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1.2

Considerations in Solving
Linsar Syalems

Echelan Forms

Gaussian Elimination

In this section we wall develop a systematc procedure for sobvmg systems of bneas
cquations The proceduse is based on the dica of performmg crrtam operatsons on the rows
ai the sugmented matr that smphly # 10 2 form from wisch the solotion of the svstem
can be awerisined by i prcton

When consdering methodi lor solving systoms of lncar equabon, i & mportanl 1o
dutngush between Large sysioms that must be sohved by computer and small sysiems
that can be solved by hand.  For example. there sk many apphcation: that kead 1o
lnear systems m thowsands or even malbons of unkoowns. Lange systems requsre specal
technigues w0 deal il msucs of memary e, ioundall amon. ol e, and w0
forth. Such lechmaques are studicd i the ficld of asmewine’ ssslysis and will only be
touched on m thes lex). However, almodt all of the methods that are used for Lage
systerns are bused on the wdeas that we will develop i this soction

In Example & of the last secion, we solved 2 lncar system m the unknowss 1, v, and @
by neducing the augmentod malrs Lo the form

a0

o102

oa 13

from which the solution 1 = |, y = 2 7 = § bocame ovident. Thai i an cxample of &

matrin that w in sedeerd rew rolelen form. To be of ths form, a matri st have the

lollowing properiss

1. I & vow dows not consmsl entarely of peroi. then Uhe frdl sonsem number i the row
). We call thas  dradling /

L I thaew are any sows thal conssst satirely of 2eros, thea Uhey are grouped Logether st
the botiom of ihe matr.

1 In any 1o sacoesenve rows that 30 not conast entirely of ferod, the leading | in the
lower row ocours farber 1o the nght than the leading | in the higher row.

A4 Each column th a loadkag | has ¥ elne in that column.

A muin: thai has the first thove properises s said 10 be in rew echelon form. (Thus,
& matna s reducnd row echelon form i of Recesaily in row echelon form, bul not
comversely |

P EXAMPLE 1 Row wrat Rusdoacod R Ech Form
The lollowing muatrses ane m reducnd row echelon fom
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P EXAMPLE 2 More on Row Echelon and Reduced fiow Echelon Form

In Example } we could o
desired. enpeess the mbgtem
mors mecansily as the 4 vaply
i =15

As Example | illustrates, & matr i fow echelon form has seod below sach leadmg 1,
whereas a mainn m reduced row echelon form has 2eros below and ahove cach leading
1. Thus with aoy seal ounsbers substinied for the »'s. all sotnces of the following Types
ate 18 row echelon form:

e e
| I [ Y 1= ==

01 s olss 01 ’:"”'
oot lownas soo el ‘;::::
0poo1| [sseo soo0o0 i

Al-rwudlhm“ﬂ-ﬂﬂﬂhh-

000 100« 10+ et ol e
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100 10 0l ==

o F D000 0|
Dl1a 001l = LN ] SRR el
L | e00 0 LN ] S iR
Whya of ek d muatrms for 2 syitem of
_w-p---*-‘m-:hhh-, ﬂ’h-hug_ hﬂl—ql
ntharr by or by form. Here
ave souse eLamples.

P EXAMPLE 1 Unigue Sobstion
Suppose that the sugmented matrn for 2 lmmear system i the snknowns 1y, 13, 13, and
s B Boes neduced by chementany sow operalans Lo

] L] L] L] 3
L] I L] & -1
L] L] 1 L] L]
e o @ 1 3
Thes mustrns s 1 reduced row echelon form sad wponsds Lo the o
LH = 3
1y - =]
n = 0
= 3

Thas, the system has & ussqor solubon. nameby, 1 = 3 g = =L =01 =%

P EXAMPLE & Linsar Systems in Three Ushnowns
lin cach part. suppose ihai the sugmenied matrn for 3 hacar sysiem n the unknowns
k. ¥ aded z has bevn reduced by cementary row operalions 10 the grven reduced row
echerbon form. Sobve the sysiem.
l ‘ l L e | 1 -3 1 4

1 4 2 wlo 0o o o

L I B ]

ll o 0 o 0
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Solwtion 8] The squation that corrsponds 15 the Last row of the augmenlad malfis b
G syl =1

Since thas el son 1 nol setsfiod by amy vahees of . . and ;. the sysiem & mconssient

Sclviion bl The aqualion thal cormesponds (o ihe kasi row of ihe augmenied mairiv =
O 40y + =0

qummh“iml“-muj v and 2: benee_ the
limear sy g 10 the main

a +hm=]

y-dr= 2
Sﬁnx-ﬂ1nrnqr_iulblu¢‘lsnlh#-lunﬂﬂﬂ
the Ay rrinki m thas case ) are called free sarhables
mﬁumgnnﬂh-md&hm.:m

r=—l-1

y=2+dz
From these squations we st that the free varshle ; can be treated & & parameter and

asugnid an arbilzary valoe 1. whach then determnes values for @ and v. Thux the
solution st can be d by th

s=—1-%2 r=24+4 :z=1
By various Iy = sons W can obtam varous sololions
of the system. For example. sefimg? = 0 yaekds the solulum
t=—1. y=2 =0
and witing i = | ysekds the solution
=4 y=b =1
Solution (¢ anhmduwubuummﬂewmmﬁqulk

510 rows, i which case the luear sysiem d with the d nuatry
ol the unghe equalon

1=Sy4r=4 mn
Trom whech we see that the solution set is a plase in thee-d i epace. Ahbough
(1) vl o of L sobation st there b i which it is el bl

- b eapress ithe solulon sl in parametng form. %mwlllumhn
Wo will wually demots P& 1y obying fon the krading vanable + in terms of the free variables ¥ and 2 10 obtain

by the letters £ 0. bui amd4dy-¢

From this equalion we we thal the lroe vanables can be assighed arbitrary values, suy
Ml wih the mams of ety msand zm 1, which thon determine the value of +. Thus the solulion et e be
systoma with more than thees  ©3Presed parametncally as
unknowns, subscripted ktoers a=d4Si-t, y=i =i d ]

Formulas, mech as {21 thai express the solution sei of 2 lmear sysiom purameircally

vt somme assocated s manology
DEFNIMON 1 al ¥ uas smBinately manmy sl ﬂ--mdpuuﬁw
equabions from whech all soly can be oblaned by I values to

the parameters u called 3 peaeval’ sodetion of the cysiom.

. Chapter | Dywiens of Limosr Tqpuotions sl Slstsivos.

Elimiination Methads W have psl soen bow casy o s Lo solve 2 sysicm of hacar equations once its augmenied
malma w m reducnd row echolon form. Now we wall grve a siep-by-sicp rllwsination
procedure thal can be used o reduce amy muatn to reduced row echelon form. As we
wiale each ep = the p - the wlea by redu the following matris
o reduned row echebon form.

e o - @ T 1
I 4 - & 11 B
l 4 -3 & -3 -l

Step 1. Locsis the leftmost columa thai does ot comsst entwely of 2erou.

o 0 =2 @0 7T 12
I 4 =l & 12 =B
2 4 =5 & =5 =1

| S ———

Sepl e o o oiher sow_ i o bemg eniry
o the top of the column found m Suep 1.

1 4 -0 ¢ 12 B
L] e -2 L] 7 12 e T i s o s e e

2 4 -5 6 -5 s e

Siep 3. M the eniry that & sow 2 ihe iop of the columes found n Siep 1 5 o muliphy
the first sow by 1 /2 m ooder 1o stvoduce 2 leading 1.

1 2 -5 3 & W

P @ -2 ¢ 71 12 e T i o o S g s e

2 4 -5 & -5 1

Erep 4 Adid susiable masdivplles. of the top 0w 10 the sows below w0 that all entrass below
e hecachung | ecome seson.

1 2 -5 3 & W
] . -2 [ ] 7 12 s L B A |I'I|.Idlluf
0o 0 5 @ -1T - T

Step 5. Now cower the top rom m the mateny and begmn agam wath Siep 1 appleed 1o the
submatrn that remams. Contssse m th way untl the embire matnx i row
echelon form.

1 2 =5 3 &
o 0 =2 @0 ;A
e 0 5 o0 -11 -

I—tmmh
-
1 2 =5 3 & |
¢ e 1 0 3 -




[1 2 =5 3 & W
o e 1 0 -“rl —-
o o o o } 1]
1 2 =83 3 & M
0 0 1 @ -; -4 B S sy
0 0o o o L ] TR
‘-h__
e
[1 2 =5 3 & W]
L e
o 0 0 o 1 2
The rmiire mairn u now i row echelon form. To find the reduced row echelon form we
need the followmn g sddiional step.
Supé wth the Last and workng wpward, add sutsble mubiples
of each row 1o he fows. v L itroduce Tenos ahove Uhe badang 1'i
1 2 -3 3 & W
o e 1 @ 1
o o 9 0 1 2
[1 2 -5 3 o 2
o 0 1 0 0 1 A —— T
0o o 0 o 1 2 e
[1 2 & 3 o 7
o 0 1 0 o 1
0 o o o 1 2

Tblluiﬂm-nudmdmld-hlnr-

o algo wi e describ
mmm-mmun mmumum
parts, a forward phase 1n whach fcros ane e leading 1's atnd 2 ackward
e m whach reves are miroduced sbove the leading 1 17 only theforward phase is

45 " e

Malorks Maots  AMDugh nvowm much

aiagd 4 SRpOAnG i somenelic Compulrtion became clesr when the gram

Gaerngn st pn Corl Frsgncs Gauss weed 1t 10 halp compute the arta

ofthe this: On Jaruary 1,

TBO the Sacilipn asmonoime and Catholic prest Geuseppe Fiam |1 M- 1008

el s clamy copbpepial ORgect Tt it believind might be & * misaing planet” Ha
.0 o

st han LSt B ObJCT o It nasred the Sun. Cause, then only B4 yesrs odd,
wndenosk the problem of computing whe ot of Carss irom te limited data
wing & mchnigus called “less pesres.” the squations of which hva solved by
s g W s A £88 "G T veodk of G
a5 A v Corss MAappested & yoar |iter i the coneRatcn Virga
- hmogn the preckss pOBOn Tt e predecesd| The bask idew of tha mathod
. Rt pPeiielii by Wad Geeiin ddn obid WINGITM Jordan A Wi ook
o by [ ik 3 Mg EAER ihd ek enCiad Mivsdbuch der Ver
- RAR P ———-Y
hﬂlhwmmtﬂuﬂh
Imaged LIovdan)|
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Mhhwm-ﬂﬁnhd-*“m
For example. m the d at the emd
of Siep .

