
Bivariate Normal Distribution 

The bivariate normal distribution is the statistical distribution with probability density function 
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where 
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and 

 

is the correlation of  and  (Kenney and Keeping 1951, pp. 92 and 202-205; Whittaker and 

Robinson 1967, p. 329) and  is the covariance. 

The marginal probabilities are then 
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(Kenney and Keeping 1951, p. 202). 

Let  and  be two independent normal variates with means  and  for , 2. Then 

the variables  and  defined below are normal bivariates with unit variance and correlation 

coefficient : 
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To derive the bivariate normal probability function, let  and  be normally and independently 

distributed variates with mean 0 and variance 1, then define 
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(Kenney and Keeping 1951, p. 92). The variates  and  are then themselves normally 

distributed with means  and , variances 
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and covariance 
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The covariance matrix is defined by 
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where 
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Now, the joint probability density function for  and  is 
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So, we proceed as 
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As long as 
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this can be inverted to give 
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Therefore, 
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and expanding the numerator of (22) gives 
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so 
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Now, the denominator of (24) is 
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so 

 

 

 

(26) 

  

 

(27) 

  

 

(28) 

can be written simply as 
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and 
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Solving for  and  and defining 
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gives 
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But the Jacobian is 
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so 

 

(37) 

and 
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where 
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Q.E.D. 

The characteristic function of the bivariate normal distribution is given by 
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where 
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and 
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Now let 
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Then 
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where 
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Complete the square in the inner integral 
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Rearranging to bring the exponential depending on  outside the inner integral, letting 
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and writing 
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gives 
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Expanding the term in braces gives 
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But  is odd, so the integral over the sine term vanishes, and we are left with 
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Now evaluate the Gaussian integral 
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to obtain the explicit form of the characteristic function, 
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In the singular case that 
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(Kenney and Keeping 1951, p. 94), it follows that 
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so 
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where 
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The standardized bivariate normal distribution takes  and . The quadrant 

probability in this special case is then given analytically by 
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(Rose and Smith 1996; Stuart and Ord 1998; Rose and Smith 2002, p. 231). Similarly, 
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