& Figure 18,1 codomain is B® for some positive integers m and n.

I;IFMDN1 Irfh.hmmmrmmr:;h-qqm
F 6 it ranformation from R® to K™ or that f seaps from B to B™_ which we denote

by writing |
[ R =R~

In the special case where m = n. a transformation is imes called an on I|

R

Matrix Transformations  In this section we will be concerned with the class of transformations from B* w0 £~
that arise from linear systems. Specifically, suppost that we have the system of Encar

It is caamiman in B algebra Fquutinns
b:lhli:ﬂn ;"t.;drmn Wy = @ik + d138 4 -+ ek

W transformation. In keeping W= ayyy + dnky 4+ b odgr,

with this usage, we will usually 5 = :

danole i trunalormatian from =

R 1o R by wriling W = iy + dpady + - + duaty
which we can write in mairix notation as

(L1}

T: K =R
wy )y mx - S n
L3 d; dn - 8 Xy
=1z 2 : : “
W el T2 T X
or more briefly as
"= Ax 5
Ahhough we could view (5) is 8 compact way of writing linear system (3), we will view
It instead a2 & transformation that maps a vector x in B° into thevecior w in = by
1.8 Mot Tanslormations 77
muhiplying x on the left by A, We call this u marix trasg (or mmtrix op
Ins the apecial cuse where m = 4). We denote it by
TR — R°
r (see Figure 1.5.2). This notution i useful when it is important to make the domain
z and codonmuin clear. The aubscript on Ta serves as i reminder thit the transformation
r.—_-—h";. results from muhiplying vectors in 8 by the matrix A. In situstions where specifying
) the domain and codomain i not essential, we will expross (4) us
r pr wmT,x) i6)
T A—g We call the transformation T, malnplicarien by 4. On we will Aind it [’
* 10 expresd (6) in the schematic form
& Fgue 182 L m
‘which s read =T, maps x intow.”

* EXAMPLE 1 A Matrix Transformation rom #* 10 &*
The transformation from & 1o &' defined by the equations
w=ln=in+ n-iu

wymdn 4 1y =24 1 5
wy = Sxy = x4 4
can be expressed in matrix form as
" I T Y |
w =4 1 -2 1] e
w| |5 -1 4 of]®
s
Trom which we see that the i ion can be mierpreted as malti ion by
2 -3 1 -5
A=|4 1 =2 1 [L]]
§ -1 a4 @

Although the imape under the transformation T, of any vector
:.'

Iy
Ia

in K* could be computed directly from the defining cquations in (8). we will find it
preferable to use the matrix in (7). For example. if

then it follows from (%) that

" 2 -3 1 -5 _; 1
wi|=Taxl=Ax= |4 1 -2 |1 ol = 1
-y 5 -1 4 a0 3 L]

M Chapier 1 By o Linusse
> EXAMPLE 2 Zoro Tanslormations
0 i e e = 8 2evo matrix, then
Telx) =x =@

so multiplication by zero maps every vector in B into the zero vector in B™. Wecall T,
the zere sreasformetion from B to R=.

P EXAMPLE 3 identity Operators
M1 e e % & identity matrix, then

Ti=Ix=x
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B EXAMPLE 2 Zaro Transicrmations
If (s the v = n zero matrin, then

Teixj=x =@

a0 multiplication by 2ero maps every vector in B into the zero vecior in B~ Wecall T,
the zere rangformanion (rom K* 10 K=,

B EXAMPLE 1 idenilty Operaiors
I T i the n = w identity matris, then

Tiv = jxmx

10 multiplication by J maps every vector in R® 1o itsell. 'We call T) the idemniry speraser
on Re.

