle, compute the conditional
distribution of the factors, p(F |X1), and use that to predict X2. Of course one could do the
same thing using the correlation matrix, factor model or no factor model.
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(I haven’t talked about estimated errors in the parameters of a factor model.
The easiest way to obtain these is through either the jack-knife method — leave
each observation out, re-estimate the model, and look at the distribution of re-
estimates around the full-data estimate — or the bootstrap method — randomly
re-sample the data, re-estimate, and again look at the distribution around the
full-data estimate. We’ll see much more about both of these methods after the
midterm, so just bear in mind that if you need to use factor analysis you can
do this.)

2.1 How Many Factors?

How many factors should we use? All the answers I gave for the how-many-
principal-components question can be tried here, too, with the obvious modifi-
cations. However, some other answers can also be given, using the fact that the
factor model does make predictions, unlike PCA.

1. Log-likelihood ratio tests Sample covariances will almost never be exactly
equal to population covariances. So even if the data comes from a model
with q factors, we can’t expect the tetrad equations (or their multi-factor
analogs) to hold exactly. The question then becomes whether the observed
covariances are compatible with sampling fluctuations in a q-factor model,
or are too big for that.

We can tackle this question by using log likelihood ratio tests. The crucial
observations are that a model with q factors is a special case of a model
with q + 1 factors (just set a row of the weight matrix to zero), and that
in the most general case, q = p, we can get any covariance matrix V into
the form wTw. (Set Ψ = 0 and proceed as in the “principal factors”
estimation method.)

As a general rule, if θ̂ is the maximum likelihood estimate in a restricted
model with u parameters, and Θ̂ is the MLE in a more general model with
v > u parameters, containing the former as a special case, then

2[`(Θ̂)− `(θ̂)] ∼ χ2v − u

when the data came from the small model. (Here ` is the log likelihood
function.) The general regularity conditions needed for this to hold apply
to Gaussian factor models, so we can test whether one factor is enough,
two, etc.

(Said another way, adding another factor never reduces the likelihood, but
the equation tells us how much to expect the log-likelihood to go up when
the new factor really adds nothing and is just over-fitting the noise.)

The reasons for the χ2 distribution of the log likelihood ratio are a bit of
a long story (involving the Fisher information matrix, etc.), but a rough
version goes as follows. The big model has v−u more parameters than the
small one; we can always arrange to write things so that the small model
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is the big one, with those v − u parameters set to zero. The central limit
theorem gives us Gaussian errors for each of the parameter estimates,
but without bias, so they’re mean-zero Gaussians. Taylor-expand the
log likelihood in the estimation errors: the first-order terms all cancel,
leaving second order terms. (The 2 on the left-hand side began as the
1/2 in front of the quadratic terms in the Taylor series.) The square of a
standard Gaussian is a χ2 random variable, so the log likelihood ratio is
a sum of things proportional to χ2

1s. In fact, the second derivatives in the
Taylor expansion exactly cancel the standard deviations of the Gaussian
estimation errors, leaving us v − u χ2

1 terms, or one χ2
v−u.

Determining q by getting the smallest one without a significant result in a
likelihood ratio test is fairly traditional, but statistically messy.9 To raise
a subject we’ll return to, if the true q > 1 and all goes well, we’ll be doing
lots of hypothesis tests, and making sure this compound procedure works
reliably is harder than controlling any one test. Perhaps more worrisomely,
calculating the likelihood relies on distributional assumptions for the factor
scores and the noises, which are hard to check for latent variables.

2. If you are comfortable with the distributional assumptions, use Eq. 1 to
predict new data, and see which q gives the best predictions — for compa-
rability, the predictions should be compared in terms of the log-likelihood
they assign to the testing data. If genuinely new data is not available, use
cross-validation.

Comparative prediction, and especially cross-validation, seems to be some-
what rare with factor analysis. If this is really the case, I couldn’t see why;
perhaps I’m just not looking in the right places.

2.2 The Graphical Form of Factor Models

One can represent the factor model as a graph like Figure 2. The square nodes
stand for the features, which are observable, and the circles for the factors,
which are not directly observable. The numbers beside the arrows are the factor
loadings, taken from the matrix w. When the loading of a feature on a factor
is zero, draw no arrow. Thus Xi2 = −0.75Fi1 + 0.34Fi2 + εi2. The correlations
between variables can be worked out from the arrows: Xi1 and Xi2 have only
the factor Fi1 in common, so their correlation is (0.87)(−0.75) = −0.65. On the
other hand, Xi3 and Xi4 have two factors in common, and so their correlation
is (0.13)(0.20) + (0.73)(0.10) = 0.099.

