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Univariate Hotelling’s T 2 Likelihood Ratio Confidence Regions One-at-a-Time T 2 Bonferroni Comparison Large-Samples

Overview

◮ Goal

◮ Univariate Case
◮ Multivariate Case

◮ Hotelling T 2

◮ Likelihood Ratio test
◮ Comparison/relationship

◮ IF Reject Ho . . .
◮ Confidence regions
◮ Simultaneous comparisons (univariate/one-at-a-time)
◮ T 2–intervals
◮ Bonferroni intervals
◮ Comparison

◮ Large sample inferences about a population mean vector.

Reading: Johnson & Wichern pages 210–260
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Goal

Inference: To make a valid conclusion about the means of a
population based on a sample (information about the population).

When we have p correlated variables, they must be analyzed
jointly.

Simultaneous analysis yields stronger tests, with better error
control.

The tests covered in this set of notes are all of the form:

Ho :µ = µo

where µp×1 vector of populations means and µo,p×1 is the some
specified values under the null hypothesis.
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Univariate Case
We’re interested in the mean of a population and we have a
random sample of n observations from the population,

X1,X2, . . . ,Xn

where (i.e., Assumptions):

◮ Observations are independent (i.e., Xj is independent from Xj ′

for j 6= j ′).

◮ Observations are from the same population; that is,

E (Xj) = µ for all j

◮ If the sample size is “small”, we’ll also assume that

Xj ∼ N (µ, σ2)
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Hypothesis & Test
◮ Hypothesis:

Ho : µ = µo versus H1 : µ 6= µo

where µo is some specified value. In this case, H1 is 2–sided
alternative.

◮ Test Statistic:

t =
X̄ − µo

s/
√
n

where X̄ = (1/n)
∑n

j=1 Xj and

s =
√

(1/(n − 1))
∑n

j−1(Xj − X̄ )2

◮ Sampling Distribution: If Ho and assumptions are true, then
the sampling distribution of t is Student’s - t distribution with
df = n − 1.

◮ Decision: Reject Ho when t is “large” (i.e., small p–value).
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Picture of Decision
Each green area = α/2 = .025. . .
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Confidence Interval
Confidence Interval: A region or range of plausible µ’s (given
observations/data). The set of all µ’s such that

∣
∣
∣
∣

x̄ − µo

s/
√
n

∣
∣
∣
∣
≤ tn−1,(α/2)

where tn−1,(α/2) is the upper (α/2)100% percentile of Student’s
t-distribution with df = n − 1. . . . OR

{

µo such that x̄ − tn−1,(α/2)
s√
n
≤ µo ≤ x̄ + tn−1,(α/2)

s√
n

}

A 100(1− α)th confidence interval or region for µ is(

x̄ − tn−1,(α/2)
s√
n
, x̄ + tn−1,(α/2)

s√
n

)

Before for sample is selected, the ends of the interval depend on random

variables X̄ ’s and s; this is a random interval. 100(1− α)th percent of

the time such intervals with contain the “true” mean µ.
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Prepare for Jump to p Dimensions

Square the test statistic t:

t2 =
(x̄ − µo)

2

s2/n
= n(x̄ − µo)(s

2)−1(x̄ − µo)

So t2 is a squared statistical distance between the sample mean x̄

and the hypothesized value µo .

Remember that t2df = F1,df ?

That is, the sampling distribution of

t2 = n(x̄ − µo)(s
2)−1(x̄ − µo) ∼ F1,n−1.
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Multivariate Case: Hotelling’s T 2

For the extension from the univariate to multivariate case, replace
scalars with vectors and matrices:

T 2 = n(X̄− µo)
′
S
−1(X̄− µo)

◮ X̄p×1 = (1/n)
∑n

j=1Xj

◮ µo,(p×1) = (µ1o , µ2o , . . . , µpo)

◮ Sp×p = 1
n−1

∑n
j=1(Xj − X̄)(Xj − X̄)′

T 2 is “Hotelling’s T 2”

The sample distribution of T 2

T 2 ∼ (n − 1)p

n − p
Fp,(n−p)