P EXAMPLE § Gauss—Jorden Elminsilon
Sobve by Gamis- ondban ehmmaton

ay + Ay — 2y + 2 =0
2uj + by — Sy — 2o+ dng - =l
$xy + IOy + 15y = 3

2u; + By + By 4l + = &

Sotution  The augmented matrn for the ysiem u

[1 3 = & 2 @& @&
1 & =% =2 &4 =3 =
® 8 5 W@ e 15 3
_1 & B 8 a4 1 &
Addmng ~ I s Uhy frst row 1o the spoond and foprth oy pres.
[1 3 =2 o 2 o o]
® & = =2 @ =3 =l
e & 5 W 0 13 ]
o o 4 1 o 1 &
Multplying the spcond rom by = | and then sddeng = 3 tmmes (e Brw socond row o the
thard row gand —4 timnes the mew socond row 10 the fowrth row grees
1 3 =2 & 2 o o
@ @ | X ® 3 ]
@ @ @ @ o @0 0
o o » o o & 2]
Imterchangng the therd and fourth rows and thin multphang the thard row of the re-
“ﬂmhép\n&mmh
L 3 =2 98 2 0o W
® & 1 @ ® 13 1 -
i s e drmvard has
e o o o o 1 }
le o o o o o o]
Adddeng — 3 s the thend row 10 the second row and then adding ¥ times the second
wow of the resuliang matrey b the fira mow yadkds the foduced fow echelon form
[1 3 o & 2 o o]
@ o 1 2 @ 0 0
© o 0o 0o o 1 }
@ @ 0 0o 0 o 0
m e fing sysem of
Tmeas sysiom m (1) we gomoved
the mrw of oo m the oo 2+ Iy A+ =0
spomding awpmersicd main 2y 4 2a, =0 %7}

Wihy i this justsfied?




Hamogadnom Linear
Spatems
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Sohong for the keadmg vanshies we obtan
X = —3ay —dlxy — 2z
= —lu,
=1

Fﬂh-mm”mdﬁqﬂwb*ﬂe
ree variables 33, 1, and 15 arbtrary values r. 5. and 1, respectredly. This yaelds.
I

n==b-li=N nmr pe-b a=s y=1 =14

A system of lmeas eqp and 1 b g f the it formes are all rero,
tha 15, the system has the form 32 f 8 2
X F SN o el =0
NI b G2y v Sl =0

'-lll + U-.:l:‘* i ‘-.n‘n-..
Every homogeneous system of boear equations s conmstonl becauss all such ayilenss
hae sy, =0, 0y =10,.... 1, = Dada swlubon. Tha solulson 1s called the iriviel salwiies;
of there ane other solutiona, Usey an called memrivial selution

Bevaune o bomopencous linesr system ahways has the trvial solution, there are only

s pomaibalitars for il solulons
+ The aystem has oaly the tival solubon.
+ The system has infinstcly mamy solutsons in additon 10 the tnivial solution.
In the special caie of & homogeneous hacar syem of Two equations in two unknowns.
nay

@ by w0 Gy e b

@1 4 by =m0 i, by et ek el
the graphs of U equalions aiv ke thiowgh the orpn. and the trivial solution corme-
sponds to the pomnt of imlersection ol the ongn (Figure 1.1.1).

oty e e sciutn | ’w-_n-&;;-
» Figure 121 —

Mnucﬂn“ahﬂwwnmdm‘m
wihnever the system wvalves more sakaowns than equatioss. To
s whie. comsader the followmy example of four equations m s unkoowns

1 Chaptar | Dyvioms of Linsar Gouations snd Matnloss

P EXAMPLE 6 A Homogeneous System
Use Gauss - Jordan chmmotson w0 sobve the homopeneous baear system

& 4 diz — I + 2is =0
Zn, 4 6wy — Smy — Ir, b drg— Ing =0

Sy + Biizy + I8z =0
Ba, + g 4+ R g4 R =0

)

Solution  Dsdrve first that the cosffcarat of the wnknowms m Thid syiem ae the same
an those m Example 3. thot . the mwo systems daffer only n the constants on the rghs
sade The augmented matny for the pren homopeasons. syitem 6

i 3 -2 o * o o
2 & -5 - 4 -1 @
o 0 5 W@ @0 15 0 e
X} & @ 8 4 18 @
whach m ihe samme 2 the d o Example §. cxcrpt for sewos

o e bast cobsmn  Thae the redaced row echebon form of thes matrn will be the come
o thestl off the sugerated matrn = Exsmple 3, encept for the bt column However,
i it s peflctaon wall sk ot cvahent thatl 2 ool of Seiod s pol changed by an
chomwntary wow operstun. o the saduond ow echelon form of (3 m

P30 4200
o0 1 oo 0
o0 08000 ©
@00 8000
T dung, sysbenn of
o+ by +duy Iy =0
ny o+ 2ny =0
n=0
Sobvmg for the lradung vanables, wr obtam
aym =Nay = day = 2y
avm =2y [y}

awd

I e mow sssngn the fror vansblies 13, v snd v arbstrary values r. 5. and 1. rospoctively,
then we can expeess the solwton wt paramctncally as

pE=feli=N np=r n==l, u=g n=f =0

Mote that the rovial solution sl shen r =3 =r=0 4

Froe n
Homogenecus Linear
Systerns

E bt & b Tweo Enporisnt pomts shoul sohvinig homogeneous linear systems:

1. Elem row dhor ot b o of Beros 18 & matrix, so the reduced
row echelon form of ihe sugmenied maina for 2 homogenrous kinear sysiem has
a fimal coleme of 2eros.  Thes snplies that the knear system cormesponding 1o the
reduced row echelon form o homopeneoud. jast kike the ongnal fyatem.
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1 Whenwe d the b latvcar Fystemm ™ d
mm.nv-ndhmd—-——

By + Ong 4 0 + Oaa 4 B+ 0ua =0

Mlﬂm* d on e Thus. & ding on wheiher or
ey om form of the 4 sk foaiRe
whqmﬁm*h-_m“hﬂ“m
echwion lorm will ether have Use same mumber of cquatsons st Use onganal tysiem
o il will have fower.

How comader a general homogeneous bncar sysicm with & wnknowns. and suppose
thoat the teduced mow echebon form of the sagmented matny has r nonzers rows. Sace
each nontero sow bas a beading |, and sace cach lkeadmg | comeponds 10 & keading

variahle the b wystem ding 10 the reduced row echelon form of
the augrownied matnis st have r beadwng vansble: snd & — r froc vanables. Thus, ths
system i of the: Rermn
E3, +Xii=8
5, +¥i1=0
= 2 L]
5 +¥()1=0
bt i ¢ach i 1he won ¥ { )4 un—:-ﬂmhhm
if wmy [oee (7). for examphe], | v, we b the fall

THEOREM 1.2.1 Pone Warlelis Ths

I a howogrmrons hneor system has n snknowns, ond if the reduced row echelon form
of it cugmernsed meanrix heti ¢ mensere rows, then the sysice bax o — ¢ froc wriahles

Th 1.21 has an maportant implication lor homogeneous linear sygems with

:‘:xiﬂ g more unk: than Specifically, il 2 b lmear sydtem has m
ek v equabions i @ enknowns, and i m < A, then il mus alio be true thal r < a (why?).
systemn with mors uaknowns Thia beang the e, U thoonom implass Uhal thete is at least aie free vanable, and this
than equations need moy by VPP Ul the system has infinitely many solutioni. This, we have the followaig resull

mogenzous spstem with more THEOREM 1.2.2 Ak Y A & th hay
unknowns ihen equatons i i tedy mamy sohatrons

In retrospect, w could have d that the b sywiem in B e

would have mfinsicly many sobutions snoe i has four equations in s unknowa,

Gaussian Elimination and  For small haess vystems that are solved by hand (vuch o most of those i this text),
Back-Substitution  Gaws- Josdan chmmatson (reduction 1o reduced row echelon form) is 1 good procedure
touwse However. for Large bocar systoms that requare sodutson, il i iy
mﬂﬂlhuﬂuhﬂntuﬂﬂnhmﬂmhﬂlfﬂbﬂdh’
& luxh known & back o compleie the process of wdving the system.

The nexi example diusizabes the lochnogque

W Chapter 1 Bywiems of Linser Gquations sl Miatives.

> EXAMPLE 7 B Y Bach-S
From the computsisons m Example 3. lmﬂhhdhwma

e

e e =
a8 w8
&8 8
& - - @

o - =

To sobve the pommhing ivitem of

0y 4+ g = I & By =0
m o4 I + =1
=
wy proceed s follows.
Srep L. Sobve e equations for the hesdag varmsbles
oy = =3ay + 2oy — Iag
ay=1=2uy— Iy
L=%
Sp L s with the b 2 d workng spwand secoevively subaaute
sach equaizon wio all the oquaizons above 8
Sabstituting =, = *nﬁuw,ﬂh
= -3+ 20— 2
= =In
=4
Substawisng t, = — X, o the e equaton yaslds
2 = —dny —dg, - 2xg
= —luy
u=4
Biep 1 Aciagn arbtrary vabies o U free vanables, f asy.

I we now asugs 5y, 5, and 1 the arbarary values r, s, and ¢, sespectively, the
poiwcial solulaos, s grven by O formulas

y=-—la-% n=r n=-h =1 =1, ;.-i

Thas agrees woth the sobutun obtasned m Evample 3.

> EXAMPLE B
*hhmw“wwhmmnww
kmowmsi x . 1. 1y and 1, Thewe mal alm e

mhn Descuss. the and wmsg ol 1o the ponding
hrear sysiems




ERIERE

Sodution [a] The Lasi row comsponds Lo the equation
(TR TP TR TP |

i
o8 -
-
[y

@)

28 & -
B e b -
L
[ )
ﬂ.Lh’
2 9

- -

T e
[P

Troem whach st s evadent that the system 1 incomsstent.