FProperties of Matrix  The Following theorem lisis four basic properties of matrix transformations that follow

Tran

rions  Trom properties of matrix multiplication,

THEOREM 1.8.1 For every marrix A the matrix transformatio:: | .
Soltavitug pmpﬂmﬁm’wm wand ¥ and for every scalar A 93 / 802
(@) Tal0)=0

(8) Talku) = kTa(m) |Homogenebiy praperty|

(€) Talu+v) o Tyiwh+ Tylvh  |Additiviey progarey|

(@) Talw=v) = Faiw) = Taiv)

Prool Al Fouir parte are restatements of the following properties of matrix arithmetic
given in Theorem 1 4.1

AD =0, Afku) = k(Aw), Afn+v)=Au+Av, AW-v)=Aw—Av «
It follow from parts (h) and i) of Theorem |.R. | thal a matrix Irnubmulonw

 limear combination of vectors in B* into the cornesponding linear b of
vectors in B™ in the sense that

Tatkim + kawg + -+ b ) m b Tafm) + kaTalwm) + - + & Taln) (hay
Maltrix traniformathons are not the only kinds of ransformations. For example, if

) 1
Wy o= X7 4 X
b iy

Wy KNy

then there are o constants o, b, ¢, and o for which

1 JEHE

o that Ihthlll}domﬁhnmrhmmhnnf o &

Theorem 153 iells s that

LS Batvie Tasloncations 7§
This leads us to the following two questions

Question 1 Are there i hes of 2 afi iy T:l'—-l'ﬂﬂ_clnl
be wsed 10 determine whether T is 2 matrix trancformation?

Quesiion 2 I we discover that a iransfwmation T B* —» B™ is 2 matrix transios- |
mation, how can we find a matrin for ir?

THEOREM 182 T: K% — = is & matrix sransformation if and only if the following
refationships bold for alf veciors mand v in B* and for every scalar &

) Tim+v)=Timh+T(v) (Addskiny papy]
(i) Tikw)=kTim) [Homngenciiy g |

Proof Il T is a matrin then properties (i) and (i) follow respectively
Tvom paris (c} and () of Theonem 1 8.1

Conversely, assume thal propertics (i) and (i) hold. 'We must show that there evises
anm x x matrix A such that

Tix) = A
Fn(ﬂ-yml-l' Recall that the derivation of Formaula (10) used only the
ity and h propertics of Ty. Since we are assuming that T has those

Tikm + ke 4 ---+ Ekn)=hTm)+ ETel+---+ LT [ F]
For all scalars &y k. .. . &, and all vectors w, ®.. ... o in B Let A be the matriz

A=|Tie)d | Tieyd | --- | Tieadl (13

Ax=nTim)+ ol + - + Wl
Using Formula ( 10) we can rewrite this as
Ax = Tix,e + 58+ -+ 5,8) = Tix)
which completes the proof. «

The additivity and b il perties in Theorem 1.5.2 are called Maswnity
ivlans, and a i "-mm ditions is called a Saenr ransfor-
miaties. Using this terminology Theorem 1.8.2 can be restated a4 follows.

Jor ransformatons from B o
K, the terms “matr irams-
foyration™ and ~near Irans- THEOREM 1.8.3 Ewery linear amafarmuanion from B® 1o R™ i3 4 siatrix thonsformiarion,
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A Procedure for Finding
Standard Matrices

Depending on whether n-tuples and m-tuples are regarded s vectors or poinis, the
geometric effect of & matrix transformation T,: B* — B is to map each vector {poiat)
in R* into & vector (point) in B (Figure 1.8.3).

! Jll .‘_,...—_._\-r
I
* Figure 18.3 I@] [5 "‘“@

The following theorem states that if two matrix irassformations from R to R™ have
the same image al each point of B*, then the mairices themselves musi be the same.

THEOREM 1.8.4 [fT,: R* — K= and Ty B* —» R ave matrix tronsformanions, and if
Taix) = Ta(x) for every vector x in B* then A = B.

