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ABSTRACT

A characterization of the distribution of the multivariate quadratic form given by XAX′,

where X is a p× n normally distributed matrix and A is an n× n symmetric real matrix, is

presented. We show that the distribution of the quadratic form is the same as the distribution

of a weighted sum of non-central Wishart distributed matrices. This is applied to derive the

distribution of the sample covariance between the rows of X when the expectation is the

same for every column and is estimated with the regular mean.

1. INTRODUCTION

Univariate and multivariate quadratic forms play an important role in the theory of

statistical analysis, specially when we are dealing with sample variances and covariance

matrices. The univariate quadratic form

q = x′Ax,

where x has a multivariate normal distribution, x ∼ Np(µ,Σ) are commonly used in the

univariate theory. Results of the distribution of q can be found in many books of statisti-
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cal analysis, see for example Rao (1973); Muirhead (1982); Srivastava and Khatri (1979);

Graybill (1976).

One characterization of the univariate quadratic q is that it has the same distribution as

the weighted sum of independent non-central χ2 variables, see for example Baldessari (1967);

Tan (1977) for more details. This and the fact that the sum of independent non-central χ2

variables is again non-central χ2 distributed give several results on the distribution of the

univariate quadratic form as special cases.

One of the first to discuss independence between quadratic forms was Cochran (1934).

Many authors have generalized Cochran’s theorem, see for example Chipman and Rao (1964);

Styan (1970); Tan (1977) and the references therein.

Assume that X follows a matrix normal distribution with a separable covariance matrix,

i.e., X ∼ Np,n(M,Σ,Ψ), where Σ : p × p and Ψ : n × n are the covariance matrices not

necessary positive definite and Np,n(•, •, •) stands for the matrix normal distribution. We

are interested in a characterization for the distribution of the quadratic form

Q = XAX′, (1)

where A : n × n is a symmetric and real matrix. Several authors have investigated the

conditions under which the quadratic form Q has a Wishart distribution. Rao (1973) showed

that Q is Wishart if and only if l′Ql is χ2 distributed, for any fixed vector l. Hence, the

theory of univariate quadratic forms can be applied to the multivariate case.

Khatri (1962) extended Cochran’s theorem to the multivariate case by discussing con-

ditions for Wishartness and independence of second degree polynomials. Other have also

generalized Cochran’s theorem for the multivariate case, see for example Rao and Mitra

(1971); Khatri (1980); Vaish and Chaganty (2004); Tian and Styan (2005); Hu (2008). More

generally, Wong and Wang (1993); Mathew and Nordström (1997); Masaro and Wong (2003)

discussed Wishartness for the quadratic form when the covariance matrix is non-separable,

i.e., when the covariance matrix cannot be written as a Kronecker product.

Khatri (1966) derived the density for Q in the central case, i.e., when M = 0. The density

function involves the hypergeometric function of matrix argument and is cumbersome to
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handle. The hypergeometric function can be expanded in terms of zonal polynomials which

is slowly convergent and the expansion in terms of Laguerre polynomials may be preferable

for computational purpose.

The probability density function given by Khatri (1966) is written as the product of

a Wishart density function and a generalized hypergeometric function. This form is not

always convenient for studying properties of Q. For M = 0 and Ψ = In, both Hayakawa

(1966) and Shah (1970) derived the probability density function for Q. Using the moment

generating function, Shah (1970) expressed the density function of Q in terms of Laguerre

polynomials with matrix argument. Hayakawa (1966) also showed that any quadratic form

Q can be decomposed to a linear combination of independent central Wishart or pseudo

Wishart matrices with coefficients equal to the eigenvalues of A.

In the non-central case, when X ∼ Np,n(M,Σ,Ψ) and M 6= 0, Gupta and Nagar (2000)

derived the non-central density for Q in terms of generalized Hayakawa polynomials, which

are expectation of certain zonal polynomials. Gupta and Nagar (2000) also computed the

moment generating function which they used for proving Wishartness and independence

of quadratic forms. In (Khatri, 1977) the Laplace transform was used to generalize the

results of Shah (1970) to the non-central case. When A = I, Khatri (1977) also obtained a

similar representation of the non-central Wishart density in terms of the generalized Laguerre

polynomial with matrix argument.

