Bivariate Normal Distribution

The bivariate normal distribution is the statistical distribution with probability density function
$P\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{z}{2\left(1-\rho^{2}\right)}\right]$,
where
$z \equiv \frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}$,
and
$\rho \equiv \operatorname{cor}\left(x_{1}, x_{2}\right)=\frac{V_{12}}{\sigma_{1} \sigma_{2}}$
is the correlation of x_{1} and x_{2} (Kenney and Keeping 1951, pp. 92 and 202-205; Whittaker and Robinson 1967, p. 329) and V_{12} is the covariance.

The marginal probabilities are then

$$
\begin{align*}
P\left(x_{1}\right) & =\int_{-\infty}^{\infty} P\left(x_{1}, x_{2}\right) d x_{2} \tag{4}\\
& =\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\left(x_{1}-\mu_{1}\right)^{2} /\left(2 \sigma_{1}^{2}\right)} \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
P\left(x_{2}\right) & =\int_{-\infty}^{\infty} P\left(x_{1}, x_{2}\right) d x_{1} \tag{6}\\
& =\frac{1}{\sigma_{2} \sqrt{2 \pi}} e^{-\left(x_{2}-\mu_{2}\right)^{2} /\left(2 \sigma_{2}^{2}\right)} \tag{7}
\end{align*}
$$

(Kenney and Keeping 1951, p. 202).
Let Z_{1} and Z_{2} be two independent normal variates with means $\mu_{i}=0$ and $\sigma_{i}^{2}=1$ for $i=1,2$. Then the variables a_{1} and ${ }^{a_{2}}$ defined below are normal bivariates with unit variance and correlation coefficient ρ :
$a_{1}=\sqrt{\frac{1+\rho}{2}} z_{1}+\sqrt{\frac{1-\rho}{2}} z_{2}$
$a_{2}=\sqrt{\frac{1+\rho}{2}} z_{1}-\sqrt{\frac{1-\rho}{2}} z_{2}$.
To derive the bivariate normal probability function, let X_{1} and X_{2} be normally and independently distributed variates with mean 0 and variance 1 , then define
$Y_{1} \equiv \mu_{1}+\sigma_{11} X_{1}+\sigma_{12} X_{2}$
$Y_{2} \equiv \mu_{2}+\sigma_{21} X_{1}+\sigma_{22} X_{2}$
(Kenney and Keeping 1951, p. 92). The variates Y_{1} and Y_{2} are then themselves normally distributed with means μ_{1} and μ_{2}, variances
$\sigma_{1}^{2} \equiv \sigma_{11}^{2}+\sigma_{12}^{2}$
$\sigma_{2}^{2} \equiv \sigma_{21}^{2}+\sigma_{22}^{2}$,
and covariance
$V_{12} \equiv \sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}$.
The covariance matrix is defined by
$V_{i j}=\left[\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}\end{array}\right]$,
where
$\rho \equiv \frac{V_{12}}{\sigma_{1} \sigma_{2}}=\frac{\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}}{\sigma_{1} \sigma_{2}}$.
Now, the joint probability density function for x_{1} and x_{2} is
$f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\frac{1}{2 \pi} e^{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2} d x_{1} d x_{2}$,
So, we proceed as
$\left[\begin{array}{l}y_{1}-\mu_{1} \\ y_{2}-\mu_{2}\end{array}\right]=\left[\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
As long as

$$
\left|\begin{array}{ll}
\sigma_{11} & \sigma_{12} \tag{19}\\
\sigma_{21} & \sigma_{22}
\end{array}\right| \neq 0,
$$

