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An Introduction to Multivariate Statistics© 
 

 The term “multivariate statistics” is appropriately used to include all statistics where there are more 
than two variables simultaneously analyzed.  You are already familiar with bivariate statistics such as the 
Pearson product moment correlation coefficient and the independent groups t-test.  A one-way ANOVA with 3 
or more treatment groups might also be considered a bivariate design, since there are two variables:  one 
independent variable and one dependent variable.  Statistically, one could consider the one-way ANOVA as 
either a bivariate curvilinear regression or as a multiple regression with the K level categorical independent 
variable dummy coded into K-1 dichotomous variables. 
 
 
Independent vs. Dependent Variables 
 
 We shall generally continue to make use of the terms “independent variable” and “dependent variable,” 
but shall find the distinction between the two somewhat blurred in multivariate designs, especially those 
observational rather than experimental in nature.  Classically, the independent variable is that which is 
manipulated by the researcher.  With such control, accompanied by control of extraneous variables through 
means such as random assignment of subjects to the conditions, one may interpret the correlation between the 
dependent variable and the independent variable as resulting from a cause-effect relationship from 
independent (cause) to dependent (effect) variable.  Whether the data were collected by experimental or 
observational means is NOT a consideration in the choice of an analytic tool.  Data from an experimental 
design can be analyzed with either an ANOVA or a regression analysis (the former being a special case of the 
latter) and the results interpreted as representing a cause-effect relationship regardless of which statistic was 
employed. Likewise, observational data may be analyzed with either an ANOVA or a regression analysis, and 
the results cannot be unambiguously interpreted with respect to causal relationship in either case. 
 
 We may sometimes find it more reasonable to refer to “independent variables” as “predictors”, and 
“dependent variables” as “response-,” “outcome-,” or “criterion-variables.”  For example, we may use SAT 
scores and high school GPA as predictor variables when predicting college GPA, even though we wouldn’t 
want to say that SAT causes college GPA.  In general, the independent variable is that which one considers 
the causal variable, the prior variable (temporally prior or just theoretically prior), or the variable on which one 
has data from which to make predictions. 
 
 
Descriptive vs. Inferential Statistics 
 
 While psychologists generally think of multivariate statistics in terms of making inferences from a 
sample to the population from which that sample was randomly or representatively drawn, sometimes it may 
be more reasonable to consider the data that one has as the entire population of interest.  In this case, one 
may employ multivariate descriptive statistics (for example, a multiple regression to see how well a linear 
model fits the data) without worrying about any of the assumptions (such as homoscedasticity and normality of 
conditionals or residuals) associated with inferential statistics.  That is, multivariate statistics, such as R2, can 
be used as descriptive statistics.  In any case, psychologists rarely ever randomly sample from some 
population specified a priori, but often take a sample of convenience and then generalize the results to some 
abstract population from which the sample could have been randomly drawn. 
 
Rank-Data 
 
 I have mentioned the assumption of normality common to “parametric” inferential statistics.  Please 
note that ordinal data may be normally distributed and interval data may not, so scale of measurement is 
irrelevant.  Both ordinal and interval data may be distributed in any way.  There is no relationship between 
scale of measurement and shape of distribution for ordinal, interval, or ratio data.  Rank-ordinal data will, 
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 2 
however, be non-normally distributed (rectangular) in the marginal distribution (not necessarily within groups), 
so one might be concerned about the robustness of a statistic’s normality assumption with rectangular data.  
Although this is a controversial issue, I am moderately comfortable with rank data when there are twenty to 
thirty or more ranks in the sample (or in each group within the total sample). 
 
 Consider IQ scores.  While these are commonly considered to be interval scale, a good case can be 
made that they are ordinal and not interval.  Is the difference between an IQs of 70 and 80 the same as the 
difference between 110 and 120?  There is no way we can know, it is just a matter of faith.  Regardless of 
whether IQs are ordinal only or are interval, the shape of a distribution of IQs is not constrained by the scale of 
measurement.  The shape could be normal, it could be very positively skewed, very negatively skewed, low in 
kurtosis, high in kurtosis, etc. 
 
Why (and Why Not) Should One Use Multivariate Statistics? 
 
 One might object that psychologists got along OK for years without multivariate statistics.  Why the 
sudden surge of interest in multivariate stats?  Is it just another fad?  Maybe it is. There certainly do remain 
questions that can be well answered with simpler statistics, especially if the data were experimentally 
generated under controlled conditions.  But many interesting research questions are so complex that they 
demand multivariate models and multivariate statistics.  And with the greatly increased availability of high 
speed computers and multivariate software, these questions can now be approached by many users via 
multivariate techniques formerly available only to very few. There is also an increased interest recently with 
observational and quasi-experimental research methods.  Some argue that multivariate analyses, such as 
ANCOV and multiple regression, can be used to provide statistical control of extraneous variables. While I 
opine that statistical control is a poor substitute for a good experimental design, in some situations it may be 
the only reasonable solution.  Sometimes data arrive before the research is designed, sometimes experimental 
or laboratory control is unethical or prohibitively expensive, and sometimes somebody else was just plain 
sloppy in collecting data from which you still hope to distill some extract of truth. 
 
 But there is danger in all this.  It often seems much too easy to find whatever you wish to find in any 
data using various multivariate fishing trips.  Even within one general type of multivariate analysis, such as 
multiple regression or factor analysis, there may be such a variety of “ways to go” that two analyzers may 
easily reach quite different conclusions when independently analyzing the same data.  And one analyzer may 
select the means that maximize e’s chances of finding what e wants to find or e may analyze the data many 
different ways and choose to report only that analysis that seems to support e’s a priori expectations (which 
may be no more specific than a desire to find something “significant,” that is, publishable).  Bias against the 
null hypothesis is very great. 
 
 It is relatively easy to learn how to get a computer to do multivariate analysis.  It is not so easy correctly 
to interpret the output of multivariate software packages.  Many users doubtlessly misinterpret such output, and 
many consumers (readers of research reports) are being fed misinformation.  I hope to make each of you a 
more critical consumer of multivariate research and a novice producer of such.  I fully recognize that our 
computer can produce multivariate analyses that cannot be interpreted even by very sophisticated persons.  
Our perceptual world is three dimensional, and many of us are more comfortable in two dimensional space.  
Multivariate statistics may take us into hyperspace, a space quite different from that in which our brains (and 
thus our cognitive faculties) evolved. 
 
 
Categorical Variables and LOG LINEAR ANALYSIS 
 
 We shall consider multivariate extensions of statistics for designs where we treat all of the variables as 
categorical.  You are already familiar with the bivariate (two-way) Pearson Chi-square analysis of contingency 
tables.  One can expand this analysis into 3 dimensional space and beyond, but the log-linear model covered 
in Chapter 17 of Howell is usually used for such multivariate analysis of categorical data.  As a example of 
such an analysis consider the analysis reported by Moore, Wuensch, Hedges, & Castellow in the Journal of 
Social Behavior and Personality, 1994, 9: 715-730.  In the first experiment reported in this study mock jurors 
were presented with a civil case in which the female plaintiff alleged that the male defendant had sexually 
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harassed her.  The manipulated independent variables were the physical attractiveness of the defendant 
(attractive or not), and the social desirability of the defendant (he was described in the one condition as being 
socially desirable, that is, professional, fair, diligent, motivated, personable, etc., and in the other condition as 
being socially undesirable, that is, unfriendly, uncaring, lazy, dishonest, etc.)  A third categorical independent 
variable was the gender of the mock juror.  One of the dependent variables was also categorical, the verdict 
rendered (guilty or not guilty).  When all of the variables are categorical, log-linear analysis is appropriate.  
When it is reasonable to consider one of the variables as dependent and the others as independent, as in this 
study, a special type of log-linear analysis called a LOGIT ANALYSIS is employed.  In the second experiment 
in this study the physical attractiveness and social desirability of the plaintiff were manipulated. 
 
