
SOME THEOREMS ON QUADRATIC FORMS AND NORMAL VARIABLES

1. THE MULTIVARIATE NORMAL DISTRIBUTION

The n×1 vector of random variables, y, is said to be distributed as a multivariate normal
with mean vector µ and variance covariance matrix Σ (denoted y ∼ N(µ, Σ) ) if the density
of y is given by

f(y; µ, Σ) =
e−

1
2
(y−µ)′Σ−1(y−µ)

(2π)
n
2 |Σ|

1
2

(1)

Consider the special case where n = 1: y = y1, µ = µ1, Σ = σ2.

f(y1; µ1, σ) =
e−

1
2
(y1−µ1)

(
1

σ2

)
(y1−µ1)

(2π)
1
2 (σ2)

1
2

=
e
−(y1−µ1)2

2σ2

√
2πσ2

(2)

is just the normal density for a single random variable.

2. THEOREMS ON QUADRATIC FORMS IN NORMAL VARIABLES

2.1. Quadratic Form Theorem 1.

Theorem 1. If y ∼ N(µy, Σy), then

z = Ay ∼ N(µz = Aµy; Σz = AΣyA
′)

where A is a matrix of constants.

2.1.1. Proof.

E(z) = E(Ay) = AE(y) = Aµy

var(z) = E[(z − E(z)) (z − E(z))′]

= E[(Ay −Aµy)(Ay −Aµy)′]

= E[A(y − µy)(y − µy)′A′]

= AE(y − µy)(y − µy)′A′

= AΣyA
′

(3)
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2.1.2. Example. Let Y1, . . . , Yn denote a random sample drawn from N(µ, σ2). Then

Y =


Y1

·
·

Yn

 ∼ N




µ
·
·
µ

 ,


σ2 . . . 0
· σ2 ·
·
0 σ2


 (4)

Now Theorem 1 implies that:

Ȳ =
1
n

Y1 + · · ·+ 1
n

Yn

=
(

1
n

, . . . ,
1
n

)
Y = AY

∼ N(µ, σ2/n) since

(
1
n

, . . . ,
1
n

) µ
...
µ

 = µ and

(
1
n

, . . . ,
1
n

)
σ2I


1
n
...
1
n

 =
nσ2

n2
=

σ2

n

(5)

2.2. Quadratic Form Theorem 2.

Theorem 2. Let the n× 1 vector y ∼ N(0, I). Then y′y ∼ χ2(n).

Proof: Consider that each yi is an independent standard normal variable. Write out y′y
in summation notation as

y′y = Σn
i=1y

2
i (6)

which is the sum of squares of n standard normal variables.

2.3. Quadratic Form Theorem 3.

Theorem 3. If y ∼ N(0, σ2I) and M is a symmetric idempotent matrix of rank m then

y′My

σ2
∼ χ2(tr M) (7)
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Proof: Since M is symmetric it can be diagonalized with an orthogonal matrix Q. This
means that

Q′MQ = Λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
...

...
0 0 0 · · · λn

 (8)

Furthermore, since M is idempotent all these roots are either zero or one. Thus we can
choose Q so that Λ will look like

Q′MQ = Λ =
[
I 0
0 0

]
(9)

The dimension of the identity matrix will be equal to the rank of M , since the number
of non-zero roots is the rank of the matrix. Since the sum of the roots is equal to the trace,
the dimension is also equal to the trace of M . Now let v = Q′y. Compute the moments of

v = Q′y

E(v) = Q′E(y) = 0

var(v) = Q′σ2IQ

= σ2Q′Q = σ2I since Q is orthogonal

⇒ v ∼ N(0, σ2I)

(10)

Now consider the distribution of y′My using the transformation v. Since Q is orthogonal,
its inverse is equal to its transpose. This means that y = (Q′)−1v = Qv. Now write the
quadratic form as follows

y′My

σ2
=

v′Q′MQv

σ2

=
1
σ2

v′
[
I 0
0 0

]
v

=
1
σ2

tr M∑
i=1

v2
i

=
tr M∑
i=1

(vi

σ

)2

(11)

This is the sum of squares of (trM) standard normal variables and so is a χ2 variable with
trM degrees of freedom.
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Corollary: If the n × 1 vector y ∼ N(0, I) and the n × n matrix A is idempotent and of
rank m. Then

y′Ay ∼ χ2(m)

2.4. Quadratic Form Theorem 4.

Theorem 4. If y ∼ N(0, σ2I), M is a symmetric idempotent matrix of order n, and L is a k × n
matrix, then Ly and y′My are independently distributed if LM = 0.

Proof: Define the matrix Q as before so that

Q′MQ = Λ =
[
I 0
0 0

]
(12)

Let r denote the dimension of the identity matrix which is equal to the rank of M . Thus
r = tr M .

