5.12 The Bivariate Normal Distribution

The first multivariate continuous distribution for which we have a name is a generalization of the normal distribution to two coordinates. There is more structure to the bivariate normal distribution than just a pair of normal marginal distributions.

Definition of the Blvariate Normal Distribution

Suppose that Z_{1} and Z_{2} are independent random variables, each of which has a standard normal distribution. Then the joint p.d.f. $g\left(z_{1}, z_{2}\right)$ of Z_{1} and Z_{2} is specified for all values of z_{1} and z_{2} by the equation

$$
\begin{equation*}
g\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right] . \tag{5.12.1}
\end{equation*}
$$

For constants $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$, and ρ such that $-\infty<\mu_{i}<\infty(i=1,2), \sigma_{i}>0$ ($i=1,2$), and $-1<\rho<1$, we shall now define two new random variables X_{1} and X_{2} as follows:

$$
\begin{align*}
& X_{1}=\sigma_{1} Z_{1}+\mu_{1} \\
& X_{2}=\sigma_{2}\left[\rho Z_{1}+\left(1-\rho^{2}\right)^{1 / 2} Z_{2}\right]+\mu_{2} \tag{5.12.2}
\end{align*}
$$

We shall derive the joint p.d.f. $f\left(x_{1}, x_{2}\right)$ of X_{1} and X_{2}.
The transformation from Z_{1} and Z_{2} to X_{1} and X_{2} is a linear transformation; and it will be found that the determinant Δ of the matrix of coefficients of Z_{1} and Z_{2} has the value $\Delta=\left(1-\rho^{2}\right)^{1 / 2} \sigma_{1} \sigma_{2}$. Therefore, as discussed in Section 3.9, the Jacobian J of the inverse transformation from X_{1} and X_{2} to Z_{1} and Z_{2} is

$$
\begin{equation*}
J=\frac{1}{\Delta}=\frac{1}{\left(1-\rho^{2}\right)^{1 / 2} \sigma_{1} \sigma_{2}} \tag{5.12.3}
\end{equation*}
$$

Since $J>0$, the value of $|J|$ is equal to the value of J itself. If the relations (5.12.2) are solved for Z_{1} and Z_{2} in terms of X_{1} and X_{2}, then the joint p.d.f. $f\left(x_{1}, x_{2}\right)$ can be obtained by replacing z_{1} and z_{2} in Eq. (5.12.1) by their expressions in terms of x_{1} and x_{2}, and then multiplying by $|J|$. It can be shown that the result is, for $-\infty<x_{1}<\infty$ and $-\infty<x_{2}<\infty$,

$$
\begin{array}{r}
f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi\left(1-\rho^{2}\right)^{1 / 2} \sigma_{1} \sigma_{2}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right.\right. \\
\left.\left.-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\} . \tag{5.12.4}
\end{array}
$$

When the joint p.d.f. of two random variables X_{1} and X_{2} is of the form in Eq. (5.12.4), it is said that X_{1} and X_{2} have a bivariate normal distribution. The means and the variances of the bivariate normal distribution specified by Eq. (5.12.4) are easily derived from the definitions in Eq. (5.12.2). Because Z_{1} and Z_{2} are independent and each has mean 0 and
variance 1 , it follows that $E\left(X_{1}\right)=\mu_{1}, E\left(X_{2}\right)=\mu_{2}, \operatorname{Var}\left(X_{1}\right)=\sigma_{1}^{2}$, and $\operatorname{Var}\left(X_{2}\right)=\sigma_{2}^{2}$. Furthermore, it can be shown by using Eq. (5.12.2) that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\rho \sigma_{1} \sigma_{2}$. Therefore, the correlation of X_{1} and X_{2} is simply ρ. In summary, if X_{1} and X_{2} have a bivariate normal distribution for which the p.d.f. is specified by Eq. (5.12.4), then

$$
E\left(X_{i}\right)=\mu_{i} \quad \text { and } \quad \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2} \quad \text { for } i=1,2
$$

Also,

$$
\rho\left(X_{1}, X_{2}\right)=\rho
$$

It has been convenient for us to introduce the bivariate normal distribution as the joint distribution of certain linear combinations of independent random variables having standard normal distributions. It should be emphasized, however, that the bivariate normal distribution arises directly and naturally in many practical problems. For example, for many populations the joint distribution of two physical characteristics such as the heights and the weights of the individuals in the population will be approximately a bivariate normal distribution. For other populations, the joint distribution of the scores of the individuals in the population on two related tests will be approximately a bivariate normal distribution.

