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512 The Bivariate Normal Distribution

The first multivariate continuous distribution for which we have a name is a
generalization of the normal distribution to two coordinates. There is more
structure to the bivanate normal distribution than just a pair of normal
marginal distributions.

Definition of the Bivarlate Normal Distribution

Suppose that Z and Z are independent random variables, each of which has a standard
normal distribution. Then the joint p.d.f. 2) of Z1 and Z is specified for all values
of and z by the equation

g(z1,z,) = — exp[——(z + z)]. (5.12.1)
2 L 2

For constants 11t. /12, a. a,, and p such that —00 </1 < (1 = 1, 2), a, > 0
(i = 1, 2). and —1 < p < 1, we shall now define two new random variables X1 and X,
as follows:

X1 =aZ1 -i—i1

X, = a [pZi + (1 — p 2z + it,. (5.12.2)

We shall derive the joint p.d.f. f(x1. X2) of X1 and X,.
The transformation from Z1 and 1, to X1 and X2 is a linear transformation; and it

will be found that the determinant of the matrix of coefficients of Z1 and Z2 has the
value z\ = (1

—
p2) 12a1a2.Therefore, as discussed in Section 3.9, the Jacobian J of the

inverse transformation from X1 and K, to Z1 and Z2 is

J = — = . (5.12.3)
i (l—p-)1-aa2

Since J > 0. the value of IJI is equal to the value of J itself. If the relations (5.12.2)
are solved for Zi and Z2 in terms of X and X2. then the joint p.d.f. f(x1.x-,) can be
obtained by replacing and z in Eq. (5.12.1) by their expressions in terms ofx1 and 52.

and then multiplying by JI. It can be shown that the result is, for — <x1 <oc and
— < 2 < OO

f(x1,x2)= exp1—
2ir(l—p -a1a2 a1

— 2p( —lii) (x1_bL2)

+
(2_li2)2]}

(5.12.4)

When the joint p.d.f. of two random variables X1 and X2 is of the form in Eq. (5.12.4).
it is said that X1 and X-, have a biiariate normal distribution. The means and the variances
of the bivariate normal distribution specified by Eq. (5.12.4) are easily derived from the
definitions in Eq. (5.12.2). Because Z1 and Z2 are independent and each has mean 0 and
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variance 1. it follows that E(X1)= i1. E(X2)= p, Var(X1)= r. and Var(XjFurthermore, it can be shown by using Eq. (5.12.2) that Cov(X . X) = Plo’2. Therefo,the correlation of X1 and X: is simply p. In summary. if X1 and X2 have a bivariate nornjdisthbution for which the p.d.f. is specified by Eq. (5.12.4), then

E(Xi)=j.L: and Var(X1)=a fori=l,2.

Also,

p(X1,X2) = p.

It has been convenient for us to introduce the bivariate normal distribution as thejoint distribution of certain linear combinations of independent random variables having standard normal distributions. It should be emphasized, however, that the bivariatenormal distribution arises directly and naturally in many practical problems. For example, for many populations the joint distribution of two physical characteristics such asthe heights and the weights of the individuals in the population will be approximately abivariate normal distribution. For other populations, the joint distribution of the scoresof the individuals in the population on two related tests will be approximately a bivariatenormal distribution.

Example 5.12.1 Anthropometry of Flea Beetles. Lubischew (1962) reports the measurements of several physical features of a variety of species of flea beetle. The investigation was con
cerned with whether some combination of easily obtained measurements could be used
to distinguish the different species. Figure 5.8 shows a scatterplot of measurements of
the first joint in the first tarsus versus the second joint in the first tarsus for a sample of 31
from the species Chaetocnema heikertingeri. The plot also includes three ellipses that
correspond to a fitted bivariate normal distribution. The ellipses were chosen to contain
25%. 50%. and 75% of the probability of the fitted bivariate normal distribution. The
correlation of the fitted distribution is 0.64. 4

Marginal and Conditional Distributions
Marginaiflistributions. We shall continue to assume that the random variables X1 and
X-, have a bivariate normal distribution, and their joint p.d.f. is specified by Eq. (5.12.41
in the study of the properties of this distribution, it will be convenient to represent X1 arid
X2 as in Eq. (5.12.2). where Z1 and Z are independent random variables with standard
normal distributions. In particular. since both X1 and X, are linear combinations of I
and Z. it follows from this representation and from Corollary 5.6.1 that the mar
distributions of both X1 and X are also normal distributions. Thus. for i = 1,2, the
marginal distribution of X is a normal distribution with mean /1, and variance a

Independence and correlation, If X1 and X-, are uncorrelated, then p =0. In this case
it can he seen from Eq. (5.12.4) that thejointp.d.f. j(x. x’) factors into the product0
marginal p.d.f of X and the marginal p.d.f. of X2 Hence, X and X are indePefldd1
and the following result has been established:
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Tao random variables .V1 and X that hake a baariate normal distribution are
independent if and only if they are uncorrelated.