In this paper a characterization of the distribution of the quadratic form Q when X ∼

Np,n (M,Σ,Ψ) is given. Instead of representing it in terms of a hypergeometric function of

matrix argument and an expansion in zonal polynomials as in (Khatri, 1966) and (Hayakawa,

1966) we show that the distribution of Q coincide with the distribution of a weighted sum

of non-central Wishart distributed matrices, similar as in the case when M = 0 and Ψ = I

done by Hayakawa (1966). We also discuss the complex normal case and show that the same

properties hold.

The organization of this paper is as follows. In Section 2 the main theorem is proved. The

characteristic function for the multivariate quadratic form is derived and the distribution of
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the quadratic form is characterized. Some properties of the quadratic form which can be

proved through this new characterization of the distribution is shown. In Section 3 the

complex case is discussed and in Section 4 an example where this new characterization of

the distribution can be used is presented.

2. DISTRIBUTION OF MULTIVARIATE QUADRATIC FORMS

Assume that the matrix X follows matrix normal distribution with a separable covariance

matrix, i.e., the covariance matrix can be written as Ψ⊗Σ, where ⊗ is the Kronecker product

between the matrices Ψ : n × n and Σ : p × p. This is written X ∼ Np,n (M,Σ,Ψ) and is

equivalent to

vec X ∼ Npn (vec M,Ψ⊗Σ) ,

where vec · is the vectorization operator, see Kollo and von Rosen (2005) for more details.

Consider the matrix quadratic form

Q = XAX′.

We will use the characteristic function of Q for a characterization of the distribution. Start

with the following theorem for the independent column case.

Theorem 1 Let Y ∼ Np,n (M,Σ, In), Σ ≥ 0 and let A : n× n be a symmetric real matrix.

The characteristic function of Q = YAY′ is then

ϕQ(T) =
r∏
j=1

|I− iλjΓΣ|−1/2etr

{
1

2
iλjΩj(I− iλjΓΣ)−1Γ

}
,

where T = (tij), where i, j = 1, . . . , p and Γ = (γij) = ((1 + δij) tij), tij = tji and δij is

the Kronecker delta. The non-centrality parameters are Ωj = mjm
′
j, where mj = Maj.

The vectors aj and the value λj are the orthonormal eigenvectors and eigenvalues of A,

respectively.

Proof Since A is symmetric, there exist ∆ ∈ O(n) (O(n) is the orthogonal group, O(n) =

{∆ : n × n|∆′∆ = In}) and Dλ = diag(λ1, . . . , λr, 0, . . . , 0) with r = rank (A) such that
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A = ∆Dλ∆
′. We have then

Q = YAY′ = Y∆Dλ∆
′Y′ = ZDλZ

′,

where

Z = Y∆ ∼ Np,n (M∆,Σ,∆′∆) ,

which implies that

Z ∼ Np,n (M∆,Σ, I) . (2)

We can now rewrite Q as

Q = ZDλZ
′ =

r∑
j=1

λjzjz
′
j, (3)

where Z = (z1, . . . ,zn). Furthermore, from (2) we have that the column vectors of Z

are independently distributed as zj ∼ Np(mj,Σ), j = 1, . . . , r, where mj = Maj and

∆ = (a1, . . . ,an).

The characteristic function of Q is given by

ϕQ (T) = E

(
exp

{
i

p∑
j6k

tjkqkj

})
,

where Q = (qij), for i, j = 1, . . . , p. Using the matrices Γ and Q the characteristic function

can be written as

ϕQ(T) = E

(
exp

{
1

2
itr {ΓQ}

})
= E

(
exp

{
1

2
itr {ΓZDλZ

′}
})

=
r∏
j=1

E

(
exp

{
1

2
iλjz

′
jΓzj

})
.

Since the matrix Σ ≥ 0 we have rank(Σ) = l ≤ p. The variable zj is singular or non-singular

multivariate normal zj ∼ Np(mj,Σ|l) and we have zj = Lsj+mj, for some matrix L : p× l,

LL′ = Σ with rank(L) = l and with sj ∼ Nl(0, I). Then the characteristic function can be
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written as

ϕQ(T) =
r∏
j=1

E

(
exp

{
1

2
iλj(Lsj +mj)

′Γ(Lsj +mj)

})

=
r∏
j=1

E

(
exp

{
1

2
iλj(s

′
jL
′ΓLsj + 2m′jΓLsj +m′jΓmj)

})
.

