
Virginia Commonwealth University
VCU Scholars Compass

Social Work Publications School of Social Work

2014

A Demonstration of Canonical Correlation
Analysis with Orthogonal Rotation to Facilitate
Interpretation
Patrick V. Dattalo
Virginia Commonwealth University, pdattalo@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/socialwork_pubs

Part of the Social Work Commons

This Article is brought to you for free and open access by the School of Social Work at VCU Scholars Compass. It has been accepted for inclusion in
Social Work Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Recommended Citation
Dattalo, P. (2014). A demonstration of canonical correlation analysis with orthogonal rotation to facilitate interpretation. Unpublished
manuscript, School of Social Work, Virginia Commonwealth University, Richmond, Virginia.

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/socialwork_pubs?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/socialwork?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/socialwork_pubs?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/713?utm_source=scholarscompass.vcu.edu%2Fsocialwork_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


     

 

 

 

 

 

 

 

 

 

 

A Demonstration of Canonical Correlation Analysis with Orthogonal Rotation to Facilitate 

Interpretation 

 

 

 

 

 

 

    Submitted by: 

        

      Patrick Dattalo 

       Virginia Commonwealth University 

        School of Social Work 

 

 



2 

 

Overview and Key Terms 

Originally proposed by Hotelling (1935; 1936), canonical correlation analysis (CCA) is a 

generalization of Karl Pearson’s product moment correlation coefficient (Pearson, 1908). CCA is 

presented first as a general perspective on other multivariate procedures discussed in this book, 

including multivariate analysis of variance (MANOVA) and multivariate multiple regression 

(MMR) as suggested by, for example Baggaley (1981) and Thompson (1991). More specifically, 

Knapp (1978) demonstrated that “virtually all of the commonly encountered parametric tests of 

significance can be treated as special cases of canonical correlation analysis” (p. 410). Structural 

equation modeling (SEM), which is also discussed in this book, represents an even broader 

multivariate perspective, since it may incorporate measurement error estimation as part of the 

analysis (cf. Bagozzi, Fornell, & Larcker, 1981; Fan, 1997).  CCA also is presented first because 

it can be used as a data reduction technique that may precede MANOVA, MMR, and SEM.  

CCA models the relationships between two variable sets, with each set consisting of two 

or more variables. For example, let CVX1 = a1X1 + a2X2 +...+ apXp and CVY1 = b1Y1 + b2 Y2 + ... 

+ bm Y, where CVX1 and CVY1 are the first canonical variates u and v respectively. Together, 

each pair of canonical variates comprises a canonical function (see Figure 1).  
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Figure 1 Components of a Canonical Function 

 

 

The maximum number of canonical functions that can be extracted equals the number of 

variables in the smallest canonical variate. For example, when the research problem involves five 

u-variables and three v-variables, the maximum number of canonical functions that can be 

extracted is three. In effect, then, CCA represents the bivariate correlation between the two 

canonical variates in a canonical function.  

Knapp (1978) provides a detailed presentation of CCA. For Knapp (1978), familiarity 

with matrix algebra, including knowledge of eigenvalues and eigenvectors, is assumed. 

According to Knapp (1978), the first step in a CCA is the calculation of a correlation matrix of 

the variables in the model. A symmetric matrix of reduced rank equal to the number of variables 

in the smaller of the two sets is then derived from the intervariable correlation matrix, and 

canonical correlation coefficients (Rc) are quantified. More specifically, eigenvalues are 

computed for the matrix, with each eigenvalue equal to a squared canonical correlation 

coefficient. Bartlett (1948), for example, highlighted the mathematical similarities between CCA 

and factor analysis. Cooley and Lohnes (1971) emphasized that the canonical model selects 

linear functions of tests that have maximum variances, subject to the restriction of orthogonality. 



4 

 

A squared canonical correlation coefficient indicates the proportion of variance that the two 

composites derived from the two-variable sets linearly share. 

Software to perform CCA analysis includes NCSS (www.ncss.com/), SAS 

(www.sas.com), and PASW (www.spss.com), Stata (www.stata.com). CCA will be 

demonstrated here with Stata.  References to resources for users of PASW and SAS also are 

provided. 

 

The Canonical Correlation Analysis Procedure 

The approach to CCA recommended here is as follows: (1) estimate one or more 

canonical functions, and calculate the magnitudes of Rc and the redundancy index; (2) assess 

overall model fit based on the statistical significance of a multivariate F-test; (3) interpret the 

relative importance of each of the original variables the canonical functions by using 

standardized canonical coefficients (i.e., canonical weights) and canonical loadings (i.e., 

structure correlations); (4) consider the use of orthogonal rotation to facilitate interpretation of 

canonical functions, canonical loadings, and standardized canonical coefficients; and (5) validate 

the canonical correlation model. 