Sodution (bl The ksl row commponds io U equation

Oy o Oy 0y 4 0y = 0
which has no effect on the solution st In the semammng three equations the vanahles
2y, &7, and 1) correspond o beadeng 1's and benoe are keading varublee The vanable 1y
18 & free varable. With a little alpebra, the beading vanables can be cjvaed i lorms
of the free variable. and the free vanable can be asagied an afbiirary value This, the
Aystemn st have infinitely many solulioas

Sotution &) The last row corvesponds 1o the squation

Ea=0
which g us value for as. I we sab this vale iilo the third equalion.
namely.
Ny 4+be =9
we oblam 1y =9, ﬁlm:vuhﬁhmmlhlfmmeaﬂ
substrtute the known vakers of 1, and 1, into the di

mwdmlmuwmhn;.umm.mmmm
kncwn valics of ta, £, and 1; ndo the equation comesponding to the firsi now, we wall
produce 2 unsgic sumerscal value for &, Thus, ihe sysiem has a unique solution. 4

Some Facts About Echelon  There ase three Tacts sbout row echelon forms and reduced row echelon forms that are
Forms  umportant 16 know bul we will not prove:

1. Ewery matny has 2 wnique reduced row echelon form; that is. regardiess of whether
you v Caws- fordan chmenastion or some olher soquence of elementary row oper-
ation, the same reduced row echelon form will result in the end.”

2 Row echelon forms are not amgus, that i, defferent soquencss of elementary row
operanions can resull m defferest row echelon forms

3. Albough row echelon forms are nol wmsgue, the reduced row echelon form and all
v ochelon G of a matni A have the same aumber of 2oro rows, and the leuding
's abways ocowr m Lhe same postsons. Those are called the pivet paaitloss of A. A
cnlimns thal contams 2 preol possiion s called a piver onleesr of 4.

" prced o e sesinlt coom o ol e s “The Raducod Row: Echolon Farm of & Matria Is Unique &
Samnple Prood ™~ by Thomus Vestor Matbmatics Magasis. Vel 57. Mo 2 1084 pp %184

2 Chapter 1 By E sl
P EXAMPLE 3 Pivot Posltions and Cobsmas
Eather m 1k ety after Dt 1) we found 2 row echelon form of
If A i the sugmewied ma- rl e -2 o 1 l!]
in for o bnear system, ihes A= 4 -0 & 1? X
‘thhe prvot columms whoniify the l 4 -5 & -3 _|J
leacling varmbles A an illes-

Aratson, 1 Evample § the preot 1o be

cnlumns are |, 3. and 6, and 1 2 -5 3 & M
e loachng variabsbes are 15, K5, @ 8 1 0 -3 -&
s 1

* o 0o © 2

The kiushng 1's occur @ postons (fow |, colema 1. irow 2, colemn 3} aad jrow 3,
colemn §). Thew ane the proot postons. The proot columns ane columns 1. 3, and 5.

L |

Aaudnda! Evor and M-ﬁaqh-ﬁ—uﬁhﬂuwm
Chauma bowcham clmen. hemg pood cuamg mp&-

= that »e " pp by, therebs doff crvon.

o unkew p are Laken, caloulstsons may degrade an anewer 1o 2
Mhnﬂnlnhl mlm-ﬂmmmﬂ

mmetglbly These are varous ¥

hmumhmuuwnmmh—m
mrvohs roughly MF . mor oprratsons thas (awsas denaton. s mosl compuaten
algonihms are basrd on the latter method Some of these maldicers will be conmdered in

Chapaer 9
Exercise Set 1.2
In Exercasen | L cetermumes shurther the sustris o sow och- HERR
slon form. reduced row chelon form._ both. ov sether mltr21 W[I -t o |]
e 000 s 0o 1 -2
1o lc‘ () » o 0 0 0
Liafo 1 o 10 e 01 i Bt 4. s " o
ol " i o wveare bue bevn medwond by rew operations 1o the g row
. echeion form Solve the sysiem. <
Illllll
e 3 e el -3 a 7
Wl 124 “lo o v 2wmlie 1 2 2
RN s & 1 5
- M1 o 8 —5 &
-7
m'“] ""[:.jz] mie 1 4 3 3
L) o o 1 1 2
nm 7 -2 o -8 -%
120 I e 0] 134 ..llls]
Lapfo 1 0 10 wle o1 @l ooaq e
000 ® 1 o 000 L"'II'J
1 [1 2 ¥ [1 -3 7 1
ld)lll e 8@ Wjo 1 4 @
" 0 0 LR o ¢ o 1




1 8 o8 -}
L@fo 1 8 o
e o 1 7
1 o o -7 &
mie 1 8 3 2
lo o 1 1 s
M - o @& 3 =X
o [ ] 1 L] 4 7
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* Im Hazroises & K, sslve the near system by Gasson sl

nalion

d n+ pelns= 8
LT TR T |
Any = Ty # day = 1D

& In+lptlins= 0
TR T |
[T S T rrp—

T o= y+lt- wa =l
Do y=2p-dwe -2
—arly-dt wa |
FE = dw ==

[ 8 Wy |
M b= b= -2
Gap b iem §

* I Exercisms % 11, solve the lneur cysem by Gawas Jordan

ehmanaton, <
%, Easrciss § ML Exsrone §
L. Eazvcise 7 IE Exercine §

* ln Exercises |} 04 desermme whether the homogeneous sy
e has nontrmial solutions by mspection (wrthout penol snd

puperk

I 2o — I +dn — =10
T+ m—bon+du=d
I i+ o5 — x,=0

Moo+ 3 - =0
n-in=0
day -0

* In Exercmes 1521 soive the given kmear system by amy

method. 4
Bo2o 4 ok +in =9 Wk— y—ad
o+ I L] —x+h-—Laid

Nt =0 T4+ vrlg=0

1F Gessies FBisption: 3

Mtn+niu=0 W
Sm-nmtn-n=d

ritle—=0
Jus r—dw+ I -
miirtdw— z=l
—da —Jr+ S —dx =

" 4y +ke=0
- - y=k=o
weli+ yx z=0

=lwe a+hy=-=0

B vl +a=
v day w 2ny =0
B TR ]

by =dayh =0
H-lp- Bta=0

BM= Lvdhvdl= %
& =+ M=l
My=3:% h+vllha §
Mo+ Lrdhvdl, =10

n LHi+ L+li=0
~Z,= L4322, =)+ 2, =0
I+ Z; - ML =-Zi=0
W+ 2= 2 + L=l

i each pan of Excrooses 2324 s supmontod matn for &
lenear sysiem m goen o which the seormk MOPETSCRLE 20 UBRRSC-
died real mumber  Desermune wisether the rymem o conmstont.
and o s whether the sok ique. Amrwer clustve”™ of
theree s mot emough information 1o make o decmion <

I o+ & & 1 s s
ko 1 + = mja 1 =
00 | =

of

o s

&=
= e
=5 &
e

]
-e -
ass
- &
L] L]

wefid ] 18]
ofif1] =[5

* o Esevcases 1426, determine the valaes of o fof which the
system has mo solutians, sxactly ane solution, of infisiely masy
solwtions
M or+dy- = 4

- ¥+ §r -  §

dr gy - =a+l

M Chapier 1 Bysiwms of Linser Squailens s Slaidese

M ox+ly+ f=l
L=y + k=il
x4 ly =@t =hma

* I Exsrcises 17 IN, what comdstson. of amy. must a_ b. and ¢
natisfly for ihe lnwar system 1o be comsistent”™  ©

Mrtly= rma B or+hrer
x4 yelramb —x=Ir+:
=lme h+Ty—sme

» In Exercimss 1% W, sobwe the llowmg systoms, wheer a. b,
afed ¢ afe constanis

B.li+ yma B oy+ s nea
A+bymb Iy

]

This enercae shows that & matrm can have mtple sow oche-
lon Form

M. Radue
2 1 3
" -2 -®
] ] 5
™
any miermeduie dage

A5 Show thal the followng sonlnesr s hes 11 ssluisons o
DimsleBspsivondl syl
e+ Joml ¢+ Jumy =8
Iune + Somf + Jampy =@
~une - Somj + Simy =8
[ Mg by makmyg the culatewinms 1 = -,
ymemfand:=umy|
M. Sohvy the o the -

-y of
hnown snghs o, ), and . wher @ <@ 5 2v. 05 P = 2w,
[ LEF S ]

lmme = cmf e fmymi
dume + Jomf - Jumy =1
Gume = Jomf + umy =9

M. Sobve the following system of sonlmesr squsteons for 1. 7.
and ¢

ers Fas
L o ol
Hisy - Fmd

M Sobve the following system for x. v, amd ;.

B 1w mae

-5

X7, Fand ther cocilacarnis a_kb. c. and J 3o ihai ihe corwe shown

= e aoempasving Sper = te poph of the squaton
ymar+b’box+d

 Figure Ex 17

B Fand the corlicwst a_b.c. and d so tha the cocle shows =

the avommpamrymy lgwe = proes by the cqmanon
o' e v oy d=id

-1n

AN

won 4 Fgure Ex 38

0 W e e e

an d by rorel

-y -by+ar=0

o 4 by —cr =m0
s cmly the wvaal sslution, what cab b amd sbout th solu-
B -

i by +az= 3

-y =y ez m T

i by =6z =1

S s A e s seetrry weth theer rows and fve columes, thes

st = the axsem possble number of beading |’ in ity
Pnduced fow schelon orm®

M F e st weth threr rows and st cohuman, the
whad o e Saksin possblc munber of patateciers &
e pracral solwivon of the haras ryvicia with sugmorted
marn F*

) M€ w a et wilh ve sows and thiee colwmas, thea
whal = the s possblc ssmber of fows of 2o =
amy row echelon form of O



Al Dexcribe all poasible reduced mw echelon forms of

[
€

s b
wld e f
A

(L]

. o wA
-

!
]
n

. Connider the syvtem of equations
ar+ér =
cxtdr=0
x4 frmd
Dincusm the pelative positions of the knes ax + by = 0,
5 +dy m O, andex + [y = B when the systrm has auly the
trtvial st and when it has noutrivial sohstions

Warking with Proots
A3, (s Prove that if ad — be 4 0, Bhen the reduced ow echelon

— Lisl

(b} Lsa thet cowubiin part {a) 4o peove that ifad — be o O then

b lingar aystem
ax by =k
ek tdym]
s enactly ene selwon.

True-False Exercises

TF. ln parts (a)-4{i) determing whether the stalrmwnd i brus of

false, and justify yous snswer

(ah I 3 matns b i reduced o echalken it it i n abo =
row echelon ferm.

k) I an clementary row operation is apphed 1o & matr that
i row cchelon form, the resulling macns will sl be o row
form.