Let H ∈ O(l), such that HL′ΓLH′ = diag(η1, . . . , ηl) = Dη, where ηj j = 1, . . . , l, are the

eigenvalues of L′ΓL. Now, let

uj = Hsj ∼ Nl(0, I).

Furthermore uj = (uj1, . . . , ujl)
′, so

ϕQ(T) =
r∏
j=1

E

(
exp

{
1

2
iλj
(
u′jDηuj + 2m′jΓLH′uj +m′jΓmj

)})

=
r∏
j=1

exp

{
1

2
iλjm

′
jΓmj

}
E

(
exp

{
1

2
iλj

l∑
k=1

(ηku
2
jk + 2θjkujk)

})

=
r∏
j=1

exp

{
1

2
iλjm

′
jΓmj

} l∏
k=1

E

(
exp

{
1

2
iλj(ηku

2
jk + 2θjkujk)

})
, (4)

where

θ′j = m′jΓLH′ = (θj1, . . . , θjl)
′.

The expectations in (4) can easily be calculated using the fact that ujk ∼ N(0, 1); they are

E

(
exp

{
1

2
iλj(ηku

2
jk + 2θjkujk)

})
= (1− iλjηk)−

1
2 exp

{
−1

2
λ2
jθ

2
jk(1− iλjηk)−1

}
, k = 1, . . . , l.

Hence, the final expression is

ϕQ(T) =
r∏
j=1

[
exp

{
1

2
iλjm

′
jΓmj

}

×
l∏

k=1

(1− iλjηk)−
1
2 exp

{
−1

2
λ2
jθ

2
jk(1− iλjηk)−1

}]
, (5)
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which can be simplified through rewriting the two factors in last product in (5) as

r∏
j=1

l∏
k=1

(1− iλjηk)−1/2 =
r∏
j=1

|I− iλjDη|−1/2 =
r∏
j=1

|I− iλjΓΣ|−1/2 (6)

and

r∏
j=1

l∏
k=1

exp

{
−1

2
λ2
jθ

2
jk(1− iλjηk)−1

}

=
r∏
j=1

exp

{
−1

2
λ2
jθ
′
j(I− iλjDη)

−1θj

}

=
r∏
j=1

exp

{
−1

2
λ2
jm

′
jΓL(I− iλjL′ΓL)−1L′Γmj

}
. (7)

Together with the constant term the second part becomes

exp

{
1

2
iλjm

′
jΓmj

}
exp

{
−1

2
λ2
jm

′
jΓL(I− iλjL′ΓL)−1L′Γmj

}
= exp

{
1

2
m′j
(
iλjΓ− λ2

jΓL(I− iλjL′ΓL)−1L′Γ
)
mj

}
= etr

{
1

2
iλjΩj(I− iλjΓΣ)−1Γ

}
, (8)

where Ωj = mjm
′
j. Insertion of (6), (7) and Equation (8) in (5) results in the final expression

for the characteristic function of Q,

ϕQ(T) =
r∏
j=1

|I− iλjΓΣ|−1/2etr

{
1

2
iλjΩj(I− iλjΓΣ)−1Γ

}
.

This complete the proof of the theorem. �

We are now ready to give a theorem for the distribution of Q = YAY′. Let Wp(•, •, •)

stand for the non-central Wishart distribution. We have the following theorem.

Theorem 2 Assume Y ∼ Np,n (M,Σ, I), Σ ≥ 0 and let Q be the quadratic form Q =

YAY′, where A : n× n is a symmetric real matrix of rank r. Then the distribution of Q is

that of

W =
r∑
j=1

λjWj,
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where λj are the nonzero eigenvalues of A and Wj are independent non-central Wishart,

i.e.,

Wj ∼ Wp(1,Σ,mjm
′
j),

where mj = Maj and aj are the corresponding orthonormal eigenvectors, i.e., a′jaj = 1 for

j = 1, . . . , r. In case of singular covariance matrix Σ the non-central Wishart distributions

are singular.

Proof The characteristic function of Wj is given in Muirhead (1982) page 444 as

ϕWj
(T) = |I− iΓΣ|−1/2etr

(
1

2
iΩj (I− iΓΣ)−1 Γ

)
,

and the characteristic function of W =
∑

j λjWj is (using the fact that Wj are independent)

ϕW(T) =
r∏
j=1

ϕWj
(λjT)

=
r∏
j=1

|I− iλjΓΣ|−1/2etr

{
1

2
iλjΩj(I− iλjΓΣ)−1Γ

}
.

