
Properties of the Multivariate Normal Distribution

Recall the following definition.

Definition 1 We say that Y is a p-dimensional standard normal vector if its
components are independent standard normal variables. Let A be a p×p regular
real matrix and m ∈ Rp be a vector. Then the linear transformation X =
AY + m defines a p-dimensional normal random vector.

First we derive the p.d.f. of a multivariate normal (Gaussian) random vector.

• The random vector Y has p-dimensional standard normal distribution,
if its components are i.i.d. standard Gaussian variables. Therefore, the
p.d.f. of Y ∼ Np(0, Ip) is

g(y) =

p∏
i=1

φ(yi) =
1
√

2π
p e
−(

∑p
i=1 y2

i )/2 =
1

(2π)p/2
e−‖y‖

2/2, y ∈ Rp

where φ is the standard Gaussian density and y = (y1, . . . , yp)T .

• The random vector X = AY + m has p-dimensional normal distribution,
where A is a p× p regular matrix and m ∈ Rp.

By the linearity of the expectation and the bilinearity of the covariance,

E(X) = AEY + m = m

and the covariance matrix of X is

C = VarX = E[(X−m)(X−m)T ] = E[(AY)(AY)T ] = E(AYYTAT ) = AE(YYT )AT = AAT .

Notation: X ∼ Np(m,C), where p,m,C are parameters. If A, and equiv-
alently, C is invertible, the p.d.f. f(x) of X is derived by the transforma-
tion formula applied with the one-to-one Rp → Rp transformations

x = Ay + m, y = A−1(x−m).

Namely,

f(x) = |det(A−1)| · g(A−1(x−m)) =
1

|det(A)|
· 1

(2π)p/2
e−‖A

−1(x−m)‖2/2

=
1

(2π)p/2|det(A)|
e−

1
2 (x−m)T (A−1)TA−1(x−m)

=
1

(2π)p/2|C|1/2
e−

1
2 (x−m)TC−1(x−m), x ∈ Rp.

Here |det(A−1)| = 1/|det(A)| is the inverse Jacobian. We also used that
|det(A)| = |C|1/2 and (A−1)TA−1 = (AT )−1A−1 = (AAT )−1 = C−1.
Note that C is positive definite, therefore its determinant is positive, and
we use the |C| = det(C) notation.

We remark that a linear transformation with a singular or rectangular A
would result in a degenerated p-variate normal distribution which, in fact, is
realized in a lower, namely, rank(A)-dimensional subspace. Hence, we will only
deal with regular A and C. Note that rank(C) = rank(A).
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Proposition 1 The level surfaces (contours of equal density) of f are ellip-
soids, which are spheres if and only if the components of X are independent
with equal variances.

Proof: Obviously, f(x) > 0 and it attains its maximum at m. Let C be a
constant with 0 < C ≤ f(m). Then f(x) = C is equaivalent to

(x−m)TC−1(x−m) = zTΛ−1z =

p∑
i=1

1

λi
z2i =

p∑
i=1

z2i√
λi

2 = c,

where C = UΛUT and C−1 = UΛ−1UT is SD, and z = UT (x −m) is the
principal axes coordinate transformation. Further, c > 0 is a transformation of
the constant C. The above equation is equivalent to

p∑
i=1

z2i√
cλi

2 = 1,

which is the equation of an ellipsoid with half-axes proportional to
√
λi’s in the

new coordinate system. We have circles if and only if

λ1 = · · · = λp = λ,

i.e.,
C = U(λIp)UT = λIp

which means that the components are independent with equal variances λ. Note
that if the components are independent, but not of equal variances, we have
ellipsoids with axes parallel to the coordinate axes.

Conversely, given the parameters m and C, X can be transformed into a
p-dimensional standard normal vector Y in the following way. C, being a Gram-
matrix, can be (not uniquely) decomposed as AAT with a regular p× p matrix
A. For example, A = C1/2 will do, but AQ is also convenient with any p × p
orthogonal matrix Q. Then the formula

Y = A−1(X−m)

defines a p-dimensional standard normal vector. Note that using AQ instead of
A will result in an orthogonal rotation of Y which has the same distribution as
Y.

Proposition 2 The components of X ∼ Np(m,C) are (completely) indepen-
dent if and only if C is diagonal.

Proposition 3 If the covariance matrix C of X ∼ Np(m,C) is positive defi-
nite, then

(X−m)TC−1(X−m) ∼ χ2(p).

Proof: With the above back transformation

(X−m)TC−1(X−m) = (X−m)T (AAT )−1(X−m) =

= (X−m)T (A−1)TA−1(X−m) = YTY =

p∑
i=1

Y 2
i
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which finishes the proof by the definition of the χ2 distribution, since Yi’s are
i.i.d. standard Gaussians.