Let v = Q′y and partition v as follows

v =
[
v1

v2

]
=



v1

v2
...
vr

vr+1
...

vn


(13)

The number of elements of v1 is r, while v2 contains n − r elements. Clearly v1 and v2

are independent of each other since they are independent standard normals. What we will
show now is that y′My depends only on v1 and Ly depends only on v2. Given that the vi

are independent, y′My and Ly will be independent. First use Theorem 3 to note that

y′My = v′Q′MQv

= v′
[
I 0
0 0

]
v

= v′1v1

(14)

Now consider the product of L and Q which we denote C. Partition C as (C1, C2). C1

has k rows and r columns. C2 has k rows and n− r columns. Now consider the following
product

C(Q′MQ) = LQQ′MQ, since C = LQ

= LMQ = 0, since LM = 0 by assumption
(15)
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Now consider the product of C and the matrix Q′MQ

C(Q′MQ) = (C1, C2)
[
I 0
0 0

]
= 0

(16)

This of course implies that C1 = 0. This then implies that

LQ = C = (0, C2) (17)
Now consider Ly. It can be written as

Ly = LQQ′y, since Q is orthogonal
= Cv, by definition of C and v

= C2v2, since C1 = 0
(18)

Now note that Ly depends only on v2, and y′My depends only on v1. But since v1 and
v2 are independent, so are Ly and y′My.

2.5. Quadratic Form Theorem 5.
Theorem 5. Let the n × 1 vector y ∼ N(0, I), let A be an n × n idempotent matrix of rank m,
let B be an n × n idempotent matrix of rank s, and suppose BA = 0. Then y′Ay and y′By are
independently distributed χ2 variables.

Proof: By Theorem 3 both quadratic forms are distributed as chi-square variables. We
need only to demonstrate their independence. Define the matrix Q as before so that

Q′AQ = Λ =
[
Ir 0
0 0

]
(19)

Let v = Q′y and partition v as

v =
[
v1

v2

]
=



v1

v2
...
vr

vr+1
...

vn


(20)

Now form the quadratic form y′Ay and note that

y′Ay = v′Q′AQv

= v′
[
Ir 0
0 0

]
v

= v′1v1

(21)
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Now define G = Q′BQ. Since B is only considered as part of a quadratic form we
may consider that it is symmetric, and thus note that G is also symmetric. Now form the
product GΛ = Q′BQQ′AQ. Since Q is orthogonal its transpose is equal to its inverse and
we can write GΛ = Q′BAQ = 0, since BA = 0 by assumption. Now write out this identity
in partitioned form as

G(Q′AQ) =
(

G1 G2

G′
2 G3

) [
Ir 0
0 0

]

=
(

G1 0
G′

2 0

)
=

[
0r 0
0 0

] (22)

where G1 is r × r, G2 is r × (n− r) and G3 is (n− r)× (n− r).
This means then that G1 = 0r and G2 = G′

2 = 0.
This means that G is given by

G =
(

0 0
0 G3

)
(23)

Given this information write the quadratic form in B as

y′By = y′Q′QBQQ′y

= v′Gv

= (v′1, v′2)
[
0 0
0 G3

](
v1

v2

)
= v′2G3v2

(24)

It is now obvious that y′Ay can be written in terms of the first r terms of v, while y′By
can be written in terms of the last n− r terms of v. Since the v′ s are independent the result
follows.

2.6. Quadratic Form Theorem 6 (Craig’s Theorem).

Theorem 6. If y ∼ N(µ, Ω) where Ω is positive definite, then q1 = y′Ay and q2 = y′By are
independently distributed if AΩB = 0.

Proof of sufficiency:
This is just a generalization of Theorem 5. Since Ω is a covariance matrix of full rank

it is positive definite and can be factored as Ω = TT ′. Therefore the condition AΩB = 0
can be written ATT ′B = 0. Now pre-multiply this expression by T ′ and post-multiply by
T to obtain that T ′ATT ′BT = 0. Now define C = T ′AT and K = T ′BT and note that if
AΩB = 0, then

CK = (T ′AT )(T ′BT ) = T ′ΩBT = T ′0T = 0 (25)
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Consequently, due to the symmetry of C and K, we also have

0 = 0′ = (CK)′ = K ′C ′ = KC (26)

Thus CK = 0 and KC = 0 and KC = CK. A simultaneous diagonalization theorem
in matrix algebra [9, Theorem 4.15, p. 155] says that if CK = KC then there exists an
orthogonal matrix Q such that

Q′CQ =
[
D1 0
0 0

]

Q′KQ =
[
0 0
0 D2

] (27)

where D1 is an n1×n1 diagonal matrix and D2 is an (n−n1)× (n−n1) diagonal matrix.
Now define v = Q′T−1y. It is then distributed as a normal variable with expected value
and variance given by

E(v) = Q′T−1µ

var(v) = Q′T−1ΩT−1′Q

= Q′T−1′TT ′T−1′Q

= I

(28)

Thus the vector v is a vector of independent standard normal variables.
Now consider q1 = y′Ay in terms of v. First note that y = TQv and that y′ = v′Q′T ′.