Using Theorem 1 we conclude that ϕW(T) = ϕQ(T), i.e., the characteristic function of W

and Q are equal. Hence, the distribution of Q is the same as of W =
∑

j λjWj (Durrett,

1996). �

The matrix quadratic form Q = YAY′ has the same distribution as W =
∑

j λjWj, where

λj are the nonzero eigenvalues of A and Wj are independent non-central Wishart, i.e.,

Wj ∼ Wp(1,Σ,mjm
′
j), where mj = Maj and aj are the corresponding eigenvectors. The

fact that the two variables have the same distribution is here denoted by Q
d
= W.

If A is idempotent the characterization above can be used to prove some properties. The

Wishartness is just given here for the sake of completeness.

Corollary 3 Let Y ∼ Np,n (M,Σ, I), Σ ≥ 0 and let A : n× n be a symmetric real matrix.

If A is idempotent, then Q = YAY′ ∼ Wp (r,Σ,MAM′), where r = rank(A).
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Proof If A is idempotent and rank(A) = r, then λj = 1 for j = 1, . . . , r and zero otherwise.

Using the fact that the sum of non-central Wishart distributed matrices again is non-central

Wishart and Theorem 2, the proof follows. �

Definition 1 If Y ∼ Np,n (M,Σ, I), Σ ≥ 0 and if A : n× n is a symmetric real matrix we

define the distribution of the multivariate quadratic form Q = YAY′ to be Qp(A,M,Σ).

If we transform a Wishart distributed matrix W as BWB′, we have a new Wishart dis-

tributed matrix. In the same way we can transform our quadratic form.

Theorem 4 Let Q ∼ Qp(A,M,Σ) and B : q × p real matrix. Then

BQB′ ∼ Qq(A,BM,BΣB′).

Proof Q
d
= W =

∑
i λiWi, where λi are the eigenvalues of A and Wi are independent non-

central Wishart as Wi ∼ Wp(1,Σ,Maia
′
iM
′), where ai are the corresponding eigenvectors.

Hence,

BQB′
d
=
∑
i

λiBWiB
′

and since BWiB
′ ∼ Wq (n,BΣB′,BMaia

′
iM
′B′) we have

BQB′ ∼ Qq(A,BM,BΣB′).

�

Several other properties for the Wishart distribution, see for example Muirhead (1982)

chapter 3.2 and 10.3, can be established for the distribution of the multivariate quadratic

form.

Theorem 5 If the matrices Q1, . . . ,Qr are independently distributed as

Qi ∼ Qp (Ai,M,Σ) , i = 1, . . . , r,

then
∑r

i=1 Qi ∼ Qp (A,M,Σ), where A =
∑r

i=1 Ai.
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Proof The proof follows directly from the definition. �

Theorem 6 If Q is Qp (A,M,Σ) and Q, Σ and M are partitioned as

Q =

 Q11 Q12

Q21 Q22

 , Σ =

 Σ11 Σ12

Σ21 Σ22

 and M =

 M1

M2

 ,

where Q11 and Σ11 are k × k and M1 is k × n, then Q11 is Qk (A,M1,Σ11).

Proof Put B =
(

Ik : 0
)

: k × p in Theorem 4 and the result follows. �

Corollary 7 Assume Q ∼ Qp (A,M,Σ) and α( 6= 0) is an p× 1 fixed vector, then

α′Qα

α′Σα
d
=

r∑
j=1

λjχ
2
1 (δj) ,

where δj =
α′Maja

′
jM

′α

α′Σα
, and λj and aj are the eigenvalues and orthonormal eigenvectors

of A, respectively.

Proof Follows directly from Theorem 4. �

In the literature two types of multivariate beta distribution are discussed, see Kollo and

von Rosen (2005) for more details. The multivariate beta distribution is closely connected to

the multivariate normal distribution and Wishart distribution. We will also have a version

of a sum of weighted multivariate beta distributions as follows.

Theorem 8 Assume Q ∼ Qp (A,0, I) and W ∼ Wp (m, I) independently distributed. Then

W−1/2QW−1/2 d
=

r∑
i=1

λiBi,

where λi, i = 1, . . . , r are the eigenvalues of A and the Bi’s, are multivariate beta distributed

of type II with one degree of freedom, i.e., Bi ∼MβII (p,m, 1).

