
Appendix A

Some probability and statistics

A.1 Probabilities, random variables and their distribution

We summarize a few of the basic concepts of random variables,usually de-
noted by capital letters,X,Y,Z, etc, and their probability distributions, defined
by thecumulative distribution function(CDF)FX(x) = P(X ≤ x), etc.

To a random experiment we define a sample spaceΩ, that contains all
the outcomes that can occur in the experiment. A random variable, X, is a
function defined on a sample spaceΩ. To each outcomeω ∈ Ω it defines a
real numberX(ω), that represents the value of a numeric quantity that can
be measured in the experiment. ForX to be called a random variable, the
probabilityP(X ≤ x) has to be defined for all realx.

Distributions and moments

A probability distribution with cumulative distribution functionFX(x) can be
discrete or continuous withprobability function pX(x) andprobability density
function fX(x), respectively, such that

FX(x) = P(X ≤ x) =

{
∑k≤x pX(k), if X takes only integer values,
∫ x
−∞ fX(y)dy.

A distribution can be ofmixed type. The distribution function is then an inte-
gral plus discrete jumps; see Appendix B.

Theexpectationof a random variableX is defined as the center of gravity
in the distribution,

E[X] = mX =

{
∑kkpX(k),
∫ ∞

x=−∞ x fX(x)dx.

Thevariance is a simple measure of the spreading of the distribution and is
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defined as

V[X] = E[(X−mX)
2] = E[X2]−m2

X =

{
∑k(k−mX)

2pX(k),
∫ ∞

x=−∞(x−mX)
2 fX(x)dx.

Chebyshev’s inequalitystates that, for allε > 0,

P(|X−mX|> ε)≤ E[(X−mX)
2]

ε2 .

In order to describe the statistical properties of a random function one
needs the notion ofmultivariate distributions. If the result of a experiment
is described by two different quantities, denoted byX andY, e.g. length and
height of randomly chosen individual in a population, or thevalue of a random
function at two different time points, one has to deal with a two-dimensional
random variable. This is described by its two-dimensional distribution func-
tion FX,Y(x,y) =P(X ≤ x,Y ≤ y), or the corresponding two-dimensional prob-
ability or density function,

fX,Y(x,y) =
∂ 2FX,Y(x,y)

∂x∂y
.

Two random variablesX,Y areindependentif, for all x,y,

FX,Y(x,y) = FX(x)FY(y).

An important concept is thecovariancebetween two random variablesX and
Y, defined as

C[X,Y] = E[(X−mX)(Y−mY)] = E[XY]−mXmY.

Thecorrelation coefficientis equal to the dimensionless, normalized covari-
ance,1

ρ [X,Y] =
C[X,Y]√
V[X]V[Y]

.

Two random variable with zero correlation,ρ [X,Y] = 0, are calleduncorre-
lated. Note that if two random variablesX andY are independent, then they
are also uncorrelated, but the reverse does not hold. It can happen that two
uncorrelated variables are dependent.

1 Speaking about the “correlation between two random quantities”, one often means the de-
gree of covariation between the two. However, one has to remember that the correlation only
measures the degree oflinear covariation. Another meaning of the term correlation is used
in connection with two data series,(x1, . . . ,xn) and(y1, . . . ,yn). Then sometimes the sum of
products,∑n

1 xkyk, can be called “correlation”, and a device that produces this sum is called a
“correlator”.
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Conditional distributions

If X andY are two random variables with bivariate density functionfX,Y(x,y),
we can define theconditional distributionfor X givenY = y, by the condi-
tional density,

fX|Y=y(x) =
fX,Y(x,y)

fY(y)
,

for everyy where themarginal density fY(y) is non-zero. The expectation in
this distribution, theconditional expectation, is a function ofy, and is denoted
and defined as

E[X |Y = y] =
∫

x
x fX|Y=y(x)dx= m(y).

Theconditional varianceis defined as

V[X |Y = y] =
∫

x
(x−m(y))2 fX|Y=y(x)dx= σX|Y(y).

The unconditional expectation ofX can be obtained from thelaw of total
probability, and computed as

E[X] =

∫

y

{∫

x
x fX|Y=y(x)dx

}
fY(y)dy= E[E[X |Y]].

The unconditional variance ofX is given by

V[X] = E[V[X |Y]]+V[E[X |Y]].

A.2 Multidimensional normal distribution

A one-dimensional normal random variableX with expectationm and vari-
anceσ2 has probability density function

fX(x) =
1√

2πσ2
exp

{
−1

2

(
x−m

σ

)2
}
,

and we writeX ∼ N(m,σ2). If m= 0 andσ = 1, the normal distribution is
standardized. IfX ∼ N(0,1), thenσX+m∈ N(m,σ2), and ifX ∼ N(m,σ2)
then(X−m)/σ ∼ N(0,1). We accept a constant random variable,X ≡ m, as
a normal variable,X ∼ N(m,0).
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Now, let X1, . . . ,Xn have expectationmk = E[Xk] and covariancesσ jk =
C[Xj ,Xk], and define, (with′ for transpose),

µµµ = (m1, . . . ,mn)
′,

ΣΣΣ = (σ jk) = the covariance matrix forX1, . . . ,Xn.