Note that if rank(C) = r < p, then

(X−m)TC+(X−m) ∼ χ2(r),

where C+ is the Moore–Penrose inverse of the singular matrix C (see Lesson
1).

Proposition 4 The random vector X has multivariate normal distribution if
and only if any linear combination of its components has one-dimensional nor-
mal distribution.

This follows easily by characteristic functions (see the Multivar. Stat. mate-
rial). Proposition 4 implies that all the marginal distributions of the multivari-
ate normal distribution are multivariate normal of appropriate dimension and
parameters.

As for the conditional distributions, in case of the multivariate normal dis-
tribution, the conditional expectations are linear functions of the subset of vari-
ables in the condition. More precisely, the following proposition can be proved.

Proposition 5 Let (XT ,YT )T ∼ Np+q(m,C) be a random vector, where the
expectation m and the covariance matrix C are partitioned (with block sizes p
and q) in the following way:

m =

(
mX

mY

)
, C =

(
CXX CXY

CYX CYY

)
.

Here CXX, CYY are covariance matrices of X and Y, whereas CYX = CT
XY

is the cross-covariance matrix. Assume that CXX, CYY and C are regular.
Then the conditional distribution of the random vector Y conditioned on X is
Nq(CYXC−1XX(X−mX) + mY,CYY|X) distribution, where

CYY|X = CYY −CYXC−1XXCXY.

The conditional expectation of Y conditioned on X is the expectation of the
above conditional distribution:

E(Y|X) = CYXC−1XX(X−mX) + mY

which is a linear function of the coordinates of X. In the p = q = 1 case, it
is called regression line, while in the q = 1, p > 1 case, regression plane. We
will not deal with the q > 1, p > 1 case, which is the topic of the Partial
Least Squares Regression. Summarizing, in case of multidimensional Gaus-
sian distribution the regression functions are linear functions of the variables in
the condition, which fact has important consequences in multivariate statistical
analysis.

Note that multivariate normality can often be assumed due to the forthcom-
ing Multidimensional Central Limit Theorem. As a preparation to this theorem,
we consider independent sums.
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Proposition 6 (Multidimensional Steiner Theorem) Let x1, . . . ,xn ∈ Rp

be given vectors, x = 1
n

∑n
k=1 xk, and v ∈ Rp be an arbitrary vector. Then

n∑
k=1

(xk − v)(xk − v)T =

n∑
k=1

(xk − x̄)(xk − x̄)T + n(x̄− v)(x̄− v)T .

Especially, with v = 0 we get

n∑
k=1

(xk − x̄)(xk − x̄)T =

n∑
k=1

xkxT
k − nx̄x̄T .

Proposition 7 Let X1,X2, . . . ,Xn be i.i.d. random vectors with expectation
vector m and covariance matrix C. Then expectation vector and covariance
matrix of X = 1

n

∑n
i=1 Xi:

EX = m, VarX =
1

n
C.

Theorem 1 (Multidimensional Central Limit Theorem) Let X1,X2, . . .
be i.i.d. random vectors. Assume that the common expectation vector m and
the covariance matrix C of Xi’s exist, and C is regular. Then the sequence of
the standardized partial sums

1√
n

C−1/2

(
n∑

i=1

Xi − nm

)

converges (in distribution) to the p-dimensional standard normal distribution as
n→∞. Equivalently,

1√
n

(
n∑

i=1

Xi − nm

)
→ Np(0,C).

The convergence is understood in distribution, which means the convergence of
the cumulative multivariate distribution functions. (Not proved here, but can
be proved by characteristic functions.)

Definition 2 The empirical and corrected empirical covariance matrices based
on the X1, . . . ,Xn i.i.d. sample are

Ĉ =
1

n
S and Ĉ∗ =

1

n− 1
S,

where

S =

n∑
i=1

(Xi − X̄)(Xi − X̄)T =

n∑
i=1

XiX
T
i − nX̄X̄T .

Proposition 8 The corrected empirical covariance matrix is unbiased, while
the empirical one is asymptotically unbiased estimator of the true covariance
matrix C.
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Proof :

ES =

n∑
i=1

E(XiX
T
i )−nE(X̄X̄T ) = n(C−mmT )−n(

1

n
C−mmT ) = (n− 1)C,

which finishes the proof.
Prove Propositions 4,5,6,7!
Characteristic functions help us to prove Proposition 4.

Proposition 9 The characteristic function of Y ∼ Np(0, Ip) is

ψY(t) = E(eiY
T t) = e−‖t‖

2/2, t ∈ Rp.

Proposition 10 The characteristic function of X ∼ Np(m,C) is

ψX(t) = E(eiX
T t) = eim

T t− 1
2 t

TCt, t ∈ Rp,

where i is the imaginary unit.

