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The bivariate normal is kind of nifty because...

• The marginal distributions of X and Y are
both univariate normal distributions.

• The conditional distribution of Y given X is
a normal distribution.

• The conditional distribution of X given Y is
a normal distribution.

• Linear combinations of X and Y (such as
Z = 2X + 4Y ) follow a normal distribution.

• It’s normal almost any way you slice it.
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•Bivariate Normal Probability
Density Function

The parameters: µX , µY , σX , σY , ρ

fXY (x, y) =
1

2πσXσY
√

(1− ρ2)
×

exp

{
−1

2(1− ρ2)

[
(x− µX)2

σ2X
− 2ρ(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2Y

]}

for −∞ < x <∞ and −∞ < y <∞, with

parameters σX > 0 , σY > 0 ,
−∞ < µX <∞, −∞ < µY <∞,

and −1 < ρ < 1.

Where ρ is the correlation between X and Y .

The other parameters are the needed parame-
ters for the marginal distributions of X and Y .
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•Bivariate Normal

When X and Y are independent, the con-
tour plot of the joint distribution looks like con-
centric circles (or ellipses, if they have different
variances) with major/minor axes that are par-
allel/perpendicular to the x-axis:

The center of each circle or ellipse is at (µX , µY ).
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•Bivariate Normal

When X and Y are dependent, the contour
plot of the joint distribution looks like concen-
tric diagonal ellipses, or concentric ellipses with
major/minor axes that are NOT parallel/perp-
endicular to the x-axis:

The center of each ellipse is at (µX , µY ).
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•Marginal distributions of X and Y in
the Bivariate Normal

Marginal distributions of X and Y are nor-
mal:

X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y )

Know how to take the parameters from the
bivariate normal and calculate probabilities
in a univariate X or Y problem.

•Conditional distribution of Y |x in the
Bivariate Normal

The conditional distribution of Y |x is also
normal:

Y |x ∼ N(µY |x, σ
2
Y |x)
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Y |x ∼ N(µY |x, σ
2
Y |x)

where the “mean of Y |x” or µY |x depends
on the given x-value as

µY |x = µY + ρ
σY
σX

(x− µX)

and “variance of Y |x” or σ2
Y |x depends on

the correlation as

σ2
Y |x = σ2

Y (1− ρ2).

Know how to take the parameters from the
bivariate normal and get a conditional distri-
bution for a given x-value, and then calculate
probabilities for the conditional distribution
of Y |x (which is a univariate distribution).

Remember that probabilities in the normal
case will be found using the z-table.
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Notice what happens to the joint distribution
(and conditional) as ρ gets closer to +1:

ρ = 0.45

ρ = 0.75

ρ = 0.95
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As a last note on the bivariate normal...

Though ρ = 0 does not mean X and Y are in-
dependent in all cases, for the bivariate normal,
this does hold.

For the Bivariate Normal,
Zero Correlation Implies Independence

If X and Y have a bivariate normal distribution
(so, we know the shape of the joint distribution),
then with ρ = 0, we have X and Y as indepen-
dent.
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• Example: From book problem 5-54.

Assume X and Y have a bivariate normal
distribution with..
µX = 120, σX = 5
µY = 100, σY = 2
ρ = 0.6

Determine:
(i) Marginal probability distribution of X .

(ii) Conditional probability distribution of Y
given that X = 125.
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Linear Functions of Random Variables
Section 5.6

• Linear Combination

Given random variables X1, X2, . . . , Xp and
constants c1, c2, . . . , cp,

Y = c1X1 + c2X2 + · · · + cpXp

is a linear combination of X1, X2, . . . , Xp.

•Mean of a Linear Function

If Y = c1X1 + c2X2 + · · · + cpXp,

E(Y ) = c1E(X1)+c2E(X2)+· · ·+cpE(Xp)
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•Variance of a Linear Function

If X1, X2, . . . , Xp are random variables, and
Y = c1X1 + c2X2 + · · ·+ cpXp, then

in general

V (Y ) = c2
1V (X1)+c2

2V (X2) + · · · + c2
pV (Xp)

+ 2
∑
i<j

∑
cicjcov(Xi, Xj)

In this class, all our linear combinations of
random variables will be done with indepen-
dent random variables.