It is a characteristic property of the normal distributionsthat all linear
combinations of a multivariate normal variable also has a normal distribution.
To formulate the definition, writea= (a1, . . . ,an)

′ andX = (X1, . . . ,Xn)
′, with

a′X = a1X1+ · · ·+anXn. Then,

E[a′X] = a′µµµ =
n

∑
j=1

a jmj ,

V[a′X] = a′ΣΣΣa=
n

∑
j,k

a jakσ jk.
(A.1)

✤

✣

✜

✢

Definition A.1. The random variables X1, . . . ,Xn, are said to have
an n-dimensional normal distribution is every linear combination
a1X1 + · · ·+ anXn has a normal distribution. From (A.1) we have
thatX = (X1, . . . ,Xn)

′ is n-dimensional normal, if and only ifa′X ∼

N(a′µµµ ,a′ΣΣΣa) for all a= (a1, . . . ,an)
′.

Obviously, Xk = 0 · X1 + · · ·+ 1 · Xk + · · ·+ 0 · Xn, is normal, i.e., all
marginal distributions in ann-dimensional normal distribution are one-
dimensional normal. However, the reverse is not necessarily true; there are
variablesX1, . . . ,Xn, each of which is one-dimensional normal, but the vector
(X1, . . . ,Xn)

′ is notn-dimensional normal.
It is an important consequence of the definition that sums anddifferences

of n-dimensional normal variables have a normal distribution.
If the covariance matrixΣΣΣ is non-singular, then-dimensional normal dis-

tribution has a probability density function (withx = (x1, . . . ,xn)
′)

1

(2π)n/2
√

detΣΣΣ
exp

{
−1

2
(x−µµµ)′ΣΣΣ−1(x−µµµ)

}
. (A.2)

The distribution is said to benon-singular. The density (A.2) is constant on
every ellipsoid(x−µµµ)′ΣΣΣ−1(x−µµµ) =C in Rn.
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✣

✜

✢
Note: the density function of ann-dimensional normal distribution
is uniquely determined by the expectations and covariances.

Example A.1. SupposeX1,X2 have a two-dimensional normal distribution If

detΣΣΣ = σ11σ22−σ2
12 > 0,

thenΣΣΣ is non-singular, and

ΣΣΣ−1 =
1

detΣΣΣ

(
σ22 −σ12

−σ12 σ11

)
.

With Q(x1,x2) = (x−µµµ)′ΣΣΣ−1(x−µµµ),

Q(x1,x2) =

= 1
σ11σ22−σ2

12

{
(x1−m1)

2σ22−2(x1−m1)(x2−m2)σ12+(x2−m2)
2σ11

}
=

= 1
1−ρ2

{(
x1−m1√

σ11

)2
−2ρ

(
x1−m1√

σ11

)(
x2−m2√

σ22

)
+
(

x2−m2√
σ22

)2
}
,

where we also used the correlation coefficientρ = σ12√
σ11σ22

, and,

fX1,X2(x1,x2) =
1

2π
√

σ11σ22(1−ρ2)
exp

(
−1

2
Q(x1,x2)

)
. (A.3)

For variables withm1 = m2 = 0 andσ11 = σ22 = σ2, the bivariate density is

fX1,X2(x1,x2) =
1

2πσ2
√

1−ρ2
exp

(
− 1

2σ2(1−ρ2)
(x2

1−2ρx1x2+x2
2)

)
.

We see that, ifρ = 0, this is the density of two independent normal variables.
Figure A.1 shows the density functionfX1,X2(x1,x2) and level curves for

a bivariate normal distribution with expectationµµµ = (0,0), and covariance
matrix

ΣΣΣ =

(
1 0.5

0.5 1

)
.

The correlation coefficient isρ = 0.5. N

Remark A.1. If the covariance matrixΣΣΣ is singular and non-invertible, then
there exists at least one set of constants a1, . . . ,an, not all equal to0, such
thata′ΣΣΣa= 0. From (A.1) it follows thatV[a′X] = 0, which means thata′X is
constant equal toa′µµµ . The distribution ofX is concentrated to a hyper plane
a′x = constantin Rn. The distribution is said to be singular and it has no
density function inRn.
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Figure A.1 Two-dimensional normal density . Left: density function; Right: elliptic
level curves at levels0.01,0.02,0.05,0.1,0.15.