Proof To suy that T;.I':]-=T.[:}Fo:mqwhriuh:m951g{u802
Ax = Bx

for every vector x in K", This will be true, in particular, if x is any of the standard basis
VECIOFs &), 0y, ..., &, for R*; that i,

Ao, =Be, (j=12.._.m 4

Since every entry of #; ks 0 except for the jth, which is 1. it follows from Theorem 1.3.1
that Aw; in the jth column of A and Be, ia the jth column of B. Thus, (14) implies that
correiponding columni of A and B ase the same, and bence that A = B. 4

Thearem | 4.4id significant b it tells us that there is a one-to- e

% m matrices and matrix wanaf i ﬁmk"wﬂ"‘m‘lkmm
every i X i matnix A produces exacily one malrix bon by Ay
udwynmmmufomnml*lnl‘mﬁmmbmnuum
we call that matrix the srewdend marrly for the transk

N

In the course of proving Theorem 1.8.2 we showed in Formulu (13 thit ifer, 02, ..., =
are the standard badis vectors for 8 (in colums form), then the standard matrix for a
linear wransformation T: B — B™ is given by the formula

A=IT{e) | Tiex) | --- | Tiw,)) (15)

This suggests the following procedure for finding standand

Finding the Standard Matrix for a Matrix Trans foroaties
Siep 1. Find the images of the standand basis vectors e, 2. ..., w for R,

Siep2 Cmmmﬂmhwmmsw!-mm
columns. This matrix is the standard matrix for the

P EXAMPLE 4 Finding a Standard Matrix

Find ihe standard matrix A for the lincar transformation T: &° — & defined by the

G -

=Ny 4 X3
Solution We leave it for you 1o verify that

S =l

Thus. it follows from Formulas (15) and (16) that the standard matrix is

1
4-|r(a.nn-=>|-[ 1 .-s]
=1 ]

> EXAMPLE 5 Computing with Standard Matri

For the lincar transformation in E: dc 4. usc the dand matrix A obtained in that
example to find
()
4

Although we could have ob- by ai
tmined the revult i Exampls 5 L]
by subsiriuting valees for the (H) I Ht -uf «
vanables in (13). the method 4
used i Example § s preferable 3
Vot lag - scale probiems o thal
emair . vl iplcaiion o beiler
suibed For compuler computae hmmmm-mmmawm-
e (1] form and use the methods previously illustrased.

 EXAMPLE & Finding a Standard Matrix

Rewrite the transformation T(x,. x;) = (3x; + x3, Ir; — 4x;) in column-vector form

and find its standsrd matrix

| e

Thus. the standard matrix is
[_! |] >
2 -2
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Exercise Set 1.8

= In Exgreises |- 2, finad the domasn aned codomain of the trane-
formation Tyn) = Ax. =

L fa] Ahassiox 3 x 2,
() Ahasmiox 3 = ),

(bh A haas niow 2w ),
() A haas siom | w6

4 (n] Ahassioed x 3, (bh A hes niow 3 x4
o) A has i d x4 ey A i v 3w 1.

In Engrcisgs -4, lind the domasn and codomain of the trem-
o mation defined by bhe equationa -

L) wy o= day o Sy

wy gy = Ry

b} wy = Sx; = Tz
Wy -hp+ Xz
wy o= Jyy 4 Ly

‘-III - l|_'-j+.-'|-
g o= =iy 4 dny o+ Ly

o= =Ry 4 2oy — day

|H-| -I-h""rﬁ -'.-li
wy m dyy = Lug 4 Iy

= b Enarcises % 6, Rnad the domasn snd codomann of e ans-
For mation defined by Lhe matrn product <
_I ..
3 ['
Ny
1 -4

1 2

: TR T
& (a) [‘ 7 I] [u] i |4
xy .]'