If X1, X2, . . . , Xp are independent, then

V (Y ) = c2
1V (X1)+c2

2V (X2)+· · ·+c2
pV (Xp)

The most common mistake for finding the
variance of a linear combination is to forget
to square the coefficients.
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• Example: Semiconductor product
(example 5.26)

A semiconductor product consists of three
layers. The variance of the thickness of the
first, second, third layers are 25, 40, and 30
nanometers2.

What is the variance of the thickness of the
final product?

ANS:
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•Mean and Variance of an Average

Suppose we randomly generate p observa-
tions from the a distribution with mean µ.

Thus, E(Xi) = µ for i = 1, 2, . . . , p.

Let X̄ =
(X1 + X2 + · · · + Xp)

p

=
1

p
X1 +

1

p
X2 + · · · 1

p
Xp

X̄ is as mean and it is a linear combination
of the p random variable we observed. Be-
cause E(Xi) = µ for i = 1, 2, . . . , p we have

E(X̄) = µ.

⇒The expected value of the average of p random

variables, all with the same mean µ, is just µ again.
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If X1, X2, . . . , Xp are also independent and

all with the same variance or V (Xi) = σ2

then

V (X̄) =
σ2

p

⇒The variance of the average of p iden-

tical random variables (i.e. σ2

p ) is smaller
than the variance of a single random vari-
able (i.e. σ2).
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•Reproductive Property of the
Normal Distribution

If X1, X2, . . . , Xp are independent, normal
random variables with E(Xi) = µi and
V (Xi) = σ2

i for i = 1, 2, . . . , p,

Y = c1X1 + c2X2 + · · · + cpXp

is a normal random variable with

µY = E(Y ) = c1µ1 + c2µ2 + · · · + cpµp

and

σ2
Y = V (Y ) = c2

1σ
2
1 + c2

2σ
2
2 + · · · + c2

pσ
2
p

i.e. Y ∼ N(µY , σ
2
Y ) as described above.

A linear combination of normal r.v.’s is also normal.
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• Example: Manufactured part
(see example 5.27)

Let the random variables X1 and X2 repre-
sent lengths of manufactured parts. Assume
that X1 is normal with E(X1) = 2 cm and
standard deviation 0.1 cm and that is X2 is
normal with E(X2) = 5 cm and standard
deviation 0.2 cm. We will assume X1 andX2
are independent.

Find the probability that 2X1 + 2X2 < 14.3

ANS: (next page)
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Let Y represent the random variable
(a linear combination).

Y = 2X1 + 2X2

µY = E(Y ) = 2(2) + 2(5) = 14

σ2
Y = V (Y ) = 22V (X1) + 22V (X2)

= 4(0.12) + 4(0.22)
= 0.04 + 0.16
= 0.20

Because both X1 and X2 were normal r.v.’s,
the reproductive property of normal r.v.’s gives
us...

Y ∼ N(µY , σ
2
Y ) or Y ∼ N(14, 0.20)

P (Y > 14.5) = P
(
Y−µY
σY

> 14.5−14√
0.2

)
= P (Z > 1.12)
= 0.13
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• Example: Weights of people

Assume that the weights of individuals are
independent and normally distributed with
a mean of 160 pounds and a standard devi-
ation of 30 pounds. Suppose that 25 people
squeeze into an elevator that is designed to
hold 4300 pounds.

a) What is the probability that the load ex-
ceeds the design limit?
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• SPECIAL CASE:

Reproductive Property of the
Normal Distribution for a Random
Sample

If the X1, X2, . . . , Xp are each drawn in-
dependently from the same normal
distribution, or by notation Xi ∼ N(µ, σ2)
for all i, then

X̄ ∼ N(µ, σ
2

p ) for any sample size p.

This results because X̄ is a linear combina-
tion of normals in this situation.
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