We can use this to test Ho : µ = µo . . . assuming that observations
are a random sample from Np(µ,Σ) i .i .d .
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Hotelling’s T 2

Since

T 2 ∼ (n − 1)p

n − p
Fp,(n−p)

We can compute T 2 and compare it to

(n − 1)p

n − p
Fp,(n−p)(α)

OR use the fact that

n − p

(n − 1)p
T 2 ∼ Fp,(n−p)

Compute T 2 as

T 2 = n(x̄− µo)S
−1(x̄− µo)

′

and the

p–value = Prob

{

Fp,(n−p) ≥
(n − p)

(n − 1)p
T 2

}

Reject Ho when p-value is small (i.e., when T 2 is large).
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A Really Little Example
n = 3 and p = 2

Data: X =





6 9
10 6
8 3





Ho : µ =

(
9
5

)

b

տ
Ho : µ′ = (9, 5)

b

ւx̄′ = (8, 6)
r

r

r

Assuming data come from a multivariate normal distribution and
independent observations,

x̄ =

(
8
6

)

S =

(
4 −3
−3 9

)

S
−1 =

1

4(9) − (−3)(−3)

(
9 3
3 4

)

=

(
1/3 1/9
1/9 4/27

)
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Simple Example continued

T 2 = n(x̄− µo)
′
S
−1(x̄− µo)

= 3 ((8− 9), (6 − 5))

(
1/3 1/9
1/9 4/27

)(
(8− 9)
(6− 5)

)

= 3(−1, 1)
(

1/3 1/9
1/9 4/27

)(
−1
1

)

= 3(7/27) = 7/9

Value we need for α = .05 is F2,1(.05) = 199.51.

(3− 1)2

3− 2
199.51 = 4(199.51) = 798.04.

Since T 2 ∼ (n−1)p
(n−p) Fp,n−p , we can compare our T 2 to 798.04.

Alternatively, we could compute p-value: compare .25(7/9) = 0.194
to F2,1 and we get p-value = .85.

Do not reject Ho . (x̄ and µ are “close” in the figure).
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Example: WAIS and n = 101 elderly subjects
From Morrison (1990), Multivariate Statistical Methods, pp
136–137:

There are two variables, verbal and performance scores for n = 101
elderly subjects aged 60–64 on the Wechsler Adult Intelligence test
(WAIS).

Assume that the data are from a bivariate normal distribution with
unknown mean vector µ and unknown covariance matrix Σ.

Ho : µ =

(
60
50

)

versus Ho : µ 6=
(

60
50

)

Sample mean vector and covariance matrix:

x̄ =

(
55.24
34.97

)

and S =

(
210.54 126.99
126.99 119.68

)
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T 2 for WAIS example
We need

S
−1 =

(
.01319 −.0140
−.0140 .02321

)

Compute test statistic:

T 2 = n(x̄− µ)′S−1(x̄− µ)

= 101 ((55.24 − 60), (34.97 − 50))

(
.01319 −.0140
−.0140 .02321

)(
55.24 − 60
34.97 − 50

)

= 357.43

So to test the hypothesis, compute

(n − p)

(n − 1)p
T 2 =

(101 − 2)

(101 − 1)2
357.43 = 176.93

Under the null hypothesis, this is distributed as Fp,(n−p). Since
F2,99(α = .05) = 3.11, we reject the null hypothesis.
Big question: was the null hypothesis rejected because of the
verbal score, performance score, or both?
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Back to the Univariate Case
Recall that for the univariate case

t =
X̄ − µo

s/
√
n

or t2 =
(X̄ − µo)

2

s2/n
= n(X̄ − µo)(s

2)−1(X̄ − µo)

Since X̄ ∼ N (µ, (1/n)σ2),
√
n(X̄ − µo) ∼ N (

√
n(µ − µo), σ

2)

This is is a linear function of X̄ , which is a random variable.