Example 5.12.1 Anthropometry of Flea Beetles. Lubischew (1962) reports the measurements of several physical features of a variety of species of flea beetle. The investigation was concerned with whether some combination of easily obtained measurements could be used to distinguish the different species. Figure 5.8 shows a scatterplot of measurements of the first joint in the first tarsus versus the second joint in the first tarsus for a sample of 31 from the species Chaetocnema heikertingeri. The plot also includes three ellipses that correspond to a fitted bivariate normal distribution. The ellipses were chosen to contain $25 \%, 50 \%$, and 75% of the probability of the fitted bivariate normal distribution. The correlation of the fitted distribution is 0.64 .

Marginal and Conditional Distributlons

Marginal Distributions. We shall continue to assume that the random variables X_{1} and X_{2} have a bivariate normal distribution, and their joint p.d.f. is specified by Eq. $(5.12 .4)$, In the study of the properties of this distribution, it will be convenient to represent X_{1} and X_{2} as in Eq. (5.12.2), where Z_{1} and Z_{2} are independent random variables with standard normal distributions. In particular. since both X_{1} and X_{2} are linear combinations of Z_{1} and Z_{2}, it follows from this representation and from Corollary 5.6.1 that the marginal distributions of both X_{1} and X_{2} are also normal distributions. Thus, for $i=1,2$, the marginal distribution of X_{i} is a normal distribution with mean μ_{i} and variance σ_{i}^{2}.

Independence and Correlation. If X_{1} and X_{2} are uncorrelated, then $\rho=0$. In thiscase, it can be seen from Eq. (5.12.4) that the joint p.d.f. $f\left(x_{1}, x_{2}\right)$ factors into the product of the marginal p.d.f. of X_{1} and the marginal p.d.f. of X_{2}. Hence, X_{1} and X_{2} are independent. and the following result has been established:

 mornal elliphes for Example 5.12.1

Two random variables X_{1}, and X_{2}, that have a bivariate normal distribution are independent if and only if they are uncorrelated.

We have already seen in Section +.6 that two randon variables X_{1} and X_{2} with an arbitrary joint distribution can be uncorrelated without being independent.

Conditional Distributions. The conditional distribution of X_{2} given that $X_{1}=x_{1}$ can also be derived from the representation in Eq. (5.12.2). If $X_{1}=x_{1}$, then $Z_{1}=$ $\left(x_{1}-\mu_{1}\right) / \sigma_{1}$. Therefore. the conditional distribution of X_{2} given that $X_{1}=x_{1}$ is the same as the conditional distribution of

$$
\begin{equation*}
\left(1-\rho^{2}\right)^{1 / 2} \sigma_{2} Z_{2}+\mu_{2}+\rho \sigma_{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right) . \tag{5.12.5}
\end{equation*}
$$

Because Z_{2} has a standard normal distribution and is independent of X_{1}, it follows from (5.12.5) that the conditional distribution of X_{2} given that $X_{1}=x_{1}$ is a normal distribution. for which the mean is

$$
\begin{equation*}
E\left(X_{2} \mid x_{1}\right)=\mu_{2}+\rho \sigma_{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right) . \tag{5.12.6}
\end{equation*}
$$

and the variance is $\left(1-\rho^{2}\right) \sigma_{2}^{2}$.
The conditional distribution of X_{1} given that $X_{2}=x_{2}$ cannot be derived so easily from Eq. (5.12.2) because of the different ways in which Z_{1} and Z_{2} enter Eq. (5.12.2). However. it is seen from Eq. (5.12.4) that the joint p.d.f. $f\left(x_{1}, x_{2}\right)$ is symmetric in the two variables $\left(x_{1}-\mu_{1}\right) / \sigma_{1}$ and $\left(x_{2}-\mu_{2}\right) / \sigma_{2}$. Therefore, it follows that the conditional distribution of X_{1} given that $X_{2}=x_{2}$ can be found from the conditional distribution of X_{2} given that $X_{1}=x_{1}$ (this distribution has just been derived) simply by interchanging
x_{1} and x_{2}, interchanging μ_{1} and μ_{2}, and interchanging σ_{1} and σ_{2}. Thus, the conditional distribution of X_{1} given that $X_{2}=x_{2}$ must be a normal distribution, for which the mean is