 Earlier research in these authors’ laboratory had shown that both the physical attractiveness and the 
social desirability of litigants in such cases affect the outcome (the physically attractive and the socially 
desirable being more favorably treated by the jurors).  When only physical attractiveness was manipulated 
(Castellow, Wuensch, & Moore, Journal of Social Behavior and Personality, 1990, 5: 547-562) jurors favored 
the attractive litigant, but when asked about personal characteristics they described the physically attractive 
litigant as being more socially desirable (kind, warm, intelligent, etc.), despite having no direct evidence about 
social desirability.  It seems that we just assume that the beautiful are good.  Was the effect on judicial 
outcome due directly to physical attractiveness or due to the effect of inferred social desirability?  When only 
social desirability was manipulated (Egbert, Moore, Wuensch, & Castellow, Journal of Social Behavior and 
Personality, 1992, 7: 569-579) the socially desirable litigants were favored, but jurors rated them as being more 
physically attractive than the socially undesirable litigants, despite having never seen them!  It seems that we 
also infer that the bad are ugly.  Was the effect of social desirability on judicial outcome direct or due to the 
effect on inferred physical attractiveness?  The 1994 study attempted to address these questions by 
simultaneously manipulating both social desirability and physical attractiveness. 
 
 In the first experiment of the 1994 study it was found that the verdict rendered was significantly affected 
by the gender of the juror (female jurors more likely to render a guilty verdict), the social desirability of the 
defendant (guilty verdicts more likely with socially undesirable defendants), and a strange Gender x Physical 
Attractiveness interaction:  Female jurors were more likely to find physically attractive defendants guilty, but 
male jurors’ verdicts were not significantly affected by the defendant’s physical attractiveness (but there was a 
nonsignificant trend for them to be more likely to find the unattractive defendant guilty).  Perhaps female jurors 
deal more harshly with attractive offenders because they feel that they are using their attractiveness to take 
advantage of a woman. 
 
 The second experiment in the 1994 study, in which the plaintiff’s physical attractiveness and social 
desirability were manipulated, found that only social desirability had a significant effect (guilty verdicts were 

more likely when the plaintiff was socially desirable).  Measures of the strength of effect ( 2  ) of the 
independent variables in both experiments indicated that the effect of social desirability was much greater than 
any effect of physical attractiveness, leading to the conclusion that social desirability is the more important 
factor—if jurors have no information on social desirability, they infer social desirability from physical 
attractiveness and such inferred social desirability affects their verdicts, but when jurors do have relevant 
information about social desirability, litigants’ physical attractiveness is of relatively little importance. 
 
 
Continuous Variables 
 
 We shall usually deal with multivariate designs in which one or more of the variables is considered to 
be continuously distributed.  We shall not nit-pick on the distinction between continuous and discrete variables, 
as I am prone to do when lecturing on more basic topics in statistics.  If a discrete variable has a large number 
of values and if changes in these values can be reasonably supposed to be associated with changes in the 
magnitudes of some underlying construct of interest, then we shall treat that discrete variable as if it were 
continuous.  IQ scores provide one good example of such a variable. 
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MULTIPLE REGRESSION 
 
 Univariate regression.  Here you have only one variable, Y.  Predicted Y will be that value which 
satisfies the least squares criterion – that is, the value which makes the sum of the squared deviations about it 

as small as possible -- aY =ˆ , error = YY ˆ− .  For one and only one value of Y, a, the intercept, is it true that 

 − 2)ˆ( YY is as small as possible.  Of course you already know that, as it was one of the three definitions of 

the mean you learned very early in PSYC 6430.  Although you did not realize it at the time, the first time you 
calculated a mean you were actually conducting a regression analysis. 
 
 Consider the data set 1,2,3,4,5,6,7.  Predicted Y = mean = 4.  Here is a residuals plot.  The sum of the 
squared residuals is 28.  The average squared residual, also known as the residual variance, is 28/7 = 4.  I am 
considering the seven data points here to be the entire population of interest.  If I were considering these data 
a sample, I would divide by 6 instead of 7 to estimate the population residual variance.  Please note that this 

residual variance is exactly the variance you long ago learned to calculate as 
n

Y −
=

2

2
)( 

 . 

 

 
 Bivariate regression.  Here we have a value of X associated with each value of Y.  If X and Y are not 
independent, we can reduce the residual (error) variance by using a bivariate model.  Using the same values of 
Y, but now each paired with a value of X, here is a scatter plot with regression line in black and residuals in 
red. 
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 The residuals are now -2.31, .30, .49, -.92, .89, -.53, and 2.08.  The sum of the squared residuals is 
11.91, yielding a residual variance of 11.91/7 = 1.70.  With our univariate regression the residual variance was 
4.  By adding X to the model we have reduced the error in prediction considerably. 
 
 Trivariate regression.  Here we add a second X variable.  If that second X is not independent from 
error variance in Y from the bivariate regression, the trivariate regression should provide even better prediction 
of Y. 
 
 Here is a three-dimensional scatter plot of the trivariate data (produced with Proc g3d): 
 
 
 
 The lines (“needles”) help create the illusion of three-dimensionality, but they can be suppressed. 
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 The predicted values here are those on the plane that passes through the three-dimensional space 
such that the residuals (differences between predicted Y, on the plane, and observed Y) are as small as 
possible. 
 

 
 
 The sum of the squared residuals now is .16 for a residual variance of .16/7 = .023.  We have almost 
eliminated the error in prediction. 
 
 Hyperspace.  If we have three or more predictors, our scatter plot will be in hyperspace, and the 
predicted values of Y will be located on the “regression surface” passing through hyperspace in such a way 
that the sum of the squared residuals is as small as possible. 
 
 Dimension-Jumping.  In univariate regression the predicted values are a constant.  You have a point 
in one-dimensional space.  In bivariate regression the predicted values form a straight line regression surface 
in two-dimensional space.  In trivariate regression the predicted values form a plane in three dimensional 
space.  I have not had enough bourbons and beers tonight to continue this into hyperspace. 
 
 Standard multiple regression.  In a standard multiple regression we have one continuous Y variable 
and two or more continuous X variables.  Actually, the X variables may include dichotomous variables and/or 
categorical variables that have been “dummy coded” into dichotomous variables. The goal is to construct a 
linear model that minimizes error in predicting Y.  That is, we wish to create a linear combination of the X 

variables that is maximally correlated with the Y variable.  We obtain standardized regression coefficients ( 

weights    Z Z Z ZY p p= + + +  1 1 2 2  ) that represent how large an “effect” each X has on Y above 

and beyond the effect of the other X’s in the model.  The predictors may be entered all at once (simultaneous) 
or in sets of one or more (sequential).  We may use some a priori hierarchical structure to build the model 
sequentially (enter first X1, then X2, then X3, etc., each time seeing how much adding the new X improves the 
model, or, start with all X’s, then first delete X1, then delete X2, etc., each time seeing how much deletion of an 
X affects the model).  We may just use a statistical algorithm (one of several sorts of stepwise selection) to 
build what we hope is the “best” model using some subset of the total number of X variables available. 
 
 For example, I may wish to predict college GPA from high school grades, SATV, SATQ, score on a 
“why I want to go to college” essay, and quantified results of an interview with an admissions officer.  Since 
some of these measures are less expensive than others, I may wish to give them priority for entry into the 
model.  I might also give more “theoretically important” variables priority.  I might also include sex and race as 
predictors.  I can also enter interactions between variables as predictors, for example, SATM x SEX, which 
would be literally represented by an X that equals the subject’s SATM score times e’s sex code (typically 0 vs. 
1 or 1 vs. 2).  I may fit nonlinear models by entering transformed variables such as LOG(SATM) or SAT2.  We 
shall explore lots of such fun stuff later. 
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 As an example of a multiple regression analysis, consider the research reported by McCammon, 
Golden, and Wuensch in the Journal of Research in Science Teaching, 1988, 25, 501-510.  Subjects were 
students in freshman and sophomore level Physics courses (only those courses that were designed for 
science majors, no general education <football physics> courses).  The mission was to develop a model to 
predict performance in the course.  The predictor variables were CT (the Watson-Glaser Critical Thinking 
Appraisal), PMA (Thurstone’s Primary Mental Abilities Test), ARI (the College Entrance Exam Board’s 
Arithmetic Skills Test), ALG (the College Entrance Exam Board’s Elementary Algebra Skills Test), and ANX 
(the Mathematics Anxiety Rating Scale).  The criterion variable was subjects’ scores on course examinations.  
All of the predictor variables were significantly correlated with one another and with the criterion variable.  A 
simultaneous multiple regression yielded a multiple R of .40 (which is more impressive if you consider that the 
data were collected across several sections of different courses with different instructors).  Only ALG and CT 
had significant semipartial correlations (indicating that they explained variance in the criterion that was not 
explained by any of the other predictors).  Both forward and backwards selection analyses produced a 
model containing only ALG and CT as predictors.  At Susan McCammon’s insistence, I also separately 
analyzed the data from female and male students.  Much to my surprise I found a remarkable sex difference.  
Among female students every one of the predictors was significantly related to the criterion, among male 
students none of the predictors was.  There were only small differences between the sexes on variance in the 
predictors or the criterion, so it was not a case of there not being sufficient variability among the men to support 
covariance between their grades and their scores on the predictor variables.  A posteriori searching of the 
literature revealed that Anastasi (Psychological Testing, 1982) had noted a relatively consistent finding of sex 
differences in the predictability of academic grades, possibly due to women being more conforming and more 
accepting of academic standards (better students), so that women put maximal effort into their studies, 
whether or not they like the course, and according they work up to their potential.  Men, on the other hand, may 
be more fickle, putting forth maximum effort only if they like the course, thus making it difficult to predict their 
performance solely from measures of ability. 
 