We also know that

(n − 1)s2 =

n∑

j=1

(Xj − X̄ )2 ∼ σ2χ2
(n−1)

because ∑n
j=1(Xj − X̄ )2

σ2
=

n∑

j=1

Z 2
j ∼ χ2

(n−1)
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Back to the Univariate Case continued

So

s2 =

∑n
j=1(Xj − X̄ )2

n − 1
=

chi-square random variable

degrees of freedom

Putting this all together, we find

t2 =





normal
random
variable









chi-square random varible

degress of freedom





−1



normal
random
variable





Now we’ll go through the same thing but with the multivariate

case. . .
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The Multivariate Case

T 2 =
√
n(X̄− µo)

′(S)−1√n(X̄− µo)

Since X̄ ∼ Np(µ, (1/n)Σ) and
√
n(X̄− µo) is a linear combination

of X̄, √
n(X̄ − µo) ∼ Np(

√
n(µ− µo),Σ)

Also

S =

∑n
j=1(Xj − X̄)(Xj − X̄)′

(n − 1)

=

∑n
j=1 ZjZ

′

j

(n − 1)

=





Wishart random matrix with df = n − 1

degrees of freedom





where Zj ∼ Np(0,Σ) i .i .d . . . . if Ho is true.
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The Multivariate Case continued
Recall that a Wishart distribution is a matrix generalization of the
chi-square distribution.

The sampling distribution of (n − 1)S is Wishart where

Wm(·|Σ) =

m∑

j=1

ZjZ
′

j

where Zj ∼ Np(0,Σ) i .i .d ..
So,

T 2 =







multiavirate
normal
random
vector











Wishart random matrix

degress of freedom





−1






multiavirate
normal
random
vector
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Invariance of T 2

T 2 is invariant with respect to change of location (i.e., mean) or
scale (i.e. covariance matrix); that is, a T 2 is invariant by linear
transformation.

Rather than Xp×1, we may want to consider

Yp×1 = Cp×p
︸ ︷︷ ︸

scale

Xp×1 + dp×1
︸︷︷︸

location

where C is non-singular (or equivalently |C| > 0, or C has p linearly
independent rows (columns), or C−1 exists).

vµy = Cµx + d and Σy = CΣxC
′

The T 2 for the Y –data is exactly the same as the T 2 for the
X–data (see text for proof).

This result it true for the univariate t-test.
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Likelihood Ratio

◮ Another approach to testing null hypothesis about mean
vector µ (as well as other multivariate tests in general).

◮ It’s equivalent to Hotelling’s T 2 for Ho : µ = µo or
Ho : µ1 = µ2.

◮ It’s more general than T 2 in that it can be used to test other
hypotheses (e.g., those regarding Σ) and in different
circumstances.

◮ Foreshadow: When testing more than 1 or 2 mean vectors,
there are lots of different test statistics (about 5 common
ones).

◮ T 2 and likelihood ratio tests are based on different underlying
principles.
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Underlying Principles

T 2 is based on the union-intersection principle, which takes a
multivariate hypothesis and turns it into a univariate problem by
considering linear combinations of variables. i.e.,

T 2 = a
′(X̄ − µo)

is a linear combination.

We select the combination vector a that lead to the largest
possible value of T 2. (We’ll talk more about this later). The
emphasis is on the “direction of maximal difference”.

The likelihood ratio test the emphasis is on overall difference.

Plan: First talk about the basic idea behind Likelihood ratio tests
and then we’ll apply it to the specific problem of testing µ = µo .
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Basic idea of Likelihood Ratio Tests
◮ Θo = a set of unknown parameters under Ho (e.g., Σ).
◮ Θ = the set of unknown parameters under the alternative

hypothesis (model), which is more general (e.g., µ and Σ).
◮ L(·) is the likelihood function. It is a function of parameters

that indicates “how likely Θ (or Θo) is given the data”.
◮ L(Θ) ≥ L(Θo).

◮ The more general model/hypothesis is always more (or equally)
likely than the more restrictive model/hypothesis.

The Likelihood Ratio Statistic is

Λ =
maxL(Θo)

maxL(Θ)
→ X̄ = µ̂ MLE of mean

Sn = Σ̂ MLE of covariance matrix

If Λ is “small”, then the data are not likely to have occurred under
Ho −→ Reject Ho .