$$
\begin{equation*}
E\left(X_{1} \mid x_{2}\right)=\mu_{1}+\rho \sigma_{1}\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right) \tag{5.12.7}
\end{equation*}
$$

and the variance is $\left(1-\rho^{2}\right) \sigma_{1}^{2}$.
We have now shown that each marginal distribution and each conditional distribution of a bivariate normal distribution is a univariate normal distribution.

Some particular features of the conditional distribution of X_{2} given that $X_{1}=x_{1}$ should be noted. If $\rho \neq 0$, then $E\left(X_{2} \mid x_{1}\right)$ is a linear function of the given value x_{1}. If $\rho>0$, the slope of this linear function is positive. If $\rho<0$, the slope of the function is negative. However, the variance of the conditional distribution of X_{2} given that $X_{1}=x_{1}$ is $\left(1-\rho^{2}\right) \sigma_{2}^{2}$, and its value does not depend on the given value x_{1}. Furthermore, this variance of the conditional distribution of X_{2} is smaller than the variance σ_{2}^{2} of the marginal distribution of X_{2}.

Example 5.12.2 Predicting a Person's Weight. Let X_{1} denote the height of a person selected at random from a certain population, and let X_{2} denote the weight of the person. Suppose that these random variables have a bivariate normal distribution for which the p.d.f. is specified by Eq. (5.12.4) and that the person's weight X_{2} must be predicted. We shall compare the smallest M.S.E. that can be attained if the person's height X_{1} is known when her weight must be predicted with the smallest M.S.E. that can be attained if her height is not known.

If the person's height is not known, then the best prediction of her weight is the mean $E\left(X_{2}\right)=\mu_{2}$; and the M.S.E. of this prediction is the variance σ_{2}^{2}. If it is known that the person's height is x_{1}, then the best prediction is the mean $E\left(X_{2} \mid x_{1}\right)$ of the conditional distribution of X_{2} given that $X_{1}=x_{1}$; and the M.S.E. of this prediction is the variance $\left(1-\rho^{2}\right) \sigma_{2}^{2}$ of that conditional distribution. Hence, when the value of X_{1} is known, the M.S.E. is reduced from σ_{2}^{2} to $\left(1-\rho^{2}\right) \sigma_{2}^{2}$.

Since the variance of the conditional distribution in Example 5.12.2 is $\left(1-\rho^{2}\right) \sigma_{2}^{2}$, regardless of the known height x_{1} of the person, it follows that the difficulty of predicting the person's weight is the same for a tall person, a short person, or a person of medium height. Furthermore, since the variance $\left(1-\rho^{2}\right) \sigma_{2}^{2}$ decreases as $|\rho|$ increases, it follows that it is easier to predict a person's weight from her height when the person is selected from a population in which height and weight are highly correlated.

Example 5.12.3 Determining a Marginal Distribution. Suppose that a random variable X has a normal distribution with mean μ and variance σ^{2}, and that for every number x, the conditional distribution of another random variable Y given that $X=x$ is a normal distribution with mean x and variance τ^{2}. We shall determine the marginal distribution of Y.

We know that the marginal distribution of X is a normal distribution, and the conditional distribution of Y given that $X=x$ is a normal distribution. for which the mean is a linear function of x and the variance is constant. It follows that the joint distribution of
X and Y must be a bivariate nomal distribution (see Exercise $1+$). Hence. the marginal distribution of Y is also a normal distribution. The mean and the variance of Y must be determined.

The mean of Y is

$$
E(Y)=E[E(Y \mid X)]=E(X)=\mu .
$$

Furthemore by Exercise 11 of Section 4.7.

$$
\begin{aligned}
\operatorname{Var} Y) & =E[\operatorname{Var}(Y, X)]+\operatorname{Var}[E(Y \mid X)] \\
& =E\left(t^{2}\right)+\operatorname{Var}(X) \\
& =t^{2}+\sigma^{2}
\end{aligned}
$$

Hence, the distribution of Y is a normal distribution with mean μ and variance $\tau^{2}+\sigma^{2}$.