 

Estimating Canonical Functions 

The first step in canonical correlation analysis is to derive one or more canonical 

functions. Derivation of successive canonical functions is similar to the procedure used to derive 

a factor analysis model. That is, in factor analysis, the first factor extracted accounts for the 

maximum amount of variance in the set of variables, and successive factors are extracted from 

the residual variance of preceding factors. Accordingly, in CCA the first canonical function is 
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derived to maximize the correlation between u-variables and v-variables. Successive functions 

are extracted from the residual variance of preceding functions. Since canonical functions are 

based on residual variance. Each function is uncorrelated (i.e., orthogonal) from other functions 

derived from the same set of data. 

The strength of the relationship between the pairs of variates is reflected by Rc. No 

generally accepted guidelines have been established regarding suitable sizes for canonical 

correlations. It seems logical that the guidelines suggested for significant factor loadings in factor 

analysis might be useful with canonical correlations, particularly when one considers that 

canonical correlations refer to the variance explained in the canonical variates (i.e., linear 

composites), not the original variables. A relatively strong canonical correlation (> 0.30, 

corresponding to about 10% of variance explained) may be obtained between two linear 

composites (i.e., canonical variates), even though these linear composites may not extract 

significant portions of variance from their respective sets of variables. 

When squared, Rc represents the amount of variance in one optimally weighted canonical 

variate accounted for by the other optimally weighted canonical variate. This shared variance 

between the two canonical variates is also termed canonical root or eigenvalue. Although Rc 

appears to be a is a simple and appealing measure of the shared variance, it may lead to some 

misinterpretation because the squared canonical correlation represents the variance shared by the 

linear composites of the sets of variables, and not the variance extracted from the sets of 

variables themselves.  

One alternative or supplemental strategy for interpreting Rc is the redundancy index 

(Rd). The redundancy index is similar to multiple regression’s R
2
 statistic. In multiple regression, 

R
2
 represents the amount of variance in the dependent variable explained by the model’s 
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independent variables.  Analogously, in CCA, Rd is the amount of variance in the original 

variables of one set of variables in a canonical function that is explained by the canonical variate 

of the other set of variables in that canonical function.  An Rd can be computed for both the u-

variable and the v-variable canonical variates in each canonical function. For example, an Rd for 

the v-variables canonical variate represents the amount of variance in the original set of u-

variables explained by the v-variables canonical variate. High redundancy suggests a high ability 

to predict. When there is a clearly defined relationship between IVs and DVs, a researcher will 

be interested primarily in the Rd of the independent canonical variate in predicting the variance in 

the set of original variables in the dependent set. Although there also will be a Rd for the 

dependent variate predicting the variance in the independent variables, the latter Rd  may not 

reported).  

Calculating an Rd is a three step process: 

 

1. Calculate the amount of shared variance (SV) in a variable set measured by its canonical 

variate. Shared variance (SV) equals the average of the squared canonical loading.  A Canonical 

loading measures the simple linear correlation between an original observed variable in the u- or 

v-variable set and that set’s canonical variate. Canonical loadings are discussed further below in 

the section entitled “Interpreting the Canonical Variates.” 

 

2. Calculate the amount of shared variance between the u and the v canonical variates; 

namely, the canonical root. This is, calculate R
2
; and 
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3. The redundancy index of a variate is then derived by multiplying the two components 

(shared variance of the variate multiplied by the squared canonical correlation) to find the 

amount of shared variance explained by the opposite variate.  

To have a high redundancy index, one must have a high canonical correlation and a high 

degree of shared variance explained by its own variate. A high canonical correlation alone does 

not ensure a valuable canonical function. Redundancy indices are calculated for both the 

dependent and the independent variates, although in most instances the researcher is concerned 

only with the variance extracted from the dependent variable set, which provides a much more 

realistic measure of the predictive ability of canonical relationships. The researcher should note 

that although the canonical correlation is the same for both variates in the canonical function, the 

redundancy index will most likely vary between the two variates, because each will have a 

different amount of shared variance:  

Rd = SV * Rc
2
 

Rd of a canonical variate, then, is shared variance explained by its own set of variables 

multiplied by the squared canonical correlation (Rc
2
) for the pair of variates. To have a high Rd, 

one must have a high canonical correlation and a high degree of shared variance explained by the 

dependent variate. A high canonical correlation alone does not ensure a valuable canonical 

function. The Rd can only equal one when the synthetic variables for the function represent all 

the variance of every variable in the set, and the squared Rc also equals one. 