If Λ is “large”, then the data are likely to have occurred under
Ho −→ Retain Ho .
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Likelihood Ratio Test for Mean Vector
Let Xj ∼ Np(µ,Σ) and i .i .d .

Λ =
maxΣ[L(µo ,Σ)]

maxµ,Σ[L(µ,Σ)]

where

◮ maxΣ = the maximum of L(·) over all possible Σ’s.
◮ maxµ,Σ = the maximum of L(·) over all possible µ’s & Σ’s.

Λ =

(

|Σ̂|
|Σ̂o |

)n/2

where

◮ Σ̂ = MLE of Σ = (1/n)
∑n

j=1(Xj − X̄)(Xj − X̄)′ = Sn

◮ Σ̂o = MLE of Σ assuming that µ = µo

= (1/n)
∑n

j=1(Xj − µo)(Xj − µo)
′
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Likelihood Ratio Test for Mean Vector

Λ =

(

|Σ̂|
|Σ̂o |

)n/2

Λ = (ratio of two generalized sample variances)n/2

◮ If µo is really “far” from µ, then |Σ̂o | will be much larger than
|Σ̂|, which uses a “good” estimator of µ (i.e., X̄).

◮ The likelihood ratio statistic Λ is called “Wilk’s Lambda” for
the special case of testing hypotheses about mean vectors.

◮ For large samples (i.e., large n),

−2 ln(Λ) ∼ χ2
p,

which can be used to test Ho : µ = µo
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Degrees of Freedom for LR Test
We need to consider the number of parameter estimates under each
hypothesis:
The alternative hypothesis (“full model”) ,

Θ = {µ,Σ} −→ p means +
p(p − 1)

2
covariances

The null hypothesis,

Θo = {Σ} −→ p(p − 1)

2
covariances

degrees of freedom = df = difference between number of parameters

estimated under each hypothesis

= p

If the Ho is true and all assumptions valid, then for large samples,
−2 ln(Λ) ∼ χ2

p.
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Example: 4 Psychological Tests
n = 64, p = 4, x̄′ = (14.15, 14.91, 21.92, 22.34),

S =







10.388 7.793 15.298 5.3740
7.793 16.658 13.707 6.1756
15.298 13.707 57.058 15.932
5.374 6.176 15.932 22.134







& det(S) = 61952.085

Test: Ho : µ′ = (20, 20, 20, 20) versus Ho : µ′ 6= (20, 20, 20, 20)

Σo =
1

n
(X−1µ′

o)
′(X−1µ′

o) =







44.375 37.438 3.828 −8.406
37.438 42.344 3.703 −5.859
3.828 3.703 59.859 20.187
−8.406 −5.859 20.187 27.281







det(Σo) = 518123.8.

Wilk’s Lambda is Λ = (61952.085/518123.8)64/2 = 3.047E − 30, and

Comparing −2 ln(Λ) = 135.92659 to a χ2
4 gives p–value << .01.
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Comparison of T 2 & Likelihood Ratio
Hotelling’s T 2 and Wilk’s Lambda are functionally related.

Let X1,X2, . . . ,Xn be a random sample from a Np(µ,Σ)
population, then the test of Ho : µ = µo versus HA : µ 6= µo based
on T 2 is equivalent to the test based on Λ.
The relationship is given by

(Λ)2/n =

(

1 +
T 2

(n − 1)

)−1

So,

Λ =

(

1 +
T 2

(n − 1)

)−n/2

and T 2 = (n − 1)Λ−2/n − (n − 1)

Since they are inversely related,

◮ We reject Ho for “large” T 2

◮ We reject Ho for “small” Λ.
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Example: Comparison of T 2 & Likelihood Ratio
Using our 4 psychological test data, we found that

(Λ) = 3.047E − 30

If we compute Hotelling’s T 2 for these data we’ld find that

T 2 = 463.88783

Λ =

(

1 +
463.88783

(64− 1)

)
−64/2

= 3.047E − 30

and
T 2 = (64− 1)(3.047E − 30)−2/64 − (64 − 1)

Note: I did this in SAS. The SAS/IML code is on the web-site if
you want to check this for yourself.
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After Rejection: Confidence Regions
Our goal is to make inferences about populations from samples.