L3 hiewices and bistrls Opsstions. 8

) A

llmear rysem m o wihose come
prsdig e has 2 seduced row eclerlon o
with r leadbng s has 0 = # fror varubles

i) Al lading ' i & metrn in row echrlon form mes oo m
dellerran ;b

0 ) W ewery columa of 2 mastris i row echebon form hos a kedng
1. them o entraes that are mot beadimg 1 are 2eves

i) M o of
s & comeiponding « ugihciied Wstin ab 8 duord row
eckelon lorm pablamang & kading | v the the lveai sysiom
s oy the el bun

) N the neduced row ecicken form of the sugmented matrin for
a Imear sysiom has » row of reves. then the systom mun have
mfimneh mam b s

) I a B sysiem b mane unknowss Ui squstissi, (b 8
et e mfimsteby mawy solut e

Working with Techno ogy
TL Find the meinced s echelon fnrm of the angmensed matny.
for tar lmcar sysico:

6n + m +day = -3

4 in—in= |

n —dn+ e 3
Use your mesmt 1.0 determane whether the cysiem i congies mnd
o o il s sobution.
TL Fund values of the consiants A, B, C, and D ihai make the
following cquation an seatity (1., iruc fior all vabues of £}

e Ax + K c ]
Wbl -0 D+h+? ¥

1+l
([t Olstaia 2 common denominator on the right, and then
st cortrepandsng corficents of the varows powers of ¥ in

[ Studenls ol thisas a
{e) Every matris has o unique row echelon form. sl o s taal iractiona |
1.3 Matrices and Matrix Operations
Revtasgulat sétavs of tral sunabeeis aiise m conteats othes than s augmentod imalmces foo
hnear sysicma In this section we will hegin fo sudy malres as abyecis i ther awn right

by dofineng operations of addstson, usbtracuon. and multsphcatson on them

Matrix Notation and
Terminalogy

In Section 1.2 we used reciangular arvays of numbers, called sgmenied matrices, o
ablreviaie sysiems of locar

Y galar arcays of b

accur

n other contexts as well. For cvample. the followsng rectangular array with three rows
and seven columas maght describe the sumber of hours that 2 studen! apent studying
three submcts durmg 3 corlam werk:

Men Ton %ol T P Sa 5=
L] 2 3 2 4 1 4 2
ity L) 3 1 4 b 2 2
By i 1 L] 1 L] L 2

W wy wppres the headng, then we s kit with e followng rectangulsr sreay of

e rows and

“ . 1...‘ ._-‘ e

called a “mabria”:

are called the emirirs m the matnx

> EXAMPLE 1 Exsmples of Matrices

Somw evamples of matrwes

Matrin brackets aie oflen o

omitted from | x | matne 1 7 e X —of1 ]

cm, makng & mpomsble o _

-l - [J;].(: e -3 lo L 1 [,].mq

wymbol 4 demotes the mam- -1 4 o L

et “fowr” or the matrs M)

This rarcly camses problems

because  » waally possbie The sipe of 3 matro s described = torms of the mumber of rows (honzontal knes)

o el whach s aramt (nom e 2l cobumsns | vertacal baes) o contams. For example the firel soten m Example 1 has

comtEt three rows and teo colume, 40 i sxre i by 2 {wnien 3 x 2). In a soe dewcniplaos,
ther el mmammber abwas denobes the smber of now. and the seonmd denotes Lhe number
of coly The sl E e | have dades | w4, 3 3,2 x I, and
1 = 1. nespectrvely.

A matriy with only one row. sach as the second = Example 1. s calied 2 sew secrer
o 2 rwer mmmtviv|, 2 2 atre with only one colemn, asch 24 te fourth m that evample
= calied 2 ooy verter (or 2 ool satriv). The fifth matny s tha example is both
a mow veclor amd a column veclos.

Wi wall usr capuial lefler to denole malraoes and howencase leflens 1o denole aumen-
cal guantilecs, thus we meghl wrile

efi]eel

When a

b
ff]

1o refex J dors, Unbesi

nﬁﬂh‘-—.lﬂﬁlnihuﬂ-ﬂnwﬁm;-ﬂhmllww

the ext

The entry that accurs s row | and column § of 2 matnx A wall be denoted by a,,.
Thes 2 graeral § x 4 matre maght be wrsllen a3
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Recall thut we began our study of vectors by viewing them as disected line segments
(arrows). We then extended this idea by introducing " Sinatc rystcms,
which enabled us Lo view vectors as ordered pairs and ordered triples of real numbers.
Ax we developed properties of these vectors we noticed patierns in vanous formulas
that enabled us to extend the notion of a vector to an n-tuple of real numbers
Although n-luples took us outside the realm of our “visual experience.” it gnveus a
valuable tool for undersianding and studying sysiems of lincar equations. In this
chupter we will extend the concept of & vector yet again by using the most important
lgebruic propertics of vectors in R® as axioms. These axioms, if satisficd by a set of
objects, will enable us 1o think of those objects as vectors.

4.1 al \;ect; Spacn

In thas section we will extend the concept of a vector by using the basic propertes of vectons
n RB" a5 axsoma, whech il satisfed by a set of ohpects, guarantee that those obpects bebhave
like familiar vectors.

The following definition consists of ten axioms, cight of which ane properties of vectors

m R* that were stated in Theorem 311, It is mportant to keep in mind that one does
not prove axioms: rather, they are assumptions that serve as the starting point for proving
theorsma.

"

184 Chapter 4 GanerslVechor Bpacas.

| DEFINITION 1 L«thmmmdmu-h:hmw]
are defined: addition. and multiplication by oambers called seafars. By addition we |

| mean a rule for associating with cach pair of objocts w and v in ¥ an objoct m+ v, |
called the s of wand v; by sealer sitiplication we mean 2 ruke for assocting with

In this text sculars will be o
ther real numbers or complex
mumbers. Yector spaces with
renl sculars will be called renf
recter spacey and those with
complea scalars will be called
complex vector spaces. There
is & moee peneral notion of &
wctor space in which scalan
can come from o mathematical
structure known as a ~fekl”
but we will not be concerned
with that kevel of gemerality.
For now, we will focus exche-
dively on meal veclor space.
whach we will refer lo s
ply as “vector spacen” W
will consider complex vector
apaces later.

each scalar k and cach obpect w m ¥ an obpect bw calied the sonder ssliipde of w by k-
If the following axioms are satisfied by all objects w. v. w im V and all smlars k and
m. then we call ¥ a wector space and we call the objects m ¥V vecsars.
I. fmand varcobpectsim V. thenm 4+ visim V.
mtv=v4m
itv+w)={m+vi+w
There is an object #m V. called a seve vecsor for V. such that @+ a=n+8=n
for allmim V.
For cach m in V. there is an obyoct —am V. calicd 2 segetive of w, such tha
4 (—w)=(-a)+u=0
Ifk is any scalar and & = any obyct in V. then ku s m V-
bmtv)=kn+ kv
ik + m)m = ku + mu
kiwrn) = (ko ){m)
ln=u

A

L

10,

Obscrve that the definstion of 2 vector space docs not spocify the natwre of the voctors
of the operationa. Any kind of object can be a vector, and the operations of addition
requirement is that the ten vector space axioms be satisfied . In the cxampies that follow
we will use four basic sicps to show that a sct with two opcrations is 2 veclor spacc.

To Show That a Set with Twe Operations Is a Vector Space 1

Seep L. Idcnnifly the set V of objocts that will bocome vootons

Strp 2 Idenufy the addition and scalar muitplican P on V.

Step 3. Venfy Axioms | and & that x addmg two vociors m V' produeces 2 vecior
n ¥, and muitiplying 2 vector in ¥ by a scalar abso produces a vector m V.
Amom | is calicd clessre smder adiition and Axiom & i callod clesre sl
rowler pmiiipdicatise.

Siep 4. Confirm that Axioms 2 3.4.5.7.8. 9, and 10hold

Mistarical Note The nation of an ~shsiract vector
space” evohved over many yesrs and had many

The ides with the work
of the German mathemstician . G Grassmann,
who published & paper in 1882 in which he con-
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Our first example is the simplest of all vector spaces in that it contains oaly cac
object, Since Axiom 4 requires that every voctor Space COBEAIR a 2ero veclof, the object
will hive to be that vector,

B EXAMPLE 1 The Zerc Vector Bpace
Let ¥ consist of u single object, which we denote by 8, and define
B4+0=8 and D=9

for all scalars k. It is eany to check that all the vector spacr axioms are satisfied. W call
this the 2ere vecter space. 4

Qur second example is one of the most important of all vector spaces—the familiar
dpiice R". It should not be surprising that the operations on A* satisfy ibe vocior space
axinma beciude those axioms were based on kaown properiies of operations on £

P EXAMPLE 2 A" ls aVector Space

Let ¥ = R®. i define the vector space operations on ¥ 1o be the usual operations of
wedition and scular multiplication of A-tuples: that i,

LR N (T [PV R (U - R wn) o=l vz vz e o)
ku (kwn, kg, .. kiin)

Theset V = R" is closed under addition and scalar multplication because the forcgoing
operutions produce n-tuples as their end result, and these operations satisfy Axioms 2,
1.4,5 7 8,9 and 10 by virtue of Theorem 1.1.1. o

Qur next exumple is b generalization of R* in which we allow vectors to have mfinitecly
e 200/ 802

P EXAMPLE 3 The Vector Space of Infinits Bequences of Real Numbers
Let ¥ consist of objects of the form

L [T PTRY R |

in which wy, w2, ..., g, ... i an infinite sequence of real numbers, 'We define two infi-
muqnu:nhcpdﬂhrmn&u components are equal. and we define

A and scalar ¥ ine by
=y, [ R LTI TR v, ]
= (M + v M2+, B+ ]

In the excreises we ask you to confirm that ¥ with these operations is & vector space. We
will denote this vector space by the symbol &=

\Emmdlklyp:mEmﬁ3“hll itted signal of indefin
d is digitized by lng its vahes at discrete time mtervals (Figure 4.1.1).

In the next cxample our vertors will be mairices. This may be a little confusing at
first because matrices are composed of rows and colu which are VECtOrs
{row vectors and column vertors). However from the vector space viewpoint we ane not

¥ Chapter 4 Gamersl Vector Spaces.