& 3= : E .'
l.u..[1 1][1'] T E I ]
! 1 e a|s
= Im Exgrcases 78, kad ibe doman and codomasn of the Urans-
formation T defined by the lotmula

T (@) Fing. 2z) = Ly = 8z 0 4 Kzl
it Fixy. x; 5,0 = (dxy + 559, + 530
R ial Tixy. 5. 5. 0,0 = (5. 53
b Tixy. xz. xpd = {1, £z = X3, £3)

*  im Exsrcaees %- 18, fmd the domamn and codomam of the brans-
formation T defined by the lormula  ~
xy
i 7] o
]
:’]) & = K
' o

T

o()-[

= im Extocmes 11-11 Gad the sandand matria for the trabsior-
malson delimed by the oquations.

t.-'l. -'|-h| “'_‘.l"t+lp
-j-l.h-"s.li-lp

(b wy = Ty + Lig = Bay
Wy = = x5 % Jn;
wy =l 4 Ty = x5

IL (w) wy = =xy + 2y
uy = gy = 1y
wy, = Ay, = Ty

k] Wy =
TR T+
"l-1'|+l|-'l'#|
My gy o gy o By o s

IL Fud the standand matria for the iramsformation T defined by
tha farmula.

(@) Fing, 85] = (g, =iy, &y + Ay, 0y = my)
i) Ty, a0y, 0g) = {Thy 20y = 0y + oy, 0y # 8 =8y )
(2] Tisp, 55, ma] = {0, 0,0, 0,0)
il Tileg, ey 0y, k) = Ly, 3, By, By, 0 = 0y)

I Fend the standurd matria fof the oparator T defined by the
formuls
() Tiws, my) = { 2oy = k3, Ky + 53
i) Tix,. ey} = g, 5:)
el Tins.
id) Tins.

B Ea) = 0ng o 2es o 1. 1+ g )
my xa) = fllag. Tap, =Kas)

15 Find the standard matria for the operator T &' — &' dafined

Iy
TR T

= R
meu- 5+ 97 / 802
wy = by o Jny — n
and isen compute Ti - 1. L 4) by dwecily wbsiiuting o ihe
oy usions amad e by i el sden

bh Fimd the sandanl matris for the tramsiormatson T &' — &
e fumrd bry
wy o Iy o+ by = ey -y
L T TR S T T
and then compute T(1, = 1. 1 &) by darecily sbstsivimg =
the rquations and then by matn. sl atusn
= b Exsicie 17 15, fid the standand matrn for e iransfor-

maiton and use it to compuie Tin) Check your nesall by seben-
tutsng durecily i tee formala for T -

1T (a) Tix,, x;) = i—i; + 05 050, 5 mi=1, 4]
(h) Fixp, x5, m] = {2y = g 4 w5, 03 4 x5, OF;
s=m{ll, =¥
1% (&) Tixy, xg) = (2o = dp. 0 + ma). B (=2 1)
ih] Tk, x;. 0y = {&;, 85 — &y, x3]; 5= (1,0, 5]

= I Exercises 1930, God Tiix). and express your snswer o
mathx form.

wwanl} Jee[]

=1 2
1 1

e 1

4=
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&  Elementary line.. [@Q &%

19 a set of Arawches through which something “flows ™ For exampic. the branches might
‘be electrical wires through which electricity flows, pipes through which water or oil Bows.
traffic lanes through which vehicular waffic fows, or economic linkages through which

maney fows, to name a few possibilities.
In most networke, the branches meet at points, called ssdes or jumcrlons, where the
i A .

fowdivides Forexample, in anelectrical Saade
join, in a traffic network they oocur at street i and in a & d
they occur at banking centers where i ing moncy i distributed 10 indnidual o

other institutions.

In the study of networks, there is generally some numernical measure of the rate &t
‘which. the medium flows through a branch. For example, the flow rate of electricity is
ofen measured in amperes, the flow rate of water or oil in gallons per minute, the Sow rate
of truffic in vehicles per hour, and the flow rate of European currency in millioas of Euros
per day. We will reatrict our aitention to networks in which there is Sew consernanion at
euch node, by which we mean that she rate of flow into any mode is equel 1o the rate of flow
ot af that node. This ensures that the Aow mediom does not build up & the nodes and
bbock the free movement of the medium through the network.

