
Lecture 2. The Wishart distribution
In this lecture, we define the Wishart distribution, which is a family of distributions for

symmetric positive definite matrices, and show its relation to Hotelling’s T 2 statistic.

2.1 The Wishart distribution

The Wishart distribution is a family of distributions for symmetric positive definite matrices.
Let X1, . . . ,Xn be independent Np(0,Σ) and form a p × n data matrix X = [X1, . . . ,Xn].
The distribution of a p × p random matrix M = XX′ =

∑n
i=1 XiX

′
i is said to have the

Wishart distribution.

Definition 1. The random matrix M(p×p) =
∑n

i=1 XiX
′
i has the Wishart distribution with

n degrees of freedom and covariance matrix Σ and is denoted by M ∼ Wp(n,Σ). For n ≥ p,
the probability density function of M is

f(M) =
1

2np/2Γp(
n
2
)|Σ|n/2

|M|(n−p−1)/2 exp[−1

2
trace(Σ−1M)],

with respect to Lebesque measure on the cone of symmetric positive definite matrices. Here,
Γp(α) is the multivariate gamma function.

The precise form of the density is rarely used. Two exceptions are that i) in Bayesian
computation, the Wishart distribution is often used as a conjugate prior for the inverse of
normal covariance matrix and that ii) when symmetric positive definite matrices are the
random elements of interest in diffusion tensor study.

The Wishart distribution is a multivariate extension of χ2 distribution. In particular, if
M ∼ W1(n, σ

2), then M/σ2 ∼ χ2
n. For a special case Σ = I, Wp(n, I) is called the standard

Wishart distribution.

Proposition 1. i. For M ∼ Wp(n,Σ) and B(p×m), B′MB ∼ Wm(n,B′ΣB).

ii. For M ∼ Wp(n,Σ) with Σ > 0, Σ−
1
2 MΣ−

1
2 ∼ Wp(n, Ip).

iii. If Mi are independent Wp(ni,Σ) (i = 1, . . . , k), then
∑k

i=1 Mi ∼ Wp(n,Σ), where
n = n1 + . . .+ nk.

iv. For Mn ∼ Wp(n,Σ), EMn = nΣ.

v. If M1 and M2 are independent and satisfy M1 + M2 = M ∼ Wp(n,Σ) and M1 ∼
Wp(n1,Σ) then M2 ∼ Wp(n− n1,Σ).

The law of large numbers and the Cramer-Wold device leads to Mn/n→ Σ in probability
as n→∞.

Corollary 2. If M ∼ Wp(n,Σ) and a ∈ Rp is such that a′Σa 6= 0∗, then

a′Ma

a′Σa
∼ χ2

n.

∗The condition a′Σa 6= 0 is the same as a 6= 0 if Σ > 0.



Theorem 3. If M ∼ Wp(n,Σ) and a ∈ Rp and n > p− 1, then

a′Σ−1a

a′M−1a
∼ χ2

n−p+1.

The previous theorem holds for any deterministic a ∈ Rp, thus holds for any random
a provided that the distribution of a is independent of M. This is important in the next
subsection.

The following lemma is useful in a proof of Theorem 3

Lemma 4. For A =

[
A11 A12

A21 A22

]
invertible, we have A−1 =

[
A11 A12

A21 A22

]
, where

A11 = (A11 − A12A
−1
22 A21)

−1,

A12 = −A11A12A
−1
22 ,

A21 = −A−122 A21A
11,

A22 = (A22 − A21A
−1
11 A12)

−1.
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2.2 Hotelling’s T 2 statistic

Definition 2. Suppose X and S are independent and such that

X ∼ Np(µ,Σ), mS ∼ Wp(m,Σ).

Then
T 2
p (m) = (X− µ)TS−1(X− µ)

is known as Hotelling’s T 2 statistic.

Hotelling’s T 2 statistic plays a similar role in multivariate analysis to that of the student’s
t-statistic in univariate statistical analysis. That is, the application of Hotelling’s T 2 statistic
is of great practical importance in testing hypotheses about the mean of a multivariate normal
distribution when the covariance matrix is unknown.

Theorem 5. If m > p− 1,

m− p+ 1

mp
T 2
p (m) ∼ Fp,m−p+1.

A special case is when p = 1, where Theorem 5 indicates that T 2
1 (m) ∼ F1,m. Where is

the connection of the Hotelling’s T 2 statistic to the student’s t-distribution?

Note that we are indeed abusing the definition of ‘statistic’ here.

2.3 Samples from a multivariate normal distribution

Suppose X1, . . . ,Xn are i.i.d. Np(µ,Σ). Denote the sample mean and sample variance by

X̄ =
1

n

n∑
i=1

Xi,

S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

Theorem 6. X̄ and S are independent, with

√
n(X̄− µ) ∼ Np(0,Σ),

(n− 1)S ∼ Wp(n− 1,Σ).

Corollary 7. The Hotelling’s T 2 statistic for MVN sample is defined as

T 2(n− 1) = n(X̄− µ)′S−1(X̄− µ),

and we have
n− p
p

n

n− 1
(X̄− µ)′S−1(X̄− µ) ∼ Fp,n−p.
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(Incomplete) proof of Theorem 6. First note the following decomposition:∑
i

(Xi − µ)(Xi − µ)′ = n(X̄− µ)(X̄− µ)′ +
∑
i

(Xi − X̄)(Xi − X̄)′;

and recall the definition of the Wishart distribution.

It is easy to check the result on
√
n(X̄− µ). The following argument is for the indepen-

dence and the distribution of S.

Consider a new set of random vectors Yi (i = 1, . . . , n) from a linear combination of Xis
by an orthogonal matrix D satisfying

D = [d1, . . . , dn], d1 =
1√
n

1n,

DD′ = D′D = In.

Let

Yj =
n∑

i=1

(Xi − µ)dji =
n∑

i=1

X̃idji = X̃dj,

where X̃ = [X̃1, . . . , X̃n] is the p × n matrix of de-meaned random vectors. We claim the
following:

1. Yj are normally distributed.

2. E(YjY
′
k) =

{
Σ, if j = k;
0, if j 6= k.

3.
∑n

i=1 YiY
′
i =

∑n
i=1 X̃iX̃

′
i.

4. Y1Y
′
1 = n(X̄− µ)(X̄− µ)′.

The facts 1 and 2 show the independence, while facts 3 and 4 give the distribution of S.

Next lecture is on the inference about the multivariate normal distribution.
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