Note tha Equation (1) in-
volves shrer dufferent sddiion
operution: the addition op-
enution on veclors. the ad-
dition. operalion on matrces,
and the sddition operalion on
enl numbers

concerned with the individual rows and columns bat mther with the propertics of the
matrix operations as they relaie to the matrix as 2 whole

|
Let

EXAMPLE 4 The Vector Space of 2 x 2 Matrices
¥ be the sct of 2 x 2 matrices with real catrics, and take the

m?mhhmmﬂmmmmmhk

wem B 2202 2] w
wesfey -

The set ¥ is closed under it the ing oper-
alions prod 2;(1 ’ thee Jn:ﬂ_h-_-hﬂﬁ'-“nln-
23.4.5 759 and 10bold Some of these are dard aes of matvin

For example. Axiom 2 follows from Theorem I.‘.l“l_

wocfy {32 214 2

Smilarty. Axioms 3, 7, &, and % follow from parts (5), (k). { j). and (e). respectively. of
that th {verify). This k Axi 4. 5, and 10 that remasin 1o be versfied.

To confirm that Axiom 4 is satisfiod. we must find a 2 x 2 matrix § in V' fior which

w48 =84uforall? x ?matrices in V. We can do this by taking

=[]

‘With this defimition.

el o 2l 2

and umilarly w + 8 = u. To venify that Axiom 5 holds we musi show thai cach object
min V has a negative —wim ¥ such that w + (—u) =@ and (—w) + w=& Thiscan be
donc by defining the ncgative of w to be

o

S o R

and similarly (—u) + 9 = @ Finally, Axiom 10 holds because

i v [ we]



® EXAMPLE 6 izhmm:wm

Let ¥ be the set of real-valued functions that are defined a1 each x in the interval | ==, =),
I f= f{x) and g = g{x} are two functions in ¥ and if k is any scalar, then define the

aperatiodns of addition and scalar i by
T+ gix) = fix) + glx) 2
(H)(x) = Ef(x) 3
One way to think about these s to view the Jix) amd g(x) a5 “com-

ponents” of f and g ot the point x, in which case Equations (2) and (3) state that two
functions are added by adding d and a on is H

by a scalar by muhtiplying each component by that scalar—exactly asin K~ and K= This.
idea is illustrated in parts (@) and (4) of Figure 4.1.2. The sct ¥ with these operations is.
denated by the symbal F{—n, ). We can prove that this is a veclor space as follows:

Axdoms | and & These closure axioms require that if we add two functions. that are
defined at sach ¥ in the interval (—=, =}, then sums and scalar multiples of thoss fumec-
tions must alao be defined at sach ¥ in the interval (=, =), This follows from Formolas.
{2) and (3).

Axdom 4: This axiom requires that there exists & function @ in F(—x=, =), which when
added to any other function f in F{—=%, =) produces § back again as the result. The
funclion whose value at every point x in the interval (==, =) is 2670 has this propenty.

In Exumaple & tha functions
were dellned an Lhe enlire in-
bervul [—u, %) However the
argumenis wed in thal cxame
phe upply as well on ull mbin-
bervils of (==, =), such as
a chosed interval o, b ar an
open interval {a, b). We wall
denole the vector spuces of
Tunctsons on these imtervals by

G B the graph of the function @ is the line that coincides with the 1-axis.
Axiom 5: This axiom requires that for each function fin F{ —=, =) there exists a function
—fin F{—x, ), which when added to f prod the function 8. The function defined
by =1{x) = — f(x) has this property. The graph of —fcan be obtained by reflecting the
gruph of f about the x-axis {(Figure 4.1 2¢).

Axloiis 2, 3,7, B, %, 10: The validity of each of these axioms fnllows from properties of
real numbers. For example. if £ and g are functions in F(—ux, ), then Axiom } requires.
thut f + g = g + f. This follows from the compunation

(F+ i) = Kx) + glx) = g(x) + fix) = €+ D(x)

o D1 £ b, RS which the first and last equaltie follow from (2), and the middle equalicy i a property

of renl numbers. We will bewve the proofs of the remaining parnts as exercises

A Figure 412

It is important W recognize that you cannol impode amy 1Wo operuthons of any sl
V and expect the vector space axioms to hold. For example, il V' is the set of n-tuples
with poaitive components, and il the standard operations from R* are used, then ¥ s not
closed under scalar multiplication, because if w is & nonzero a-1uple i V, then (- 1w has

18 Chapier 4 Ganaral Vesior Spaces

al leasi one negative and hence is not in V. The following is a less obvious
example in which only one of the ien vecior space axioms fails io hold.

P EXAMPLE 7 A Set That Is Not sVector Space
Let ¥ = K and define addition and scalar
= (uy, u3) and ¥ = (¥, r2), then define
¥ = (M) + ¥y, My )
and if k is any real number, then define
Jw = {kuy, D)

Forexample, ifw = (2. 4). v = (-3, 5, and k = 7. then

a4 v=2+ (-3 4+ 5)=(-19

bn=Ta=(7-20)=(14.0)
The addition operation is the standarnd one from &, but the scalar multiplication is not.
In the exercises we will ask you 1o sh hat the first nime i sfied
However, Axiom 10 fails 1o hold for certain vectors. For example. ifm = (uy. a2} is such
that u; # 0, then

as follows: If

I = Ly, biz) = (1 -0, 00 = (. D) #£ m
Thus, ¥ is not a vector space with the stated operations.

Owr final example will be an wnusual vecior space that we have included Lo illustrate
how waried voctor spaces can be. Since the vectors in this space will be real numbers,
it will be important for you 1o keep track of which operations are imended as vector
operations and which ones as ordinary operaiions on real numbers.

P EXAMFPLE & AnUnususl Vector Space
Lt ¥V be the set of positive real numbers, letw = & and v = v be any vectors (L2, positive
real numbers) in V', and let & be any scalar. Diefine the operations on V to be
M4V =Nr | Veoter kil i semevical mitiplicatas. |
= Sealar [ape——— 1
Ths, for example, | + 1= 1 and (2)(1) = I* = | —strange indeed. but nevertheless
the set V' with these operations satisfies the ten vector space axioms and hence is a vector
space. 'We will confirm Axioms 4, 5, and 7, and leave the others as exercises.
+  Axiom 4—The areo vector in this space is the number | (ie.# = 1) since
i+l=n-l=u
+ Axiom 5—The negative of a vector ¥ is its reciprocal (i.e., —u = | /w)since
.+l-.(1)-|(-n
L (]
+ Axiom T—kix + v) = (xv)* = w'v" = (k) + (kv). 4

Some Properties of Vectors  The following is our first theorem about vector spaces. The proof is very formal with
cach siep being justified by a vector space axiom or a known propenty of real numbers.
There will not be many rigidly formal proofs of this type in the text, but we have included
ihis one to reinforce the sdea that the familiar properties of vectors can all be derived

Trom the vectar space axioms.
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THEOREM 4.1.1 Lei V be @ vecior space. u a vector in V, and k o scalar; thew:

@ (w=a
®) k=0
) (=l=—n

W) Yum@ thenkmloramid

We will prove paurts (a) and () and leave proofs of the remaining pans as exercised

Proaf(a) W can write

O+ o (0 Ohw ) aniemm B

= Ou | Praperts of B samtor 8|

By Axiom 5 the vector du had & negative, —0u. Adding this negative to both sides above

yields

or

(08 + O] + ( ~0u) = 08 + (—Ou)

Ou 4+ [Ou + (—Ou)| = Ou + (—Ou) | Asiem 3|

li+0=8
O =4a

| Axlem §|
[ Axclam. 4|

Proaf (el To prove thal (— 1 = —u, we must show that @ + (= 1)u = 0. The proof &

an fallows:
k(=D ut(=1)n Ak 9]
= (] (=100 Ao 8|
= I Pragerty o
=0 1Pt ()

A Closing Observation
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Thia ection of the text ks kmportant 1o the overall plan of linear algebra in thit it estab-

lishes & common thread umong such diverss mathemanical abjecis as geometric vectars,
veclors ia R, infinile sequencen, mutrices, wnd real-valued Tunctions, 1o name a few.
Ax  result, whenever we discover u new theorem about general veclor spuces, we will

al the same lime be d

I about i

g a
Tued T

matnces,
ml|h: discover.

vectors, vecion in R", se-
and about amy new kinds of vectors that we

To illustrate this idew, conaider what the rather innocent-loaking renult in pant (4)
of Theorem 4.1.1 suys about the vector space in E:lmplﬂ I K.nwln. i mind that Uu
that

vectors in that space ure positive real

o

ation

exponentiation, and that the zero vector is the number |, Ihllqndinl

=0

in really o staterent of the familiar fuct that if w s & positive real number, then
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Exercise Set 4.1

b et ¥ be the st of all ondarsd pasrs of real umbers, and
comuder the lollowing sddiimon apd scalar multplxatson op-
Aratiens on e = (i i) wnd v = 6. 0k

[ B2 LN TR PR T L TR

{u) Compuis o+ v and ku for = (=1, 2. v = (3. 4). and
b}

1B) In words, exphein why ¥ s clossd under sddition snd
wcnlur multiplscation.

1€} Simee sddition on V' @ Lhe tandand sddiion sperslion on
A pnrtain victor spuce axioms hold for ¥ because Uy
an known o hald for £, Whech asioms are they”

id) Show that Axioma 7. . and 9 hold
o) Show that Axsorn 1 lails and hence that V¥ i not a vecter
apacy under Lbe gheen operations.

L Lat ¥ be the oot of all ordernd pasrs of resl members and

consder the lollowing sddilion and scalar malaphcation op-
Anations onm = (w0 and ¥ = (¥, Bk

L B2 L I N P e
in) Compuix u+ v and iu for w= (.40 v = (. =3). anad
dml
1k} Show thal {0.9) w8
e} Show ihal {—1. -1) = &
1) Show that Asiom 3 holds by producing an ordered pair
—aschibata+ (-} = Bham = (w0
2} Find two vector space axsonss thal [ to hokd
In Exercises 1-1 L deiermane wheiber cach sel equpped with
Ih[ﬂnmnluﬂww For those that are not vector
spuces identifly [he veclor space avoms that (2
X The st of all real pembers with the sandand operatsons of
widdition and multsphbcaton

. The set of all pairs of real nembers of the form (1. 0) wiih ithe
standard operatoss on &'

b= Gy k)

5. The set of ali pars of seall numbers of the form (x_ y). where
x = 0. with the standand operations on &

i The set of all w-luphes of real oumsbers thal have the form
Lx. & ..o 1) Wil e standand operation: on £

T ﬁﬂdﬂuﬂsdmmﬂkwm
with scalar mmbispls dhefined by

B The st of all 2 = 2 matres of the fovm

H

with thet slanedand matr addition and scabar muliphcaton.