Xi2 and Xi3 are conditionally independent, given Fi2, because that is their
only common factor. On the other hand, Fi1 and Fi2 are conditionally dependent
given Xi2, because knowing Xi2 tells us something about the value of −0.75Fi1+
0.34Fi2, and so about Fi1 and Fi2. We will see later that there is a whole set of
rules for deducing conditional independence relations from diagrams like this.

9Suppose q is really 1, but by chance that gets rejected. Whether q = 2 gets rejected in
term is not independent of this!
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F1

Xa

0.87

Xb

-0.75

F2

0.34

Xc

0.13

Xd

0.20

F3

0.73 0.10

Xe

0.15

Xf

0.45

Figure 2: Graphical model form of a factor model. Circles stand for the unob-
served factors, boxes for the observed features. Edges indicate non-zero entries
in the factor loading matrix.

This is because factor models are a special case of the broader class of graphical
models, specifically a variety of linear Gaussian graphical model.

A natural impulse, when looking at something like Figure 2, is to reify the
factors and to treat the arrows causally: that is, to say that there really is
some variable corresponding to each factor, and that changing the value of that
variable will change the features. For instance, one might want to say that there
is a real, physical variable corresponding to the factor Fi1, and that increasing
this by one standard deviation will, on average, increase Xi1 by 0.87 standard
deviations, decrease Xi1 by 0.75 standard deviations, and do nothing to the
other features. Moreover, changing any of the other factors has no effect on
Xi1.

Sometimes all this is even right. How can we tell when it’s right?
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Figure 3: The model from Figure 2, after rotating the first two factors by 30
degrees around the third factor’s axis. The new factor loadings are rounded to
two decimal places.

2.3 The Rotation Problem Again

Consider the following matrix, call it R: cos 30 − sin 30 0
sin 30 cos 30 0

0 0 1


Applied to a three-dimensional vector, this rotates it thirty degrees counter-
clockwise around the vertical axis. If we apply R to the factor loading matrix
of the model in the figure, we get the model in Figure 3. Now instead of Xi1

being correlated with the other variables only through one factor, it’s correlated
through two factors, and Xi4 has incoming arrows from three factors.

Because the transformation is orthogonal, the distribution of the observa-
tions is unchanged. In particular, the fit of the new factor model to the data
will be exactly as good as the fit of the old model. If we try to take this causally,
however, we come up with a very different interpretation. The quality of the
fit to the data does not, therefore, let us distinguish between these two models,
and so these two stories about the causal structure of the data.

10



The rotation problem does not rule out the idea that checking the fit of a
factor model would let us discover how many hidden causal variables there are.

2.4 Factors or Mixtures?

Suppose we have two distributions with probability densities f0(x) and f1(x).
Then we can define a new distribution which is a mixture of them, with density
fα(x) = (1− α)f0(x) + αf1(x), 0 ≤ α ≤ 1. The same idea works if we combine
more than two distributions, so long as the sum of the mixing weights sum
to one (as do α and 1− α). We will look more later at mixture models, which
provide a very flexible and useful way of representing complicated probability
distributions. They are also a probabilistic, predictive alternative to the kind
of clustering techniques we’ve seen before this: each distribution in the mixture
is basically a cluster, and the mixing weights are the probabilities of drawing a
new sample from the different clusters.

I bring up mixture models here because there is a very remarkable result:
any linear, Gaussian factor model with k factors is equivalent to some mixture
model with k+1 clusters, in the sense that the two models have the same means
and covariances (Bartholomew, 1987, pp. 36–38). Recall from Lecture 13 that
the likelihood of a factor model depends on the data only through the correlation
matrix. If the data really were generated by sampling from k+ 1 clusters, then
a model with k factors can match the covariance matrix very well, and so get a
very high likelihood. This means it will, by the usual test, seem like a very good
fit. Needless to say, however, the causal interpretations of the mixture model
and the factor model are very different. The two may be distinguishable if the
clusters are well-separated (by looking to see whether the data are unimodal or
not), but that’s not exactly guaranteed.