Proposition 11 If X and Y are independent and X+Y is normally distributed,
then X és Y are also normally distributed.

(Not proved, but can be proved by characteristic functions.)

Lemma 1 Let X = (X1, . . . , Xk)T ∼ Nk(0,C) with C positive semidefinite.

Then
∑k

i=1X
2
i can be decomposed as

∑k
i=1 λiY

2
i , where Y = (Y1, . . . , Yk)T ∼

Nk(0, Ik) and the nonnegative real numbers λ1, . . . , λk are eigenvalues of C.

Proof. Let the SD of the covariance matrix of X be C = UΛUT , where
Λ = diag(λ1, . . . , λk). Then X = UΛ1/2Y where Y is k-dimensional standard
normal.

k∑
i=1

X2
i = ‖X‖2 = ‖UTX‖2 = ‖Λ1/2Y‖2 =

k∑
i=1

λiY
2
i ,

as the orthogonal transformation UT keeps the norm. This was to be proven.
Based on this, we are able to find the asymptotic distribution of the well-

known χ2 statistic.

Revisiting the χ2-test. Let A1, . . . , Ak be a complete set of mutually exclusive
events. Check

H0 : P(Ai) = pi (i = 1, . . . , k).

Denote by ν1, . . . , νk the frequencies ofA1, . . . , Ak in n independent trials (
∑k

i=1 νi =
n). Then under the zero-hypothesis

ν = (ν1, . . . , νk)T ∼ Polyn(p1, . . . , pk).

(Recall that it is a deformed k-dimensional distribution concentrated on a (k−1)-
dimensional hyperplane of Rk because of the linear relation ν1 + · · · + νk = n
between its components.)
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Theorem 2 If ν = (ν1, . . . , νk)T follows polynomial distribution with parame-

ters n and p1, . . . , pk (pi > 0,
∑k

i=1 pi = 1) , then

k∑
i=1

(νi − npi)2

npi
→ χ2(k − 1)

in distribution as n→∞.

Proof. First find the expectation vector and covariance matrix of the polyno-
mially distributed random vector ν = (ν1, . . . , νk)T .

The k-dimensional indicator ofA1, . . . , Ak is a random vector ε = (ε1, . . . , εk)T ,
the components of which corresponding to the actual random event is 1, the oth-

ers are 0s. If ε
(i)
k denotes the indicator of the ith experiment, then ν =

∑n
i=1 ε

(i).
For the components of the expectation vector of ε:

E(εj) = P(Aj) = pj , j = 1, . . . , k.

and the diagonal entries of its covariance matrix are

cjj = D2(εj) = E(ε2j )− E2(εj) = pj − p2j = pj(1− pj), j = 1, . . . , k,

while the off-diagonal entries are

clj = cjl = Cov(εj , εl) = E(εjεl)−E(εj)·E(εl) = 0−pjpl = −pjpl, 1 ≤ j < l ≤ k.

Therefore, the covariance matrix of ε is

C =



p1(1− p1) −p1p2 . . . −p1pk

−p1p2 p2(1− p2) . . . −p2pk

...
...

. . .
...

−p1pk −p2pk . . . pk(1− pk)


= PIk − ppT , (1)

where P = diag(p1, . . . , pk) és p = (p1, . . . , pk)T . So, Var(ν) = nC. Obviously,
ν and C are singular (their row sums are 0s).

Apply the Multivariate Central Limit Theorem to the i.i.d. P−1/2ε(1), . . . ,P−1/2ε(n)

random vectors, the sum of which is P−1/2ν. So, as n→∞,
1√
n

P−1/2(ν−E(ν))

tends (in distribution) to a random vector X ∼ Nk(0,P−1/2CP−1/2).
But by the decomposition (1) of the matrix C:

P−1/2CP−1/2 = Ik −Q,

where Q is the dyad of the unit vector q = (
√
p1, . . . ,

√
pk)T . Consequently,

Q defines a projection onto the direction aq, and Ik −Q a projection onto the
orthogonal complementary subspace of q. The eigenvalues of this projection of
rank (k − 1) are λ1 = · · · = λk−1 = 1 és λk = 0.

Apply Lemma 1 to X: the distribution of
∑k

i=1X
2
i is the same as that of∑k

i=1 λiY
2
i , where Yiare i.i.d. standard normals, and λis are the eigenvalues of

Ik −Q. So
∑k

i=1X
2
i ∼ χ2(k − 1).
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By a general probability theorem it follows that if
1√
n

P−1/2(ν−E(ν)) tends

in distribution to X (n → ∞), then the sum of the squares of its coordinates
(what is our χ2-statistic) tends in distribution to the sum of the squares of X,
which is the χ2(k − 1)-distribution. This finishes the proof.
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