In univariate statistics, we form confidence intervals; we’ll
generalization this to multivariate confidence region.

General definition: A confidence region is a region of likely values
of parameters θ which is determined by data:

R(X) = confidence region

where

◮ X
′ = (X1,X2, . . .Xn); that is, data.

◮ R(X) is a 100(1 − α)% confidence region if before the sample
was selected

Prob[R(X) contains the trueθ] = 1− α

C.J. Anderson (Illinois) Inferences about a Mean Vector Spring 2017 29.1/ 59



Univariate Hotelling’s T 2 Likelihood Ratio Confidence Regions One-at-a-Time T 2 Bonferroni Comparison Large-Samples

Confidence Region for µ
For µp×1 of a p-dimensional multivariate normal distribution,

Prob

[

n(X̄− µ)′S−1(X̄− µ) ≤ (n − 1)p

n − p
Fp,n−p(α)

]

= 1− α

. . . before we have data (observations).

i.e., X̄ is within
√

(n−1)p
n−p

Fp,n−p(α) of µ with probability 1− α

(where distance is measured or defined in terms of nS−1).

For a typical sample,

◮ (1) Calculate x̄ and S.
◮ (2) Find (n − 1)p/(n − p)Fp,n−p(α).
◮ (3) Consider all µ’s that satisfy the equation

n(X̄− µ)′S−1(X̄− µ) ≤ (n − 1)p

n − p
Fp,n−p(α)

This is the confidence region, which is an equation of an
ellipsoid.
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Confidence Region for µ continued

To determine whether a particular µ∗ falls within in a confidence
region, compute the squared statistical distance of X̄ to µ

∗ and see
if it’s less than or greater than (n−1)p

n−p
Fp,n−p(α).

The confidence region consists of all vectors µo that lead to
retaining the Ho : µ = µo using Hotelling’s T 2 (or equivalently
Wilk’s lambda).

These regions are ellipsoids where their shapes are determined by S

(the eigenvalues and eigenvectors of S).

We’ll continue our WAIS example of n = 101 elderly and the
verbal and performance sub-tests of WAIS (p = 2).

Recall that Ho : µ′ = (60, 50)

But first a closer look at the ellipsoid. . .

C.J. Anderson (Illinois) Inferences about a Mean Vector Spring 2017 31.1/ 59



Univariate Hotelling’s T 2 Likelihood Ratio Confidence Regions One-at-a-Time T 2 Bonferroni Comparison Large-Samples

The Shape of the Ellipsoid

◮ The ellipsoid is centered at x̄.

◮ The direction of the axes are given by the eigenvectors ei of S.

◮ The (half) length of the axes equal

√

λi

√

p(n− 1)

n(n − p)
Fp,n−p(α) =

√
λi√
n
c

So, from the center, which is at x̄, the axes are

x̄±
√

λi

√

p(n− 1)

n(n− p)
Fp,n−p(α) ei

where Sei = λiei for i = 1, 2, . . . , p.
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WAIS Example
Equation for the (1− α)100% confidence region:

n(x̄− µ)′S−1(x̄− µ) ≤ (n − 1)p

(n − p)
Fp,n−p(α)

or T 2 ≤ (n − 1)p

(n − p)
Fp,n−p(α)

The confidence region is an ellipse (ellipsoid for p > 2) centered at
x̄ with axses

x̄±
√

λi

√

p(n− 1)

n(n − p)
Fp,n−p(α) ei

where λi and ei are the eigenvalues and eigenvectors, respectively,
of S (λi is not Wilk’s lambda).

For the WAIS data,

λ1 = 299.982, e
′

1 = (.818, .576)

λ2 = 30.238, e
′

2 = (−.576, .818)
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WAIS Example: Finding Major and Minor

x̄±
√

λi

√

p(n− 1)

n(n − p)
Fp,n−p(α) ei

The major axis:

(
55.24
34.97

)

±
√
299.982

√

2(101 − 1)

101(101 − 2)
3.11

(
.818
.576

)

which gives us (51.71, 32.48) and (58.77, 37.46).