L The st of all peal-valwed Tunctions | defiond everywhers on
U real bine and sach thal 11 = 0 with e oprations wead
w Example &

N The sri of all pairs of real sumbers of the form | 1. £} wiih the
opetaions

b+l =il y+3) and iyl =l k)

AL Thwe st of pobymomasks of the form a, + o, 1 with the opera-
[

li ) 4 (B + k] = e+ Be) + e +)x

and
by 4 1) = (ko) 4 (km)a

AL Verdy Axioms 1. 7. 8, and ¥ for the vector space grven  Ex-
ammphe 4.

. Verdly Axsoms |. 2.1, 7. 5.9, and 10 for ihe vecior space given
m Example &

15 'With the sddition and scalar
in Exsenple 7. show that ¥ = &' ssteafies Axsoms i-9.

& Verdly Axsoms |, 2. 1. 6. 5.9, and 10 for the vecior space given
o Example &

7. Show that the srt of all poimisin X lying on a kine & & vector
space wilh reapect Lo the slandard operations of veclor ad-
dition and scalar multiplication of and only if the kne passer
through the origm.

& Show that the st af all points in &' lying in 2 plane is s vector
space with respect (o the standard operations af vector addi-
tion and scalar multiplicatson i and only if the plane passes
through the orign .

* n Exercees 19-20, let ¥ be the vector space of postive neal

mumbers with the vector space operations given i Example 8. Let

w = be any vector in V., and rewrile the vector statement as 3
statement aboul real numbers.

i —m=(=im
M kn=0iand caly il k = 0oru =10

Working with Proofs



4.2 Subspaces

It 1 eoften the case Thai some vector space of mitenest 15 contamed withen 2 Larger vector space
whose properies are knoswn. In this sectson we will choa how 10 tecopmee when the s the
case, wie will gxplun how the prepertics of the Lages victor spoce can be wied 10 oblun
properises of Uhe smaller vector space. and we will groe a vanety of imponant evamples.

We begin with some terminology.

DF-FINITIJ!;W'lmA_BIIll:ul W of & vector space ¥ is called 2 mbapace of V if W is itself ]
a vector space under the addition and scalar multiplication defined on V. |

I[n general, to show that 8 nonempty set W with two operations is & veclor Space ane
must verify the ten vector space axioms, However, if W id a subspace of a known vector
space V, then certain axioms need not be verified because they are “inherited ™ from V.
For example, it is #or necessary to verify thatw + v = v + u holds in W because it holds
for all vectors in V inchuding those in W. On the other hand. it iv necessary 1o verify
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that W ks chased under addithon and scalar multiplication since it is possible that adding
itwo vectort in W or multiplying a vector in W by a scalar produces a vector in V that is
outgide of W (Figure 4.2.1). Those uxions thal are nof inherited by W are

Axiom |—Closure of W under addition

Axiom 4—Exkitence of u ¢t vector in W

Axiom 5—Existence of u negative in W for every vector in W

Axiom 6—Closure of W under scilar multiplicution
50 these must be verified 1o prove that [t ks u subspace of V. However, the next theorem

dhows that if Axiom | and Axiom € hold in W, then Axiomia 4 and 5 hold in W as a
consequence and henoe need not be verified.

» Figure 4 2.1 The veclorsm
and v e m W, bt the vectors
=+ vamd b are not.

THEOREM 4.2.1 Jf W iz a sev of ane or mare veciors in @ weeror space V, then W lna
subspace of V if and only if the following conivions are serisfied

{2) Ifwandvare vectorsin W, thann+ visin W.

) Ik is @ realor andw is a vector in W, then ku s in W,

Proof If W is a subspace of V, then all the vector space axioms hold in W, including
Axioms | and &, which are precisely conditions () and ib).

Ci assume that conditions {«) and (5) hold. Since these are Axioms | and
ot vea s 6. and since Atioms 2. 3, 7. 5, 9. and 10 are inbesitd from V. we oaly nesd 10 show
i chag e ang  'hat Axioms d and 5 hold in W. For this purpose. let w be any vector in W. It follows
scalar multsphieation. from condition (B) that bw is a vector in W for every scalar k. In particular, Dw = 8 and

{—lm=—mamein W, which shows that Axioms 4 and 5 hold in W, <

P EXAMPLE 1 The Zsro Subspace
Il ¥ is any vector space. and if W = ﬂllhnhﬂdlﬂhﬂmhoﬂhlﬂnm

MNote that svery vector space v
Bas a8 lensl 1o sabepuces, i only, then W is closed under and scalar snce

welf und itn ser subspace. 040=0 and k0=0
fior any scalar k. We call W ihe zeve sulapace of V.

P EXAMPLE 2 Lines Through the Ovigin Ase Subspaces of B* and of R*

If W is a line through the origin of cither R® or R, then adding rwo vectors on the line
wmm.muﬁmhnmmmwumuu
W is closed under addition and scalar plication (i Figure 4.2.2 for an illastration
in R')L

=
]

Ao W closed under addition, (b W is closed under scalas
» Figure 422 swiplication.

B EXAMPLE 3 Planes Through the Origin Are Subspaces of F*

1w and vane vectors in a plane W through the origin of R, then it i evident geometrically
thltl+undhahhnlhewplmeW&rwnﬂul[i‘miiz.i,\ Thus W
i clowed under addition and scalar multiplication,

Table | below gives a list of subspaces of R and of R' that we have encountered thus
far. 'We will soc later that these are the only subspaces of R* and of R®,

A Figure 4 2.3 The veclons Tabie 1

S A e —r —T
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CALEULUS REQUIRED

CALEULUS REGUIRED

In this text we regard all con-
sianis o be palynonsial of de-
gree zero. Be awure. however,
that some authors do not as
wign a degree 1o the constant 0.

The Higrarchy of Function
Spaces

> EXAMPLE 7 The Subspsce Cl—=. =]
Mauwfwn“uﬁnﬂ-ﬂ-a—immim
unuous and that a ‘Times 3 fu - Rephrrwd m
vector | age, the 1t of [{ (==, =) is 2 subs i Fi—=_=)._
We will denote this subspace by O —=, =),

> EXAMPLE 8 m*mm—n—

A function with & che ' sand 10 be contomonly differentiable. There

uamnMmem—dmmm
i by daffe L iﬁ‘lulml—lﬂ_d,&\-

i B il b A Thus th

differentiable on {—=, :lm-uhpudh—- =) uumnm

by C{—=, =), whese th p hat the firsr & A

To take this 4 step further, the st of fi with om i —=. =)

is a subspace of F{—x, =) a3 is the set of fonctions wah desmvatrees of all osders on

(==, =). We will denote these subspaces by C™={—x. =) and £ {~=. =), respectavely

P EXAMPLE 5 The Subspace of All Polynomisls.
Rucall that a pedysessial is a funciion that can be expressed in the form

plad =g+ my +- -+ ogx" (L1}
whete ag.ay. ... , ate consianis Il-muﬁmdmwul
poly Jand thata timses 3 poly by L This, theser W of 2

by s is closed under addit ﬂmhmuﬂmu-uhm
ntn-u =), Wit will denote this space by F..

B EXAMPLE 10 The Subspace of Polmomishs of Degres < n

Recull that the degrav of a polynomial is the highest power of the variable that oocun with
a nondero coelicient. Thus, For example. if a. o 0 in Formula (11 then tha polymoms|

:L::’-‘nf-:rlll : :: ;:.u:‘ll:l::.-u:dnd under :JI-:I.I|I| '209 i f,goz
polynomaals

1425+ ' and $47% -0t

both have degree 2 bul their sum has degroe 1. What i tree. however, is (hat for each
mieger o the p s of degree m ov bess form a subspace of Fi(-=_ =),
We will denote thas space by F,. o

It i3 proved in caloubus that poly k Iy and h.

dervatrves of all onders on (==, =). Thus, it follows that P. s not oaly a whepace of
Fi==, =), 2 previously observed, bul 1 alo 2 subs of C(—m, m). We leave il
ot you 1o convince yoursell that the vectodr spaces discusied in Examples 7 10 10 aiv
“nested” one inakde the other as dlustrated o Figuee 4.2.5.

Remark [n our p thal weir defmed ai all poimis of ihe
mterval (—=, =) !wn-ll—ﬂﬂ-—un—hl-—um-yﬂ-‘—_
subinterval of (—=, =), say the clownd miorval [o. b] or the opon mierval (o b)) In s cases
vy will make an appropralr sotation chasge For cample. Cla. #] n the space of contimsous
s troms o fa. B and Cia. ) m the spose of contmecm fanctons on da. b

Burldirg Subspaces

» Fgwedls

The followmy theorem provides 2 wscful way of cresimg 2 arw subspace from known
vubwpaces,

THEOREM 4.2.2 W, Wy, .... W, s snbapaces of @ vecier space V. ihen e inier-
e fiow of biwsy subspaces 5 alve o sbypace of V

Proof Let W be the miersecion of the subspaces W

Mok thet the frst sep
proving Theorem 422 was
o esbablioh that W comtasmed
0t Jeast one vector This m
porant. ker otberwise te b
sequent anpument maght be
logically cotrect but asanag-
ens.

Ik 1 e E o { 2) bias
the form w = kv, m which
e e lnrar combuston B
jumt 3 sealar mltiphe of v,

-nhu--idlnrm_-ﬁl-nwaﬂ’uﬂ_nﬁu
thewr intersoction. This. o remains 10 show that W s chosed wnder sddition s scalar

To prowe closure under addstion. ket @ and v be voctors m W. Since W is the imter-
sechon of W, W, . W, it follows that w and v also e in cach of these subspaces
Moreover. ot e subspacrs s  scalar they
also all contam the vectors m + v and kw for cvery scalar §_ and hencr so dors ihear mier-
sechion W . Thas proves that W s dosed under addiizon and scaler multiphcation. 4

Somertumes wr willl wani o find the = smalles™ ﬂ“dlmwt’“ﬂ—
tams all of the vectors in some set of i The following defingson whach
Defistion 4 of Sectron 3.1, willl help us to do that

|mz H-Inw-amwl’ then w s sad 1o be 2 Enoer

combinasion of the vectors v, v;___._v, in V i w can be expressed in the form
w=km+km+---+bv (-]

wiere by kz_ ..k are scalars These scalars are called the covffcbeass of the lnear

II..