A common problem innelwork analysis is 1o use known fow rates in certain branches
tos find the flow rates in all of the branches. Hiere is an example

P EXAMPLE 1 Metwork Analyais Using Linear Systems

10 Figure 1.9.] shows a network with four noden in which the flow rate and direction of
fow in certaln branches are known. Find the flow rales and directions of flow in the
remaining branches.

5 35 Solution  As illustrated bn Figure 19,2, we have assigned arbitrary directions 1o the
unknown flow rates . xa, and 1y, We need not be concerned if some of the directions
are incorrect, since an incorrect direction will be signaled by u negative vahae for the fow
rate when we solve for the unknowni

60 T follows from the conservation of fow wt node A that

& Figure 1.2.1 Bt =0
zu Similarly, at the other nodes we have
X+ k=35 (node B)
" x B4 15=60 (nodeC)
15 55 X+ 15= 35 (node D)
*y 15 These four conditions produce the linear system

n+xn =3

&0 H+a =33

& Figure 1.9.2 5 =45
N = 40

15

18 Applicstions of Linser Systeme 55

which we can now try 10 sobve for the unknown fow rates. In this particular case the
systemn is sulficienily simple thai it can be sobved by inspection (work from the botiom
up). 'We leave it for you 1o confirm that the solution is

n=48 x=-10 =4

The fact thal x; is negative tells s that the direction sssigned o that Sow in Figare 1 9.2
is incorrect: that ia. the flow in that branch is isro mode A

B EXAMPLE 2 Dasign of Traffic Patterns

The network in Figure 1.9.3 shows a propossd plan for the traffic flow around 3 new

park that will house the Liberty Befl in Philadeiphia. Peansylvania The plan calls for a

computerized traffic light at the north exit on Fifth Street. and the disgram imdicates the

average number of vehicles per hour that are expected to Sow in and out of the streets
that border the complex. All strects are onc-way.

{a) How masy vehicles per howr shoukd the traffic hght ket through to cnsurne that the
average samber of vehicles per howr flowing into the complex is the same as the
average aumber of vehickes Sowing out?

(b} Amuming that the traffic light has boen scl 1o balanor the total Sow in and out of
the complex. what can you say shout the average mumber of vehicles per hour that
will Bow along the strects that border the complex?

»
Tt
O 20 I* =0
5
L Maket S, E cf » |= iy
=k S T
Chestout St D 1 |a
o0 @0
> Fgure 193 1) ]

Solution (& 1L as indicated in Figure 1.9.35. we let 1 denote the number of vehicles per
howr that the traffic lght must ket through. then the iotal number of vehicles per hour
that Bow in and out of the complex will be

Flowing i 500 + 400 4 600 + 200 = 1700
Flowing out: x + 700 + 400
Equating the Bows in and out shows that the traffic light should let x = 600 vehicles per
hour pass through.
Solusion (b To avoid traffic congestion_ the fiow in must equal the flow out at each
intersection. For this io happen, the following conditions must be satisfied:
st Flow In Flow (et

= 3
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Elactrical Circuits

wl s
L.,

& Figure 19.4

AR
Ay

k Jj=

+r i

& Figure 19.5

Thux with ¥ = 600, as computed in part (a). we obtain the lollowing lincar system:

Xy + X2 = 1000
TR ] = |00a
X+ dg= 00

X + ;= 00

‘We beave it for you to show that the sysiem has infinitely many solutions and that these
are given by the parumetric equations

NmT0—t wp=mI04f D=0 -f, xa=f i

However, the parumeter ! is not completely arbitrary here, since there are physical con-
straints 1o be considered. For example, the avernge fow rates must be nonncgative since
‘we have assumed the streets 10 be ong-way, and a negative flow rate would indicale a flow
in the wrong direction. This being the case, we see from { 1) that f can be any real number
that satisfies 0 < r < 700, which implies thai the svernge flow rates along the streets will
Full in the ranges

O0=x =700, 00=<x; <1000, O=x, <700, O=<x, <700 o

MNext we will show how network analysis can be used to analyze eloctrical circuits con-
sisting of butteries and resistors. A baitery is 8 source of clectric energy, and & resier,
such is a lightbulb, is an element that dissipates electric energy. Figure 1.9 4 shows a
schematic dingram of u circuit with one battery (represented by the symbol 4 ), one
resistor (represented by the symbol v}, and a switch. The baliery has a positive pole
{+)and a wegative pole (—). When the switch is closed, electrical current is considered to
Aow from the positive pole of the battery, through the resistor, and back to the negative
pole (indicated by the arrowhesd in the fgure).