A test for the significance of Rd has been proposed by Cleroux and Lazraq (2002), but has 

not been widely utilized. Takane and Hwang (2005) have criticized Cleroux and Lazraq’s 

proposed test as ill conceived. A major problem is that it regards each redundancy component as 

if it were a single observed predictor variable, which cannot be justified except for the rare 
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situations in which there is only one predictor variable. Consequently, the proposed test may 

leads to biased results, particularly when the number of predictor variables is large, and it cannot 

be recommended for use. This is shown both theoretically and by Monte Carlo studies. 

In summary, canonical correlation reflects the percent of variance in the dependent 

canonical variable explained by the independent canonical variable and is used when exploring 

relationships between the independent and the dependent set of variables. In contrast, 

redundancy has to do with the percent of variance in the set of original individual dependent 

variables explained by the independent canonical variable and is used when assessing the 

effectiveness of the canonical analysis in capturing the variance of the original variables. It is 

important to note that, although the canonical correlation is the same for both variates in the 

canonical function, Rd may vary between the two variates (Hair, et al., 1998). That is, as each 

variate will have a differing amount of shared variance. As with the Rc, the researcher must 

determine whether each redundancy index is sufficiently large to justify interpretation in light of 

its theoretical and practical significance to the research problem being investigated to determine. 

Because CCA optimizes Rc, Cramer and Nicewander (1979) argue that redundancy coefficients 

are not truly multivariate, and that it is contradictory to calculate and interpret an Rd as part of a 

CC.  However, it is suggested here that, at a minimum, Rd should be considered as an additional 

perspective on the meaning of an Rc. That is, Rd may help to assess the practical significance of 

Rc. With large sample sizes, a relatively small Rc (e.g., < .30) may achieve statistical 

significance. For example, Rc explains 9 percent of the variance in a relationship between two 

sets of variables). Calculating an Rd may allow a researcher to maintain a perspective on actual 

variance being explained by a canonical root: How much of the variability in one set of variables 

is explained by the other. 
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Assessing Overall Model Fit 

Usual practice is to analyze functions whose canonical correlation coefficients are 

statistically significant (e.g., p < 0.05). Multivariate test of the statistical significance of all 

canonical roots include Wilks’ lambda, Hotelling’s trace, Pillai’s trace, and Roy’s largest root. 

Before discussing these tests, three concepts from matrix algebra are briefly defined: eigenvalue, 

and determinant. These abstract mathematical concepts, which provide information about a 

matrix, may be most easily understood through examples. Readers interested in a more detailed 

discussion of these concepts than will be provided here should consult, for example, Carroll and 

Green (1997). 

An m × n matrix is a rectangular array of real numbers with m rows and n columns. 

Rows are horizontal and columns are vertical. The determinant of a matrix is a summary 

measure of the total variance in that matrix when intercorrelations among variables are taken into 

account. Synonymously, a determinant is a measure of the area (or volume) of a shape of a 

matrix defined by its rows and columns. The 2×2 matrix 

   

has a determinant, defined as A  = ad − bc. 

An eigenvalue provides quantitative information about the variance in a portion of a data 

matrix. Specifically, if A is a linear transformation represented by a matrix A such that AX = λ X 

for some scalar λ, then λ is called the eigenvalue of A with corresponding eigenvector X. In the 

context of factor analysis, an eigenvalue is a constant value that is associated with a factor in the 

analysis. An eigenvalue of 1 associated with a factor indicates that the factor explains an amount 

of variance equal to the amount of variance explained by an average variable in the model. 
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Perhaps the most widely used multivariate F-test is Wilk’s Lamda (ΛΛΛΛ), where  

ΛΛΛΛ    0 1
WW

T B W
= = ≤ Λ ≤

+
 

W  and T  are the determinants of the within and total sum of squares cross-products matrices. 

W is the within group variability, where each score is deviated about its group mean for each 

variable. T is total variability, where each score is deviated about the grand mean for each 

variable. B is the between group variability. Within the context of CCA, B is a measure of the 

differential relationship of one set (e.g., the IVs) with another set (e.g., the DVs).  Wilk’s Λ is an 

inverse criterion: the smaller the value of L, the more evidence for the relationship of the IVs 

with the DVs. If there is no association between the two sets of variables, the B = 0 and ΛΛΛΛ = 

0

W

W+
= 1; if B were very large relative to W then Λ Λ Λ Λ would approach 0.  

Wilk’s Λ also can be expressed as a product of the eigenvalues of 
W

T
 expressed in matrix 

notation as WT
-1

.  The other aforementioned three multivariate F-tests also can be expressed as a 

function of eigenvalues as follows: Roy’s largest root equals the largest eigenvalue of BW
-1

, 

Hotelling- lawley trace equals the sum of the eigenvalues of BW
-1

, and Pillai-Bartlett trace 

equals the sum of the eigenvalues of BW
-1

.  