THEOREMA23 IS = [w,.ws..__.w,) s setf wersor gpace
V. thew

o) The st W off all possible linewr combinations of the vectors in 5 it o ndvpace of V.

B} The ser W i poarr () in sl ~smnlilens™ ﬂwd’?ﬁ“‘qﬁhu
in 5 i st vy stioes s oy LA

Proof sl Lea W be the set of all possible hincar combimnations of the vectors n 5. 'We
must show thar W s closed under addinon and scaler multiplicaton  To prove closune
ey sdefivion ket

B=cW + oW+ cm, and v=kw +bLw+---+Lw,
e rwo vectors in W_ I follows that their sum can be writien as

B edes B i e o Bt o oo il B vem




uneder addition and scalar multiphcaton. bk oS

4.3 Linear Independence

I this section we will conmder the gueston of whether the veciors m 2 gven sel ame
wlernlaied 1 the sense that one o more of them can be cupressed = 2 bnesr combamtue
af the others Ths i smporiant to know n spphestons becanse the oustence of such
relutionihaps allen signals that somie kand of comphcatson = blely to oo

Linear Independence and  In a rectangular 3 ycoordinate system every vector i the plase can be expoesied in
Dependence exactly one way as a hocus combunstion of the standasd unst veciors. For example the

& Figure 4.3.2

In the cuse where the st 5 in

oaly way 1o express the vector (3, 2) as a hnear combeatson of | = (1, 0) and = 0. 1)
B

Bh=ML0+20=MN+3 i)

A3 Unger ndependense N

{Figure 4.3.1). Suppose however, ihai we wese 0 introduce & thend coordmaste axs tha
makes an angle of 45° with the y-avis Call it the w-avie As illearsed m Figare 432,
the unit vector along the w-axis is

1 1 )
= ity
(3 ]
Wheneas Formula (1) shows the only way ioexpress the vecior (3. 2) asa bnear combuna-
tism ol | amd |, th fimitely many ways s vexTind i a lineat commbanalion

af |, ), and w. Theee possibilities are

u.n.m.numnu(.::!_ .';!) =4 NtOm
00,20 = 21,00+ (0, 1)+ .-"!(55 ;:!)-JHHJE-

t.i..tl-«l.o)+uo.|1~ﬁ(:'!.::!.}-lnpﬁi

In short, by imtroducing a superflucus ans we created the complication of having mul-
tiplhe ways of assignang coondinales 1o pomis in the plane. What muakes the vecior w
superfiuous u the fsct that it can be expressed as & hnear combanation of the vectors |
and | mamely,

=(a7)-aa

Thas leadds 10 the lollowing definiton.

DEFINITION 1 115 = [v,. .
V. then 5 i sand 10 be & Sevenly indiepradend st of 8o vector m 5 can be expressed an
& haear combination of the others. A wt that & not kncarly independent is sasd 10 be

In geoeral. the most cfficent way 10 detormme whether 3 sct 1s hnearly independent
o ot s 10 wse the followmg theorem whose proof s grven al the end of ths sction.

Defimitson | has only one vee-
tor, we will agrew that 5 w -

ncdepanident i and
::r.w.m* THEOREM 4.3.1 A nowempiy sei 5 = [¥,.%;. ... %, in @ vecior space V is liwrarly

il permcens if and only if the only corfficants stisfy g the vector equation
by kv -4k, =0
ek =0y =0 k=0

P EXAMPLE 1 Limear of the Vectors in A
The most base: hacarly mdependent st n £ = the sei of standard unst vectors.

H=(L0.0.....0. H=0.L0_ 0. . &=000..1

To thas m K. the dand unit vectors

I=ilLom j=01L8. k=Mool

To prove o— FRCR (e TR GO ey mg Uhe vech

quation

bl+bj+bh=0
are by =00 = 0. &, =0 But thes beoomes evadent by wrting this cquation o it
componesl form

ik k) = 0.0.0

‘You should have no rouble sdaptng ths & pement 1o cotablih the s ideprndonce
of the standard wnst voctor m K.

B EXAMPLE 2 Linear Independancs in #°

Dietermine whether the vectons
m=(L=213 wm=(5&-1L m=0321D @
are hocarly indepradent or bmcarky m R
Solwtion The hocar independence or dependence of these vectorns i determined by
whether the vecior equaton
AR e A ] (k1]

can be satwifed with cosfficenis tha are not all 2era. To see whethes this is so. ket us
newrite (3) in the componnt form

bl —2. 3 + k5. 6. 1) + ki3 2 1) = (0. 0.0)

E i dury on the T siles yiekis the homopensons linear

h+53+3:=0
—3b; + 6y + By =0 (2]
- b+ =0
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A Geomeatric interprétation  Linear idependence has the following useful goometnc micrpeetatsons = £ and &'
of Linaar Indepandence . Tug vectars in &7 or R* are knearly indepeadent if and caly i they do not b on the
same line when they have thesr mwtial poants ot the onpn Otherswe: one sould be &

icalur mvualtiple of the other (Figure 4.3.3)

» Figurn .33 () Linearly dependent ik} Limearly dependent ich Lamgarty idependent

+ Theee vectors in B are linearly independent if and oaly of they do not e i the same
plane when they have thewr mitial pomits al the orgm Otherwise st brast one would
be & lineas combmation of the other twe (Figuse 4.3.4).

» Figure a4 f9) Linearly dependent %) Lingarly dependent () Linearty independest

AL the bepinaing of this section we observed that & thisd coordinate axis in 2 is
uperBucus by ibewing thal a uait victor along such an avs would have 1o be expressible
as a linear combination of wail veciors along 1he positive 1- and y-axm That sesult is
a of the pext th whach shows that there ¢ " ¥
any linearly independent st . 02000000 LS 0 E;UZ

THEOREM 43.3 Lt S = [vy, ¥y, . ... % | beaastof mctorsin B*. Ifr = m. then S is
Hineutly depesdient.

Proof Suppose that

st

T
and consider the equarion
bw+hn+---+hy, =0
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I we express both sides of this equation in terms of components and then equate ithe

Tt follows from Theorsm 4.3 3
‘comesponding components. we obtan the system
that a set in & with more than -
we vectors is lnearly depen- gl + gl -+ 0,k =0
dent and 2 st in &' with mone L
than thres vectors m lmearly "‘f"“"!f‘!-'—""'—.'fl'_?
deperdcin = = = =
ok + oz +- -+ Bk =0
Ths s a sysiem of & : in the r wnke by E_ Sewe
r > . it follows from Theosem | 2 2 that the sysiem hos sontrivial solerions Thevefore.
5 =iwm.m.....%] > alnearly depeadent wt 4
CALEULUS REQUIRED 5 I o b of fusts be deducnd from known shearmes For
Linear Independence of  example. the functions
Functions

h=sun's h=cos's amd ;=%
Torm a hnearly dependeni sl i Fi—=. =) sce the euainoe
o+ -0, =S5un's + Soos’x — §

=5sn’x +cos’x)—S=8

0 & 2 bimsid of [, 1. amd £, with coefficwnts that are ot all 2evo
However. il s nel by care Uhat leowar sl 5 - ch f i cam
be ascertamed by alpebrax or ethods To make matiers worse. there =

no peneral method for domg that cuber That sand theve does cxst 2 theorem tha can
b umefial for thal purpos: @ o cases. The following definson & noeded for that
theorem.

OEFMON 2 If f, = filah 0y = fylah ... 6 = f(x) are functioss that are
A — | s dulfeneniuable oo the wterval (—=. x), thn th determanant
Sfitx) Sulxd EETI AV 1]
Wi f.:m f,':m _f_:lxl

M m - eeim

Hoatencs Mote  The Pobeh Fronch methemyncun Jod Hosnd de
Wronehi e born Jonst Moses sed sdopted the neemes Wronel i
o T VOPSASATY. S st Wl s (O Gvtiy & Chafann.
rhach BOMS Sy WS St 0 peychopstha lendences snd he sxag-
R of e (POOFRCE Of Pk v veork. ANTIGugh W Seo s wOrl
et hamusssd u rublush ior Many vedrs. B mwch of 8 i ntend
rinh O P el

wreed demong other Harge. Vo g Qe & CrIrpeist vehacly t
COMpENE with Draing ithOwgh it wes. fver Mt actured) and dd re-
St oot U Liracnust D bhirs o Gulanve wming Wi bongeiuade of b shap
4% el My Bl pRaTE Wt ERRA B DOVenTy.

Temage: © RopForo T inape Works]
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Suppose for the moment that I, = fi(x). f; = fulx).... 0, = f,(x) sre learly
dependent vectors i O -1~ ). This smplies that the vecior equation
bl +bli 4+ +LL =@
is natiafiod by values of the cosflicients &, k. ... &, that are not all zevo, and for these
coefficients the squation
bifit)+ hfea)+ - + L) =0
is satiafiod for all x in {~=, x). Using this equation together with those that result by
differentimting it @ = | Gmes we oblam the lnear system
ky fiix) + b fi00) St AT -0
.t.f;ln +hfix) # -+ LLU) =0
l-!."' "W 4w N =0
Thus, the linear dependence of ). ;. . ... f, imphes that the hnear system

Aixp frlxy - Jalxd
,f‘ul ,';ul ful .
f'"'m f§' "exp - ‘*'m

has o nontrivial solution for every 1 i the interval | —x. =), and this in torn imphes
Mhmﬂmmﬁ-mﬁ(lornm&myﬂs mh
determinant is the Wronskianof J,. fi..... Jo-me i the follows

—
WARMIMG The comverss of THEOREM 4.3.4 If the funcriomr §. 0h..... L have n—| contimonr derivatives
Theorem 4.3.4 is fale. If the o the interval (—=, =), and if the Wromskiaw of these fimctions i not idenrically
Wiouskian of fi. &...... Lis 2ére on (—=, =), them these funclions form a lincarly independent set of veciors in
identically zero on [—x, =), C""”[-I.I‘J.

then mo conchmion can be

reached about the mear inde-

fonchemen of ;. & .. L= In Example b we showed that 1 and un x are booarly independent functions by
o oy v obuerving that neither i & scalas muliple of the other. The followiag cxample ilustraies
e bow 1o obtain the same result usung the Wronakun (though il is a more complicated

e proceduse in the particalis case).