\Ve have already seen in Section 4.6 that tso random sariables X and X v ith an
arbitrary joint distribution can he unconelated ithout being independent.

(‘onditional Distributions. The conditional distribution of X-. izien that ‘i =
can also he derived from the representation in Eq. 15.12.2). If X1 =

.. .
then Z1 =

I — )• Therefore, the conditional distribution of ,V eien that .V
= i is the

same as the conditional distribution of

(I 2)t 2J7 + /L + (i (5.12.5)
at I

Because Z has a standard normal distribution and is independent of V1. it follows from
5. 12.5 that the conditional distribution of .V cisen that X = .r is a normal distribution.

for which the mean is
.

E(Xx1)= p. + pa ( _/tt),
(5.12.6)

and the variance is (1 — p2)a.
The conditional distribution of X1 given that X = x cannot he deri’ed so easily

from Eq. 5. 12.2) because of the different ways in s hich Z and Z enter Eq. t 5. 12.2).
f1oseer. it is seen from Eq. (5.12.4) that the Joint p.d.f. fLy1. v is symmetric in the
t o ariables I — p I o and (v /L ) nH . Therefore, it foIlos s ihat the conditional
distribution of X1 gi en that X = r can he found from the conditional distribution of
\ uRen that .V

= I this distribLttion has Just been deri’.ed) simply by interchanging

5)) 1))) 2i))) .: ii J)) ! ui
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x1 and t. interchanging p and JLs. and interchanging a1 and a. Thus, the conditionaldistribution of X1 given that X2 =2must be a normal distribution, for which the mean is

EtX1Ix2)= p + a1 (: P2)
(5.127)

and the variance is (I —p2)a.
We have now shown that each marginal distribution and each conditional distributionof a bivariate normal distribution is a univariate normal distribution.Some particular features of the conditional distribution of X2 given that X1 =should be noted. If p 0, then EX2x1)is a linear function of the given value Ifp > 0, the slope of this linear function is positive. If p <0. the slope of the function isnegative. However, the variance of the conditional distribution of X2 given that X1 =is (1 — p2)a. and its value does not depend on the given value x1. Furthermore, thisvariance of the conditional distribution of X- is smaller than the variance H of themarginal distribution of X2.

Predicting a Person’s Weight. Let X1 denote the height of a person selected at randomfrom a certain population. and let X2 denote the weight of the person. Suppose that theserandom variables have a bivariate normal distribution for which the p.d.f. is specifiedby Eq. (5.12.4) and that the person’s weight X2 must be predicted. We shall comparethe smallest M.S.E. that can be attained if the person’s height X1 is known when herweight must be predicted with the smallest M.S.E. that can be attained if her height isnot known.
If the person’s height is not known, then the best prediction of her weight is the meanE(X2) p2; and the M.S.E. of this prediction is the variance H. If it is known that theperson’s height is x1. then the best prediction is the mean E(X2jx1)of the conditionaldistribution of X2 given that X1 x1; and the M.S.E. of this prediction is the variance(1 p2)c of that conditional distribution. Hence. when the value of X1 is known. theM.S.E. is reduced from H to (I

—p2)H.
4

Since the variance of the conditional distribution in Example 5.12.2 is U —
p2)a.regardless of the known height of the person. it follows that the difficulty of predictingthe person’s weight is the same for a tall person. a short person, or a person of mediumheight. Furthermore, since the variance (I

— p2)H decreases as pJ increases, it followsthat it is easier to predict a person’s weight from her height when the person is selectedfrom a population in which height and weight are highly correlated,

Determining a Marginal Distribution. Suppose that a random variable X has a normaldistribution with mean p and variance a2. and that for every number x, the conditionaldistribution of another random variable Y given that X = is a normal distribution withmean . and variance r2. We shall determine the marginal distribution of IWe know that the marginal distribution of X is a normal distribution, and the conditional distribution of I given that X x is a normal distribution, for which the mean iSa linear function of, and the sariance is constant It follows that the Joint distiihutiofl of
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Example 5.12.3
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.V and Y must he a hi ariate nirmal distribution see Exercise 14>. Hence, the marginal

distribution of 1 is also a normal disinbution. [The mean and the ariance of 1 niust he

determined.
ihe mean at } is

EiY EIEiYXiJ EX —jr.