 
CANONICAL CORRELATION/REGRESSION: 
 
 Also known as multiple multiple regression or multivariate multiple regression.  All other multivariate 
techniques may be viewed as simplifications or special cases of this “fully multivariate general linear model.” 
We have two sets of variables (set X and set Y).  We wish to create a linear combination of the X variables 
(b1X1 + b2X2 + .... + bpXp), called a canonical variate,  that is maximally correlated with a linear combination of 
the Y variables (a1Y1 + a2Y2 + .... + aqYq).  The coefficients used to weight the X’s and the Y’s are chosen with 
one criterion, maximize the correlation between the two linear combinations. 
 
 As an example, consider the research reported by Patel, Long, McCammon, & Wuensch (Journal of 
Interpersonal Violence, 1995, 10: 354-366).  We had two sets of data on a group of male college students.  
The one set was personality variables from the MMPI.  One of these was the PD (psychopathically deviant) 
scale, Scale 4, on which high scores are associated with general social maladjustment and hostility.  The 
second was the MF (masculinity/femininity) scale, Scale 5, on which low scores are associated with 
stereotypical masculinity†.  The third was the MA (hypomania) scale, Scale 9, on which high scores are 
associated with overactivity, flight of ideas, low frustration tolerance, narcissism, irritability, restlessness, 
hostility, and difficulty with controlling impulses.  The fourth MMPI variable was Scale K, which is a validity 
scale on which high scores indicate that the subject is “clinically defensive,” attempting to present himself in a 
favorable light, and low scores indicate that the subject is unusually frank.  The second set of variables was a 
pair of homonegativity variables.  One was the IAH (Index of Attitudes Towards Homosexuals), designed to 
measure affective components of homophobia.  The second was the SBS, (Self-Report of Behavior Scale), 
designed to measure past aggressive behavior towards homosexuals, an instrument specifically developed for 
this study. 
 
 With luck, we can interpret the weights (or, even better, the loadings, the correlations between each 
canonical variable and the variables in its set) so that each of our canonical variates represents some 
underlying dimension (that is causing the variance in the observed variables of its set).  We may also think of 
a canonical variate as a superordinate variable, made up of the more molecular variables in its set.  After 
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constructing the first pair of canonical variates we attempt to construct a second pair that will explain as much 
as possible of the (residual) variance in the observed variables, variance not explained by the first pair of 
canonical variates.  Thus, each canonical variate of the X’s is orthogonal to (independent of) each of the other 
canonical variates of the X’s and each canonical variate of the Y’s is orthogonal to each of the other canonical 
variates of the Y’s.  Construction of canonical variates continues until you can no longer extract a pair of 
canonical variates that accounts for a significant proportion of the variance.  The maximum number of pairs 
possible is the smaller of the number of X variables or number of Y variables. 
 
 In the Patel et al. study both of the canonical correlations were significant.  The first canonical 
correlation indicated that high scores on the SBS and the IAH were associated with stereotypical masculinity 
(low Scale 5), frankness (low Scale K), impulsivity (high Scale 9), and general social maladjustment and 
hostility (high Scale 4).  The second canonical correlation indicated that having a low IAH but high SBS (not 
being homophobic but nevertheless aggressing against gays) was associated with being high on Scales 5 (not 
being stereotypically masculine) and 9 (impulsivity).  The second canonical variate of the homonegativity 
variables seems to reflect a general (not directed towards homosexuals) aggressiveness. 
 
 
LOGISTIC REGRESSION 
 
 Logistic regression is used to predict a categorical (usually dichotomous) variable from a set of 
predictor variables.  With a categorical dependent variable, discriminant function analysis is usually employed if 
all of the predictors are continuous and nicely distributed; logit analysis is usually employed if all of the 
predictors are categorical; and logistic regression is often chosen if the predictor variables are a mix of 
continuous and categorical variables and/or if they are not nicely distributed (logistic regression makes no 
assumptions about the distributions of the predictor variables).  Logistic regression has been especially popular 
with medical research in which the dependent variable is whether or not a patient has a disease. 
 
 For a logistic regression, the predicted dependent variable is the estimated probability that a particular 
subject will be in one of the categories (for example, the probability that Suzie Cue has the disease, given her 
set of scores on the predictor variables). 
 

As an example of the use of logistic regression in psychological research, consider the research done 
by Wuensch and Poteat and published in the Journal of Social Behavior and Personality, 1998, 13, 139-150.  
College students (N = 315) were asked to pretend that they were serving on a university research committee 
hearing a complaint against animal research being conducted by a member of the university faculty.  Five 
different research scenarios were used:  Testing cosmetics, basic psychological theory testing, agricultural 
(meat production) research, veterinary research, and medical research.  Participants were asked to decide 
whether or not the research should be halted.  An ethical inventory was used to measure participants’ idealism 
(persons who score high on idealism believe that ethical behavior will always lead only to good consequences, 
never to bad consequences, and never to a mixture of good and bad consequences) and relativism (persons 
who score high on relativism reject the notion of universal moral principles, preferring personal and situational 
analysis of behavior). 

 
Since the dependent variable was dichotomous (whether or not the respondent decided to halt the 

research) and the predictors were a mixture of continuous and categorical variables (idealism score, relativism 
score, participant’s gender, and the scenario given), logistic regression was employed.  The scenario variable 

was represented by k−1 dichotomous dummy variables, each representing the contrast between the medical 
scenario and one of the other scenarios.  Idealism was negatively associated and relativism positively 
associated with support for animal research.  Women were much less accepting of animal research than were 
men.  Support for the theoretical and agricultural research projects was significantly less than that for the 
medical research. 

 
In a logistic regression, odds ratios are commonly employed to measure the strength of the partial 

relationship between one predictor and the dependent variable (in the context of the other predictor variables).  
It may be helpful to consider a simple univariate odds ratio first.  Among the male respondents, 68 approved 

http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1998/JSB&P1998.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1998/JSB&P1998.htm
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continuing the research, 47 voted to stop it, yielding odds of 68 / 47.  That is, approval was 1.45 times more 
likely than nonapproval.  Among female respondents, the odds were 60 / 140.  That is, approval was only .43 
times as likely as was nonapproval.  Inverting these odds (odds less than one are difficult for some people to 
comprehend), among female respondents nonapproval was 2.33 times as likely as approval.  The ratio of 

these odds, 38.3
14060

4768
=




, indicates that a man was 3.38 times more likely to approve the research than 

was a woman. 
 
The odds ratios provided with the output from a logistic regression are for partial effects, that is, the 

effect of one predictor holding constant the other predictors.  For our example research, the odds ratio for 
gender was 3.51.  That is, holding constant the effects of all other predictors, men were 3.51 times more likely 
to approve the research than were women. 