Now write out y′Ay as follows

q1 = y′Ay =v′Q′T ′ATQv

= v′Q′T ′(T ′−1CT−1)TQv

= v′Q′CQv

= v′1D1v1

(29)

Similarly we can define y′By in terms of v as

q2 = y′By = v′Q′T ′BTQv

= v′Q′T ′(T ′−1KT−1)TQv

= v′Q′KQv

= v′2D2v2

(30)

Thus q1 = y′Ay is defined in terms of the first n1 elements of v, and q2 = y′By is defined
in terms of the last n− n1 elements of v and so they are independent.

The proof of necessity is difficult and has a long history [2], [3].
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2.7. Quadratic Form Theorem 7.

Theorem 7. If y is a n× 1 random variable and y ∼ N(µ, Σ) then

(y − µ)′Σ−1(y − µ) ∼ χ2(n)

Proof: Let w = (y − µ)′Σ−1(y − µ). If we can show that w = z′z where z is distributed
as N(0 , I) then the proof is complete. Start by diagonalizing Σ with an orthogonal matrix
Q. Since Σ is positive definite all the elements of the diagonal matrix Λ will be positive.

Q′ΣQ = Λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
...

...
0 0 0 . . . λn

 (31)

Now let Λ∗ be the following matrix defined based on Λ.

Λ∗ =



1√
λ1

0 0 . . . 0

0
1√
λ2

0 . . . 0

...
...

...
...

0 0 0 . . .
1√
λn


(32)

Now let the matrix H = Q′Λ∗Q. Obviously H is symmetric. Furthermore

H ′H = Q′Λ∗QQ′Λ∗Q

= Q′Λ−1Q

= Σ−1

(33)

The last equality follows from the definition of Σ = QΛQ′ after taking the inverse of
both sides remembering that the inverse of an orthogonal matrix is equal to its transpose.
Furthermore it is obvious that

HΣH ′ = QΛ∗Q′ΣQΛ∗Q′

= QΛ∗Q′QΛQ′QΛ∗Q′

= I

(34)

Now let ε = y − µ so that ε ∼ N(0, Σ). Now consider the distribution of z = Hε. It is a
standard normal since
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E(z) = HE(ε) = 0

var(z) = H var(ε)H ′ (35)

= HΣH ′

= I

Now write w as w = εΣ−1ε and see that it is equal to z′z as follows

w = ε′Σ−1ε

= ε′H ′Hε

= (Hε)′(Hε)

= z′z

(36)

2.8. Quadratic Form Theorem 8. Let y ∼ N(0, I). Let M be a non-random idempotent
matrix of dimension n × n (rank (M) = r ≤ n). Let A be a non-random matrix such that
AM = 0. Let t1 = My and let t2 = Ay. Then t1 and t2 are independent random vectors.

Proof: Since M is symmetric and idempotent it can be diagonalized using an orthonor-
mal matrix Q as before.

Q′MQ = Λ =
[

Ir×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
(37)

Further note that since Q is orthogonal that M = QΛQ′. Now partition Q as
Q = (Q1, Q2) where Q1 is n × r. Now use the fact that Q is orthonormal to obtain the
following identities

QQ′ = (Q1Q2)
(

Q′
1

Q′
2

)

= Q1Q
′
1 + Q2Q

′
2 = In

(38)

Q′Q =
(

Q′
1

Q′
2

)
(Q1Q2) =

[
Q′

1Q1 Q′
1Q2

Q′
2Q1 Q′

2Q2

]

=
(

Ir 0
0 In−r

)
Now multiply Λ by Q to obtain

QΛ = (Q1Q2)
(

I 0
0 0

)
= (Q1 0)

(39)
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Now compute M as

M = QΛQ′ = (Q1Q2)
(

Q′
1

Q′
2

)
= Q1Q

′
1

(40)

Now let z1 = Q′
1y and let z2 = Q′

2y. Note that

z = (z′1 , z′2) = C ′y

is a standard normal since E(x) = 0 and var(z) = CC ′ = I . Furthermore z1 and z2 are
independent. Now consider t1 = My. Rewrite this using (40) as

Q1Q
′
1y = Q1z1

Thus t1 depends only on z1. Now let the matrix

N = I −M = Q2Q
′
2

from (38) and (40). Now notice that

AN = A(I −M) = A−AM = A

since AM = 0. Now consider t2 = Ay. Replace A with AN to obtain

t2 = Ay = ANy

= A(Q2Q
′
2)y

= AQ2(Q′
2y)

= AQ2z2

(41)

Now t1depends only on z1 and t2 depends only on z2 and since the zs are independent
the ts are also independent.
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