P EXAMPLE 7 Linsas bndk e Uiing the Wionski
Use the Wronakian 1o show that f; = x and Iy = anx an lncaily indepondent vectons
O (—=. =)

Solution The Wionakias

||fm=i‘l "':|=xmx-m.

Thas function is nol i iy 2ero on the I —=, =) unde, for example,
"(3)=F(5)-m(3)-}

Thus, the funetions are Enearby » 1
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P EXAMPLE § Linear independance Using the Wronskian

Use the Wronskian to show that §; = 1., = #*_ and f; = ¢™ are hoearly independent
vecton in C (—=. =)

Solution The Wronskun s

1 &£
W)= 0 & 2| =2
0 de™
Thus function s obviously sot denncally 2evo on | —=. =) sof;, . and F; form 2 eearky
indepenabint sct. A
OPTIONAL W will coss thas section by pooving Theonem 4.3.1.

Proof of Theorsm 4.3 1 We will prove ihes theorem m the case where the st $ has rwo
o more vectors, and e the case whene 5 has only of VECIOF a6 a6 ERETCHE AsSumd
first ihat § o hocarly mdepeadent We will show that of the equatuon

by + b4+ by, =0 (111}
cal be satiliid with oosficants that s sot all 2o, teen o least om of the vecton sy
5 musi be bl 21 bmear b of the others, thendby contraduamg the

of himear unaepenls To be specific, suppose that &y # 0. Thes we can
rewrite (11} as
& _'_'}
q-( E)'=+ +( L v,
whach ) i g b of the other veclon i 5.
Coaversely. we must show that f the only cocfficsrnts satafyang (11) ase

=0 k=0, L =0

then the vectors m 5 must be haearly isdepradent. But of the were trae of the coefli-
cunti i the vextorns webe mol licarly isdepradenl. then of boal ane of Usem sould be
bl ot 4 hrar combs of the others, sy

oy maiy ot G,

s

whech we can rewTil &
Wtl-am+ -G R =l

But ths contradicts owr assumption that (11) can only be satsficd by codfficieats that
ant all vo. Thas, the vecton w 5 must be bacarly ndependent. <

Exercise Set 4.3

1. Explain why ths ol [e——— ofvec- L b auch part. determine whther th wotor i by ide-
tors mhpﬂ-rpwl poindent of arv Iisarty deprdest @ X7
fa) o= (=L L Mandm = (5 -0, -2 = X fa} (=108 (-L2.(L.LB

) (=200 (L1256 <1.1) (1.0. =D
A im ewch part. determune whether the vectors are kneady mie-
e p=d-2it s amlpmb—da+ 2wl peadent of are lmearly depradent @ £
[-3 4] [+ ] (a) (BT =3 (L5 3% ~1h (L -L2 6k Wh.26.4)
idy A = 2l B e = B S R e T P T, TR S el e e

) o= (3 =1 = 5 = (AT



4 In guch par. determane whethar the sectors s husarly sl
pendent of s My dependent in P,
() 2= s +ded, 34 &+ 2, 24 Jow — e’
[CTRES PR BT LR BY PR PO R P

5. In wach part, dets risuter wisether the makrices are haearly m-
depanrdenn or dependent

S A R B
ool fed 2w

& Duterming ull values of & for which the following matrices an
Iinewrly independent in M,

1o =1 0 10
1 k] T ]
T. Incach pari. determine whether the Ustee veciors lie i a plane
in R
M) o=l =20 vym (8 1.4, v o= (L0 -8
by wy o (=6, 7.3, vym (3. 2.4), vom b =02y
& In cach part, determine whether the three vectorn be on the
same ling in &'
fa) wom (=12, 5, vym (2, =d, =8), 1 = (=], 6.0)
(B) w o= (2, =04 .31, v = (L 7. =6)
i) wo= (4, 6,8), vp= (2, 5.4], = (=2 =3 -4
9. {a) Show that the three vectors v, = (0.3, 1, 1),

wr= (60,5 1), and vy = (4, =7, 1, 3] form & knsarly
dependent st m &

(b} Express each vertor in pari () as a hncar combination of
the other twa

M. {2) Show that the vectors w, = (1, 2, 3,4), vy = 0, 1,8, =1),
and w3 = (1. 1, 3, 3} form a imcarly dependent set in £
{b) Expresx each vector i part (2) 23 2 linear combimation of
the other twa
11. For which real values of i do the following vectors form &
Iinerly dependent set in B
O I B e e o

12 Under what conditions is 2 et with one vecior lmcarly inde-
pendent?

I3 In cach part, ket 7o B — K" be mulisphcation by A, and
letmy = (1. 2} and m = {—1.1). Determine whether the st
(Taim), Faime)) in limearly independent m £

was[s ] ,..,-[_; -;]

43 Linew independencs ¥
whther e st (T im0 Toim) Toim)) o sy mdopen-
doni i K

1 "2 1 1 1
wmA={1 8 -3 A=t 1
2 ° 2 2 o

1. Ay il vecion v,. v, snd v, 8 part is) of the sccompasy-
g e nearky sdcpendent Whet shout tos ® part (47
Ewplasn

=)
& Figure Ex-15

1. By u o i L &
which of the following sis of veclors m Fi—x. =) amx ls-
caity depesdent
{a) 6. 3em'x Zooms
{c) 1. smz1, =mlx
(o) (3=aF. «* —6x 5

17, { Caabaalies fvguinnd ) The functions

filx) =13 and fiix) =cox
Oy Flox,x)
o 4 scaler malliphs of the othei Coalirin the kacar mdepes-
demoy iming the Wiomkan
. {Cabonlies requuined} The Tunctiom
filsh = and fila) = coss
are haearly Fi-=, =) b h

& scalar muliple of the other Conkim the bacar wdepra:
dence wung the Wioaskuan

. (Colenlies oguived) Ui the Wiondisan to show that the fol.
' iy

) 1. oxx
d) om 2y, 5w x. oo’ x
) 0. oo’ xx, o’ Ay

il o Lo, s

N« guired) Lise the o whvorw that Wi Fume -
tioms fiix] = o, fiix) = o', and fiz) = 2's* are hmearly
madependent vecorsm O~ =)

. (G pmined) Ll thee v oy it Wt famc
M In euch purt, let Ta: B — R be multiplication by A, and ket Mﬁu)--a Frixh = cons. and fris) = 5 conx am
w o= (L0 m = (2 -1 1) andwm = (0. L. I} D by Ci-m =)
12  Chapter 4 Ganarsl Vester Spases:
21, Show that for any vectors w. v, and w im 2 vector spuce V. the  f2) A 2 ol wecion

vecton s = v, % =, and w — umform 2 eearly deprndent st

) The set of vectors fv. b} o Encardy dopendest for ewery

. (a) |IM]-H_-#_—7-

.l" bn,ﬂlun-_y-id

scalar k

Mm-l'-_ywl-ﬁ

e h with a
b} Justidy yorus 1
U'se dot produts. ]

i} Every by

el I the st of wectows [w;. vz m) = Emeardy mdependen, thes
iy vy, | o ke By sdepracdens for svery momsens
scaler &

‘Working with Proofs
3. Prove that of 1, 9y, v,) .2 hnearly asdoprndent wri of veclors,
thais 0o amw [, 5. [ny. 0 ). fep. %) D) Ins). amd ;)

B, Prove that ol § = fw,, %, ... %, ] = o hmsarty mdopendent sl
of vector, then s i every nonempty sebaet of 5

36, Prove ithal il § = [, 5. 7)) = 2 bnvarky depradent st of we-
tors i & veior space V. and vy = any wocior m V' il sol
in 5. than {1, vy, v 04] = alee Beeary depraden

in ¥ et ave moot i 5, them fry. m.
limnearky e pemabent

e N L]

3. Prove that m Py every set wilh mors Uhas theor vecion » ls-
warly dependeni

39, Prove thal of [v,. v,] i bngarly selrprndent and v, dors noi be
i vpaniyy, wy ). Lo fuy. vy v,) o Becarly mdopdeni

38, sy part (#) of Theorem 4 1 | 1o prowy part i)
3. Preve part ib) of Theoremd )1
31, Prove part i) of Theormm 43 1

True-Faise Exercises

TF. In parts {2} {h) &
false. amd justily yous amees

wharther the

ot lemat ome wecier v = 2 wesgee Emear combmaen of
L P

i) The setoff I x I mctwsces thot comtum evacthy toe s and e
s = 2 lmearly edependen: st om M

g} The Showe polymomasls (1 ~ 1hx + 2). six + 20 and
win = 1) ane becary mebepradent

Wk Thie fumcticas f, sl /, ave bncarby depondent o there s 5 sl
by & such that k, fiix) + by fulx) = §lor some scalars b,
and iy

WWoe i fg werth Technology

T1. Dievane theer deferrn murtiods for wiang vour schaakogy vl
iy o desermane whetber o st of wctor @ I w mearly mdopen-
dent, sl then wor each of thowr methods to detcrmung whether
i Sl wphontn ahy betir Py sl

meil-Ll8 ned-LLN
H=h-LlY w=d-LL8

TL Show that § = [cost.mnf cos . me Iv| = 5 bovarky me-
pomdent ot O ==, = )by rvalusteng the bt s of the cquatson

el ool sam =0

= vaficrethy masy valurs of 1w obums 2 boear yveem whesr
only sobytion i c; =0y = =g =0

4.4 Coaordinates and Basis

Wee mually thonk of 2 boe a8 beng one-dimenuonal 3 plane as teo-dmmenoonal, sod the
space srvund us 2 three-demcnsosal It o the pramary goal of the soclecn and The peid te
make thes miwine aobon of dmorson procose 1a the secton we wall doswuss cocrdmate

systems m pemeral veclor spaces and Ly the proundwork fot @ precase defimtion of

dhmcnson @ the acil sxlon

Coordinate Systems in
Linear Aigebra

In analyi gromeiry one wses. L
wbﬂmw-}wﬂﬂdpﬂdnﬂmﬂm

m-}waﬂmmdnﬂ—hﬂlﬁpnllll Although rectan-

gular

SYSImS

ey are mol essenil For example Fagure 4.4 2