In terms of power, none of the aforementioned F-tests is always the choice with the 

greatest statistical power. The Pillai-Bartlett trace is considered the most robust to violations of 

assumptions, Wilk’s is the most widely used and consequently more likely to be familiar to 

readers (Warner, 2008). The Pillai-Bartlett trace is the most conservative of these four F-tests, 
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but is a viable alternative if there are reasons to suspect that the assumptions of CCA are 

untenable. 

 

Interpreting the Canonical Variates 

If, based on a multivariate F-test, (1) the canonical relationship is statistically significant, 

and (2) the magnitudes of Rc and the redundancy index seem to suggest practical significance, 

the researcher may then interpret the relative importance of each of the original variables in the 

canonical functions. Methods for interpreting the relative importance of each of the original 

variables include (1) standardized canonical coefficients (i.e., canonical weights); and (2) 

canonical loadings (i.e., structure correlations). 

The traditional approach to interpreting canonical functions involves examining the sign 

and the magnitude of the standardized canonical coefficients assigned to each variable in its 

canonical variate. See chapter 4 for a more detailed discussion of standardized coefficients 

within an analogous regression context. Variables with relatively larger standardized canonical 

coefficients contribute more to the variates. Similarly, variables whose standardized canonical 

coefficients have opposite signs exhibit an inverse relationship with each other, and variables 

with standardized canonical coefficients of the same sign exhibit a direct relationship. However, 

interpreting the relative importance or contribution of a variable by its canonical weight is 

subject to the same criticisms associated with the interpretation of beta weights in regression 

techniques. For example, a small weight may mean either that its corresponding variable is 

irrelevant in determining a relationship, or that it has been partialed out of the relationship 

because of high degree of multicollinearity. Another problem with the use of canonical weights 

is that these weights are subject to considerable instability (variability) from one sample to 
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another. This instability occurs because the computational procedure for canonical analysis 

yields weights that maximize the canonical correlations for a particular sample of observed 

dependent and independent variable sets. These problems suggest caution in using standardized 

canonical coefficients to interpret the results of a canonical analysis.  

Canonical loadings have been increasingly used as a basis for interpretation because of 

the deficiencies inherent in canonical weights. Canonical loadings, also called structure 

coefficients, measure the simple linear correlation between an original observed variable in the 

u- or v-variable set and that set’s canonical variate. The canonical loading reflects the variance 

that the observed variable shares with the canonical variate and can be interpreted like a factor 

loading in assessing the relative contribution of each variable to each canonical function. The 

methodology considers each independent canonical function separately and computes the within-

set variable-to-variate correlation. The larger the coefficient, the more important it is in deriving 

the canonical variate. Also, the criteria for determining the significance of canonical structure 

correlations are the same as with factor loadings in factor analysis (e.g., 0.30, 0.50, and 0.70 are 

frequently used thresholds for considering a loading practically significant). 

Canonical loadings, like weights, may be subject to considerable variability from one 

sample to another. This variability suggests that loadings, and hence the relationships ascribed to 

them, may be sample-specific, resulting from chance or extraneous factors. Although canonical 

loadings are considered relatively more valid than weights as a means of interpreting the nature 

of canonical relationships, the researcher still must be cautious when using loadings for 

interpreting canonical relationships, particularly with regard to the external validity of the 

findings. 
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Each of the aforementioned two methods for interpreting canonical variates (standardized 

canonical coefficients and canonical loadings) provides a unique perspective on the variates. 

Researchers should consider utilizing both methods. If the results of the two methods converge, 

there is evidence for the veracity of these results. If the results are inconsistent, then the 

researcher has an opportunity to further explore the relationships between and among the 

variables in the model being analyzed. 

 

Rotation of Structure and Canonical Coefficients 

There are similarities between principal components factor analysis (PCFA) and CCA. 

Both are variable reduction schemes that use uncorrelated linear combinations. In PCFA, 

generally the first few linear combinations (the components) account for most of the total 

variance in the original set of variables, whereas in CCA the first few pairs of linear 

combinations (canonical variates) generally account for most of the between association. Also, 

interpreting the principal components, we used the correlations between the original variables 

and the canonical variates will again be used to name the canonical variates. 

It has been argued that often the interpretation of the components can be difficult, and 

that a rotation (e.g., Varimax) may be quite useful in obtaining factors that tend to load high on a 

small number of variables (Finn, 1978).  Only the canonical covariates corresponding to 

significant canonical correlations should be rotated, in order to ensure that the rotated variates 

still correspond to significant association. The situation, however, is more complex, since two 

sets of factors (the successive pairs of canonical covariates) are being simultaneously rotated. 