this can be inverted to give

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]^{-1}\left[\begin{array}{l}
y_{1}-\mu_{1} \\
y_{2}-\mu_{2}
\end{array}\right] \tag{20}\\
& =\frac{1}{\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}}\left[\begin{array}{cc}
\sigma_{22} & -\sigma_{12} \\
-\sigma_{21} & \sigma_{11}
\end{array}\right]\left[\begin{array}{l}
y_{1}-\mu_{1} \\
y_{2}-\mu_{2}
\end{array}\right] . \tag{21}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& x_{1}^{2}+x_{2}^{2}=\frac{\left[\sigma_{22}\left(y_{1}-\mu_{1}\right)-\sigma_{12}\left(y_{2}-\mu_{2}\right)\right]^{2}}{\left(\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}\right)^{2}} \\
& +\frac{\left[-\sigma_{21}\left(y_{1}-\mu_{1}\right)+\sigma_{11}\left(y_{2}-\mu_{2}\right)\right]^{2}}{\left(\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}\right)^{2}}, \tag{22}
\end{align*}
$$

and expanding the numerator of (22) gives

$$
\begin{array}{r}
\sigma_{22}^{2}\left(y_{1}-\mu_{1}\right)^{2}-2 \sigma_{12} \sigma_{22}\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)+\sigma_{12}^{2}\left(y_{2}-\mu_{2}\right)^{2}+ \tag{23}\\
\sigma_{21}^{2}\left(y_{1}-\mu_{1}\right)^{2}-2 \sigma_{11} \sigma_{21}\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)+\sigma_{11}^{2}\left(y_{2}-\mu_{2}\right)^{2}
\end{array}
$$

SO

$$
\begin{align*}
&\left(x_{1}^{2}+x_{2}^{2}\right)\left(\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}\right)^{2} \\
&=\left(y_{1}-\mu_{1}\right)^{2}\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right)- \\
& 2\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)\left(\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}\right)+\left(y_{2}-\mu_{2}\right)^{2}\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right) \\
&= \sigma_{2}^{2}\left(y_{1}-\mu_{1}\right)^{2}-2\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)\left(\rho \sigma_{1} \sigma_{2}\right)+\sigma_{1}^{2}\left(y_{2}-\mu_{2}\right)^{2} \tag{24}\\
&= \sigma_{1}^{2} \sigma_{2}^{2}\left[\frac{\left(y_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right] .
\end{align*}
$$

Now, the denominator of (24) is

$$
\begin{align*}
& \sigma_{11}^{2} \sigma_{21}^{2}+\sigma_{11}^{2} \sigma_{22}^{2}+\sigma_{12}^{2} \sigma_{21}^{2}+\sigma_{12}^{2} \sigma_{22}^{2}-\sigma_{11}^{2} \sigma_{21}^{2} \\
& -2 \sigma_{11} \sigma_{12} \sigma_{21} \sigma_{22}-\sigma_{12}^{2} \sigma_{22}^{2}=\left(\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}\right)^{2} \tag{25}
\end{align*}
$$

so

$$
\begin{align*}
\frac{1}{1-\rho^{2}} & =\frac{1}{1-\frac{V_{12}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}} \tag{26}\\
& =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}-V_{12}^{2}} \tag{27}\\
& =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right)\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right)-\left(\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}\right)^{2}} . \tag{28}
\end{align*}
$$

can be written simply as
$\frac{1}{1-\rho^{2}}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\left(\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}\right)^{2}}$,
and
$x_{1}^{2}+x_{2}^{2}=\frac{1}{1-\rho^{2}}\left[\frac{\left(y_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]$.
Solving for x_{1} and x_{2} and defining
$\rho^{\prime} \equiv \frac{\sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}{\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}}$
gives
$x_{1}=\frac{\sigma_{22}\left(y_{1}-\mu_{1}\right)-\sigma_{12}\left(y_{2}-\mu_{2}\right)}{\rho^{\prime}}$
$x_{2}=\frac{-\sigma_{21}\left(y_{1}-\mu_{1}\right)+\sigma_{11}\left(y_{2}-\mu_{2}\right)}{\rho^{\prime}}$.