See Kollo and von Rosen (2005) page 250 for the definition of multivariate beta distribution.

Now, suppose that X ∼ Np,n (M,Σ,Ψ), Σ ≥ 0 and Ψ > 0 i.e., the columns are dependent

as well.
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Corollary 9 Let X ∼ Np,n (M,Σ,Ψ), Σ ≥ 0, Ψ > 0 and let A : n× n be a symmetric real

matrix of rank r, then Q = XAX′ is distributed as

W =
r∑
j=1

λjWj,

where λj are the nonzero eigenvalues of Ψ1/2AΨ1/2 and Wj are independent non-central

Wishart distributed as follows

Wj ∼ Wp(1,Σ,mjm
′
j), j = 1, . . . , r,

where mj = MΨ−1/2aj and aj are the corresponding orthonormal eigenvectors, i.e., a′jaj =

1 for j = 1, . . . , r. In the case of a singular covariance matrix Σ the non-central Wishart

distributions are singular.

Hence, we see that the distribution of the matrix quadratic form Q = XAX′ is given by

Qp(Ψ
1/2AΨ1/2,MΨ−1/2,Σ).

Using Corollary 9 we can characterize the distribution of trQ.

Theorem 10 Assume Q ∼ Qp (A,M,Σ), then

trQ
d
=

n∑
i=1

r∑
j=1

ωiλjχ
2
1 (δij) ,

where δij = σ′iΣ
−1/2Maja

′
jM

′Σ−1/2σi, λj and aj are the eigenvalues and eigenvectors of

A, ωi and σi are the eigenvalues and eigenvectors of Σ, respectively.

Proof From Equation (3) it follows that trQ =
∑r

j=1 λjz
′
jzj, where the random vectors

z′j ∼ N1,p

(
m′j, 1,Σ

)
, m′j = (Maj)

′ for j = 1, . . . , r. Using Corollary 9 for the quadratic

form z′jzj, i.e., A = I, the proof follows. �

In the independent column case the Wishartness for a quadratic form was given in Corol-

lary 3 and is well known in the literature. Here again for the sake of completeness the

Wishartness is given for the dependent column case.
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Corollary 11 Let X ∼ Np,n (M,Σ,Ψ), Σ ≥ 0, Ψ > 0 and let A : n × n be a symmetric

real matrix. If AΨ is idempotent, then

Q = XAX′ ∼ Wp (r,Σ,MAM′) ,

where r = rank(A).

Proof If AΨ is idempotent, then Ψ1/2AΨ1/2 is idempotent as well and λj = 1 for j =

1, . . . , r and zero otherwise. Using the fact that the sum of non-central Wishart distributed

matrices again is non-central Wishart and Theorem 2 completes the proof. �

We will also give a corollary for the case Ψ ≥ 0 and M = 0.

Corollary 12 Let X ∼ Np,n (0,Σ,Ψ), Σ ≥ 0, Ψ ≥ 0 and let A : n×n be a symmetric real

matrix of rank r, then Q = XAX′ is distributed as

W =

r0∑
j=1

λjWj,

where r0 = rank(L′AL), λj are the nonzero eigenvalues of L′AL and the matrix L : n× l is

such that Ψ = LL′ with rank(L) = l ≤ n. Furthermore, Wj are independent Wishart as

Wj ∼ Wp(1,Σ).

In case of singular covariance matrix Σ the Wishart distributions are singular.

Using Corollary 12, we see that the distribution of the matrix quadratic form Q = XAX′,

when X ∼ Np,n (0,Σ,Ψ), Σ ≥ 0, Ψ = LL′ ≥ 0, is given by Qp(L
′AL,0,Σ).