Electrical current. which Is & flow of electrona through wines, behaves much like the
Bow of waler through pipes. A battery acts like a pump that creales *electrical pressure™
to increase the Mlow rate of elecirons, and u resistor acts like a restriction in a pipe that
reduces Ilul'ln-l raie nl'llmmu The technical term for electrical preasure is lecarical
povensial; it i ly d b rwdrs (V). The degree to which a resistor reduces the
electrical potential is called ils resistawer and i commonly measured in sdms (2). The
rale of Bow ol elecirons in & wire is called covrend und is commonly measured in amperes
{also called amps) (A). The precise effect of a resistor is given by the Following law:

Ohm's Law If a current of | amperes passes through a ml_ulnrﬂlnudlhn&al.‘
R ohms, then there is & resulting drop of E volts in elecirical potential that is the
product of the current and resistance; that is,

E=IR

A typical electrical network will have multiple batteries and resistors joined by some
configuralion of wires. A point al which three or more wires in 4 network are joined is
called a asde (or jumciion podnf). A branch is a wire connecting two nodes, and a elosed
Joop is a jion of d b hes that begin and end at the 1ame node. For
example. the elerirical network in Figure 1.9.5 has two nodes and three closed loops—
mmwwmmwhmlmmﬂﬂdﬂmmhk

and d in ch I p L called radrage rises and veliagy
draps. respectively. The behavior of the curment at the nodes and around closed loops is
Eoverned by two fundamental Lws:

5 Appliestions of Lisesr Bystoms 57

Kirchhoff's Currant L mlmdmmhﬂhmmmtmﬂmh-
sum of the currenis Sowing out.

Kirchholl's Voliage Low Ia obe traversal of any closed loop. the sum of the voltage
s equals the sum of the voltage dropa.

Kirchhofl™s currenl Lew is a restatement of the principle of flow conservation a1 a node
that was stated for peneral networks Thus, for example. the currents at the wop sode in
Figure 1.9.6 satisly the equation /i = /3 + .

In circuits with multiphe loops and batieries there is usually no way 1o well m advance
which way the currents are flowing. so the usual procedure m circuil analyais is Lo as-
sign arburary dincctions 10 the current flows in the branches and ket the mathemarical
compulations determine whether the asignments are correct. n addition 10 aamgning
directions 10 the current flows, KirchholT s voltage lew requines a direction of travel for
cach closed loop. The choioe i arbitrary. but for consistency we will always take this

dirschon swigr marb b

;_w‘llf tha brae chas |

& Figurs 197

it O

A Fgure 198

direction 1o be cleckwise (Figure 1.9.7). We alio make the following coaventions:

+ A voltage drop accurs sl a resstor if the direction. assigned 1o the curreat through the
resision is the same a1 the direction assigned 10 the loop, and a voluge rise oocurs st
a vessdod if the direction assigned 1o the current thiough the ressior is the opposste
10 that aisigned Lo the loop.

* A volage rise oocurs ai a battery if the direction assigned to the loop is from — 10 +
ihrough the batiery. and & voltage drop occurs at & battery if the direction assigned
10 the loop is from + to — through the battery.