 
The odds ratio for idealism was 0.50.  Inverting this odds ratio for easier interpretation, for each one 

point increase on the idealism scale there was a doubling of the odds that the respondent would not approve 
the research.  The effect of relativism was much smaller than that of idealism, with a one point increase on the 
nine-point relativism scale being associated with the odds of approving the research increasing by a 
multiplicative factor of 1.39.  Inverted odds ratios for the dummy variables coding the effect of the scenario 
variable indicated that the odds of approval for the medical scenario were 2.38 times higher than for the meat 
scenario and 3.22 times higher than for the theory scenario. 

 
Classification:  The results of a logistic regression can be used to predict into which group a subject 

will fall, given the subject’s scores on the predictor variables.  For a set of scores on the predictor variables, the 
model gives you the estimated probability that a subject will be in group 1 rather than in group 2.  You need a 
decision rule to determine into which group to classify a subject given that estimated probability.  While the 
most obvious decision rule would be to classify the subject into group 1 if p > .5 and into group 2 if p < .5, you 
may well want to choose a different decision rule given the relative seriousness of making one sort of error (for 
example, declaring a patient to have the disease when she does not) or the other sort of error (declaring the 
patient not to have the disease when she does).  For a given decision rule (for example, classify into group 1 if 
p > .7) you can compute several measures of how effective the classification procedure is.  The Percent 
Correct is based on the number of correct classifications divided by the total number of classifications.  The 
Sensitivity is the percentage of occurrences correctly predicted (for example, of all who actually have the 
disease, what percentage were correctly predicted to have the disease).  The Specificity is the percentage of 
nonoccurrences correctly predicted (of all who actually are free of the disease, what percentage were correctly 
predicted not to have the disease).  Focusing on error rates, the False Positive rate is the percentage of 
predicted occurrences which are incorrect (of all who were predicted to have the disease, what percentage 
actually did not have the disease), and the False Negative rate is the percentage of predicted nonoccurrences 
which are incorrect (of all who were predicted not to have the disease, what percentage actually did have the 
disease).  For a screening test to detect a potentially deadly disease (such as breast cancer), you might be 
quite willing to use a decision rule that makes false positives fairly likely, but false negatives very unlikely.  I 
understand that the false positive rate with mammograms is rather high.  That is to be expected in an initial 
screening test, where the more serious error is the false negative.  Although a false positive on a mammogram 
can certainly cause a woman some harm (anxiety, cost and suffering associated with additional testing), it may 
be justified by making it less likely that tumors will go undetected.  Of course, a positive on a screening test is 
followed by additional testing, usually more expensive and more invasive, such as collecting tissue for biopsy. 

 
For our example research, the overall percentage correctly classified is 69% with a decision rule being 

“if p > .5, predict the respondent will support the research.”  A slightly higher overall percentage correct (71%) 
would be obtained with the rule “if p > .4, predict support” (73% sensitivity, 70% specificity) or with the rule “if p 
> .54, predict support” (52% sensitivity, 84% specificity). 
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HIERARCHICAL LINEAR MODELING 
 
 Here you have data at two or more levels, with cases at one level nested within cases at at the next 
higher level.  For example, you have pupils at the lowest level, nested within schools at the second level, with 
schools nested within school districts at the third level. 
 You may have different variables at the different levels and you may be interested in relating variables 
to one another within levels and between levels. 
 Consider the research conducted by Rowan et al. (1991).  At the lowest level the cases were teachers.  
They provided ratings of the climate at the school (the “dependent” variables:  Principal Leadership, Teacher 
Control <of policy>, and Staff Cooperation) as well as data on Level 1 predictors such as race, sex, years of 
experience, and subject taught.  Teachers were nested within schools.  Level 2 predictors were whether the 
school was public or Catholic, its size, percentage minority enrollment, average student SES, and the like.  At 
Level 1, ratings of the climate were shown to be related to the demographic characteristics of the teacher.  For 
example, women thought the climate better than did men, and those teaching English, Science, and Math 
thought the climate worse than did those teaching in other domains.  At Level 2, the type of school (public or 
Catholic) was related to ratings of climate, with climate being rated better at Catholic schools than at public 
schools. 
 
 As another example, consider the analysis reported by Tabachnick and Fidell (2007, pp. 835-852), 
using data described in the article by Fidell et al. (1995). Participants from households in three different 
neighborhoods kept track of  

• How annoyed they were by aircraft noise the previous night 

• How long it took them to fall asleep the previous night 

• How noisy it was at night (this was done by a noise-monitoring device in the home). 
 
 At the lowest level, the cases were nights (data were collected across several nights).  At the next level 
up the cases were the humans.  Nights were nested within humans.  At the next level up the cases were 
households.  Humans were nested within households.  Note that Level 1 represents a repeated measures 
dimension (nights). 
 There was significant variability in annoyance both among humans and among households, and both 
sleep latency and noise level were significantly related to annoyance.  The three different neighborhoods did 
not differ from each other on amount of annoyance. 
 
 
PRINCIPAL COMPONENTS AND FACTOR ANALYSIS 
 
 Here we start out with one set of variables.  The variables are generally correlated with one another.  
We wish to reduce the (large) number of variables to a smaller number of components or factors (I’ll explain 
the difference between components and factors when we study this in detail) that capture most of the variance 
in the observed variables.  Each factor (or component) is estimated as being a linear (weighted) combination of 
the observed variables. We could extract as many factors as there are variables, but generally most of them 
would contribute little, so we try to get a few factors that capture most of the variance.  Our initial extraction 
generally includes the restriction that the factors be orthogonal, independent of one another. 
 
 Consider the analysis reported by Chia, Wuensch, Childers, Chuang, Cheng, Cesar-Romero, & Nava in 
the Journal of Social Behavior and Personality, 1994, 9, 249-258.  College students in Mexico, Taiwan, and the 
US completed a 45 item Cultural Values Survey.  A principal components analysis produced seven 
components (each a linear combination of the 45 items) which explained in the aggregate 51% of the variance 
in the 45 items.  We could have explained 100% of the variance with 45 components, but the purpose of the 
PCA is to explain much of the variance with relatively few components.  Imagine a plot in seven dimensional 
space with seven perpendicular (orthogonal) axes.  Each axis represents one component.  For each variable I 
plot a point that represents its loading (correlation) with each component.  With luck I’ll have seven “clusters” of 
dots in this hyperspace (one for each component).  I may be able to improve my solution by rotating the axes 
so that each one more nearly passes through one of the clusters.  I may do this by an orthogonal rotation 
(keeping the axes perpendicular to one another) or by an oblique rotation.  In the latter case I allow the axes 

http://www.pearsonhighered.com/educator/academic/product/0,,0205459382,00%2ben-USS_01DBC.html
http://www.pearsonhighered.com/educator/academic/product/0,,0205459382,00%2ben-USS_01DBC.html
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JASMAN000098000002001025000001&idtype=cvips&gifs=yes&ref=no
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JASMAN000098000002001025000001&idtype=cvips&gifs=yes&ref=no
http://core.ecu.edu/psyc/wuenschk/Articles/FamilyValues/FamilyValues.htm
http://core.ecu.edu/psyc/wuenschk/Articles/FamilyValues/FamilyValues.htm
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to vary from perpendicular, and as a result, the components obtained are no longer independent of one 
another.  This may be quite reasonable if I believe the underlying dimensions (that correspond to the extracted 
components) are correlated with one another. 
 
 With luck (or after having tried many different extractions/rotations), I’ll come up with a set of loadings 
that can be interpreted sensibly (that may mean finding what I expected to find).  From consideration of which 
items loaded well on which components, I named the components Family Solidarity (respect for the family), 
Executive Male (men make decisions, women are homemakers), Conscience (important for family to conform 
to social and moral standards), Equality of the Sexes (minimizing sexual stereotyping), Temporal 
Farsightedness (interest in the future and the past), Independence (desire for material possessions and 
freedom), and Spousal Employment (each spouse should make decisions about his/her own job).  Now, using 
weighting coefficients obtained with the analysis, I computed for each subject a score that estimated how much 
of each of the seven dimensions e had.  These component scores were then used as dependent variables in 
3 x 2 x 2, Culture x Sex x Age (under 20 vs. over 20) ANOVAs.  US students (especially the women) stood out 
as being sexually egalitarian, wanting independence, and, among the younger students, placing little 
importance on family solidarity.  The Taiwanese students were distinguished by scoring very high on the 
temporal farsightedness component but low on the conscience component.  Among Taiwanese students the 
men were more sexually egalitarian than the women and the women more concerned with independence than 
were the men.  The Mexican students were like the Taiwanese in being concerned with family solidarity but not 
with sexual egalitarianism and independence, but like the US students in attaching more importance to 
conscience and less to temporal farsightedness.  Among the Mexican students the men attached more 
importance to independence than did the women. 
 