Eui them more. h E\ercmse II of Section 4.7,

ar( Y> E[Var( Y X ii Var[ Ei Y Xi

Er) —Var>X>

Hence, he distribution of ) is a normal distribution s oh mean i and variance r- o

Linear Combinations

.4

Suppose again that two random variables X and X hake a hivariate normal distribution,

tar shich the p.d.f. is specified by Eq. 5.12.4). Now consider the random variable

Y = a X + a X + /, v here 0. a. and h are arbitrary given constants. Both X1 and

X can he represented. as in Eq. (5.12.2). as linear combinations of independent and

normally distributed random variables Z and Z. Since Y is a linear combination of X

and X. it follows that V can also be represented as a linear combination of Z1 and Z.

Therefore. by Corollary 56.1. the distribution of V will also be a normal distribution.

Thus, the following important property has been established.

If two random variables X1 and ,V have a b/variate normal distribution, then

each linear combination V = a1X1 -i- aX + h will have a normal distribution.

The mean and variance of V are as follows:

and

E>Y> =a1E(X1)+a2E(X2)+ b

‘ili +a2M2 +1

Van Y = 02 Var) K1) a VariX5) 2a1aCov>X1,K2)

= c1rT aa. ± 2aapon. (5.12.8)

Example 5.12.4 Heights of Husbands and Wives. Suppose that a maiTied couple is selected at random

from a certain population of married couples. and that the joint distribution of the height

of the s ife and the height of her husband is a bivariate normal distribution. Suppose

that the heights at the wives have a mean of 66.8 inches and a standard deviation of 2

inches. the heights of the husbands have a mean of 70 inches and a standard deviation of

2 inches. and the correlation heteen these to heights is 0.68. We shall determine the

probability that the wife will he taller than her husband.

k
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If we let X denote the height of the wife, and let Y denote the height of her husband
then we must detennine the value of Pr(X — Y > 0). Since X and Y have a bivayjate
normal distribution, it follows that the distribution of X — Y will be a normal distributjon
for which the mean is

EX — Y) = 66.8— 70 = —3.2

Var(X — Y) = Var(X) + Var(Y) —2 Cov(X, Y)
4 + 4 — 2(0.68)(2)(2) 2.56.

Hence, the standard deviation of X — Y is 1.6.
The random variable Z = (X — Y + 3.2)/( 1.6) will have a standard normal distribu

tion. It can be found from the table given at the end of this book that

Pr(X— Y >0)=Pr(Z >2)= 1—ci(2)
= 0.0227.

Therefore, the probability that the wife will be taller than her husband is 0.0227, 4

Summary

If a random vector (X, Y) has a bivariate normal distribution, then every linear combina
tion aX + bY + c has a normal distribution. In particular. the marginal distributions of
X and Y are normal. Also, the conditional distribution of X given Y = y is normal with
the conditional mean being a linear function of y and the conditional variance being con
stant in s’. (Similarly, for the conditional distribution of Y given X = x.) A more thorough
treatment of the bivariate normal disthbution and higher-dimensional generalizations can
be found in the book by D. F. Morrison (1990).

1. Consider again the joint distribution of heights of
husbands and wives in Exaniple 5.12.4. Find the 095
quantile of the conditional distribution of the height
of the sife given that the height of the husband is 72
inches.

2. Suppose that two different tests A and B are to be
given to a student chosen at random from a certain
population. Suppose also that the mean score on test
.4 is 85. and the standard deviation is 10: the mean
score on test B is 90, and the standard deviation is

16: the scores on the two tests have a bivariate normal
distribution and the correlation of the two scores 15

0.8. If the student’s score on test A is 80, what is the
probability that her score on test B will be higher than
90?

3. Consider again the two tests A and B described in
Exercise 2. If a student is chosen at random. what IS

the probability that the sum of her scores on the tWO

tests will he greater than 2(X)?
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and the variance is

)

EXERCISES