If you follow these conventions when calculating currents, then those currents whose

directions were asagned correctly will have positive values and those whose directions

were asugned meorrectly will have negative values,

B EXAMPLE 3 A Chroult with One Closed Loop
Dectermine the current J in the circuit shown in Figure 1. 9.5,

Selution Since the direction amsigned to the curtent through the resistor s the same
as the direction of the loop, there is a voltage drop st the resistor. By Obm's law this
voltage drop s E = /R = 3/. Also, since the direction assigned to the loop is from —
1o 4+ through the batiery, there is a voltage rise of 6 volts at the battery. Thus it follows
from Kinchholl's voltage law that

=5
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However, these equations are really the same, since both can be expressed a
Lh+lh-h=0 =]

To find unique values for the currents we will aced two more equations, which we will
obtain rom Kirchholl's vohage law. We can sce from the network diagram that there
mmmmumn;mmwmmmvm.wmm

containing the 30 V baitery, and an outer loop that contsins both hatteries. Thas,
KirchhofT's voltage law will sctually produce th With & i I
of the loopd, the valtage rises snd dropa in these loops are as ollows:

Volinge Rises  Volinge Drops
Left Inside Loop 50 5 + 200,
Right Inakde Loop 30+ 10/ + 200 2
Omtshde Lacp 30+ 50+ 104, s

These condilions can be rewritien as

5h +MXh= 5
100y + Xy = - [&]]
5h— o5 = 80

Hawever, the lust equation is superfluous, since it is the difference of the first two. Thus,
If we combine (2) and the first two equations in (3), we obtain the following linear system
af three squations In the three unknown currents:

h+ h- h= 0
h +Xh= 50
10y + 208, = —30

W leave il fof youl to show that the solution of this sysiem in ampe is 1, = 6. I ."!

and dy = 1. The fact that J; ks negative 1ells us that the of thi isopp
1o that indicated in Figure 1 9.9, <
Balancing Chemical  Chemical pounds une | by ok thal describe the atomic
Eguarions  makeup of their molecules. For le, wuter i e af two hydrogen atoms and

ane oxygen atom, s0 its chemibcal formala is H;0; and stable oxygen is composed of two
mmuomunuhmbd lufmuh '1+°8

When chemi are bined under the right conditions, the atoms in

their molecules mmmp 1o form new compounds For example, when methane burna,

Mistoseal Mote  The Ges
man phwsicist Guatey Kirch-
ol veia & sudant of Gausd,
MHig work am Kirshiha i's v,
snnounced in T4, wes 8
major scvence in the calcu-

15 Applicaiiens of Linssr Systesss B9

1he methane (CH,;) and stable oxygen () react 1o form carbon dioxide {0 ) and water
{H;0). This is indi by Lhee cllwmaicnd sy

CH, + 0y — 00+ H,O “

The molecules 1o the kefi of the armow are called the resctess and those 1o the right
Ihm h!hqmﬁﬂu“mmm&mﬂm
nol i as muqmmmumﬂ
story. since it fails 10 account for the of ived for a e
reachiss (no reaciants kefi over). For example. we can see from the right sude of (4) that
10 produce one molecule of carbon dioxide and one molecule of watey, onr nevds dhree
mm-_hﬂmhmﬂmh-hhﬂﬂnﬂdj-uﬂﬂ
of methane and one of stable ouypen have only fwo oxyges atoms
For cach carbon atom. Thus, on the side the ratio of methane io stable axypm
cannod be one-to-one in 2 complele reaction
A chemical equation is said Lo be balassed if for each type of atom in the reaction
the same numnber of aloms appears on cach side of the armmow. For cxample ihe balanced
version of Equation (4) is

CH, + 20; — O0; + 2H;0 3)
by i i b PR
10 produce one carbon dioxide and itwo water molocules In theory, one coukd
multiply this equation through by any positive integer. For iplying through

by 2 yiekis the balanced chemical squation
ICH, + 40; — X0, + 4H,0

However, the the positive integers that will balance
the equation.