But the Jacobian is

$$
\begin{align*}
J\left(\frac{x_{1}, x_{2}}{y_{1}, y_{2}}\right) & =\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\frac{\sigma_{22}}{\rho^{\prime}} & -\frac{\sigma_{12}}{\rho^{\prime}} \\
-\frac{\sigma_{21}}{\rho^{\prime}} & \frac{\sigma_{11}}{\rho^{\prime}}
\end{array}\right| \tag{34}\\
& =\frac{1}{\rho^{\prime 2}}\left(\sigma_{11} \sigma_{22}-\sigma_{12} \sigma_{21}\right) \tag{35}\\
& =\frac{1}{\rho^{\prime}}=\frac{1}{\sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}, \tag{36}
\end{align*}
$$

so
$d x_{1} d x_{2}=\frac{d y_{1} d y_{2}}{\sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}$
and
$\frac{1}{2 \pi} e^{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2} d x_{1} d x_{2}=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{z}{2\left(1-\rho^{2}\right)}\right] d y_{1} d y_{2}$,
where
$z \equiv \frac{\left(y_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}$.
Q.E.D.

The characteristic function of the bivariate normal distribution is given by

$$
\begin{align*}
\phi\left(t_{1}, t_{2}\right) & \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\left(t_{1} x_{1}+t_{2} x_{2}\right)} P\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{40}\\
& =N \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\left(t_{1} x_{1}+t_{2} x_{2}\right)} \exp \left[-\frac{z}{2\left(1-\rho^{2}\right)}\right] d x_{1} d x_{2} \tag{41}
\end{align*}
$$

where
$z \equiv\left[\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]$
and
$N \equiv \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}$.

Now let

$$
\begin{align*}
& u \equiv x_{1}-\mu_{1} \tag{44}\\
& w \equiv x_{2}-\mu_{2} . \tag{45}
\end{align*}
$$

Then
$\phi\left(t_{1}, t_{2}\right)=N^{\prime} \int_{-\infty}^{\infty}\left(e^{i t_{2} w} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)} \frac{w^{2}}{\sigma_{2}^{2}}\right]\right) \int_{-\infty}^{\infty} e^{v} e^{t_{1} u} d u d w$,
where

$$
\begin{align*}
\nu & \equiv-\frac{1}{2\left(1-\rho^{2}\right)} \frac{1}{\sigma_{1}^{2}}\left[u^{2}-\frac{2 \rho \sigma_{1} w}{\sigma_{2}} u\right] \tag{47}\\
N^{\prime} & \equiv \frac{e^{i\left(t_{1} \mu_{1}+t_{2} \mu_{2}\right)}}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} . \tag{48}
\end{align*}
$$

Complete the square in the inner integral

$$
\begin{align*}
& \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)} \frac{1}{\sigma_{1}^{2}}\left[u^{2}-\frac{2 \rho \sigma_{1} w}{\sigma_{2}} u\right]\right\} e^{t_{1} u} d u \\
& =\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2 \sigma_{1}^{2}\left(1-\rho^{2}\right)}\left[u-\frac{\rho_{1} \sigma_{1} w}{\sigma^{2}}\right]^{2}\right\}\left\{\frac{1}{2 \sigma_{1}^{2}\left(1-\rho^{2}\right)}\left(\frac{\rho_{1} \sigma_{1} w}{\sigma_{2}}\right)^{2}\right\} e^{i_{1} u} d u \tag{49}
\end{align*}
$$

Rearranging to bring the exponential depending on ${ }^{w}$ outside the inner integral, letting
$v \equiv u-\rho \frac{\sigma_{1} w}{\sigma_{2}}$,
and writing
$e^{i t_{1} u}=\cos \left(t_{1} u\right)+i \sin \left(t_{1} u\right)$
gives

$$
\begin{align*}
& \phi\left(t_{1}, t_{2}\right)= \\
& N^{\prime} \int_{-\infty}^{\infty} e^{i t_{2} w} \exp \left[-\frac{1}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)} w^{2}\right] \exp \left[\frac{\rho^{2}}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)} w^{2}\right] \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)}\right. \tag{52}\\
& \left.v^{2}\right]\left\{\cos \left[t_{1}\left(v+\frac{\rho \sigma_{1} w}{\sigma_{2}}\right)\right]+i \sin \left[t_{1}\left(v+\frac{\rho \sigma_{1} w}{\sigma_{2}}\right)\right]\right\} d v d w .
\end{align*}
$$