 Factor analysis also plays a prominent role in test construction.  For example, I factor analyzed 
subjects’ scores on the 21 items in Patel’s SBS discussed earlier.  Although the instrument was designed to 
measure a single dimension, my analysis indicated that three dimensions were being measured.  The first 
factor, on which 13 of the items loaded well, seemed to reflect avoidance behaviors (such as moving away 
from a gay, staring to communicate disapproval of proximity, and warning gays to keep away).  The second 
factor (six items) reflected aggression from a distance (writing anti-gay graffiti, damaging a gay’s property, 
making harassing phone calls).  The third factor (two items) reflected up-close aggression (physical fighting).  
Despite this evidence of three factors, item analysis indicated that the instrument performed well as a measure 
of a single dimension.  Item-total correlations were good for all but two items.  Cronbach’s alpha was .91, a 
value which could not be increased by deleting from the scale any of the items.  Cronbach’s alpha is 
considered a measure of the reliability or internal consistency of an instrument.  It can be thought of as the 
mean of all possible split-half reliability coefficients (correlations between scores on half of the items vs. the 
other half of the items, with the items randomly split into halves) with the Spearman-Brown correction (a 
correction for the reduction in the correlation due to having only half as many items contributing to each score 
used in the split-half reliability correlation coefficient—reliability tends to be higher with more items, ceteris 
paribus).  Please read the document Cronbach's Alpha and Maximized Lambda4.  Follow the instructions there to 
conduct an item analysis with SAS and with SPSS.  Bring your output to class for discussion. 
 
 In recent years there has been considerable criticism of the use of Cronbach’s alpha as an estimate of 
reliability.  Many have suggested use of McDonald’s omega in place of Cronbach’s alpha.  See From Alpha to 
Omega: A Practical Solution to the Pervasive Problem of Internal Consistency Estimation. ECU folks have 
access to the article through our library’s E-Journal Portal, and my current students can find it in 
BlackBoard/Articles/Factor and Principal Components Analysis/McDonald’s Omega.  I found a SAS macro to 
compute omega, but never tried it out, since it is so easy to compute using JASP or R. 
 
  

http://core.ecu.edu/psyc/wuenschk/MV/Alpha.pdf
http://core.ecu.edu/psyc/wuenschk/MV/Alpha.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/bjop.12046
https://onlinelibrary.wiley.com/doi/abs/10.1111/bjop.12046
https://onlinelibrary.wiley.com/doi/abs/10.1111/bjop.12046
https://onlinelibrary.wiley.com/doi/abs/10.1111/bjop.12046
http://core.ecu.edu/psyc/wuenschk/R-Lessons/Omega_McDonald.pdf
http://core.ecu.edu/psyc/wuenschk/R-Lessons/Omega_McDonald.pdf
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STRUCTURAL EQUATION MODELING (SEM) 
 
 This is a special form of hierarchical multiple regression analysis in which the researcher specifies a 

particular causal model in which each variable affects one or 
more of the other variables both directly and through its effects 
upon intervening variables.  The less complex models use only 
unidirectional paths (if X1 has an effect on X2, then X2 cannot 
have an effect on X1) and include only measured variables.  Such 
an analysis is referred to as a path analysis.  Patel’s data, 
discussed earlier, were originally analyzed (in her thesis) with a 
path analysis.  The model was that the MMPI scales were 
noncausally correlated with one another but had direct causal 
effects on both IAH and SBS, with IAH having a direct causal 
effect on SBS.  The path analysis was not well received by 
reviewers the first journal to which we sent the manuscript, so we 

reanalyzed the data with the atheoretical canonical correlation/regression analysis presented earlier and 
submitted it elsewhere.  Reviewers of that revised manuscript asked that we supplement the canonical 
correlation/regression analysis with a hierarchical multiple regression analysis (essentially a path analysis). 
 
 In a path analysis one obtains path coefficients, measuring the strength of each path (each causal or 
noncausal link between one variable and another) and one assesses how well the model fits the data.  The 
arrows from ‘e’ represent error variance (the effect of variables not included in the model).  One can compare 
two different models and determine which one better fits the data.  Our analysis indicated that the only 
significant paths were from MF to IAH (–.40) and from MA (.25) and IAH (.4) to SBS. 
 
 SEM can include latent variables (factors), constructs that are not directly measured but rather are 
inferred from measured variables (indicators). 
 
 The relationships between latent variables are referred to as the structural part of a model (as opposed 
to the measurement part, which is the relationship between latent variables and measured variables).  As an 
example of SEM including latent variables, consider the research by Greenwald and Gillmore (Journal of 
Educational Psychology, 1997, 89, 743-751) on the validity of student ratings of instruction (check out my 
review of this research).  Their analysis indicated that when students expect to get better grades in a class they 
work less on that class and evaluate the course and the instructor more favorably.  The indicators (measured 
variables) for the Workload latent variable were questions about how much time the students spent on the 
course and how challenging it was.  Relative expected grade (comparing the grade expected in the rated 
course with that the student usually got in other courses) was a more important indicator of the Expected 
Grade latent variable than was absolute expected grade.  The Evaluation latent variable was indicated by 
questions about challenge, whether or not the student would take this course with the same instructor if e had 
it to do all over again, and assorted items about desirable characteristics of the instructor and course.  
 
 Greenwald’s research suggests that instructors who have lenient grading policies will get good 
evaluations but will not motivate their students to work hard enough to learn as much as they do with 
instructors whose less lenient grading policies lead to more work but less favorable evaluations. 
  

https://faculty.washington.edu/agg/pdf/Gwald_Gillmore_JEdP_1997.OCR.pdf
https://faculty.washington.edu/agg/pdf/Gwald_Gillmore_JEdP_1997.OCR.pdf
http://core.ecu.edu/psyc/wuenschk/SOIS.htm
http://core.ecu.edu/psyc/wuenschk/SOIS.htm
http://core.ecu.edu/psyc/wuenschk/SOIS.htm
http://core.ecu.edu/psyc/wuenschk/SOIS.htm
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 Confirmatory factor analysis can be considered a special case of SEM.  In confirmatory factor 
analysis the focus is on testing an a priori model of the factor structure of a group of measured variables.  
Tabachnick and Fidell (5th edition) present an example (pages 732 - 749) in which the tested model 
hypothesizes that intelligence in learning disabled children, as estimated by the WISC, can be represented by 
two factors (possibly correlated with one another) with a particular simple structure (relationship between the 
indicator variables and the factors). 
 
 
DISCRIMINANT FUNCTION ANALYSIS 
 
 You wish to predict group membership from a set of two or more continuous variables.  The analysis 
creates a set of discriminant functions (weighted combinations of the predictors) that will enable you to 
predict into which group a case falls, based on scores on the predictor variables (usually continuous, but 
could include dichotomous variables and dummy coded categorical predictors).  The total possible number of 
discriminant functions is one less than the number of groups, or the number of predictor variables, whichever is 
less.  Generally only a few of the functions will do a good job of discriminating group membership.  The second 
function, orthogonal to the first, analyses variance not already captured by the first, the third uses the residuals 
from the first and second, etc.  One may think of the resulting functions as dimensions on which the groups 
differ, but one must remember that the weights are chosen to maximize the discrimination among groups, 
not to make sense to you. Standardized discriminant function coefficients (weights) and loadings 
(correlations between discriminant functions and predictor variables) may be used to label the functions.  One 
might also determine how well a function separates each group from all the rest to help label the function.  It is 
possible to do hierarchical/stepwise analysis and factorial (more than one grouping variable) analysis. 
 