The minor axis:
(

55.24
34.97

)

±
√
30.238

√

2(101 − 1)

101(101 − 2)
3.11

(
−.576
.818

)

which gives us (56.03, 33.85) and (54.45, 36.09).
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Graph of 95% Confidence Region

50
55 60

Verbal
30

35

40

Performance

b←x̄′ = (55.24, 34.97)

Length of major = 8.64 (half-length= 4.32)
Length of minor = 2.74 (half-length= 1.37)

r

(51.71, 32.48)

r(58.77, 37.46)

r

(56.03, 33.85)
r

(54.45, 36.09)
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Example continued
We note that µ′

o = (60, 50) is not in the confidence region. Using
the equation for the ellipse, we find

T 2 = 357.43 > (100(2)/99)(3.11) = 6.283,

so (60, 50) is not in the 95% confidence region.

What about µ′ = (60, 40)?

T 2 = 101 ((55.24 − 60), (34.97 − 40))

×
(

.01319 −.0140
−.0140 .02321

)(
55.24 − 60
34.97 − 40

)

= 21.80

Since 21.80 is greater than 6.28, (60, 40) also in not in 95%
confidence region.
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Alternatives to Confidence Regions

The confidence regions consider all the components of µ jointly.
We often desire a confidence statement (i.e, confidence interval)
about individual components of µ or a linear combination of the
µi ’s.
We want all such statements to hold simultaneously with some
specified large probability; that is, want to make sure that the
probability that any one of the confidence statements is incorrect is
small.
Three ways of forming simultaneous confidence intervals
considered:

◮ “one-at-a-time” intervals

◮ T 2 intervals

◮ Bonferroni
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“One-at-a-Time” Intervals
(they’re related to the confidence region).

Let X ∼ Np(µ,Σ), where X
′ = (X1,X2, . . . ,Xp) and consider the

linear combination

Z = a1X1 + a2X2 + · · · + apXp = a
′
X

From what we know about linear combinations of random vectors
and multivariate normal distribution, we know

E (Z ) = µz = a
′
µ

var(Z ) = σ2
Z = a

′
Σa

Z ∼ N1(a
′
µ, a′Σa)

Estimate µZ by a′X̄ and estimate var(Z ) = a′Σa by a′Sa.
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Univariate Intervals
A Simultaneous 100(1 − α)% confidence interval for µZ where
Z = a′X with unknown Σ (but known a) is

z̄ ± tn−1,(α/2)

√

a′Sa

n

where tn−1,(α/2) is the upper 100(α/2) percentile of Student’s
t-distribution with df = n− 1
Can put intervals around any element of µ by choice of a’s:

a = (0, 0, . . . , 1
︸︷︷︸

i thelement

, 0, . . . 0)

So a
′
µ = µi a

′
x̄ = x̄i and a

′
Sa = sii

and the “one-at-a-time” interval for µi is

x̄i ± tn−1,(α/2)

√
sii

n
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WAIS Example: One-at-a-time Intervals
Univariate Confidence Intervals

x̄i ± tn−1,(α/2)

√

sii/n

We’ll let α = .05 (for a 95% confidence interval), so
t100,(.025) = 1.99.

For verbal score:

55.24 ± 1.99
√

210.54/101

55.24 ± 2.87 −→ (52.37, 58.11)

For performance score:

34.97 ± 1.99
√

119.68/101 = 2.17

34.97 ± 2.17 −→ (32.80, 37.14)

For our hypothesized values µo1 = 60 and µo2 = 50, neither are in
the respective intervals.
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Graph of one-at-a time intervals

50 55 60
Verbal

30

35

40

Performance

b

Multivariate versus Univariate:
95% Confidence region (ellipse)
95% one-at-a-time intervals
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Problem with Univariate Intervals
Problem with the Global coverage rate: If the rate is 100(1 − α)%
for one interval, then the overall experimentwise coverage rate
could be much less that 100(1 − α)%.

If you want the overall coverage rate to be 100(1 − α)%, then we
have to consider simultaneously all possible choices for the vector a
such that the coverage rate over all of them is 100(1 − α)%

How?

What a gives the maximum possible test-statistic? Using this a,
consider the distribution for the maximum.