Linear Combinations

Suppose again that two random variables X_{1} and X_{2} have a bivariate normal distribution. for which the p.d.f. is specified by Eq. (5.12.4). Now consider the random variable $Y=a_{1} X_{1}+a_{2} X_{2}+b$. where $a_{1} . a_{2}$. and b are arbitrary given constants. Both X_{1} and X_{2} can be represented. as in Eq. (5.12.2). as linear combinations of independent and normally distributed random variables Z_{1} and Z_{2}. Since Y is a linear combination of X_{1} and X_{2}. it follows that Y can also be represented as a linear combination of Z_{1} and Z_{2}. Therefore by Corollary 5.6.1. the distribution of Y will also be a normal distribution. Thus, the following important property has been established.

If two random variables X_{1} and X_{2} have a bivariate normal distribution, then each linear combination $Y=a_{1} X_{1}+a_{2} X_{2}+b$ will have a normal distribution.

The mean and variance of Y are as follows:

$$
\begin{aligned}
E(Y) & =a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+b \\
& =a_{1} \mu_{1}+a_{2} \mu_{2}+b
\end{aligned}
$$

and

$$
\begin{align*}
\operatorname{Var}(Y) & =a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
& =a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}+2 a_{1} a_{2} \rho \sigma_{1} \sigma_{2} . \tag{5.12.8}
\end{align*}
$$

Example 5.12.4 Heights of Husbands and Wives. Suppose that a married couple is selected at random from a certain population of married couples. and that the joint distribution of the height of the wife and the height of her husband is a bivariate normal distribution. Suppose that the heights of the wives have a mean of 66.8 inches and a standard deviation of 2 inches. the heights of the husbands have a mean of 70 inches and a standard deviation of 2 inches. and the correlation between these two heights is 0.68 . We shall determine the probability that the wife will be taller than her husband.

If we let X denote the height of the wife, and let Y denote the height of her husband, then we must determine the value of $\operatorname{Pr}(X-Y>0)$. Since X and Y have a bivariate normal distribution, it follows that the distribution of $X-Y$ will be a normal distribution, for which the mean is

$$
E(X-Y)=66.8-70=-3.2
$$

and the variance is

$$
\begin{aligned}
\operatorname{Var}(X-Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y) \\
& =4+4-2(0.68)(2)(2)=2.56
\end{aligned}
$$

Hence, the standard deviation of $X-Y$ is 1.6 .
The random variable $Z=(X-Y+3.2) /(1.6)$ will have a standard normal distribution. It can be found from the table given at the end of this book that

$$
\begin{aligned}
\operatorname{Pr}(X-Y>0) & =\operatorname{Pr}(Z>2)=1-\Phi(2) \\
& =0.0227 .
\end{aligned}
$$

Therefore, the probability that the wife will be taller than her husband is 0.0227 .

Summary

If a random vector (X, Y) has a bivariate normal distribution, then every linear combination $a X+b Y+c$ has a normal distribution. In particular, the marginal distributions of X and Y are normal. Also, the conditional distribution of X given $Y=y$ is normal with the conditional mean being a linear function of y and the conditional variance being constant in y. (Similarly, for the conditional distribution of Y given $X=x$.) A more thorough treatment of the bivariate normal distribution and higher-dimensional generalizations can be found in the book by D. F. Morrison (1990).

EXERCISES

1. Consider again the joint distribution of heights of husbands and wives in Example 5.12.4. Find the 0.95 quantile of the conditional distribution of the height of the wife given that the height of the husband is 72 inches.
2. Suppose that two different tests A and B are to be given to a student chosen at random from a certain population. Suppose also that the mean score on test A is 85 , and the standard deviation is 10 ; the mean score on test B is 90 , and the standard deviation is

16; the scores on the two tests have a bivariate normal distribution: and the correlation of the two scores is 0.8 . If the student's score on test A is 80 , what is the probability that her score on test B will be higher than 90 ?
3. Consider again the two tests A and B described in Exercise 2. If a student is chosen at random, what is the probability that the sum of her scores on the two tests will be greater than 200?