Cliff and Krus (1976) showed mathematically that such a procedure is sound; the practical 
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implementation of the procedure is possible (Finn, 1978). Cliff and Krus (1976) also 

demonstrated, through an example, how interpretation is made clearer through rotation. 

Other researchers (c.f. Rencher, 1992) do not recommend rotation of the canonical 

variate coefficients. When a pair of canonical variate coefficients (i.e., v- and u-variables) is 

rotated, variance will be spread more evenly across the pair, and CCA’s maximization property 

is lost. Consequently, researchers must decide if they are willing to sacrifice maximization for 

increased interpretability.  

 

Model Validation 

In the last stage of CCA, the model should be validated.  If sample size permits, one 

approach to validation is sample splitting, which involves creating two subsamples of the data 

and performing a CCA analysis on each subsample. Then, the results can be compared. 

Differences in results between subsamples suggest that these results may not generalize to the 

population. 

 

Sample Size Requirements 

Stevens (1996) provides a thorough discussion of the sample size for CCA. To estimate 

the canonical loadings, only for the most important canonical function, Stevens recommends a 

sample size at least 20 times the number of variables in the analysis. To arrive at reliable 

estimates for two canonical functions, a sample size of at least 40 to 60 times the number of 

variables in the analysis is recommended. 

Another perspective on estimating sample size for CCA is provided by Barcikowski and 

Stevens (1975). These authors suggest that CCA may detect stronger canonical correlations (e.g., 
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R > 0.7), even with relatively small samples (e.g., n = 50). Weaker canonical correlations (e.g., R 

= 0.3) require larger sample sizes (n > 200) to be detected.  Researchers should consider 

combining both perspectives to triangular on a minimally sufficient sample size for CCA. That 

is, they should consider the number of canonical functions to be interpreted, and the relative 

strength of the canonical loadings of the variables represented by the functions of interest. 

 

Strengths and Limitations of CCA 

Important limitations of CCA are as follows:  (1) Rc reflects the variance shared by the 

linear composites of the sets of variables, and not the variance extracted from the variables; (2) Rc is 

derived to maximize the correlation between linear composites, not to maximize the variance 

extracted; and (3) it may be difficult to identify meaningful relationships between the subsets of u- 

and v-variables.  That is, procedures that maximize the correlation do not necessarily maximize 

interpretation of the pairs of canonical variates; therefore canonical solutions are not easily 

interpretable. Rc may be high, but the Rd maybe low.  

CCA, however, can provide and effective tool for gaining insight into what otherwise may 

be an unmanageable number of bivariate correlations between sets of variables. CCA is a 

descriptive technique which can define structure in both the dependent and independent variates 

simultaneously.  Therefore, situations where a series of measures are used for both dependent and 

independent variates are a logical choice for application of CCA.  Canonical correlation also has the 

ability to define structure in each variate (i.e., multiple variates representing orthogonal functions) 

which are derived to maximize their correlation.  Accordingly, the approach recommended here is 

to the use of, at least, the following four criteria to decide which canonical functions should be 

interpreted: (1) level of statistical significance based on a multivariate F-test of all canonical 
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functions; (2) level of statistical significance of each function; (3) magnitude of the canonical 

correlation; and (4) redundancy measure for the percentage of variance accounted for from the 

two data sets. 

 

Annotated Example 

A study is conducted to examine the relationship between factors that influence post-

adoption service utilization and positive adoption outcomes. Specifically, the study tests a model 

that links (1) factors influencing the utilization of post-adoption services (parents’ perceptions of 

self-efficacy, relationship satisfaction between parents, and attitudes toward adoption) with (2) 

service utilization, and (3) positive adoption outcomes (satisfaction with parenting and 

satisfaction with adoption agency). 

The researcher performs a canonical correlation analysis as follows (all Stata commands are 

numbered in sequence and highlighted in bold italics): 

 

Variables in the First Set (i.e., the u-variables) 

 

• Parents’ perceptions of self-efficacy (scale score) 

• Relationship satisfaction between parents (scale score) 

• Attitudes toward adoption (scale score) 

 

Variables in the Second Set (i.e., the v-variables) 

 

• Service utilization (the number of times client contacted agency since becoming a client) 
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• Satisfaction with parenting (scale score) 

• Satisfaction with adoption agency (scale score) 

 

As an orientation to the relationships between pairs of variables in these data, Figure 2 displays 

the bivariate correlation matrix of the six variables in the model. 