3. COMPLEX MATRIX QUADRATIC FORMS

In this section will we consider complex multivariate normal distributions denoted by

CNp,n(•, •, •). The complex matrix quadratic form is Q = YAY∗, where Y∗ is the conjugate

transpose of the matrix Y. For more details about the complex multivariate normal and

complex Wishart distributions, see for example Goodman (1963); Khatri (1965); Srivastava

(1965). Let t̄ be the complex conjugate of t, we have then the following theorem.
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Theorem 13 Let Y ∼ CNp,n (M,Σ, I), where M = M1 + iM2 and Σ is positive definite

and Hermitian. Let also A : n × n be a Hermitian matrix. The characteristic function of

Q = YAY∗ is then

ϕQ(T) =
r∏
j=1

|I− iλjΓΣ|−1etr

{
1

2
iλjΩj(I− iλjΓΣ)−1Γ

}
,

where T = (tjk), tjk = tjk + itjk for j, k = 1, . . . , p and Γ = (γjk) = ((1 + δjk) tjk), tjk = t̄kj

and δjk is the Kronecker delta. The non-centrality parameters are Ωj = mjm
∗
j , where mj =

Maj. The vectors aj and the value λj are the orthonormal eigenvectors and eigenvalues of

A respectively.

Proof The proof is similar to the proof of Theorem 1. �

Furthermore, we also have a characterization for the distribution of the complex matrix

quadratic form, which is analogous to that obtained for the non-complex case.

Theorem 14 Assume Y ∼ CNp,n (M,Σ, I), where M = M1+iM2 and Σ is positive definite

and Hermitian. Let Q be the quadratic form Q = YAY∗, where A : n × n is a Hermitian

matrix of rank r. Then the distribution of Q is that of

W =
r∑
j=1

λjWj,

where λj are the nonzero eigenvalues of A and Wj are independent non-central complex

Wishart, i.e.,

Wj ∼ CWp(1,Σ,mjm
∗
j),

where mj = Maj and aj are the corresponding orthonormal eigenvectors, i.e., a∗jaj = 1 for

j = 1, . . . , r.

Proof The characteristic function of Wj is given by Goodman (1963) as

ϕWj
(T) = |I− iΓΣ|−1etr

(
1

2
iΩj (I− iΓΣ)−1 Γ

)
,

13



and the proof parallels that of Theorem 2. �

4. A SPECIAL SAMPLE COVARIANCE MATRIX

The example discussed in this section is similar to the example considered in Vaish and

Chaganty (2004).

Let X ∼ Np,n (M,Σ,Ψ) where M = µ1′ and suppose that covariance matrix Ψ is known.

We want to estimate the covariance Σ. The matrix normal density function is given by

f(X) = (2π)−
1
2
pn |Σ|−n/2|Ψ|−p/2etr

{
−1

2
Σ−1 (X−M) Ψ−1 (X−M)′

}
and the maximum likelihood estimators of µ and Σ are given by

µ̂ml = (1′Ψ−11)−1XΨ−11,

nΣ̂ml = X
(
Ψ−1 −Ψ−11

(
1′Ψ−11

)−1
1′Ψ−1

)
X′ = XHX′,

where

H = Ψ−1 −Ψ−11
(
1′Ψ−11

)−1
1′Ψ−1.

Since HΨ is idempotent and rank(HΨ) = n − 1 we have that XHX′ ∼ Wp (n− 1,Σ), see

Corollary 11.

Now for some reason we estimate the expectation µ with the regular mean µ̂ = 1
n
X1 = x̄,

i.e., we use the same estimator as if Ψ = I. This can be done for several reasons. For

example, the estimator µ̂ is more robust than µ̂ml for large number of observations, i.e., for

large n. Another reason could be that we only know the centralized observations, X− µ̂1′.

However, when we estimate the covariance matrix Σ, we use the dependent model with Ψ.

The estimator of Σ is then

nΣ̂ = (X− µ̂1′) Ψ−1 (X− µ̂1′)
′
= XCΨ−1CX′,

where C is the centralization matrix

C = I− 1(1′1)−11′. (9)
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Using Corollary 9 we have that the distribution of XCΨ−1CX′ is the same as the distribution

of W = W1 + λ̃W̃, where W1 and W̃ are independently distributed as

W1 ∼ Wp (n− 2,Σ) ,

W̃ ∼ Wp (1,Σ)

and λ̃ = 1− 1
n
1′ΨCΨ−11.

The expectation of XCΨ−1CX′ which can be computed straightforwardly is given by

E
(
XCΨ−1CX′

)
=

(
n− 1− 1

n
1′ΨCΨ−11

)
Σ.

Hence, an unbiased estimator of Σ is

Σ̂ =

(
n− 1− 1

n
1′ΨCΨ−11

)−1

XCΨ−1CX′.

ACKNOWLEDGEMENT

We would like to thank Professor Dietrich von Rosen for all valuable comments and ideas.

