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abstract

Principal component analysis (PCA) is a technique that is useful for the
compression and classification of data.  The purpose is to reduce the
dimensionality of a data set (sample) by finding a new set of variables,
smaller than the original set of variables, that nonetheless retains most
of the sample's information.

By information we mean the variation present in the sample,
given by the correlations between the original variables.  The new
variables, called principal components (PCs), are uncorrelated, and are
ordered by the fraction of the total information each retains.



overview

• geometric picture of PCs

• algebraic definition and derivation of PCs

• usage of PCA

• astronomical application



Geometric picture of principal components (PCs)

A sample of n observations in the 2-D space

Goal:  to account for the variation in a sample
           in as few variables as possible, to some accuracy



Geometric picture of principal components (PCs)

• the 1st PC         is a minimum distance fit to a line in      space

PCs are a series of linear least squares fits to a sample,
each orthogonal to all the previous. 

• the 2nd PC        is a minimum distance fit to a line
   in the plane perpendicular to the 1st PC 



Algebraic definition of PCs

Given a sample of n observations on a vector of p variables

λ

where the vector

is chosen such that 

define the first principal component of the sample
by the linear transformation

is maximum 



Algebraic definition of PCs

Likewise, define the kth  PC of the sample
by the linear transformation

λ
where the vector

is chosen such that is maximum 

subject to 

and to 



Algebraic derivation of coefficient vectors

To find           first note that  

where

is the covariance matrix for the variables  



To find             maximize                         subject to

Algebraic derivation of coefficient vectors

Let λ be a Lagrange multiplier

by differentiating…

then maximize

is an eigenvector of

corresponding to eigenvalue

therefore



We have maximized

Algebraic derivation of 

So         is the largest eigenvalue of

The first PC         retains the greatest amount of variation in the sample.



To find the next coefficient vector           maximize 

Algebraic derivation of coefficient vectors

then let λ and φ be Lagrange multipliers, and maximize

subject to

and to

First note that  



We find that          is also an eigenvector of  

Algebraic derivation of coefficient vectors

whose eigenvalue                  is the second largest.

In general  

• The kth largest eigenvalue of        is the variance of the kth PC.

• The kth PC          retains the kth greatest fraction
    of the variation in the sample.



Algebraic formulation of PCA

Given a sample of n observations

define a vector of p PCs

according to

on a vector of p variables

whose kth column is the kth eigenvector            of
where          is an orthogonal p x p matrix

Then is the covariance matrix of the PCs,

being diagonal with elements



usage of PCA:  Probability distribution for sample PCs

If (i)   the n observations of       in the sample are independent  & 

(ii)         is drawn from an underlying population that
        follows a p-variate normal (Gaussian) distribution
        with known covariance matrix

then 

where          is the Wishart distribution 

else            utilize a bootstrap approximation



usage of PCA:  Probability distribution for sample PCs

If (i)                         follows a Wishart distribution  &

(ii)   the population eigenvalues         are all distinct

then            the following results hold as

(a tilde denotes a population quantity) 

•  all the        are independent of all the •                                                and •   •   

are jointly normally distributed 



usage of PCA:  Probability distribution for sample PCs

and

(a tilde denotes a population quantity) 

•   •    



usage of PCA:  Inference about population PCs 

If                     follows a p-variate normal distribution

MLE’s of        ,        , and 

confidence intervals for         and  

hypothesis testing for        and 

then            analytic expressions exist* for

else            bootstrap and jackknife approximations exist

*see references, esp. Jolliffe 



usage of PCA:  Practical computation of PCs 

In general it is useful to define standardized variables by

If                the        are each measured about their sample mean

then           the covariance matrix          of 

will be equal to the correlation matrix of  

  
and            the PCs                             will be dimensionless



usage of PCA:  Practical computation of PCs 

Given a sample of n observations on a vector       of p variables

  

(each measured about its sample mean)

compute the covariance matrix

where        is the n x p matrix

Then compute the n x p matrix

whose ith row is the PC score

for the ith observation.

whose ith row is the ith obsv.



usage of PCA:  Practical computation of PCs 

Write                              to decompose each observation into PCs



usage of PCA:  Data compression 

Because the kth PC retains the kth greatest fraction of the variation 
we can approximate each observation
by truncating the sum at the first m < p PCs



usage of PCA:  Data compression 

Reduce the dimensionality of the data
from p to m < p by approximating

where              is the n x m portion of

and               is the p x m portion of



Dressler, et al. 1987

astronomical application:  PCs for elliptical galaxies

Rotating to PC in BT – Σ space improves Faber-Jackson relation

as a distance indicator



astronomical application:  Eigenspectra (KL transform)

Connolly, et al. 1995
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