 Consider what the IRS does with the data they collect from “random audits” of taxpayers.  From each 
taxpayer they collect data on a number of predictor variables (gross income, number of exemptions, amount of 
deductions, age, occupation, etc.) and one classification variable, is the taxpayer a cheater (underpaid e’s 
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taxes) or honest.  From these data they develop a discriminant function model to predict whether or not a 
return is likely fraudulent.  Next year their computers automatically test every return, and if yours fits the profile 
of a cheater you are called up for a “discriminant analysis” audit. Of course, the details of the model are a 
closely guarded secret, since if a cheater knew the discriminant function e could prepare his return with the 
maximum amount of cheating that would result in e’s (barely) not being classified as a cheater. 
 
 As another example, consider the research done by Poulson, Braithwaite, Brondino, and Wuensch 
(1997, Journal of Social Behavior and Personality, 12, 743-758).  Subjects watched a simulated trial in which 
the defendant was accused of murder and was pleading insanity.  There was so little doubt about his having 
killed the victim that none of the jurors voted for a verdict of not guilty.  Aside from not guilty, their verdict 
options were Guilty, NGRI (not guilty by reason of insanity), and GBMI (guilty but mentally ill).  Each mock juror 
filled out a questionnaire, answering 21 questions (from which 8 predictor variables were constructed) about 
e’s attitudes about crime control, the insanity defense, the death penalty, the attorneys, and e’s assessment of 
the expert testimony, the defendant’s mental status, and the possibility that the defendant could be 
rehabilitated.  To avoid problems associated with multicollinearity among the 8 predictor variables (they were 
very highly correlated with one another, and such multicollinearity can cause problems in a multivariate 
analysis), the scores on the 8 predictor variables were subjected to a principal components analysis, with the 
resulting orthogonal components used as predictors in a discriminant analysis.  The verdict choice (Guilty, 
NGRI, or GBMI) was the criterion variable. 
 
 Both of the discriminant functions were significant.  The first function discriminated between jurors 
choosing a guilty verdict and subjects choosing a NGRI verdict.  Believing that the defendant was mentally ill, 
believing the defense’s expert testimony more than the prosecution’s, being receptive to the insanity defense, 
opposing the death penalty, believing that the defendant could be rehabilitated, and favoring lenient treatment 
were associated with rendering a NGRI verdict.  Conversely, the opposite orientation on these factors was 
associated with rendering a guilty verdict. The second function separated those who rendered a GBMI verdict 
from those choosing Guilty or NGRI.  Distrusting the attorneys (especially the prosecution attorney), thinking 
rehabilitation likely, opposing lenient treatment, not being receptive to the insanity defense, and favoring the 
death penalty were associated with rendering a GBMI verdict rather than a guilty or NGRI verdict. 
 
 
MULTIPLE ANALYSIS OF VARIANCE, MANOVA 
 
 This is essentially a DFA turned around.  You have two or more continuous Y’s and one or more 
categorical X’s.  You may also throw in some continuous X’s (covariates, giving you a MANCOVA, multiple 
analysis of covariance).  The most common application of MANOVA in psychology is as a device to guard 
against inflation of familywise alpha when there are multiple dependent variables.  The logic is the same as 
that of the protected t-test, where an omnibus ANOVA on your K-level categorical X must be significant before 
you make pairwise comparisons among your K groups’ means on Y.  You do a MANOVA on your multiple Y’s.  
If it is significant, you may go on and do univariate ANOVAs (one on each Y), if not, you stop.  In a factorial 
analysis, you may follow-up any effect which is significant in the MANOVA by doing univariate analyses for 
each such effect. 
 
 As an example, consider the MANOVA I did with data from a simulated jury trial with Taiwanese 
subjects (see Wuensch, Chia, Castellow, Chuang, & Cheng, Journal of Cross-Cultural Psychology, 1993, 24, 
414-427).  The same experiment had earlier been done with American subjects.  X’s consisted of whether or 
not the defendant was physically attractive, sex of the defendant, type of alleged crime (swindle or burglary), 
culture of the defendant (American or Chinese), and sex of subject (juror).  Y’s consisted of length of sentence 
given the defendant, rated seriousness of the crime, and ratings on 12 attributes of the defendant.  I did two 
MANOVAs, one with length of sentence and rated seriousness of the crime as Y’s, one with ratings on the 12 
attributes as Y’s.  On each I first inspected the MANOVA.  For each effect (main effect or interaction) that was 
significant on the MANOVA, I inspected the univariate analyses to determine which Y’s were significantly 
associated with that effect.  For those that were significant, I conducted follow-up analyses such as simple 
interaction analyses and simple main effects analyses.  A brief summary of the results follows:  Female 
subjects gave longer sentences for the crime of burglary, but only when the defendant was American; 
attractiveness was associated with lenient sentencing for American burglars but with stringent sentencing for 

http://digitalcommons.bryant.edu/cgi/viewcontent.cgi?article=1000&context=honors_mathematics
http://digitalcommons.bryant.edu/cgi/viewcontent.cgi?article=1000&context=honors_mathematics
http://digitalcommons.bryant.edu/cgi/viewcontent.cgi?article=1000&context=honors_mathematics
http://core.ecu.edu/psyc/wuenschk/Articles/JSBP97Sept.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JSBP97Sept.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JCCP1993/JCCP1993.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JCCP1993/JCCP1993.htm
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American swindlers (perhaps subjects thought that physically attractive swindlers had used their 
attractiveness in the commission of the crime and thus were especially deserving of punishment); female jurors 
gave more lenient sentences to female defendants than to male defendants; American defendants were rated 
more favorably (exciting, happy, intelligent, sociable, strong) than were Chinese defendants; physically 
attractive defendants were rated more favorably (attractive, calm, exciting, happy, intelligent, warm) than were 
physically unattractive defendants; and the swindler was rated more favorably (attractive, calm, exciting, 
independent, intelligent, sociable, warm) than the burglar. 
 
 In MANOVA the Y’s are weighted to maximize the correlation between their linear combination and the 
X’s.  A different linear combination (canonical variate) is formed for each effect (main effect or interaction—in 
fact, a different linear combination is formed for each treatment df—thus, if an independent variable consists 
of four groups, three df, there are three different linear combinations constructed to represent that effect, each 
orthogonal to the others).  Standardized discriminant function coefficients (weights for predicting X from 
the Y’s) and loadings (for each linear combination of Y’s, the correlations between the linear combination and 
the Y’s themselves) may be used better to define the effects of the factors and their interactions.  One may 
also do a “stepdown analysis” where one enters the Y’s in an a priori order of importance (or based solely on 
statistical criteria, as in stepwise multiple regression).  At each step one evaluates the contribution of the newly 
added Y, above and beyond that of the Y’s already entered. 
 
 As an example of an analysis which uses more of the multivariate output than was used with the 
example two paragraphs above, consider again the research done by Moore, Wuensch, Hedges, and 
Castellow (1994, discussed earlier under the topic of log-linear analysis).  Recall that we manipulated the 
physical attractiveness and social desirability of the litigants in a civil case involving sexual harassment.  In 
each of the experiments in that study we had subjects fill out a rating scale, describing the litigant (defendant or 
plaintiff) whose attributes we had manipulated.  This analysis was essentially a manipulation check, to verify 
that our manipulations were effective.  The rating scales were nine-point scales, for example,  
 
 Awkward        Poised 
  1 2 3 4 5 6 7 8 9 
 

There were 19 attributes measured for each litigant.  The data from the 19 variables were used as 
dependent variables in a three-way MANOVA (social desirability manipulation, physical attractiveness 
manipulation, gender of subject).  In the first experiment, in which the physical attractiveness and social 
desirability of the defendant were manipulated, the MANOVA produced significant effects for the social 
desirability manipulation and the physical attractiveness manipulation, but no other significant effects.  The 
canonical variate maximizing the effect of the social desirability manipulation loaded most heavily (r > .45) on 
the ratings of sociability (r = .68), intelligence (r = .66), warmth (r = .61), sensitivity (r = .50), and kindness (r = 
.49).  Univariate analyses indicated that compared to the socially undesirable defendant, the socially desirable 
defendant was rated significantly more poised, modest, strong, interesting, sociable, independent, warm, 
genuine, kind, exciting, sexually warm, secure, sensitive, calm, intelligent, sophisticated, and happy. Clearly 
the social desirability manipulation was effective.  