Remark A.2. Formula (A.1) implies that every covariance matrixΣΣΣ is pos-
itive definite or positive semi-definite, i.e.,∑ j,k a jakσ jk ≥ 0 for all a1, . . . ,an.
Conversely, ifΣΣΣ is a symmetric, positive definite matrix of size n×n, i.e., if
∑ j,k a jakσ jk > 0 for all a1, . . . ,an 6= 0, . . . ,0, then (A.2) defines the density
function for an n-dimensional normal distribution with expectation mk and
covariancesσ jk. Every symmetric, positive definite matrix is a covariance
matrix for a non-singular distribution.

Furthermore, for every symmetric, positive semi-definite matrix, ΣΣΣ, i.e.,
such that

∑
j,k

a jakσ jk ≥ 0

for all a1, . . . ,an with equality holding for some choice of a1, . . . ,an 6= 0, . . . ,0,
there exists an n-dimensional normal distribution that hasΣΣΣ as its covariance
matrix.

For n-dimensional normal variables, “uncorrelated” and “independent”
are equivalent.

✤

✣

✜

✢
Theorem A.1. If the random variables X1, . . . ,Xn are n-
dimensional normal and uncorrelated, then they are independent.

Proof. We show the theorem only for non-singular variables with density
function. It is true also for singular normal variables.

If X1, . . . ,Xn are uncorrelated,σ jk = 0 for j 6= k, thenΣΣΣ, and alsoΣΣΣ−1 are
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diagonal matrices, i.e., (note thatσ j j = V[Xj ]),

detΣΣΣ =∏
j

σ j j , ΣΣΣ−1 =




σ−1
11 . . . 0
...

...
...

0 . . . σ−1
nn


 .

This means that(x− µµµ)′ΣΣΣ−1(x − µµµ) = ∑ j(x j − µ j)
2/σ j j , and the density

(A.2) is

∏
j

1√
2πσ j j

exp

{
−(x j −mj)

2

2σ j j

}
.

Hence, the joint density function forX1, . . . ,Xn is a product of the marginal
densities, which says that the variables are independent. �

A.2.1 Conditional normal distribution

This section deals with partial observations in a multivariate normal distribu-
tion. It is a special property of this distribution, that conditioning on observed
values of a subset of variables, leads to a conditional distribution for the unob-
served variables that is also normal. Furthermore, the expectation in the con-
ditional distribution is linear in the observations, and the covariance matrix
does not depend on the observed values. This property is particularly useful
in prediction of Gaussian time series, as formulated by theKalman filter.

Conditioning in the bivariate normal distribution

Let X andY have a bivariate normal distribution with expectationsmX and
mY, variancesσ2

X andσ2
Y, respectively, and with correlation coefficientρ =

C[X,Y]/(σXσY). The simultaneous density function is given by (A.3).
The conditional density function forX given thatY = y is

f X|Y=y(x) =
fX,Y(x,y)

fY(y)

=
1

σX

√
1−ρ2

√
2π

exp

{
− (x− (mX +σXρ(y−mY)/σY))

2

2σ2
X(1−ρ2)

}
.

Hence, the conditional distribution ofX givenY = y is normal with expecta-
tion and variance

mX|Y=y = mX +σXρ(y−mY)/σY, σ2
X|Y=y = σ2

X(1−ρ2).

Note: the conditional expectation depends linearly on the observedy-value,
and the conditional variance is constant, independent ofY = y.
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Conditioning in the multivariate normal distribution

Let X = (X1, . . . ,Xn)
′ andY = (Y1, . . . ,Ym)

′ be two multivariate normal vari-
ables, of sizen andm, respectively, such thatZ = (X1, . . . ,Xn,Y1, . . . ,Ym)

′ is
(n+m)-dimensional normal. Denote the expectations

E[X] = mX , E[Y] = mY,

and partition the covariance matrix forZ (with ΣΣΣXY = ΣΣΣ′
YX ),

ΣΣΣ = Cov

[(
X
Y

)
;

(
X
Y

)]
=

(
ΣΣΣXX ΣΣΣXY

ΣΣΣYX ΣΣΣYY

)
. (A.4)

If the covariance matrixΣΣΣ is positive definite, the distribution of(X, Y)
has the density function

fXY (x,y) =
1

(2π)(m+n)/2
√

detΣΣΣ
e−

1
2(x

′−m′
X ,y

′−m′
Y)ΣΣΣ

−1(x−mX ,y−mY ),

while them-dimensional density ofY is

fY(y) =
1

(2π)m/2
√

detΣΣΣYY
e−

1
2(y−mY)

′ΣΣΣ−1
YY (y−mY).

To find the conditional density ofX given thatY = y,

fX|Y(x | y) =
fYX (y,x)

fY(y)
, (A.5)

we need the following matrix property.