Figure 2 

 

 

Estimation of Canonical Functions 

 

1.  canon (self_efficacy relationship_sat attitude_adoption) (service_utilization 

satisfaction_parenting satisfaction_adopt_agency), test (1 2 3) 

 

The first part of the output for canonical correlation analysis consists of (1) the raw canonical 

coefficients, (2) standard errors, (3) Wald t-tests, (4) p-values, (5) confidence intervals, and (6) 

the canonical correlation coefficient for each function. Note that 2, 3, 4, 5 are for the raw 

coefficients (see Figure 3). 
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 Figure 3 

 

This first part of the output is further divided into one section for each of the canonical 

functions; in this case there are three functions because the number of canonical functions is 

equal to the number of variables in the smaller of the u- and v-variable sets. That is, the u-

variables include parents’ perceptions of self-efficacy, relationship satisfaction between parents, 

and attitudes toward adoption; and the v-variables include service utilization, satisfaction with 

parenting, and satisfaction with adoption agency. The standard error of each test is calculated as 

the average conditional standard error across all students. 

The unstandardized or “raw”canonical coefficients are the weights of the u-variables and 

the v-variables, which maximize the correlation between the two sets of variables. That is, the 

unstandardized canonical coefficients indicate how much each variable in each set is weighted to 

create the linear combinations that maximize the correlation between the two sets. The 
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unstandardized canonical coefficients are interpreted in a manner analogous to interpreting 

unstandardized regression coefficients. For example, for the variable parents’ perceptions of self-

efficacy, a one unit increase leads to a .0111 increase in the first canonical variate of the v-

variables set, when all of the other variables are held constant. At the bottom of the tables 

canonical correlation coefficients (Rc) are reported for each function. The strength of the 

relationship between the pairs of variates is reflected by the CCA coefficient (Rc).  For the first 

function, Rc = 0.8020. For the second function, Rc = 0.5798. For the third function, Rc =   0.1073. 

 

Assessing Overall Model Fit  

 

The next part of Stata’s output includes the multivariate tests for each function (see 

Figure 4). First, Wilk’s lamda and corresponding F-tests, evaluate the null hypothesis that 

canonical correlations coefficients for all functions are zero.  

Next, each function is evaluated against a null hypothesis that its canonical correlation 

coefficient is zero (i.e., the significance tests for canonical correlations 1, 2, 3). For this model, 

the first two canonical correlation coefficients are statistically significant (i.e., the null that the 

canonical correlation for a function equals zero is rejected or cannot be retained). The third 

function is not significant based on Wilk’s lamda and corresponding F-tests, and will not be 

interpreted. 

 

 

 

 

 

Figure 4 
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Interpreting the Canonical Variates 

 

2. canon, stdcoef  

 

When the variables in the model have different standard deviations, as they are in this example 

(see Figure 5), the standardized coefficients allow for easier comparisons among the variables. 

Since canonical correlation coefficients are standardized, their weights may be compared. The 

ratio of canonical correlation weights for a set of canonical roots is their relative importance for 

the given effect.  

 

 

 

 

 

Figure 5 
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The standardized canonical coefficients for the first two (significant) functions are displayed in 

Figure 6. For the first variable set, attitudes toward adoption is most important, followed by 

parents’ perceptions of self-efficacy, and relationship satisfaction between parents. The 

standardized canonical coefficients are interpreted in a manner analogous to interpreting 

standardized regression coefficients. For example, a one standard deviation increase in parents’ 

perceptions of self-efficacy leads to a .0593 standard deviation increase in the score on the first 

canonical variate in the second variable set when the other variables in the model are held 

constant. 

Figure 6 

 

 

3. estat correlations 
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It may be useful to list all correlations within and between sets of variables. Figure 7 displays (1) 

the within-set correlations for the u-variables (list 1) and the v-variables (list 2), and (2) the 

correlations between the u-variables and the v-variables. 

 Figure 7 

 

These univariate correlations must be interpreted with caution, since they do not indicate how the 

original variables contribute jointly to the canonical analysis. But, within and between-set 

correlations can be useful in the interpretation of the canonical variables. As displayed in Figure 

2.7, for the u-variables, relationship satisfaction between parents is moderately associated with 

parents’ perceptions of self-efficacy (r = 0.4456).  For the v variables, satisfaction with the 

adoption agency and service utilization are weakly correlated (r = 0.1371). Consequently, these 

results can be interpreted to mean that relationship satisfaction between parents and parents’ 

perceptions of self-efficacy are moderately and negatively related to satisfaction with the 

adoption agency and service utilization (r = -0.4491 ) and (r = -0. 5281) respectively.  Moreover, 

attitudes toward adoption is strongly and positively associated with satisfaction with adoption 
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agency (r = 0.7983). That is, for this sample, it seems that adoptive parents with lower 

relationship satisfaction and perceptions of self-efficacy are more likely to be satisfied with the 

adoption agency. In addition, adoptive parents with positive attitudes to toward adoption are 

more likely to be satisfied with the adaption agency. 