Expanding the term in braces gives

$$
\begin{align*}
& {\left[\cos \left(t_{1} v\right) \cos \left(\frac{\rho \sigma_{1} w t_{1}}{\sigma_{2}}\right)-\sin \left(t_{1} v\right) \sin \left(\frac{\rho \sigma_{1} w}{\sigma_{2} t_{1}}\right)\right]+} \\
& \quad i\left[\sin \left(t_{1} v\right) \cos \left(\frac{\rho \sigma_{1} w}{\sigma_{2} t_{1}}\right)+\cos \left(t_{1} v\right) \sin \left(\frac{\rho \sigma_{1} w t_{1}}{\sigma_{2}}\right)\right] \\
& =\left[\cos \left(\frac{\rho \sigma_{1} w t_{1}}{\sigma_{2}}\right)+i \sin \left(\frac{\rho \sigma_{1} w t_{1}}{\sigma_{2}}\right)\right]\left[\cos \left(t_{1} v\right)+i \sin \left(t_{1} v\right)\right]= \tag{53}\\
& \quad \exp \left(\frac{i \rho \sigma_{1} w}{\sigma_{2}} t_{1}\right)\left[\cos \left(t_{1} v\right)+i \sin \left(t_{1} v\right)\right] .
\end{align*}
$$

But $e^{-a x^{2}} \sin (b x)$ is odd, so the integral over the sine term vanishes, and we are left with

$$
\begin{align*}
& \phi\left(t_{1}, t_{2}\right)=N^{\prime} \int_{-\infty}^{\infty} e^{i t_{2} w} \exp \left[-\frac{w^{2}}{2 \sigma_{2}^{2}}\right] \exp \left[\frac{\rho^{2} w^{2}}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)}\right] \\
& \exp \left[\frac{i \rho \sigma_{1} w t_{1}}{\sigma_{2}}\right] d w \int_{-\infty}^{\infty} \exp \left[-\frac{v^{2}}{2 \sigma_{1}^{2}\left(1-\rho^{2}\right)}\right] \cos \left(t_{1} v\right) d v \\
& =N^{\prime} \int_{-\infty}^{\infty} \exp \left[i w\left(t_{2}+t_{1}\left(\rho \frac{\sigma_{1}}{\sigma_{2}}\right)\right)\right] \exp \left[-\frac{w^{2}}{2 \sigma_{2}^{2}}\right] d w \tag{54}\\
& \int_{-\infty}^{\infty} \exp \left[-\frac{v^{2}}{2 \sigma_{1}^{2}\left(1-\rho^{2}\right)}\right] \cos \left(t_{1} v\right) d v
\end{align*}
$$

Now evaluate the Gaussian integral

$$
\begin{align*}
\int_{-\infty}^{\infty} e^{i k x} e^{-a x^{2}} d x & =\int_{-\infty}^{\infty} e^{-a x^{2}} \cos (k x) d x \tag{55}\\
& =\sqrt{\frac{\pi}{a}} e^{-k^{2} / 4 a} \tag{56}
\end{align*}
$$