BIBLIOGRAPHY

Baldessari, B. (1967). The distribution of a quadratic form of normal random variables. The

Annals of Mathematical Statistics, 38(6):1700–1704.

Chipman, J. S. and Rao, M. M. (1964). Projections, generalized inverses, and quadratic

forms. Journal of Mathematical Analysis and Applications, 9(1):1–11.

Cochran, W. G. (1934). The distribution of quadratic forms in a normal system, with

applications to the analysis of covariance. In Mathematical Proceedings of the Cambridge

Philosophical Society, 30(2):178–191.

Durrett, R. (1996). Probability: Theory and Examples. Duxbury Press, Belmont, California,

2nd edition.

Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaus-

sian distribution (an introduction). The Annals of Mathematical Statistics, 34(1):152–177.

15



Graybill, F. A. (1976). Theory and Application of the Linear Model. Duxbury Press, North

Scituate, Massachusetts.

Gupta, A. K. and Nagar, D. K. (2000). Matrix Variate Distributions. Chapman and Hall,

Boca Raton, Florida.

Hayakawa, T. (1966). On the distribution of a quadratic form in multivariate normal sample.

Annals of the Institute of Statistical Mathematics, 18(1):191–201.

Hu, J. (2008). Wishartness and independence of matrix quadratic forms in a normal random

matrix. Journal of Multivariate Analysis, 99(3):555–571.

Khatri, C. G. (1962). Conditions for Wishartness and independence of second degree poly-

nomials in a normal vector. The Annals of Mathematical Statistics, 33(3):1002–1007.

Khatri, C. G. (1965). Classical statistical analysis based on a certain multivariate complex

Gaussian distribution. The Annals of Mathematical Statistics, 38(1):98–114.

Khatri, C. G. (1966). On certain distribution problems based on positive definite quadratic

functions in normal vectors. The Annals of Mathematical Statistics, 37(2):468–479.

Khatri, C. G. (1977). Distribution of a quadratic form in non-central normal vectors using

generalised Laguerre polynomials. South African Statistical Journal, 11:167–179.

Khatri, C. G. (1980). Statistical inference for covariance matrices with linear structure. In

Handbook of Statistics (P. R. Krishnaiah, ed.). North-Holland, Amsterdam, pages 443–

469.

Kollo, T. and von Rosen, D. (2005). Advanced Multivariate Statistics with Matrices. Springer,

Dordrecht.

Masaro, J. and Wong, C. S. (2003). Wishart distributions associated with matrix quadratic

forms. Journal of Multivariate Analysis, 85(1):1–9.

16



Mathew, T. and Nordström, K. (1997). Wishart and Chi-square distributions associated

with matrix quadratic forms. Journal of Multivariate Analysis, 61(1):129–143.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons, New

York.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications. John Wiley & Sons,

New York, 2nd edition.

Rao, C. R. and Mitra, S. K. (1971). Generalized Inverse of a Matrix and its Applications.

Jon Wiley & Sons, New York.

Shah, B. K. (1970). Distribution theory of a positive definite quadratic form with matrix

argument. The Annals of Mathematical Statistics, 41(2):692–697.

Srivastava, M. S. (1965). On the complex Wishart distribution. The Annals of Mathematical

Statistics, 36(1):313–315.

Srivastava, M. S. and Khatri, C. G. (1979). An Introduction to Multivariate Statistics. North

Holland, New York.

Styan, G. P. H. (1970). Notes on the distribution of quadratic forms in singular normal

variables. Biometrika, 57(3):567–572.

Tan, W. Y. (1977). On the distribution of quadratic forms in normal random variables. The

Canadian Journal of Statistics/La Revue Canadienne de Statistique, 5(2):241–250.

Tian, Y. and Styan, G. P. H. (2005). Cochran’s statistical theorem for outer inverses of

matrices and matrix quadratic forms. Linear and Multilinear Algebra, 53(5):387–392.

Vaish, A. K. and Chaganty, N. R. (2004). Wishartness and independence of matrix quadratic

forms for Kronecker product covariance structures. Linear Algebra and Its Applications,

388:379–388.

17



Wong, C. S. and Wang, T. (1993). Multivariate versions of Cochran’s theorems II. Journal

of Multivariate Analysis, 44(1):146–159.

18


	On the Distribution of Matrix Quadratic Forms-TitlePage.pdf
	cis_doqf_rev2