 

4. estat loadings 

Next, the canonical loadings, sometimes termed structure coefficients, are displayed. These 

loadings are correlations between variables and the canonical variates (see Figure 8). 

  Figure 8 

 

For the u-variables, attitudes toward adoption is most closely related to the first canonical 

function, and relationship satisfaction between parents is most closely related to the second 

canonical function. For the v-variables, satisfaction with the adoption agency is most closely 

related the first canonical function, and service utilization is most closely related to the second 

canonical function. 

 

5. canred 1 /* findit canred */ 
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6.  canred 2 /* findit canred */  

Perform a canonical redundancy analysis. 

  Figure 9 

 

Rd is the amount of variance in a canonical variate explained by the other canonical variate in a 

canonical function. For example, for the first canonical function, the Rd for the u-variables equals 

0.2149, and the Rd  for the v-variables equals 0.2148. These values for each Rd suggest that each 

canonical variate explains about the same amount of variance in the opposite set of variables in 

the first function. For the second canonical function, the Rd for the u-variables equals 0.1148, and 

the Rd  for the v-variables equals 0.1606. These values for each Rd suggest that the canonical 

variate for the u-variables explains more variance in the v-variables in the first function than the 

canonical variate for the v-variables explains in the set of u-variables (see Figure 9). 

 

 

 

Rotation of Structure and Canonical Coefficients 
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Perform orthogonal Varimax rotation. A comparison of rotated and unrotated structure 

and canonical coefficients suggest that both solutions are equivalent. Equivalence between 

rotated and unrotated solutions suggests that these data have a simple structure and that this 

structure has been identified by the current CCA. 

The rotated canonical correlations are usually expected to yield a more even distribution 

of variance among the canonical variates. This redistribution of variance usually results in a 

rotated structure that is more easily interpretable. This is analogous to changed distribution of 

factor variance contributions in factor analysis, following Varimax rotation. This is not the case 

with these data, and the equivalence between unrotated and rotated solutions suggests that the 

amount of predictable variance was not affected by the rotation. Since maximization is only 

present in the unrotated solution, the unrotated solution should be the focus of the description of 

results (see Figures 10 and 11). 

 

7. estat rotate, stdcoefs 

8. estat rotate, loadings 

 

       Figure 10 

 

   Figure 11 
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Reporting the Results of a CCA 

The approach recommended here is to include a description of (1) variables n the model; 

(2) overall or omnibus hypotheses (F-value and p-value); (3) canonical correlation coefficient 

and canonical correlation coefficient square; (4) redundancy index; (standardized canonical 

coefficients; (5) canonical loadings or structure coefficients; and (6) rotated an unrotated 

solutions. Consolidating results into two tables or figures, one for the unrotated and one for the 

rotated solution,  may help researchers who are new to this procedure interpret findings (see 

Figures 12 and 13 and Tables 1 and 2). 

 

Results of the Annotated Example 

This study tested a model that links (1) factors influencing the utilization of post-adoption 

services (parents’ perceptions of self-efficacy, relationship satisfaction between parents, and 

attitudes toward adoption) with (2) service utilization (two groups, used versus did not use post-

adoption services), and (3) positive adoption outcomes (satisfaction with parenting and 

satisfaction with adoption agency). 

Wilk’s lamda and corresponding F-tests, were used to evaluate the null hypothesis that 

canonical correlations coefficients for all functions are zero.  For this model, the first two 
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canonical correlation coefficients are statistically significant, p < .05. The third function is not 

significant, and will not be interpreted. 

The strength of the relationship between the pairs of variates is reflected by the CCA 

coefficient (Rc). For the first function, Rc = 0.8020. For the second function, Rc  =  0.5798. For 

the second function, Rc  =   0.1073. When squared, the canonical correlation represents the 

amount of variance in one optimally weighted canonical variate accounted for by the other 

optimally weighted canonical variate. 

The redundancy index is a measure of the variance of one set of variables predicted from 

the linear combination of the other set of variables. The Rd is analogous to the squared multiple 

R in multiple regression. Recall that the redundancy coefficient can only equal 1 when the 

synthetic variables for the function represent all the variance of every variable in the set, and the 

squared Rc also exactly equals 1. The redundancy index may be considered as a check on the 

meaning of the canonical correlation. For the first function Rd = 0.2148 for the u-variables, and 

Rd = 0.2149 for the v-variables. For the second function, Rd = 0.1606 for the u-variables, and Rd = 

0.1148 for the v-variables.  