If we achieve (1− α) for the maximum, then the remainder (all
others) have > (1− α).

We use the distribution of the maximum for our “fudge-factor.”

The largest value is proportional to S
−1(x̄− µo)
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T 2 Intervals
Let X1,X2, . . . ,Xn be a random sample from Np(µ,Σ) population
with det(Σ) > 0, then simultaneously for all a, the interval

a
′
x̄±

√

p(n − 1)

(n − p)
Fp,n−p(α)

√

a′Sa

n

will contain a′µ with coverage rate 100(1 − α)%.

These are called “T 2–intervals” because the “fudge-factor”
(p(n − 1)/(n − p))Fp,n−p is the distribution of Hotelling’s T 2.
Set a

′

i = (0, 0, . . . , 1
︸︷︷︸

i thelement

, 0, . . . 0) i = 1, . . . , p. & compute

a
′

i x̄
︸︷︷︸

x̄i

±
√

p(n− 1)

(n − p)
Fp,n−p(α)

√

a′Sa

n
︸ ︷︷ ︸

sii/n

, i = 1, . . . , p.
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T 2 Intervals

a
′

i x̄±
√

p(n − 1)

(n − p)
Fp,n−p(α)

√

a′Sa

n
, i = 1, . . . , p.

are Component T 2 Intervals and are useful for “data snooping”
because the coverage rate remains fixed at 100(1 − α)% regardless
of

◮ The number of intervals you construct

◮ Whether or not the a’s are chosen a priori
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WAIS Example

For the verbal score:

55.24±
√

100(2)

99
(3.11)

√

210.54/101 = 55.24±3.62 → (51.62, 58.86)

For the performance score:

34.97±
√

100(2)

99
(3.11)

√

119.68/101 = 34.97±2.73 → (32.24, 37.70)
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WAIS: Comparison

50 55 60
Verbal

30

35

40

Performance

b

ellipse Confidence region
T 2 intervals
Univariate intervals
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Summary of Comparison

One-at-a-Time T 2 Intervals

Narrower (more precise) Wider (less precise)
More powerful Less powerful
Liberal Conservative
Coverage rate < 100(1 − α) Coverage rate ≥ 100(1 − α)
Coverage rate depends on num-
ber of intervals and S.

Coverage rate does not depend
on number of intervals.

Accuracy may be OK provided
if reject Ho : µ = µo .

Good if do a lot of intervals
(e.g., > p)

Compromise: Bonferroni
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Bonferroni Intervals

This method will

◮ Give narrower (more precise) intervals than T 2, but not as
narrow are the univariate ones.

◮ Good if
◮ The intervals that you construct are decided upon a priori.
◮ You only construct ≤ p intervals.

◮ Suppose that we want to make m confidence statements
about m linear combinations

a
′

1µ, a
′

2µ, . . . , a
′

mµ

◮ It uses a form of the Bonferroni inequality.
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Bonferroni Inequality

Prob{all intervals are valid} = 1− Prob{at least 1 false}

≥ 1−
m∑

i=1

Prob{i th interval is false}

= 1−
m∑

i=1

1− Prob{i th interval is true}

= 1−
m∑

i=1

αi

This is a form of the Bonferroni inequality:

Prob{all intervals are ture} ≥ 1− (α1 + α2 + · · ·+ αm)

We set αi = α/m using a pre-determined α–level, then

Prob{all intervals are ture} ≥ 1−(α/m + α/m + · · · + α/m)
︸ ︷︷ ︸

m of these

= 1−α
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Bonferroni Confidence Statements
Use α/m for each of the m intervals (both α and specific intervals
pre-determined)

a
′
x̄± tn−1,(α/2m)

︸ ︷︷ ︸

√

a′Sa

n

We just replace the “fudge-factor”

WAIS example: We’ll only consider a′1 = (1, 0) and a2 = (0, 1)
(i.e., the component means).

df = n − 1 = 101− 1 = 100

α = .05 −→ α/2 = .025

t100,(.025/2) = 2.2757

You can get t’s from the “pvalue.exe” program on course web-site
(under handy programs and links), or from SAS using, for example
. . .
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WAIS & Bonferroni Intervals
data tvalue;

df= 100;
p = 1− .05/(2 ∗ 2); ∗ ←− α/(p ×m);
t= quantile(’t’,p,100);

proc print;
run;