All of which suggests that factor analysis can’t really tell us whether we have
k continuous hidden causal variables, or one discrete hidden variable taking k+1
values.

2.5 The Thomson Sampling Model

We have been working with fewer factors than we have features. Suppose that’s
not true. Suppose that each of our features is actually a linear combination of
a lot of variables we don’t measure:

Xij = ηij +
q∑

k=1

AikTkj = ηij + ~Ai · ~Tj (4)

where q � p. Suppose further that the latent variables Aik are totally inde-
pendent of one another, but they all have mean 0 and variance 1; and that the
noises ηij are independent of each other and of the Aik, with variance φj ; and
the Tkj are independent of everything. What then is the covariance between Xia

and Xib? Well, because E [Xia] = E [Xib] = 0, it will just be the expectation of

11



the product of the features:

E [XiaXib] = E
[
(ηia + ~Ai · ~Ta)(ηib + ~Ai · ~Tb)

]
(5)

= E [ηiaηib] + E
[
ηia ~Ai · ~Tb

]
+ E

[
ηib ~Ai · ~Ta

]
+ E

[
( ~Ai · ~Ta)( ~Ai · ~Tb)

]
(6)

= 0 + 0 + 0 + E

[(
q∑

k=1

AikTka

)(
q∑
l=1

AilTlb

)]
(7)

= E

∑
k,l

AikAilTkaTlb

 (8)

=
∑
k,l

E [AikAil]TkaTlb (9)

=
∑
k,l

E [AikAil] E [TkaTlb] (10)

=
q∑

k=1

E [TkaTkb] (11)

where to get the last line I use the fact that E [AikAil] = 1 if k = l and = 0
otherwise. If the coefficients T are fixed, then the last expectation goes away
and we merely have the same kind of sum we’ve seen before, in the factor model.

Instead, however, let’s say that the coefficients T are themselves random
(but independent of A and η). For each feature Xia, we fix a proportion za
between 0 and 1. We then set Tka ∼ Bernoulli(za), with Tka |= Tlb unless k = l
and a = b. Then

E [TkaTkb] = E [Tka] E [Tkb] = zazb

and
E [XiaXib] = qzazb

Of course, in the one-factor model,

E [XiaXib] = wawb

So this random-sampling model looks exactly like the one-factor model with
factor loadings proportional to za. The tetrad equation, in particular, will hold.

Now, it doesn’t make a lot of sense to imagine that every time we make
an observation we change the coefficients T randomly. Instead, let’s suppose
that they are first generated randomly, giving values Tkj , and then we generate
feature values according to Eq. 4. The covariance between Xia and Xib will be∑q
k=1 TkaTkb. But this is a sum of IID random values, so by the law of large

numbers as q gets large this will become very close to qzazb. Thus, for nearly
all choices of the coefficients, the feature covariance matrix should come very
close to satisfying the tetrad equations and looking like there’s a single general
factor.
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In this model, each feature is a linear combination of a random sample of
a huge pool of completely independent features, plus some extra noise specific
to the feature.10 Precisely because of this, the features are correlated, and the
pattern of correlations is that of a factor model with one factor. The appearance
of a single common cause actually arises from the fact that the number of causes
is immense, and there is no particular pattern to their influence on the features.

The file thomson-model.R (on Blackboard) simulates the Thomson model.

> tm = rthomson(50,11,500,50)
> factanal(tm$data,1)

The first command generates data from n = 50 items with p = 11 features and
q = 500 latent variables. (The last argument controls the average size of the
specific variances φj .) The result of the factor analysis is of course variable, de-
pending on the random draws; my first attempt gave the proportion of variance
associated with the factor as 0.391, and the p-value as 0.527. Repeating the
simulation many times, one sees that the p-value is pretty close to uniformly
distributed, which is what it should be if the null hypothesis is true (Figure
4). For fixed n, the distribution becomes closer to uniform the larger we make
q. In other words, the goodness-of-fit test has little or no power against the
alternative of the Thomson model.