 
The canonical variate that maximized the effect of the physical attractiveness manipulation loaded 

heavily only on the physical attractiveness ratings (r = .95), all the other loadings being less than .35.  The 
mean physical attractiveness ratings were 7.12 for the physically attractive defendant and 2.25 for the 
physically unattractive defendant.  Clearly the physical attractiveness manipulation was effective.  Univariate 
analyses indicated that this manipulation had significant effects on several of the ratings variables.  Compared 
to the physically unattractive defendant, the physically attractive defendant was rated significantly more poised, 
strong, interesting, sociable, physically attractive, warm, exciting, sexually warm, secure, sophisticated, and 
happy. 
 

In the second experiment, in which the physical attractiveness and social desirability of the plaintiff 
were manipulated, similar results were obtained.  The canonical variate maximizing the effect of the social 
desirability manipulation loaded most heavily (r > .45) on the ratings of intelligence (r = .73), poise (r = .68), 
sensitivity (r = .63), kindness (r = .62), genuineness (r = .56), warmth (r = .54), and sociability (r = .53).  

http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1994/JSB&P1994.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1994/JSB&P1994.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1994/JSB&P1994.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1994/JSB&P1994.htm
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Univariate analyses indicated that compared to the socially undesirable plaintiff the socially desirable 
plaintiff was rated significantly more favorably on all nineteen of the adjective scale ratings.  

 
The canonical variate that maximized the effect of the physical attractiveness manipulation loaded 

heavily only on the physical attractiveness ratings (r = .84), all the other loadings being less than .40.  The 
mean physical attractiveness ratings were 7.52 for the physically attractive plaintiff and 3.16 for the physically 
unattractive plaintiff.  Univariate analyses indicated that this manipulation had significant effects on several of 
the ratings variables.  Compared to the physically unattractive plaintiff the physically attractive plaintiff was 
rated significantly more poised, interesting, sociable, physically attractive, warm, exciting, sexually warm, 
secure, sophisticated, and happy. 
 
 
LEAST SQUARES ANOVA 
 
 An ANOVA may be done as a multiple regression, with the categorical X’s coded as “dummy variables.” 
A K-level X is represented by K-1 dichotomous dummy variables.  An interaction between two X’s is 
represented by products of the main effects X’s.  For example, were factors A and B both dichotomous, we 
could code A with X1 (0 or 1), B with X2 (0 or 1), and A x B with X3, where X3 equals X1 times X2.  Were A 
dichotomous and B had three levels, the main effect of B would require two dummy variables, X2 and X3, and 
the A x B interaction would require two more dummy variables, X4 (the product of X1 and X2) and X5 (the 
product of X1 and X3).  [Each effect will require as many dummy variables as the df  it has.]  In the multiple 
regression the SS due to X1 would be the SSA, the SSB would be the combined SS for X2 and X3, and the 
interaction SS would be the combined SS for X4 and X5.  There are various ways we can partition the SS, but 
we shall generally want to use Overall and Spiegel’s Method I, where each effect is partialled for all other 
effects.  That is, for example, SSA is the SS that is due solely to A (the increase in the SSreg when we added 
A’s dummy variable(s) to a model that already includes all other effects).  Any variance in Y that is ambiguous 
(could be assigned to more than one effect) is disregarded.  There will, of course, be such ambiguous variance 
only when the independent variables are nonorthogonal (correlated, as indicated by the unequal cell sizes). 
Overall and Spiegel’s Method I least-squares ANOVA is the method that is approximated by the “by hand” 
unweighted means ANOVA that you learned earlier. 
 
 
ANCOV 
 
 In the analysis of covariance you enter one or more covariates (usually continuous, but may be 
dummy coded categorical variables) into the multiple correlation before or at the same time that you enter 
categorical predictor variables (dummy codes).  The effect of each factor or interaction is the increase in the 
SSreg when that factor is added to a model that already contains all of the other factors and interactions and all 
of the covariates. 
 

In the ideal circumstance, you have experimentally manipulated the categorical variables (independent 
variables), randomly assigned subjects to treatments, and measured the covariate(s) prior to the manipulation 
of the independent variable.  In this case, the inclusion of the covariate(s) in the model will reduce what would 
otherwise be error in the model, and this can greatly increase the power of your analysis.  Consider the 
following partitioning of the sums of squares of post-treatment wellness scores.  The Treatment variable is 
Type of Therapy used with your patients, three groups.  The F ratio testing the treatment will be the ratio of the 
Treatment Mean Square to the Error Mean Square. 
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 Your chances of getting a significant result are going to be a lot better if you can do something to 
reduce the size of the error variance, which goes into the denominator of the F ratio.  Reducing the size of the 
Mean Square Error (the denominator of the F ratio) will increase the value of F and lower the p value.  
Suppose you find that you have, for each of your subjects, a score on the wellness measure taken prior to the 
treatment.  Those baseline scores are likely well correlated with the post-treatment scores.  You add the 
baseline wellness to the model. – that is, baseline wellness becomes a covariate. 
 

 
 

 Wow!  You have cut the error in half.  This will greatly increase the value of the F testing the effect of 
the treatment.  In statistics, getting a big F is generally a good thing, as it leads to significant results. 
 
 Now you discover that you also have, for each subject, a pre-treatment measure of blood levels of 
scatophobin, a neurohormone thought to be associated with severity of the treated illness.  You now include 
that as a second covariate. 
 

 
 

 Double WOW!  You have reduced the error variance even more, gaining additional power and 
additional precision with respect to your estimates of effect sizes (tighter confidence intervals). 
 
 If your categorical predictor variables are correlated with the covariate(s), then removing the 
effects of the covariates may also remove some of the effects of the factors, which may not be what you 
wanted to do.  Such a confounding of covariates with categorical predictors often results from: 

• subjects not being randomly assigned to treatments 

• the covariates being measured after the manipulations of the independent variables(s) -- and those 
manipulations changed subjects’ scores on the covariates  

• the categorical predictors being nonexperimental (not manipulated), 
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Typically the psychologist considers the continuous covariates to be nuisance variables, whose 

effects are to be removed prior to considering the effects of categorical predictor variables.  The same model 
can be used to predict scores on a continuous outcome variable from a mixture of continuous and categorical 
predictor variables, even when the researcher does not consider the continuous covariates to be nuisance 
variables.  For example, consider the study by Wuensch and Poteat discussed earlier as an example of logistic 
regression.  A second dependent variable was respondents’ scores on a justification variable (after reading the 
case materials, each participant was asked to rate on a 9-point scale how justified the research was, from “not 
at all” to “completely”).  We used an ANCOV model to predict justification scores from idealism, relativism, 
gender, and scenario.  Although the first two predictors were continuous (“covariates”), we did not consider 
them to be nuisance variables, we had a genuine interest in their relationship with the dependent variable.  A 
brief description of the results of the ANCOV follows: 

 
There were no significant interactions between predictors, but each predictor had a significant main 

effect.  Idealism was negatively associated with justification,  = −0.32, r = −0.36, F(1, 303) = 40.93, p < .001, 

relativism was positively associated with justification,  = .20, r = .22, F(1, 303) = 15.39, p < .001, mean 
justification was higher for men (M = 5.30, SD = 2.25) than for women (M = 4.28, SD = 2.21), F(1, 303) = 
13.24, p < .001, and scenario had a significant omnibus effect, F(4, 303) = 3.61, p = .007.  Using the medical 
scenario as the reference group, the cosmetic and the theory scenarios were found to be significantly less 
justified. 
 
 
MULTIVARIATE APPROACH TO REPEATED MEASURES ANOVA 
 
 An ANOVA may include one or more categorical predictors for which the groups are not independent.  
Subjects may be measured at each level of the treatment variable (repeated measures, within-subjects).  
Alternatively, subjects may be blocked on the basis of variables known to be related to the dependent variable 
and then, within each block, randomly assigned to treatments (the randomized blocks design).  In either case, 
a repeated measures ANOVA may be appropriate if the dependent variable is normally distributed and other 
assumptions are met. 
 