Verbal Scores:

55.25 ± 2.2757
√

210.54/101

± 2.2757(1.4438)

± 3.2856 −→ (51.95, 58.53)

Performance Scores:

34.97 ± 2.2757
√

119.68/101

± 2.2757(1.08855)

± 2.477 −→ (32.49, 37.45)
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WAIS: All four Confidence Methods

50 55 60
Verbal

30

35

40

Performance

ellipse Confidence region
T 2 intervals
Bonferroni
Univariate intervals
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Interval Methods Comparisons

50 55 60
Verbal

30

35

40

Performance

r

r

r

r

r

r

r

ellipse Confidence region
T 2 intervals
Bonferroni
Univariate intervals
Points are some possible places for µo
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Few last statements on Confidence Statements

◮ Hypothesis testing of Ho : µ = µo may lead to some seemingly
inconsistent results. For example,

◮ The multivariate tests may reject Ho , but the component
means are within their respective confidence intervals for them
(regardless of how intervals are computed, e.g., the red dot).

◮ Separate t-tests for component means may not be rejected,
but you do reject for multivariate (e.g., orange dot).

◮ The confidence region, which contains all values of µo for which the
null hypothesis would not be rejected, is the only one that takes
into consideration the covariances, as well as variances.

◮ Multivariate approach is most powerful.

◮ In higher dimensions, we can’t “see” what’s going on, but concepts
are same.
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In the Face of Inconsistencies
or to get a better idea of what’s going on. . .

Recall that T 2 is based on the “union intersection” principle:

T 2 = na′(X̄− µo)

where a is the one that gives the largest value for T 2 among all
possible vectors a. This vector is

a = (X̄ − µo)
′
S
−1

Examining a can lead to insight into why Ho : µ = µo was
rejected.

For the WAIS example when Ho : µ′ = (60, 50),

(X̄− µo)
′
S
−1 =

(
0.15 −0.28

)

Note: (X̄− µo)
′ = (−4.76,−15.03)
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Large-Sample Inferences
about a population mean vector µ
So far, we’ve assumed that Xj ∼ Np(µ,Σ). But what if the data
are not multivariate normal?
We can still make inferences (hypothesis testing & make confidence
statements) about population means IF we have Large samples
relative to p (i.e., n − p is large).

Let X1,X2, . . . ,Xn be a random sample from a population with
µ and Σ (Σ is positive definite)

T 2 = n(x̄− µo)
′
S
−1(x̄− µo) ≈ χ2

p

◮ ≈ means “approximately”.
◮ Prob(n(x̄− µo)

′S
−1(x̄− µo)) ≤ χ2

p(α) ≈ 1− α.
◮ As n gets large, Fp,n−p and χ2

p(α) become closer in value:

As n→∞,
(n − 1)p

n− p
Fp,n−p → χ2

p

(Show this)
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Large-Sample Inferences continued
For large n − p,

◮ Hypothesis test:
Ho : µ = µo

Reject Ho if T 2 > χ2
p(α) where χ2

p(α) is the upper αth

percentile of the chi-square distribution with df = p.

◮ Simultaneous T 2 intervals:

a
′
x̄±

√

χ2
p(α)

√

a′Sa

n

◮ Confidence region for µ:

(x̄− µ)′S−1(x̄− µ) ≤
χ2
p(α)

n
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WAIS: Large-Sample

◮ WAIS example with n = 101,

Fp,n−p(α) = F2,99(.05) = 3.11

(n − 1)p

n − p
Fp,n−p =

100(2)

99
(3.11) = 6.28

χ2
2(.05) = 5.99

The value 6.28 is fairly close to 5.99.

◮ It’s generally true that the more you assume, the more
powerful your test (more precise estimates).

◮ The larger n→, the more power.. . . This is generally true.
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Show How to Do Tests, etc. . . .

◮ SAS PROC IML and tests

◮ Use Psychological test scores (on course web-site)
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