Modifying the Thomson model to look like multiple factors grows notation-
ally cumbersome; the basic idea however is to use multiple pools of independently-
sampled latent variables, and sum them:

Xij = ηij +
q1∑
k=1

AikTkj +
q2∑
k=1

BikRkj + . . .

where the Tkj coefficients are uncorrelated with the Rkj , and so forth. In ex-
pectation, if there are r such pools, this exactly matches the factor model with
r factors, and any particular realization is overwhelmingly likely to match if the
q1, q2, . . . qr are large enough.11

It’s not feasible to estimate the T of the Thomson model in the same way that
we estimate factor loadings, because q > p. This is not the point of considering
the model, which is rather to make it clear that we actually learn very little
about where the data come from when we learn that a factor model fits well. It

10When Godfrey Thomson introduced this model in 1914, he used a slightly different pro-
cedure to generate the coefficient Tkj . For each feature he drew a uniform integer between
1 and q, call it qj , and then sampled the integers from 1 to q without replacement until he
had qj random numbers; these were the values of k where Tkj = 1. This is basically similar
to what I describe, setting zj = qj/q, but a bit harder to analyze in an elementary way. —
Thomson (1916), the original paper, includes what we would now call a simulation study of
the model, where Thomson stepped through the procedure to produce simulated data, calcu-
late the empirical correlation matrix of the features, and check the fit to the tetrad equations.
Not having a computer, Thomson generated the values of Tkj with a deck of cards, and of
the Aik and ηij by rolling 5220 dice.

11A recent paper on the Thomson model (?) proposes just this modification to multiple
factors and to Bernoulli sampling. However, I proposes this independently, in the fall 2008
version of these notes, about a year before their paper.
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> plot(ecdf(replicate(200,factanal(rthomson(50,11,500,50)$data,1)$PVAL)),
xlab="p value",ylab="Empirical CDF",
main="Sampling distribution of FA p-value under Thomson model",
sub="200 replicates of 50 subjects each")

> abline(0,1,lty=2)

Figure 4: Mimcry of the one-factor model by the Thomson model. The Thomson
model was simulated 200 times with the parameters given above; each time, the
simulated data was then fit to a factor model with one factor, and the p-value of
the goodness-of-fit test extracted. The plot shows the empirical cumulative dis-
tribution function of the p-values. If the null hypothesis were exactly true, then
p ∼ Unif(0, 1), and the theoretical CDF would be the diagonal line (dashed).
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could mean that the features arise from combining a small number of factors, or
on the contrary from combining a huge number of factors in a random fashion.
A lot of the time the latter is a more plausible-sounding story.12

For example, a common application of factor analysis is in marketing: you
survey consumers and ask them to rate a bunch of products on a range of
features, and then do factor analysis to find attributes which summarize the
features. That’s fine, but it may well be that each of the features is influenced
by lots of aspects of the product you don’t include in your survey, and the
correlations are really explained by different features being affected by many
of the same small aspects of the product. Similarly for psychological testing:
answering any question is really a pretty complicated process involving lots of
small processes and skills (of perception, several kinds of memory, problem-
solving, attention, etc.), which overlap partially from question to question.

12Thomson (1939) remains one of the most insightful books on factor analysis, though
obviously there have been a lot of technical refinements since he wrote. It’s strongly recom-
mended for anyone who plans to make much use of factor analysis. While out of print, used
copies are reasonably plentiful and cheap, and at least one edition is free online (URL in the
bibliography).
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3 Advice

Principal components is a pretty good thing to try if you need or want to
do dimension reduction but aren’t sure what exactly to use. It’s got some
reasonable mathematical properties, can often be interpreted, and runs fast
(comparatively speaking).

Factor analysis does not offer any general advantages over PCA when it
comes to data reduction, except for preserving correlations. In practice, factor
analysis is no better at accounting for variance than PCA, perhaps a bit worse
and certainly more complicated (?). One or the other of them may work better,
depending on your data and what you want to do with it. Factor analysis can
also be used as a predictive model. This is possible because it fits a distribution
to the data, and not because it actually gets at the underlying causal structure
with any reliability or power.

In both cases, the dimensions found by PCA and FA may be real features of
the data, or they may just be more-or-less convenient fictions and summaries.
That they are real is a hypothesis which these methods can suggest but for which
they can provide only very weak evidence. This matters because ultimately we
do data mining to discover knowledge on which we can act. It’s one thing if our
action is just a prediction to help us adjust to the world, but it’s another if we
go out and try to change the world based on how we think the different parts
of it depend on each other. To do that well, we need to know what those parts
really are.
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