Standardized canonical coefficients and canonical loadings were used to evaluate the 

relative importance of variables in the model. For the first variable set, attitudes toward adoption 

is most important, followed by parents’ perceptions of self-efficacy, and relationship satisfaction 

between parents. The standardized canonical coefficients are interpreted in a manner analogous 

to interpreting standardized regression coefficients. For example, a one standard deviation 

increase in parents’ perceptions of self-efficacy leads to a .0593 standard deviation increase in 

the score on the first canonical variate in the second variable set when the other variables in the 

model are held constant. 
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Canonical loadings are displayed in Figure 8. For the u-variables, attitudes toward 

adoption is most closely related to the first canonical function, and relationship satisfaction 

between parents is most closely related to the second canonical function. For the v-variables, 

satisfaction with the adoption agency is most closely related the first canonical function, and 

service utilization is most closely related to the second canonical function. 

A comparison of rotated and unrotated structure and canonical coefficients implies that 

both solutions are equivalent (see Figures 12 and 13 and Tables 1 and 2). Equivalence between 

rotated and unrotated solutions suggests that these data have a simple structure and that this 

structure has been identified by the current CCA. Rotated canonical correlations are usually 

expected to yield a more even distribution of variance among the canonical variates. This 

redistribution of variance usually results in a rotated structure that is more easily interpretable. 

This is not the case with these data. Since maximization only is present in the unrotated solution, 

this solution should be the focus of the description of results. 
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Figure 12 
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Figure 13 

 

 

 

 

 

 

 

 

Table 1 Unrotated Solution 
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                                                              First Canonical Variate         Second Canonical Variate 

Set 1 Coefficient
a
 Loading

b
 Coefficient    Loading 

Parent’s Perceptions of self-efficacy -0.593 -0.0499 -0.4612 -0.7758 

Relationship satisfaction between parents -0.0060  0.0542 -0.7062 -0.9104 

Attitudes toward adoption  0.9993  0.9981  0.0981 -0.0515 

 

Percent of Variance
c
  33.39 47.88 

Redundancy
d
 21.48 16.06 

 

Set 2 Coefficient
a
 Loading

b
 Coefficient    Loading 

Service utilization -0.0374 -0.0454 0.9956 -0.0249 

Satisfaction with parenting  0.9981  0.9988 0.0465  0.0267 

Satisfaction with adoption agency -0.0280 -0.0518 0.0238 0.9858 

 

Percent of Variance  33.41 34.15 

Redundancy 21.49 11.48 

 

Canonical Correlation
e
 0.8020 

a
Standardized canonical variate coefficients 

b
Structure  Coefficient 

c
Within-set variance accounted for by canonical variates (i.e., proportion of variance 

 
times 100) 

d
Percent of variance in one set of original variables explained by the other set’s canonical variable 

e
Canonical correlations 

 

Table 2 Rotated Solution (only coefficients and loadings are available in Stata) 

                                                              First Canonical Variate         Second Canonical Variate 

Set 1 Coefficient
a
 Loading

b
 Coefficient    Loading 

Parent’s Perceptions of self-efficacy 0.5057 0.8027 -1.00022 -0.9992 

Relationship satisfaction between parents 06663 0.8916 -0.0347 0.0308 

Attitudes toward adoption -0.0011 0.0628 0.0212 -0.1156 

 

Set 2 Coefficient
a
 Loading

b
 Coefficient    Loading 

Service utilization -0.0224 -0.0327 -0.0325 -0.0347 

Satisfaction with parenting -0.0505 0.0265 0.9996 0.9994 

Satisfaction with adoption agency 1.0026 0.9994 0.0134 0.0089 

 
a
Standardized canonical variate coefficients 

b
Structure  Coefficient 

 

 

 

Conclusions 
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CCA is a useful and powerful technique for exploring the relationships among multiple 

dependent and independent variables. The technique is primarily descriptive, although it may be 

used for predictive purposes. This paper provided a demonstration of canonical correlation 

analysis with orthogonal rotation to facilitate interpretation. Results obtained from a canonical 

analysis can suggest answers to questions concerning the number of ways in which the two sets 

of multiple variables are related, the strengths of the relationships, and the nature of the 

relationships defined. 

 CCA enables the researcher to combine into a composite measure what otherwise might 

be an unmanageably large number of bivariate correlations between sets of variables. It is useful 

for identifying overall relationships between multiple independent and dependent variables, 

particularly when the data researcher has little a priori knowledge about relationships among the 

sets of variables. Essentially, the researcher can apply canonical correlation analysis to a set of 

variables, select those variables (both independent and dependent) that appear to be significantly 

related, and run subsequent analyses. 
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