to obtain the explicit form of the characteristic function,

$$
\begin{align*}
& \phi\left(t_{1}, t_{2}\right)=\frac{e^{i\left(t_{1} \mu_{1}+t_{2} \mu_{2}\right)}}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}\left\{\sigma_{2} \sqrt{2 \pi} \exp \left[-\frac{1}{4}\left(t_{2}+\rho \frac{\sigma_{1}}{\sigma_{2}} t_{1}\right)^{2} 2 \sigma_{2}^{2}\right]\right\} \\
& \quad\left\{\sigma_{1} \sqrt{2 \pi\left(1-\rho^{2}\right)} \exp \left[-\frac{1}{4} t_{1}^{2} 2 \sigma_{1}^{2}\left(1-\rho^{2}\right)\right]\right\} \tag{57}\\
& =e^{i\left(t_{1} \mu_{1}+t_{2} \mu_{2}\right)} \exp \left\{-\frac{1}{2}\left[t_{2}^{2} \sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2} t_{1} t_{2}+\rho^{2} \sigma_{1}^{2} t_{1}^{2}+\left(1-\rho^{2}\right) \sigma_{1}^{2} t_{1}^{2}\right]\right\} \\
& =\exp \left[i\left(t_{1} \mu_{1}+t_{2} \mu_{2}\right)-\frac{1}{2}\left(\sigma_{1}^{2} t_{1}^{2}+2 \rho \sigma_{1} \sigma_{2} t_{1} t_{2}+\sigma_{2}^{2} t_{2}^{2}\right)\right]
\end{align*}
$$

In the singular case that

$$
\left|\begin{array}{ll}
\sigma_{11} & \sigma_{12} \tag{58}\\
\sigma_{21} & \sigma_{22}
\end{array}\right|=0
$$

(Kenney and Keeping 1951, p. 94), it follows that

$$
\begin{align*}
\sigma_{11} \sigma_{22}=\sigma_{12} & \sigma_{21} \tag{59}\\
y_{1} & =\mu_{1}+\sigma_{11} x_{1}+\sigma_{12} x_{2} \tag{60}\\
y_{2} & =\mu_{2}+\frac{\sigma_{12} \sigma_{21}}{\sigma_{11}} x_{2} \tag{61}\\
& =\mu_{2}+\frac{\sigma_{11} \sigma_{21} x_{1}+\sigma_{12} \sigma_{21} x_{2}}{\sigma_{11}} \tag{62}\\
& =\mu_{2}+\frac{\sigma_{21}}{\sigma_{11}}\left(\sigma_{11} x_{1}+\sigma_{12} x_{2}\right), \tag{63}
\end{align*}
$$

$$
\begin{align*}
& y_{1}=\mu_{1}+x_{3} \tag{64}\\
& y_{2}=\mu_{2}+\frac{\sigma_{21}}{\sigma_{11}} x_{3} \tag{65}
\end{align*}
$$

where

$$
\begin{align*}
x_{3} & =y_{1}-\mu_{1} \tag{66}\\
& =\frac{\sigma_{11}}{\sigma_{21}}\left(y_{2}-\mu_{2}\right) . \tag{67}
\end{align*}
$$

The standardized bivariate normal distribution takes $\sigma_{1}=\sigma_{2}=1$ and $\mu_{1}=\mu_{2}=0$. The quadrant probability in this special case is then given analytically by

$$
\begin{align*}
P\left(x_{1} \leq 0, x_{2} \leq 0\right) & =P\left(x_{1} \geq 0, x_{2} \geq 0\right) \tag{68}\\
& =\int_{-\infty}^{0} \int_{-\infty}^{0} P\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{69}\\
& =\frac{1}{4}+\frac{\sin ^{-1} \rho}{2 \pi} \tag{70}
\end{align*}
$$

(Rose and Smith 1996; Stuart and Ord 1998; Rose and Smith 2002, p. 231). Similarly,

$$
\begin{align*}
P\left(x_{1} \leq 0, x_{2} \geq 0\right) & =P\left(x_{1} \geq 0, x_{2} \leq 0\right) \tag{71}\\
& =\int_{-\infty}^{0} \int_{0}^{\infty} P\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{72}\\
& =\frac{\cos ^{-1} \rho}{2 \pi} . \tag{73}
\end{align*}
$$