Emmlﬂxlﬂh-wkﬁ-lmuh-" by trial amd
basi for mone hons we will need 2 systematic method. There

are varius methods that can be used, but we will give one thal uses sysiems of Bnear
equations.  To illustrate the method let s reexamine Equation (4). To balance this
equation we must find positive integers, x;_ x;, x; and r, such tha

X (CEL) + 53 (02) —+ x5 (OO0} + x, (H0) 1€)
For each of the atoms in the equation. the namber of stoms on the left must be equal to
the sumber of atoms on the right. Expressing this in tabular form we have

Lt Skile Eight Side
Carben x = x
Hybogn dn = I
Ouypen 2xy = oy +xy

Xy — X =1
ax, — =1
o—2un- u=10
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where [ is arbitrary. The smallest positive integer values for the unknowns ocour wien
we let £ = 2, 30 the squation can be balanced by letling 4y = Ly = 2oy =l oy =2
‘This agrees with our earlier conclusions, since substituting these values into Equation (§)
yields Equation (5).

= EXAMPLE 5 Balancing Chamical Equations Using Linsar Systema

Balance the chemical equation
HOl + Ma,PO, — HFO, + NaQl
e — Iplmepharic ackd] + jaodiom chlaride|

Solution  Let xy. Xz, X3, and x4 be positive integers that balance the equation
x (HCT) + 13 (NayPOy) —= x3 (HiPOW) + x4 (NaCT) M
Equating the number of atoms of each type on the two sides yickds

Loy m Jxy  Hydegem ()
Iz = la,  Chberins (KD
Iny = Iy Sediem Na)
lxy = lxy  Fhesghorss (F
dny =4 OxpemiOy

Trom which we obtain the homogeneous linear system

x — 3y =0
I —u=10
Ixy —x="0
X— X3 =0
4x: — 4x3 =0
We leave it for you o show that the rediuced row echelon form of the angmented matrix
for this system is
1 0 @0 -1 @
° o -} o
e o 1 - o
e 0o @ 0 @
e 0 o 0 @
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Trom which we conchade hat the gencral solation of the syskem s

ymi, ny=if) n=if) =i

where ¢ is ¥ To obtain the smallest positive integers that balance the cquation,
in which case we oblaia 1) = J, 53 = |. 1y = |, and x4 = 3. Substituling
these values in (7) produces the balanced E

SHCI + Na,PO, —» H,PO, + INaC1 4

Polynomial J An mmp [ in various hcations id Lo find a p | Eraph passcs
through a specificd st of points in the planc: this is called an inferpoleting: polymessial
fior the points. The simip of such a problem is to find a lincar polvaomial

Ml =ax + b 1]

whose graph passes through two kaown distinct points. (1. vi) and (x2. y2). in the
xy-planc (Figure 1.9.10). You have probabi variouws methods in analytic
for finding the jon of a line through two points. but here we will pve a
method based on lincar systems that can be adapted \o geacral polynomial istcrpolation.
The graph of (E) is the line v = ax + b, and for this line to pass through the pomts
(5. ) and (x5, y;). we must have

w=an+b and wy=ax+b
Th 1he ients @ and b can be obtained by solving the linear system

ax; +b =y

& Fgure 1910

ax;+b=1w

We don’t need any fancy methods to solve this system—the value of a can be obtained
by subtracting the squations to chiminate b, and then the value of o can be substituted
into either equation to find b. We leave it a5 an exercise for you to find @ and b and then
show that they can be expressed in the form

n-—n Yikz — k)

a=="—— and b= (L]
= X3 =1
provided x; # xz. Thus for example, the line ¥ = ax + b that passes through the points
(2.1) and (5.4

can be obtained by taking (x;. ¥,) = (2, 1) and (x3. y3) = (3, 4), bn which case (9) yields

i :;-t and a-w--l
Therefore, the equation of the line i
y=x-1

A Fgue1an (Figure 19.11). _
Now let us consider the more general problem of finding a polynomial whose graph
passes through r points with distinct x-coordinales
o, mk dxa vl (o wdooo, L ¥ad (1

Since there are & ilions to be satisfied, intuition suggeits that we should begin by
looking for a polynomial of the form

Py =antmx+ a4 ap 2™ (mn