 The traditional repeated measures analyses of variance (aka “univariate approach”) has a sphericity 
assumption:  the standard error of the difference between pairs of means is constant across all pairs of 
means.  That is, for comparing the mean at any one level of the repeated factor versus any other level of the 

repeated factor, the diff is the same as it would be for any other pair of levels of the repeated factor.  Howell 
(page 443 of the 6th edition of Statistical Methods for Psychology) discusses compound symmetry, a 
somewhat more restrictive assumption.  There are adjustments (of degrees of freedom) to correct for violation 
of the sphericity assumption, but at a cost of lower power. 
 
 A more modern approach, the multivariate approach to repeated measures designs, does not have 
such a sphericity assumption.  In the multivariate approach the effect of a repeated measures dimension (for 
example, whether this score represents Suzie Cue’s headache duration during the first, second, or third week 

of treatment) is coded by computing k−1 difference scores (one for each degree of freedom for the repeated 
factor) and then treating those difference scores as dependent variables in a MANOVA. 
 
 You are already familiar with the basic concepts of main effects, interactions, and simple effects from 
our study of independent samples ANOVA.  We remain interested in these same sorts of effects in ANOVA 
with repeated measures, but we must do the analysis differently.  While it might be reasonable to conduct such 
an analysis by hand when the design is quite simple, typically computer analysis will be employed. 
 
 If your ANOVA design has one or more repeated factors and multiple dependent variables, then you 
can do a doubly multivariate analysis, with the effect of the repeated factor being represented by a set of 

k−1 difference scores for each of the two or more dependent variables.  For example, consider my study on the 
effects of cross-species rearing of house mice (Animal Learning & Behavior, 1992, 20, 253-258).  Subjects 
were house mice that had been reared by house mice, deer mice, or Norway rats.  The species of the foster 
mother was a between-subjects (independent samples) factor.  I tested them in an apparatus where they could 

http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1998/JSB&P1998.htm
http://core.ecu.edu/psyc/wuenschk/Articles/JSB&P1998/JSB&P1998.htm
http://core.ecu.edu/psyc/wuenschk/Articles/AL&B1992/AL&B1992.htm
http://core.ecu.edu/psyc/wuenschk/Articles/AL&B1992/AL&B1992.htm
http://core.ecu.edu/psyc/wuenschk/Articles/AL&B1992/AL&B1992.htm
http://core.ecu.edu/psyc/wuenschk/Articles/AL&B1992/AL&B1992.htm
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visit four tunnels:  One scented with clean pine shavings, one scented with the smell of house mice, one 
scented with the smell of deer mice, and one scented with the smell of rats.  The scent of the tunnel was a 
within-subjects factor, so I had a mixed factorial design (one or more between-subjects factor, one or more 
within-subjects factor).  I had three dependent variables:  The latency until the subject first entered each tunnel, 
how many visits the subject made to each tunnel, and how much time each subject spent in each tunnel.  
Since the doubly multivariate analysis indicated significant effects (interaction between species of the foster 
mother and scent of the tunnel, as well as significant main effects of each factor), singly multivariate ANOVA 
(that is, on one dependent variable at a time, but using the multivariate approach to code the repeated factor) 
was conducted on each dependent variable (latency, visits, and time).  The interaction was significant for each 
dependent variable, so simple main effects analyses were conducted.  The basic finding (somewhat simplified 
here) was that with respect to the rat-scented tunnel, those subjects who had been reared by a rat had shorter 
latencies to visit the tunnel, visited that tunnel more often, and spent more time in that tunnel.  If you consider 
that rats will eat house mice, it makes good sense for a house mouse to be disposed not to enter tunnels that 
smell like rats.  Of course, my rat-reared mice may have learned to associate the smell of rat with obtaining 
food (nursing from their rat foster mother) rather than being food! 
 
 
CLUSTER ANALYSIS 
 
 In a cluster analysis the goal is to cluster cases (research units) into groups that share similar 
characteristics.  Contrast this goal with the goal of principal components and factor analysis, where one groups 
variables into components or factors based on their having similar relationships with with latent variables.  
While cluster analysis can also be used to group variables rather than cases, I have no familiarity with that 
application. 
 
 I have never had a set of research data for which I though cluster analysis appropriate, but I wanted to 
play around with it, so I obtained, from online sources, data on faculty in my department:  Salaries, academic 
rank, course load, experience, and number of published articles.  I instructed SPSS to group the cases (faculty 
members) based on those variables.  I asked SPSS to standardize all of the variables to z scores.  This 
results in each variable being measured on the same scale and the variables being equally weighted.  I had 
SPSS use agglomerative hierarchical clustering.  With this procedure each case initially is a cluster of its 
own.  SPSS compares the distance between each case and the next and then clusters together the two cases 
which are closest.  I had SPSS use the squared Euclidian distance between cases as the measure of 

distance.  This is quite simply ( )
2
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=

−
v

i

ii YX , the sum across variables (from i = 1 to v) of the squared 

difference between the score on variable i for the one case (Xi) and the score on variable i for the other case 
(Yi).  At the next step SPSS recomputes all the distances between entities (cases and clusters) and then 
groups together the two with the smallest distance.  When one or both of the entities is a cluster, SPSS 
computes the averaged squared Euclidian distance between members of the one entity and members of the 
other entity.  This continues until all cases have been grouped into one giant cluster.  It is up to the researcher 
to decide when to stop this procedure and accept a solution with k clusters.  K can be any number from 1 to 
the number of cases. 
 
 SPSS produces both tables and graphics that help the analyst follow the process and decide which 
solution to accept  I obtained 2, 3, and 4 cluster solutions.  In the k = 2 solution the one cluster consisted of all 
the adjunct faculty (excepting one) and the second cluster consisted of everybody else.  I compared the two 
clusters (using t tests) and found compared to the regular faculty the adjuncts had significantly lower salary, 
experience, course load, rank, and number of publications. 
 
 In the k = 3 solution the group of regular faculty was split into two groups, with one group consisting of 
senior faculty (those who have been in the profession long enough to get a decent salary and lots of 
publications) and the other group consisting of junior faculty (and a few older faculty who just never did the 
things that gets one merit pay increases).  I used plots of means to show that the senior faculty had greater 
salary, experience, rank, and number of publications than did the junior faculty. 
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 In the k = 4 solution the group of senior faculty was split into two clusters.  One cluster consisted of 
the acting chair of the department (who had a salary and a number of publications considerably higher than the 
others) and the other cluster consisting of the remaining senior faculty (excepting those few who had been 
clustered with the junior faculty). 
 
 There are other ways of measuring the distance between clusters and other methods of doing the 
clustering.  For example, one can do divisive hierarchical clustering, in which one starts out with all cases in 
one big cluster and then splits off cases into new clusters until every case is a cluster all by itself. 
 
 Aziz and Zickar (2006:  A cluster analysis investigation of workaholism as a syndrome, Journal of 
Occupational Health Psychology, 11, 52-62) is a good example of the use of cluster analysis with 
psychological data.  Some have defined workaholism as being high in work involvement, high in drive to work, 
and low in work enjoyment.  Aziz and Zickar obtained measures of work involvement, drive to work, and work 
enjoyment and conducted a cluster analysis.  One of the clusters in the three-cluster solution did look like 
workaholics – high in work involvement and drive to work but low in work enjoyment.  A second cluster 
consisted of positively engaged workers (high on work involvement and work enjoyment) and a third consisted 
of unengaged workers (low in involvement, drive, and enjoyment). 
 

• Multivariate Effect Size Estimation – supplemental chapter from Kline, Rex. B.  (2004).  
Beyond significance testing:  Reforming data analysis methods in behavioral research.  
Washington, DC:  American Psychological Association. 

• Statistics Lessons 

• MANOVA, Familywise Error, and the Boogey Man 

• SAS Lessons 

• SPSS Lessons 
 

Endnote 

† A high Scale 5 score indicates that the individual is more like members of the other gender than are most 
people.  A man with a high Scale 5 score lacks stereotypical masculine interests, and a woman with a high 
Scale 5 score has interests that are stereotypically masculine.  Low Scale 5 scores indicate stereotypical 
masculinity in men and stereotypical femininity in women.  MMPI Scale scores are “T-scores” – that is, they 
have been standardized to mean 50, standard deviation 10.  The normative group was residents of Minnesota 
in the 1930’s.  The MMPI-2 was normed on what should be a group more representative of US residents. 
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