Theorem A.2 (“Matrix inversions lemma”). Let B be a p× p-matrix (p=
n+m):

B =

(
B11 B12

B21 B22

)
,

where the sub-matrices have dimension n×n, n×m, etc. SupposeB,B11,B22

are non-singular, and partition the inverse in the same way as B,

A = B−1 =

(
A11 A12

A21 A22

)
.

Then

A =

(
(B11−B12B−1

22 B21)
−1 −(B11−B12B−1

22 B21)
−1B12B−1

22

−(B22−B21B−1
11 B12)

−1B21B−1
11 (B22−B21B−1

11 B12)
−1

)
.
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Proof. For the proof, see a matrix theory textbook, for example, [22]. �

✤

✣

✜

✢

Theorem A.3(“Conditional normal distribution”). The conditional
normal distribution forX, given thatY = y, is n-dimensional nor-
mal with expectation and covariance matrix

E[X | Y = y] = mX|Y=y = mX +ΣΣΣXY ΣΣΣ−1
YY (y−mY), (A.6)

C[X | Y = y] = ΣΣΣXX |Y = ΣΣΣXX −ΣΣΣXY ΣΣΣ−1
YY ΣΣΣYX . (A.7)

These formulas are easy to remember: the dimension of the sub-
matrices, for example in the covariance matrixΣΣΣXX |Y , are the only
possible for the matrix multiplications in the right hand side to be
meaningful.

Proof. To simplify calculations, we start withmX = mY = 0, and add the
expectations afterwards. The conditional distribution ofX given thatY = y
is, according to (A.5), the ratio between two multivariate normal densities,
and hence it is of the form,

c exp

{
−1

2
(x′,y′)ΣΣΣ−1

(
x
y

)
+

1
2

y′ ΣΣΣ−1
YY y

}
= c exp{−1

2
Q(x,y)},

wherec is a normalization constant, independent ofx andy. The matrixΣΣΣ
can be partitioned as in (A.4), and if we use the matrix inversion lemma, we
find that

ΣΣΣ−1 = A =

(
A11 A12

A21 A22

)
(A.8)

=

(
(ΣΣΣXX−ΣΣΣXY ΣΣΣ−1

YY ΣΣΣYX )
−1 −(ΣΣΣXX−ΣΣΣXY ΣΣΣ−1

YY ΣΣΣYX )
−1ΣΣΣXY ΣΣΣ−1

YY

−(ΣΣΣYY−ΣΣΣYX ΣΣΣ−1
XX ΣΣΣXY )

−1ΣΣΣYX ΣΣΣ−1
XX (ΣΣΣYY−ΣΣΣYX ΣΣΣ−1

XX ΣΣΣXY )
−1

)
.

We also see that

Q(x,y) = x′A11x+x′A12y+y′A21x+y′A22y−y′ΣΣΣ−1
YY y

= (x′−y′C′)A11(x−Cy)+ Q̃(y)

= x′A11x−x′A11Cy−y′C′A11x+y′C′A11Cy+ Q̃(y),

for some matrixC and quadratic form̃Q(y) in y.
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HereA11 = ΣΣΣ−1
XX |Y , according to (A.7) and (A.8), while we can findC by

solving

−A11C = A12, i.e. C =−A−1
11 A12 = ΣΣΣXY ΣΣΣ−1

YY ,

according to (A.8). This is precisely the matrix in (A.6).
If we reinstall the deletedmX andmY, we get the conditional density for

X givenY = y to be of the form

c exp{−1
2

Q(x,y)} = c exp{−1
2
(x′−m′

X|Y=y)ΣΣΣ
−1
XX |Y(x−mX|Y=y)},

which is the normal density we were looking for. �

A.2.2 Complex normal variables

In most of the book, we have assumed all random variables to bereal valued.
In many applications, and also in the mathematical background, it is advan-
tageous to consider complex variables, simply defined asZ = X+ iY, where
X andY have a bivariate distribution. The mean value of a complex random
variable is simply

E[Z] = E[ℜZ]+ iE[ℑZ],

while the variance and covariances are defined with complex conjugate on the
second variable,

C[Z1,Z2] = E[Z1Z2]−mZ1mZ2,

V[Z] = C[Z,Z] = E[|Z|2]−|mZ|2.

Note, that for a complexZ = X+ iY, with V[X] =V[Y] = σ2,

C[Z,Z] = V[X]+V[Y] = 2σ2,

C[Z,Z] = V[X]−V[Y]+2iC[X,Y] = 2iC[X,Y].

Hence, if the real and imaginary parts are uncorrelated withthe same vari-
ance, then the complex variableZ is uncorrelated with its own complex con-
jugate,Z. Often, one uses the termorthogonal, instead of uncorrelated for
complex variables.


